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ABSTRACT - "A:i /a/or

We study the equation--BSiAC CcdS"

x4 x
St u u (s)

y = 3rl (-- + f a(t - s)u-s ddft

ot ux L2(s)
X -CO

x

at x =+1. This equation is derived as a model for the elongation of thin

filaments of polymeric liquids, u denoting the position of a fluid particle

in space, a the memory kernel, and f the force acting on the ends of the

filament. We study the evolution of u, assuming the initial condition

u(x,t = -)= x. It is shown that under appropriate conditions on a and

f the boundary condition can be uniquely resolved with respect to u . The
x

full problem is transformed in such a way that it is approachable by the

Sobolevskii theory of quasilinear parabolic equations. This yields the

existence of solutions to the initial value problem on sufficiently small

time intervals. Moreover, we show that if f(t) convedes to zero exponen-

tially as t - + and is small in an appropriate norm, there exists a solu-

*. tion globally in time, which approaches a stationary limit as t -+
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SIGNIFICANCE AND EXPLANATION

f f

The equation under study -,stated in the abstract and derived from physical

principles in this paper - describes the elongation of a filament of a

polymeric liquid subjected to a force f at both ends. The liquid is

assumed to satisfy certain accepted 4rubberlike liquid"' constitutive rela-

tions, and the filament is assumed to be thin, which permits a reduction of

the problem to one space dimension. The unknown variable u denotes the

position of a fluid particle at time t, which was at position x at

t = -=, i.e., before the deformation started, we have u(x,--) = x. In

this paper the equation under study is transformed in such a way that it

fits into the framework of the general mathematical theory for "quasilinear

parabolic equations'. This makes it possible to prove that for any given

"initial condition" a solution exists at least on a certain time interval.

(It is a part of the analysis to discover what is an appropriate meaning

of "initial condition" to be associated with the problem under study).

Moreover, we shall prove that for forces f(t), which approach zero

exponentially for t += and are small in a suitable sense, there is a

solution for all times t, - < t < += , and this solution approaches a

stationary limit as t -+

The responsibility for the woi-ding and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

.
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A QUASILINEAR PARABOLIC EQUATION DESCRIBING THE

ELONGATION OF THIN FILAMENTS OF POLYMERIC LIQUIDS

M. Renardy

0. INTRODUCTION.

We study the following problem occurring in polymer processing: A thin filament

of a viscoelastic liquid is subjected to a force f acting on its ends as shown in

the diagram:

f f

We investigate the temporal evolution of the displacement. The equations that our

analysis is based on involve the "rubberlike liquid" constitutive assumption for the

stress-strain law [3] and certain approximations based on the thinness of the filament,

which allow the reduction to a spatially one-dimensional problem. Using these assump-

tions, we shall derive the following equation

2 t U (t) u (s)
pU

" = 
3n a ft alt - s- -

(u() u2(t))
axat 2n -J s- ~ ds (0.1)x - u s)

x x

where u(x,t) is a real valued function of x e [-1,1] and t c R. As usual, a sub-

script x denotes partial differentiation w.r. to x and "dot" denotes partial

differentiation w.r. to t. The arguments (x,t) are suppressed unless needed for

proper understanding. (0.1) is supplemented by the nonlinear Neumann boundary condition
t lU(t) u(s)

3 (-U~x + -f a (t - S)[u-() u()
t t- ds = f(t) (0.2)
3n x [u

2
(s) u2(t)

x x

at x = +1.

In these equations u(x,t) denotes the position at time t of a fluid particle,

which is at the position x in a certain reference state. This reference state will

be identified with the state of the fluid at t = -, i.e. we have u(x,t = -a) = x.

P denotes the density of the fluid, 9 the viscosity, and f the force acting on the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and Deutsche
Forschungsgemeinschaft.
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ends of the filament. The memory kernel a : [0,-) -M will be assumed to have the

following properties, which we shall refer to as assumptions (a):

(i) a has the representation

a(t) f f eAtdp(X) (0.3)

where P is a complex valued Borel measure on the complex plane C such that

1 E L (N) (i.e. 1 is integrable w.r. to the total variation of ), and supp ji is

contained in (X e Cl-p < arg X <, x >. c} for some s0 < I and c > 0. Since a
2

is real, we may and will assume that dp(T) -

(ii) a(t) > 0 for t e [0,-).

(iii) a is monotonely decreasing.

Note that (i) implies in particular that a is continuous and that lal can be

estimated by a decaying exponential. The motivation for assumptions (a) will. become

apparent later in the paper. The sectorial condition for supp i is needed to make the

problem fit into the theory of parabolic equations, (ii) and (iii) will have important

implications for the spectra of certain linear operators. In physical theories derived

from "molecular network" or "bead-spring" models (see 14) and the references in 13),

ch. 6) a turns out to be a finite sum of decaying exponentials. This is clearly a

special case of assumptions (a), v in this case being a finite sum of Dirac measures

located on the real axis.

The boundary condition (0.2) agrees precisely with the equation describing the

evolution cf the length of the filament when inertial forces are neglected. This

problem has been discussed previously by Lodge, McLeod and Nohel in [5j and by the

author in (7]. Lodge, McLeod and Nohel consider the solution as known for t < 0 and

assume it is nondecreasing. They then assume f - 0 for t > 0 and study existence,

asymptotic behaviour and various monotonicity properties of solutions. In [71 the

force f is a giver, continuous function 3R - IR. It is assumed that f converges to

zero exponentially as t - -®, and that either f converges to 0 exponentially as

t . += and is small in a suitable norm, or the size of f is arbitrary, but f(t)

-2-
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vanisnes identically for t greater than some finite t0 . (In the latter case we need

the additional assumpt.'-n that supp v is on the real axis; in fact in [7) we assumed

that U was a finite sum of Dirac measures on the real axis, but the same ideas can

be applied to the more general situation as we demonstrate below). In both cases it is

proved that, given the initial condition u x(t - - ) , a unique positive solution

exists for all times t, and moreover lim u x(t) exists and is strictly positive.

Whereas the arguments in (5] rely mainly on monotonicity properties, the main tools in

(7] are the implicit function theorem and the use of Liapunov functions.

The present paper will be arranged as follows: In §1 we explain the basic physical

laws and the approximations leading to (0.1), (0.2). We start from the basic laws of

continuum mechanics, using the "rubberlike liquid" constitutive relation. The equation

of motion in the interior of the filament and the boundary conditions on the lateral

surface are then solved formally by a power series expansion with respect to a "thinness

parameter" in an analogous manner as was done in the theory of thin elastic rods (6].

The first order terms in this expansion lead to (0.1). The formal expansion does not

in general fit given boundary conditions at the ends of the filament, and one is con-

fronted with a "boundary layer" problem. Since we are only interested in a first order

approximation, we shall net deal with this situation here. Instead, we consider the

balance of force, taking into account only terms not involving the small parameter.

This leads to (0.2). §2 summarizes the results of [7] concerning (0.2) as explained

above, taking into account the modifications required by the more general assumptions

on a. As a result, we may subsequently consider ux as being given on the boundary.

In §3 and §4 we finally deal with the full problem (0.1), (0.2). Using (0.3), this

, problem is transfornmed in such a way that it fits into the abstract theory of quasi-

linear parabolic equations introduced by Sobolevskii [2], t8]. An "initial condition"&r
in th- evolution problem so defined will not necessarily involve the whole history of

u, but only certain of its momre.-s, the choice of which depends on the supp'rt of P.

In i3 we shall explain this transformation and as a consequence of the Sobolevskii

g-3-
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theory obtain the existence and uniqueness of solutions to the initial value problem

locally in time. §4 deals with the case where f converges to zero exponentially as

t + and is small. We assume the filament is undeformed (u - x) at t =-. It

will be shown that a solution of the full problem exists globally in time, which

approaches a stationary limit as t -+

-4-
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1. DERIVATION OF THE BASIC EQUATIONS.

We assign to each point in the fluid two different sets of coordinates: By

( C 2, C3 ) we denote "body coordinates", i.e. coordinates labelling a specific particle

in the fluid. These coordinates can be identified with the position of the particle in

space, when the fluid is in a certain "reference state". (It will later be convenient

to take as a reference state the state of the fluid at time t = -=). On the other

hand (y ,y ,y ) will denote coordinates labelling a point in space. We are interested

i 12 3
in finding trajectories of fluid particles, i.e. a functional dependence y (l ,2 , C ,t).

In our exposition of the equations describing this functional dependence we follow

Lodge [3]. (For a summary of the relevant equations, see p. 206-207).

To each point (C;, 2, 3) there is assigned a body metric tensor y and a body

stress tensor 1T. y is defined by the relation

r r
ij a i 3j

T is related to y by a constitutive law, which expresses the specific properties of

the material. We use the "rubberlike liquid" constitutive relation ([31, p. 143)-

.. .iji t
IT + p = -n + f a(t - s)YiJ(s)ds

where denote the components of -i, i.e. y 3jk = nk; i is a positive

material constant called the viscosity, and a is a given function, which will always

be assumed to satisfy assumptions (a) stated in the introduction. p is an unknown

variable having the physical significance of a pressure. The introduction of this

variable is necessary, since we assume the fluid is incompressible

det y = 1 (.1)

* The evolution of y is determined by Newton's law, which for a Cartesian space

coordinate system takes the form

."k Y s i rs 1

0 y =fi+ (1.2)
s r,

-5-
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The r denote the Riemann-Christoffel symbols associated with the metric tensor y:rs

i1 jr ay rr s= 1 Y 
i j  + 'is r

r 2 ' s r

Equations (1.1) and (1.2) have to be supplemented by boundary conditions referring to

either the displacement or the stresses on the boundary of the liquid. We shall here

deal with stress conditions. Let Yk denote the components of surface traction

referred to space coordinates. Then the boundary conditions on a surface 4 = const.

are given by

TTit y. (t )_1/2 = yk (1.3)

In the problem of the elongated filament the surface traction on the lateral surface

is zero, whereas at the ends there is a longitudinal surface traction equal to f

divided by the cross-sectional area of the filament. For convenience, we let 1 and

1 2 3
y resp. denote the coordinate is the direction of the filament and C , C and
2 3

y 2y resp. the transversal coordinates. It is assumed that in the undeformed refer-

ence state (i.e. at t = -=) the filament is cylindrical and axi-symmetric, i.e. in

this state we have y = i , where 1 (by appropriate normalization of length scale)

ranges from -1 to 1, and r = ( 2)2 + ( 3)2 ranges from 0 to 6, the radius

of the filament. Then, for small 6, equations (1.1) and (1.2) and the boundary

conditions on the lateral surface can formally be solved by a series expansion in

powers of r and 6. This expansion is analogous to that used by Nariboli (6] for

the problem of longitudinal elastic waves in a thin rod.
-2 2 3 3

We put = = , r = r, so that the lateral surface now corresponds to

r 1. We make the following ansatz

-6-
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. 1, 2, ) V 12v , 2 )

y ( ,'6Z2 6) _ 6Z 62, (l, 2

v-0

y3 1 46Z2,6.3) v3 6 2,Q (1 1,i2

p(C l'62,,Z3) = 2V , (;1,i 2)
v,-

V-

where Pv,Qv,R are polynomials of vth degree in r2. This ansatz is inserted

into (1.1), (1.2) and the lateral boundary conditions, which are supposed to be

satisfied for all values of 6. Formally this yields an infinite set of equations

for the coefficients of P,,Q and R . We are only interested in deriving an equa-

tion for the first term P (I), and we shall in the following only carry out the

series expansion as far as needed for this purpose.

When terms up to 0(6) are taken into account, we find for the metric tensor

2
y = 6C 

2 
p QO 0

.3 2W3. 0 Q02

3)Po P2 3-1 0Q
where . . r + T O0

Putting 5 = 0, we find from (1.1)

aP0 2 4
0 Q0 = 1(1.4)

Next we consider the boundary conditions on the lateral surface. At a boundary point

-3 21 22 23
where = 0 these yield the equations = = = 0. (Because of the radial

symmetry it suffices to consider these boundary points; if the traction vanishes there,

-7-

7|



23
it does so everywhere else.) w vanishes identically as a result of the radial

22
symmetry. For Tr we obtain the following terms of the order 0(1)

22 -2 a -2 -2(15
iT = _R0 Q0 - (Q ) + f a(t - s)Q0 (s)ds = 0 (1.5)

Finally we have

21 21 at 21 21
T - -py - t (y) + f a(t - s)y (s)ds =0 (1.6)

0
All solutions we are going to consider shall satisfy lim p(t) = f a(-s)ds and

21t
lim y (t) = 0, the convergence being exponential. If (a) holds, it is then not

difficult to prove that the only solution to (1.6) satisfying the specified conditions

21
is Y = 0. In the first order in 6 this yields p = 0. The law of motion (1.2)

now yields the following equation for P0  
1l1 = a(

aP0  0 + 2 3I 2

SaP + -f  a(t - s)[7] sds

KR 3P -r C a ) 2 t 3+ ___ P-
+ lR 0 + f at - S) lJ

In order to simplify notation, we shall henceforth write u for P0  and x for .

The last equation now yields (0.1) after a few manipulations, when (1.5) and (1.4) are

used to express R0 in terms of u.

Finally we have to specify boundary conditions at the ends of the filament. As

noted in (61, the asymptotic expansion which we used for the interior problem generally

fails near the ends, and a "boundary layer" has to be taken into account. The boundary

Y. layer is discussed in a forthcoming paper by Reiss, which is referenced in [11, but not

available yet. We are here only concerned with a first order approximation, and we

shall ignore boundary layer effects. Instead, we take care of the force balance in

the zeroth order with respect to 6. Namely, if one formally inserts oir expansion

-8-
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into the boundary conditions at the ends, it is seen that all traction components

transversal to the direction of the filament are 0(6). The longitudinal traction

component gives the following terms of order O(1):

T = i _ 0 (¥11 )-1/2 = i0 
2

2

3- J a(t - -)d(u ( U -

-i
Since the cross-sectional area of the filament is in first approximation equal to u

x

we shall require that T = f-u . This yields (0.2).
x



2. THE BOUNDARY PROBLEM.

In this section we consider the problem of solving (0.2) for ux, when f is

given. The results we present slightly generalize those of [7], allowing for the more

general class of kernels a satisfying.assumptions (a). In order to simplify notation,

we write y for u . Instead of (0.2) we study the slightly more general problemx

3ni + f a(t - s) - y(s) ds - f(t)ya (2.1)
-y y2 (S)

where 0 < a < 3. (0.2) corresponds to a - 2, and, as explained in (7], the case

1a =i is also physically interesting, namely, it describes the deformation of a sheet

of the polymer, when inertia are neglected:

-f

y

-f -f

/
-f

t t
We put g(A) = f e-X(t-s) y 2 (s)ds, h(X) = eX(t) y(s)ds,

Y(X) = g(X)y
2
, 6(A) = h(X)y

-1

Then (2.1) is equivalent to either of the following systems

3ny = f (h(X) - g(X)y 3
)dj(M + fya

(1) = -Ag() + y-2 (2.2)

h(\) -Ah(X) + y

3nk = y- f (5 () - y())du() + fy0

'(X) = -Xy(X) + 1 - 2 f (y(y) - 5(X))d-(X) + (X)fy
-

2.3)

3 (X) 3 ri

, = -x() + 1 + r '() f (-yM - R(X))du(X) - 1 )fy-

-I0-
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Both forms will be used in the following. Equations (2.2) or (2.3) will be regarded

as evolution problems in the space X - R x CL( W) 2  
(1 < s < -). Here L () denotes

the space of all (equivalence classes of) functions g : C - C such that g(z) - g(z)

and g s  is integrable w.r. to the total variation of p. Clearly, the right side of

(2.2) or (2.3) is the sum of an analytic generator and a smooth nonlinear term.

A trivial solution for f - 0 is given by y - 1, g(N) - h(X) - (X) - (X) -M

and we are interested in solutions converging to this trivial solution as t - --. As

a first step we investigate the spectral properties of the linearization of (2.2) (of

course (2.3) gives the same result) at this point, i.e. we study the inhomogeneous

linear equation

3ny - J (h( ) - g(M))d iC) + 3y f - du(X) , 3w.

89g(A) + )g(A) + 2y - W1 () (2.4)

8h() + h(A) - y = i2(A)

If -8 is not in the support of u, the last two equations can be resolved with

respect to g(A) and h(A). This inserted into the first equation of (2.4) yields

3 y yS1 1
3n~y -3y f - dij (A) + 3yf iM

2(CX) - I)

= 3W + j 2 + 8 di( )

Hence the resolvent exists at 8, iff -8 is not in the support of V and

o(3) :- 3nS- 3 f .1 - 1du(X) 0 0

Clearly, p(8) vanishes for 8 = 0. Namely, we have

MR8) = +8(r +f +)

Using the relationship between pj and the kernel a, we find

f (A) a (t) -
t

+ 0

(X

-l'VP



For 0 # 0, the real part of this expression is given by

f ( e 8(1 - et x 8 cos (tlmB)) + Ime-tRe sin(tIm 6))dt

If Be B 0, condition (a) (ii) implies that the first contribution is positive, and

condition (a) (iii) implies that the second contribution is positive, too. Hence

I

Re f ',-T )do(A) > 0, whence certainly (8) # 0.

For easier reference, let us put Y - (y,g,h) e x (OM)) 2  in (2.2) and write

(2.2) in the form

r = L(Y - Y0 ) + N(Y - Y0,f) (2.5)

where L denotes the linearization of the right side at the trivial solution
(1., 1 -

Y= ( - Analogously, we put Y' (y,y,6) and write (2.3) in the form

-Y - L' (Y' - Y 0) + N (Y' - Y0,f) (2.6)

We have just proved

Proposition 2.1:

The spectrum of L (or LI) consists of the algebraically simple eigenvalue 0

(geometric simplicity is immediate, and algebraic simplicity follows from the fact that

the resolvent has a first order pole) and a remainder contained in the left half plane.

Moreover, the restriction of L to the range of L generates an analytic semigroup

of negative type.

Before we can state our theorems, we must first define some spaces of functions.

Definition 2.2:

Let Z be a Banach space and a a positive real number. Then

X (Z) : v C (JR,Z))lim e (tj v(k)v(t)J, 0 for k = 0,1,..,,n
n

(k)
v denoting the kth derivative)

-12-
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YZ) = {ve C cn,Z) lir e 'v (t) = 0 for k 1,2,...,n

lir e-°tliv(t) = 0, lir v(t) v(-) exists and
t- t t

lir e tlIv(t) - v(-)!H o 0t

A natural norm in Xa is
n

n

Ilvii = sup eaII Wv (t)
k=0 te rn

(7R

A natural norm in X is
n

vI = sup supeatlllv(k) (t)Ij su+ e-'t v(t) " + 'Iv(.) I + supe v(t) -v()
k=l te R t<0 t'0

Theorem 2.3:

Let a > 0 be small enough. Then the following holds: If f c X () has
n

sufficiently small norm, (2.6) has a unique solution Y' satisfying

Y = Y - ye0 Y (R) x (X (L (w))) Y' depends smoothly On f.0 n n

Proof:

We rewrite (2.6) in the form

G(Y,f) = - ')-N ' (,f) = 0 (2.7)

It is a consequence of Proposition 2.1 that -L' maps X'(]P) ' x (
1
S ( 2

n n

into Z := Y(R) - (XT(LS(,l))) Hence G is a smooth mapping from Z X O(O)
n n n n n

into Z and we have n(C-(0,0) = id. By the implicit function theorem, (2.7) cann Y

therefore be resolved with respect to Y in a sufficiently small neighbourhcod of (0,0).

Y is clearly unique within that neiqhbourhood. We want to show that it is in

fact unique within the class of all functions converqinq to zero as T --'. To see

this, let us first consider functions Y satisfying lim e0 l = for some
tI

between 0 and '. Tf Y is ;uch a function, then certainly e Y(t) 'I i

smaller than - on some interval (-",tl]. We can nw apply an analoq r.; im!,l iit

a. .



function argument as above, but rather than considering functions on all of I, we

consider only function on (--,t11. From this we see that Y is unique in the class

of all functions that approach zero exponentially as t --. Finally, if we assume

Y converges to zero at all, it can be seen from the last two equations of (2.3) that

1 1
- T and 6 - * converge to zero exponentially, because if only these two equations

are considered, the zero eigenvalue in the linearization does not occur. From the first

equation of (2.3) we find that ' converges to zero exponentially, and hence the con-

verqe of y to its limit has to be exponential, too.

If further restrictions are made on W, a global result can be proved that does

not rely on the smallness of f.

T:.eorem 2.4:

In addition to (a), assume supp w is contained in the real axis and 1 is posi-

tive real. Let f : W *W be continuous and such that lim e-t f(t) - 0 for some
t_

- 0 and f(t) = 0 for t > t . For any such f, equation (2.3) has a unique

solution satisfying lim Y' (t) = Y0 * This solution exists glo,ally in time, moreover,

1
limr V (t) = (y(=), , ) exists and y(-) , 0.

Proof:

From the arguments in the proof of the last theorem we already know the existence

and uniqueness of a solution on some interval (--,t11 . In order to prove that the

solution exists globally in time, it is more convenient to look at (2.2) rather than

at the equivalent equation (2.3). Solutions of (2.2) continue to exist as long as y

stay- away from zero or infinity. From the second and third equation of (2.2) one

obtains positive lower bounds for ; g()dft() and I hC )dw(0) in every finite time

interval, provided that y remains positive, and these bounds do not depend on any

estimate for y. Hence, if y becomes too large, y f qC)du(x) will dominate

ver fy' and also over J h()di.() (the latter beinq less than some constant times

max y(T). Analogously, if y become- too small, f hC')du() will be the

-14-
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dominant term. It is imiediate from this that y cannot go to zero or infinity in

finite time, and therefore the solution exist qlobally.
1

For t t o , we now have f - 0, and, putting O) - Y()d - j, i( ) - ,

we find from (2.3)

2 2

(2.8)

- ( (WX) - BMMAW 
2

1 1

As we know that Y(M) and M(A) stay positive, the denominators a + and 8 +

are always positive, and the left side of (2.8) is therefore the derivative of a posi-

tive function that decrease@ along trajectories. (It is easy to prove that a and 6

are nice enough for all the integrals to make sermse, namely, one sees from (2.2) that

1g(0) and htM) and hence Xy(M) and A(l) are bounded). As a consequence, 0

and . converge to zero exponentially as t - - in the L2-norm and a fortiori in the

Ll-norm. From the first equation of (2.3) one sees then that * converges to zero

exponentially, whence y must converge to a limit exponentially. mreover, one

easily concludes from the second and third equations of (2.3) that a and B in fact

converge to zero in the L-norm and not only in the L -norm. This concludes the proof.

em&ark:

It is almost trivial to prove (71 that y(-) >l if f , 0 and y(-) < 1 if

f 0 0. Since the equation under study describes the evolution of the length of the

filament, if inertia are neglected, this is a result that one would obviously expect.

we have no analogue yet for the full problem (0.1), (0.21.

--

I.



3. LOCAL TIME EXISTENCE.

We now turn to the study of (0.1). According to what we have seen in the last

chapter, we consider u (t) - b(t) > 0 as being given at x - +1, where g is ax

smooth function of t. We want to reformulate (0.1) in such a way that it fits into

the theory of quasilinear parabolic equation. For this purpose we make the following

substitutions

p U x

r- u

91 ~ M e- M~t-s) Cu Cs()- u C t))ds

t t-C) ( u (ts) M - ( ds

e

- (u (s) u (t)
x x

M t -t _ 2s) u (t)t-)s-2

g2t) - f -X(t-s) xx Ctu Ct)
4 e fu(s) - 2 ( )d

-~ u Cs)

Equation (0.1) now assumes the following form:

p= rxx

Pi3- 3r elr 6r -3 sqr - 2p f 2 (t)d)ix) g g)difC~)

tx u 2 t 2  4t

p
r

M= -xg 1~ (A)(3

( 41) - - e- C x +AU.) +x xq1 ) +

-2 u2 4IsX)+

p p

2r
(A) =A ~g(A) +

o (0 ) (A) r s2es( (A) + ) 2rqp(g (A) +3 x

-16-
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Since p - r., the first boundary condition follows from the second, once it is

qatisfied initially, and we shall ignore it.

We will show that (3.1) can be treated by the Sobolevskii theory. For this we first

introduce some notations. Hk will denote Sobolev spaces of functions on [-1,1], and

Ls (ji,H k ) will denote the space of H -valued functions defined on C, which are

s-integrable with respect to the total variation of p in the Bochner sense (for a

2 1 2 s 1 4precise definition, see e.g. (101). We put X . H x (H I) x (L (N,HI)). Moreover,
s

in (3.1) we substitute r = r - b(t)x and introduce the abbreviation

y - (p,q,r,glg2,g3,g4. We rewrite (3.1) in the form

= A(y)y + f(y,t) (3.2)

where A(y) is defined as the following linear operator

A(y)y' . .r r' , _ (3np - q - 6npgiD) q ) - r - (g1

p

+ (g 0X) +)r x 3 - r' Xg4 N -pg 2 (g0 -L) 2qp (g3L0) +-rP 5p3 Xp xx 3 p 2

with the boundary conditions r' = 0 at x = +1.x

We shall show that (3.2) satisfies all the requirements of the sobolevskii theory

when regarded as an evolution problem in X (1 U s < "). More precisely, we shall5

prove

Theorem 3.1:

Let 1 <_ s < - be arbitrary. Let y0 = (P0'q 0 ,r0'qi,0 ) e Xs be given such that

ro H 3 , ro'x g 0 at x - +1, g. e L s(i,H I and min p (x 0. Then, for
XE t-1,1]

some T 0, equation (3.2) has a unique solution yf C
1 
([O,T],X) such that

y(O) y- Y0*

Proof:

We shall deduce the result from Theorem 16.2 in 121 (Theorem 7 in (81 resp.).

or this we have to verify the following conditions stated in [21 as (FI) and )-(''i:

(Fl) The operator A. A(y() is densely defined, close , and generates an

analytic qemiqroup.

-17-



(F3) For v,w in a neighborhood of yo in XG there exists an appropriate

e such that

i (Mv) - A(w) (Acw) +,. )-llljclv- wC l

with some constant c independent of v and w.

(4) For v,w in a neighbourhood of yO and t,t e 10,T] there is some constant

c such that

If(v,t) - f(w,. 1I f C(It - -I + i1v - wll)

(FS) y e D(AQ)

(The conditions in 121 are more general, and we have only formulated the special

case applying to our problem).

(4) and (F5) are trivial consequences of the smoothness of b and our assumptions

on the initial data. (P3) is clear, if it is proved that the H -norm of the r-component

of (AMw) + W)I y can be estimated by Ilyll. This will be immediate from the arguments

leading to (Fl) with y0  replaced by w.

To prove (Fl), consider the equation (A0 + O)y - y'. In the r-component this

leads to

and the equations for the other components can be trivially resolved once i is known.

It is now a Eimple consequence of Theorem 19.2 in 12] (which is due to Agmon and

Nirenberg 19]) that if B is in a sector not containing the positive real axis, and

Si is large enough, we have an estimate of the form

H + 1/2 H 2 H I H I

This concludes the proof.

mad"-



4. SOLUTIONS FOR SMALL FORCES.

The goal of the present chapter is to establish an analogue of Theorem 2.3 for

the equation (0.1), i.e. to prove existence of solutions globally in time for small

forces f. f = 0 now corresponds to the boundary condition u (t)-b(t) =lb(t)- 0.x

In this case (3.1) has the trivial solution p - 1, q = 0, r = 0, gi(A) = 0. As a

first step we shall study the linearization of (3.1) at this trivial solution with

homogeneous boundary conditions rx= 0. The linearized equation reads as follows:

r x

rxx

rM -r g 2 ( )du(X) --- f g4Vg)d m -)

r
X) 

=- Xgl(X) - X

r

2 = -g 2() -X

2r
43(A) = -Xg3(X) + X

r XX
44 (X) = -Xg 4 (X) -

We abbreviate (4.1) in the form j = Ay. We shall study the spectral properties of

A as an operator in the space X of §3 (1 < s < - is again arbitrary). Consider

the resolvent equation (A-a) y=f= (fl,f2 ,f3 ,f4 (M),f5 (),f6 (),f7 ()). If -a is

not in the support of v, this equation is immediately resolved with respect to p,q

and gi(X), yielding the following equation for r

3 n + 3 r1 1 -= f 2 f f 5 ( ) 1 f 7 ( X ) "
r +x +2 Cj dw (A) - ar =3-p X + a XiU - + a

As noted in §2, J diu(X) has a positive real part for Re a > 0. Moreover,
i+ a)

this expression obviously goes to zero like if a - in any sectorJaT

{a e a: -T + P + F <_ arg a < r - - El, being the angle of assunptions (a) and C

any positive number. From these properties it can easily be seen that the following

holds:

-19-
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Proposition 4.1:

A is the generator of an analytic semigroup. Moreover, the spectrum of A

consists of the semi-simple eigenvalue 0 and a remainder lying strictly in the left

half plane.

Semi-simple here means that the resolvent has a simple pole at 0, or equivalently,

that R(A) % N(A) = Xs, R(A) and N(A) denoting the range and nullspace of A.

a aFor technical reasons, the spaces X n, Y nof 2 are not quite appropriate for the

study of our present problem, and we shall use the following spaces, which are defined

in a very similar manner.

Definition 4.2:

nLet Z be a Banach space. Then H (R,Z) denotes the spaces of all functions

3R - Z whose first n derivatives are square integrable in the sense of Bochner. Let

moreover be

Xc(Z) = {v k Hn (R,Z) le v,e e Ha(tR,Z)

n (Z) = {v : IR - Z I ytv e H n(R, Z), 3 v c Z such that e+ tv - v) E Hn (R,Z)}n

Natural norms in io and Yo are defined in an analogous way as for X ,Yc . The usen n n n

of these definitions lies in the following lemma:

Lemma 4.3:

Let the space X2 and the operator A be as above, and let a > 0 be small

enough. Then the operator dr
y C t) IA it-) y (t)

is bounded from Xn (X ) into 'C(N(A)) 0 ia(R(A) n D(A)), where N(A), R(A) and D(A)

n 2 n n

denote the nullspace, range and domain of A, resp.

For the proof, note that since X is a Hilbert space, the norm in Hn (R, X2 )

can easily be expressed in terms of the Fourier transform, thus reducing the statement

of the lemma to estimates on the resolvent of A. The latter follow from Proposition

4.1. (It is this argument that fails, if X is chosen rather than Xa).
n n

-20-
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With these preliminaries, it is now easy to establish an analogue of Theorem 2.3

for the nonlinear problem (3.1). Again we put £ = r - b(t)x, and we put

Y = (p - lq,r,gl1,g2,g 3,g 4 ). Then (3.1) has the form

= 
Ay + f(y,b(t)) (4.2)

where A is the operator studied above. f is a smooth mapping from

y n(N(A)) G X (D (A) r) R(A)) Xn (IR) into Xn(X ) for any n > I, and, according to
n n a n 2_

Lemma 4.3, (dL - A)
-  

is (for a small enough) a bounded linear mapping from X(X 2dt n 2

into '(N(A)) 0 i'(D(A) n R(A)). The following result is now immediate from the
n n

implicit function theorem:

Theorem 4.2:

Let a > 0 be small enough. Then, in a neighbourhood of y = 0, b = 0 in

(N(A)) 0 X 3(D(A) n R(A)) XV(R), equation (4.2) has a unique resolution y = y(b).
nn n

-21-
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1t u (t) u (s)'
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u(x,t = -) x. It is shown that under appropriate conditions on a and

f the boundary condition can be uniquely resolved with respect to u . The

full problem is transformed in such a way that it is approachable by the

Sobolevskii theory of quasilinear parabolic equations. This yields the

existence of solutions to the initial value problem on sufficiently small

time intervals. Moreover, we show that if f(t) converges to zero exponen-

tially as t - +' and is small in an appropriate norm, there exists a solu-

tion globally in time, which approaches a stationary limit as t

-a.:.


