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Abstract
The ellipsoid method is applied to the unconstrained minimization of

a general convex function. The method converges at a geometric rate, which

depends only upon the dimension of the space but not on the actual function.

This rate can be improved somewhat if the function satisfies some Lipschitz-

type condition, or if the minimum set has dimension greater than zero. {
If the ellipsoid entirely contains the optimal set, equating the Steiner

polynomial associated to the optimal set, and the volume of the ellipsoid

at a given iteration, will give an upper bound on the minimum recorded

function value.

Keywords: Ellipsoid method, nondifferentiable optimization, convex

programming, volumes.
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1. Introduction

The ellipsoid method is an implementable version of the method of
centers of gravity of Levin [13]; both algorithms are designed to minimize
a general convex function.

Levin's method is a natural extension to general convex functions, in
n dimensions, of the bisection algorithm for one dimensional unimodal
functions. It can also be viewed as a cutting plane method, where the
new iterate is defined as the center of gravity of the set formed by the
intersection of all previously generated cutting planes; a new cutting
plane is generated at this point, and added to the list of cutting planes.
What is quite remarkable about this is that the domain of localization
of the solution (i.e., the intersection of the previously generated hyper-
planes) has its volume reduced at each iteration by a ratio of at least
1 - (n/(n+l))n <1-1/e. This implies that the minimum recorded function
value is bounded above by a geometric progression of ratio (1 - 1/e)l/n;
this result is not quite proved in Levin's paper.

The ellipsoid method is also a particular version of a class of
algorithms due to Shor [17, 18, 19, 20, 21] which can be described as a
variable metric subgradient optimization method, where the metric is updated
at every iteration by a rank one matrix. The variable metric was introduced
by Shor as an attempt to correct the bad convergence of subgradient optimiza-
tion on convex functions with very elongated level sets (or badly conditioned,
acute, very kinky, gully-type functions). Clearly any variable metric method
can be interpreted in terms of an ellipsoid. The method worked reasonably
well as a heuristic, but proofs of convergence were hard to come by, and

quite unsatisfactory.
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Yudin and Nemirovskii, in two seminal papers [22, 23] dealing with

the computational complexity of the general convex programming problem,

did (among other things) combine the methods of Shor and Levin in what is

now called the ellipsoid method: it 1s an implementable version of Levin's
i method, and also a version of Shor's method for which a proof of convergence
exists. 1In restricting oneself to ellipsoids rather than using general

! convex sets, the volume of the domain of localization of the solution is

reduced at each iteration, by the ratio

n n2 (n~-1)/2 ) e-[l/2(n+l)]

‘ )
{ n+l nz-l

this implies that the ellipsoid method would take approximately 2n/e

times the number of iterations that Levin's method requires to reach a ’

given accuracy. Yudin and Nemirovskii also show that no algorithm (using
the information given by an oracle which returns the value of the function
and a subgradient corresponding to each iterate) can improve significantly
on Levin's method.

The results given by Yudin and Nemirovskii are of a slightly different
nature from the ones given in this paper; they look for a minimum of a
convex function subject to the restrictions that the point belongs to a 1
given compact convex set G (with an interior) and that if satisfies one
convex inequality (or any finite number of convex inequalities). The

presence of one inequality has the impact that the algorithm depends upon

|
the precision that one decides to reach at termination, and thus no rate !

of convergence can be given. The presence of the set G (required to make




a definition of computational complexity work) is handled by assuming that
an explicit projection map on G 1is available, thus restricting G to be
a simplex, a sphere, a rectangular parallelotope, etc. ..., but not an ellipsoid
{the projection on an ellipsoid appears to require the solution of an
eigenvalue-vector problem); the algorithm is also slightly changed.

For the problem of minimizing, without constraints, a general convex
function, Shor {[20]) showed that convergence is bounded by the product of
an arithmetic series and a geometric series.

Khacian [10, 11] applied the results of Yudin and Nemirovskii to the
linear programming problem, or to the problem of solving a system of linear
inequalities. Again the convergence proof is based upon a perturbation
technique, 1ind no rates of convergence are given.

In Section 2 of this paper, it is first shown that the nth root of
the volume of the intersection of the level sets of a convex function with
a convex set is a concave function of the level. This implies, using
a parametrized version of the proof given by Yudin and Nemirovskii
[22, 23], Khacian [10, 11], Gacs and Lovasz [8], and Aspvall and Stone [2],
that cornvergence is finite if the initial ellipsoid intersects the optimal
set iua a set of dimension n, while if this intersection is not empty
convergence occurs at a geometric rate which is approximately 1 - 1/2n2.

This result is valid for any convex function, and is independent of the
particular function. In Section 3, an attempt is made at showing that
the rate of convergence of the ellipsoid method may depend on the properties

of the function one minimizes: 1t depends both on some Lipschitz-type

characteristics of the function, and on the dimensionality of the intersection




of the initial ellipsoid with the optimal set. It is also shown that a bound on
the value of the function reached 1is, if the initial ellipsoid entirely
contains the optimal set, given by an equation relating the Steiner polynomial
of the optimal set to the volume of the ellipsoid, at a given iterate.

Section 4 is e sentially an appendix containing a few necessary
technical results on volumes. It is based upon the books of Bonnensen and

Fenchel [3], Busemann [4], Eggleston (5}, and Hadwiger [9].
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2. A general convergence theory

The ellipsoid algorithm will be used to solve the problem of minimizing

a general convex function f defined on R®. Let of (x) be the subdifferential

of f at x, f* = Inf{f(x) : x € Rn} be the minimum value of f, and
s* = {x € R" : f(x) < f*} = {x € R" : 0 € of(x)} be the set of minimal
points. It will be assumed throughout (unless otherwise specified) that
f* is finite and that S* 1is not empty.

Let d(x,S) denote the Euclidean distance between a point x and a
set S, i.e, d(x,8) = Inf{llx-yll : y € S} where |/-]| is the Euclidean
norm; d(x) will be used for d(x,S*). The diameter of a compact set §
is defined by D(S) = Sup{|/x-y|l : x € S, y € S}; while the inradius r(S)
is the radius of a largest sphere contained in S. The unit closed ball
is B = {x € R" : Ixll < 1}; the interior of B 1is denoted by BO. The set
of all compact nonempty sets in " is metrized by the Hausdorff distance

d(A,,A) = Inf{6 > 0 : A, + 6B0 CA,, A+ 680 C A}
1’72 = 1 2’ 2 1
convergence and continuity are defined using this metric (or any of its
topologically equivalent versions).

The volume V[S] of a bounded measurable set S in R® is its n
dimensional Lebesgue measure; V{¢] will be taken as -«. The volume of
the unit ball is w = nn/Z/F(n/Z + 1). The surface of A 1is denoted by
F(A). If A is a s dimensional set in Rn, then VS[A] (and FS[A])

will denote the volume (and the surface) of A within the s dimensional

affine manifold containing A.
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The ellipsoid algorithm:

(k)

The ellipsoid algorithm computes a sequence {(x , EE) : k=20,1,...

k
n (k)
where each Ek is an ellipsoid in R and x is its center.

Step 1
0 n B

Choose a point x € R and an ellipsoid EO ¢ R centered at
x(o) such that EO N S* is not empty (i.e., Min{f(x) : x € Eo} = %),
Step 2

Compute a(k) € af(x(k)).

If a(k) = 0, stop with x(k) optimal; otherwise go to Step 3.
Step 3

. a0 (k) . .

Let Hk = {x €R : (a , X=X ) < 0}; then define Ek+l as the

least volume ellipsoid cointaining Hk N Ek’ and take x(k+1) as the

center of E Set k « k+1 and go to Step 2.

k+1°
This algorithm is implementable as the ellipsoids can be described

by matrices, and the iteration from E to E is described by a rank

k k+1
one matrix update [2, 8, 10, 11, 17, 18, 19, 20, 21].

The key observation is that

VIE, ) = c_VIE] and thus V[E] = (cn)k VIE)

with

n a2 D2 o)
c_ = - C <e 5
n n+l 2 1

o
1
1
i
b
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and V[Ek] decreases as a geometric series whose ratio depends only upon
the dimension of the space.

It should be remarked that in the remainder of this paper the fact
that the sets Ek are ellipsoids 1is not used (at least not much). It
follows that most results can be applied to Levin's method of centers of
gravity with E; =1- (/[o+l]D" <1 - 1/e replacing .’ the method is a
nonimplementable version of the ellipsoid algorithm, which uses general

(k+1)

convex sets Ak’ with inStep 3 Ak+l = Hk n Ak and x is defined

as the center of gravity of Ak+l (one has V[Ak+1] S‘zn V[Ak], [14]).
Levin's method is clearly a cutting plane method.

It is an open question whether other classes of convex sets (simplices,
parrallelotopes, etc., ...) would provide implementable versions of this
algorithm.

Proofs of convergence of the ellipsoid algorithm are based upon a

study of the behavior of volumes. Other characteristics of convex sets may

be used, for instance the inradius {11, 12}, as clearly

r(g) < (VIR0 )™ = wigle ) @ ¥

and furthermore r({x € E_ : f(X) < a}) is a concave function of a.

0
Usually the starting ellipsoid EO will be taken as a sphere with
center x(o) and radius r (E0 = x(o) + rB); clearly in this case -
EO N S* # ¢ 41if and only if d(x(o)) € r, which means that one needs an ;
overestimate of the distance between a point x(o) and the opitmal set S¥%,

i, o




The general theory of convergence of the ellipsoid method will be

based upon the properties of the function

h(e; EO) = V[Tf*+g N E0]
where Ta = {x ¢ R" : f(x) < a} are the level sets of f and E is
the starting ellipsoid.
If the optimal set S* is bounded then one can define the function

h(e) = V[T J

f*4e

Clearly h(e) = h(cy EO) for all ¢ € [0, 50(E0)], where

eo(Eo) Supi{e : Tf*+€ < EO}

Inf{f(x) - f*% : x ¢ EO}

Lemma 2.1:

Let f be a convex function defined on Rn, with minimum f*, and
minimum set S*, and E be a compact convex set such that E NN S* is not

empty, then the function h(e; E) = V| N E] defined for ¢ € [0,)

Tf*+s

has the following properties:

i) It is continuous on & € [0,»).

ii) It is strictly increasing for ¢ € [0, ¢*(E)] where e*(E) = Max{f (x)~-f*:

x € E}.

L T N T i YT P STy
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iii) h(e; E) = V[E] for all ¢ > ¢*(E), and h(0; E) = V[E N S*].

iv) hl/n(a; E) 1is concave for € € [0,®).
v b ) > e/ex@y v/E] + (- —525) V/PE 0 s*) for
s € [0, e*(E)].
Proof :

i) follows from the continuity of T N E for all ¢ € [0,=)

f*+e
(by Theorem 4.6) and the continuity of the volume on the set of compact
convex sets (by Theorem 4.8).

ii) and iii) are clear.

iv) follows from Lemma 4.4 and Theorem 4.7.
hl/n 1/n

(s E) = h (E?%ET e*(E) + (1 - Z?%ET)O; E) and thus v)

follows from iii) and iv). Q.E.D.

v)

The function h(c), defined only if S* 1is compact, has similar

properties.

Definition 2.2:

The functions h_l(t; E) and h-l(t) are defined as the inverses of
the functions h(e; EO) and h(e), or more precisely: h-l(t; E) 1is

defined for t € [0, V[E]] by

b ithee; B); E) = ¢ for ¢ € [0, e*(E)]

for t € [0, V[E N S*]]




h l(t) is defined for all t € [0,w) by

™l (h(n)) = ¢ for ¢ € [0,%)
h () =0 for t ¢ [0, V[E N S*]]

Classical properties of inverse functions, and Lemma 2.1 lead to

Corollary 2.3.

Corollary 2.3:

Under the same assumptions as in Lemma 2.1, the function h_l(t; E)
has the following properties
i) it is continuous for all t € [0, V[E]] and it is strictly increasing
for t € [V{E N S*], V[E]];

-1, n 1/n

ii) h "(t ; E) is convex for all t € [0, V [E]l];

1/n _ Vl/n[
V1/n

E 0 5%
(E] - vI/P(E n s

1i1) h T(t; E) < e*(E) for all t € [V[E N s*], V[E]].

The convergence of the ellipsoid method follows from Theorem 2.4, the

proof of which is a very minor extension of the proofs given in (2,8,11,22,23]. 4
Theorem 2.4: !
Let {(x(k), Ek) :k=0,1, ...} be a sequence generated by the

ellipsoid method applied to a convex function f defined on Rn, which
attains its finite minimum f* on a nonempty set S*; assume also that

3% N EO is not empty, then:

10




min ) CoranTIG IR @)% By

3=0,1,...,k 0

Furthermore there exists a subsequence {ki :1i=20,1, ...} such

that:

(k,, 1) (k)
fx Y <fix 1), 1=0,1, .

- (k,)
- lim £(x b )

i > o

1

fx
unless finite termination occurs.

Proof:

il k, By s ex .
Let ¢ =h (2 V[EO] Chs EO). We need to show that f(x ) > fx + e = 0

k
for any & > 0, and for all j =0, 1, ..., k leads to a contradiction.
i=-1
Define Dj = (120 H,) U Ej, then Dj+1 c Ej n uj: clearly this is
true for j = 0; assume that Dj C Ej—l N Hj—l’ then Dj+1 = Dj n Hj

< (E, NH, ,) DH, CcE, N H,, and the induction is complete.
( j-1 j-1 h| 3 3’ P

Also f(x(J)) > f* 4 e ~ 5 for all j =0, 1, ..., k implies that

D
f5 2 Teree -5

D > ( ) NE

Tf*+e -5 o tee «

i+
j+1 K

# Hence !

s NEyCE NH Vi=0,1, ..., k,

Tf*+ek—

11




and thus

) 1o Kk
he =% o) = ViTguye - M1 Eol CVIE N BT =5 Vgl e

or

~-1,1 k
e =62 h "G VIEG] (e )75 Ey
a contradiction.

For the second part of the theorem, define a subsequence

{ki :1=0,1, ...} by induction:

ko =0
given ki’ define ki+l so that
(k,..) (k)
fx Yy cfx )
and
(k,)
(k) i - 9.
f(x ) > f(x ) for k = ki +1, ..., ki+1 1;
k.
such a k ., exists by the first part of this theorem (unless f(x( 1)) = f%),

Q.E.D.

1/n

The following theorem indicates that if V [Eo N S*] > 0 (an unusual

assumption for an optimization problem), finite convergence occurs, and
that if Vl/n[E0 N 8*] = 0, then convergence is geometric at a rate ci/n

(which is approximately 1 - 1/2n2) which is independent of the function f.

12

i — e L




Theorem 2.5:

AW e

Under the assumptions of Theorem 2.4, if we let e*(Eo) = Max{f(x) f* :

x € Eo}, then

l/n

. G VIEG (e O™ - vHPe 0 sx)
Min f(x J ) L f* + e*(Eo) l/ i7n ,
j=0,1,...,k “[E ] = VIREG N s%)
unless V[Eo N S*] > 0, and
V[E ] 1
[1°g ViE, n ViE, 0 5% o8 'c:-’
in which case  Min £y = £% 1f k> kk;  if V[E, N $*] = 0, then
§=0,...,k
Min f(x(j)) < f* + ( )l/n 5*(E0)(c )k/n
3=0,1,...k n
Proof:
This theorem simply combines Theorem 2.4 and Corollary 2.3, Q.E.D.

It should be pointed out that the proof of Theorem 2.4 is a proof
based upon a contradiction given by an inclusion of sets (and thus also the
volume of sets), but that a number of other characteristics of sets may be

used, provided they satisfy a concavity property like that given in Lemma 2.1.

For instance the inradius function r(T ] Eo) is a concave function of

fx+e
¢, and it would lead to an alternative proof of theorems analogous to
Theorems 2.4 and 2.5.

The key condition needed to insure convergence is that EO N sk ¢ ¢,

This will fail if:

13




1) f* = —=, and thus S* = ®;

11) f* 18 finite, and S* = ®;

111) f* 4g finite, S* 4 ¢, and s* n Eo -3,

A derivation similar to the one used earlier g8ives the following theorem.
Theorem 2.6:

If the ellipsoid method is applied to a general convex function f
defined on Rn, and 1if one does not assume that Eo N s* 4 ¢, then

Min £y < Minfre) ;x € Ey}
3=0,1,...,k
+ [Max{f(x) : x ¢ Eo} = Min{f(x) : x ¢ EO}](cn)k/n .
14
T T e— .
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3. A specific convergence theory

In order to improve the results of Section 2, and to show that the rate
of convergence depends upon some characteristics of the function f, it is
necessary to impose some conditions on the function f which limit its
growth on the whole of R". It is known that every convex function is

Lipschitz on bounded sets [16, pp. 86 and 237]:

lf(x) - £y < AEUy—xV , V x,y € E
where

Ap = Sup{ z" : z € 3f(x), x € E}

Definition 3.1:

A convex function f defined on Rn, which has a nonempty minimum
set S*, {s defined to be v-Lipschitz if there exists a function +v(t)
defined for all t > 0, such that vy(0) = 0, v 1is strictly increasing

and continuous, and

f(x) - f* < v(d(x)) , where d(x) = d(x,S¥*)

Clearly, every convex function (with nonempty minimum set S*) is y-Lipschitz

if ¥ 1s defined by:

v(d) = Sup{f(x)-f* : d(x,S*) < d}




Two instances (among many possible ones) of ¥ functions are given

below; they may sometimes be defined a priori for convex functions belonging

to a given class.

Condition 3.2:

Y({d) = Ad where a > 1, A > 0.

This condition is satisfied with a =1, if:

1) f 1is plecewise linear, with
A = sup{liyl :y € 3 (x), x €R"} ;
2) f 1is Lipschitz on the whole of Rn, with
A = Sup{llyill : y € af(x), x € R"}

It is satisfied with a = 2, if:
1) £ 1is C” and there is an upper bound on the largest eigenvalue
of the Hessian at any point of Rn;

2) £ 1is C1 and the gradient of f satisfies a Lipschitz condition

n
on R:

198 x) - VEGY < 3 ly=x]l vV x,y € R




Condition 3.2 is not satisfied for functions like f(xl, xz) - lel + (xz)2

or (xl)2 + (xz)a; the next condition gives a function <y which has a

different degree if d 1is small, or if d 1is large.

Condition 3.3:

94 99
; Y(d) = Max(ad ©, Ayd ),

with 1< a <a, and A, 4, > 0.

The condition that f 1is Y-Lipschitz gives an estimate of e*(Eo)

= Max{f (x)-f* : x € EO}, where S* N EO # ¢ 1is assumed, which may be used

in Theorem 2.5:

e*(EO) Max {f (x)-f* : x € EO} < Max{y(d(x)) : x € E

o} :

Y( Max d(x)) < vY( Max lx-yl) = Y(D(EO))

XGEO x,y€E0

The theory of convergence of the ellipsoid method on y-Lipschitz

functions will use the properties of the functions:

g(5; E) = V[(s* + AB) N E] ,

and g(5) = V[S* + 5B] (defined if S* 1is bounded).

If one notices that (S* + 53) NE = {x € E : d(x) < 5} and
S* + 5B = {x € R" : d(x) < 5}, and that d 418 a convex function with
minimum value zero, and minimum set S%*, then it follows that g(5; E)

and g(5) satisfy Lemma 2.1 and Corollary 2.3.

17




Lemma 3.4:

Let f(x) be a Y-Lipschitz convex function defined on Rn, and E
be a compact convex set such that E N $* 1is not empty, then the volume
functions h{c; E) and g(&: E) satisfy

1) h(e; E) Z_g(Y-l(e); E), Ve > 0;

1) w i B < Y(g'l(t; E)), V¥ t € [0, V[E]];
and if S* is bounded

111) h(e) > g(y (), ¥ & > 0;

) h i) < v tey, ve 2 0.

Proof:

Clearly d(x) Y “(¢) dimplies

| A

£(x)-£% < v < vy L)) = e

and thus S% + Y_l(c)B . Taking the volumes of both sides, one

Tf*+5.
gets g(Y-l(E)) < h(e). Part 1) follows similarly; and parts ii) and iv)

are classical properties of inverse functions. Q.E.D.

Theorem 3.5:

Let f(x) be a v-Lipschitz function defined on Rn; under the same
assumptions as in Theotem 2.4, and V[E0 N S*] = 0, the sequence generated
by the ellipsoid method satisfies:

Min ey < f* + v(D(Ey) (% (cn)k)”“) ;

3=0,1,...k

18
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if vy =4d® (with a > 1, A > 0)
Min f(x(j)) < f*x + ADa(EO) 6% (cn)k)a/n ;
3=0,1,...,k
% %2
if vy = Max(Ald R A2d ) (with 1< a1 < aps Al’ AZ > 0)
; a a,/n
; min £ Ceermaxing D TE) & @M T i 112
§=0,1,...,k
Proof :

Let 5*(EO) = Max d(x); clearly
, x € EO

8(6"(E)s Ep) = VIE)] and  g(0, E)) = V[E) N 4]

Lemma 2.3 gives

o tl/n _ Vl/n[Eo N s]
g (t; E;) < 5%(E,) .
0 0 Vl/n[EO] - vl/“[Eo N s#]
k But ©&%(E.) < D(E.) and thus
& 0’ = 0
; t1/n _ Vl/n[EO N s

W B < v ()5 B < v(DEY

*

1/n 1/n
v [EO] -V [EO N s*]

and the theorem follows from Theorem 2.4. Q.E.D. A

If ‘/[E0 N S*] # o, then a finite convergence result identical to

Theoren 2.5 is of course true.

19
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If a =1, this theorem gives the same result as Theorem 2.5; but

if a > 1, this theorem gives a rate of convergence of (cn)a/n which
is a times faster than the rate given by Theorem 2.5,
The convergence results given above are all based upon the concavity

of ™ or g™, this implied that

vl/n 1/n

hes E) 2 lxegy [E] + (1 -;—iE—)) v/TE n s*))"
(and something similar for g). The right hand side is clearly a polynomial
of degree n in ¢, with all of its nt+l coefficients positive if
0 < VIE N S*] < V[E], while if V[E N S*] = 0 all coefficients but that
of & are zero. Some sharper results exist for the functions
g, and if the function f is y~Lipschitz this imparts related properties
on h.
The function g(6) = V(S* + 5B] has been studied extensively (if S* is compact
and convex); the key result due to Steiner and Minkowsky (see Theorem 4.9)
is that g(8) 1is a polynomial of degree n in &, with nonnegative

coefficients and the coefficients of ej (j=0,1, ..., n-s~1, with

s = dim S*) are all zero.

The function g(6; E) = V[{(S* + §B) N E] has not received much
attention, and is much harder to study; Theorem 4.10 provides a bound on
g(8; E) which 18 a polynomial, with some negative coefficients which
still permits an improvement of the convergence theory given above.

The main results given below can be summarized by saying that the

rate of convergence of the ellipsoid method, if f 1is y-Lipschitz (and

20




Y = Ada) and the dimension of S* N E 18 s, is equal to (cn)a/(n-s).
The analysis is not done if s = 0 or 8 = n, as it can be seen that

no significant improvement on Theorems 2.5 and 3.5 occurs; by this is

meant that the rate of convergence would not be improved. The only
exception would be the unlikely case where dim(s* N Eo) = 0, and

dim S* > 1.

Theorem 3.6:
Let £ be a vy-Lipschitz function defined on Rn; under the same
assumptions as in Theorem 2.4, plus the fact that Eo N S* {ig of dimension
! s > 1, s { n-1, the sequence generated by the ellipsoid method satisfies:
1) If s =2, ..., n-1
(n-s+l1) V[E

Min f(x(j)) < f* + YC[Zm
n—

0] k]l/(n-s))
i=0,1,...,k

(c)
s VS[E0 N S*} n

and if y = Ad°

(n-s+1) V[Eo]
Vs[EO N s*)

Min f(x(j)) £ f* + A[Zm
j=0,1,...,k n-s

a/n-s
] (c:/ (n-8) yk

provided that k 1is large enough:

1 k
3 VIE] (¥ <

*
“h-g vs[EO N S¥]
n-s+1

* -
n=s VS[E0 N S} r(EO) n-s
n-s+1 D(Eo) L]

0, ()




(2n-1) V[EO]

1/ (a-1)y %
-1 V1[Eq N s*]

Min £y < f* 4 Y([E — (cn)kl
n

j=0,1,...,k

TR LA L Tk

and if y = ad®

: (2n-1) V[E ]  -a/(n-1)
Min £y < e+ A[l 0 ]

§20,1, ...,k 2w,y Vy[Ep N s*]

(Ca/(n~l))k
n

provided that k is large enough:

v [Ey N s*] V??ESY

* -
1 K, Cpe1 VB O S¥ ) r o py 1
E-V[EO] (cn) < a1 1 D(EO)
V2 (n - 5)
Proof :
The analysis is given only for s = 2, ..., n-1 (it 1is analogous if
s = 1, and useless if s = n).
Theorem 4.10 implies that
L D(E.) s
0 5 n-s
. %] - v 2
b g(8; EO) 2 mn_s[Vs[EO N s*] s( 5 ) @ r(EO)] & ¥ & ¢ [0, r(EO)]
Now if n, k, £> 0, it 18 easy to check that
k k+2 (¢ .k 1l k \1/2
857 = nb > X 5 for all & € [0, (n EIE) )] . }

Thus
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%
; V [E_ N Sk]
| V(6 . 8. 0~ n-s
N 8(8; Ep) 2w o n-s+l 5
for all & ¢ |0, S(EO)] where
|
7(E y = n-~s Vs[EO n s r(EO) !
OV’ T hls+l D(E)) s ' i
Y
sw_( )
s 2
and
~1 (n-s+1)t 11/(n—s) E
g (5 E) < [ * ]
0 O e VS[E0 N s*] | ?
for all t € [0, t*(EO)] where
v {E. N s*%]
x - s 0 ~ n-s
t (EO) TN R G(EO)) .
The theorem follows from Lemma 3.4 and Theorem 2.4. Q.E.D.

The next convergence results are based upon the Steiner polynomial
g(5) (see Section 4). The order to use g(5) is the study of the
convergence of the ellipsoid method one must assume that S* 1is compact
and that E contains entirely some level sets of f: define

0

50 = Sup{e : Tf*+s C EO} = Inf{f(x)~-f* : x £ Eo}

If £ is v-Lipschitz then 1
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S* + Y°1(e)B C E ¥Ye €[0, 50]

0

and

) _ T on 1 . -1
g(6; Ej) = g(6) = 1Zo () W [s*) 87 v 5 € [0, v (c5)]

If V[S*] < % V[EOJ (cn)k, define 6(k) to be the unique positive zero of

% n i 1 . Kk
1£o () Ws*1 87 - 3 VIEy () ,

then Min f(x(j)) < f* + v(6(k)) provided that 6&(k) S,Y—l(€0)-
3=0,...,k
) k
If V[S*] 2.5 V[LO] (Cn) , then there are no positive zeros, implying
that finite convergence has occurred.
Clearly, as g(8) 1s a polynomial with nonnegative coefficients, one

has:

65(k) <

(V[EO] (e )" ) 1/ (n-1)

2 () W Is#]

if {4 = n-s, ..., n and i # O, where s = dim S*,.

Theorem 3.7.

Let f be a vy-Lipschitz function defined on Rn; under the same
assumptions as in Theorem 2.4 plus the facts that S* 1isg compact, and
that €0
by the ellipsoid method satisfies:

= Inf{f(x)-f* : x ¢ EO} is positive, then the sequence generated
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K

| Min £y x4 Min Y([M]”("'“)

. 3=0,1,...,k n-s <1 <n z(‘i‘) W, [s%] |
! 140

where s = dim S*, provided that

VIE ] (cn)k 1/ (n-1)
(Gams] ) <o
n 2(1) Wi[S*]

if in addition y = Ad and s < n-1, then:

Min
n-s < i
#

<
140

j VIE,] / (n-8)
. 9 0 a/(n-8).k
J'=0,blitr.\.. ok Fem L A[Zmn_s Vs[s*] (e )

provided that

<

[V[EO] (cn)k ]a/(n-S)
A L&

*
an_s VS[S ]

Thus every nonzero coefficient of the Steiner polynomial gives a bound

on the convergence of the ellipsoid method; for instance 1if v = Ada:

) VIEG) (c )" qa/ (n=s+1)
Min o EGT) CEX 4 A , Af s> 2
j=0,l,.-.,k - [ ~-s+1 FS[S*]] z
or
3
K
; VIE,] (c ) qa/n
min £ Conea [ T if s=n
§=0,1,...,k X

provided that k 1is large enough.




It might be worth pointing out that every result in this paper (except

for Theorew 3.6) is valid for Levin's method of centers of gravity, if e

is replaced by Acfn.

——
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4. Volumes of convex arrays

Definition 4.1:

A mapping T, from a convex subset U of a linear space onto the

class of convex subsets of Rn is called a concave array 1if

U, U, €u X € {0,1]
implies

XTu + (1-\) Tu H

T >
)\u1+(l-)\)u2 1 2

it is a convex array if the dinclusion is reversed, and a linear array
if equality holds.

Clearly a linear array is both convex and concave.

Lemma 4.2:

Let A and Ai, i=1, ..., r, be convex subsets of Rn, and E be

n
a convex subset of R, then

r T
= = r _rF
D (f vpa ) viA 1f v = (v, «eey v) €R. (or v € R).
i=1 i=1
; ; ; ;
2) v,(A, N E) ¢ ( v, A,) N E if v, =1 and v € R,.
1=1 iV iﬂ.i i i=li +
3 r
3) z viAi is a convex array for v € R ; it is a linear array if
i=1
v € Ri (or any of the 2 orthants of Rr).
Lemma 4.3:

Let Tu be a concave (or linear) array defined on a convex set U,

and E be a convex subset of Rp, then Tu N E 1is a concave array on U.
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Lemma 4.4:

Let f be a convex function defined on Rn, then Ta = {x € " : f(x) < aj}

is a concave array for a € R; and if E 1is a convex set Ta NE 1is also

a concave array.

Lemma 4.5:
Let E and Ai‘ i=1, ..., r be convex subsets of Rn, then
r
( Z v.,A,) N E is a cconcave array on v = (v., ..., v_) € RS (or any of
i=1 ii 1 r +

the 2r orthants of Rr).

Theorem 4.6:
Let f be a convex function defined on Rn, E a compact convex
subset of Rn, Ta = {x ¢ R" : f(x) < a}, and a* = Min{f(x) : x € L};

then Ta N E 1is continuous in a for a € [a*,x).

Proof :
As f 1is continous, Ta N E 1is convex, compact and nonempty for all

' a > a* (and empty for a £ a*).

First we show that for all a > a*

lim T NE-= Ta NE; i.e., for each & > 0

there exists an 7, > 0 such that for all n € (O,H], (Ta+n NE) + 5B0

8]
S Ta N E and (Ta NE)+& O Ta' The first inclusion follows from

" T, for m > 0. The second inclusion is not true if and only if

Ton

_ 0.c ¢
Kn = ((Taf1E) + 887) N (Ta+nr]E) is not empty for allm > 0 (A  denotes




the complement of A 1in Rn). The sets Kﬂ for 1 > 0 form a nested
sequence of compact sets, and thus there exists an x ¢ R" such that
x € Kq’ n > 0 (unless some Kn as empty). Such an x belongs to

. . 0,c
Ta+n N E for all 1 > 0, and thus x € E and x ¢ Ta’ also x € (Ta NE)+5B),
and thus x € Ta N E, a contradiction, concluding the first part of this

proof. Note that no couvexity assumptions are needed for E or f,

*
For the second part (i.e., 1lim Taan NE = Ta NE for ada

n+o
and 7 < a-a*) one needs to show that for every &6 > 0, there exists an
M >0 (1 < c-a*) such that (Ta NE) + 5B0 B Ta-n N E and

5 T_NE for all 1 € (0,3]. The first inclusion is

(T N E)+5B
a-n
trivial; if the second is not true, then, following the reasoning used

above, there exists an x € R" such that

x € ((r_ NE) +6B)N (T NE)  for m € (0] ;

n

0 ~
i.e., x €Ta NE, x ¢ (Tadn N E) + 86B° for mn € (0,n].

Choose X € TaJE N E; it follows from the convexity of E and f
that Ax + (1-\)x € Toox NE if X € [0,1]; take X such that

0<X < 5/H;-xH, then x* = Ax + (1-\)x satisfies:

- * ~
lx*-x|| < 5 and x* € Ta—kn NE.
Thus x = x* + (x-x*) € (Ta—ﬁﬁ NE) + GBO, a contradiction. Q.E.D.
i
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Theorem 4.7 (the Brunn-Minkowski inequality):
Let Tu € U (where U 1is a convex set) be a concave array of compact

convex subsets of Rn, then Vl/n[Tu] is a concave function of wu.

Proof: [3], p. 88. [5], p. 97, (9], pp. 159 and 187.

Theorem 4.8:
Let Ai’ i=1, ..., r, be r compact convex subsets of Rn, and
Vi i=1, ..., r be r nonnegative numbers, then the volume of
§ ViAi is an homogeneous nth degree polynomial in the variables
i=1
Vis sres Voo

le} n
Lo ZV[Ai,Ai,...,Ai]viv cee iy #

where the coefficients V[Ai , Ai s tees Ai ] are chosen to be invariant

1 2 n
under permutations of the arguments, and are called the mixed volumes of

the linear array. The mixed volumes are nonnegative, and continuous and

increasing functions of their arguments.

Proof: [3], p. 40; [5], p. 85. 3

0f particular use will be the linear array of parallel sets A+0B,
5> 0, with A a compact convex set, and B the closed unit ball in R".

The mixed volume V[A, ..., A, B, ..., B] 1is called the kth transversal

. A—— ————— A —

n-k k




mass integral and denoted as Wk[A].

that
S n k
V{A+6B] = | () W [A) &
k' Tk
k=0
; th
is a n degree polynomial in

be shown that WO[A] = V[A], nwl[A] = F[A)

It follows immediately from Theorem 4.8,

& with positive coefficients.

—

It can

the surface of A, and

WAl = w.
n n
Also [wk[runl/(“'k) is a concave function of u, 1f T, u €U is
. a concave array [1, 6, 7].
|
‘ If A 1is a s dimensional compact convex set on Rn then the
following theorem characterizes V{A+5B].
Theorem 4.9:
Let A be a s dimensional compact convex subset of R“, and let
Wk[A], k=0,1, ..., s be the transversal mass integrals of A seen as
a subset of a s dimensional space, then:
2 “k
~ k
V[A+6B) = J —— ( % YW [A) 6%
kenms k-nts k-n+s k-n+s
- PR i
the coefficients of &" s, 578 1 and 5" are respectively wn_svs[A]
} i-w F({A) and o .
: 2 n-s+l s n
4 i
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Proot:

i Bv induction on [9) pp. 215-216, one has
i
‘ s
, K k-n+s
WA = FIRTR |A]
N . n k-n+
k-n+s ()
k
tor K = n-s, , o Kk;AI = 0 tor k = 0, ., n=s=1. Clear.y
W AL =V DA L sW LA = F A, and W LA = Y
y 5 1 5 S s

Theorem oLy
v n ) L n
Let A be a closed conves subset wf R, E an ellipsoid in R,
md A Eohe of dimension <5 > 1 wand thus A is of dimension s,

then

iy it s > C

ViAsB)  El > o [V (A E] - < (2B o L
n-s s s s r(E)
1ty 4f s =1
L(A+5B)  E] > . (v.{A " E] - D(E) 2 ] 5Pl

where 0 < 5 ¢ r(E).

Proof:
Assume, without restriction, that E has {ts center at the origin

of coordinates.
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for

= - .
Def ine A” AN (1 r(E))E for m € [0, r(E)]; clearly An+6B CE

5 ¢ {o,n]. Thus

8

-
Vi(a +58) 0 E] = VA +6B1 2 @ g v Al 6 ¥ 0<56<n<r(E

(using Theorem 4.9). Now

where

and

the s

where

1 - .
VS[A ' E] VS[Aﬁ] VS[A n (E/Q1 r(E)) E]

| A

S
VS[M(A) n (/1 r(E)) E] if n € [0, x(©)],

M(A) denotes the s-dimensional affine manifold containing A,
/ denotes the set difference (Sl/S2 = {x € Sl 1 x £ S, ).
Define a linear map T such that T(E) = B, and let L(A) = M(A) - A be

—dimensional linear subspace parallel to M(A), then:

, : _ -0
\S[M(A) Y (Ef (L r(E)) E)]

v (L) N E]
v_[TA) 7 B v_(Te1a) 0 B/ = y) B

VSlL(A) Q2 E]

w
S

"
Vs[M(T(A)) 1 (B/(1 - r(E)) B))

|~

D(E).s _ .
P—jfﬁ VSIM(T(A)) n (/1 r(E)) B)]
- ¢ 10, r(B)].
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i Now let t = d(0, M(T(A))), where clearly t ¢ [0,1] as A  E
} is not empty; then
\S[M(T(A)) b(B/ (Y - r'(‘&f)) Bl
2.s/2 ~ t 2.5/27)
AN TSN A (1 - (—* >
[ r(E) |- 1
if 0<t 1 ~
(l~LJ)5/; £ [ - /rity
L s
The maximum of this as a ftunction of t s attained for t = O {1
s » 2, and for t =1 -~ ~/r(E) if or 2 (note: if s = 2 then
it is comstant yor t ¢ [0, | - - /r(t)i). Thus
h B/(L ~ ~ - -
VSH(T(A)) (B/( cE) 8)]
P S, : \
SJS{l - (1 - "/Y(E)) I it ~
<
0 3
I.)lll - (i - ',/f(E))”I”“ it 1
‘*“s c(E) b ‘
<
'){r(F,)) . it i

LS SN




It follows that

D(E).s 8
s (*jf—ﬁ SO T(E if s> 2
v lagl < v {aNE] - l
=
D(E) ;%%7 , if s =1,
and the theorem follows. Q.E.D.

If s = dim(A " E) = 0, and A reduces to a point in the interior
of E, then V[(A+5B) N E] = gnsn
then A itself may be of any dimension, and a slightly different approach

would be required.
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