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Abstract

The ellipsoid method is applied to the unconstrained minimization of

a general convex function. The method converges at a geometric rate, which

depends only upon the dimension of the space but not on the actual function.

This rate can be improved somewhat if the function satisfies some Lipschitz-

type condition, or if the minimum set has dimension greater than zero.

If the ellipsoid entirely contains the optimal set, equating the Steiner

polynomial associated to the optimal set, and the volume of the ellipsoid

at a given iteration, will give an upper bound on the minimum recorded

function value.

Keywords: Ellipsoid method, nondifferentiable optimization, convex

programming, volumes.
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1. Introduction

The ellipsoid method is an implementable version of the method of

centers of gravity of Levin 113]; both algorithms are designed to minimize

a general convex function.

Levin's method is a natural extension to general convex functions, in

n dimensions, of the bisection algorithm for one dimensional unimodal

functions. It can also be viewed as a cutting plane method, where the

new iterate is defined as the center of gravity of the set formed by the

intersection of all previously generated cutting planes; a new cutting

plane is generated at this point, and added to the list of cutting planes.

What is quite remarkable about this is that the domain of localization

of the solution (i.e., the intersection of the previously generated hyper-

planes) has its volume reduced at each iteration by a ratio of at least

1 - (n/I(,+l))n < 1 - l/e. This implies that the minimum recorded function

value is bounded above by a geometric progression of ratio (1 - l/e)1/

this result is not quite proved in Levin's paper.

The ellipsoid method is also a particular version of a class of

algorithms due to Shor [17, 18, 19, 20, 21] which can be described as a

variable metric subgradient optimization method, where the metric is updated

at every iteration by a rank one matrix. The variable metric was introduced

by Shor as an attempt to correct the bad convergence of subgradient optimiza-

tion on convex functions with very elongated level sets (or badly conditioned,

acute, very kinky, gully-type functions). Clearly any variable metric method

can be interpreted in terms of an ellipsoid. The method worked reasonably

well as a heuristic, but proofs of convergence were hard to come by, and

quite unsatisfactory.



Yudin and Nemirovskii, in two seminal papers [22, 23] dealing with

the computational complexity of the general convex programming problem,

did (among other things) combine the methods of Shor and Levin in what is

now called the ellipsoid method: it is an implementable version of Levin's

method, and also a version of Shor's method for which a proof of convergence

exists. In restricting oneself to ellipsoids rather than using general

convex sets, the volume of the domain of localization of the solution is

reduced at each iteration, by the ratio

n 2 (n-l)/2 -[I/2(n+l)]

n+l2 ) < e

this implies that the ellipsoid method would take approximately 2n/e

times the number of iterations that Levin's method requires to reach a

given accuracy. Yudin and Nemirovskii also show that no algorithm (using

the information given by an oracle which returns the value of the function

and a subgradient corresponding to each iterate) can improve significantly

on Levin's method.

The results given by Yudin and Nemirovskii are of a slightly different

nature from the ones given in this paper; they look for a minimum of a

convex function subject to the restrictions that the point belongs to a

given compact convex set G (with an interior) and that if satisfies one

convex inequality (or any finite number of convex inequalities). The

presence of one inequality has the impact that the algorithm depends upon

the precision that one deides to reach at termination, and thus no rate

of convergence can be given. The presence of the set G (required to make
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a definition of computational complexity work) is handled by assuming that

an explicit projection map on G is available, thus restricting G to be

a simplex, a sphere, a rectangular parallelotope, etc. ..., but not an ellipsoid

(the projection on an ellipsoid appears to require the solution of an

eigenvalue-vector problem); the algorithm is also slightly changed.

For the problem of minimizing, without constraints, a general conven:

function, Shor [20] showed that convergence is bounded by the product of

an arithmetic series and a geometric series.

Khacian [10, 11] applied the results of Yudin and Nemirovskii to the

linear programming problem, or to the problem of solving a system of linear

inequalities. Again the convergence proof is based upon a perturbation

technique, .nd no rates of convergence are given.

th
In Section 2 of this paper, it is first shown that the n root of

the volume of the intersection of the level sets of a convex function with

a convex set is a concave function of the level. This implies, using

a parametrized version of the proof given by Yudin and Nemirovskii

[22, 23], Khacian [10, 111, Gacs and Lovasz [8], and Aspvall and Stone [2],

that con7ergence is finite if the initial ellipsoid intersects the optimal

set ia a set of dimension n, wbile if this intersection is not empty

convergence occurs at a geometric rate which is approximately 1 - 1/2n 2

This result is valid for any convex function, and is independent of the

particular function. In Section 3, an attempt is made at showing that

the rate of convergence of the ellipsoid method may depe'd on the properties

of the function one minimizes: it depends both on some Lipschitz-type

characteristics of the function, and on the dimensionality of the intersection
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of the initial ellipsoid with the optimal set. It is also shown that a bound on

the value of the function reached is, if the initial ellipsoid entirely

contains the optimal set, given by an equation relating the Steiner polynomial

of the optimal set to the volume of the ellipsoid, at a given iterate.

Section 4 is e. sentially an appendix containing a few necessary

technical results on volumes. It is based upon the books of Bonnensen and

Fenchel [3], Busemann [4], Eggleston (5], and Hadwiger [9].
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2. A general convergence theory

The ellipsoid algorithm will be used to solve the problem of minimizing

a general convex function f defined on Rn. Let af(x) be the subdifferential

of f at x, f* = Inf{f(x) : x E R n } be the minimum value of f, and
nRn n

* = {x E :f(x) < f*} = :x E R 0 E af(x)} be the set of minimal

points. It will be assumed throughout (unless otherwise specified) that

f* is finite and that S* is not empty.

Let d(x,S) denote the Euclidean distance between a point x and a

set S, i.e, d(x,S) = Inf{fjx-yjI : y E S} where 11'11 is the Euclidean

norm; d(x) will be used for d(x,S*). The diameter of a compact set S

is defined by D(S) = Sup{Iix-yli : x E S, y E S}; while the inradius r(S)

is the radius of a largest sphere contained in S. The unit closed ball

0
is B = {x E Rn : Ijxjl < 1}; the interior of B is denoted by B . The set

of all compact nonempty sets in Rn  is metrized by the Hausdorff distance

d(AI,A 2) = Inf{6 > 0 : A1 + 6B
0 c A2, A 2 + 5B

0 c AI} ;

convergence and continuity are defined using this metric (or any of its

topologically equivalent versions).

The volume V[S] of a bounded measurable set S in Rn  is its n

dimensional Lebesgue measure; V[dk] will be taken as - . The volume of

the unit ball is wn = nn/2/r(n/2 + 1). The surface of A is denoted by

F(A). If A is a s dimensional set in Rn, then V [A] (and F [A])
s 5

will denote the volume (and the surface) of A within the s dimensional

affine manifold containing A.
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The ellipsoid algorithm:

(k)The ellipsoid algorithm computes a sequence {(x , Ek) k = 0,1,...j

where each Ek  is an ellipsoid in Rn and x W is its center.

Step 1

(0) nChoose a point x E R and an ellipsoid E0 C Rn  centered at

x (0 ) such that E0 n S* is not empty (i.e., Min{f(x) : x E E 0 = f*).

Step 2

Compute a (k) E af(x(k)).

If a (k) = 0, stop with x(k) optimal; otherwise go to Step 3.

Step 3

Let Rk  Ix E Rn : (a (k ) , x-x (k )) < 0}; then define E k+ as the

least volume ellipsoid cointaining Hk n Ek, and take x(k+ l) as the

center of E k+I  Set k - k+l and go to Step 2.

This algorithm is implementable as the ellipsoids can be described

by matrices, and the iteration from Ek to Ek+l is described by a rank

one matrix update [2, 8, 10, 11, 17, 18, 19, 20, 21].

The key observation is that

V[E k+] = cn V[Ek I and thus V[E k] - (cn)k V[E

with

2 (n-l)/2 ./2(n+l)

C n <
n
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and V[Ek] decreases as a geometric series whose ratio depends only upon

the dimension of the space.

It should be remarked that in the remainder of this paper the fact

that the sets Ek are ellipsoids is not used (at least not much). It

follows that most results can be applied to Levin's method of centers of

n
gravity with cn = 1 - (n/[n+l]) < 1 - i/e replacing cn; the method is a

nonimplementable version of the ellipsoid algorithm, which uses general

convex sets Ak, with inStep 3 Ak+I = Hk n Ak and x (k+l) is defined

as the center of gravity of Ak+ I  (one has V[Ak+l I< cn V[Ak] , [14]).

Levin's method is clearly a cutting plane method.

It is an open question whether other classes of convex sets (simplices,

parrallelotopes, etc., ...) would provide implementable versions of this

algorithm.

Proofs of convergence of the ellipsoid algorithm are based upon a

study of the behavior of volumes. Other characteristics of convex sets may

be used, for instance the inradius [11, 12], as clearly

r(E k) < (V[EkNn) 1/n (V[E10/N)/n . k/n

and furthermore r({x E E0 : f(x) < a}) is a concave function of a.

Usually the starting ellipsoid E0 will be taken as a sphere with

center x(0) and radius r (E0 = x (0) + rB); clearly in this case

E0 n S* o o if and only if d(x( )0 ) < r, which means that one needs an
(0)

overestimate of the distance between a point x and the opitmal set S*.

7
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The general theory of convergence of the ellipsoid method will be

based upon the properties of the function

h(c; EO = V[Tf*+& n EO]

n
where T = {x E R : f(x) < a} are the level sets of f and E0  is

the starting ellipsoid.

If the optimal set S* is bounded then one can define the function

h(c) = V[Tf,+]

Clearly h(6) = h(E; E ) for all s ( [0, 0 (Eo)], where

0 (Eo) = Sup{c : Tf*+F C 0O

= Inf{f(x) - f* x % E0 }

Lemma 2.1:

nLet f be a convex function defined on Rn , with minimum f*, and

minimum set S*, and E be a compact convex set such that E n S* is not

empty, then the function h(c; E) = V[Tf*+ n El defined for c E [0,w)

has the following properties:

i) It is continuous on F E [0,-).

ii) It is strictly increasing for £ E [0, £*(E)l where r*(E) = Max{f(x)-f*:

x E}. 

8
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iii) h(e; E) =V[EJ for all 6 > c*(E), and h(Q; E) = V[E n s*].

iv) h 1/ (; E) is concave for c E [0,oo).

V) hi1/n (c; E) > CIs*(E))V / [E] + (1 - V*E) I/n [E n s*] for

FE [0, c,*(E)J.

Proof:

i) follows from the continuity of T f*+£ fl E for all F, E [,o

(by Theorem 4.6) and the continuity of the volume on the set of compact

convex sets (by Theorem 4.8).

ii) and iii) are clear.

iv) follows from Lemma 4.4 and Theorem~ 4.7.

v)h1/n (- )=h1/n ( ,()+ (1- )0 )andthsv
vj h ~;£. =h T**(E) (E ( *(E));Ethsv

follows from iii) and iv). Q.E.D.

The function h(Ec), defined only if S* is compact, has similar

properties.

Definition 2.2:

The functions h- (t; E) and h1 (t) are defined as the inverses of

the functions h(6; E 0) and h(e), or more precisely: h- (t; E) is

defined for t E [0, V[I] by

h- (h(F; E); E) = cfor F, E [0, &*(E)l

hl (t; E) = 0 ,for t E [0, V[E 0 A 1



h- (t) is defined for all t E [0,-) by

-h(h()) =for E [0,o)

-1
h (t) = 0 for t E [0, V[E n S*]]

Classical properties of inverse functions, and Lemma 2.1 lead to

Corollary 2.3.

Corollary 2.3:

Under the same assumptions as in Lemma 2.1, the function h- (t; E)

has the following properties

i) it is continuous for all t E [0, V[E]] and it is strictly increasing

for t E [V[E 'I S*], V[EI)];

ii) h- l(tn ; E) is convex for all t E [0, V /n[El];

-1t/n - v 1/n[E n S*]

iii) h (t; E)< *(E) v[/n[El - VI/n[E n s*] for all t E [V[E n S*], V[E]].

The convergence of the ellipsoid method follows from Theorem 2.4, the

proof of which is a very minor extension of the proofs given in [2,8,11,22,23].

Theorem 2.4:

(k)Let (x , Ek) : k = 0, 1, ... } be a sequence generated by the

nellipsoid method applied to a convex function f defined on R , which

attains its finite minimum f* on a nonempty set S*; assume also that

S* I E0  is not empty, then:
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Ql) -1kMin f(x) < f, + h- VIE O ] (cn); EO)

Furthermore there exists a subsequence {k1  1 0, 1, ... } such

that:

fCx i + l )  < fCx ( k  , i= 0, 1,

(k.
lir f Cx = f*

i-vo

unless finite termination occurs.

Proof:

i k (j)
Let ek= h (VE ] cn ;EO). We need to show that f(x ) > f* + kLeQk= h( V[o n' " ---_

for any 5 > 0, and for all j = 0, 1, ..., k leads to a contradiction.
j-1

Define D. = ( n H i ) n E0 then D + I C E f H i: clearly this is
J i=O

true for j = 0; assume that D. c Ej_1 f H _, then DI+l = D fn H

c (Ej_ 1 f Hi I ) N H. c E. n Hi. and the induction is complete.

Also f(x ()) > f* + Pk - 5 for all j =0, 1, ..., k implies that

H T

Dj+ 1 - (T f, _8) n E0  V j - 0, 1, .... k

Hence

Tf*+ kfl E0 C E E n = 0, 1, ... , k

k ii



and thus

ik

h(k-5; EO  = V[T k EO  < VrE N k  = k

or

k > h0k
k- 8  -( V[E O ] (cn); 0O

a contradiction.

For the second part of the theorem, define a subsequence

{k. : i = 0, i, ...} by induction:

k0 = 0
ko0

given ki, define ki+ 1  so that

(ki+) (ki)

f(x ) < f(x )

and
(ki)

f(x (k) > f(x ) for k = ki + 1, ..., k -i+I  1;

such a ki+, exists by the first part of this theorem (unless f(x(k i)) = f*).

Q.E.D.

The following theorem indicates that if V/n [E0 n S*i > 0 (an unusual

assumption for an optimization problem), finite convergence occurs, and
v/n[E 1/n

that if V n[E n S*] = 0, then convergence is geometric at a rate c n

(which is approximately 1 - 1/2n 2 ) which is independent of the function f.

12
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Theorem 2.5:

Under the assumptions of Theorem 2.4, if we let e*(E 0) 1 ia~f(x)-.f*

x E E0}, then

Min f(x (j ) ) < f* + *(E0) (yV[Eo](cn)ki/n - V1 [ E 0 n S*

On

f0x) 1/n [E V1/n [ *
unless~~i V[E A S*( ) >E 0,nan

in which case Min f(x ( )) = f* if k > k*; if V[E0 n S*J = 0, then
j=O,.....k

0)11/n k/nMin f(xj) < f* + (-) n *(E)(c )
j=O,l,...k 2 0 n

Proof:

This theorem simply combines Theorem 2.4 and Corollary 2.3. Q.E.D.

It should be pointed out that the proof of Theorem 2.4 is a proof

based upon a contradiction given by an inclusion of sets (and thus also the

volume of sets), but that a number of other characteristics of sets may be

used, provided they satisfy a concavity property like that given in Lemma 2.1.

For instance the inradius function r(Tf*+F n E0) is a concave function of

&, and it would lead to an alternative proof of theorems analogous to

Theorems 2.4 and 2.5.

The key condition needed to insure convergence is that E0 n S* o 4.

This will fail if:

13



i) f* - , and thus S* -

ii) f* is finite, and S* -;
iii) f* is finite, S* 0 0, and s* n E -.

A derivation similar to the one used earlier gives the following theorem.

Theorem 2.6:

If the ellipsoid method is applied to a general convex function f
defined on Rn , and if one does not assume that E0 n S* # o, then

0
Mm n f( Mirn{f(x) :x E EO}

i"0,i,.. 
0

+ [Max{f(x) : x E EO} -Min{f(x) : x E EO})(cn)k/n

14
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3. A specific convergence theory

In order to improve the results of Section 2, and to show that the rate

of convergence depends upon some characteristics of the function f, it is

necessary to impose some conditions on the function f which limit its

ngrowth on the whole of R . It is known that every convex function is

Lipschitz on bounded sets [16, pp. 86 and 2371:

If(x) - f(y)Il A E'1y-x! , V x,y E E

where

A F Sup[ z' : z E c f(x), x E E}

Definition 3.1:

A convex function f defined on Rn, which has a nonempty minimum

set S*, is defined to be -Lipschitz if there exists a function y(t)

defined for all t > 0, such that y(O) = 0, y is strictly increasing

and continuous, and

f(x) - f* < y(d(x)) , where d(x) = d(x,S*)

Clearly, every convex function (with nonempty minimum set S*) is y-Lipschitz

if " is defined by:

7(d) = Sup{f(x)-f* . d(x,S*) < d}

i5
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Two instances (among many possible ones) of Y functions are given

below; they may sometimes be defined a priori for convex functions belonging

to a given class.

Condition 3.2:

Y(d) = Ad' where a > 1, A > 0

This condition is satisfied with a = 1, if:

1) f is piecewise linear, with

A - Sup{tiyI : y ( 3f(x), x E R}

n

2) f is Lipschitz on the whole of Rn , with

A = Sup{j!yj[ : y E af(x), x E R }

It is satisfied with a = 2, if:

1) f is C2 and there is an upper bound on the largest eigenvalue

of the Hessian at any point of Rn;

2) f is C and the gradient of f satisfies a Lipschitz condition

n
onR

11Vf(x) -f~y) < A I!y-xIl V x,y E Rn

16
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Condition 3.2 is not satisfied for functions like f(xl, x 2) - Ixl1 + (x2)2

or (xl)2 + (x2 ) 4; the next condition gives a function y which has a

different degree if d is small, or if d is large.

Condition 3.3:

y(d) = Max(Aid , A2d

with < a < a 2  and A, A2 > 0.

The condition that f is Y-Lipschitz gives an estimate of c*(E O)

= Max{f(x)-f* : x E E }, where S* n E # is assumed, which may be used

in Theorem 2.5:

&*(E O = Max{f(x)-f* : x E EO} < Max{y(d(x)) : x ( EO}

= Y( Max d(x)) < Y( Max 1Ix-yj!) = Y(D(Eo0
x EE 0  x,y(E 0

The theory of convergence of the ellipsoid method on Y-Lipschitz

functions will use the properties of the functions:

g('; E) = V[(S* + 15B) n El ,

and g(6) = V[S* + 5B) (defined if S* is bounded).

If one notices that (S* + 53) n E - {x E E : d(x) < } and

S* + 5B = {x E Rn : d(x) < 51, and that d is a convex function with

minimum value zero, and minimum set S*, then it follows that g(6; E)

and gW5) satisfy Lemma 2.1 and Corollary 2.3.

17



Lemma 3.4:

Let f(x) be a Y-Lipschitz convex function defined on Rn, and E

be a compact convex set such that E n S* is not empty, then the volume

functions h(c; E) and g(6: E) satisfy

i) h(c; E) > g(y-l (c); E), V & > 0;

ii) h -(t; E) < y(g- (t; E)), V t E [0, V[E]];

and if S* is bounded

iii) h(c) > g(Y-l ()), V F > 0;

iv) h- (t) < y(g-1 (t)), V t > 0.

Proof:

Clearly d(x) < Y-1() implies

f(x)-f* < y(d(x)) < y(y- I()) - F,

and thus S* + y-1 (F)B . Tf,. Taking the volumes of both sides, one

gets g(Y- (,)) < h(c). Part 1) follows similarly; and parts ii) and iv)

are classical properties of inverse functions. Q.E.D.

Theorem 3.5:

Let f(x) be a Y-Lipschitz function defined on R n; under the same

assumptions as in Theorem 2.4, and V[E 0 n S*] - 0, the sequence generated

by the ellipsoid method satisfies:

Min f(x ( j ) ) < f* + Y(D(E O) (c )k>n

j ., ...k 0-- n



a7

if y Ad (with a > 1, A > 0)

Min f(x Q)) < f* + AD(EO) I k n
j=o,1,.....k

aI  a2
if y = Max(A1d , A2d ) (with 1 < al < a2; Al, A2 > O)

Q)at 1 k ai /n 1 12

Min f(x~1 ) < f* + Max{A1 Di(E 0 ) ( Cc))i: A = 1,2}
j=0,1,... ,k

Proof:

Let 5*(E O) = Max d(x); clearly
x EE 0

g(5*(E0 ); E0) = V[E 0] and g(O, EO) 0 V[E 0 n s*]

Lemma 2.3 gives

tI/n -1v/n[E *

- (t; Eg) < 5*(E) vI/n - v1/n [E0 n S*I

0 0~Vl1/n [E 01 - V /n[E 0 fl s*

L But 8*(E0) < D(E0) and thus

t 1I / n - 1l/n[Eg0 n S*]
h-l(t; EO0) < Y(g-l(t); EO ) <--yCD(Eo0) vl1/n [EO vil/n [E 0 n S*] )

and the theorem follows from Theorem 2.4. Q.E.D.

If VIE0 nl S*J # o, then a finite convergence result identical to

Theorenm 2.5 is of course true.

19
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If a - 1, this theorem gives the same result as Theorem 2.5; but

)a/n
if a > 1, this theorem gives a rate of convergence of (cn ) which

is a times faster than the rate given by Theorem 2.5.

The convergence results given above are all based upon the concavity

of h1/n  or g /n; this implied that

h(e; E) [(E) V /n[E] + (1 - 6E) V 1n[E n S*]]n

(and something similar for g). The right hand side is clearly a polynomial

of degree n in e, with all of its n+l coefficients positive if

0 < V[E n s*i < V[EI, while if V[E n S*] = 0 all coefficients but that

of n are zero. Some sharper results exist for the functions

g, and if the function f is y-Lipschitz this imparts related properties

on h.

The function g(6) = V(S* + 6B] has been studied extensively (if S* is compact

and convex); the key result due to Steiner and Minkowsky (see Theorem 4.9)

is that g(6) is a polynomial of degree n in 6, with nonnegative

coefficients and the coefficients of eA QJ = 0, 1, ..., n-s-i, with

s - dim S*) are all zero.

The function g(6; E) - V[(S* + 6B) n El has not received much

attention, and is much harder to study; Theorem 4.10 provides a bound on

g(6; E) which is a polynomial, with some negative coefficients which

still permits an improvement of the convergence theory given above.

The main results given below can be sumarized by saying that the

rate of convergence of the ellipsoid method, if f is y-Lipschitz (and

20



Y Ads) and the dimension of s* n E is s, is equal to (cn)/

The analysis is not done if s - 0 or s = n, as it can be seen that

no significant improvement on Theorems 2.5 and 3.5 occurs; by this is

meant that the rate of convergence would not be improved. The only

exception would be the unlikely case where dim(S* n EO) 0, and

dim S* > 1.

Theorem 3.6:

Let f be a y-Lipschitz function defined on R; under the same

assumptions as in Theorem 2.4, plus the fact that E0 n S* is of dimension

s > 1, s < n-1, the sequence generated by the ellipsoid method satisfies:

1) If s = 2, ... , n-l

Min < f* + (n-s+l) V[E 0 1 (c )k] 1/ (n-s))
- 2c Vs[E 0 n S*] nj=O,1,... ,k n-ss0

and if y = Ada

Mi< f+r (n-s+l) V[E01 /n-s (C/(n-s) kMin fx ( )  < f* +
j=0,1,...,k -- 2 n_Vs s [/0 n S* ] n

provided that k is large enough:

V o cn)k< - --- V [E0  S*] n-s V[E n S*] r(E) n-s

0_ n-s+l n-s+lD(

s 2
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2) If s=1

Min f(x(j)) < f* + C[l (2n-1) V[E 0  (cn)k1

n-1 V1[E0  s.. (

and if y = AdC

Min f(x(j)) < f* + A 1 (2n-1) V[E0  iF1 n-1) (c (n-l))k
j=0,1,.....k -n- I[E 1 s*0

provided that k is large enough:

1 V[Eo I (c)k < nI VIE0 n S*] [(n-l) V1 [E 0 n S*] Vr(E 0 ).n-i
2n-1 2 (n - I ) D(E 0 )

Proof:

The analysis is given only for s = 2, ..., n-I (it is analogous if

s = 1, and useless if s - n).

Theorem 4.10 implies that

g(n; E 0 ) > W ns[Vs[E0 n S* - S 2 6n-sV 6 E [0, r(E 0 )]

Now if r, k, t > 0, it is easy to check that

k 8+t e k 1 k l1e
8 -15 k > for all 6 E [0, ( -))]

Thus
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V [E C, S*]
s 0 fl-sg (6; Eo ) > COn-

l- n-S n-s+l 6

for all 5 E [0, 5(E0)] where

f-s s [E 0 N S*] r(E O)6(Eo )  n-s
n-s+l D(E) s

and

(t; E) < (n-s+l)t 7l/(n-s)
n-s s S*]j

for all t E [0, t*(E ) where

V s[E 9 S *] )n-st* (E O) = S 0(E O )

0 n-s n-s+l 0

The theorem follows from Lemma 3.4 and Theorem 2.4. Q.E.D.

The next convergence results are based upon the Steiner polynomial

g(5 ) (see Section 4). The order to use g(5) is the study of the

convergence of the ellipsoid method one must assume that S* is compact

and that E0  contains entirely some level sets of f: define

0 = Sup{s : Tf,+,s C E 0  Inf{f(x)-f* x f E0 }

If f is y-Lipschitz then
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S* + y()S c 0  V E E [0, 0

and

n

g(6; EO) = g(6) = (n) W [S*] 6 V 6 E [0, y-l(

i=O ()WS]& 0

If V[S*] < - V[E0] (c)k, define 6(k) to be the unique positive zero of

n 1 1 k
I (') W [S*] 6 - - V[E 0  (c

i=o nJ

then in f(x (j ) < f* + y(5(k)) provided that 6(k) < y-l0
j=O,... ,k

1 k,
If V[S*] > 1 V[E 0 ] (c ) , then there are no positive zeros, implying

2 0 n

that finite convergence has occurred.

Clearly, as g(5) is a polynomial with nonnegative coefficients, one

has:

6 V[E] (cn) k_ /(n-i)

(2()W [S*]

if i n-s, ... , n and i # 0, where s = dim S*.

Theorem 3.7.

Let f be a y-Lipschitz function defined on Rn; under the same

assumptions as in Theorem 2.4 plus the facts that S* is compact, and

that c = Inf{f(x)-f* x f EO} is positive, then the sequence generated

by the ellipsoid method satisfies:
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Min f(x (j )) < f* + Min (--) - i

j=O,l ..... k n-s < i < n L 2(n) W[* ]J /

(rv  °
where s =dim S*, provided that

Min y (V[0 (c) k 1 /(n-i)
n-s < i < n [2()Wi[S*]a

if in addition y = Ada and s < n-1, then:

M Q f V[E] /(n-s) (c a/(n-s) )k
Min f(x j ) < f* + A[2 V [S*] n

j=O,l,... ,k - A )n-s Vs[S*]j

provided that

V[E O ] (Cn)k C/(n-s)
A V [S* -< 0

I'n-s S

Thus every nonzero coefficient of the Steiner polynomial gives a bound

on the convergence of the ellipsoid method; for instance if y = Ada:

Min f(x(Jl) < f* + I ifv [E  s (cn ) k sa(n-s+l) s>2

or

Min f(x(j ) ) < f* +An , if s = n
J=Ol,. ,k )n * 1 /

provided that k is large enough.
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It might be worth pointing out that every result in this paper (except

for Theored 3.6) is valid for Levin's method of centers cfgravity, if c

is replaced by c .
n
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4. Volumes of convex arrays

Definition 4.1:

A mapping Tu  from a convex subset U of a linear space onto the

class of convex subsets of R is called a concave array if
n

U1, u2 E U X E [0,1]

implies

T ul+(l )u 2  D T 1T + (l-X) Tu2

it is a convex array if the inclusion is reversed, and a linear array

if equality holds.

Clearly a linear array is both convex and concave.

Lemma 4.2:

Let A and Ai. i = 1, ... , r, be convex subsets of Rn, and E be

a convex subset of Rn , then
r r

1) (Lv)A= vA if v (v I, .. ,v) ER (or v E-R).

i=l i=l r + +

r r r

rr

2) v vi(A i n E) c v [ i Ai n E if v vi 
= I and v E R+.

r
3) viAi is a convex array for v E Rr; it is a linear array if

i=l

v E Rr (or any of the 2r orthants of Rr).

Lemma 4.3:

Let T be a concave (or linear) array defined on a convex set U,u

and E be a convex subset of Rn , then T fn E is a concave array on U.
u
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Lemma 4.4:
Rn n

Let f be a convex function defined on R, then T a {x R f(x) < 

is a concave array for a E R; and if E is a convex set T n E is also
a

a concave array.

Lemma 4.5:

nLet E and AV, i = 1, ... , r be convex subsets of Rn , then
r

V A n E is a concave array on v = (v .. v) Rr (or any of
1=1

the 2 r orthants of Rr

Theorem 4.6:

Let f be a convex function defined on R , E a compact convex

n nsubset of R , T = R : f(x) < a}, and a* = Min{f(x) : x E E};

then T n E is continuous in a for a E [a*,-).

Proof:

As f is continous, T an E is convex, compact and nonempty for all

a > a* (and empty for a < a*).

First we show that for all a > a*

lim T Fn E = T n E ; i.e., for each 5 > 01+ 0

there exists an :i > 0 such that for all -q E (0, '], (T F)l E) + 6B0

T a0 E and (T a) E) + 6BO I T . The first inclusion follows from

T a+ - T. for Y] > 0. The second inclusion is not true if and only if

K = ((T fnE) + B 0)c n (T +qnE) is not empty for all -n > 0 (Ac denotes
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the complement of A in Rn). The sets K for r1 > 0 form a nested

sequence of compact sets, and thus there exists an x ( Rn such that

x E K, T > 0 (unless some K as empty). Such an x belongs to

0OcT a l n E for all q > 0, and thus x ( E and x ETa; also xE (Ta n E)+SB)

and thus x f T an E, a contradiction, concluding the first part of this

proof. Note that no convexity assumptions are needed for E or f.

For the second part (i.e., lim T n E - T n E for a > a*

and Ti < c-a*) one needs to show that for every 6 > 0, there exists an

0> 0 (i < a-a*) such that (T 0 E) + 6B - T n E and

(T fiE)+5B 07 T n E for all Ti E (0,1]. The first inclusion is
T_ ) B0  a

trivial; if the second is not true, then, following the reasoning used

above, there exists an x E Rn such that

x E ((T fn E) + 6Bc fn (T n E) for n E (0,q];

i.e., x ET n E, x f (T n E) + 5B0  for q E (0,].

a -a-rl

Choose x E Ta " n E; it follows from the convexity of E and f

that x + (l-X)x E Ta n E if X E [0,11; take X such that

0 < < 6/Irf-xII, then x* = )XX + (l-X)x satisfies:

IIx*-xlI < 6 and x* E T - n E.

Thus x =x* + (x-x*) E CT A E) + B a contradicton. Q.E.D.a-~ aTotadcin.QED
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Theorem 4.7 (the Brunn-Minkowski inequality):

Let T ( U (where U is a convex set) be a concave array of compactu

n 1/n
convex subsets of Rn, then V IT I is a concave function of u.u

Proof: [31, p. 88. [51, p. 97, [9], pp. 159 and 187.

Theorem 4.8:

n
Let Ai ,  = i ... , r, be r compact convex subsets of R , and

Vi = 1, ... , r be r nonnegative numbers, then the volume of
r th
viA is an homogeneous n degree polynomial in the variables

Si~i

*i "'' Vr,

r n n n
V[ ViA] = 7 ... V[A.l, A. .... , A ]v.v

= il=l i2= =1 ir= 2 n 1 2 n

where the coefficients V[A 1 , Ai 2, ... ' Ai ] are chosen to be invariant
1 2 n

under permutations of the arguments, and are called the mixed volumes of

the linear array. The mixed volumes are nonnegative, and continuous and

increasing functions of their arguments.

Proof: [31, p. 40; [5], p. 85.

Of particular use will be the linear array of parallel sets A+6B,

n
5 > 0, with A a compact convex set, and B the closed unit ball in R

The mixed volume V[A, ... , A, B, ... , B] is called the kt h transversal

n-k k
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mass integral and denoted as W [A]. It follows immediately from Theorem 4.8.
k

that

n

V[A+5B] = ( ) W(A] 5k
k=O

th

is a n degree polynomial in 6 with positive coefficients. It can

be shown that W0 [A] = V[A], nWI[A] = F[A] the surface of A, and

W [A] = w .
n n

Also [Wk[TuI / (n- k )  is a concave function of u, if Tu, u E U is

a concave array [1, 6, 7].

If A is a s dimensional compact convex set on Rn then the

following theorem characterizes V[A+6B].

Theorem 4.9:

Let A be a s dimensional compact convex subset of Rn , and let

Wk[A], k = 0, 1, ..., s be the transversal mass integrals of A seen as

a subset of a s dimensional space, then:

n k
VfA+5B] ( )W A+s6

k=n-s k-n+s n+s k-n+s

the coefficients of 6n-s 6n-s4l and 5 are respectively wsVs[A]

2 n-s+l F(A) and
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I ! oo I

Bv indut ti,,n on 14l pp. 215-216, one hits

• ( S

j k k-n+sJ

K k-n+s n k-n+s

I or k 1- S ., n; I.l A, = ( tor k 0, ... , n-s-1 (. I ,rv

,A, V 'A , A F : , d A = . .A,
.'4S S 4,

w,.r em 0. :

n Ti
Let A D,' .1 ItOScd I nx.V.. subset ,f R F an ellipsoid in R

itid A Sv o!. dim-nsion I ol, thus A i-, of dimension s,

t hen

i) it s ) 2

V, kA ', i El > V LA E] I. . - "
n-s Ss s r(E)

Hi it s i1

n-I
%"L(A+ Ii) F. > (~V [A Ej -D(E) In-

n-l Ir(E

where 0 < < ( r(E).

Proof :

Assume, without restriction, that E has its center at the origin

of coordinates.
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Define A = A (l - r )E for Y) E [0, r(E)l; clearly A +5B c E

_ V
- 

r(E) 0

V[(A I+FB) n El V[A Y)+-8B I > w n-S V -[A- ''V E

(using Theorem 4.9). Now

V[A I El - Vs[A ] = Vs[A n (E/(l - E) E]- r(E)

< Vs [M(A) P (E/(l ---q-) E if ( [0, r(E)I,
_ r(E)

where M(A) denotes the s-dimensional affine manifold containing 
A,

and / denotes the set difference (S /S2  {x E S : x $

Define a linear map T such that T(E) - B, and let L(A) = M(A) - A be

the s-dimensional linear subspace 
parallel to M(A), then:

V IM(A) (E/(l L) E)]

s r(E)

sV [L(A) q E]
s V [T(M(A) CEl - )

SVs [T(IA) 
q E)] r(E)

s
V [L(A) El

< S _____V [M(T(A)) (B/(l - ---) B))

2 9 r(E)CE) s ----) B)]

( --- ) V5IM(T(A)) n (B/Cl - r(CE)

where 1 - 10, r(E)].
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Now let t = d(O, M(T(A))), where clearly t [ 1O,1] as A E

is not empty; then

V sM(T(A)) (b/( - -

if 0 < t I r

1/2
S(1't. 2  if I - " U ,riS

The maximum of this as j tunction of t is attained for t = i I

s > 2, and for t I - ./r(E) if s = I or 2 (note: if s 2 tto

it is constant for t I 10. 1 - /r(E ). Thus

V [M(T(A) (B/(1 -
S r(F)

-{ (1 - ./r(E))s

2 1/2
, l - (i - ',/r(E) it S = I

-S rf s > 2

I r )

- A-



It follows that

D(E) s sifs 22f s' -2E

Vs[A] < V[A A E) -

D(E) , if S 1,

and the theorem follows. Q.E.D.

If s = dim(A 2 E) - 0, and A reduces to a point in the interior

of E, then V[(A+B) q El = - n  for 5 small enough; if s = dim(A n E) = 0,
n

then A itself may be of any dimension, and a slightly different approach

would be required.
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