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Abstract

This paper describes a method of obtaining results from the
simulation of a finite state positive recurrent aperiodic Markov
chain at a cost considerably below the cost required to achieve the same
accuracy with pure random sampling. By reorganizing k independent
epochs or tours simulated serially into k replications simulated
in parallel, one can induce selected joint distributions across repli-
cations that produce the cost-saving benefits. The joint distributions
follow from the use of rotation sampling, a special case of the anti-
thetic variate method.

For a finite state nearest neighbor chain the paper shows that even
for independent parallel replications the cost of achieving a specified
accuracy with serial simulation relative to the cost for parallel simu-
lation has a lower bound O(k%) as k-+e, When rotation sampling is
used this bound is 0(k?/(1n k)® ). This lower bound also holds for
the more general finite state chain. A simulation of the M/M/1
queueing model with finite capacity n 1is used to illustrate the

effectiveness of the technique for selected values of k,n and

activity level o .




Introduction

One ostensible attraction that computer based simulation offers
to an experimenter is the ability to control the sources of variation
in a problem under study. In their monograph on Monte Carlo experiments,
Hammersley and Handscomb{1964) enumerate ways in which one can exploit
this control to achieve a result with a specified accuracy at less cost
than pure random sampling would require. However, that account prin-
cipally addresses the evaluation of univariate and multivariate integrals,
a considerably more well defined problem than one encounters in discrete
event simulation. Although studies using one or another of these variance
reducing techniques are common in the literature on discrete event simu-
Tation, only recently has serious attention been devoted to developing
methods to exploit this control of variation in conjunction with the
general classes of structures encountered there. These recent develop-
ments include elimination of the list of scheduled events in a simulation
containing an imbedded Markov chain in Hordijk, Iglehart and Schassberger
(1976), random number stream manipulation in multifactor experiments in H
Schruben and Margolin (1978), a perspective on control variates in
Lavenberg and Welch (1980) and a reexamination of antithetic variates in {

Fishman and Huang (1980).

To continue this theoretical development, the present paper shows ﬁ
how one can employ a specia: case of the antithetic variate technique

called rotation sampling to exploit the structure of finite state Markov




chains to produce substantial cost savings in simulation studies designed
to achieve a specified level of statistical accuracy. The generality of
the approach arises from the observation that many discrete event simulc-
tions have an underlying Markov chain structure or a structure close to
that of a Markov chain. Regenerative simulation, which includes Markov
chains as a special case, offers one example. See Crane and Iglehart
(1975) and Fishman (1978).

The proposed technique derives its cost-saving potential from viewing
the simulation of k tours in series of a finite (n+l) state positive
recurrent aperiodic Marknv chain as equivalent to the simulation of k
replications of the Markov chain in parallel. Although the marginal
distributions that arise with the two alternative formulations are
necessarily the same for corresponding variables, the parallel formulation
allows one to induce joint distributions across replications that lead to
a significant cost saving. The induced joint distributions follow from
the use of rotation sampling, as described in detail in Fishman and
Huang (1980). Tie cost saving arises in two ways. Firstly, for fixed
n run time in the correlated case is O0(In k) in contrast to O0(k)
for the serial simulation. Secondly, for fixed n the variance of an
estimator has an upper bound O( (1n k/k)2) for the correlated case
compared to 0(1/k) for the serial case. Moreover, the technique
appears to be well suited for use with the aforementioned proposal of
Hordijk, Iglehart and Schassberger (1976) for eliminating the list of

scheduled events when simulating a system representable as a Markov chain.




Section 1 introduces the Markov chain notation and specializes
it to the case of the nearest neighbor model. It also formulates the
experiment of k indenendent tours or epochs in series and then shows
how one can reformulate the simulation equivalently as k <ndependent
replications in parallel. This reformulation alone shows that one can
achieve a substantive cost saving merely by using an efficient method
of generating samples from the binomial distribution.

Section 2 shows how rotation sampliing leads to a considerably great-
er cost saving and Section 3 demonstrates how the results apply in prac-
tice. Section 4 considers finite state chains of a more general char-
acter than the nearest neighbor model and extends the results of Section
2 appropriately. Section 5 discusses several unresolved issues which
include nonconvergence to normality, variance etimation, sequential

estimation, infinite state Markov chains and transient simulation.
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1. The Nearest Neighbor Model

Consider a positive recurrent aperiodic Markov chain with finite
state space S = (0,1,...,n) and (n+1) x (n+1) transition matrix
Py = il pin . Since all states 0 through n are regenerative,
the sample paths of states realized between successive entries into a
given state are independent and obey the same probability law. More-
over, a like property holds for functions of these sample paths. For
expositional convenience, we take state 0 as the point of regeneration
and say that each entry into this state completes an epoch or tour. Let
Aij denote the reward received when a jump occurs from state i to
state j, let Nijm denote the number of transitions from state i
to state j between the {(m-1)st anrd mth successive entries into
state 0 (epoch or tour m) for m 2 1 and assume that observation

begins with an entry to state 0. Let u denote the mean reward per

epoch. Then

k n

N, 1
zm=1 zi,j=o %5 Mgm )

x
=

"
~]—

is an unbiased estimator of u and var R, « 1/k. Moreover, the number of

k
transitions per epoch T has mean

w = (-L)(p ) = z] ’j=0 E NiJm . (2)

For convenience of exposition we consider the special but important

case of the nearest neighbor Markov chain where
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Poj 0 . 0
0 P12 0
Py O P23 0 *
Pp = (3)
pn-],n-Z pn-],n
pn,n-] pn,n

with Poo = 0=1- Pot- Section 4 considers the more general finite
chain.

Note that in each epoch independent Bernouili sampling dictates the
branch taken at each step or transition. Let U],Uz,... denote a sequence
of i.i.d. random variables from u(0,1) . Suppose that the chain is in
state j after transition £ - 1 and prior to transition £ . Then the

reward at step £ is

Ajj,I[ng--l)(UQ) + Ajjll(] - I[’O'p‘-,)(uz)] = (AJ'J'I -AJ"]'II)I[O’D‘")({)‘e)‘+ Ajjll i
JJ JJ JJ
where j’ = j'(j) = max(0,j-1), j” = j"(j) = min(n,j+1) and 4
I[a,b)(x) = a < x < b
=0 otherwise.

Let Tk and Sk denote the time of the kth return to state 0 and

the number of states visited on k such epochs respectively. Then




E Tk = kw and clearly E Sk = £ Tk = 0(k) . Moreover, the mean computing

cost of simulating k epochs is proportional to E Sk as k-wow |
Parallel Simulation

Note that epochs in the aforementioned model occur in serial order.
An alternative, but entirely equivalent, representation in parallel
facilitates later development of our proposed variance reduction method.
In lieu of running k simulated epochs in sequence, suppose one runs
k 2 n independent replications in parallel., Each replication begins
with an entry into state 0 and ends with the next entry into state O .
Figure 1 gives an example for k = 5 and n = 3, let Kik denote the number
of replications in state i after transition ¢ on all k replications.
One can then regard the k Markov chains operating in parallel as a new
Markov chain with (n+1)-dimensional state vector 9% (KOZ""’KnQ)’

n
with § K
j=0

m = k , after transition 2 and prior to transition 2 + 1 .
For the new chain an epoch begins and ends upon entry into (k,0,...,0).
We define this epoch to begin at transition ¢ = 0. To establiish equiva-

lence between the serial and parallel representations, one needs to set

Po1 = 0=1- Poo in Pn immediately after 2 =1 , so that states

1,...,0 are transtent,state Q 1is absorbing and Pn is an absorbing

chain, Note that the new state vector has n + 1 elements and

k+
( kn ) new states exist. See Johnson and Kotz (1977, p. 120).

Let {UiQ:

random variables from U{0,1) where UiQ determines the branch taken

i=1,...,k; 2= 1,2,...} denote a sequence of i.i.d.

by replication i on step 2 . Let 1j.2,1"""j,2,Kj2 denote the
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Figure 1. Series and Parallel Representations
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Kjl replications that are in ctace J after step & . Then the number

of replications that move from state J to j' on stept + 1 is

o )
K., = I (U,
JJ )2+] m:] [O’DJJ ) 1jm;Q+] KJQ >0
(4)
=0 KjQ =0
One can now write the sample mean reward corresponding to (1) as
. .! n w©
R, =+ A. K., +A.., K. .,
k& EJ-:o zg:o PigrKisnan * Aggo Kign | a)
Ll AL AT A ] K]
= L .., - A, K.. + A.. K., ]
k J,—_o Jj’ JJj" 2=0 JJI’ L+] JJ” ¢=0 J2
where
k 5 " ;-
N.. = K.. , N.., .
=1 IS i mey 3 Deg U 4
Kooy = 0 » Ko = k>
K11 = Kygg * Kygp = & ﬁ
KJQ - Kji',2+l ¥ ij", 2+ b=l s J=0,000n

Simulation of independent replications of the original Markov

chain with transition matrix (3) in terms of the new Markov chain for




£ =1,2,... takes the form

Ko.,241 = Ko * Ky0,241

Ki,aer ™ K210

Kj,£+1 B Kj+1,j,2+l * Kj-],z - Kj-]'j-2’2+] j=2,...0-] \5)
Koo+ = Knorie ™ Kacton-2,001 * Knem Knoneren

with KO] =0, KO]] = K]] =k, Kj] =0 for j=2,...,n and where

K has the binomial distribution B(sz’pjj') for j=1,...,n.

33t

Therefore, the distribution of K given K, depends on the n

2+] L
aforementioned binomial distributions. Also, it is clear that
var Rk = var Rk « 1/k .
The computational complexity of simulating k parallel replications
depends on two factors, the cost of generating{KJj:Q, ij”z I Kj,g_] 3 3=1,...,n}
and on the absorption time Tk . If one uses Bernoulli sampling to generat=
this vector, then at each transition the cost is 0(kn). However, algorithms now

exist for directly sampling K, from the binomial distribution with

ji'e 2
cost 0(1) so that K, can be generated at a cost 0(n) . See Ahrens

and ij"

and Dieter (1980) and Fishman (1978).

eskiinadil,

Let ék denote the total number of transient states 1,...,n visited
on all transitions up to absorption. Then the mean cost of simulating k ‘
parallel replications is proportional to E ék if one adopts efficient binomial

nt f

A

sampling. Also, E S K However, note that, in practice, the cost of

K S

visiting a state is greater in the parallel case than it is in the serial case.




L am s

More importantly, we now demonstrate that merely reorganizing a serial simula-

tion into a parallel one leads to a cost saving that grows with K.

Theorem 1. Let V(A,B) denote the cost of using an estimator A to
estimate mean reward relative to the cost of using estimator B, given

var A = var B. Then for fixed n
(i) ET s KT (ET9)%.

(1) V(R.R) = 0(K7)

See the Appendix for proof.

The results of this theorem imply that mean absorption time is sub-
stantially shorter for parallel simulation and that the relat.ve cost of
serial simulation grows with k;i for fixed n . The next section shows
that yet a more favorable situation can be created for parallel simulation
by inducing an appropriate joint distribution across the Bernoulli trials

within each state.

2. Rotation Sampling in Parallel Simulation

Consider the array

U u

1 Y
U

B
13 ll]

U u

21 22 T23

U
222

(6)
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where lj denotes the number of transitions on replication j that
occurs in the cycle beginning with an exit from state 1 and ending
unon entry into state 0 . Now observe that while elements within a
row need to be independent, elements within a column need not be. All
that is required within a column is that elements have the marginal dis-
tribution u(0,1) .

Consider the transition £ =2 . In the previously described case,
U]]""’Ukl are independent, so that var K102 = var K]22 = kp]O(l-p]O) .

Now suppose one imposes the column restriction for i =1,...,k

Uil z U]] ¢ 120 (mod 1)

3
cuy i it 05y < 1)
B B K

so that U]1,...,Uk] each have U(0,1) but are dependent. This
sampling plan is a special case of rotation sampling and is discussed
in detail in Fishman and Huang (1980).

For the proposed sampling plan, let replication i jump to state

0 if Uy < pyg and to state 2 if U, 2ppy . Let K., and

Ji’s e+l
ngu 41 denote numbers of replications that move from j to j' and

j”, respectively, on transition 2+1 with this new sampling plan.

= ! - = ! = = -
Then for +1 = 2, E K102 =k K102 kp]0 and E K.|22 E K122 k(1 p]O) .
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But
f [ ' 1 —
var(Kygp 1Kyq = k) = var(Kyn 1Ky = k) = (kpy o) (1-kpy )
< var(K]OZ IK]] = k) = var(K]22 IKn = k) (8)

where ng denotes the number of replications in state j after transi-
tion ¢ and prior to transition 2+1 and iﬁio = kpyq (mod 1) . See
Theorem 3 of Fishman and Huang (1980). Note that under this new sampling
plan K;OZ and K{ZZ have variance < 1/4 , regardless of k , an
attractive feature of the induced joint distribution+ on U]l""’Ukl .
One can now extend this correlated sampling plan to all subsequent

transitions by grouping replications by state at each transition. Recall

that ijzm is the th replication on transition ¢ that is in state
[ [}
j for Kjg >0 and m = ]""'Kjg . Thfn replication ’jlm Jjumps to
[
state j if U. < p..t+ where for K. >0
1jlm2 JJ JjL
I + 221 (mod 1) g
LFTTORRS IR " (9)

Then one has:

Theorem 2.  Assume that one uses (9) in a parallel! simulation of the

+Fishman and Huang (1981) show that (8) is the minimum achievable
variance for the sum of k Bernoulli random variables, each with
the same marginal distribution.
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Markov chain with p, as in (3). Then

[ ! ’
(1) ij,’g+] = lKjl pjj,J w.p. 1- Kji Py’
K’ + K
ljl pJ'J'IJ w°p' JQ pjj'
. ! S vy e 7
(ii) Var(ijl’Q+]l KJ'Q) (KjQ pJJ') (1 -KjQ pjjl) < 1/4 .
(i) var ng,’g*] = 0(1)
See the Appendix for the proof.
The results in Theorem 2 are of considerable importance. In parti-

)

cular, (i) implies that at most only one Bernoulli trial from Ben(f}{??i;:
is needed for state j. Therefore, one can effect the proposed parallel
sampling plan with a maximum of n Bernoulli trials. Also note that for
large k the sample path at the beginning of the simulation is virtually
deterministic. Property (ii) establishes the independence of the condi-

tional variance from K}Q in contrast to the independent case where this

conditional variance is proportional to KSQ . In particular, observe
K:

that var < Pi:, =
( ST

= 0 when 0. Property (iii)

' K’
Ki, 0011 K50)
removes the conditionality on K;z and shows that for every £ the orders

of magnitude of var K and var Kf

33t e+ i, 041 are unaffected by k.

Simulation of the Markov chain for & = 1,2... now takes the form
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4 ] 1]

K0.2+1 - KoR * K10,2+ ]

' ]

Ky,001 = K21, 000

! 4 ' ’ . (]O)
Kiveel = K5an 5,000 * 501,07 501,502,000 i= 2,00

L} [ ’ ' '

Kn‘i*] ) Kn‘]'ﬂ ) Kn_]'n_z'n+] * Kng. - Kn'n-].2+]

. ' ’ ' .
with K n - k , Kj] =0 for j=2,...n and

01 =K

=0, Koy

Kooy = Wygpyj00 + C where C has the Bernoulli distribution

J,tl W 2+1

Ban(Kpr ) . Note that the principal distinction between (5) and (10) is

AL
that (5) relies on binomial sampling, whereas (10) uses Bernoulli sampling.

However, the sample paths generated on a single replication of the chain

(3) follow the same probability laws regardless of the sampling plan.

The sample mean reward is now

l ? I \
kS okl L (AyieKgeg Ay g ) (1)

and the ostensible objective of analysis is to show that the cost of
independent serial simulation relative to the cost of correlated parallel
simulation for var R, = var R,  increases with k, (k, < ky). To

ky k2 1 Y72 1
demonstrate this result we need to study T,, the time at which all &

correlated replications are absorbed (absorption time),




Theorem 3. Llet

Tep = min (t: ] Kjp r)
Jj=1
[ !
Yer = Tk ™ Tier
[ [
Mie = Kygre Ky,0-1 Pyye
= 0 g < j
and
pgé) = probability of moving from j to
Then

(i) Absorption can occur at t

Keoy €{(k-mym,0,...
, t-1
(11) Kgy = My * ZQ=] M, (-
!
n t-J t-
+) ) M.}
j=2 Tesr o F s

(ii1) There exist b=>1 and o

?

b+ k0o(Y) < k- Ko

if and only if

,0)5 m
t- (s
(1)
)
Loy P20
Q . .
(p<1é . p(L)o)

1

€(0,1) such that

Lebek 0(s%) .

(iv) T, = 0(In k). w.p. 1.

kr

(v) E r;r = 0('n k) .

r = Lllp]ZJ <k,

2= J, j+l,...

0 in 2 steps.

=1,...,r}
t .
RN
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(vi) Ykr = 0(1) w.p. 1.

(vii) E T; = 0(In k)

See the Appendix for proof.
Result (i) shows that total absorption can occur if and only if

Ki.y is inone of |1/p;,| states. Also, result (i) reveals that the

rate of entry into the absorbing state has a deterministic component

which is linear in k and a stochastic component whose magnitude is

independent of k. Together, results (i) and (ii) enable one to establish

parts (iii) through (vii). In particular, note that the ratio of mean absorption

times is E(Tk)/E(1;) = O(k/In k) , clearly favoring correlated parallel

simulation (CPS) for equal k's . However, it remains to show how var R;

compares to var Rk and how S;. the number of states visited in CPS, com-

pares to Sk'

Theorem 4. Let c¢ denote the mean computing cost of visiting a state in the

simulation using rotation sampling relative to that cost in a serial simulation.

For CPS and fixed n
(i) var R * 0((In k/k)?)

’

(i1) E 'S, * 0(In k)

' 3 Sk var Rk‘

- 1
c

(i11) V(R . R ) !
* bt B varR
2 2

N 2
‘ > O(k2 / (In k2)3) and k, < k

2 1

See the Appendix for the proof of part (i) . Part (ii) follows from part (v)

Ao




J&T -

of Theorem 3 and part (iii) follows from the observation that

ES, +varR =0 ()

1
Part (iii) is the result of ultimate interest in this study. It shows

Ky

that a lower bound 0(k§ / (In k2)3) exists on the cost of

achieving a specified accuracy with independent serial tours relative

to the cost of achieving the same accuracy (var Rk = var R& ) with
] 2

correlated parailel replications. Moreover, one can easily show that

2
this bound looks like O(kz) as the accuracy requirement increases

(smaller variance). The next section demonstrates how these

bounds fare in practice.




3. An Illustration

This section describes a simulation designed to show how the
theoretical results of Section 2 fare in practice. Consider a single
server queueing system with independent and identically distributed
exponential interarrival times with rate A , independent and identi-
cally distributed exponential service times with rate w >) and
finite capacity n . Here jobs that arrtve when n jobs are already
in the system merely go away. Corresponding to this continuous time
representation one can view this sytem as a nearest neighbor Markov
chain with Pije = w/(Aw) 3=1,....n .

As a figure of merit we take mean number of customers in system
(u) the analytical expression for which appears in Gross and Harris

(1974, p.67). In the serial model we estimate this quantity by

] [ 1K
k | T+) Zm=12j=] J(ij,m + ij"m)J
b = —F _
1 5. + .]_ Zk Zn (N + N )
kK | X 2w m=1 g1 ji'm Jjj'm
8 .

In the parallel model using rotation sampling we estimate y

by

(12)
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r ] -
R k o" ' !
N L T g . (13)
k : rk L T, M (K' . )T
- - — s + 24
kK [ 7 W zg=]xj=] jjte T Nyie
L J

Note that (12) and (13) are ratio estimators in contrast to (1) and
(11) which are linearestimators. As a result, (12) and (13) are biased
estimators of u and one additional inquiry that we make here concerns
which estimator has the smaller bias. Also, it is of interest to study
the extent to which the bounding results in Theorem 4 apply to ratio
estimation.

We are interested in observing how ESk;/ESL y var ﬁk/var ﬁ; and
Aw . For convenience and without

V(ﬁk,ﬁé) vary with  k,n and p =

loss of generality we set w =1 . For each value of k given in Table

1, 1000 independent replications were performed for each experimental

layout.

Table 1

Experimental Layout

k= 2"
n
p 1 3 7
0.5 m=1,...,8 m=2,...,9 m=3, ,10
0.9 m=1,...,8 m=2,...,9 m=3, .10

R Para e

PR A
drnsie . ibdh * Ui 2.
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This represents 1000 replications on each of the 48 experiments

corresponding to a unique triplet (k,n,p)
Table 2 shows selected ratios. Scrutinizing these results one
sees that ES /ES, ., var Gk/var ﬁé and V(ﬁk.ﬁ;) all favor
correlated sampling. In particular, for fixed p and n , increas-
ing k 1increases these ratios. For fixed p and k , increasing
n shows a degradation in these ratios. This is consistent with our
theoretical results. However, the most interesting observation occurs
for fixed k and n . Here the ratio var Gk/ var G; shows little effect
due to changing p from0.05 to 0.9. Whether or not this observation denotes
an invariance in the performance o° our proposed method with changes in
o remains a topic for future investigation.
As prevously mentioned, use of the ratio estimators (12) and
(13) enable one to study relative bias. The ratios (Eﬁk-u)/(Eﬁ;-u)
in Table 2 show that correlated sampling always produces a smaller
absolute bias. However, the empirical results do not permit one to
predict how the relative bias changes with k, n and p .
Several other results not available in Table 2 deserve mention.
Firstly, for the 48 triplets considered the bias in GL did not
exceed 0.1y and usually was considerably smaller. Secondly, for -

fixed o and n a plot of ETk/ET;( versus k/In k showed the $

behavior dictated by (iii) of Theorem 3. Thirdly, a plot of var GL

versus (In k/k)? revealed a linear relationship as k- < confirming
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Table 2

Simulation Results for Empirica) Example Based on 1000

Independent Replications

K
! -7
: Esy
| , p=0.5 Nag.9
~on
N | 3 7 1 _ _3 7
2 1.49 1.39
4 2.23 1.52 2.05 1.27
b 3.6} 1.95 1.74 3.2 1.51 1.26
16 6.13 2.51 2.28 5.44 2.04 1.3F
k¥4 10.32 3.45 2.9) 9.29 2.87 1.68
64 18.63 5.25 4.02 16.52 4,30 2.08
128 33.02 8.18 5.62 29.14 7.04 2.718
256 58.93 13.39 8.37 53.12 11.90 4.06
512 23.13 12.39 20.68 6.37
1024 18.64 10.80
A
var uk
Al
var uk
2 1.38 1.95
4 2.20 1.63 3.23 1.98
8 4.09 2.22 1.32 5.18 2.36 1.62
16 6.80 2.96 1.65 7.04 3.44 1.82
32 10.43 4.05 1.95 10.73 4.49 2.2
64 26.21 6.44 2.68 19.71 6.54 .47
148 34.40 1.1 3.68 37.05 10.22 4.02
256 73.19 16.69 6.08 67.26 16.9) 6.1¢
512 33.84 9.53 28.34 8.70
1024 13.55 14.€8
n Al E Sk var ﬁk
YY) s
ES var
K K
2 2.06 2.70
4 4.90 2.48 6.63 2.50
8 14.77 4.38 2. 13.63 3.56 2.0
16 37.52 7.43 3.n 38.28 7.02 2.51
32 107.68 13.96 5.67 99.73 12.88 3.82
64 488.33 33.81 10.77 325.61 28.12 5.15
128 1136.03 90.75 20.72 1079.64 71.93 11.18
256 4313.15 223.57 50.90 3573.16 201,21 25.00
512 782.75 117.86 586.12 55.92
1024 252.56 155.69 R
|
n 'i
E by -u
Al
£y -
2 1.6} 1.48
4 3.60 1.70 3.2 2.02
8 2.45 1.85 1.1 -19.95 2.60 1.51
16 10.04 4.5 1.5% -4.61 2.08 2.23
32 -8.36 -6.70 4,42 -5.87 2.38 1.98
64 8.87 1.64 3.50 51.34 -20.38 3.13
128 11.29 8.06 -4,52 -6.45 -52.94 3.2%
256 58.03 14.61 2.48 4.92 424.09 -14.64
512 25.96 -1.35 99.39 20.48 i
1024 -12.67 23.60
1
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the applicability of the lower bound O((1n k/k)?) for this ratio estimator
as well. Fourthly, empirical observation showed that for fixed ¢ and

n var T; = 0(1) as k== . This too remains a topic for future study.
Lastly, we comment about ¢, the mean computing cost associated with
visiting a state in the parallel simulation using rotation sampling
relative to that mean cost in the serial simulation. For n=1, ¢ % 3.5
as k increases; for n=3and 7 , ¢ ® 2.5 as k increases. This is not
a serious issue for three reasons. Firstly increasing k firmly
establishes the superiority of parallel simulation. Secondly, these
estimates of ¢ come from simulation experience in which many interim
statistics, which are not normally collected in a simulation, were recorded
for evaluation purposes. This additional collection naturally added to
computing cost. Thirdly, since no attempt was made to optimize the pro-
gramming code used, one expects that more careful attention to code would

reduce c.

4, More General Markov Chain

We now consider the more general case of an aperiodic positive
recurrent n+l state Markov chain where transitions to more than two
states are possible, Poo = 0 and where we select state 0 as the
regeneration point. Then over k independent epochs the sample mean
reward is

n n k

1 .
Ro=+1 ) I AN

which again has var Rk « 1/k .




To obtain an equivalent formulation for &k parallel, but indepen-

dent, replications we begin our simulation with k departures from

state 0 . Llet r-= l....sj} denote the ordered sequence

m. ;
jr

(m of the s\j states that a replicqtion can enter from

jr ‘ mj.r*]) ;

state j for j =1,...,n and define G5 * ) Pin - Then the
J m:O m

simulation is for q. :0:

75,0

1. Move replication { to state "O.r if qO.mO o s U“
for r=1,...,n and {1 = 1,...,k where U1] ~ u{0,1) .

2. Modify P, O that p°0-1 and poj-o for §=1,....n.

<q
o'mO.r

3. On step L+1 where ¢ 21 and for § = 1,...,n, {f Kjtj' 0
move replication 1, to state m if q s U, -
Jem Jr ij‘r_] 130“,{4'1
" <q. where U ~ y(0,1) for m=1,...,K., and
ij,r 1j2m.2’] Je
re= l.....sj . )
4. Stop at step T = min{&: KOz = k; £ =1,2,...}
The sample mean reward is
s
] n J T*‘1 K
R, = . ) .
koK L0 fpat Treg Mjp 3ampet] (¥3)

If one imposes the restriction ( 9 ) , the simulation remains as above
in principle with K;J replacing K, 1in steps 1 through 4 . The
sample mean reward {s then

, oy oun 5 T;-l

Ry = ) ! A, K'
Lok J=0 r=l Zg.o ijr j.mjr,z+1

Moreover, one has:




Theorem 5 . If the restriction in ( 9 ) {s imposed, then

(1) For r = 1.....sJ
Kg.mjr_g,] = |Q) - (ps -1 w.p. max(P,Q) - @
= 1Q) - P} w.p. 1 - 2 max(P,Q)

= Q) - (P} 1] w.p. max(P,Q) - P

where P - K’ q. , N:=xk'q. , PP (mod1) and § = Q (mod 1) .
efime Ly Jm )
. B , 7 T
(1) var(Kyy g [Kig) = (Kygpy 000 = Kygpys) s /8
(iii) var Kij,i+1 = 0(1),

See the Appendix for the proof.

As observed for the nearest neighbor model, a simulation using (9)
for large k has transitions near the beginning that are essentially
deterministic. Also, the random component of a transition from one state
to another has the Bernoulli distribution, since examination of part (1)

of Theorem 5 shows that only two of the three outcomes are possible.

’ !
With regard to the total absorption time Tk and var Rk » 1t s not

difficult to show that they behave as in the nearest neighbor case as a

1
function of k and n . However, S. , the number of states visited,

- ,
calls for special attention. Whereas one has L Sk < nt TL for the
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‘ ' n '
< < n?
nearest neighbor model, it is here ESy ¢ E(Ty) 2j=1 sy=n ET,

i This results from the observation that sj computations are necessary
!
to allocate the Kjg replications in state j on transition ¢
We summarize these observations in Theorem 6.

Theorem 6. For the more general finite state Markov chain

(1) ETk = 0{In k)
(i) var R; < 0((In k/k)?)
(i11) ES, < 0(In k)

(V) V(RLR)D 2 0(k7/ (1n K)?)

1Y

Proofs follow in a manner analogous to those for earlier theorems and, to
conserve space, are omitted here.

5. Unresolved Issues

The theoretical results of Sections 1 and 2 together with empirical
observations of Section 3 unzquivocally demonstrate the value of rotation
sampling for reducing variance in the simulation of Markov chains. We
now address several ancillary problems reasonable - ':tions to which are

necessary before one can move totally from theory to practical implementa-

g

tion.




Normality

When simulating k independent epochs in series, an experimenter
ultimately relies on the central limit theorem to derive an acceptable
approximating distribution theory for confidence intervals. For inde-
pendent parallel replications, there is some plausibility in assuming
normality for at least some states when k is large. This follows
from the observation that the binomial distribution converges to the
normal as k>« . For correlated parallel replications using (9), the
Bernoulli distributions in each state for the sum of all members indi-
cates clearly that no convergence to normality exists, regardless of
the magnitude of k . In summary, superconvergerce of variance is

achieved at the loss of convergence to normality.
Variance Estimation

Simulating independent epochs serially also enables one to estimate
the variance needed to assess accuracy. Regrettably, at the current
writing no comparable ease of estimation exists for k correlated

1

parallel replications. For Rk as in (11) a conceivable upper bound

! 1
estimate on var R is (n A'Tk/Zk)2 where A=ssup max

I1 s‘A~'II‘)'
j=1,...,n 3

IA..
JJ
The value of this estimate remains to be studied in detail. For the ratio

estimator (13), no comparable proposal is currently available.

T T e g : ’ . A R
' - ﬁ ‘: e m
JENGP UURTUN. | (PPN POV o abdadt .
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Sequential Estimation

Although one should not minimize the importance of the loss of

L
convergence to normality and the ability to estimate var R at

k ’
least one issue of importance in simulation mitigates the seriousness

’
of the loss. If one sets out to estimate, say, E Rk to within an

accuracy of t5, then a sequential estimation procedure inevitably
plays a role. A principal result in this area is in Chow and Robbins
(1965) and is described in Fishman (1978, Ch. 2) for the special cir-
cumstances of discrete event simulation. Let R;(m) denote the mth
independent macroreplication of the new Markov chain were each macro-
replication consists of k «correlated parallel replications of the

original chain. Then one runs m* macroreplications with outcomes

! ! ! *
Rk(]),Rk(Z),...,Rk(m ) , termination occurring after the macroreplicati~-

(m*) dictated by the stopping rule associated with the procedure. By
making k Tlarge one achieves the benefit of correlated sampling and
allows an experimenter to opt for a very small & . Since as ¢~ 0

the relevance of the Chow-Robbins result for practice grows, one sees that
in this context the accelerated convergence that correlated replications
induces in var R; compensates for the loss of normal convergence and the

ability to estimate var R; directly.

Fincte State Space
The results of this paper clearly show that the lower bound on the

relative benefit of correlated parallel sampling diminishes for fixed

B GE.L2L
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k and increasing n . Although the seriousness of this weakening

of the boundary remains a topic for further research, one can draw
solace from [able 3 which gives the mean number of states occupied

per transition for the simulations of Section 4. Observe the relatively
slow rate of increuse with regard to k .

Table 3

Sample Mean Number of Occupied States per Transition

8 16 32 64 128 256 512 1024

311.20 1.40 1.67 1.92 2.10 2.20 2.30

117 131 1,53 1,77 2.0 2.38  2.76 3.2

— - - -

1.46 1.76 2.01 2.18 2.28 2.38 2.44
711.36 1.68 2.18 2.79 3.49 4.05 4.47 4.80

Transdient Simulation

As described here, the simulation we have in mind aims at estimating
a steady-state characteristic of a Markov chain. Alternatively one may
be interested in the paths between states i and j and function of
these paths. Since the choice of regenerative simulation via state 0
was merely a convenience of exposition, it is not difficult to see that
in the transient case one can construct correlated parallel replications

which have all the desirable features given in Sections 3 and 5.
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APPENDIX
Proof of Theorem 1. Let
(¢) = pr(moving from state j to state 0 in . steps) )

ij
Since the parallel replications remain independent, one has

. @ t
m (2) k-1 (t) N
£ Ty -k thl t (2Q=1 Pig ) g m=1,2

3

m

Then

ET:

_ " >y . 2
K Covar Tk +E Tk « KET

from which it follows that

. % 2y
13 Tk < k7 (ET)

For part fii)note the specification that var Rk = var ék . Since

£ Tk = k w(gn) one has for fixed n

™
w
byl

V(R R ) = 2 o(k?) .

ES

k

c——— -
s e PN .&‘J!E“ .
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Proof of Theorem 2
]
One can write ij',;+1 as
Kl
Kl , \ J-; I (U + m—} \mod ") (’p. ]\
AN S S ‘O.DJJr) et ,;;"

From Lemma 5.0 nf Fishinan and Huang (1980), we huve equivalent)y

1]

K.
N S <U'”"] ) L2
I et =] [0.p: K'
where KKl U +:'u] . (mod 1) and p = P, Let
] J)'u]' o
$| L (VJJ,"’] i) Then
- - ' { '
DO 1 min{l, kK p)
P] =win{1,5 p) - max{0, min. 1, ¥'p - 1)
) - o - max{(0, mincl, K'p - 1)
0
p.o= 1 - ?0 - P] - max{0, min 1, V'p - )
-1
P ) - P, - max(0, min 1, K'p - ¢t')
t Cor t
v -0
SO that
[ . ] \ !
( ' - ‘ ! - ; : I I N
pr(.klJ Y t) T - max(0, mini}, ¥'p - ¢ t - 0,1

Therefore,

<oy o
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pr(K3j1,2+] <t) =0 0<t < |K'pj-1

PriKi;* sy = K'PI) = 1 - K'p+ [K'py =1 - KTp

’p

Priksi oy = K'pp + 1)

which establishes (i) . Note that x3j, 2ol - (K'p] has the Bernoullj
distribution 8«1((75) .

- -

Proof of (ii) follows immediately. Since E(K’ Y osok'p e N

3han
K')? = (k'p)7 (1 - Kp) + (iK'ps + 1Y K'p we nave
' ' - - —-
K oK = (K .. . .
33 el kg ) T (Kpep g 3Py’
Theorem 3 of Fichnar and huang (19R80).

- k'p  and E(K'

J)',?+]:

var( (1 - K ) < 1/4 . 1t also follows fror

We prove (i1i) by induction. Observe that

o ) N Lot ’ _ ot
var kJm‘;.‘ = f var(kjm,«‘]!KJI) + me var K}Q m= 3,
k
k Since
! P! . L - r - , , <
var\KJH'I"jk];) (Kvajm)(l Kjipjm) 1/4 (A.3)
£ var(KJm‘v"lKji) < 1/4 ., (A.4)
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Also
! !
var(ij’]lKJO) = 0
ar K! o =0
v 30
and
' - ' + K. + 2 cov(K, K'
var KJ'U] = var KJ,_]P var i"jt cov 'y J.njc)
' I ' e
s [(var Kj'jl) + (var Kj"ji) ] (A.5)
so that
k' + p [{ K )<+ (var K )5];
VAT Pymyier 4t Pymtivar Kyrg oy var B e
] ' ; ' L2 \
4t [(var K ').Q-1) {var KJMJ.;-W) ] (A6
where Sup ' i, =1, .. ,n .
beginming with ¢ = 1 , one can easily show that the magnitudes of
! [} ‘ .
.o f = 0,...,
var KJm'] , var ij.? ., var KJN.J . or ] 0 P )
are independent of k . Therefore, it follows by induction that ﬁ
var ij,.ol 0{1)




Proof of Theorem 3

Let Qt denote the probability of total absorption on transition

t. Then

’

Qt - pr(Ko’t_I < k, KOt = k)

k-1 , ,

!
Zm=0 pr(Ky, = k | Ko,t-1= m) pr(KO’t_] = m)

’

Recall that for given K

jn
! = 1K, 1-¥7
K300 = 0 Pyyed] NP ji Pyge
K. ' ] K
= . ., + .D. . .
Byg Pjj° ] WP R0 Py

so that

!

] ! —_— ’
pr (Kgy = k I Kg y g =m) = (k-m) pyg pr(Ky o g = k-m | Ky ooy =

3

m=k - r,...,k -1

=0 otherwise.

[
Therefore, Q, = 0 unless Et_1€:{(k-m.m,O,...,0),m=1,...,r} ,

which proves (i).

AT




1 il

i \

i \ \
T

Part (i{) follows from merely writing down the transition pattern

into each state and regrouping terms. To prove (iii) one notes that

ji‘
(b) JJ“ =0 J=1,...,n g
t .
(i) t .
() ot il =50, 3

Note (c) is a standard result for transitions from a transient state to an

absorbing state (e.g. Cox and Miller, 1965). Observe that

R TR UR S S R B
TS N TIE LA
j=1 Ta=1 j=1 470
where b - 1 and is finite for fixed n and all t > 1 . Therefore,
b + k(1 - Z::] pgé)) cko- Ky, s b+ k(- z:=1 pgg) )

so that for p = 6]

!

t
Ot<‘b+k0(;\)$

b+ koleh) <k -K

which proves part (iii)
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T; T
Observe that r < b+ k 0(+ *") and -b + k 0( kr) <

!
Therefore, 0{1n k) < Tkr < 0 {In k) which establishes (iv) and (v).

1

Now observe that for t > 7 the number of replications remaining

kr
in the transient set is independent of k . Therefore, Ykr = 0(1)w.p. 1 so
]
that E Tk = 0(In k), proving (vi) and (vii).
Proof of Theorem 4(i)
Let
o1 (A, K Aein Kein )
= .. .. + A, -
U N AN 1 S S KN F
From {(1ii) of Theorem 2 one has var 0, = 0(1) . From (iii) of Tnecrerm 2
[}
there exists a constant b] such that Tkr < b] In k. Therefore, one can
represent Rk as
RO= 17 D
= — +€
k k ]sisb11n k ?
where ¢ 1is a random variable whose distribution is independent of «.
Finally
[
var R = 0 ({by In k/k)* ) = 0 ((In k/k)?) ,

which establishes (i).
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Proof of Theorem 5

Let

K

U+e-1
R ( -)
g=1 L9.p)° K

t(qg,p) =

where 0 :q “p =1 and U~ U(0,1) . Observe that

K-m

pril{q,p) = vl =)  pr{L(0,q) = j, L(O,p) = j+m] m=0,...

3=0

From part (1) in Theorem 2 we have

pr(L(0,q) = 1Kql ] =1-Kq
pr{L(0,p) = tkps] =1-Kp
pr{L(0,q) = LKql+ 1] = Kq
pr(L(0,p) = IKkpJ+ 1] = Kp




so that

pr{L(0,q)

pr[L(0,q) = 1 Kq ), L{0,p)

pr{t(0,q)

pr(L(0,q) =1 Kq )

LKg ), L(O,p)

-39-

LKpJ 1 =1 - max(Kq,Kp)

LkpJ+ 1) = max(0, Kp - Kq)

LKq ) + 1, L(O,p) = LKpy + 1] = min(Kp,Kq)

+ 1, L(0,p) =LKp 1] = max(0, Kq - Kp) .

Substituting into (A.7) gives

priL(q,p) =1 Kp j

priL(g.,p) =L Kp}

prit(q,p) = L Kp

Then part (i) holds for
!

i

Part (ii) follows

and K = K

in a manner similar to

LKqj - 1] = max(0, Kq - Kp)
LKgJ] = 1 - max(Kp, Kq) + min(Kp, Kq) (A.8)
LKay + 1] = max(0, Kp - Kq) .
qQ = qy » P = q , L{q,p) = K.
Jams VL Jam s it

immediately from (A.8) and part (iii) follows

part (iii) of Theorem 2.
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