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where u(x,t) is a real valued function of x € [-1,1)] and t € IR, with

- the boundary condition
3 1 t ux(t) ux(s)
ap (- [ ate - s)[ > " 3 ) ds = £(t)
X - ux(s) ux(t)

at x = +1. This equation is derived as a model for the elongation of thin

i

filaments of polymeric liquids, u denoting the position of a fluid particle
in space, a the memory kernel, and £ the force acting on the ends of the
filament. We study the evolution of u, assuming the initial condition
u(x,t = -») = x, It is shown that under appropriate conditions on a and
f the boundary condition can be uniquely resolved with respect to u- The
full problem is transformed in such a way that it is approachable by the
Sobolevskii theory of quasilinear parabolic equations. This yields the
. existence of solutions to the initial value problem on sufficiently small
time intervals. Moreover, we show that if f(t) converges to zero exponen-
tially as t - +» and is small in an appropriate norm, there exists a solu-

~e tion globally in time, which approaches a stationary limit as t -+ +=,
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SIGNIFICANCE AND EXPLANATION

fe—/——m————
The equation under study ~~§£ated in the abstract and/derived from physical
principles in this paper ~ describes the elongation of a filament of a
polymeric liquid subjected to a force £ at both ends. The liquid is
assumed to satisfy certain accepted *rubberlike liquid"constitutive rela-
tions, and the filament is assumed to be thin, which permits a reduction of

the problem to one space dimension. The unknown variable u denotes the

position of a fluid particle at time t, which was at position x at
t = -», i.e., before the deformation started, we have u{(x,-®) = x. In
this paper the equation under study is transformed in such a way that it
fits into the framework of the general mathematical theory for "quasilinear
parabolic equations’{ This makes it possible to prove that for any given
"initial condition" a solution exists at least on a certain time interval.
(It is a part of the analysis to discover what is an appropriate meaning
of "initial condition" to be associated with the problem under study).
Moreover, we shall prove that for forces £(t), which approach zero

. exponentially for t =+ +© and are small in a suitable sense, there is a

solution for all times t, =-» < t < +» , and this solution approaches a

"“J““‘ e

stationary limit as t -+ 4,

The responsibility for the woirding and views expressed in this descriptive i
summary lies with MRC, and not with the author of this report.
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A QUASILINEAR PARABOLIC EQUATION DESCRIBING THE
ELONGATION OF THIN FILAMENTS OF POLYMERIC LIQUIDS

M. Renardy
0. INTRODUCTION.
We study the following problem occurring in polymer processing: A thin filament
of a viscoelastic liquid is subjected to a force f acting on its ends as shown in

the diagram:

f «q S>> f

We investigate the temporal evolution of the displacement. The equations that our
analysis is based on involve the "rubberlike liquid" constitutive assumption for the
stress-strain law [3) and certain approximations based on the thinness of the filament,
which allow the reduction to a spatially one-dimensional prcblem. Using these assump-

tions, we shall derive the following equation

32 t u_(t) u_(s)
X } ds (0.1)

_.L] + _2_ J’ a(t - S) X
x X w2is)  uie)
b4 X

where u(x,t) 1is a real valued function of x € ({-1,1] and t ¢ IR. As usual, a sub-
script x denotes partial differentiation w.r. to x and "dot" denotes partial
differentiation w.r. to t. The arguments (x,t) are suppressed unless needed for

proper understanding. (0.1) is supplemented by the nonlinear Neumann boundary condition

3 1- t ux(t) ux(s)
3n 3¢ ('U—J + [ et - o) |5—=- 3 ] ds = £(t) (0.2)
X - ux(s) ux(t)

In these equations u{x,t) denotes the position at time t of a fluid particle,
which is at the position x 1in a certain reference state. This reference state will
be identified with the state of the fluid at t = -», i,e. we have ul(x,t = -«) = x.

p denotes the density of the fluid, n the viscosity, and f the force acting on the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and Deutsche
Forschungsgemeinschaft.
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ends of the filament. The memory kernel a : {0,») + IR will be assumed to have the
following properties, which we shall refer to as assumptions (a):

(i) a has the representation

a(e) = [ e *taun (0.3)

where u is a complex valued Borel measure on the complex plane € such that
le Ll(u) (i.e. 1 1is integrable w.r. to the total variation of u), and supp y is
contained in {A e €|-¢ < arg A <v¥,[A| > €} for some ¢ <% and ¢ > 0. Since a
is real, we may and will assume that du ) = aqu(n).

(ii) a(t) >0 for te [0,»).

(iii) a 4is monotonely decreasing.

Note that (i) implies in particular that a is continuous and that |a| cen be

estimated by a decaying exponential. The motivation for assumptions (a) will become
apparent later in the paper. The sectorial condition for suppu is needed to make the
problem fit into the theory of parabolic equations, (ii) and (iii) will have important
implications for the spectra of certain linear operators. In physical theories derived
from "molecular network” or "bead-spring" models (see [4) and the references in (3},
ch. 6) a turns out to be a finite sum of decaying exponentials. This is clearly a
special case of assumptions (a), u in this case being a finite sum of Dirac measures
located on the real axis.

The boundary condition (0.2) agrees precisely with the equation describing the
evolution of the length of the filament when inertial forces are neglected. This
problem has been discussed previously by lodge, McLeod and Nohel in [5]j and by the
author in (7]. Llodge, McLeod and Nohel consider the solution as known for t < 0O and
assume it is nondecreasing. They then assume f = 0 for t > 0 and study existence,
asymptotic behaviour and various monotonicity properties of solutions. In (7] the
force f 1is a giver. continuous function R +IR. It is assumed that f converges to
zero exponentially as t + -», and that either f converges to 0 exponentially as

t » +o and is small in a suitable ncmm, or the size of f is arbitrary, but f(t)

-2-




vanisnes identically for t greater than some finite to. (In the latter case we need
the additional assumption that supp u is on the real axis; in fact in (7] we assumed
that 1 was a finite sum of Lirac measures on the real axis, but the same ideas can
be applied to the more general situation as we demonstrate below). In both cases it is
proved that, given the initial condition ux(t = -@) = 1, a unique positive solution
exists for all times t, and moreover lim ux(t) exists and is strictly positive.
Whereas the arguments in (5] rely mainlyt;:“;onotonicity properties, the main tools in
(7] are the implicit function theorem and the use of Liapunov functions.

The present paper will be arranged as follows: 1In §1 we explain the basic physical
laws and the approximations leading to (0.1), (0.2). We start from the basic laws of
continuum mechanics, using the “rubberlike liquid" constitutive relation. The equation
of motion in the interior of the filament and the boundary conditions on the lateral
surface are then solved formally by a power series expansion with respect to a "thinness
parameter" in an analogous manner as was done in the theory of thin elastic rods [6).
The first order terms in this expansion lead to (0.1). The formal expansion does not
in general fit given boundary conditions at the ends of the filament, and one is con-
fronted with a "boundary layer" problem. Since we are only interested in a first order
approximation, we shall not deal with this situation here. Instead, we consider the
balance of force, taking into account only terms not involving the small parameter.
This leads to (0.2). §2 summarizes the results of [7] concerning (0.2) as explained
above, taking into account the modifications required by the more general assumptions
on a. As a result, we may subsequently consider u, as being given on the boundary.
In 53 and %4 we finally deal with the full problem (0.1), (0.2). Using (0.3), this
problem is transformed in such a way that it fits into the abstract theory of quasi-
linear parabolic equations introduced by Sobolevskii (2], [8]. aAn "initial condition”
in th~ evolution problem sc defired will not necessarily involve the whole history of
u, but only certain of its momer.s, the choice of which depends on the suppnrt of .

In i3 we shall explain this transformation and as a consequence of the Sobolevskii

-1~




theory obtain the existence and uniqueness of solutions to the initial value problem
locally in time. §4 deals with the case where f converges to zero exponentially as
t + +» and is small. We assume the filament is undeformed (u= x) at t = -=. It
will be shown that a solution of the full problem exists globally in time, which

approaches a stationary limit as t -+ +=,

-4-




1. DERIVATION OF THE BASIC EQUATIONS.

We assign to each point in the fluid two different sets of coordinates: By

2 :
(El,l ,§3) we denote "body coordinates”, i.e. coordinates labelling a specific particle

in the fluid. These coordinates can be identified with the position of the particle in
space, when the fluid is in a certain "reference state". (It will later be convenient
to take as a reference state the state of the fluid at time t = -»). On the other
hand (yl,yz,y3) will denote coordinates labelling a point in space. We are interested
in finding trajectories of fluid particles, i.e. a functional dependence yi(zl,cz,:3,t).
In our exposition of the equations describing this functional dependence we follow
Iodge [3). (For a summary of the relevant equations, see p. 206-207).

To each point (;l,cz,ca) there is assigned a body metric tensor vy and a body
stress tensor w. Yy 1is defined by the relation

i3 acl ag?

n is related to Y by a constitutive law, which expresses the specific properties of

the material. We use the "rubberlike liquid" constitutive relation ([3], p. 143):

PRSI,

i4 15 3 ij t i3
4 pY RS ;t + f alt - s)y J(s)as
-0
ij -1 . 1j i . .
where vy denote the components of y =, 1.e. Y ij = Gk; n 1is a positive

material constant called the viscosity, and a is a given function, which will always
be assumed to satisfy assumptions (a) stated in the introduction. p is an unknown
variable having the physical significance of a pressure. The introduction of this
variable is necessary, since we assume the fluid is incompressible

a8 det vy = 1 (1.1)
The evolution of yk is determined by Newton's law, which for a Cartesian space

coordinate system takes the form

i

X C
o = A { 9_ .Sy rlsnrs} (1.2)
ar,




i
The Trs denote the Riemann-Christoffel symbols associated with the metric tensor vy:

14 14 14
Equations (1.1) and (1.2) have to be supplemented by boundary conditions referring to
either the displacement or the stresses on the boundary of the liquid. We shall here
deal with stress conditions. Let Yk denote the components of surface traction
referred to space coordinates. Then the boundary conditions on a surface C£ = const,

are given by

. k
A MHTHZ L 1.3
14

In the problem of the elongated filament the surface traction on the lateral surface
is zero, whereas at the ends there is a longitudinal surface traction equal to f
divided by the cross-sectional area of the filament. For convenience, we let cl and
yl resp. denote the coordinate is the direction of the filament and zz,;3 and

y2,y3 resp. the transversal coordinates. It is assumed that in the undeformed refer-
ence state (i.e. at t = -») the filament is cylindrical and axi-symmetric, i.e. in
this state we have yi = zi, where cl (by appropriate normalization of length scale)
ranges from -1 to 1, and r = /l;z)z + (;3)2 ranges from O to §, the radius
of the filament. Then, for small §&§, equations (1.1) and (1.2) and the boundary
conditions on the lateral surface can formally be solved by a series expansion in
powers of r and §&. This expansion is analogous to that used by Nariboli [6] for

the problem of longitudinal elastic waves in a thin rod.
12 C2 23 gi
J

We put G = 3 [4 , = %, so that the lateral surface now corresponds to

r = 1. We make the following ansatz

-6~




1 .2 .- T .2 .
yratett et - ] 6 D
y=Q

o
2.1 .2 .3 52 2 .
yo(g,825,6¢7) = 88° ) 6"Qv(cl.r2)
v=)

«
1 22 (-3 23 2 1.
vt etd,erh) = 62 ] s it i)
v=Q

T2 1 -2
T sVrR (5,29
\Y

=0

pct, 632,687

where Pv,Qv,Rv are polynomials of uth degree in 22. This ansatz is inserted
into (1.1), (1.2) and the lateral boundary conditions, which are supposed to be
satisfied for all values of §. Formally this yields an infinite set of equations

for the coefficients of Pv’Qv and Rv. We are only interested in deriving an equa-

tion for the first term Po(cl), and we shall in the following only carry out the

series expansion as far as needed for this purpose.

When terms up to O(8) are taken into account, we find for the metric tensor

P\ 2
0 .2 .3
[——1] 8¢9 8CTev
! 14 1.
v = | 8% Qg 0 ]
!
~3 2
887wv ° % |
w_ 3P )
. where ¢ = —- - _Tg =1 2 2
k14 r 14
Putting 6§ = 0, we find from (1.1)
R 3P _\2
\ o] 4
L) RS R (1.4) |
=5 <

Next we consider the boundary conditions on the lateral surface. At a boundary point

where i3 = 0 these yield the equations n21 = ﬂ22 = n23 = 0. (Because of the radial

symmetry it suffices to consider these boundary points; if the traction vanishes there, \




2 .
it does so everywhere else.) =« 3 vanishes identically as a result of the radial

symmetry. For n22 we obtain the following terms of the order 0(1)

t
22 - 3 ~2 -2
= “RyQ," - nop @) + _o{ a(t - s)Q,“(s)ds = 0 (1.s)
Finally we have
21 21 3 21 ¢ 21
LR I R [ att - s)y“(s)as =0 (1.6)
0
All solutions we are going to consider shall satisfy 1lim p(t) = f a{-s)ds and
t - -

lim Y21(t) = 0, the convergence being exponential. If (a) holds, it is then not
t=c

difficult to prove that the only solution to (1.6) satisfying the specified conditions

is 721 = 0. In the first order in & this yields ¢ = 0. The law of motion (1.2)

11 BPO -2
now yields the following equation for PO[Y = {-—E} ):
g

.. 3"0{9 1 3 11}
+ T

PP, = —= L r
0 BCI BC1 11

P 3P _y-2 9P =2 t 3P, -2

-2 {—3—1- (-—RO {—%} - (—‘11] v [ ae -9 [——‘13] (s)ds]
[ 14 14 29 -® 14

2

P -1 3P P -2 3P -2 t 3P -2

+ [——%] ——]—_93 [-RO [——cl)-) -n 7;? [—%] + [ atlt - s){—%} (s)ds]}
3z (3g7) 3L 3z - 14

In order to simplify notation, we shall henceforth write u for PO and x for El.
The last equation now yields (0.l1) after a few manipulations, when (1.5) and (1.4) are
used to express Ro in terms of u.

Finally we have to specify boundary conditions at the ends of the filament. As
noted in (6], the asymptotic expansion which we used for the interior problem generally
fails near the ends, and a "boundary layer"” has to be taken into account. The boundary
layer is discussed in a forthcoming paper by Reiss, which is referenced in ({1}, but not
available yet. We are here only concerned with a first order approximation, and we

shall ignore boundary layer effects. Instead, we take care of the force balance in

the zeroth order with respect to §. Namely, if one formally inserts o1r expansion

-8~




into the boundary conditions at the ends, it is seen that all traction components
transversal to the direction of the filament are 0(§8). The longitudinal traction

component gives the following terms of order 0(1l):

un o 1112 1 (¥Fo)?
T=1 — (¥ ) =7 3
3t 14
2 .
o t ux(t) hx(S)]
= 3n =+ [ att - s){ > 3y ds
X - u_ (s) x
X
: : -1
Since the cross-sectional area of the filament is in first approximation equal to u

we shall require that 1 = f~ux. This yields (0.2).




2. THE BOUNDARY PROBLEM.
In this section we consider the problem of solving (0.2) for u when f |is
given. The results we present slightly generalize those of {7], allowing for the more

general class of kernels a satisfying assumptions (a).

Instead of (0.2) we study the slightly more general

|

(0.2) corresponds to o = 2,

we write y for u .

vt
2

- y(s)]ds = f(t)ya
y (8)

t
3ny + f a(t - s)

-0

where 0 < a < 3. and, as explained in (7],

2
of the polymer, when inertia are neglected:

-f
7
y
. 4
] -f €«&— — -f
-f
!
E A(t-s) -2 E oat-s)
We put g(A) = f e s y “(s)ds, h{}) = f e y(s)ds,

—~oo -co

v = g(My2, 600 = h(ny L

Then (2.1) is equivalent to either of the following systems

[ () - gyrauo) + gy®

3ny =
2 . -2
GO) = -ag0) +y
h(1) = =Ah()) + y
Kl.
Ing = ye [ (S0 - yONau() + £y”
; YOO = oAy () + 1 - ;% YOO [ rO) = 50NaO) + 5=y gy
p 1 1 a-
SO) = =280 + 1+ 3= 800 [ vy - sonau) - 35 8ty

-10-
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In order to simplify notation,

problem

2.1)

the case

is also physically interesting, namely, it describes the deformation of a sheet

(2.2)

1 (2.3)

1




Both forms will be used in the following. Equations (2.2) or (2.3) will be regarded

as evolution problems in the space X = R x (Ls(u))z (1 <s <=), Here Ls(u) denotes
the space of all (equivalence classes of) functions g : € -+ € such that g(z) = ET;T
and |g|® is integrable w.r. to the total variation of y. Clearly, the right side of
(2.2) or (2.3) is the sum of an analytic generator and a smooth nonlinear term.

A trivial solution for £ = 0 is given by y = 1, g{()) = h(\) = y(A) = §()\) = %,
and we are interested in solutions converging to this trivial solution as t + -», Aas
a first step we investigate the spectral properties of the linearization of (2.2) (of
course (2.3) gives the same result) at this point, i.e. we study the inhomogeneous
linear equation

gy - [ (O) - gONE@O) + 3y [ 3 du) = 3nw
Bg(X) + Ag()) + 2y = “’1“‘) (2.4)

Bh(A) + Ah(x) -~ y = wz(x)

If -8 1is not in the support of u, the last two equations can be resolved with

respect to g(A) and h(}). This inserted into the first equation of (2.4) yields

Inby - 3y [ 1ag A + 3y [ T au(d)
60 - )
= 3n¢ + 2 T el du (i) l

Hence the resolvent exists at B, iff -8 is not in the support of u and

1

1
- Dawon 40

p(3) := 3ng - 3 [ |

Clearly, o (8) vanishes for 8 = 0. Namely, we have

1
0(B) = 38(n + [maum)
Using the relationship between u and the kernel a, we find
-8t

1 = l1-e
f TTT:jadu(A) = é a(t) —~7r——-dt




[ ,,,v_—m

For 8 # O, the real part of this expression is given hy

o
f aét; (Re B(L - e tFeE ~t Re 8

0

cosf{t ImB)) + ImRe sin (t Im 8) }at

If ReB> 0, condition (a) (ii) implies that the first contribution is positive, and

condition (a) (iii) implies that the second contribution is positive, too. Hence

1

Re | 2+ B)

du(i} > 0, whence certainly p(B) # O.
For easier reference, let us put Y = (y,g,h) € R x (Ls(u))2 in (2.2) and write
(2.2) in the form
Y = L(Y ~ Yo) + N(Y -~ Yo,f) (2.5)
where L denotes the linearization of the right side at the trivial solution

Y = (1, ,éﬂ. Analogously, we put Y¥' = (y,v,8) and write (2.3) in the form

4

>

Yo Ly - Yy) + N(Y -y, 6) {2.6)

We have just proved

Proposition 2.1:

The spectrum of L (or L') consists of the algebraically simple eigenvalue 0

(geometric simplicity is immediate, and algebraic simplicity follows from the fact that
the resolvent has a first order pole) and a remainder contained in the left half plane,
Moreover, the restriction of L to the range of L generates an analytic semigroup
of negative type.

Before we can state our theorems, we must first define some spaces of functions.
Definition 2.2:

let Z be a Banach space and ¢ a positive real number. Then

$9(2) = fve w2 um S I® ()20 for k= 0,1,...,n ;
n tven

v denoting the kth derivative}

l

Fr

»
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o>
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a [
Y (2) = {ve C(R,2) lim e’ Ee™® ey a0 for k= 1,2,...,0,
totw
: -ot . .
lim e " livit)|| = 0, 1lim v(t) =: v(®) exists and
Lt =0

lim e%Yllvit) - viw) Il = o}
Tt

X g .
A natural norm in xn is

n

lvll= } sup ech"I Hv(k) () !
- k=0 t€e R
B
. A natural nomm in xi is
] 7 alely 0 -ot , e, |
P Hv||= Z sup e Hv )l + sup e vy e My ' s sup e vit) - v(»)
k=1 te R t<0 t>0

Theorem 2.3:
et o0 > 0 be small enough. Then the following holds: TIf f ¢ x;(m) has
sufficiently small norm, (2.6) has a unique solution Y' satisfying
e ' o g, .S 2 '
Y=Y - Y, € Yn(BU x (Xn(L (1)))". Y' depends smoothly on f.
Proof:

We rewrite (2.6) in the form

GY,£) = ¥ - (Edi‘ R R TH TR SR (2.7

It is a consequence of Proposition 2.1 that (a% - L')_l maps X;(IR) x .‘(l:;(l,s('.:\)2

. ] 2 . .
into Zn := Y:(m) x (x;‘(Ls(u))) . Hence G is a smooth mapping from Zn x x:(lR)

into Zn and we have D?C(0,0) = id. By the implicit function theorem, (2.7) can

therefore be resolved with respect to Y 1in a sufficiently small neighbourhcod of (0,0).

¥ is clearly unique within that neighbourhood. We want to show that it is in

N fact unique within the class of all functions converging to zero as
: . N -3t -
this, let us first consider functions Y satisfying 1lim e AN
t -

f between 0 and . TIf Y 1is such a function, then certainly e

-t

smaller than + on some interval (-"’,tl

! -

T » =r. To see
= N for some

vy s

1. We can now apply an analogous imelicit

Ak




function argument as above, but rather than considering functions on all of R, we
consider only function on (-°,t1]. From this we see that Y is unique in the class
of all functions that approach zero exponentially as t +» -, Pipally, if we assume
Y converges to zero at all, it can be seen from the last two equations of (2.3) that
v - % and § - % converge to zero exponentially, because if only these two equations
are considered, the zero eigenvalue in the linearization does not occur. From the first
equation of (2.3) we find that y converges to zero exponentially, and hence the con-
verge of y to its limit has to be exponential, too.

If further restrictions are made on u, a global result can be proved that does
not rely on the smallness of f.
T..eorem 2.4:

In addition to (a), assume suppu is contained in the real axis and u is posi-
tive real. lLet f : IR *IR be continuous and such that lim e-atf(t) = 0 for some

t -

T >0 and f(t) =0 for t >t For any such f, equation (2.3) has a unique

o
solution satisfying 1lim Y’ (t) = Yo. This solution exists glorally in time, moreover,
[t
. 11
lim Y'(t) = (Y(m)’i730 exists and y(=) > 0,
T
Proof:
From the arguments in the proof of the last theorem we already know the existence
and uniqueness of a solution on some interval (-m,tll. In order to prove that the

solution exists globally in time, it is more convenient to lock at (2.2) rather than
at the equivalent equation (2.3). Solutions of (2.2) continue to exist as long as vy
stay- away from zero or infinity. From the second and third equation of (2.2) one
obtains positive lower bounds for f g(x)dy{(y) and ] h{(\)du{y) in every finite time
interval, provided that y remains positive, and these bounds do not depend on any
estimate for y. Yence, if y becomes too large, y]- ] q(\)dy()) will dominate

sver fy' and also over f n()aL(Y)  (the latter being less than some constant times

max y(1}). Analogously, if y becomez too small, f h{(V)du(x) will be the
Te (==, b}




dominant term. It is immediate from this that y cannot go to zero or infinity in
finite time, and therefore the solution exist globally.

For t >t we nowhave =0, and, putting a(}) = y(X) = 3, () = 6(0) - 3,
we find from (2.3)

) , 2 2
[{-;—n 2+ 3n “J du(l)--f{%nk -4 3m Bi}dum
8+ a+3 3

GOT Y

(2.8)
- ) - sONAam ¥

As we know that Y(i) and &(1) stay positive, the denominators a + -;- and 8 +%
are always positive, and the left side of (2.8) is therefore the derivative of a posi-
tive function that decreases along trajectories. (It is easy to prove that a and 8
are nice enough for all the integrals toc make serse, namely, one sees from (2.2) that
ig(1l) and ‘h()) and hence \y(A} and A§()) are bounded). As a consequence, a
and ¢ converge to zero exponentially as t + = in the Lz-nom and a fortiori in the
Ll-nom. From the first equation of (2.3) one sees then that § converges to zero
exponentially, whence y must converge to a limit exponentially. Moreover, one
easily concludes from the second and third equations of (2.3) that o and B8 in fact
converge to zero in the L -nom and not only in the Lz-nom. This concludes the proof.
Remark:

It is almost trivial to prove (7] that y(=)>1 4if ¢ >0 and y(=) <1 Iif
f - 0. Since the equation under study describes the evolution of the length of the
filament, if inertia are neglected, this is a result that one would obviously expect.

we have no analogue yet for the full problem (0.1), (0.2).
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3. LOCAL TIME EXISTENCE.

We now turn to the study of (0.1). According to what we have seen in the last

chapter, we consider ux(t) = b(t) > 0 as being given at x = +1, where g is a

smooth function of t. We want to reformulate (0.1) in such a way that it fits into

the theory of quasilinear parabolic equation. For this purpose we make the following

subgtitutions
p=u,
q=u_
r=2aq
v ae-s)
g, ) = _'{ e (u (8) - u (t))ds
- t e (8) u (thu (s)
92“)_ .{ el(ts)(“;(x _ xx4 x ds
-> u” (s) u_(t)
X X
t a(t-s), -2 -2
g,(4) = _,{ e (u "(s) - u “(t))ds
t u__ () (e)
~A(t-8) XX x
\ g M = J e [uxx(s) - = as
: - ux(s)

Equation (0.1) now assumes the following form:

o1

sy -
.3

= r
xX

£

or = 3r|p-21:xx - 6np_3qrx - 2p ]gz(x)du(l) - —12— / q4().)du(1)
p

r
o X
gl(x) = -Xgl()\) Y (3.1)
' rxx p_ 4txq E
g, = =ag, () - (qlm *x) + — [ql(l) + x)
2 P p
2rx
. q3(A) = -Xg3(x) + =

2
-\q () - r p (qam + —1-2-) - erqp(gz(l) + Lz)

g, ()
4
\p Ap

with boundary condition p = b(t), r, = l.)(t) at x = +1.




Since p = ry,» the first boundary condition follows from the second, once it is
=atisfied initially, and we shall ignore it.

We will show that (3.1) can be treated by the Sobolevskii theory. For this we first
introduce some notations. Hk will denote Sobolev spaces of functions on ({-1,1], and
Ls(u,Hk) will denote the space of Hk-valued functions defined on &, which are
s-integrable with respect to the total variation of yu in the Bochner sense (for a
precise definition, see e.g. [10]). We put XS = Hz x (H1)2 x (Ls(u,Hl))4. Moreover,

in (3.1) we substitute ¥ = r ~ b{t)x and introduce the abbreviation

y = (p,q,i,gl,gz,g3,g4). We rewrite (3.1) in the form

¥ = Aly)y + £ly,t) (3.2)

where A(y) is defined as the following linear operator

r
XX
4

P

2

PO 1 -2a -3 - 1 . P
] ) ' —_ ’ - [] - v - v - M -
Aly)y' = (rx,rxx, 5 (3np L enp qrx), kql(X) T Fxt ng(\) (gl()) + )‘)

4q Byze _ge 2 0 gt 2 A yee L 1,
+ Ps (ql(X) +X)rx, Aga(\) =3 I, Xg4(k) P (93(1)+ 2)rxx 2qp(g3(\) + 2)rx)

Ap Ap ’p

with the boundary conditions r; =0 at x = +l.

we shall show that (3.2) satisfies all the requirements of the Sobolevskii theory
when regarded as an evolution problem in xs(l < s < ®»). More precisely, we shall
prove
Theorem 3.1:

Let 1 <s <= be arbitrary. Let vy, = (po.qo,io,qi o) € X, Dbe given such that
- .

- - 1 1
r. € H', r =0 at x = +1, g, € L (y,H) and min p.(x) - 0. Then, for
0,x - i,o0 o}

x€ [~1,1)

some T - 0, equation {(3.2) has a unique solution vy € Cl([O,T],XS) such that

y(0) = Yy
We shall deduce the result from Theorem 16.2 in {2} (Theorem 7 in (R] resp.).

“or this we have to verify the following conditions stated in [2] as (Fl) and (F3)-(vG);
(F1) The operator A, = A(yq) is densely defined, clonsed and generates an

analytic semigroup.
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(F3) For v,w in a neighborhood of Yo in xa there exists an appropriate

8 € € such that
N ate - am)) A + B[ <cllv - wl|
with some constant c¢ independent of v and w,

(F4) Por v,w in a neighbourhood of Yy and t,7 € [0,T] there is some constant

¢ such that
e,y -, 0 ll c ctit - o] +{lv - w]d

(FS) Yo € D(Ao)

(The conditions in {2] are more general, and we have only formulated the special
case applying to our problem).

(F4) and (F5) are trivial consequences of the smoothness of b and our assumptions
on the initia) data. (F3) is clear, if it is proved that the H-norm of the r-component
of (A(w) + 8) 1y can be estimatea by llyll. This will be immediate from the arguments
leading to (Fl) with Yo replaced by w.

To prove (Fl), consider the equation (Ao + 8)y = y'. In the r-component this
leads to

%P p(-Jzexx - 6np;3qof + 6f = &'
and the equations for the other components can be trivially resolved once r is known,
It is now a fimple consegquence of Theorem 19.2 in (2] (which is due to Agmon and
Nirenberg [9]) that if 3 is in a sector not containing the positive real axis, and

8| is large enough, we have an estimate of the form

NEN L+ (81M2HEN L Bl <clle )l .
£ v (PR, « sl 3 < cltEl y

This concludes the proof.
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4. SOLUTIONS FOR SMALL FORCES.

The goal of the present chapter is to establish an analogue of Theorem 2.3 for
the equation (0.1), i.e. to prove existence of solutions globally in time for small
forces f. f = 0 now corresponds to the boundary condition ux(t) =b(t) =1=b(t) =0.
In this case (3.1) has the trivial solution p=1, q=0, r =0, gi(l) =0, As a
first step we shall study the linearization of (3.1) at this trivial solution with
homogeneous boundary conditions r,=0. The linearized equation reads as follows:

p=r

§=rx

2 1
-5 [ gMam - = [ g maum

a4

"
o]
2]

CHCVIERSERGVINE o
r

5,00 = 2ag, 00 -
2r

g3 = -Ag (1) + —X—"

r
§,00 = -ag, 00 - XX

We abbreviate (4.1) in the form ¥ = Ay. We shall study the spectral properties of
A as an operator in the space xs of §3 (1 <s <= is again arbitrary). Consider

the resolvent equation (A~a) y=f=(f fz,f3,f4(x),fs(x),fe()\),f.,()\)). If -o is

1!
not in the support of 1y, this equation is immediately resolved with respect to p,q
and gi()\), yielding the following equation for «r

fS()‘)

A+

f.,()\)

1
au(x) - ;[mdu(l) .

r +

3n an
P xx o

1 2
rxx.f-mdu(;\) -ar-f3-;f

As noted in §2, du(}) has a positive real part for Re a > 0. Moreover,

f 1
A(d+a)
this expression obviously goes to zero like -[ij— if a » « in any sector

{ae C|l-m+9 +¢ <arga <7 =-¢ -c}, ¢ being the angle of assumptions (a) and e

any positive number. From these properties it can easily be seen that the following

holds:
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Proposition 4.1:

A is the generator of an analytic semigroup. Moreover, the spectrum of A
consists of the semi-simple eigenvalue 0 and a remainder lying strictly in the left
half plane.

Semi-simple here means that the resolvent has a simple pole at 0, or equivalently,
that R(A) & N(d) = L R(A) and N(A) denoting the range and nullspace of A.

For technical reasons, the spaces Xg, Yz of §2 are not quite appropriate for the
study of our present problem, and we shall use the following spaces, which are defined
in a very similar manner.

Definition 4.2:

Let 2 be a Banach space. Then Hn(n%,Z) denotes the spaces of all functions
R -~ Z whose first n derivatives are square inteqrable in the sense of Bochner. Let
moreover be

t
v ¢ HMR, 2))

X0(2) = {ve W (R,2) | %%, e”

{v :R~»2 [ e_Otv € Hn(IR,Z).E v_€ Z such that e+°t(v -v,)E Hn(IR,Z)}

¥ (2)
Natural norms in iz and ?i are defined in an analogous way as for Xz,Y:. The use
of these definitions lies in the following lemma:

Lemma 4.3:

Let the space X, and the operator A be as above, and let o > 0 be small

2

enough. Then the operator
dy-1
yit) ~ (A - EEJ y ()

is bounded from X_(X,) into ¥7(N(M) @ X (R(A) N D(A)), where N(M), R(A) and D(A)
denote the nullspace, range and domain of A, resp.

For the proof, note that since X2 is a Hilbert space, the norm in H“(nz,xz)
can easily be expressed in terms of the Fourier transform, thus reducing the statement

of the lemma to estimates on the resolvent of A. The latter follow from Proposition

4.1. (It is this argument that fails, if xz is chosen rather than ﬁi).
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With these preliminaries, it is now easy to establish an analogue of Theorem 2.3
for the nonlinear problem (3.1). Again we put ¢t = r - ﬁ(t)x, and we put

y= (p - l.q,r,gl,qz,q3,q4). Then (3.1) has the form
§ = Ay + £ly,b(t)) (4.2)

where A 1is the operator studied above. f is a smooth mapping from

Qz(N(A)) e f(Z(D(A) N R(A)) x i;‘(m) into Sci(xz) for any n > 1, and, according to
Lemma 4.3, (é% - A]—l is (for o small enough) a bounded linear mapping from ii(xz)
into ?g(N(A)) ® ﬁi(D(A) N R(A)). The following result is now immediate from the
implicit function theorem:

Theorem 4.2:

Let o > 0 be small enough. Then, in a neighbourhood of y = 0, b=0 in

- ~0 - .
Y:(N(A)) ® xn(D(A) N R(A)) x x:(nu , equation (4.2) has a unique resolution y = y(b).
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where u(x,t) 1is a real valued function of x € [~1,1} and t € IR, with

the boundary condition

3 1 t ux(t) ux(S)
3In o -u—) + [ a(t -s) 5 - 3 ds = f(t)
- u, (s) u, (t)

at x = +l1. This equation is derived as a model for the elongation of thin
filaments of polymeric liquids, u denoting the position of a fluid particle
in space, a the memory kernel, and f the force acting on the ends of the
filament. We study the evolution of u, assuming the initial condition
u(x,t = -«) = x. It is shown that under appropriate conditions on a and

f the boundary condition can be uniquely resolved with respect to u- The
full problem is transformed in such a way that it is approachable by the
Sobolevskii theory of quasilinear parabolic equations. This yields the
existence of solutions to the initial value problem on sufficiently small
time intervals. Moreover, we show that if f£(t) converges to zero exponen-
tially as t - +~ and is small in an appropriate norm, there exists a solu-

tion globally in time, which approaches a stationary limit as t > +x.




