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ABSTRACT

'Caprani, Madsen, and Rall have shown previously that the use of interval values

leads to a simple theory of integration in which all functions, interval and real,

are integrable. Here, a simplified construction of the interval integral is given

for the case that the integrand and interval of integration are finite; the interval

integral is shown to be the intersection of the interval Darboux sums corresponding

to the partitions of the interval of integration into subintervals of equal length.

A rate of convergence of these interval Darboux sums to the interval integral is

given for Lipschitz continuous integrands. An alternate approach to interval inte-

gration in the unbounded case via finite interval integrals is presented. The re-

sults give theoretical support to interval methods for the solution of integral equa-

tions and finding extreme values of functionals defined in terms of integrals. /
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SIGNIFICANCE AND EXPLANATION

Advances in applied mathematics often follow the development of underlying

mathematical theory. As many problems in applications reduce to evaluation of in-

tegrals, the solution of integral equations, or the maximization or minimization of

a functional (energy, angular momentum, etc.) expressed in terms of an integral,

new results in integration theory are bound to be of practical importance. In the

theory of interval integration, developed by Caprani, Madsen, and Rall (MRC TSR

#2087), it is shown that the introduction of interval values leads to a simple theory

of integration in which all real and interval-valued functions are integrable. The

results have been applied by Rall to the numerical solution of integral equations

(MF.C TSR #2128), where one obtains guaranteed upper and lower bounds for the exact

solutions. In this report, the construction of the interval integral is simplified

drastically in the common case that the integrand is bounded, and the interval of in-

tegration is finite. It is shown that all one needs to do is form the interval

Darboux sums corresponiing to subdivisions of the interval of integration into sub-

intervals of equal length, and these converge to the interval integral as the number

of subdivi.ions becomes large. This procedure is easy to program for a computer, us-

ing interval arithmetic. A rate of convergence is given for integrands which are

;mooth enough in the sense that they ar- at least Lipschitz continuous (but not ne-

ceo .arily dlifferentiable). Finally, these finite interval integrals are used to de-

fin. im ,, per irtegrals, in the unbounded case. As these may be finite intervals when

the ilterval inteqrdl is infinite, improper interval integration may be more con-

,':,: "ftt , u:;e in r'rtain applications.

r, },,r,. . t . r t w , r lin and views t*xl rt.:;_;.,d in this descriptive summary
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Integration of Interval Functions II. The Finite Case

L. B. Rallt

1. Introduction. The construction of the interval integral, given in the general

case in [1], can be simplified drastically in the case that the interval of integra-

tion is finite, and the integrand is a bounded interval function. (Definitions of

the necessary concepts will be given below.) In particular, the use of the extended

real number system is not required, so all computations can be done by ordinary in-

terval arithmetic [3], [4]. Furthermore, it is not necessary to consider all parti-

tions of the interval of integration into subintervals, as the partition into sub-

intervals with equal lengths will be shown to suffice. This eliminates an inherently

nonconstructive portion of the definition of the interval interval, the formation of

the so-called interval Riemann sums.

In addition to the simplification of the construction of the interval interval in

this case, rates of convergence of the Darboux sums based on the equipartition of the

interval of integration to the interval integral will be derived for sufficiently smooth

integrands. Another approach to improper interval integrals will also be given.

2. Interval functions. Following the definitions in [1], an interval function Y

defined on an interval X = [a,b] assigns the interval value

(2.1) YWx = (Y(x),Y(x) 1

to each real number xEX, where y, y are real functions called respectively the lower

and ulper boundary functions (or endpoint functions) of Y.

The vertical extent of Y on X is defined to be the interval

inf sup -x
(2 2) MY(X) = [ Y(x) ' X Y(X) }1.

In thi ; paper, only intervals of integration with finite width w(X) = b - a, and

bin,1i' int.rval functions -uch that w(',Y(X)) < +- will be considered. This is the

,A trmat irc ',uearch C,-ntrr, !7niversity of Wi,;consin-Madison. Research s-ponsored
iart :0 t ... rm under Contract No.: DAA(,29-80-C-0r)4l and Danish Natural

o, ', a ,, r'. >un:l ;rant ;e . 511-15849.



finite case.

The notation Y = [y,y] will also be used for interval functions. Real functions

y may be identified with the interval functions y = (y,y] with equal endpoint func-

tions, which are called degenerate interval functions [1].

3. Interval integrals. In general, the interval integral of an interval function Y

over the interval X = (a,b] is the interval

b
(3.1) / Y(x)dx = rY(x)dx = (fXY(x)dx,7xy(x)dx],-x" -- x

a

where .xYX)dx denotes the lower Darboux integral of the lower endpoint function y

over the interval X, and 'xy(x)dx gives the upper Darboux integral of the upper end-

point function y over X [2]. As these Darboux integrals always exist in the extended

real number system, it follows that all interval (and hence all real) functions are

integrable in this sense. The definite and indefinite interval integrals have many

properties similar to those of the Riemann integral [1).

The construction of the interval integral, carried out in [1] in the spirit of

interval analysis, is done in three steps. The first step consists of partition of

the interval X into subintervals Xi = Ix.i , i3, i = 1,2,...,n by means of points

(3.2) a = X0 - ... <. x <- . <X <x n = b

to obtain the partition

(3.3) "'n =  (Xl,2I ..... Xn )

of X, and the corresponding interval Darboux sum

n n

::ext, for each positive integer n, let n denote the set of all partitions (3.3).

The interval -iemann sum -f order n is then defined to be

(3.5) Y(0 Y(X).
nn n

inally, te interval integral of Y over X is given b-;

-2-
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b
(3.6) fY(x)dx = n ! Y(X)

a n=l

which is nonempty, as the interval Riemann sums form a decreasing sequence of nonempty

closed sets [i], and agrees with (3.1). This construction will be simplified in the

finite case.

4. The finite case. The interval integral (3.6) will be said to be finitely defined

if the integrand Y is a bounded interval function, and the interval of integration

X = [a,b] is finite. The equipartition 'n of X is defined by the points

(4.1) x = a + ih, h = (b - a)/n, i = 0,1,...,n,
1

so that

4.2) w(X i) x. - xi = (b - a)/n = w(X)/n h, i = 1,2,...,n.

"he coire, ponding interval Darboux sum is

n

(4-3) Y(X) = IY(X) = w(X) VY(X.).
n n I 1i=ln

Theorem 4.1. In the finite case,

b
rY(x)dx = I Y (X).~n
a n=l

Thus, this cor.struction requires only the formation of the single interval

Darboux sum (4.3) for each positive integer n, and skips the (nonconstructive)

calculation of interval Siemann sums (3.5) entirely. Furthermore, (4.4) agrees with

the definition of the interval integral given by R. E. Moore [2] , [3] , in the case

that the endtoint functions y, y of Y are essumed to be continuous. Theorem 4.1

will be proved in "6, based on results on subintervals established in the next sec-

tion.

5. Two lemmas on subintervals. 'he fir:,t lemma simpli.ies the proof of the mean

interval-value theorem for interval intoqral: over a finite interval of integration.

[mma 5.1. If Z. = [c ,J - = [c,d] are finite intervals.,-,2...,n,

-3-
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n
and a. -0 with at. = 1, then

1i=l1

n
(5.1) aiZi c Z.

j=l11

Proof: This follows at once from the elementary inequalities

(5.2) a_<la +5a + a <lb + ab ++ sbn b
1 1 +'2 2 +' +On nll 2 2 +nfl

for convex combinations of real numbers. Q.E.D.

On the assumption that Theorem 4.1 holds, this gives the mean interval-value

theorem [1] for the interval integral (4.4), as

n
(5.3) n V VY(x.) = Y c VY(X)

n= 1 n

by Lemma 5.1, and, from (4.4),

b
(5.4) fY(x)dx = w(X). nl = w(X).Y,

a n=ln

where Y c Y(X).

The excess width of an interval Z = [c,d] over a subinterval Z' = c',d'] c Z

is defined to be

(5 5) e(Z,Z') = max{c' - c, d - d').

It is evident that

(5-6) e(Z,Z') - w(Z) = d - c.

A symmetric interval is an interval S of the form S = [-s,s], where s _ 0.

Lemma 5.2. If Z' c Z, then for each symmetric interval S = [-s,s] with

s I e(Z,Z'), one has

(5.7) Z - Z' 4 S.

In particular,

( . 8) Z c Z' + [-w(Z),w(Z)].

Vroof: The inclusion (5.7) follows from the definition (5.5) and the definition

II 4
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of interval addition [21, [31; (5.8) follows immediately by (5.6). Q.E.D.

6. Proof of Theorem 4.1. It is to be shown that definitions (3.6) and (4.4) of the

interval integral agree in the finite case. Set

(6.1) I = n E Y(X).

n=l 
n

As the interval integral (3.6) is contained in each Darboux sum E Y(X), it follows

n

that

b
(6.2) fY(x)d c Tn Y(X), n = 1,2,...,

a

and thus

b
(6.3) JY(x)dx c I = n nY(X).

a n=l

Suppose that a partition point p, x i_1  p 5 x. is introduced into an interval X. . By

Lemma 5.1, one has

(6,4) w[x l,p] .VY([x l,p)) + wlp,xi] .VY([p,xi)) c w(Xi).VY(X.).

Consider an arbitrary interval Darboux sum IA Y(X) for some positive integer m. For
m

each n - m, the partition points xl, x2 , ... , X 1 of the interval Darboux sum are

interior to at most m-1 subintervals of E Y(X), with total length not exceedingn

((m - l)/n)w(X). After deletion of these subintervals from An' the remaining partition

points of A will belong to the subintervals of A . By (6.4) and Lemma 5.2,n m

(m - l)w(X) w(YX)w?()]
(6.5) ZnY(X) c A Y(X) + n [-w( (X)),w(VY(X))].

As (6.5) holds for each partition A m and positive integer n m, frnm (3.5)

.'(m - l)w(X)

(6.6) . Y(X) c E Y(X) + w(TY(X)).[-I,I].
n m n

As w(Y(X)) +-, taking the intersection of both sides of (6.6) with respect to n

giv(,q

(6-7)I c Y(X) + [0,01 Y Y(X).
m m

-5-
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From (6.7), it follows that

b
(6.8) 1 c 7 Z Y(X) fY(x)dx.

m=l m a

Comparison of (6.3) and (6.8) yields (4.4). Q.E.D.

This result can also be established using the relationships expressed in terms

of elementary integrals of step functions as upper and lower limits of the interval

Darboux sums (1) as in (2], pp. 54-56.

7. A rate of convergence for smooth integrands. As in ordinary interval analysis,

an interval function Y ( [y] is continuous if the real functions y, y are contin-

uous. Similarly, Y is Lipschitz continuous if a Lipschitz constant L > 0 exists for

both y and y, that is, Z(x) - Y(z) - Lx - zj and ly(x) - y(z) I - LIx - zI for

Xz G X.

Interval integrals of continuous interval functions can be expressed in terms

of the Riemann (R) integrals of their endpoint functions [l]:

b b b
(7.1) fY(x)dx = f(R)fy(x)dx, (R)f y(x)dx].

a a a

one may also write

b n x.
(7.2 (.R)fy(x)dx = [ (R)f y(x)dx

a i1= x

for a Piemann integrable function y and a given partition .n of X = [a,b]. If y isn

contirlous, then on each subinterval Xi, i = 1.2,...,n,

x.
(7.3) (i y(x)dx = y(") (xi - xi I) =y(ri)w(X) , .i 6 xi~xi-'

23 , . 2q9) . Furthermore,

(7.4) y(< ) [c,d) = [y('ilY(4i)], C i i  E Xi.

,hu:, if y is :iF;-chitz continuous, then

bI?.:i i .wC;: ) - CE.) :(xldx [ ['(.) - yU(. )]I.w(X i ) _< L.wCX.
I I " 1. 2

a

L ,-6-
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and

b 2

(7.6) (R)fy(x)dx - ci.w(Xi ) = [y(ci) - y(9i)] "w(X i ) 5 L'w(X')
a

Applying (7.5) and (7.6) to y and y respectively for the equipartition with w(X i) =

w(X)/n gives the following inequality for the excess width of 7 Y(X) over the in-n

terval integral (7.1) of Y.

Theorem 7.1. If Y is a Lipschitz continuous interval function, then

(7.7) e(--nY(X) , Y(x)dx) < n
a

The use of interval Darboux sums as approximations to the interval integral is

an extension of the crude method of upper and lower Riemann sums [5] for the approxi-

mation of the interval of a Riemann integrable real function. The Darboux sums are

generally easy to inclose and give rigorous upper and lower bounds for the value of

the integral, but the rate of convergence as given by (7.7) is slow. Of course, the

use of partitions other than the equipartition may be of benefit in some cases, but

for smooth functions the improvement may be marginal. For example, for

1

(7.8) Y(x) = [0,3x2 ] , j[0,3x
2 ]dx = [0,1],

0

the equipartition for n = 2 gives

(7.9) g([0,11) 
= 

[0,-] + -[0,31 = [0,-] = [0, 1.875].
2 2 4 2 8

The interval Riemann sum in this case corresponds to the use of the partition point

xI = 1/,3, and has the value

(7.10) -2Y([0,1]) = [0,11',3 f-,,3].(1-1/i ) = [0 , 3 - 2/.,] c (0 , 1.846].

Although this is better than (7.9), extra labor was required to determine the opti-

mal partition, and this additional effort increases rapidly with n.

8. Inner improper interval integrals In [1), an interval integral was said to be

unbounded if its value is an infinite interval. These unbounded interval integrals

arise if the inteqrand or the interval of integration is tnbounded. .lationships

-7-



were developed in [1] between the value of the finite endpoint of a semi-infinite, or

improper interval integral and the improper Riemann integral of the corresponding

endpoint function of the integrand. Here, an approach to improper interval integra-

tion will be made via finitely defined interval integrals.

Case I. Y(x) is an unbounded interval function on a finite interval of inte-

gration X = [a,b]; that is, ')Y(X) w(X) < +-. Here, the functions

(8.1) YN (x) = Y(x)[-N,N]

are defined for each positive integer N. The corresponding finitely defined interval

integrals

b
(8.2) 1 NY(X) = YN (x)dx, N = 1,2,3,...,

a

are finite and may be obtained from (4.4). For M > N,

(6.3) I NY(X) c I MY(X)

because the interval integral is inclusion monotone, and YN) c Y M(X) for % >N [1].

The inner improper interval integral in this case is defined to be

b i b
(8.4) (I)Y(x)dx = I NY(X) c jY(x)dx,

a a

the inclusion following again from Y N() c Y(X) and inclusion monotonicity of the in-

terval integral. It follows that the inner improper interval integral exists (in the

extendled real number ssqtem.) if the interval of integration is finite. The follnwinq

xami 1e0 are taken f-om [1)

-1,'3
(a) Y(x) = x , a real function, X = [0,1.

N-3
(8.5) IY([Cl]) = "N , 1-1' 3 -2 -2

(0dx . x dx -[3 -N ,3
0 -3N

3 x-13x

,* 0

I -... ..
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(b) Y(x) x
- 

, x [0,1]. Here,

N 1 -1
(8.7) Y ) = f Ndx + ' x-dx (I + inN,l + inN),

0 -i

and

(8.8) (I) x dx = [-',.,J = x dx,
0 0

an infinite integral. The standard definition of the improper Riemann (IR) integral

of real functions over a finite interval ([21, p. 88) gives the following result.

Theorem 8.1. If the endpoint functions L, y of Y have improper Riemann (Il in-

tegrals over the finite interval X = [a,b], then

b b b

(8.9' (1) Y(x)dx = [(IR) f y(x)dx, (IR)f ytx)dx].
a a a

Of course, in case Y is bounded, or the real function y is bounded and Riemann

(R) integrable, one may take

b b b b
(8.10) (I)Y(x)dx = Y(x)dx, (IR).fy(x)dx = (R)fy(x)dx,

a a a a

respectively.

Finitely defined interval integrals may also be used to construct an improper

integral over infinite intervals of integration. For simplicity of notation, take

Y(x) = [0,01 outside X, and the interval of integration to be the real Line R =

Definition 8.1. if

lim 1 0im
(8.11) I+Y '(1) Y(x)dx, I Y = (I)rY(x)dx

N0 H

exist, then the imiro-per interval integral of Y over P = -,'1 is defined to be

(0.12) () Y(x)dx = I Y + I Y.

it1 i icat inn. '/ ue of the rules for extended interval arithmetic given in

[ , '!, isterval (S.12) is w, .l-d,'fiscd if the limit'
,  (R.11) exiLst, a the f,_su tuas

. - , . -- ,.] , .-,. - . ( -,.] resolve a;ny "indeterminant form:;" whi h ma:

- -W
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arzse. T.hu actual interval of integration may be indicated in (8.12), if different

from R.

The following example is also taken from (1].

-x
(c) Y (x) -e , X [0,]. Here,

-N -N
(8.13) (1) J'(-e-x)dx = f(-e-X)dx = [-1 + e-,-I + e

0

and, since I Y = [0,0],

(8.14) (1) ''(-e-X)dx = I+Y =

11

a finite interval, while the value of the interval integral [1] is the infinite interval

(5.15) i(-e-X)dx =[
8

,i

Fnall,', the definition of the improper Riemann integral over an infinite interval

of integration ([2], p. 94) gives the following result.

Theorem 8.2. If the endpoint functions y, y of Y have improper Riemann integrals

S !-',], then

(1) Y(x)dx = [(IR)j y(x)dx,(IR)r y(x)dx].

i.A noledg;,nts. The Author is grateful to Ole Caprani, Kaj Madsen, and Prof.
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