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ABSTRACT : :

L. -~

J.Caprani, Madsen, and Rall have shown previously that the useibf-i;£erv;i values
leads to a simple theory of integration in which all functions, interval and real,
are integrable. Here, a simplified construction of the interval integral is given
for the case that the integrand and interval of integration are finite; the interval
integral is shown to be the intersection of the interval Darboux sums corresponding
to the partitions of the interval of integration into subintervals of equal length.

A rate of convergence of these interval Darboux sums to the interval integral is
given for Lipschitz continuous integrands. An alternate approach to interval inte-
gration in the unbounded case via finite interval integrals is presented. The re-
sults give theoretiral support to interval methods for the solution of integral egua-

tions and finding extreme values of functionals defined in terms of integrals. /

’
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SIGNIFICANCE AND EXPLANATION

Advances in applied mathematics often follow the development of underlying
mathematical theory. As many problems in applications reduce to evaluation of in-
tegrals, the solution of integral equations, or the maximization or minimization of
a functional (energy, angular momentum, etc.) expressed in terms of an integral,

new results in integration theory are bound to be of practical importance. 1In the

theory of interval integration, developed by Caprani, Madsen, and Rall (MRC TSR ¥
#2087), it is shown that the introduction of interval values leads to a simple theory
of integration in which all real and interval-valued functions are integrable. The
results have been applied by Rall to the numerical solution of integral equations
(MRC TSR #2128), where one obtains guaranteed upper and lower bounds for the exact
solutions. In this report, the construction of the interval integral is simplified
drastically in the common case that the integrand is bounded, and the interval of in-
tegration is finite. It is shown that all one needs to do is form the interval

\ Darboux sums correspon iing to subdivisions of the interval of integration into sub-

intervals of equal length, and these converge to the interval integral as the number

of subdivisions becomes large. This procedure is easy to program for a computer, us-
ing interval arithmetic. A rate of convergence is given for integrands which are
smooth enough in the sense that they are at least Lipschitz continuous (but not ne-
cessarily differentiable). Finally, these finite interval integrals are used to de-
fine improper integrals in the unbounded case. As these may be finite intervals when "

the 1nterval integral is infinite, improper interval integration may be more con-

venntent to use 1n certain applications, J
ieore poraabilrty tor the wording and views expressed in this descriptive summary
Lioe oowith o0, and not o owit!o tts autuor of this report




Integration of Interval Functions II. The Finite Case

L. B. Rall+

1. Introduction. The construction of the interval integral, given in the general
case in [1], can be simplified drastically in the case that the interval of integra-
tion is finite, and the integrand is a bounded interval function. (Definitions of
the necessary concepts will be given below.) 1In particular, the use of the extended
real number system is not required, so all computations can be done by ordinary in-
terval arithmetic [3]), [4]. Furthermore, it is not necessary to consider all parti-
tions of the interval of integration into subintervals, as the partition into sub-
intervals with equal lengths will be shown to suffice. This eliminates an inherently
nonconstructive portion of the definition of the interval interval, the formation of
the so=-called interval Riemann sums.

In addition to the simplification of the construction of the interval interval in

this case, rates of convergence of the Darboux sums based on the equipartition of the
interval of integration to the interval integral will be derived for sufficiently smooth
integrands. Another approach to improper interval integrals will also be given.

2. 1Interval functions. Following the definitions in (1], an interval function Y

defined on an interval X = [a,b] assigns the interval value
(2.1) Y(x) = [y(x),y(x}]

to cach real number x €X, where y, ; are real functions called respectively the lower

and upper boundary functions (or endpoint functions) of Y.

The vertical extent of Y on X is defined to be the interval

" - . - inf . sup ~
(z 2 7Y (X) [ ey L)1 wex Y (x) 1.
In this paper, only intervals of integration with finite width w(X) = b -~ a, and

bounded anterval functions such that w{VY¥(X)) < +~ will be considered. This is the
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finite case.

The notation Y = [l,;] will also be used for interval functions. Real functions
v may be identified with the interval functions y = [y,y] with equal endpoint func-
ticns, which are called degenerate interval functions [1].

3. Interval integrals. 1In general, the interval integral of an interval function Y

over the interval X = [a,b] is the interval
¢ b _—
(3.1) Jy¥(xyax = Y (x)ydx = (Lpy(x)ydx, [y (x)dx],
a

where ;Xz(x)dx denotes the lower Darboux integral of the lower endpoint function y
over the interval X, and 7%;(x)dx gives the upper Darboux integral of the upper end-
point function ; over X [2]. As these Darboux integrals always exist in the extended
real number system, it follows that all interval (and hence all real) functions are
integrable in this sense. The definite and indefinite interval integrals have many
properties similar to those of the Riemann integral [1].

The construction of the interval integral, carried out in [1]) in the spirit of
interval analysis, is done in three steps. The first step consists of partition of

the interval X into subintervals Xi = (xi_l,xi], i=1,2,...,n by means of points

(3.2) a = %, R, < ... <X,

]
A
A
®
!

x

n

o

to obtain the partition

(3.3) Ln = (Xl,Xz,...,Xn)

»f X, and the corresponding interval Darboux sum

n
(3.4) TLYe) T L) TV X, .
L 1 1
n i=l

text, for each positive integer n, let Un denote the set of all partitions (3.3).

The interval “iemann sum ~f order n is then defined to be

13.%) LYo = ‘,__‘D TLOY(N) .

n n n

irally, the interval intecgral of Y over X 1s given by

-2 -

.

[T SR—

b,
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b
{(3.6) Ty (x)ax
a n

It
W o 8

T Y,
1 n

which is nonempty, as the interval Riemann sums form a decreasing sequence of nonempty
closed sets [i), and agrees with (3.1). This construction will be simplified in the
finite case.

4, The finite case. The interval integral (3.6) will be said to be finitely defined

if the integrand Y is a bounded interval function, and the interval of integration

X = [a,b) is finite. The equipartition E; of X is defined by the points

(4.1) x; =a+ ih, h= (b - a)/n, i =0,1,...,n,

so that

\4.2) wiX.}) = x, - x. = (b ~-a)/n=w(X)/n="~h,i=1,2,...,n.
i i i-1

~he coireuponding interval Darboux sum is

n
(4.3) v = Ty =27

B i=
n

VY(Xi).
1
Theorem 4.1, 1In the finite case,

b x

i+.4) fy(x)dx = » T Y(X).
‘ n
a n=1

Thus, this corstruction requires only the formation of the single interval
Darboux sum (4.3) for each positive integer n, and skips the (nonconstructive)
calculation of interval Riemann sums (3.5) entirely. Furthermore, (4.4) agrees with
the definition of the interval integral given by R. E. Moore [2]), [3], in the case
that the endioint functions Y ? of Y are essumed to be continuous. Theorem 4.1
will be proved in ‘6, based on resuits on subintervals established in the next sec-
tion.

5. Twn lemmas on subintervals. The first lemma simplilies the proof of the mean

interval-value theorem for interval integrals over a finite interval of integration.

lerma 5.1. If 2, = [¢c. ., ) -2 = [c,1] are finite intervals. ¢« - 1,2,...,n,



and Ji 20 with

n
(5.1) ) ez, < 2.

Proof: This follows at once from the elementary inequalities

(5.2) a < aja, + uzaz + oL+ o a, < ulbl + a2b2 + ...+ anbn <b

for convex combinations of real numbers. Q.E.D.
On the assumption that Theorem 4.1 holds, this gives the mean interval-value

theorem [l1] for the interval integral (4.4), as

n
(5.3) LV ovx) =¥ ¢ wix
n l=l 1 n

by Lemma 5.1, and, from (4.4),

©
(5.4) f‘?(x)dx =wX) 0¥ = wix),
a n=1
where Y c TY(X) .
The excess Eigﬁﬁ of an interval Z = [c¢,d] over a subinterval Z' = [c¢',d'] c 2
is defined to be
(5.5) e(z,2') = max{c' - c, d - a'}.
It is evident that
(5.6) e(z,2') < w(2) =4 - c.
A symmetric interval is an interval S of the form S = [-s,s], where s > Q.
Lemma 5.2. If 2' ¢ z, then for each symmetric interval S = [-s,s] with
s > e(2,2'), one has
(5.7) 2 < 2' + 8.
In particular,
(< 8) Z <2+ [-w(Z),w(Z)].

Proof: The inclusinn (5.7) follows from the definition (5.5) and the definition




-v—w—_""’_"—_-j

of interval addition [2], [3]; (5.8) follows immediately by (5.6). Q.E.D.

6. Proof of Theorem 4.1l. It is to be shown that definitions (3.6) and (4.4) of the

interval integral agree in the finite case. Set

(6.1) I= nZfY(X.
n
n=1

As the interval integral (3.6) is contained in each Darboux sum ZA Y(X), it follows

n
that
b —

(6.2) ftiyax ¢ T Y, n=1,2,...,

a
and thus

b ©
(6.3) Yx)ax «c 1= n LY.

- a n=1

Suppose that a partition point p, x,

i-1 <p < x.1 is introduced into an interval xi. By

Lemma 5.1, one has
(6.4) win; )l eTIx, ) /P)) + wip,x,1-W(lp,x;]) © wiX;) V¥(X,).

Consider an arbitrary interval Darboux sum ZA Y(X) for some positive integer m. For
™

PCI

each n 2z m, the partition points xl, X e, X of the interval Darboux sum are

2’ m-1
interior to at most m ~1 subintervals of E;Y(x), with total length not exceeding

({m - 1)/n)w(X). After deletion of these subintervals from Z;, the remaining partition

points of Kn will belong to the subintervals of Am. By (6.4) and Lemma 5.2,

(6.5) T ez, YOO + dn = D vy (x0) ,wivy (x0)].

b - n

As (6.5) holds for each partition Am and positive integer n 2 m, from (3.5),

s _ (m - 1)w(X)
] . (6.6) XnY(x) c ZmY(X) + —_— w{VY(x))«(-1,1].
M
1 As w(.Y(X)) < +x», taking the intersection of both sides of (6.6) with respect to n
- |
gives
6.7 I ¢ T Y(X) + [0,0] = 5 Y(X).
m ™
. 5 -
. v . : e




From (6.7), it follows that

N

(6.8) I ¢ n g Y(X) =
m
m=1

b
fY x)ax.
a

Comparison of (6.3) and (6.8) yields (4.4). Q.E.D.

This result can also be established using the relationships expressed in terms
of elementary integrals of step functions as upper and lower limits of the interval
Darboux sums [l] as in [2], pp. 54-56.

7. A rate of convergence for smooth integrands. As in ordinary interval analysis,

an interval function Y = [1,?] is continuous if the real functions y, ; are contin-

uous. Similarly, Y is Lipschitz continuous if a Lipschitz constant L > 0 exists for

both y and v, that is, yx) - x(z)f < Llx - z| and [;(x) - ;(z)| < Lix - z] for
x,z € X.
Interval integrals of continuous interval functions can be expressed in terms

of the Riemann (R) integrals of their endpoint functions [1]:

b b b
(7.1 Jiydx = [(R) fy(xiax, (R)] y(xidx].
a a a
One may also write
b n *5
(7.2) (R) fytx)dx = ¥ (R y(x)ax
a 1=1 xi~l

for a Fiemann integrable function y and a given partition An of X = [a,b]. If y is
contiruous, then on each subinterval xi, i=1,2,...,n,

X

i % “.i = £ - =

(7.1 (x)i odx =y x, - x ) = y(EIwX), £ €X,,
i-1

({2}, 1. 279). Furthermore,

(7.4) 'Y(XL) = [ci.di] = [y(ni),y(ci)], Nk € xi.

thus, 1f 7 is lLipechitz continuous, then

b
’ -
= Poew(x ) = (oA = {y000) = 705 ]ew(N,) s Lew(X.)°
. wix ) { )é'(X) X I,(.i) /(,L)1 w(\l) L w(wi) ,

1 1




and

b
s - - - 2
(7.6) (R)gy(x)dx = wix) = [Y(E) = y(n)]ewix,) < Low(x)".

Applying (7.5) and (7.6) to ; and y respectively for the equipartition with w(Xi) =

w(X)/n gives the following inequality for the excess width of ZnY(x) over the in-
terval integral (7.1) of Y.

Theorem 7.1. If Y is a Lipschitz continuous interval function, then

b
(7.7 e(I Y(x), [v(x)dx) <
a

Lew(X)
—

The use of interval Darboux sums as approximations to the interval integral is
an extension of the crude method of upper and lower Riemann sums (5] for the approxi-
mation of the interval of a Riemann integrable real function. The Darboux sums are
generally easy to inclose and give rigorous upper and lower bounds for the value of
the integral, but the rate of convergence as given by (7.7) is slow. Of course, the
use of partitions other than the equipartition may be of benefit in some cases, but

for smooth functions the improvement may be marginal. For example, for

2 1 2
(7.8) Y(x) = [0,3x°), [{0,3x“1dx = (0,1],
0

the equipartition for n = 2 gives

< =Ll 3, L = 10,83 =
(7.9) 5Y(00,11) = 10,31 + 3(0,3] = 10,77) = [0, 1.875).

The interval Riemann sum in this case corresponds to the use of the partition point

xl = 1/+3, and has the value

(7.10) ZzY([O,l]) = [0,1]/.? + [j,]]-(l-l/.?) = [0,3-2/3] c (0,1.846].

Although this is better than (7.9), extra labor was required to determine the opti-
mal partition, and this additional effort increases rapidly with n.

8. Inner improper interval integrals. In {l], an interval integral was said to be

unbounded if its value is an infinite interval. These unbounded interval integrals

arise 1f the integrand or the interval of integration is unbounded. Tclationships

dadin




were developed in (1] between the value of the finite endpoint of a semi~infinite, or
improper interval integral and the improper Riemann integral of the corresponding
endpoint function of the integrand. Here, an approach to improper interval integra-
tion will be made via finitely defined interval integrals.

case I. Y(x) is an unbounded interval function on a finite interval of inte-

gration X = [a,b]; that is, VY(X) = +», w(X) < +», Here, the functions
(6.1) YV(X) = Y(x)r[=-N,N)

are defined for each positive integer N. The corresponding finitely defined interval
integrals

b
(8.2) Y = iYN(x)dx, N=1,2,3,...,

are finite and may be obtained from (4.4). For M > N,
(5.3) INY(X) < IMY(X),

because the interval integral is inclusion monotone, aud YN(X) c YM(X) for ¥ > N [1).
2

e inner improper interval integral in this case is defined to be

e lim b
(8.4) (D Jyodx = 101 Y (X) < JY(x)dx,
a ) : a
the inclusion following again from YV(X) ¢ Y(X) and inclusion monotonicity of the in-
terval integral. It follows that the inner improper interval integral exists (in the

extended real number system) if the interval of integration is finite. The following

oxami'les are taken from f{17].

(ay Y(x) = x-l'B, a real function, X = (0,1].
-3
N
. . 1 - -
(8.5) LY([o,1)) = [ nax + [ x L3ax = {3 -N 2,3 - 2],
R - <

¢} -3

RSl

e .




o .‘P*o -

——_a _an il

(b) ¥(x) = x 1, X = [0,1]. Here,
N 1,
(8.7 Ly (o1 = [ Nax + [ x "ax = (1 +1n¥N,1 + lnn],
: 0 -1
N
and
1 1
- Pl |
(8.8) (0 [ x Yax = [-»,9) = Jox Tdx,
0 o

an infinite integral. The standard definition of the improper Riemann (IR) integral
of real functions over a finite interval ({2}, p. 88) gives the following result.

Theorem 8.1. If the endpoint functions y, ; of Y have improper Riemann (IX) in-

tegrals over the finite interval X = {a,b}, then
b b b_

(8.9 (O fY(xydx = (IR [ y(x)ax, (Ir)[ yix)dx).
a a a

Of course, in case Y is bounded, or the real function y is bounded and Riemann
(R) integrable, one may take
‘b b b b
(8.10) (1) [Y(x)dx = [y(xydx, (IR [y(x)dx = (R) [y(x)dx,
a a a a
respectively.

Finitely defined interval integrals may also be used to construct an improper

integral over infinite intervals of integration. For simplicity of notation, take

Y{x)}) = (0,0] outside X, and the interval of integration to be the real line R = [~x,~]
cefinition 8.1, If
N . 0
lim ’ lim 3
(8.11) 1Y = (D) Y (x)dx, 1Y = (1) |y (x)dx
+ RS - Nos—a 0
0 N
cxist, then the improper interval integral of ¥ over R = [-v,+] is defined to be
(8.12) (M fy(x)dx = 1Y + 1_Y.
dJustification. By use of the rules for extended interval arithmetic given in
11, the 1nterval (8.12) 1o well-defined 1f the limits (8,11) cxiut, as the fornualas
P e 7 T=v,e], 1o, = <} = (-, ] resolve any "indeterminant forms" which may

e Rt q': "‘ - A -3 : '= - P - . P L iy " - A




arlse. The actual interval of integration may be indicated in (8.12), if different
from R.
The following example is also taken from {1].

(¢) Y(x) = - *, X = 10,~]. Here,

.
N N

(8.13) (D f(-e Mdx = [(=eMydx = (-1 + e V,-1 + V],

N 0
and, since 1_Y = [0,0],
r': -X
(8.14) (1) ;(-e )dx = 1 .Y = [~-1,-1],
4 +
a finite interval, while the value of the interval integral {l] is the infinite interval

(8.15) (~e Fyax = [-+,-1].

|
o]

Finally, the definition of the improper Riemann integral over an infinite interval

of integration {([2]), p. 94) gives the following result,
Theorem 8.2. 1If the endpoint functions y, 7 of Y have improper Riemann integrals
cvey Fo= o [=a, 0], then

\ . x x

(2 15) x = [(IR)] y(x)dx, (IR) ] y(x)dx].

-n -
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