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LANGEVIN EQUATIONS WITH POISSON PERTURBANCES

Oleg K. Zakusilo
Department of Cybernetics

Kiev State University, Kiev, U.S.S.R.

Seminar Presentation, January 21, 1981

ABSTRACT

Let z(t) E Rn be a generalized Poisson process with parameter X.

In the present paper, the conditions of existence and limiting behavior

as A * or as X * 0 of the stationary distribution of the solution

of Langevin equation dx(t) - Ax(t) + dz(t) are investigated. Using these

results, the distribution of virtual waiting time in a queueing system with

variable service speed is studied.
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1. Introduction
Let z(t) = (zl(t), z 2(t)..., Z(t))T e Rn be a generalized

Poisson process with parameter X and jumps xl, x2 ,..., xm, .... Let also

A: Rn -Rn  be a linear onerator determined by the atrix A = JIaij n

(We suppose that the basis in RP is fixed.)

The present paper deals with conditions of existence and limiting pro-

perties as X or as A . 0 , of stationary distribution of the process

x(t) = (xl(t),..., Xn(t))T e , which satisfies the formal equation

dx(t) = Ax(t)dt + dz(t) (1.1)

The equation (1.1) is a continuous analog of the autoregression eauatior

xm+ 1 = (eA+I)x m + z*+ 1

where the distribution of independent identically distributed (i.i.d.)

random vectors z1 , z 2 ,... has atom at zero with weight 1 - F . Thus,

it can describe some processes connected with radioactive decay, queuing

systems with changeable rate of service, etc.

2. Stationary Distribution and the Conditions of its Existence

As usual, we will assume that the differential equation (1.1) with

initial condition x(0) =x is equivalent to the intevral equation.
t

x(t) = x0 + f Ax(u)du + z(t) (2.1)
0

which holds with probability one for all values of t.

In what follows, we assume that the process z(t) has rivhtcontinuous

sample paths with probability one.
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Lemma 2.1. The equation (2.1) has a unique solution in the class of

measurable processes. This solution is a rightcontinuous strongly Markovian

process and can be written in the form

Sft
x(t) = exp {Atlx0 + exp {A(t-u)}dz(u) (2.2)

0

where the integral on the right-hand side of (2.2) is a Stiltjes integral

and exists with probability one.

The proof of this lemna is routine.

Lemma 2.2. The one-dimensional distributions of the process x(t)

are infinitely divisible and have the characteristic functions (c.f.)

'(s;t) = E exp {i(s,x(t))l =

exp {i(s,exp {At}x0 ) - 4 (1-v (exp {ATu}s))du} (2.3)
0

where v (s) = E {exp i(s,xl)}

The proof of this lemma follows from the representation (2.2).

Theorem 2.1. The process x(t) possesses limiting distribution as

t . which does not depend on the initial state x0  if and only if

1) the eigenvalues of A lie in the left halfplane;

2) E log (l+1xl 1 ) < - .

Proof. If IF(s;t) = T(s;t,x0 ) - T(s) as t . and P(s) is continuous,

then 'V(s) does not vanish since it is a c.f. of an infinitely divisible

distribution in Rn . Thus

exp {i(s,exp {At}x0) - '(s;t,2x)'i (s;t,x0 ) -0 1

for all initial values x0 and s E

This is possible if and only if the condition 1) holds. In this case,

we have the equality
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(s) = exp (-X f(1-p (exp {ATu}s))du} (2.4)
0

It is easy to check that the infinitely divisible c.f. (s;t) and

T(s) determined by (2.3) and (2.4) have the Lbvy representations

log '(s;t) = i(s,y) Q ( s ) + f [exp {i(s,x)}
Ix1>0

- 1 - i(s,x)(1+(x,x))- ]Nt(dx) (2.5)

log T(s) i(s,Y) - Q(s) + f (exp {i(s,x)}

Jx 1>0l o

- 1 - i(s,x)(l+(x,x))-l]N(dx) (2.6)

where

Y= Aj f exp {Aulx(l+(exp {Aulx,exp {Au)x))-iP{xledx~du + exp {Atlx00 Rn

y ()A fo f exp f~ux(l+(exp {Au~x,exp {Aulx)) 'P{xledx}du3il.

Qt(S) = Q(s) = 0 ,

Nt(B) = X P{exp {AulxleB}du
0

N(B) = N(B;X) = P{exp {Au}XleB}du
0

It follows from the theorem proved in (4, p. 188] that I(s,t) T (s)

if and only if

a) Nt(B) - N(B) as t for continuity sets B of N

lying in RnS ,SF- {x: IxI< C

b) yt - y as t - co;
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c) li li f (x,x)Nt(dx)- 0-o t-- O<lxl<e

Using the scheme of the proof of the theorem 1 in [5] we can show that

the condition a) is equivalent to the condition 2) of the theorem.

Since Nt(B) < N(B) , we have

0 < f IxlNt(dx) < f IxJN(dx) (2.7)

o<1 l<e o<Ixj Lz

Thus, using the estimations

J xN(dx) =J rdrN(Sr) =f N(SE/Sr)dr <
O<0xl<F 0 0

f E N(O'Sr) d = f P{ exp {Au}x I I >r}dudr <
0 0 0

Xf P{xli+l > cr exp {au}}dudr =

0

ff G P{a'llog [(Ixll+l)(rc)Y'] .>uldudr
0 0

X E:Ea' log [(1xll+l)(rc)'l)dr
0

Aa -1(e log (lx+l) - cc log e) (2.8)

which are valid for small values of e and some a > 0 c > 0 ,we can

easily deduce c). The condition b) can be checked in the same manner.

3. Limiting Behavior of the Stationary Distribution as X

Although the formula (2.4) gives the explicit form of c.f. of sta-

tionary distribution of x(t) , it is of interest to investigate its limiting

behavior as X - . In this part of the paper, we will study the limiting

distributions of random vectors b l(X)(x(t)-a(X)) under the assumption



-5-

that x(t) has a stationary distribution. (Here a(X) E Rn  and

b(X) > 0 are nonrandom functions.) The class of nondegenerate limiting

distributions for such vectors coincides with the class of stable distribu-

tions in Rn , which were investigated by P. IUvy [3], F. Feldhaim [1]

and E. L. Rva&va [4]. It has been shown there that stable distributions in

Rn are infinitely divisible and their c.f. have the form

exp {-Isl<ct(s/Isl)+ic 2(s/Isl)I + i(8,s)J , 0 < a < 2 a 1

S(s)
ep{-Isl[%Cls/Isl)+ic Cs)] + i(Os)} , a = 1 (3.1) i

2i

where cl(s/Is I) = c(lcos(s3.l1)d(w),

c2(s/Is) -c tan(- 1i) A A2-2-r)f o (s,w) I Cos (s "i) I-dHw M

c (s) = 27T'-fcos(A, ) log (Is(Jcos(s$w)J~dH(w)

a e Rn is a constant vector, w denotes a point on the unit sphere (and

the vector joining the origin to it), H is a finite measure on the unit

sphere, and the domain of the integration is the entire surface of the

unit sphere. The number a is called the characteristic exponent of the

distribution. If a = 2 , we have the multidimensional normal distribution.

Rva~eva [4, p. 192] showed that for the nondegenerate stable laws in

Rn the Lvy representations of their c.f.

p(s) = exp {i(a,s)-2-1Q(s) f (exp {i(s,x)} - 1 - i(s,x)(l+(x,x))-l)dN0(x)IxI>o 0

have such characteristics:

a) for a - 2 , N0 (B) is constant, Q(s) = 2(s,s)Cl(s/JsJ) (3.2)



-6-

b) for 0 < a < 2 , N0 (B) =R'H(W) ,Q(s) =0 (3.3)

for every set B of the form {x: lxi > R , w EW} , W being a subset of

the surface of the unit sphere.

Theorem 3.1. If for some suitably chosen nonrandom functions,

a(X) e Rn and b(X) > 0 the distribution of the vector b- IX)(x(t)-a(X))

weakly converges as X - to a nondegenerate distribution 11, then, 11 is

a stable distribution in Rn with characteristic exponent a , 0 < a < 2

and b(A) is a regularly varying function with exponent a-1

Proof. It follows from the formula (2.6) that the c.f. of the vector

x(t) has the form T(s) = exp {AK(s)) , where K(s) does not depend on

X. Thus, we can consider x(t) - x(t;X) as the value of a homogeneous

process with independent increments at the moment X. This implies the

statement of the theorem. Later, we will need the following result.

Lemma 3.1. If the i.i.d. vectors xk belong to the domain of attrac-

tion of a stable law in Rn with characteristic exponent a then lXkl

belong to the domain of attraction of a stable law in R with the same

exponent a , 0 < a < 2

The proof of this lemma follows innediately from the theorems 4.1

and 4.2 of the work [4].

Remark 3.1. We will also use the fact that the norming functions

bl(n) and b2 (n) for which the sequences b1 (n)(x 1+.. .+xn-an) and

121(n)(jXl ...+'Xn-an) weakly converge can be chosen equal,

bl(n) = b2 (n) = b(n) . This follows from theorem 2.3 of the work [4].

We will consider the cases a < 2 and a = 2 separately.

Theorem 3.2. The distribution of the vector b-l(x)(x(t;X)-a(A))

weakly converges to the stable law in Rn with characteristic exponent
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0 < a < 2 and spectral L~vy measure N0  if and only if the distribution

of the vector x, belongs to the domain of attraction of the stable law

with the same exponent a and spectral Lvy measure M. The measures N0  and

M determine each other uniquely by the equality
00

N0(B) =f M(exp {-Au}B)du

0

Proof. Necessity. From (2.6) we have

log E exp {i(s,b- (X)(x(t;A)-a(A))))=

i(s,al(X)) + f (exp {i(s,x)} - 1 - i(s,x)(l+(x,x))-l)dN(b(X)x) (3.4)

IxI>0

where al(X) = b-1 (X)(y(X)-a(X)- f x(l+(x,x))-idN(x))

IxI>O

+ f x(l+(x,x))-ldN(b(X)x) .

[x(>O

(Note that the integrals converge because of inequality (2.8).) It follows

from theorem 1.2 [4, p. 188] that the required convergence is possible if

and only if

a) N(b(X)B) = N(X;b(X)B)- N0(B) , (3.5)

where N0  is determined by (3.3) and B C Rn/S is its continuity set;

b) lim 1-im f (x,x)dN(xb(X)) = 0; (3.6)C 0 X -- I x I < E

c) lim Y() = "o

The condition (3.5) implies the weak compactness of the family of measures

AP{exp {Ar}x I e b(X)B} (3.7)
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in Rn/S , E > 0 To prove this, we consider the Borel sets of the form

B = LJ0exp {-Av}S , where S is a hypersurface in Rn  and the sets exp {-Av}S

do not intersect for different values of v. For such sets we have

N(b().)B) = X f P{exp {Au}x 1 e b(X)Bldu =

0

X f P{xle b(X) U exp {-Av}S}du = X f f P{x1 e b(X)d exp {-Av}S}du =

0 V>U 0 u

fV duP{Xe b(A)d exp {-Av}S} = X vP{xle b(x)d exp {-Av}S} - N0(B)

0 0 0

Similarly, N(b(X) exp {-Ar}B) = AJ P{exp {Au}xle b(A) exp {-Ar}B}du =fo
0C.

Xf P{xe b(X) U exp {-Av}S}du = X f P{xIe b(X)d exp {-Av}S}du
0 v>u+r 0 u+r
0-fv-r Cx duP{Xl b(X)d exp {-Av}S} = Xf (v-r)P{xle b(X)d exp {-Av}S} =

r 0 r

x f vP{xle b(X)d exp {-Av}S} - XrP{xle b(X) exp {-Ar}B} - N0 (exp {-Ar}B)
r

Since

f vP{xle b(X)d exp {-Av}S} <J vP{xle b(X)d exp {-Av}S}
r 0

the last two relations imply the weak compactness of the family (3.7) in

/s, > 0

In this case the family of measures

XP{x 1 e b(X)B} (3.8)

is also weakly compact in Rlse , £ > 0
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Since the estimate

,A)f P{exp {Au}xle b(X)B}du-- XJ P{exp {Au}xle b(X) exp {-At}B}du -I
t 0

N0(exp {-At}B) < 6

holds for large values of t if B C Rn/S, we can choose from (3.8) a

weakly convergent subsequence

XkP{Xl e b(Xk)B} M(B) (3.9)

and interchange the signs of integral and limit in the relation

N0 (B) =lim N(b(Xk)B) = lim Xkf0 P{xle b(Xk) exp {-Au)B}du
k~ok-oo 0

to obtain the equality

NO(B) =f M(exp {-Au}B)du . (3.10)
0

Since the equality (3.10) implies

M(B) = lira r (N0(B)-N 0 (exp {-Ar}B))
r*O

the measure M is determined uniquely and the sequence (3.8) weakly converges

in O/S >O,

XP{x l e b(X)B} -- M(B) , (3.11)

B C Rn/S E is a continuity set of M.

Using the condition (3.6) we can easily deduce that for almost all values

of u

lrn ThuM x f (x,x)P{exp {Aulx, e b (X) dx} =0

SIx1<C
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This is equivalent to

lim I1i X f (x,x)P{xle b(X)dx} = 0 (3.12)e 0 X _- Ix I< F

Now we can use the obvious continuous analog of theorem 2.3 in the work [4]

which states that the conditions (3.11) and (3.12) are sufficient for x1

to belong to the domain of attraction of a stable law. Since norming

function b(A) did not change, this stable law has the same characteristic

exponent a.

Sufficiency. Let the sequence b I(n)(x 1+...+xn-a n) be weakly con-

vergent to a stable law in Rn with characteristic exponent a , 0 < a < 2

It follows from lemma 3.1, remark 3.1 and theorem 1 [2, p. 313] that in this

case

P{Ix1>x) = X-L(X)

here L(x) is a slowly varying function. Without loss of generality b(n)

can be chosen monotone and satisfying the relation

nL(b(n))b -a(n) - 1 as n -

Therefore, as it follows from the properties of the regularly varying

functions (see [2, ch. VI1i])

f P(lexp {Au}xlj>Eb(A)}du < X P{Ixjj>ceb(X) exp {au}}du
t t

Aa P{Ixl>zz' 1dz < cXa-1P{Ixll>ceb(X) exp (at} -

ceb(X) exp{at} Ie

clXa- I(ceb(X) exp {at})-aLL(cFab(X) exp {at}) < c2e-aexp {-aat}
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for sufficiently large values of X.

Thus, the condition

nP{x 1 e b(n)BI - M(B) , (3.13)

which must be satisfied (see [4, th. 2.2]) implies

N(b (X)B) = XJ Pjexp (Au}xIe b(X)B}du - f M(exp {-Au}B)du (3.14)
0 0

To complete the proof, we have to show that the condition

lim iiM nb 2 (n) f (xx)P{xle dx} = 0 (3.15)

e0 n- Ixl<cb(n)

implies

lim IN Xb-() f f (x,x)P{exp {Au}x 1 e dx} = 0 (3.16)
e-0o n- IxI<eb(X) 0

In accordance with theorem 2.3 of the work [4], this conclusion and the

relation 3.14) will be sufficient for our aim. Using again the properties

of regularly varying functions, we have
00

Xb- 2 (X) f J (x,x)P{exp {Au}x i e dx}du =

Ixl<eb(X) 0

2Xb- 2 Mfjb(A) f~ 0[P{Iexp (Au}xljIy} - P{ilexp {Au}xll>cb(X)}]ydudy <
0 0

2Ab_2(2) fb(X) f - P{lexp {Au}xllj>y}ydudy <
o 0

2Xb-2 f f b() P{lXlj>cyexp {au}}ydydu =

0 0

2c-2Xb-2 A) fcEb (X) exp{au}p{xl >v}v exp {-2au}dvdu <
0 0

-I
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c1 b-(A) f (ccb(X) exp {au})2 "L(ceb(X) exp {au})exp {-2auldu =

0

c22 f 0) z-'-aL(z)dz < c3A 2 (ecb())-'L(ecb(X)) < c4 i2 a

2ecb (X)

for sufficiently large X and some c4 > 0 , a > 0

The last inequality enables us to prove (3.16). The theorem is proved.

Theorem 3.3. The distribution of the vector b'(X)(x(t,X)-a(X))

weakly converges to the normal law in Rn with c.f. exp {-2-l%(s)} if

and only if the distribution of the vector x1  belongs to the domain of

attraction of the normal law with c.f. exp {-2"Q(s)) . The quadratic

forms Q0(s) and Q(s) determine each other uniquely by the equality

Q%(s) =1 Q(exp {ATu}s)du
0

Proof. In accordance with theorems 1.2 and 2.3 of the work [41 and

the formulae obtained above, we have to prove that the relations

N(-;b(X)B) 0 , B C Rn/S , (3.17)
f sx2N(xb()B) i l

lim i f (s,x)2 )= lia lir f (s,x)2dN(xb(X)) Qo(s) (3.18)C- - O<Ixl<e + o<lxl<

are equivalent to the relations XP{lxl >cb(X)} * 0 (3.19)

lim 1 M- A f (s,x)2P{xleb(,)dxl = lim lim A f (s,x)P{xleb()dx)

e+o X- O<Ixl<E Lo 0 O<txl<e

= Q(s) (3.20)

Necessity. The condition (3.19) follows from (3.17) in the same manner

as the condition (3.11) followed from (3.5). The condition (3.18) implies
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the equicontinuity as X - and as e - 0 with respect to s of the

expressions

X f (sx) 2 P{exp {Au}Xl1 e b(X)dx}

0< Ixk~c

for almst all ueR 1

Consequently, we obtain the equicontinuity with respect to s of the

expressions

X f (sx) 2P{x 1 eb(X)dx} (3.21)

0<Ixl<c

and can suppose that a subsequence of (3.21) converges to the quadratic

form Q(s) . Since

x f (s,x)2P{exp {Au}xle b(A)dxdu =
0<{x{<e

X f (exp {A t}s,z)2P{exp {Au}xle b(X)dz}du -

0< Iexp{At}z I<c

TQo(exp {A ts) < c exp {-atl(s,s)

we obtain from (3.18) that

Q%(s) -f Q(exp {ATuls)du (3.22)
0

Since the equality (3.22) implies

Q(s) = lira r-l (Q(s)-Q0( e x p {ATr}s)

r*0

the sequence (3.21) converges to Q(s) and the condition (3.20) is fulfilled.

Sufficiency. If the conditions (3.19) and (3.20) are satisfied, then in

accordance with lemma 3.1 and remark 3.1, x, belongs to the domain of
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attraction of a normal law in R1  and b(A) - A1/ 2L(A) , where L is a

slowly varying function. Then the inverse function bi(X) has the repre-

sentation bO-(x) XLI(X) , where L1(X) is a slowly varying function

too. In this case, denoting b(X) by 1 we obtain

N(X;b(X)(Rn/S E)) = P{lexp (AuiXlj >b(x)c} <
0

If-
Af P{jxlI >ccb(A) e.xp {au}ldu - a-ib'(p) P{]xl1 >v)v- dv<0Il

a 'Ib-l( ) (vbl(v))- dv < c1b'( 1 )6(1 1 A 2 L( )) -

c 6C_ as A-'0.

Since 6 can be chosen small, N(X;b(X)(Rn/S9) -C 0 as X -. and the

condition (3.17) is satisfied. We divide the rest of the proof into two

parts.

1. E(xl,Xl) < . In this case, E(x(t,x),x(t,X)) < - and conse-

quently x(t,X) belongs to the domain of attraction of a normal law. Indeed,

we have to check that

Jo f (x,x)Ptexp tiAu}x Ie1e u
0 Rn

We have

ff (x,x)Ptexp (Aulxedx}du-2f f P{iexp tAu}xlI >yyydydu
0 Rn 0 0

2f'f P(lxi >cy exp {aullydydu -
0 0

2. P x .>vvc 2 ..-2auldvdu - c.2(2a I-.... ..
0~ 11 1



2. E(xl,x1) - .In this case

x P{[xlj >x} -0( f ydP{1x11 (*yj)

yI<x

and

urn ii x f (s,X) 2Pix 1 e b(X)dx) - lrn lrn x f (s,X) 2 p~xle b(X)dx} Q(s)

z2Thus, noting 1,(z) - 1 x dP{1xl< <x} , we have
0

X f f (s,x) 2p~exp (Aulx~e b(X)dxldu <
t IXI< E

cx f* f (x,x) P~exp (Aul eb(.I)dxldu<

2cxb (X) fP{1.X 11 >cly exp {aullydydu

2cXb-2 M Cb(X) expt1 u P{1xlj >v}cl 2 v exp {-2auldvdu

2IXb(X) f '2(clcb(x) exp (au)) exp {-Zauldu
t

xb- 2 Mf~ W.2(z)z 3 e2 b 2(A)dz<
~cb Eb(A)exp{atl

C4 AE 2 W2 (eb() exp {atl)(eb(A) exp (atl)) 2 _.cS exp {-.,at) (3.23)

(We have used theorems 1 and la from (2. p. 312-314] which give us the

following properties of L2z

a) W~2(z) is a slowly varying function and

b) Xb -2 (X)pb(X)) -C6 as X 0 C6
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Now condition (3.18) follows from (3.20) and (3.23).

Remark 3.2. It follows from the proof of theorems 3.2 and 3.3 that

the norming functions b(X) and bl(n) for which the distributions of

(x(t,X)-a(A))/b(X) and (xI+...+xn-an)/bl(n) weakly converge can be

chosen equal: b(n) = bl(n)

4. Limiting Behavior of the Stationary Distribution as X - 0

In this part, we will suppose that the matrix A is similar to the

diagonal matrix A = 16iX i  , where Xi , 1 < i < n , are the eigen-

values of A, i.e., A - TAT " , and T is a nonsingular matrix with real-

valued elements. In this case, Xi < 0 , i < I< n . We will show that

the module of x(t,X) tends to zero with an exponential speed.
p

Lemma 4.1. If X * 0 , then x(X) - 0 . The proof follows from

fornula (2.4).

Let us denote rl = ,...,nn Tlxl,

= l'""' n = T-x(t'X)

Pi P{ni = 0} , sign x = (sign xl,...sign xn) if x - (X1 ,...x n )

V i  = Ix x

For simplicity we consider only the particular case pi - 0 , 1 < i < n.

Theorem 4.1. If pi = 0 for all i, 1 < i < n , then the distribution

of

(Sign 4 , 1;11-vl....,l1n
l vn)

weakly converges as X - 0 to the distribution of

(sign n ,a,....a)

where a has the uniform distribution on the interval (0,I) and does not

- m - l II II ..
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depend on n.

Proof. The distribution of x(t,X) coincides with the distribution

of the vector

= exp {Au}dz(u) (4.1)
0

We can suppose that the process z(t) is determined by the values of

its jumps x1, x2,... and by.the lengths of the intervals between jumps V

x Tit where all xi and Ti are independent,

P{T i >x} = exp {-x}, x > 0

Thus, the formula (4.1) implies

exp {XIAT IX + exp 'IA(T... = exp {,lAT1}(Xl+E I )  (4.2)

where T1 , x, , and I are independent and the distributions of E and

1 coincide. It follows from (4.2) that

T-I= exp X-Ahl}T- (xi

or

K - exp {X'IAtI}(n +KI) where K =T-

K 1 T'1E I and the distributions of K and coincide (4.3)

According to lemma 4.1 K - 0 and we have from (4.3)

sign K= sign (n +1) p.signsign

-i Iexp - T (Ti+KI)I-l- exp (-T 1

Since exp (-T1  has uniform distribution on (0,I) and does not

depend on n, the statement of the theorem easily follows from the
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well-known properties of convergence in probability and weak convergence.

S. Applications to a Queueing System with Changeable Service Rate

In this part, we consider the case n = 1 , x 0 >0 , xi > 0. We

write equation (1.1) in the form

dx(t) = -4x(t)dt + dz(t) (5.1)

where *t > 0

Equation (5.1) is connected with a following queueing system. Input

flow is a Poisson flow with parameter X. To serve the n'th customer, the

server has to spend x n  units of work. If x(t) is the amount of work

necessary to serve the customers present in the system at the moment t, then

service rate equals to px(t). We will investigate the distribution of the

virtual waiting time 0 subject to the condition that system has stationary

distribution. (It is assumed that system has FIFO service discipline.)

Let y(t) be the amount of work performed by the moment t. Then

y(O) 0,

dy(t) = jix(t)dt (5.2)

Thus

dy(t) - dz(t) - dx(t)

and

y(t)- z(t) Xt) + x0  ft (1Ie-P(t-U))dz(u) + xo(le-t )

0

where x0 has the distribution defined by (2.4).

4
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If we denote by x the amount of work necessary to serve the considered

customer then

P{O>t} = P{y(t) < xo/x(O+)= x0 + x1

P{1f (l-e_1(t.U))dz~u) + (xo+x)(l-eUt) < xo}

0

ft lPt Plt
P{ ft (l-e_1i(tuJ)dz(u) + x(1-e' < e- x0  (5.3)

Theorem 5.1. If Ex =m 1 < ,then PO i1 as X-'

Proof. The proof follows from the relations

-i t ft

m- nyi(l-eit-Xo ixaXl-t oeu0P

0x le'u elUdz(u) e-lit e mdu ='

X'lx(l-e - Pt ) - 0 as X

Theorem 5.2. If the distribution of x belongs to the domain of attrac-

tion of a stable law with exponent a, 1 < a < 2 , then there exists a

regularly function f(X) with exponent 1-a-1 such that the distribution

of (O-l/v)f(X) weakly converges as A - to the stable law with exponent

a and c.f.

h(s) exp {(eio/2 (aU) (mle) +

f eiTa/2(l.e _Pu)adu)sot ) S > 0

0

C.. .
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Proof is analogous and follows from the theorems 3.2, 3.3 and repre-

sentation (5.3).

Theorem 5.3. If the distribution of x belongs to the domain of

attraction of a stable law with exponent a, 0 < a < 1 , then

lm P{E >t} = P{(Zi/Z2 )c > c 1 t-eU
0

where Z1 and Z2 are positive independent identically distributed random

variables and have stable distribution with exponent a.

Proof is analogous and follows from the theorem 3.2 and representation

(5.3).

Theorem 5.4. limr P{G X/ < t} = t , if t E (0,1)
X_

Proof follows from the representation (5.3) and theorem 4.1.

I>
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