
AO-AO" 287 NORTH CAROLINA UNIV AT CHAPEL HILL FIG 12/1

ACCELERATED ACCURACY IN THE SIMULATION OF MARKOV CHAINS. (U)

JAN 81 G S FISHMAN N0001476.C-0302

a T acre R-Mt-I N

looEEEnE
I fllfllfll...lofflf



OPERATIONS RESEARCH AND SYSTEMS ANALYSIS

UNIVERSITY OF NORTH CAROLINA
AT CHAPEL HILL

A-A



A4CELERATED ACCURACY IN THE SIMULATION

OF =EARKOV CHAINS.

M George S /Fishman

Technical Replrt.,81-1
January 1981

Curriculum in Operations Research

and Systems Analysis

University of North Carolina at Chapel Hill"

This research was supported by the Office of Naval Research under contract
-N00014-76-C-0302. v

Reproduction in whole or in part is permitted for any purpose of the United
States government.



Acknowledgment

I am grateful to Baosheng Huang for many productive conversations on

this topic. My thanks also go to Mark J. Tedone for his programming assist-

ance.

A-



Abstract

This paper describes a method of obtaining results from the

simulation of a finite state positive recurrent aperiodic Markov

chain at a cost considerably below the cost required to achieve the same

accuracy with pure random sampling. By reorganizing k independent

epochs or tours simulated serially into k replications simulated

in parallel, one can induce selected joint distributions across repli-

cations that produce the cost-saving benefits. The joint distributions

follow from the use of rotation sampling, a special case of the anti-

thetic variate method.

For a finite state nearest neighbor chain the paper shows that even

for independent parallel replications the cost of achieving a specified

accuracy with serial simulation relative to the cost for parallel simu-

lation has a lower bound O(k ) as k-- . When rotation sampling is

used this bound is O(k2/(In k)3 ). This lower bound also holds for

the more general finite state chain. A simulation of the M/M/l

queueing model with finite capacity n is used to illustrate the

effectiveness of the technique for selected values of k,n and

activity level p

. ... . ' . . .... .... . A



Introduction

One ostensible attraction that computer based simulation offers

to an experimenter is the ability to control the sources of variation

in a problem under study. In their monograph on Monte Carlo experiments,

Hammersley and Handscomb(1964) enumerate ways in which one can exploit

this control to achieve a result with a specified accuracy at less cost

than pure random sampling would require. However, that account prin-

cipally addresses the evaluation of univariate and multivariate integrals,

a considerably more well defined problem than one encounters in discrete

event simulation. Although studies using one or another of these variance

reducing techniques are common in the literature on discrete event simu-

lation, only recently has serious attention been devoted to developing

methods to exploit this control of variation in conjunction with the

general classes of structures encountered there. These recent develop-

ments include elimination of the list of scheduled events in a simulation

containing an imbedded Markov chain in Hordijk, Iglehart and Schassberger

(1976), random number stream manipulation in multifactor experiments in

Schruben and Margolin (1978), a perspective on control variates in

Lavenberg and Welch (1980) and a reexamination of antithetic variates in

Fishman and Huang (1980).

To continue this theoretical development, the present paper shows

how one can employ a special case of the antithetic variate technique

called rotation sampling to exploit the structure of finite state Markov

7.
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chains to produce substantial cost savings in simulation studies designed

to achieve a specified level of statistical accuracy. The generality of

the approach arises from the observation that many discrete event simula-

tions have an underlying Markov chain structure or a structure close to

that of a Markov chain. Regenerative simulation, which includes Markov

chains as a special case, offers one example. See Crane and Iglehart

(1975) and Fishman (1978).

The proposed technique derives its cost-saving potential from viewing

the simulation of k tours in seriec of a finite (n+l) state positive

recurrent aperiodic Marinv chain as equivalent to the simulation of k

replications of the Markov chain in parallel. Although the marginal

distributions that arise with the two alternative formulations are

necessarily the same for corresponding variables, the parallel formulation

allows one to induce joint distibutions across replications that lead to

a significant cost saving. The induced joint distributions follow from

the use of rotation sampling, as described in detail in Fishman and

Huang (1980). 1'e cost saving arises in two ways. Firstly, for fixed

n run time in the correlated case is O(ln k) in contrast to O(k)

for the serial simulation. Secondly, for fixed n the variance of an

estimator has an upper bound 0( (ln k/k) 2) for the correlated case

compared to 0(1/k) for the serial case. Moreover, the technique

appears to be well suited for use with the aforementioned proposal of

Hordijk, Iglehart and Schassberger (1976) for eliminating the list of

scheduled events when simulating a system representable as a Markov chain.

A.. o
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Section 1 introduces the Markov chain notation and specializes

it to the case of the nearest neighbor model. It also formulates the

experiment of k indenendent tours or epochs in series and then shows

how one can reformulate the simulation equivalently as k independent

replications in parallel. This reformulation alone shows that one can

achieve a substantive cost saving merely by using an efficient method

of generating samples from the binomial distribution.

Section 2 shows how rotation sampling leads to a considerably great-

er cost saving and Section 3 demonstrates how the results apply in prac-

tice. Section 4 considers finite state chains of a more general char-

acter than the nearest neighbor model and extends the results of Section

2 appropriately. Section 5 discusses several unresolved issues which

include nonconvergence to normality, variance etimation, sequential

estimation, infinite state Markov chains and transient simulation.
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1. The Nearest Neighbor Model

Consider a positive recurrent aperiodic Markov chain with finite

state space S (0,1,...,n) and (n+l) x (n+l) transition matrix

pn = II pij . Since all states 0 through n are regenerative,

the sample paths of states realized between successive entries into a

given state are independent and obey the same probability law. More-

over, a like property holds for functions of these sample paths. For

expositional convenience, we take state 0 as the point of regeneration

and say that each entry into this state completes an epoch or tour. Let

A.. denote the reward received when a jump occurs from state i to

state j, let Nijm denote the number of transitions from state i

to state j between the (m-1)st and mth successive entries into

state 0 (epoch or tour m) for m I and assume that observation

begins with an entry to state 0. Let w denote the mean reward per

epoch. Then

k nN..-(N)Rk =k m=l Zi,j=O A i j Ni j m (

is an unbiased estimator of W and var Rk a I/k. Moreover, the number of

transitions per epoch T has mean

n
=i,j=O E N.. (2)

For convenience of exposition we consider the special but important

case of the nearest neighbor Markov chain where
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Po0  Pol 0 0

lO1  0 P12  0

0 00 P21 0 P23 0

Pn= (3)

"Pn-l,n-2 0 Pn-1 ,n/

0 Pn,n-1 Pn,n

with Po0  0 1 - Poi. Section 4 considers the more general finite

chain.

Note that in each epoch independent Bernoulli sampling dictates the

branch taken at each step or transition. Let U1 ,U2 .... denote a sequence

of i.i.d. random variables from U(0,1) . Suppose that the chain is in

state j after transition Z - I and prior to transition t . Then the

reward at step f is

AjI o,p j,)(M + AVID - IO,pjj, )(Ue) ] = (A.., -Aj j)uIOIpjjI M)+ Ajilt

where j' = j'(j) max(Oj-l), j" = j"(j) min(nj+l) and

I[ab)(X) = 1 a -< x < b

= 0 otherwise.

Let Tk and Sk  denote the time of the kth return to state 0 and

the number of states visited on k such epochs respectively. Then

k
t
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E Tk = kw and clearly E Sk z E Tk = 0(k) . Moreover, the mean computing

cost of simulating k epochs is proportional to E Sk as k-

Pavta.U Simut.tion

Note that epochs in the aforementioned model occur in seriaZ order.

An alternative, but entirely equivalent, representation in parailei

facilitates later development of our proposed variance reduction method.

In lieu of running k simulated epochs in sequence, suppose one runs

k _ n independent replications in parallel. Each replication begins

with an entry into state 0 and ends with the next entry into state 0

Figure 1 gives an example for k = 5 and n = 3. Let Ki. denote the number

of replications in state i after transition . on all k replications.

One can then regard the k Markov chains operating in parallel as a new

Markov chain with (n+l)-dimensional state vector K,= (K oz,..., Kn),

n
with I K = k , after transition X and prior to transition k + 1

For the new chain an epoch begins and ends upon entry into (k,O,... ,O).

We define this epoch to begin at transition k = 0. To establish equiva-

lence between the serial and parallel representations, one needs to set

Pol 1 P 0  in E. immediately after k = 1 , so that states

1,...,n are trcnsiet,state 0 is absorbing and p n is an absorbing

chain. Note that the new state vector has n + I elements and
k+n new states exist. See Johnson and Kotz (1977, p. 120).

Let {Ui.: i=l,...,k; Z= 1,2 ....} denote a sequence of i.i.d.

random variables from U(0,l) where Ui determines the branch taken

by replication i on step k . Let . j,Kjz denote the
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TRANSITION
I 2 3 4 5 6 7 8

3-EPOCH I

2-4

0
3 EPOCH 2
2-

0

S3L EPOCH 3

< -
y)'

0 3- IEPOCH 4

2-I -
0
3- 

EPOCH 5

2L

0
NEW 5 0 1 1 1 1 3 4 5
STATE 0 5 0 2 0 2- I 1 0
VECOS0 0 4 0 3 I 1 00

VECTO 0  0 0 2 1 1 0 0R0

Figure 1. Series and Parallel Representations
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K. replications that are in StaLe j after step k Then the number

of replicatic;- that move from state j to j' on step k + I is

K.

= m=l I IO,pjj i , + Kj >0

S0 Kj =0. (4)

One can now write the sample mean reward corresponding to (1) as

n 00
k jk=O k=0 i,Kjj;p +l AjKj, +l

_ n Co 00
- Y- [(A.., , A.,, j=0  Ajj, 0 Kjz]

where

k 0 k

m=l Njj ' m =O K, + m=l N jj m = jj l + l

K00 1 = 0 o k

Kli = 102 + K12 2 = k

KjX = K j,, t+I + K t +l k = 1,2,... j = 1,...,n

Simulation of k independent replications of the original Markov

chain with transition matrix (3) in terms of the new Markov chain for
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= 1,2,... takes the form

K O,+ l = KO0 + Kloz+l

K l,+ l  K K21,z+l

Kj,z+l Kj+l,j,k+l + Kj-l,z K j-l,j-2,z+l j= 2,...,n-1 15)

Kn,k+ l =Kn- l Z -Kn-l,n_2,t+l + KnZ- Kn,n-lP+l

with Kol = 0 , Koil = Kll = k , Kjl = 0 for j = 2,...,n and where

Kjjl,,+l has the binomial distribution B(Kj9,pjj,) for j = 1,...,n

Therefore, the distribution of K,+l given K. depends on the n

aforementioned binomial distributions. Also, it is clear that

var Rk var Rk - 1/k .

The computational complexity of simulating k parallel replications

depends on two factors, the cost of generating {Kj 1 ,, Klip I Kj, _l ;j=l,....n}

and on the absorption time Tk . If one uses Bernoulli sampling to generat

this vector, then at each transition the cost is O(kn). However, algorithms now

exist for directly sampling K jj, and K j,, from the binomial distribution with

cost 0(l) so that Kz can be generated at a cost O(n) . See Ahrens

and Dieter (1980) and Fishman (1978).

Let Sk denote the total number of transient states l,...,n visited

on all transitions up to absorption. Then the mean cost of simulating k

parallel replications is proportional to E Sk if one adopts efficient binomial

sampling. Also, E Sk 5 n E Tk * However, note that, in practice, the cost of

visiting a state is greater in the parallel case than it is in the serial case.

... . . . .ll. .*
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More importantly, we now demonstrate that merely reorganizing a serial simula-

tion into a parallel one leads to a cost saving that grows with k

Theorem 1. Let V(A,B) denote the cost of using an estimator A to

estimate mean reward relative to the cost of using estimator B, given

var A = var B. Then for fixed n

(i) E Tk k (ET2)

(ii) V(R kR k )  O (k0 )

See the Appendix for proof.

The results of this theorem imply that mean absorption time is sub-

stantially shorter for parallel simulation and that the relatve cost of

serial simulation grows with k for fixed n . The next section shows

that yet a more favorable situation can be created for parallel simulation

by inducing an appropriate joint distribution across the Bernoulli trials

within each state.

2. Rotation Sampling in Parallel Simulation

Consider the array

Ull U12 U13  • Ul

U21  U22  U23 . . . .  . . . .. . .  U2 2

(6)

Ukl Uk2 Uk3  Uk k

A.4



where Zj denotes the number of transitions on replication j that

occurs in the cycle beginning with an exit from state 1 and ending

upon entry into state 0 . Now observe that while elements within a

row need to be independent, elements within a column need not be. All

that is required within a column is that elements have the marginal dis-

tribution U(0,l)

Consider the transition Z = 2 In the previously described case,

Ull,...,Ukl are independent, so that var K102 = var K122 = kplo(l-plo)

Now suppose one imposes the column restriction for i = 1,...,k

Uil U11 + k (mod 1)

U + i-l i -

1 + if 0 U 11'< I -

U + - 1 if 1 - l UII < 1 (7)

so that UII,... ,Ukl each have U(0,1) but are dependent. This

sampling plan is a special case of rotation sampZing and is discussed

in detail in Fishman and Huang (1980).

For the proposed sampling plan, let replication i jump to state

0 if Uil < P10 and to state 2 if Uil > P10  Let K' and- " jjl, Z+I n

Kj denote numbers of replications that move from j to j' and

j", respectively, on transition +1 with this new sampling plan.

Then for +l = 2, E Klo 2 E K,02 kpl0 and E K 22 E K 22 = k(l-p I0)
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But

var(Ko 2 1KI1  k) = var(Kl22 1KI k) = (V10)(l--Plo)

5 var(K 102  K 11  k) = var(K 122  K11 = k) (8)

where K denotes the number of replications in state j after transi-

tion Z and prior to transition k+l and kplO = kplo (mod 1) . See

Theorem 3 of Fishman and Huang (1980). Note that under this new sampling
* I

plan K102 and K122  have variance 5 1/4 , regardless of k , an

attractive feature of the induced joint distribution± on U11 ,...,Ukl

One can now extend this correlated sampling plan to all subsequent

transitions by grouping replications by state at each transition. Recall

that i is the mth replication on transition k that is in statejkMI I

for K j > 0 and m = 1...,K z . Then replication ijz m  jumps to
.1 I

state .j if U. < p.. where for K' > 0
i .k j z

Uijn z 1Ui 1 k + ml (mod 1) (9)
K.

Then one has:

Theorem 2. Assume that one uses (9) in a paraZZeZ simulation of the

tFishman and Huang (1981) show that (8) is the minimum achievable

variance for the sum of k Bernoulli random variables, each with
the same marginal distribution.

WM.
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Markov chain with p as in (3). Then

I I I

(i) Kjj,,+I = LKj pjjJ W.P. 1 - Kj p

= LIK pjjj+l w.p. K p I
J.Ji ii

var(Kj + K ( pjj K pj /4

(iii) var K' O(1)
ii',+l

See the Appendix for the proof.

The results in Theorem 2 are of considerable importance. In parti-

cular, (i) implies that at most only one Bernoulli trial from Bc(K i pj,)

is needed for state j. Thertfore, one can effect the proposed parallel

sampling plan with a maximum of n Bernoulli trials. Also note that for

large k the sample path at the beginning of the simulation is virtually

deterministic. Property (ii) establishes the independence of the condi-

tional variance from K' in contrast to the independent case where thisB#

conditional variance is proportional to Ki . In particular, observethtvar(K'. 1K V 0we

that,,+IKjI) = 0 when K0 = 0. Property (iii)

removes the conditionality on K and shows that for every k the orders
I I

of magnitude of var Kjj,, .+l  and var Kjj,,9 +1  are unaffected by k.

Simulation of the Markov chain for . = 1,2... now takes the form
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0,+I = KOj + KIO,+ I

I I

K' K'I +K' -K'10

* I I I I

Kn,i+l n-l, n-l,n-2,z+l + - K,n-l,k+l

with K = 0 , K 1 1  K I = k , Kl = 0 for j = 2,...n and

I I
K jjtz+I = Kjepjj,, + Cj,,+ 1 where Cj,+ 1 has the Bernoulli distribution

SeA(K,>pjj,) Note that the principal distinction between (5) and (10) is

that (F) relies on binomial sampling, whereas (10) uses Bernoulli samplino.

However, the sample paths generated on a single replication of the chain

(3) follow the same probability laws regardless of the sampling plan.

The sample mean reward is now

k k (Aj K..jfk + A 1)j
Rk k o Zj0 =l , j( jKj (l

and the ostensible objective of analysis is to show that the cost of

independent serial simulation relative to the cost of correlated parallel

simulation for var R = var R increases with kI (k2 < kl). To

demonstrate this result we need to study T', the time at which all k

correlated replications are absorbed (absorption time).
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Theorem 3. Let

n
Tkr min (t: j=1 Kit s r) r = L1/Pl 2J < k

I I
Ykr Tk Tk

I I

Mjz K Kjj,k - K j,z .l Pjj ' j ' j+l ....

= 0 ,< j j j l,...

and

= probability of moving from j to 0 in k steps.PJO

Then

(i) Absorption can occur at t if and only if

#Kt~ {(k-m,m,O,....,0); m = 1.... ,r}

t t-l t- i))
(ii) Kot = Mit + l 20

n t-t- (i)(it )

j=2 M= l .z i=l (Pj'o i p.$$l) + k p10

(iii) There exist b ?I and o C(0,1) such that

-b + k 0(. ) k - KOt b + k 0( t )

(iv) Tk = O(In k). w.p. 1

(v) E Tkr = O(In k)
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(vi) Ykr 0(1) w.p. I

(vii) E Tk  O(In k)

See the Appendix for proof.

Result () shows that total absorption can occur if and only if

K is in one of [IP12 J  states. Also. result (ii) reveals that the

rate of entry into the absorbing state has a deterministic component

which is linear in k and a stochastic component whose magnitude is

independent of k. Together, results (i) and (ii) enable one to establish

parts (iii) through (vii). In particular, note that the ratio of mean absorption

times is E(Tk)/E(ik) = 0(k/ln k) , clearly favoring correlated parallel

simulation (CPS) for equal k's . However, it remains to show how var Rk

compares to var Rk and how Sk, the number of states visited in CPS, com-

pares to Sk.

Theorem 4. Let c denote the mean computing cost of visiting a state in the

simulation using rotation sampling relative to that cost in a serial simulation.

F'jr CPS and fixed n

(i) var Rk 0((ln k/k) 2)

(ii) E S; O(In k)

(iii) V(Rk . Rk2) 1 k 1

E S k var R c

O(k / (In k2)
3) and k2 < k

See the Appendix for the proof of part (1) Part (ii) follows from part (')
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of Theorem 3 and part (iii) follows from the observation that

E Sk var R 0 (1)

Part (iii) is the result of ultimate interest in this study. It shows

that a lower bound O(k' / (in k2)
3) exists on the cost of

achieving a specified accuracy with independent serial tours relative

to the cost of achieving the same accuracy (var Rk = var R' ) with1 k2

correlated parallel replications. Moreover, one can easily show that
2

this bound looks like O(k2) as the accuracy requirement increases

(smaller variance). The next section demonstrates how these

bounds fare in practice.
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3. An Illustration

This section describes a simulation desiqned to show how the

theoretical results of Section 2 fare in practice. Consider a single

server queueing system with independent and identically distributed

exponential interarrival times with rate A , independent and identi-

cally distributed exponential service times with rate w >X and

finite capacity n . Here jobs that arrive when n jobs are already

in the system merely go away. Corresponding to this continuous time

representation one can view this sytem as a nearest neighbor Markov

chain with pjj, = w/(X+w) j=l,...,n .

As a figure of merit we take mean number of customers in system

(p) the analytical expression for which appears in Gross and Harris

(1974, p.67). In the serial model we estimate this quantity by

SM=l I j=1 j(N. M + N )

1J (12)
+ = (N, + N

In the parallel model using rotation sampling we estimate u

by

A&~
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~~ ~J ,K + K~~~

1 + k Y (K K

SI x A+W=l j= jji"i
-k 

= 1[k_ 1 (K.j (3
k Tk . ,+ )

Note that (12) and (13) areratioestimators in contrast to (1) and

(11) which are linearestimators. As a result, (12) and (13) are biased

estimators of p and one additional inquiry that we make here concerns

which estimator has the smaller bias. Also, it is of interest to study

the extent to which the bounding results in Theorem 4 apply to ratio

estimation.
SA A'

We are interested in observing how ESk/E Sk , var ak/var Uk  and

V(k, ) vary with k, n and P X/w . For convenience and without

loss of generality we set w = 1 For each value of k given in Table

1, 1000 independent replications were performed for each experimental

layout.

Table 1

Experimental Layout

ka 2
m

n

p1 3 7

0.5 m=l,...,8 m=2,...,9 m=3,...,10

0.9 m=l,...,8 m-2,...,9 m=3,...,10

__ __&



-20-

This represents 1000 replications on each of the 48 experiments

corresponding to a unique triplet (k,np)

Table 2 shows selected ratios. Scrutinizing these results one

sees that ESk/ESk * var uk/var Ik and V 0lk,lk) all favor

correlated sampling. In particular, for fixed p and n , increas-

ing k increases these ratios. For fixed p and k , increasing

n shows a degradation in these ratios. This is consistent with our

theoretical results. However, the most interesting observation occurs

for fixed k and n . Here the ratio var ik/var ik shows little effect

due to changing p fromO.05 to 0.9. Whether or not this observation denotes

an invariance in the performance o' our proposed method with changes in

p remains a topic for future investigation.

As prevously mentioned, use of the ratio estimators (12) and

(13) enable one to study relative bias. The ratios (E k-v)/(Ek-VI)

in Table 2 show that correlated sampling always produces a smaller

absolute bias. However, the empirical results do not permit one to

predict how the relative bias changes with k, n and p

Several other results not available in Table 2 deserve mention.

Firstly, for the 48 triplets considered the bias in k did not

exceed 0.IP and usually was considerably smaller. Secondly, for

fixed P and n a plot of ETk/ET '  versus k/ln k showed the

A,
behavior dictated by (iii) of Theorem 3. Thirdly, a plot of var k
versus (In k/k)2  revealed a linear relationship as k- - confirming

-~~~ - : .. . . ....... . . ... . ..
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Table 2

Simulation Results for Empirical Example Based on 1000

Independent Replications

E Sk

E Sk

00.5 0-.o.9

1 3 7 1 3 7

2 1.49 1.39
4 2.23 1.52 2.05 1.27

C 3.61 1.95 1.74 3.25 1.51 1.26
16 6.13 2.51 2.28 5.44 2.04 1.3P
3? 10.32 3.45 2.91 9.29 2.87 1.63
64 18.63 5.25 4.02 16.52 4.30 2.08
128 33.02 8.18 5.62 29.14 7.04 2.78
256 58.93 13.39 8.37 53.12 11.90 4.06
512 23.13 12.39 20.68 6.37

!024 18.64 10.60

Avar k

A
var k

2 1.38 1.95
4 2.20 1.63 3.23 1.98
8 4.09 2.22 1.32 4.18 2.36 1.62
16 6.80 2.96 1.65 7.04 3.44 1.82
32 10.43 4.05 1.95 10.73 4.49 2.28
64 26.21 6.44 2.68 19.71 6.54 2.47

1Z8 34.40 11.10 3.68 37.05 10.22 4.02
256 73.19 16.69 6.08 67.26 16.91 6.1C
512 33.84 9.53 28.34 8.73
IU24 13.55 14.8

ES AA' ^ E Sk var jk
k Sk Var

2 2.06 2.70
4 4.90 2.48 6.63 2.50
8 14.77 4.38 2.31 13.63 3.56 2.03
16 37.52 7.43 3.77 38.28 7.02 2.51
32 107.68 13.96 5.67 99.73 12.88 3.82
64 488.33 33.81 10.77 325.61 28.12 5.15
128 1136.03 90.75 20.72 1079.64 71.93 11.18
256 4313.15 223.57 50.90 3573.16 201.21 25.00
512 782.75 117.86 586.12 55.92
1024 262.56 155.69

E 
k

Euk -V

2 1.61 1.48
4 3.60 1.70 3.12 2.02
8 2.45 1.05 1.71 -19.95 2.60 1.51

16 10.04 4.51 1.55 -4.61 2.08 2.23
32 -8.36 -6.70 4.42 -5.87 2.38 1.98
64 8.87 1.64 3.50 51.34 -20.38 3.13

128 11.29 8.06 .4.52 -6.45 -52.94 3.25
256 58.03 14.61 2.48 4.92 424.09 -14.64
572 25.96 -1.35 99.39 20.48

1024 -12.67 23.60

A.A-



-22-

the applicability of the lower bound 0((In k/k) 2 ) for this ratio estimator

as well. Fourthly, empirical observation showed that for fixed P and

n var T = 0(1) as k . This too remains a topic for future study.
k

Lastly, we comment about c, the mean computing cost dssociated with

visiting a state in the parallel simulation using rotation sampling

relative to that mean cost in the serial simulation. For n=l , c Z 3.5

as k increases; for n=3 and 7 , c 2.5 as k increases. This is not

a serious issue for three reasons. Firstly increasing k firmly

establishes the superiority of parallel simulation. Secondly, these

estimates of c come from simulation experience in which many interim

statistics, which are not normally collected in a simulation, were recorded

for evaluation purposes. This additional collection naturally added to

computing cost. Thirdly, since no attempt was made to optimize the pro-

gramming code used, one expects that more careful attention to code would

reduce c.

4. More General Markov Chain

We now consider the more general case of an aperiodic positive

recurrent n+l state Markov chain where transitions to more than two

states are possible, p00 = 0 and where we select state 0 as the

regeneration point. Then over k independent epochs the sample mean

reward is

n n k

Rm AijNijm
=0 j-0 m=l (14)

which again has var Rk a I/k

AS
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To obtain an equivalent formulation for k parallel, but indepen-

dent, replications we begin our simulation with k departures from

state 0 . Let (mjr; r = 1,... s } denote the ordered sequence

(majr mj)r+ ) of the s. states that a replication can enter from

state j for j = l.... ,n and define qij = M=O Pim Then the

simulation is for q.mj.o 0-:

I. Move replication I to state tO,r if qO'mo~ r l 6 Ul <qOmo,r

for r - ],...,n and I *l,...,k where Ui - U(0,l) .

2. Modify Pn so that Poo I and P0j " 0 for j l...,n

3. On step t+1 where t I and for J l,...,n if K 0

move replication Ijtm to state mar if qjm j,r U. jmlm,++,

<qjmJ,r where U im,+ ~ ((0,1) for m = 1,...,K j and

r = l,...,s 'I

4. Stop at step T* mlnit: K O = k; Z - 1,2,...)

The sample mean reward is

5 T*-

n j T-Ak I A. K,1 ~(5k = = j0 r-l L-0 jmjr J'mjrt+l (15)

If one imposes the restriction ( 9 ) , the simulation remains as above

in principle with Kij replacing Kij in steps I through 4 . The

sample mean reward Is then

n S Tk-l

J=O r-l 1-O jmr 'mjr't+l

Moreover, ovne has:
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Theorem 5 . If the restriction in ( 9 ) Is imposed, then

(i) For r = 1,...s

K.mrIQJ t P~ J 1 w.p. max(P -

M IQJ LPJ w.p. I - 2 max(p,Q)

SLQJ - LPJ I w.p. max(P,Q) - P

where P K'. Q K q P (mod 1) and Q Q (mod 1)
it i,r-1 i '

O i) var(K'j.,l ilK' ( 't i ) K1/
it) = (K;1Pij)(l - KiP i ) 1/4.

(iii) var K' O().

ij ,t41

See the Appendix for the proof.

As observed for the nearest neighbor model, a simulation using (9)

for large k has transitions near the beginning that are essentially

deterministic. Also, the random component of a transition from one state

to another has the Bernoulli distribution, since examination of part (i)

of Theorem S shows that only two of the three outcomes are possible.

0 0

With regard to the total absorption time Tk  and var Rk  it is not

difficult to show that they behave as in the nearest neighbor case as a

function of k and n . However, S , the number of states visited,
I I

calls for special attention. Whereas one has ESk - n E Tk for the

Lk

. . . . . . - - -,
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nearest neighbor model, it is here E Sk ! E(Tk) lj=I Sj n E Tk

This results from the observation that sj computations are necessary

to allocate the Kj replications in state j on transition Z

We summarize these observations in Theorem 6.

Theorem 6. For the more general finite state Markov chain

(i) ETk = O(ln k)

(ii) var Rk 0 Q((In k/k)2 )

(iii) ESk O(ln k)

(iv) V(R k,R ) O(k2/ (ln k)3 )
kk

Proofs follow in a manner analogous to those for earlier theorems and, to
conserve space, are omitted here.

5. Unresolved Issues

The theoretical results of Sections 1 and 2 together with empirical

observations of Section 3 unequivocally demonstrate the value of rotation

sampling for reducing variance in the simulation of Markov chains. We

now address several ancillary problems reasonable :. ttions to which are

necessary before one can move totally from theory to practical implementa-

tion.
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Noinatty

When simulating k independent epochs in series, an experimenter

ultimately relies on the central limit theorem to derive an acceptable

approximating distribution theory for confidence intervals. For inde-

pendent parallel replications, there is some plausibility in assuming

normality for at least some states when k is large. This follows

from the observation that the binomial distribution converges to the

normal as k-- . For correlated parallel replications using (9), the

Bernoulli distributions in each state for the sum of all members indi-

cates clearly that no convergence to normality exists, regardless of

the magnitude of k . In summary, superconvergenc of variance is

achieved at the loss of convergence to normality.

V ta Lac Es.imat co

Simulating independent epochs serially also enables one to estimate

the variance needed to assess accuracy. Regrettably, at the current

writing no comparable ease of estimation exists for k correlated

parallel replications. For Rk as in (11) a conceivable upper bound

estimate on var R k is (n ATk/2k) 2  There Asup max(IAjj,l ,IAjj,,'
j=l, .... n

The value of this estimate remains to be studied in detail. For the ratio

estimator (13), no comparable proposal is currently available.
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SequentiLa Etsimation

Although one should not minimize the importance of the loss of

convergence to normality and the ability to estimate var Rk , at

least one issue of importance in simulation mitigates the seriousness

of the loss. If one sets out to estimate, say, ERk to within an

accuracy of §5, then a sequential estimation procedure inevitably

plays a role. A principal result in this area is in Chow and Robbins

(1965) and is described in Fishman (1978, Ch. 2) for the special cir-

cumstances of discrete event simulation. Let Rk(m) denote the mthk
independent macroreZication of the new Markov chain were each macro-

replication consists of k correlated parallel replications of the

original chain. Then one runs m* macroreplications with outcomes
10 I(2 Im*)

R'),Rk(2) R k(m , termination occurring after the macroreplicati-

(m*) dictated by the stopping rule associated with the procedure. By

making k large one achieves the benefit of correlated sampling and

allows an experimenter to opt for a very small 6 . Since as - 0

the relevance of the Chow-Robbins result for practice grows, one sees that

in this context the accelerated convergence that correlated replications

induces in var Rk compensates for the loss of normal convergence and the

ability to estimate var Rk directly.

Finte State Space

The results of this paper clearly show that the lower bound on the

relative benefit of correlated parallel sampling diminishes for fixed
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k and increasing n . Although the seriousness of this weakening

of the boundary remains a topic for further research, one can draw

solace from rable 3 which gives the mean number of states occupied

per transition for the simulations of Section 4. Observe the relatively

slow rate of increase with regard to k

Table 3

Sample Mean Number of Occupied States per Transition

8 16 32 64 128 256 512 1024

, =0.5

3 1.20 1.40 1.67 1.92 2.10 2.20 2.30

7 1.17 1.31 1.53 1.77 2.04 2.38 2.76 3.22
,=0. 9

3 1.46 1.76 2.01 2.18 2.28 2.38 2.44

7 1.36 1.68 2.18 2.79 3.49 4.05 4.47 4.80

Transient Simutation

As described here, the simulation we have in mind aims at estimating

a steady-state characteristic of a Markov chain. Alternatively one may

be interested in the paths between states i and j and function of

these paths. Since the choice of regenerative simulation via state 0

was merely a convenience of exposition, it is not difficult to see that

in the transient case one can construct correlated parallel replications

which have all the desirable features given in Sections 3 and 5.

-_ _ _ _ _ -..
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APPENDI X

Proof of Theorem 1. Let

pO pr(movinq from state j to state 0 in steps) j 0.

Since the parallel replications remain independent, one has

S"m k m t (t) k-i (t)E Tk = k tm ( PM lU PO Me=1,2

k ETT

Then

E T var T + E2 T k E T'

k k k

from which it follows that

STk - k; (E T')'

For part Oi)note the specification that var R var k Since

E Tk = k (En) one has for fixed n
ESk O

V(Rk'k) - > O(k

E S k

Ag.
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Proof of Theorem 2

One can write K. as

K.

KI 1 (U. + nod (p.Dj,, + ' - Pjj, j i , 1 '"

F,- Lemd 5.1 nff jishman and Huang (198n), we fjjve equivalenli1

KK
\ Io ( U! ) A
' 1 IIU ,-II

wh re K'U (vind I) and p p , Letwh r 3 . "1

, r(K] , Then

P - 1 - nn ( , 1, K'p) ,

P1  I Pin( ,'p) - max(O, rin 1, "p - 1Li

S1 - - ax(O, mini, K'p - 1 ) I

P. 1 - P ) P - max(tD, min, V f'- 2

It . P, max(O, min , K p - t
t I t

so that

pr(K t) 1 na(, in, 'p t1

Therefore,

_ --- I ill-A6&
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,rK'j t+l O) 0 t< [K'pl -

prKj.,,=JK p]) 1 P K'4 LK'pj = 1 - P

pr(K~~,, 4 tK'pj + 1) z K p

which establishes (i) Note that K'j tl -KP has the Bernoulli

di ,tribution e C-)

Proof' of (ii) follows imvediately. Since E(K. iK') 4K'

- K' p and F(K' :~1 K')' IK'pj2(l -~p) + (jK'pj + 1lV2K'P we hiave

var(K' !41 K' ) K- .,( - K ') 1/4 .It also follows Frc,7

Theoremn I of F1ihr,ar And Imang (19R0).

We prov.e (iii) by induction. Observe that

var K' F var(K' Kl * p var K M=

L Since

K'rK (K' p. I( K " P 1('4 .(A.3)

),a 1 + j 3m 3k. jm

f var(K 1K ) 1/4 .(A .4)
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Also

var(K' K ) 0 jim,I jO . .

var K' : 0

and

var K', var + var K + 2 cov(K , K,,va + arJ j~ + , J9

[(ja K,,j + (var K ' (A.5)

so that

var + p' [(var K', (var K' ,, . _ )]'jm,i+l 4 jm j Ji-l3 Z-l)
1 2. £ [ 2

4 i2 (var K , + (var 2.
]  (A.6'L .j j.-Il"J

where sip p i 1.

be(jinnir,; with j' I , one can easily show that the magnitudes of

v r K' va ' 'a fo~r j = 0, . , r
vatK *ml var K.m , vat j , .... fr jO...i

jm.1j. jPI, 3

are independent of k Therefore, it follow, hy induction that

var K'
jM,1)
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Proof of Theorem 3

Let Qt denote the probability of total absorption on transition

t. Then

I I

Qt -pr(Kot < k, Kot k)

k-I k , K

M=O pr(Kot k ,t= m) pr(Kt m)

Recall that for given K.

K jj,,+ 1 =LKj pjj ,J w.p. 1 -Kj p.j,.

[Kjz pjj'j + I w.p. Kj z Pj,

so that

I I I I

pr (Kot : k I K ot.1  m) = (k-m) plO pr(Kl,t-I = k-m Ko'tl m)

m k - r,...,k -l

= 0 otherwise.

Therefore, Qt = 0 unless Kt l C{(k- m m O, .. O),m=l .... r}

which proves (i).
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Part (ii) follow,, from merely writing down the transition pattern

into each state and regrouping terms. To prove (iii) one notes that

(a) -1l M.

(b) M 0 j=l,.. .,n

(c) 1 - I (i

Note (c) is a standard result for transitions from a transient state to an

absorbing state (e.g. Cox and Miller, 1965). Observe that

Mt + 7 1  - I 2 ( ) + Y YI M. M (p)i)

n t-jI -'

+Yj=l j=1 i=l P~

where b 1 and is finite for fixed n and all t > I .Therefore,

-b + k(l - _p 0 ) k -Kt b + k(I p1 ()

so that for E

-b + k 0(2, ) k -KIt b + k 0(,-

which proves part (iii)
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I I

Tkr T

Observe that r s b + k O(i ) and -b + k 0(( kr) I

Therefore, O(In Q , T 0 (In k) which establishes (iv) and (v).

Now observe that for t Tkr the number of replications remaining

in the transient set is independent of k . Therefore, Ykr = O(1)w.p. 1 so

that E Tk  = O(ln k), provinq (vi) and (vii).

Proof of Theorem 4 il

Let
n

D =  j=l (jj, Kjj, + j ,,K i,

From (iii) of Theorem 2 one has var D,= 0(1) From (iii) of Tnerer, 3

there exists a constant bI such that Tkr s bI In k. Therefore, one can

represent Rk as

kI 1 1~

R k  = k 5 5 b1 I D 9 +
1l~ blln k

where - is a random variable whose distribution is independent of k.

Finally
I2

var R' 0 ((bI  in k/k) ) 0 ((In k/k) 2)

which establishes (i).

-- d A
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Proof of Theorem 5

Let

L(q,p) K ~ (U~ 1

where 0 ,q -p I and U U(0.1) .Observe that

K-rn
pr[L(q,p) = w prEL(0,q) =j, L(0,P) =j+mj m 0,... ,K (A.7)

j=O

Fror part (1) in Theorem 2 we have

pr[L(O,q) = KqJ ] =1-K

pr[L(0,P) = [KpJ ] 1- Kp

pr[L(O,q) = LKqJ+ 1] K q

pr[L(O,p) = lKpJ+ 1] = Kp
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so that

pr[L(O,q) = L Kq j , L(O,p) = L Kp j m = - (Kq,p)

pr[L(O,q) L Kq j , t(0,p) = L Kp I + 1] max(O, Kp - K-q)

pr[L(O,q) = L Kq ] + I, L(O,p) = tKp j + 1] = min( -p,q)

pr[L(Oq) L Kq j + 1, L(O,p) L Kp I = max(O, - - )

Substituting into (A.7) gives

pr[L(q,p) j Kp] - t. Kq j - 1] = max(O, Kq- - -)

pr[L(q,p) L Kp j - L Kq j ] = 1 - max(T, V) + min(Kp, -) (A.8)

pr[L(q,p) = L Kp] - L Kq j + 1] = max(O, K-p - -q) .

Then part(i)holds for q = , p qj,m.r L(q,p) = K'j,mj +l

and K = Kiz

Part (ii) follows immediately from (A.8) and part (iii) follows

in a manner similar to part (iii) of Theorem 2.
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