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ABSTRACT “‘
{
Let z(t) € R® be a generalized Poisson process with parameter A. *

In the present paper, the conditions of existence and limiting behavior
as A +» oras A -0 of the stationary distribution of the solution E
of Langevin equation dx(t) = Ax(t) + dz(t) are investigated. Using these ¥
results, the distribution of virtual waiting time in a queueing system with }
1

l
variable service speed is studied. {
i
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1. Introduction

Let z(t) = (z)(t), zo(t)..., z,(t))T € R* be a generalized
Poisson process with parameter )\ and jumps Xy5 Xgyeees Xppenoo Let also
A: R* + &' be a linear operator determined by the matrix A = Ilaijlli ?=1 .
(We suppose that the basis in R* is fixed.) "

The present paper deals with conditions of existence and limiting pro-

perties as A +~« or as X » 0 , of stationary distribution of the process

x(t) = (xl(t),..., xn(t))T e R' , which satisfies the formal equation
dx(t) = Ax(t)dt + dz(t) 1.1
The equation (1.1) is a continuous analog of the autoregression equation

Xy = (EAT)X * 2y

where the distribution of independent identically distributed (i.i.d.)
random vectors Zys Zoyees has atom at zero with weight 1 - ¢ ., Thus,
it can describe some processes connected with radioactive decay, queuing

systems with changeable rate of service, etc,

2. Stationary Distribution and the Conditions of its Existence

As usual, we will assume that the differential eauation (1.1) with

initial condition x(0) = Xg is equivalent to the inteecral equation.
t
x(t) = xp + [ Ax(udu + z(t) (2.1)
0

which holds with probability one for all values of t.

In what follows, we assume that the process :z(t} has riehtcontinuous

sample paths with probability one.

sanlin Siaile i




Lemma 2.1. The equation (2.1) has a unique solution in the class of

measurable processes. This solution is a rightcontinuous strongly Markovian

process and can be written in the form
t
x(t) = exp {At}xo +I exp {A(t-u)}dz(u) (2.2) !
0

where the integral on the right-hand side of (2.2) is a Stiltjes integral ;
and exists with probability one. |

The proof of this lemma is routine.

Lemma 2.2. The one-dimensional distributions of the process x(t)

are infinitely divisible and have the characteristic functions (c.f.)
¥(s;t) = E exp {i(s,x(t))} =
t T
exp {i(s,exp {At}xg) - A[ (1-¢ (exp {ATu}s))du} 2.3)
0

where v (s) = E {exp i(s,xl)} .
The proof of this lemma follows from the representation (2.2).
Theorem 2.1. The process x(t) possesses limiting distribution as
t - » which does not depend on the initial state X, if and only if
1) the eigenvalues of A lie in the left halfplane;

.

2) E log (1+|x

ll) <
Proof. 1If ¥(s;t) = 'i’(s;t,xo) +¥(s) as t-+« and Y¥(s) is continuous,
then ¥(s) does not vanish since it is a c.f. of an infinitely divisible
distribution in R" . Thus

exp {i(s,exp {At}xo) = \F(s;t,Zxo)‘y'l(s;t,xo) > 1

t+ o

for all initial values X, and seR.
This is possible if and only if the condition 1) holds. In this case,

we have the equality
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¥(s) = exp {-J\! (1-¢ (exp {ATu}s))du} (2.4)
0

It is easy to check that the infinitely divisible c.f. ¥(s;t) and
¥(s) determined by (2.3) and (2.4) have the Lavy representations

log ¥(s;t) = i(s,v,) - Qu(s) + [ lexp {i(s,)}
|x|>0

- 1 - i(5,%) 1+ (x,%0) 1IN () (2.5)

log ¥(s) = i(s,v) - Qs) + [ [exp {i(s,x)}
Ix]>0

- 1 - i(s,0) (1+(x,%)) L IN@x) (2.6)

where

T
v, = A [ [ exp {auix(i+(exp {Aulx,exp {Aulx)) Pix edxddu + exp {Atkx, ,
I A 1 0

v =y =2 [ exp taux(i+(exp taudx,exp (Aub0) TPixpeaxtau
: ®

v
Qt(S) = Q(S) =0 Iy
t
N, (B) = A g Plexp {Aulx;eBlau ,
N(B) = NB;)) = A [ Plexp (AulxjeBldu .
0

It follows from the theorem proved in [4, p. 188] that ¥(s,t) - ¥(s)
if and only if

a) Nt(B) + N(B) as t »« for continuity sets B of N

lying in R“/SE,SE = {x: |x|<e} ;

b) vy > ¥ as t+e
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9 lim lin [ (XN(&) =0 .
ge+0 tro 0<|x|<e
Using the scheme of the proof of the theorem 1 in [5] we can show that
the condition a) is equivalent to the condition 2) of the theorem.
Since Nt(B) < N(B) , we have ]

0< [ IxIN@0 < [ IxING@) (2.7) %

. 0<|x|<e 0<|x|<e

Thus, using the estimations

. € €
N = [ raN) = [ NS/spdr <
0<|x|<e 0 0

€ g€ @
| N&Yspdr = A [ [ Pllexp {audx[>ridudr <
0 0 0

€ - -}

Af f P{|x1|+1 > cr exp {au}ldudr =
0 0
€ ™
A [ ptatog [(Ix;1+1) (r) ™M1 > ududr -
0 0
€

[ Eal log [(lx1|+1) (re) Yjar =

Ot

Aa'l(eE log (lx1|+1) - c'lelog €) (2.8)

which are valid for small values of ¢ and some a >0 ¢ >0, we can

easily deduce c¢). The condition b) can be checked in the same manner.

3. Limiting Behavior of the Stationary Distribution as A +

Although the formula (2.4) gives the explicit form of c.f. of sta-

tionary distribution of x(t) , it is of interest to investigate its limiting
behavior as X + « ., In this part of the paper, we will study the limiting

distributions of random vectors b°1()\)(x(t)-a()\)) under the assumption
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that x(t) has a stationary distribution. (Here a(}) € R* and

b(A) > 0 are nonrandom functions.) The class of nondegenerate limiting
distributions for such vectors coincides with the class of stable distribu-
tions in R% , which were investigated by P. Lévy [3], F. Feldhaim [1]

and E. L. Rvaleva [4]. It has been shown there that stable distributions in

R are infinitely divisible and their c.f. have the fomm

exp {-[s(%[c;(s/s[)*ic,(s/[s])] + i(8,8)} , O <a <2 ,af 1l
¥ (s) =
exp {-|s|[c(s/|s])+icy()] + i(8,8)} , a =1 (3.1)

where cl(s/|s|) = cﬁ[|cos(5€\0|adH(w),
c,(s/1s]) = -c tan@tma) [ cos (W) cos () % LaHEw)
c3(s) = 217! feos(S¥) Tog ([s{[cos(¢ ) aHGa)

Be R* is a constant vector, w denotes a point on the unit sphere (and

the vector joining the origin to it), H is a finite measure on the unit

sphere, and the domain of the integration is the entire surface of the

unit sphere. The number o is called the characteristic exponent of the

distribution. If o = 2 , we have the multidimensional normal distribution.
Rvaleva [4, p. 192] showed that for the nondegenerate stable laws in

R® the Lévy representations of their c.f.

0 (s) = e {i(8,9)-270Q()* [ (exp {ils,0} - 1 - (5, (1+(x,x)) )Ny ()

[x[>0

have such characteristics:

a) for a=2, NO(B) is constant, Q(s) = 2(s,s)C1(s/|s]) (3.2)
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b) for 0<a<2, Ny(B) = ROHW) , Q(s) = 0 (3.3)

for every set B of the form {x: |x| > R, w €W} , W being a subset of
the surface of the unit sphere.

Theorem 3.1. If for some suitably chosen nonrandom functions,

a(A) e R* and b(\) > 0 the distribution of the vector b l(A)(x(t)-a(x))
weakly converges as A - o to a nondegenerate distribution II, then, I is
a stable distribution in R" with ;haracteristic exponent o , 0 <a <2,
and b(A) is a regularly varying function with exponent a'l .

Proof. It follows from the fornmula (2.6) that the c.f. of the vector
x(t) has the form Y¥(s) = exp {AK(s)} , where K(s) does not depend on
A. Thus, we can consider x(t) = x(t;A) as the value of a homogeneous
process with independent increments at the moment A. This implies the
statement of the theorem. Later, we will need the following result.

Lemma 3.1. If the i.i.d. vectors Xy belong to the domain of attrac-
tion of a stable law in R' with characteristic exponent a then ka|
belong to the domain of attraction of a stable law in R® with the same
exponent a , 0 <a < 2.

The proof of this lemma follows immediately from the theorems 4.1
and 4.2 of the work [4].

Remark 3.1. We will also use the fact that the norming functions
by(n) and b,(n) for which the sequences bil(n)(x1+...+xn-an) and
bil(n)(|x1|+...+|xn|-a;) weakly converge can be chosen equal,
bl(n) = bz(n) = b(n) . This follows from theorem 2.3 of the work [4].

We will consider the cases o <2 and o = 2 separately.

Theorem 3.2. The distribution of the vector b-l(x)(x(t;x)—a(x))

weakly converges to the stable law in R® with characteristic exponent

P _-4,..,*__._.‘ e e - -
i M " Lt
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o, 0<a<2 and spectral Lévy measure N0 if and only if the distribution
of the vector Xy belongs to the domain of attraction of the stable law
with the same exponent o and spectral Lévy measure M. The measures N0 and

M determine each other umniquely by the equality
e <]
NyB) = [ Mlexp {-AulB)du .
0
Proof. Necessity. From (2.6) we have

log E exp {i(s,b (0 (x(t;0)-a(0)))} =

i(s,8,00) + [ (exp (i(s,0} - 1 - i(5,00+(,0) HANGOIN)  (3.4) :
[x[>0
where =p! - - + -1 i
a0 = bW am)- [ x@+x) ) |
1[50 '

N fx(1+(x,x))_1dN(b(}\)x) i

[x{>0
(Note that the integrals converge because of inequality (2.8).) It follows ﬂ

from theorem 1.2 [4, p. 188] that the required convergence is possible if

and only if ,

¥

a) N(b(A)B) = N(A;b(A)B) ~ No(B) (3.5) !

hroo !

1

where NO is determined by (3.3) and B C Rn/Se is its continuity set; %

!

b) lin Im [ (xx)dNGb()) = 0; (3.6) f
e0 oo

|x|<e

) limy() = vy -

A+ 'i

The condition (3.5) implies the weak compactness of the family of measures

AP{exp {Ar}x1 € b(})B} (3.7)
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in Rn/Se » € >0 . To prove this, we consider the Borel sets of the form

B = VL)I &P {-Av}S , where S is a hypersurface in R and the sets exp {-AV}S

do not intersect for different values of v. For such sets we have

N(b(»)B) = A f Plexp {Aulx, € b(\)B}du =
0

x] Pl eb() Uexp -aviSlau=a[ [ Plx eb()d exp {-Av}Sidu -
0 vu 0 u ‘

© v =~
A{ g duP{xle b(A)d exp {-Av}S} = A!; vP{x; € b(A)d exp {-Av}S} - Ny(B) .

Similarly, N(b(\) exp {-Ar}B) = A [ Plexp {Aulx € b(}) exp {-Ar}B}du -
0

kf P{x;eb(}) U exp {-AvlS}du = Af f P{x; e b(A)d exp {-Av}S}du = 3
0 V-_\u"'r 0 u+r

© V-T )
A [ aupix e b4 exp {-AviS} = A [ w-nPlx e b()d exp {-AvIS} =
T T

A f vP{x1€ b(A)d exp {-Av}S} - ATP{x, € b(1) exp {-Ar}B} + Ny (exp {-Ar}B) .
T

Since

0 (- -]

f VP{xle b(A)d exp {-AvlS} ig VP{x; € b(A\)d exp {-Av}S} , .
T

the last two relations imply the weak compactness of the family (3.7) in
Rn/SE , e >0 .

In this case the family of measures
>\P{x1 € b(A\)B} (3.8)

is also weakly compact in Rn/Se , >0 .




Since the estimate

,\f P{exp {Au}xle b(A)B}du = A] P{exp {Au}xle b(A) exp {-At}B}du ~
t 0

N, (exp {-At}B) < &

holds for large values of t if B C Rn/Se , we can choose from (3.8) a

weakly convergent subsequence

AkP{xle b(xk)B} + M(B) (3.9)
and interchange the signs of integral and limit in the relation

Ny(B) = Lim N(b(A)B) = lim A | P{x; € b(A) exp {-Au}Bldu
o koo 0
to obtain the equality
Ny(® = [ Mlexp {-Au}B)du . (3.10)
0
Since the equality (3.10) implies
M(B) = Lim r L (N, (B)-Ny(exp {-Ar}B)) ,
r+0

the measure M is determined uniquely and the sequence (3.8) weakly converges

in Rn/Se ,e>0,
AP{xle b(A)B} » M(B) , (3.11)
Xro
B C Rn/SE is a continuity set of M.

Using the condition (3.6) we can easily deduce that for almost all values

of u

lim Tim A I (x,x)P{exp {Au}xle b(A)dx} = 0
|x|<e

e0 oo

¥

| Vg vy :i ]ﬂ..A_. )
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This is equivalent to

limn T [ (x,0Plx e b)) = 0 (3.12)
e+0 Ao 1
|x|<e

Now we can use the obvious continuous analog of theorem 2.3 in the work [4]
which states that the conditions (3.11) and (3.12) are sufficient for X,
to belong to the domain of attraction of a stable law. Since norming
function b()) did not change, this stable law has the same characteristic
exponent q.

Sufficiency. Let the sequence b'l(n)(x1+...+xn-an) be weakly con-

vergent to a stable law in R with characteristic exponent o , 0 <a < 2 .

It follows from lemma 3.1, remark 3.1 and theorem 1 [2, p. 313] that in this

case
P{|x, |>x} = x X ,
where L(x) is a slowly varying function. Without loss of generality b(n)
can be chosen monotone and satisfying the relation
nL(b(n))b %) » 1 as n-+®,

Therefore, as it follows from the properties of the regularly varying

functions (see {2, ch. VIII])

x[ P{lexp {Aulx, |>eb(})}du < x] P{|x; |>ceb(A) exp {au}}du =
t t

aat ]- P{]x1]>z}z'ldz.i clxa'lP{lxl]>ceb(A) exp {at}} =

ceb(\)exp{at}

clxa'l(ceb(k) exp {at}) ®L{ceb(r) exp {at}) < cze°aexp {-aat}

Puin:
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for sufficiently large values of A.
Thus, the condition
nP{xle b(n)B} + M(B) , (3.13)
nre

which must be satisfied (see [4, th. 2.2]) implies

o0

N(b (A\)B) = A]m P{exp {Au}xle b(A)B}du -»f M(exp {-Au}B)du (3.14)
0 0

To complete the proof, we have to show that the condition

lim Tim nb 4(n) f (x,x)P{x, € dx} = 0 (3.15)
&0 e |x|<eb(n)

implies

lim Iim Ab'z()\) f f (x,x)Plexp {Au}x;edx} = 0 (3.16)
e+0 Mmoo lx|<€b()\) 0
In accordance with theorem 2.3 of the work [4], this conclusion and the
relation 3.14) will be sufficient for our aim. Using again the properties

of regularly varying functions, we have

Ab~2(3) [ | xxplexp laukx; € axddu =
|x|<eb(r) O
-2 eb(A) ;=
2\b (A)f f [P{|exp {Au}xlliy} - P{|exp {Au}x1|>eb(>\)}]ydudy <
0 0

-2 eb(A) (=
207200 [ [ Ptlexp {Aukx|>ylydudy <
0 0

_ o eb(})
2)b 2(A) f f P{lxll >cyexp {au}lydydu =
0 0

fc:-:b(x)exp{au}

2¢" b2 (0) f
0

P{|x;| >v}v exp {-2au}dvdu <
0




-12-

clxb'z(k).[ (ceb(A) exp {au})z'aL(ceb(A) exp {au}l)exp {-2au}du =
0

cAe f 210 (2)dz < cs)‘ez(scb(x))'aL(ecb()\)) < c4ez'°‘

ecb())
for sufficiently large A and some Cy>0,a> 0.

The last inequality enables us to prove (3.16). The theorem is proved.

Theorem 3.3. The distribution of the vector b l1(A)(x(t,\)-a(A))
weakly converges to the normal law in R® with c.f. exp {-2'1Q0(s)} if
and only if the distribution of the vector Xy belongs to the domain of
attraction of the normal law with c.f. exp {-Z-IQ(s)} . The quadratic

forms Qo(s) and Q(s) determine each other uniquely by the equality

Qo(s) =f Q(exp {ATu}s)du
0
Proof. In accordance with theorems 1.2 and 2.3 of the work [4] and

the formulae obtained above, we have to prove that the relations

N(A;b(k)B)A-» 0, BC R“/se , (3.17)

o

lin T@ | (5,0%N@b()) = lin Lim [ sx0fNEb()) = Q(s)  (3.18)
e Joo 0<|x|<e el e 0<|x|<e

are equivalent to the relations AP{|x1| >eb(A)} + 0 (3.19)
Ao

lim Tim A [ (s,x)ZP{xleb(A)dx} = lim lim A [ (s,x)ZP{xleb(A)dx} -

0 A 0 ow

0<|x|<e 0<|x|<e

= Q(s) (3.20)

Necessity. The condition (3.19) follows from (3.17) in the same manner

as the condition (3.11) followed from (3.5). The condition (3.18) implies

R T e

-

e e
——
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the equicontinuity as A -« and as € - 0 with respect to s of the

expressions

v (s,x)?Plexp {Aulx, € b(A)dx}
0<|x|<e
for almost all ue Rl .

Consequently, we obtain the equicontinuity with respect to s of the

expressions

| (s,x)ZP{xle b(A)dx} (3.21)
0<|x|<e

and can suppose that a subsequence of (3.21) converges to the quadratic
form Q(s) . Since

-]

A { f (s,x) “Plexp {Au}x; € b(A)dx}du =
0<|x|<e

A J (exp (Alt}s,z)?Plexp {Au}x, € b(r)dz}du »
0<|exp{At}z|<e

Q,(exp {ATt}S) < c exp {-atl(s,s) ,
we obtain from (3.18) that
Q(s) =[° Qexp {ATu}s)du (3.22)
Since the equality (3.22) implies
Qs) = Lim r(Qy(5) Qe (A1)

the sequence (3.21) converges to Q(s) and the condition (3.20) is fulfilled.
Sufficiency. If the conditions (3.19) and (3.20) are satisfied, then in

accordance with lemma 3.1 and remark 3.1, x; belongs to the domain of

U SS—
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attraction of a normal law in R1 and b(A) = XI/ZL(A) , where L is a
slowly varying function. Then the inverse function b'l(k) has the repre-

sentation b'l(A) = XZLI()‘) , where Ll(x) is a slowly varying function

too. In this case, denoting b()A) by u we obtain

NGB (RY/S)) = A [ Pllexp (ulxy| >b(A)e) <
0

/\[ P{lel >ceb()) exp {au}ldu = a'lb'l(p) P{lel >v}v'1dv <
0 €u

a o e [ ey < epTtansnlelL et -
€U

Since § can be chosen small, N(A;b()\) (Rn/Ss)) +0 as X » = and the
condition (3.17) is satisfied. We divide the rest of the proof into twc |
parts.

1. E(xl,xl) < o, In this case, E(x(t,»),x(t,A)) < « and conse-
quently x(t,A} belongs to the domain of attraction of a normal law. Indeed,
we have to check that

f f(X,x)P{exp {Au}xle dx}du < =
0 R0

We have

] I (x,x)P{exp {Au}xle dx}du = Zf f P{|exp {Au}xll > ylydydu <
0 R0 0 0

] P{lei >cy exp {aullydydu =

0

@

! P | > vive %exp (-2au}dvdu = c'Z(ZaJ_lE(xl.xl) <w
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2. E(xl,xl) = o , In this case
xPp(|x, | >x} = o [ y*dapiix [ <y}
ly[<x

and

lim Tim A [ (s,x)ZP{xle b(A)dx} = 1im lim A [ (s,x)ZP{xle b(A)dx} = Q(s)

e+l oo IXI<E e+0 pv) IXI<E

z
Thus, noting u,(2) -] deP{(xll <x} , we have
0
A G'Plew (ukxjebO)dxidu <
t x)e

cxj I (x,x)P{exp {Au}xle b{A)dx}du <
t  Ixj<e
22 © eb(})
2cab (A)f ! P{lxll >c,y exp {au}l}ydydu =
t

2 cyeb(2)exp{au} -2
2cib (X)) fz P{|x1| 3v}c1 v exp {-2au}dvdu =
t

csz’z()\) [ uy(cieb(A) exp {au}) exp (-2aujdu =
t

® -3.2.2

Ac3b_2(A) uy(2)z "D (M)dz <

eb(A)exp{at}
c4xezuz(cb(x) exp {at})(eb()A) exp {at})'2 + Cg exp {-2at) (3.23)

(We have used theorems 1 and 1a from (2. p. 312-314] which give us the

following properties of uz(z) :

a) uz(z) is a slowly varying function and

b) xb‘z(x)uz(b(x)) +Cy as Awm  0<C <)

-
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Now condition (3.18) follows from (3.20) and (3.23).

Remark 3.2. It follows from the proof of theorems 3.2 and 3.3 that
the norming functions b(A) and bl(n) for which the distributions of
(x(t,x)-a(x))/b(x) and [x1+...+xn-an)/b1 (n) weakly converge can be
chosen equal: b(n) = bl(n) .

In this part, we will suppose that the matrix A is similar to the

4. Limiting Behavior of the Stationary Distribution as A + 0 .T i
|
|

diagonal matrix A = || 83524 || , where A; 1<1i<n, are the eigen-

i io
values of A, i.e., A= AT} , and T is a nonsingular matrix with real-
valued elements. In this case, A; <0, i <1 <n . Wewill show that
the module of x(t,A) tends to zero with an exponential speed.

Lemma 4.1. If X » 0, then x(A) EO . The proof follows from

formula (2.4).

Let us denote n = (nl,...,nn) = T-lxl ,
&= (5),ee0tpy) = (e, k
p; = P{n; = 0} , sign x = (sign Xppe.esign X)) if x = (xg,...x))
« -l
vy »‘i .
For simplicity we consider only the particular case p; * 0,1<i<n.
Theorem 4.1. If p; * 0 for all i, 1 <1i <n, then the distribution

of

. -V -
Gsign ¢, gl e le ™)

n
weakly converges as A - 0 to the distribution of

(sign n ,a,...a)

where o has the uniform distribution on the interval (0,1} and does not
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depend on n.
Proof. The distribution of x(t,A) coincides with the distribution

of the vector

- -]

£=] exp (auldz(w (4.1) |
0

We can suppose that the process z(t)} 1is determined by the values of

its jumps Xy5 Xg50-. and by.the lengths of the intervals between jumps 3

A'ltl, A'ltz,... where all x; and T, are independent, f

P{-ri>x} =exp {-x}, x>0. L
Thus, the formula (4.1) implies l‘
}

£ = exp {)\°1A11}x1 + exp {A-IA('rl*-TZ) Ixg +... = exp {A'IATI}(x1+El) , (4.2)

where Ty » X » and 61 are independent and the distributions of £ and

£l coincide. It follows from (4.2) that

T = exp {A'lArl}T'l(xl +gh)

K = exp {k_lAtl}(erl) where « = T'lg ,

Kl = T'lzl and the distributions of « and £ coincide (4.3)
. 1
According to lemma 4.1 « -)‘-53 0 and we have from (4.3)

sign « = sign (n+«') 123 sign n ,

P

|'<-|-V1 = |exp {A-lxiti}(ni +.<i)|'vl Lo (1)

i A+0

Since exp {-rl} has uniform distribution on (0,1) and does not

depend on n, the statement of the theorem easily follows from the
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well-known properties of convergence in probability and weak convergence.

5. Applications to a Queueing System with Changeable Service Rate ;

In this part, we consider the case n =1, x0>0, xiio. We

' write equation (1.1) in the form |
dx(t) = -ux(t)dt + dz(t) (5.1) %

where u > 0 .

Equation (5.1) is connected with a following queueing system. Input
flow is a Poisson flow with parameter A. To serve the n'th customer, the
server has to spend X, units of work. If x(t) is the amount of work
necessary to serve the customers present in the system at the moment t, then
service rate equals to ux(t). We will investigate the distribution of the
virtual waiting time © subject to the condition that system has stationary
distribution. (It is assumed that system has FIFO service discipline.)

Let y(t) be the amount of work performed by the moment t. Then

y(0) =0,

dy(t) = ux(t)dt (5.2)

dy(t) = dz(t) - dx(t)

T o

and
t o, -u(t-u), o _a"Ht
y(t) = z2(t) - x(t) + x, -f (1-e Jdz(u) + xp(1-e °7)
0
where x. has the distribution defined by (2.4).

0

. o o _
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If we denote by x the amount of work necessary to serve the considered

customer then

P{e>t} = P{y(t) < xo/x(0+)= X, + x} =
t
P{ g’ (1-e MWz u) + (xgex) Qe < xp} =
t .
P oM Wyazw) + x@-eMY < eixy) (5.5)
0

Theorem 5.1. If Ex=m1<°°,then W =1 as A=+

Proof. The proof follows from the relations

-1t

A g (1-e Pt Wyg ) = ft (1-e'“(t'“))mldu =
0

nf - muta-e™

0 0
X_lxo = x’le-“tf etldz(u) =~ e'“ti e“umldu =ule utml ,

k'lx(l-e'“t) =0 as A-+o

Theorem 5.2, If the distribution of x belongs to the domain of attrac-
tion of a stable law with exponent a, 1 < a < 2, then there exists a
regularly function f(A) with exponent 1-(!-1 such that the distribution

of (0-1/u)£f()) weakly converges as A + = to the stable law with exponent

a and c.f.

h(s) = exp {(e ™ 2on) L(mpe) ™ +
-1
u .
] e'malz(l-e‘“u)adu)sa} ,$>0,
0

vuma U
L g N
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Proof is analogous and follows from the theorems 3.2, 3.3 and repre-
sentation (5.3).
Theorem 5.3. If the distribution of x belongs to the domain of

attraction of a stable law with exponent a, 0 < a <1 , then
t t__uu
Lim PO >t} = P{(2;/2))% > a [ (MT-e"au}
0

where Z1 and Z2 are positive independent identically distributed random
variables and have stable distribution with exponent a.

Proof is analogous and follows from the theorem 3.2 and representation
(5.3).

Theorem 5.4. 1lim P{OX/“ <t}l=t,if t€ (0,1 .

Ao

Proof follows from the representation (5.3) and theorem 4.1.
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