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ABSTRACT

We study a system of quasilinear hyperbolic conservation laws which is

hyperbolic but not strictly hyperbolic. Such systems arise naturally in

continuum mechanics such as elastic, multiphase flows. We are interested

mainly in the large time behavior of the solution. Due to the nonlinearity of

the pystem and the entropy condition, solutions converge to very simple

elementary waves. Nonstrict hyperbolicity of the system may cause a stronger

nonlinear interactions between waves pertaining to different families; in

particular, such interactions may regularize linear waves in the solution.

The solutions are constructed using the random choice method.
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II

SIGNIFICANCE AND EXPLANATION

We study a system of quasilinear hyperbolic conservation laws which is

hyperbolic but not strictly hyperbolic. Such systems arise naturally in

continuum mechanics such as elastic, multiphase flows. We are interested

mainly in the large time behavior of the solution. Due to the nonlinearity of

the system and the entropy condition, solutions converge to very simple

elementary waves. Nonstrict hyperbolicity of the system may cause a stronger

nonlinear interactions between waves pertaining to different families; in

particular, such interactions may regularize linear waves in the solution.

The solutions are constructed using the random choice method.
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ON A HYPERBOLIC SYSTEM OF CONSERVATION
LAWS WHICH IS NOT STRICTLY HYPERBOLIC

Tai-Ping Liu* and Ching-Hua Wang**

1. INTRODUCTION .

Consider a system of quasilinear hyperbolic conservation laws

au +fCU) (1.1)
-4--) 03t 9x

where U - U(x,t) is a n-vector, x the space variable and t the time variable. One of

the interesting nonlinear features of the theory of conservation laws is that solutions

attain very simple asymptotic states as t tends to infinity. The system is strictly

hyperbolic if Bf(u)/Bu has real and distinct eigenvalues 1 (u) < 2(u) < ... < xn(u)

for each state u. For such a system, the solution of the initial value problem (1.1) and

U(x,0) - U0 (x) (1.2)

tends to elementary waves as t tends to infinity (9], [10]. These waves are found by

solving the Riemann problems (1 -1) and

U0(-) for x < 0,

U(x,0) - (1.3)
U 0 ) for x > 0

In particular, when the initial data (1.2) have a compact support then the solution

tends to the zero state, [4], [2], (9]. This is so because waves combine and cancel as a

consequence of the nonlinearity of the system and the entropy condition. The striking

asymptotic behavior of the solution can be understood easily for scalar conservation law,

01], call [Ill.

When the system is non-strictly hyperbolic, that is, Ai(u) may equal X (u), i J,

for some states u, then waves pertaining to different characteristic families may not
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separate as time evolves. When this happens, nonlinear interactions of these waves may

alter the asymptotic state. In this paper we study this problem for a system of two

conservation laws whose Riemann problem has been studied, 15]. The system is derived from

a model for elastic string. One of the characteristic speeds is linearly degenerate and

the other genuinely nonlinear in the sense of [6]. We show that when the linear wave and

the nonlinear wave in the solution of (1.1) and (1.3) are separated in the (xt)-plane,

then the asymptotic behavior of the solution of (1.1) and (1.2) is the same as that of a

strictly hyperbolic system. In this case the asymptotic state consists of a traveling wave

and a shock or rarefaction wave, c.f. [10]. On the other hand, when the linear wave in the

solution of (1.1) and (1.31 is contained in the nonlinear wave then the corresponding

traveling wave becomes substantially more regular than general traveling waves. This is so

because of the strong interaction of the linear and nonlinear waves. It would be

interesting to investigate the problem for more general systems where the interaction of

nonlinear waves of different families occurs. For this further studies are necessary.

2. EQUATIONS AND RIEMANN PROBLEM.

The following two conservation laws are derived from a model of elastic strings, [5]:

at ax

(2.1)
av 0v
at ax

where * *(u,v). Let (r,0) be the polar coordinates,

2 2 2
r - u + , tan 8 - v/u

and write * = *(r,O). The characteristic speeds are

(2.2)
12 - +r

ar

Thus (2.1) is not strictly hyperbolic on {(r,8) : - 0} - {(r,O) r - A2}. The
wa 2

following assumptions on 0 are consistent with physical considerations.
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(A)1  #(r,O).os as r +0 or r m .

(A) 2 *Or,8) > 0,

(A) 3  ?0 > 0, 0 2 ) > 0,3 Dr r r2

(A)4  *(.,e) is convex for each fixed e.

(A)1 and (A)4 imply that 4 - C, C any constant, is a simple closed curve. Also

I ( ((r,e; it O} is a simple closed curve. (A)4 implies that A > A2 inside
and XI < X2 outside 1. The first characteristic speed AI is always linearly

degenerate in the sense of (6]. (A)3 implies that A2  is genuinely nonlinear. The right

eigenvectors r i , i - 1,2, corresponding to X are characterized by

9. * r1 = 0

Vr * r 2 - 0

Along the curve 1, where A1 a A 2 f the system is diagonizable when

(A) 38 - 0 on

In the elastic model it is reasonable to a assume that 0 is a function of r only. In

this ease tae above assumptions (A), - (A)5  are satisfied for general convex # with

appropriate growth rate at r = 0 and r = -.

To avoid the extreme case where two points on the string make contact, we will only

deal with states in the following region:

A= (U : r(U) ) r0 , 18(u) 6 0 )

for a fixed r0 > 0 and 0 < e ' L. The Riemann problem can be solved by similar methods
0 0 2

as those for strictly hyperbolic systems. We have three kinds of elementary waves. A

state U is connected to U0  on the left by a 1-wave, which is always a contact

discontinuity, if U C T(U 0):

T(U0 ) (U : 4(u) - *tU 0 ).

(U0 ,U) forms a 2-shock wave (2-rarefaction wave) if U t 52 (U0 ) (U C R[U0)):

s 2u 0 ) A (U : O(U) = e(Ua), r(U) ( r(l 0 ))

R 2(U ) a (U e(u) - 6(UO), r(U) ) r(Uo))

The speed of a 2-shock wave (UoU 1 ) is

-3-
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r - r 2,

o(0U) - rl - r

To solve the Riemann problem one needs to know how the speed of a 2-wave is related to that

of a 1-wave, Depending on the relative position of the waves in the solution of the

Rieaann problem (U,U4 ) we have the following cases:

(I) U and U4  are both outiade I and #(U,) > (U

The solution consists of a 1-wave (U,,U ) followed by a 2-rarefaction wave

(U ,U4), The state Um  is characterized by O(U) - *(U£) and 8(UM) - 8(U) and is

outside .

(II) Ut and UA  are both inside I and *(U0) *(U4).

The solution consists of a 2-rarefaction wave (U,,U ) followed by a 1-wave

(U, it ). The state UM  is inside I satisfying 8(U) - 8(UI) and *(U) - #(U)d

(III) UI is inside 7 and U, is outside 1.

The solution consists of a 2-rarefaction wave (U ,U ) a 1-wave (U ,U ) and a

2-rarefaction wave (Unu ). Un  and U are both on satisfying 8(0M ) - 8(U ) and

O(Un) - O(Ux).

The above three cases deal with solutions containing 2-rarefaction waves. The

following two cases deal with solutions containing a 2-shock wave. Thus Ut is assumed to

be "closer" to the origin than U . Let UM  and Un be defined by%

#(Um ) - #(U ), O(um ) = O(U)

*(U = ( ,U ' 8(un ) - O(u)

The remaining two cases are:

(IV) #(Ut) ) #(U )

The solution consists of a 1-wave (UU n ) followed by a 2-shock wave (Un,U). It

is clear that c(U n,U O L (U) which is the speed of (U,1Un)

(V) #(U) I (

The solution consists of a 2-shock wave (U,U ) followed by a 1-wave (U,U).

-4-



3. EXISTENCE OF THE SOLUTION.

The Glimm scheme, [3], for strictly hyperbolic systems can also be used to construct

solutions for general hyperbolic systems. Choose a random sequence a -1 ( ak ( 1,

and mesh length Ax - h, at - 9, h/s - constant satisfying the Courant-Friedrichs-Lewy

condition:

(C-F-L) A max 1A i(U)I
U

for all U under consideration. The approximate solution Uh(x,t) Uh(x~tI ak}) is a

step function of x for each fixed t - ks, k - 0,1,2,..., with possible discontinuities

at x - jh, j + k - even. By resolving these discontinuities (see Section 2) Ur (x,t) is

defined for t e (ks,(k + 1)s). Elementary waves issued from x - jr, J + k - even, do

not interact before t - (k + 1)s due to (C - F - L) condition. At

t - (k + 1)s, U r(x,t) is not a step function and the random sequence {a k)I is used

to approximate it by a step function:

U h(x (k+l)e + 0) = Uh(( j + ak)hA(k+i)s - 0), (J-1)h < x ( (J+1)h, j + k - odd

This defines inductively the approximate solution Uh (x,t) for all t.

The convergence of the approximate solution [Uh(x,t)} as h tends to zero, is

proved in two steps: First, one shows that Uh (x,t) has bounded variation in x for each

fixed t. This implies by diagonal process that {Uh(x,t)} converges strongly in L1 (x)

for any rational t. To prove the convergence for all t, one needs the Lipschitz

continuity of LI(x) in t. This follows from the estimate on the total variation in x

of Uh  and that Uh(xt) has a finite speed of propagation. For this the system has only

to be hyperbolic, not necessarily strictly hyperbolic. Thus for the existence of the

solution one need only to estimate the total variation in x of the approximate solution

Uh(x,t). It is convenient to introduce a new coordinate (r,8) as follows: For any U

in the region A let U be the unique state on the same side of with *(U) - 0(U)

and e(m) o. We set

r(U) - r(U)

-5-



It follows from the assumptions (A)1 - (A)5 of Section 2 that the transformation

(r,e) - (u,v) is nonsingular for U - (u,v) in a bounded region of A. Note that a 1-

wave takes values along r - constant and a 2-wave takes values along 6 - constant. The

strength of a 1-wave is defined by the jump of e across the wavel and the strength of a

2-wave by the jump of r across it. The following lemmas follow directly from the recipe

for solving the Riemann problem presented in the last section. We omit details.

Lemma 1: Suppose that the initial data U(x,0) stay in a bounded region

a = , 0 < r1 4 (U) 4r2 <., I <U) eo < .

Then any approximate solution Uh(X,t) also stay in 0 for any (x,t).

Lemma 2: Suppose that U,,FU,, are three states in 9, then the total strength of waves

in the Riemann problem (Ut,U) is no larger than the sum of the total strength of waves

in the Riemann problem (U U m ) and the total strength of waves in the Riemann problem

(umUi).

Lemma I shows that there are bounded invariant regions for the solution and so in

particular the (C - F - L) can easily be satisfied. Lemma 2 shows that nonlinear

interactions do not cause an increase in the strength of waves. This is sufficient to

obtain the desired estimate on the variation in x of the approximate solution U,(x,t),

(c.f. [13]). Thus we have the following existence theorem.

Therem: Suppose that assumptions (A)I - (A)- hold and the initial data U(x,O) stay in

a bounded region Q = JU : 0 < r 4 7U) ( r2  -, 18(U)i -( 8 < .1 and have bounded

variation locally in x. Then the initial value problem for (2.1) has a global solution

U(x,t) which stays in Q and has bounded variation locally in x.

4. ASYMPTOTIC BEHAVIOR OF THE SOLUTION.

In this section we assume that 0 -,p(r). The advantage of this assumption is the

weaker coupling of the system (2.1) and so the behavior of 2-waves can be studieO

independently. Across a 1-wave, the value of r is unchanged. A 2-rarefaction wave has

speed (r) r and a 2-shock wave (U0 ,U ) has speed

ir

~-6-



rS r

1 1 - 0o

O(UOT. r)

OU0, r -r 0

Moreover, across a 2-wave e is constant. Therefore the behavior of r, and hence the

behavior of 2-waves, can be described by the scalar conservation law

a-Dr + -= 0 . (4.1)

Tt a

A 1-wave propagates with speed 0 and so 1-waves are described by

+ 0(r) 0 (4.2)at ax

The identities (4.1) and (4.2) can be derived from the system (2.1) directly. For

instance, multiplying the first equation of (2.1) by u and the second equation by v and

summing them up, one obtains (4.1). This procedure is justified for smooth solutions

(u,v). However, in general when an equation is derived from a system of conservation laws

through nonlinear transformations, the derived equation may not be a consequence of these

conservation laws in the weak sense. In the present situation the procedure is justified

because the jump condition and entropy condition for (4.1) and (4.2) are consistent with

those for (2.1). Our strategy is to study the behavior of 2-waves using (4.1) and, having

obtained the behavior of r, use (4.2) to study the behavior of 1-waves.

From now on we assume that the initial data satisfy

U for x ( -s/2
U(x,0) -

Uo for x ) s/2.

for some constant states U and U,,. We denote by U(x,t) the solution of the

corresponding Riemann problem (2.1) with

U for x < 0,
U(x,0) - (4.3)

U for x > 0

The behavior of 2-waves is described by (4.1) with

r£ for x 4 -s/2

r(x,O) r (4.3)1
r, for x > s/2.

There two cases; FBI:

--7-
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Case I: r£ > r

There exists T > 0 such that for t > T, the solution r(x,t) of (4.1) and (4.3)'

is a shock wave (r ,r ):

r for x - x0 < at
r(x,t) t ; T

r for x - x0 > at

I rr@(rr) - r£#(r£)

r Or
-r

s/2 r r.
0 - s/2 2 - r(x,O) Idx

Case 2: r < rA

The solution r(x,t) tends to a generalized N-wave defined as follows:

N(X,t) -- N(x,t;p,q;rElr)
r £ for x 4 A 2 (r )t - v-2pA(r,|t E x(t)

for x ) X2(r )t + /2qX'(r.)t - x (t)

r(&) otherwise; - x/t

x

p mn f [r(y,O) - r£i]dy, q max f (r(y,0) - r,,]dy
x - X x

More precisely, there exist Lipschitz continuous curves x = x (t) and xk(t) through

(-s/2,0) and (s/2,0), respectively, with the following properties:

(1) Ix't(t) - x A(t) I + Ix (t) - x9k(t)l = O(s).

(ii) Ir(x,t) - N(x,t)I - O(1)t-  for (x,t) between x (t) and xL(t) and also

between x It) and x (t).

(iii) Ir(x,t) - N(x,t)I - O(1)t /2 either (x,t) lies between x (t) and x Ct)

or between x,(t) and xCt) .

(iv) r(x,t) r£ for x < x (t)

r for x > x4 (t)

--
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We now use the above known results to study the behavior of 1-waves. When waves of

different families in the solution of the Riemann problem (2.1) and (4.3) are separated,

the asymptotic behavior of the solution U(x,t) of (2.1) and (2.2) is similar to that of

solutions of a strictly hyperbolic system. In this case 1-waves tend to a traveling

wave. We illustrate this by investigating Case (V) of Section 2. Thus we have

(r (rA). From (4.2) characteristic curves for 1-waves are given by:

dxd- = (r(x,t)).

cdt

Through (-s/2,O) and (s/2,0), respectively, we draw two characteristics X, and X2.

We know from the above discussion of 2-waves, (case 1), that r(x,t) is a shock wave for

t ) T. The speed of the shock wave is o which is less than 4(r£) because

*(r) < (r,). Consequently the 1-characteristic X1 lies to the right of the shock wave

after time T1, T, finite. After time T I there exists no 1-wave either to the left

of X, or to the right of X2 , and, between X, and X2, 6 is constant along

dx/dt = *(r,,) according to (4.2). Thus after time T 1 , 1-waves become a traveling wave

between X, and X2 and with speed $(r ). The value of 5 to the left of X1 is D

and to the right of X2  is 011.

The situation is more complicated when waves of different families do not separate.

We exemplify this by investigating Case III in Section 2. In this case, the solution of

the Riemann problem (U£,U ) is a contact discontinuity (U m,U n ) sandwiched by two

2-rarefaction waves (UZ,Um ) and (UnUk ). The states Um  and Un are on and so

X1(U) = )2 (Um) = X (Un ) = X2 (U m). We consider the case when U * U and Un ' U1"

Note that X attains an absolute minimum on 7 and so the characteristic curve for (4.2)

1L

always has speed larger than or equal to (rm ) = 4(r n). Suppose that
x

e(x) a f [r0 (y) - rm]dy attains a minimum at x = x0 . Then the characteristic line
0

through (x0,0) for (4.1) exists for all t , 0, (71. In this case the ,naracteristic

curve through (x0,0) for (4.2) coincides with that for (4.1). In fact only such

characteristic curves for (4.2) may travel with the minimal speed ¢(r ) for all t ) 0.
m

Thus when I(x) takes minima at x = a' and x = a" and not for any x F (a'"), then

-9-



all characteristic curves through (x,0), a' < x < ct", tend to the characteristic line

x = x0 + *(r )t and so

lim O(x + O(r )t,t) = (a' + 0,0) for x £ (a',c") . (4.4)
t+

It is clear that
x

m(r) a (x0  f [r0 (x) - rlmdx attains minimum at x - x
00

is a closed set. Denote by xm and xM, respectively, the smallest and largest numbers

in m(rm). The set i(rm ) xx mx I - m(r m ) is an open set. We have just described the

asymptotic behavior of O(x,t) for x = x0 + (rm)t, x0  in a component of (rm ). When

m(r ) contains an interval (a,b) we havei m

r(x,t) = r for O(r m)t + a < x < (r m)t + b I

(4.5)
B(x,t) = 6(x - O(r )t,0), for *(r )t + a < x < O(r )t + b

For x < xm + Or m)t, all characteristic curves for (4.2) tend to the characteristic line

through (xm,0). Since 8(x,0) = 6 for x < -s/2 we have

lim O(x + (r m)t,t) = 0 L for x < xm  (4.6)
t+

We have seen that the initial values of 6 restricted to (--,xM) may not be carried to

t = - and the asymptotic shape of e(x,t), x - O(r m)t c (--,r M), is in general a step

function. On the other hand, the initial data 6(x,0), x > M, are in general carried to

t - and the asymptotic behavior of O(x,t), x - O(r m)t c (xM,-), is a traveling wave

taking values ((x,0), x > xM). We now show that this traveling wave has a finite

width. For this, we draw a 1-characteristic X through (s/2,0) and estimate the

asymptotic location and speed of X. Since r(x,t) tends to an N-wave and all 2-shock

waves, except the one issued from s/2, decay at the rate 1/t, we will carry out the

analysis by supposing that r(x,t) is a centered rarefaction wave. This is done for

simplicity; the general case can be dealt with similarly. Thus it follows from the

structure of centered rarefaction wave that when r = r0  at ft = t 0l X and

r = r - Ar at (t = t + At) n X then

[2 (r) - 2 (r - Ar)it 2 (r) - lr)]At

-10-



This yields an ordinary differential equation for the value of r along X:

dA2 (r(t))

dt D (r(t)) - 1l(r(t55]/t (4.7)

Note that X2(r) > Xl(r) for r in the region under consideration, i.e. r > rm . Thus

the above identity implies that

r(t) + r as t

The rate of this convergence is determined as follows: Consider

d(t) -(t)/t

dt
(4.8)

V(t) A 2(r(t)) - A I(r(t))•

It is clear that

1
E(t) - 0(1) - as t + .

t

Note that as r(t) tends to r.

1A2(r(t) ) - X2 (rm) ~r(t) - rm ,

IA (r(t)) - A (rm )I Ir(t) - rm 12

and so r(t) and &(t) have the same qualitative behavior. We thus have:

Ir(t) - 1n - 0(1) 1 ,
m t

I (4.9)
lIA t) - A.1(r )I - 0(1)
1 1n m2

st

This implies that X tends to a straight line x - (r m)t = constant at the rate 1/t. In

particular e(x,t), x > x. + *(rM)t, tends to a traveling wave of finite width. Note that

the speed of X is always larger than t(rm ) and so the distance between

{(x,t) : x - xM + (r m)t} and X is an increasing function of time. Consequently,

except for the exceptional case where X. = S/2, the asymptotic distance of these two

curves is finite and positive. This completes the description of the asymptotic state of

e(x,t).

-11-
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In the above arguments we have assumed that 8(x,t) is constant along the

2-characteristics dx/dt - (r(x,t)) and that 2-characteristics are defined for all

t ; 0. This is so because across a 2-shock wave 8 is unchanged and the 1-characteristic

speeds * on both sides of the shock are either greater or less than the shock speed.

The above arquments can be applied to treat other cases in Section 2. We briefly

state the asymptotic results in the following theorem.

Theorem 4.1: Suppose that 0 is a function of r and hypothesis (A)i, i -

hold and the initial data U(x,0) equals U for x < -S/2 and U for x > S/2. Then

the asymptotic behavior of the solution of (2.1) is as follows:

(i) The behavior of 2-waves is described by (4.1). Thus 2-waves tend to a single 2-

shock wave when r > r, and to a N-wave when r x r.

(1I) When 1-waves and 2-waves in the solution of the Riemann problem (t.U) for

(2.1) are separated, 1-waves tend to a traveling wave of finite width in finite time. The

traveling wave assumes all the values of 8(x,0). The same also holds when the 2-wave in

the solution of (U ,U ) is a shock wave.

(iii) When the 2-wave in the solution of (U x ,) is a rarefaction wave which

contacts the 1-wave in (UitU,), 1-waves tend to a traveling wave as t tends to

infinity. The traveling wave is a combination of a step function and a general traveling

wave, Moreover, the traveling wave does not assume all the initial values O(x,0) and is

described by (4.4), (4.5) and (4.6).

-12-
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