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1. INTRODUCTION

Current Air Force Avionics systems have a multiplicity of com-

puter architectures, system interface technologies, and related

software systems resulting in high development, acquisition,

and life-cycle costs. As a means of reducing these costs and

simplifying systems development, MIL-STD-1750 has been establish-

ed as the Air Force standard instruction set for Avionics com-

puter applications. Several efforts are under way to implement

MIL-STD-1750 for test and evaluation in avionics systems. The

ASD/ENA Systems Engineering Avionics Facility (SEAFAC) has been

given the responsibility for certifying compliance of vendor

produced computers with MIL-STD-1750. This feasibility study

of certification procedures was initiated to support development

of a certification facility at SEAFAC. The result of this study

is a discussion of background and procedural issues of instruc-

tion set architecture certification; an evaluation of test meth-

odologies; and a set of recommendations for a MIL-STD-1750 certi-

fication procedure. The report is relevant to the large class of

computers that are defined in terms of an instruction set archi-

tecture (ISA) which may be implemented in a variety of hardware

architectures.

1.1 Objective

The objective of this study is to identify, evaluate, and select

from a wide variety of validation techniques and procedures that

can be applied by SEAFAC to validate a candidate computer for

compliance with MIL-STD-1750. The resulting certification pro-

cedure is a means by which SEAFAC can verify that a unit under

test (UUT) behaves as required by MIL-STD-1750, regardless of the

specific technology employed to implement the design or of the

end use for which the UUT was intended. The only characteristics

that various implementations can be expected to have in common

are those stated in MIL-STD-1750. - ,
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Since these requirements are stated in the form of computational

processes, it follows that compliance can be verified by some

form of computational testing.
NJ

The fundamental assumption behind and major reason for develop-

ing a certification procedure is that validating the compliance of

a particular 1750 implementation will reduce the risk that the

hardware does not conform with MIL-STD-1750. It is assumed,

in addition, that the more thorough or complete the testing is,

the lower the risk will be. Because of the large number of

possible states of the 1750 processor, registers, and memory,

it is possible that a complete test of any 1750 computer would

take many years. Therefore, a certification procedure is

viewed as making reasonable tradeoffs between completeness and

other evaluation criteria such as cost and efficiency.

Consistent with the understanding that MIL-STD-1750 is a speci-

fication of an instruction set architecture and is independent

of particular hardware considerations, it is assumed that the

certification procedure requires no knowledge of the particular

hardware architecture of the UUT. This assumption requires that

to whatever extent possible, the UUT be treated as a black box,

and it implies that the test may not make use of hardware

implementation details that might normally be used to simplify

testing procedures.

This understanding also means that a test based upon a struc-

tural analysis of the UUT is ruled out, as is any test procedure

which involves inserting hardware probes into the UUT. Instead,

the test procedure is assumed to be based upon a functional

analysis of MIL-STD-1750. The goal of the testing procedure

is to verify that the UUT behaves as required by ascertaining

that it executes properly. It does that by detecting and
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reporting any functional flaws that might be in the UUT.

The specifics of all test failures, including the circumstances

and conditions required to reproduce the failure are of inter-

est, while the ability to detect and identify hardware component

failures is not of concern.

Within some constraints of reasonable test program complexity

and execution time, the certification procedure should be as

complete as possible in verifying the functional characteristics

of the 1750 implementation under test. The motivation for pur-

suing such completeness comes primarily from the realization

that the certification procedure requires no prior knowledge of the

hardware used to implement MIL-STD-1750. Arguments about

related functions or instruction codes using the same hardware

and thus not requiring separate tests are not theoretically

justified. In practice, however, when exhaustive testing is not

practical, certain assumptions about hardware structure

can serve as guidelines for reducing the magnitude of the test

problem. These structural assumptions lead to a function

oriented view of the 1750 instruction set architecture.

1.2 Approach

The approach to this study of certification p.ocedures involved

three phases: analysis of test methodology components, ident-

ification and application of evaluation criteria, and recom-

mendation of specific procedures, test designs, and support

tools for use in certification. The first phase of the study

involved reviewing the literature related to ISA testing,

organizing knowledge about design certification available

through the experience of people at Sperry Univac, and examining

the two available Acceptance Test Programs for the AN/AYK-15A

(the AFAL (DAIS) ATP, SA 421 206 and the Sperry Univac Confi-

dence Test). A brief review of these two methodologies is
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present& i.a Appendices F and G. All of the information

gathered was well mixed with ideas from the authors in producing

the contents of the report. Key articles from the literature

are referenced in Section 6.

The analysis of test methodology components is presented in

Section 3 as a discussion of certification procedure issues.

Section 3.1 offers a discussion about hardware and software

resources not implicit in MIL-STD-1750 that might be required

for certification of a 1750 device.

Section 3.2 explores the concept of a "golden standard", as a

hardware or software device which implements MIL-STD-1750 and

serves as a functioning reference tool which could be used in

development, operation, and validation of certification tools

and procedures. Section 3.3 then underlines the importance of

validating whatever certification procedure is developed, and

it discusses some dimensions of that problem. The rest of

Section 3 provides some details about the major components of

test methodologies, namely, certification procedure control,

program and data design, and report generation. Individually

the subsections introduce approaches to control, program design

and data design which are motivated by a belief in the benefits

of a well-structured procedure. These benefits include ease

of use, validation, understanding, and modification. The final

section identifies a range of report geoeration techniques that

might be used in a selected test methodology.

The identification and application of evaluation criteria is

the subject of Section 4. Section 4.1 defines what a test

methodology is in terms of its attributes, and discusses the

methods of combining alternatives to each of these attributes.

Criteria for evaluating test methodologies are discussed in

11-



100CUMENT NO.
PX 13243 S Ei'; U l IVAC

Section 4.2 and a system efficiency model is developed in

Section 4.3. Sections 4.4 and 4.5 expand upon previously

introduced evaluation criteria until certification procedure

design goals are introduced in Section 4.6. Finally, an eval-

uation of currently known certification procedure options

available to SEAFAC are introduced in Section 4.7. The overall

effect of the discussion of test methodologies and evaluation

procedures is to define relations between factors such as risk,

cost, reliability, and completeness. The system efficiency model

is used generatively to develop design goals that are achievable

and cost effective.

1.3 Summary of Recommendations

The certification test methodology recommended by Sperry Univac
consists of procedures for loading, running, and reporting on
an extensive set of certification test programs designed to

operate in the MIL-STD-1750 unit under test. These programs

are designed to maximize the number of instruction codes and
instruction code sequences to be tested. An automated method
of generating test data is provided. This automated test data

generation capability allows expansion of test data to a level

of completeness limited only by time and/or cost constraints.

A MIL-STD-1750 instruction set simulator is recommended to pro-
vide one of the independent methods of generating test data and

to serve in the validation of the certification test programs

and data for correctness and accuracy. It is recommended that

all test programs and automated test data generation mechanisms

undergo rigorous validation procedures, including self-test and

validation against existing software components, before they

are utilized for certification of any implementations of

MIL-STD-1750.
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It is further recommended that the VAX-11/780 computer system

currently installed at SEAFAC host the program generation,

storage, and maintenance capabilities needed to support efficient

and effective MIL-STD-1750 certification procedures. The

use of available data links is specified to allow direct connec-

tion to the VAX-11/780 when appropriate hardware capabilities

are incorporated into the MIL-STD-1750 implementation under test.

This direct connection allows fully automatic operation of all

test procedures and assures proper operation and application of

test procedures by minimizing human intervention. Summary

reports produced by a VAX-11/780 resident test control program

provide descriptive information about specific options that were

tested. Further details are contained in Section 5.

II

P40E

i1
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2. BACKGROUND

Compliance of vendor produced computers to MIL-STD-1750 is of

major importance in the Air Force program to reduce life-cycle

costs. Fostering software commonality through standardization

of an instruction set architecture can only be realized if

functional specifications are specific, testable, and uniformly

applied. To this end, the MIL-STD-1750 control board and the

MIL-STD-1750 Users Group are in the process of revising the

standard to improve definition and clarity and to extend

functional capabilities. SEAFAC, with the help of industry

representatives, is preparing to develop the necessary tech-

niques, tools, and experience to perform a thorough design

certification procedure. The goal of this procedure is to

verify that the UUT behaves as required by MIL-STD-1750. As

a basis for discussion of what the certification procedure

issues are, some assumptions about the process of certifying

a 1750 computer are offered here.

2.1 Reduction of Risk

The MIL-STD-1750 Instruction Set Architecture (ISA) allows

multiple vendors to compete for a particular avionics computer

application while eliminating architecture proliferation in

Air Force avionics systems. Vendors are allowed complete

discretion in the detailed design of an avionic computer within

the physical and performance requirements for the application.

This wide latitude of vendor design and implementation requires

that the characteristics of the implementation conform exactly

in functional specifications rather than in construction details.

The purpose of certification is to verify that the functional

characteristics of candidate Air Force avionic computers comply

with MIL-STD-1750.

Li~iri~umj - 7 .12-1J
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The fundamental assumption, and in fact the major reason for

the certification procedure, is that by validating the design

of a particular implementation, the risk of that computer

not complying with MIL-STD-1750 will be reduced. It is

assumed, in addition, that the more thorough or complete the

certification testing is, the lower the risk will be. This is

shown graphically by the following curve, which is

asymptotic to both the risk and completeness axes. Risk is

at a maximum when no testing is done.

RISK

COMPLETENESS

and approaches zero as the amount of testing increases.

This curve also indicates that with relatively little testing

the risk can be substantially reduced, and that exhaustive

testing will yield only limited further reductions in risk.



OOcUMENTNO
PX 13243

2.2 Hardware Independent Certification

Vendor provided tests of conformance to specifications are

normally organized in a manner that will test and diagnose the

largest number of possible error conditions with the minimum

amount of test code. This is usually done by utilizing speci-

fic knowledge of the processor design to reduce--The number of

tests conducted. For example, a particular 1750 implementation

could use the same adder logic for incrementing the instruction

counter, processing ADD instructions, and indexing; therefore,

only tests of the ADD instruction might be used by the vendor

to validate operation of this one adder. This vendor provided

test might be perfectly adequate to test the specific imple-

mentation described but it would not be adequate to test another

implementation that utilized pipeline techniques-and multiple

adders to achieve greater throughput.

Consistent with the understanding that MIL-STD-1750 is a speci-

fication of an instruction set architecture and is independent

of particular hardware considerations, it is assumed that the

certification procedure requires no knowledge of the particular

hardware architecture of the UUT. This assumption requires

that to whatever extent possible, the UUT be treated as a

black box, and it implies that the test may rot make use of

hardware implementation details that might normally be used to

simplify testing procedures.

This understanding also means that a test based upon a struc-

tural analysis of the UUT is ruled out, as is any test procedure

which involves inserting hardware probes into the UUT. Instead,

F|L1
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the test procedure is assumed to be based upon a functional

analysis of MIL-STD-1750. The goal of the testing procedure is

to verify that the UUT behaves as required by ascertaining

whether it executes properly. It does that by detecting and

reporting any functional flaws that might be in the UUT.

The specifics of all test failures, including the circumstances

and conditions required to reproduce the failure are of inter-

est, while the ability to detect and identify hardware component

failures is not of concern.

2.3 Testability Requirements

Because the standard is stated in terms of computational pro-

cesses, it is assumed that certification will require one or

more test programs to be generated for execution on the UUT.

These programs should, at a minimum, exercise and verify each

functional capability specified in the standard. The results

of the interactions between the test program and the UUT will

be used to determine compliance with MIL-STD-1750. Results

will be considered acceptable if they do not conflict with

information in the standard.

In order to run test programs it is assumed that certification

of computer compliince with the standard is directed towards an

implementation which is a general purpose programmable computer.

In particular, the UUT is assumed to be able to run a program

that utilizes a specific subset of non-optional instructions

and requires some minimum amount of memory to

be implemented. This statement is intended to exclude from

consideration any implementations of MIL-STD-1750 which are

severely limited subsets of the standard in either instruction

repertoire or in memory.

12 4
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Another testability assumption is that mechanisms for loading

programs and examining results are available. This assumption

is important because MIL-STD-1750 does not address questions of

electrical interface to the ISA. Instead, the functional char-

acteristics are specified, and any system constraints such as

physical and environmental characteristics are left to the

system designer. Program loading, program execution and status

monitoring capabilities can be designed to meet specific mission

requirements.

Isolation of system constraints is a distinct advantage to the

system designer, but presents a unique challenge to the certif-

ication test procedure. The extreme flexibility required to

test computers that could range from ultra small integrated

components, to relatively large stand-alone versions, to

computers completely embedded in higher level system components

is a significant challenge. The ability to completely speci-fy

internal connections to a compliant computer would make testing

and validation much easier, but it might also unnecessarily

constrain the technology that could be used for implementation.

2.4 Levels of Completeness

Within some constraints of reasonable test program complexity

and execution time, the certification procedure should be as

complete as possible in verifying the functional characteristics

of the implementation under test. The motivation for pursuing

3uch completeness comes primarily from the realization that the

certification procedure requires no prior knowledge of the

hardware used to implement MIL-STD-1750. Arguments alout

related functions or instruction codes using the same hardware

and thus not requiring separate tests are not theoretically

F- W-
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justified. In practice, however, when thorouch testing is not

possible, certain assumptions about hardware structure may be

acceptable as guidelines for reducing the magnitude of the test

problem. These structural assumptions lead to a function orien-

ted view of the 1750 instruction set architecture.

2.4.1 Structural Assumptions

One such assumption about the 1750 functional structure is that

derived address calculations use common circuits for all in-

structions of the same address mode. Thus, a complete test of

address calculation for one OPCODE need not be repeated for

others of the same address mode. However, because a particular

OPCODE may not be implemented or decoded properly, each separate

instruction should still be tested in a limited way for its

ability to use the common addressing mode hardware.

The premise here concerning the interaction between separate

instructions and common addressing modes is that it is un-

reasonable to completely test the derived address calculation

for each instruction. There are of course cases where for

even one particular instruction it is not reasonable to exhaus-

tively test its function. A. specific example is the testing of

arithmetic instructions for correct operation over all values

of both operands. An adequate, though limited, level of testing

for these instructions would depend on a careful selection of

data. This is discussed in detail in Section 3.6. So the

question remains for each situation where complete testing is

unreasonable as towhat level of testing is adequate. One

answer is to make assumptions about how the 1750 arch-

itecture would be implemented; then exploit the assumed struc-

ture to reduce the test complexity, while maximizing the effec-

2-
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tive level of completeness. Another answer for codes which per-

form arithmetic and logical functions on data is to do a care-

ful job of selecting test data. Such a selection process might

well include the random generation of data as a means of

sampling the space of all possible values.

2.4.2 Functional Assumptions

Pursuing the assumption that derived address calculations use

a common hardware path for all instructions leads to the obser-

vation that the storage locations referenced by the address cal-

culation -- that is, the registers and memory -- might rea-

sonably be tested separately from tests for the individual

OPCODES. If we also accept the additional assumption that

verification of the ability of each register and memory cell

to hold all data values can be done once instead of separately

for each OPCODE, then any certification of 1750 functions can

be divided into tests of registers, memory, and instruction

codes.

The register and memory tests would focus on confirming the

ability to address all locations and write and read all pos-

sible data values in those locations. In the case of memory,

it may not be reasonable to try all bit patterns in every

location, so some sort of compromise in the level of complete-

ness may be required. Some bit patterns commonly used in memory

tests include all ones, all zeros, shifting ones, shifting

zeros, alternating ones, varying length sequences of ones/

zeros, and addresses.

IBAE



OOCUMENT NO. N
PX 13243 "

With confirmation that derived addressing and that arbitrary

data value storage function properly, then theindividual OPCODE

tests are free to pursue verifying the correct performance of

the operation aspect of the instruction. This verification

involves trying all data values necessary to reasonably con-

firm the function of the instruction, particularly with arith-

metic and logical operations. There is still the need for each

instruction to confirm its ability to use the addressing struc-

ture previously confirmed as a general capability. That is,

for each OPCODE test, a variety of registers and derived

addresses should be employed. One method of selecting registers

to use that would ensure a good variety of register use is a

random selection process embedded in the test program creation

procedure. For OPCODES that allow use of an index register,

it would be important to try the OPCODE with RX = R0 as well as

with a selection of actual registers (i.e., try the instruction

with. and without indexing).

The instruction code tests, then, verify that with specified

operands, the correct result is produced. The result includes

not only the specific answer produced by the instruction --

e.g., the sum resulting from the ADD instruction -- but also the

correct setting of the status word and the correct generation

of interrupts as appropriate -- i.e., fixed and floating point

overflow, floating point underflow, or illegal OPCODE inter-

rupts. To be complete, the notion of correct setting would

include not only that the status word is set and/or interrupts

occur when required, but also that they do not get set or

occur when they are not supposed to.

Unfortunately, the concept of confirming that undefined changes

do not occur represents a task which is at least an order of

PA
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magnitude more difficult than verifying the specific correct

actions of each instruction. For example, in doing the memory

test, the required result of storing a data value at a particular

location is that the data value correctly reach the intended

location, an action verified by reading the value from that loca-

tion. But to verify that no unintended action occurs implies

checking all other locations in memory to determine whether the

store operation sent the data value elsewhere in error.

An appropriate compromise in level of completeness might be

to check for unintended actions on the basis of instruction

function. Thus, a check that the word being transferred goes

only to the correct place would only be done with loads and

stores, and not arithmetic instructions. Checks for overflow/

underflow interrupts would always be done with arithmetic

instructions, whether the data is supposed to produce them or

not, but such. a check would not be done for loads and stores.
The full complement of locations which might possibly be checked

includes the general registers, special registers, and all of

memory.

So far, the discussion has identified that registers, memory,

and individual OPCODES are the major components of the 1750

to test for correct operation. These components cover most

1750 functions. Including the input and output commands and the
full complement of possible interrupts as separate though

overlapping categories provides a more complete picture of the

architecture. Although the individual OPCODES verify the

functioning of interrupts for overflow, underflow, and illegal

instructions, the interrupt structure needs to be specifically

verified with respect to the operation and interaction of the

interrupt mask (IM), pending interrupt (PI), and fault (FT)

PAGE
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In summary, a relatively complete procedure for certifying

compliance with MIL-STD-1750 needs to examine the areas of

register and memory function, specifically addressing modes

and data storage; the operation of all OPCODES, including

a check of all illegal codes; the full operation of the

interrupt mechancisms; and the capabilities fo I/O commands

not verified elsewhere in the separate tests.
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3. CERTIFICATION PROCEDURE ISSUES

The purpose of this section of the report is to raise and dis-

cuss the key issues involved in specifying certification pro-

cedure test methodologies. Section 3.1 offers a discussion

about hardware and software resources not implicit in MIL-STD-

1750 that might be required for certification of a 1750 device.

Section 3.2 explores the concept of a "golden standard", as a

hardware or software device which implements MIL-STD-1750 and

serves as a functioning reference tool-which could be used in

development, operation, and validation of certification tools

and procedures. Section 3.3 then underlines the importance of

validating whatever certification procedure is developed, and

it discusses some dimensions of that problem. The rest of

Section 3 provides some details about the major components of

test methodologies, namely, certification procedure control,

program and data design, and report generation. Individually,

the subsections introduce approaches to control, program design

and data design which are motivated by a belief in the benefits

of a well-structured procedure. These benefits include ease

of use, validation, understanding, and modification. The final

section identifies a range of report generation techniques that

might be used in a selected test methodology.

3.1 Resource Requirements

The assumptions made in Section 2 indicate that at a minimum,

any certification procedure would consist of test code which

can be loaded and executed on a 1750 implementation capable of

executing programs of moderate size. As a matter of practical

necessity, these assumptions impose some requirements for hard-

ware and software resources which are beyond those contained in

P
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MIL-STD-1750. This section will discuss some minimum require-

ments in these areas and attempt to identify a range of resources

needed to support the certification procedures mentioned in the

rest of Section 3.

3.1.1 Hardware Resources

Hardware resources of the UUT necessary to support a certifica-

tion procedure include a loading mechanism, control functions

(processor reset, st-art, and stop), and a processor state dis-

play. For a certification procedure which is self-contained in

the UUT, these requirements could translate into a control panel

with switches that implement the control functions, and lights

that provide the display capability; a bootstrap loader in ROM

or entered through the switches; and an input device such as

magnetic tape for loading the certification programs. For a

certification procedure in which the test program is loaded and

monitored from a test control computer, the hardware neeled

would be the same as before plus the test control computer and

a communication channel to the UUT. The previous resources

would still be needed to load communication software into the

UUT. A variant of the procedure utilizing a standard interface

between the two computers involves enhancing the channel to be

a special purpose data and control interface which allows the

loading, control, and display functions to be performed directly

by the test control computer. This special hardware interface

could replace the locally defined control panel and bootstrap

loader.

A separate hardware resource that might be required by some

certification procedures is a MIL-STD-1750 reference implementa-

tion or golden standard. Its previously certified, known good

performance could be used in the development, execution, or

validation of the certification procedure, as detailed in

13-2
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Section 3.2.

3.1.2 Software Resources

In addition to the certification test programs themselves,

certain software resources might be required to support various

certification procedures. Already mentioned was the need for

communication protocol software by procedures using a channel

for interaction between the UUT and a test control computer.

But prior to that stage of the certification process, a 1750

Assembler or Cross Assembler would probably be necessary for

the development of the test programs. The development and

general administration (control, maintenance, and modification)

of the programs could reasonably require file manipulation

software such as is generally available on large t.ime-shared

computers.

During the devleopment, execution, or validation of the certifi-

cation procedure, the need for a golden standard as mentioned

above could be met by a software implementation of MIL-STD-

1750. Such a simulator could conceivably run on 1750 hardware,

but the creation and use of 1750 simulator software would more

reasonably be pursued on a test control computer, as outlined

.ir Section 3.2. The generation of test data used in certifi-

cation test programs might require a partial 1750 .--mulation,

such as for a 1750 arithmetic and logical coeration simulator.

This idea is expanded in Section 3.6.

PAG
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3.2 A Secondary 1750 Golden Standard

At several stages in the development of the certification pro-

cedure, the potential need arises for programs to have direct

computational access to a 1750 equivalent computer, either in

the form of a hardware device or a software simulation. Such a

1750 reference or "golden standard" is secondary to the primary

MIL-STD-1750, but serves as a functioning standard for deter-

mining arithmetic, logical, or other machine state results

from the execution of any desired sequence of 1750 instructions.

The purpose of this section is to introduce the concept of a

golden standard, outline the possible uses of the standard,

and propose how a standard might be developed and validated.

3.2.1 Golden Standard Uses

One important potential use of a golden standard 1750 would be

to generate or validate the test, data results used by the certi-

fication procedure. For example, a programmer might well use

an ordinary desk calculator to determine arithmetic results for

16 bit integer operations. In this case, the calculator serves

as a golden standard for a particular 1750 function. It would

probably not be adequate, however, for producing arithmetic

results for extended floating point calculations. Such data

might be successfully produced manually, relying upon hand cal-

culations and the programmer's ability to interpret correctly

the definitions in MIL-STD-1750. But in practice, a specific

golden standard 1750 device would be very useful for calcula-

ting floating point or any other test data results. A golden

standard for 1750 arithmetic could be built into an assembler

which had the ability to evaluate expressions and thereby

calculate test results stored in the program at assembly time.

But even if the original test data results were calculated
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manually, it would be of value to employ a golden standard for

later independent validation of the numbers.

Another potential use of a golden standard in the certification

procedure is to execute programs in parallel with the

running of those programs in the UUT. Results obtained from the

two 1750 devices could be compared and any discrepencies attri-

buted to errors in the UUT. One example of this use is to

compare the operation of a particular instruction on randomly

generated operands to see if the UUT produces the correct result.

In fact, having a golden standard is the only practical way

randomly generated data can be employed in the certification,

because it is the only run-time method of obtaining a known

good result.

A third use that a golden standard might serve is to aid in the

process of validating the certification procedure itself. The

approach is to simply run the certification procedure on the

golden standard as if it were the UUT. Any procedure that runs

without error is necessarily an accurate procedure since a

golden standard is by definition error free.

3.2.2 Golden Standard Development

The development of a golden standard MIL-STD-1750 implementation

is analagous to the certification by the National Bureau of

Standards (NBS) of a secondary standard meter. The NBS certifi-

cation implies that the secondary standard is a "true" meter

with traceability tc the "standard" meter. The big difference

in the development o- the golden standard MIL-STD-1750 imple-

mentation is that the "true" or first level standard exists

on paper only, while the secondary standard is either hardware

or a software simulation.

F-WGE
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A hardware golden standard is of course what every 1750 imple-

mentation purports to be, and the existence of such a computer

is the reason for creating a certification procedure. So if

the decision were to develop a hardware 1750 golden standard,

then the selection of any actual implementation would do as

well as any other. A major concern with the use of a hardware

golden standard is the susceptibility of components to fail

over time, with the resulting necessity of re-certifying the

computer periodically.

The other possibility for developing a golden standard is a

software (or firmware) simulation (or emulation) of MIL-STD-1750.

This approach shares a similar problem to the hardware imple-

mentation: namely, going from MIL-STD-1750, which is on paper,

to the secondary standard involves interpretation and trans-

lation of the primary standard, with the accompanying possibil-

ities for error. However, there are a number of important

advantages to a simulation in addition to that of independence

from component failures. Because a simulator serves, as a

hardware implementation does, to translate a paper definition

into a working model, it provides an opportunity to resolve any

ambiguities or weak areas in the standard. It also provides an

opportunity to examine the potential impact of any changes in

the instruction set architecture without actually making any

hardware changes.

A straightforward approach to developing a 1750 software golden

standard would be to work directly from the definition of

MIL-STD-1750 using an appropriate high-level language such as

FORTRAN, together with the system software resources of the host

computer. A 1750 emulation could be accomplished with the aid

of special purpose hardware such as the Nanodata QM-1, as de-

scribed by Clark and Troutman (1979). Or a golden standard

L . , . ... ... .. ... . , _ . '..,,..L_ PAGE
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could be developed with the use of a register transfer language

or computer hardware description language (CHDL). This approach,

which is already utilized by MIL-STD-1750 to describe aspects

of individual instructions, has been successfully pursued by

a multitude of CHDL's (Shiva, 1979).

The motivating factor for considering the use of a CHDL in

describing 1750 is that the major CHDL's have well-developed

simulators for their language; thus, a 1750 CHDL description

simulation would be the 1750 golden standard. The value of a

CHDL description of 1750 would be not only to provide this

simulation capability, but also to produce a compact, formal

description of 1750 which lends itself to automatic design

verification at various levels of detail. For example, lan-

guages such as SMITE and ISP provide syntax rules whose appli-

cation to the CHDL description of 1750 would allow checking for

any ambiguities.

To insure that an extension of MIL-STD-1750 into a CHDL would

be successful and that all implementers of 1750 were working

from the same description, it would be appropriate for the CHDL

description of 1750 to become the true binding standard, with

the existing written descriptions becoming non-binding explana-

tions. Use of a CHDL for computer architecture description has

been complished successfully for a number of existing computers

(Barbacci et.al., 1977) and would enjoy the benefits of consid-

erable government sponsored research and development work in

the area of computer architecture specification, evaluation,

and validation (Barbacci et.al, 1979, and Advanced SMITE

Training Manual, 1979).

3.2.3 Golden Standard Validation

Use of a golden standard 1750 requires validation of that

standard. This is in essence a chicken-and-egg problem which
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requires certifying the golden standard machine for use in the

certification procedure. There are three fundamental methods

of validating a golden standard. "Self Test" methods of

validation include manual test and analysis of the proposed

standard, use of building block tests of individual functional

(or structural) components, and/or algorithmlic test and functional

capabilities (e.g., checking multiplication by repeated addi-

tion). "Majority-vote" methods of validation require several

copies of independent test programs to be run on one or more

independently produced 1750 implementations. Each of the tests

should be thorough tests of all 1750 functions and must be

generated independently of the proposed standard implementation

(s) and other test procedures as shown in Figure 3-1. The

third method of validating a standard is by defining a parti-

cular implemeLtation as being the golden standard. This third

method has the disadvantage of diminishing the roll of the MIL-

STD-1750 document to the role of a design document and makes

the particular implementation the formal standard.

3.3 Certification Procedure Validation

An important issue in the overall design of a certification

procedure is the consideration of how to validate its complete-

ness and accuracy. The validation of completeness involves

establishing to a high degree of certainty that the certifi-

cation procedure tests for full compliance with MIL-STD-1750,

leaving no required part of the standard untested. The vali-

dation of accuracy is a matter of developing confidence that the

certification procedure contains correct reference results in

its various tests of individual MIL-STD-1750 functions. In

other words, whenever the procedure is applied to a MIL-STD-

1750 implementation, it is essential that reported errors do

in fact represent problems in the UUT and not problems in the

procedure. In practice, it is likely that validation of the

certification procedure will be an on-going process which
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FIGURE 3.1. MAJORITY VOTE VALIDATION

PROGRAM .'PROGRAM COMPUTER COMPUTER

* Run all N programs on all M implementations of.MIL-STD-1750.

" Resolve all conflicts by reference back to MIL-STD-1750

- The computer may have a flaw.

- The program may have a bug.

- The MIL-STD may be ambiguous.

" Results of this method improve as

- The number of independently produced test programs

increase

- The number of independently produced 1750 implementa-

tions (including simulators) increases, and

- The completeness of each test program increases.

.. im
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asymptotically approaches completion; any errors detected in a

UUT will require careful examination to confirm that the error

is not in the procedure or in its interpretation of an ambiguous

aspect of the standard.

3.3.1 Completeness Validation

Validation of the completeness of the certification procedure

is initially accomplished with a careful design process that

matches a test procedure with each function of the MIL-STD-1750.

Part of this process is a clear understanding of which aspects

of MIL-STD-1750 are optional and which are required, and which

aspects are required but not well enough defined to be tested.

Aspects that have been noted in these categories are listed

in Appendices A and B. Recommendations for changes to more

precisely define MIL-STD-1750 have been made to the MIL-STD-

1750 Control Board by the MIL-STD-1750 Users Group.

These recommendations are included within MIL-STD-1750A.

Functional capabilities required by MIL-STD-1750 can be uniformly

and unambiguously tested for all candidate implementations;

optional features can be tested for their existance in the UUT

(features not implemented should generate illegal OPCODE

interrupts) and extensive tests can be automatically initiated

for those optional features that are functionally specified by

the standard. Separate test procedures can be utilized to test

those optional features that are allowed by MIL-STD-1750 but

are fully specified only within documents associated with a

specific implementation of MIL-STD-1750.

A procedure which has been used successfully in the area of

software testing to assess the completeness of test programs is

to introduce errors in the object being tested and determine

if the test program detects them (Budd et.al, 197). Since
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a certification procedure on a UUT, it is very important that a 

careful and thorouqh analysis of error findings is conducted. 

The conelus1on· may be that the UUT has a flaw, but it must be 

considered that the test may be in error or that MIL-STD-1750 

may be ambiguous with respect to the test and the UUT. 

3.4 Certification Procedure Control 

Issues of certification procedure control are central to actu

ally implementing and executing the certification test. In

cluded are such concerns as: how is the UUT initialized, what 

are the operator requirements, what control software is required 

beyond the basic test programs, what is the procedure for 

loading the test programs and data, and what is the method for 

retrieving final results. In the sense that they are matters 

beyond the scope of MIL-STD-1750, these control issues are 

conceptually distinct from the basic design of test programs 

and data. · But dependin~ on the extent to which contr~l is 

inherent in selfcontained programs resident in a UUT or is 

distributed between those programs and a test control computer , 

the appropriate delegation of control is an integral part of 

the certification procedure design. This section will propose 

a set of control functions which must be available manually or 

under program control, discuss a range of methods for initiali

zing the certification procedure , and then outline several 

scenarios of control methods applicable during the certification 

process. 

3.4.1 Control Functions 

The following is a list of control functions which must be 

available to any certification procedure. 

Bootstrap Program Load 

Processor Reset 

Processor Start at Address Given 
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Processor Halt 

Register Load 

Register Read 

Memory Load 

Memory Read 

These basic functions are likely to be available on every MIL

STD-1750 implementation, since they would be required in most 

cases for normal development of a computer. While the last 

four (or six) functions are available as individual instru€

tions in the UUT ,. the first two (or four) are functions beyond 

MIL-STD-1750. Whether the functions require manual inter

vention, are implemented in firmware, or are supported by 

software is not theoretically significant, as long as they 

are available. Normally they would be implemented using 

switches on the computer maintenance panel (e.g., START, 

STOP, MASTER CLEAR) and special purpose firmware (e.g., a 

bootstrap loader in ROM) . The control functions could also· 

be made available across a standard communications channel to 

a separate computer by developing software protocol handlers 

for both computers. Standard channels which might be consid

ered in pursuing this approach are RS-232C, MIL-STD-15538, 

and MIL-STD-1397. A third option for program control is a 

channel with special control hardware , as is available with 

the AN/AYK-15A PMIU (SA 701 311) and the Users Console (SA 

301 310). 

3.4.2 Procedure Initialization 

As indicated above, MIL-STD-1750 does not specify the mechan

isms for processor initialization and program loading. As 

key aspects of initializing the certification procedure, these 

capabilities require some consideration. There is some 

indication in MIL-STD-1750, although incomp~etely specified, 
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that the power down, power up sequence is of interest. If 

so, then it is. important to clarify what the state of the 

machine is after power up. The control function of processor 

reset is essential to initialization because it would clear 

specific registers to a known state. 

The options for program and data loading are those mentioned 

above: a bootstrap load from peripherals local to the UUT, 

loading across a standard channel from a second computer 

relying on software handlers in both, or loading a.cross a 

special channel which has hardware control features. The 

first two options require the ability to load code into the 

UUT separately from any test computer. This could be done 

manually with panel switch entry, from a ROM , or with UUT 

peripherals like magnetic tape utilizing a resident loader. 

The t hird option would not require manual intervention once 

the processor · i~ powered up and reset. 

3.4.3 Control Methods 

The basic control method scenario is one in which the test 

progr~~ is written to run by itself on the MIL-STD-1750 UUT. 

Although some hardware resources must be available to load 

the programs and data, and to indicate any errors upon test 

completion, control of the procedure is an integral part of 

the test programs within the UUT. Within this scenario, 

there may be a range of control complexity from a procedure 

which runs unattended, to a procedure which allows consider

able operator interaction. For example, the AFAL Acceptance 

Test Program (SA 421 206) for the AN/AYK-l5A contains a 

control e~ecutive which allows the operator to specify which 

test program modules to run ·, whether they should be run in 

sequence iteratively, and what to do when an error is 
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detected. The various test modules set flags for errors

encountered, and the error flags are examined by an error

processing routine at the conclusion of each test module.

An interrupt handler sets flags so that each test module can

monitor expected and unexpected interrupts. The Sperry Univac

ATP (1979) for the AN/AYK-15A also fits this control scenario,

but utilizes a different error reporting scheme: the

program halts when an error is detected, providing with the

halt address a pointer into the heavily documented test code.

Another scenario of control methods introduces a second

computer and a standard communication channel as a means of

distributing the control of the certification procedure.

With this approach, the control executive of the Acceptance

Test Program would be moved to the test control computer,

which would load each test module and process the error flags

to produce error reports. More of the control aspects of

test program code are assumed by the control computer, with

code in the UUT becoming more restricted to what is relevant

to the function being tested. This control scenario also

supports the technique mentioned as a use of a golden standard,

where a test program is run in parallel in the UUT and in a

golden standard. The control computer would compare the

results of the two programs, marking any discrepancies as

potential errors in the UUT. A third possible control

structure has the control comDuter sending one or more

instructions at a time across the channel to the UUT, pro-

viding boundary conditions first, then transfering control

to the few UUT instructions, and evaluating the machine

state after each test. Control is mostly with the test

computer as it compares the state of the UUT with known

results.
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A third scenario is like the second, but elevates the communi-

cation channel to a special purpose data and control interface.

Such an interface would allow the test control computer

to directly access memory and registers of the UUT as well

as control and monitor its performance, such that no software

protocol handlers or initialization procedures would be

required for the UUT. The control computer would contain all

control software and would have the capability of replacing

or simulating all functional components of the UUT, to

isolate a particular MIL-STD-1750 function for test. For

example, the test computer could replace the memory, registers,

I/O, and/or load and store to memory operation of the UUT.

In this way, minimal functional elements of the UUT are

employed during each instruction or function test, with all

other elements being substituted for by corresponding

simulated functions which are know to operate correctly,

then any errors detected are easily pinpointed in the-

JUT.

3.5 Certification Program Design

In discussing the matter of how complete the certification

procedure could reasonably be made, Section 2 proposed a func-

tional analysis of the 1750 architecture which could be used

as the basis for organizing the test programs. There are,

however, several additional program design issues. They in-

clude the necessity of ordering test programs, the desirability

cf hivino some level of complexity for the contexts in which to

verify instructions, and the value of employing certain coding

techniques in writing the test programs. One tradeoff that

arises in considering test program design is whether the test

should consciously focus on diagnosis, in terms of isolatina

PAGE
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particular errors found, or should aim at certification only,

in the sense of just detecting errors.

3.5.1 Organization Factors

A central issue of program organization is the matter of

whether the testing of instructions and functions need to be

ordered using a building-block approach, or whether it is

reasonable for purposes of certification to assume that all

instructions and functions not under test are correct. An

ordered test organization for individual instructions would

incrementally test a few basic instructions at a time, using

only previously tested instructions in successive tests.

Carried to an extreme, the ordering would possibly employ

repeated ADD's to test a MULTIPLY, and lower level logic

instructions to test the ADD. Sicre untested instructions

are being examined one at a time, a diagnosis of the instruc-

tion causing any error is readily accomplished.

This building block approach also suggests a test ordering

in terms of functional capability. For example, verification

that all registers are addressable and can contain all

possible values would logically precede the verification of

instructions which use the registers to store their operands.

After confidence is developed in a set of known capabilities,

later test segments are able to utilize fairly sophisticated

coding methods which are efficient, compact, and representa-

tive of instruction mixes which may be found in mission soft-

ware. An ordered test organization does require a careful

design of the certification procedure to take into account

the dependencies of instructions for functions.

F-TA-GE.-
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The opposite alternative is to assume that the UUT is essen-

tially fully operable, and to focus the certification procedure

on subtle errors in design or implementation. This approach

assumes the correct operation of all instructions which are

not specifically under test and no ordering is required. Subtle

errors which exist are just as likely to be encountered as in

the ordered approach, but the ability to identify where the

error occurred is reduced, because the error may well be in the

code surrounding the instruction being tested. The focus of

this approach is certification only, at the expense of diag-

nosis. However, this unordered approach not only enjoys all

the advantages of allowing sophisticated coding methods, it

considerably simplifies the design of the entire certification

procedure, since a regular format can be imposed on all in-

struction tests without regard to test order. And it may be

concluded from real-world experience that machine errors are

frequently found in unpredicted conjunction with tests designed

to discover completely different problems.

3.5.2 Complexity Factors

Another major issue which affects the test program organization

is the nature of the instruction sequence which serves to verify

a given instruction. In particular, the question arises as to

whether in testing an individual OPCODE, the simple context of

setting up operands, performing the operation, and verifying

the results constitutes an adequate test of the instruction.

The concern is that architectural flaws might exist that relate

to performing one operation immediately after another operation

that uses common hardware. Such an error is important to find

because it would affect the ability of the UUT to perform real

applications software.

3-11
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One basis for this concern is the notion that a complete certi-

fication procedure should offer, in addition to a thorough veri -

fication of functional performance, some confidence that a certi-

fied computer would perform correctly under mission conditions.

It is known that design/implementation errors are often of the

sort that are evident only under conditions of complex software

operations, particularly with concurrent interrupt and I/O

processing. The problem suggests two possible answers: use

some real applications software as part of the test procedure

and/or try to simulate an instruction mix representative of

actual software through random generation of instructions or

by writing sample programs which bring together archtype seg-

ments of mission software.

In practice, the use of actual mission software would be diffi-

cult since such programs usually depend on real-time data ac-

quisition and computer response. However, it might be worth-

while to examine some operational software to aid in developing

the basis for sample programs, if not to discover code segments

which could be used for test purposes. In either case, what is

expected to be gained from this selection is test programs which

offer a diverse mix of instructions, including, for example, a

mix of long and short formats or a high density of repeated

arithmetic, bit manipulation, or other category of instructions

in a branching control structure. Such programs can offer a

more complex testing context than the more basic portion of

the certification program.

The use of actual or sample mission programs satisfies a certi-

fication need without offering much diagnostic power. Because

the program is designed to manipulate data, to produce a

particular functional result, any machine errors which are en-

countered would cause program failure in an unpredictable fashion.

PA
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It is thus a kind of go/no-go test which may be useful for

certification, but which tells little about the nature of any

errors. It is also possible that multiple faults might cancel

each other, thus masking completely an existing error condition.

Another method of creating a more complex context for instruc-

tion testing is that of executing a randomly generated sequence

of instructions, limiting perhaps jumps, branches, and store

instructions to a constrained address space. Such a test is not

representative of any actual code sequences, but it does have

advantages in simplicity of generation and the ability to run

indefinitely long sequences. The test could be diagnostic in

nature, stopping at a machine fault, or running for a long time

as evidence of there being no errors. By using a golden stan-

dard, the test could run the random sequences in parallel, com-

paring the final results from the two runs. And with a mech-

anism for controlling the number of instructions executed in

the UUT, the test procedure could take snapshot comparisons of

the current UUT machine state with that of the golden machine

state.

3.5.3 Coding Techniques

A final area of test program design that merits some discussion

is the software engineering of code generation. What coding

techniques will aid in producing a well-structured certification

procedure which is reliable, readable, and extendable, as well

as straightforward to generate from design specifications. Two

techniques which seem to be particularly relevent are: one,

that the program and data be physically independent, with the

program referencing the data as a table or array; and two,

that the program code be regular and repetitive in structure,

making use of loops to access data and modify variables, and of

F-P.GE
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macros or other meta-language constructs to express repeated

structures with variable portions.

The notion of separating the test code from the test data offers

a number of benefits, including easy access to the data and the

possibility of efficient and modular code. This technique

applies primarily to the testing of individual instructions,

where one or two operands are operated on to produce a known

result. Structuring of data tables containing operands and

results produces test programs which are inherently easy to

read, update, and extend. The emphasis on readability implies

an increased ability to validate by inspection the comprehen-

siveness of the test program.

The benefits that accrue in allowing efficient and modular code

come from the necessity of referencing a table of data in a

regular fashion as with a loop structure. Loops can provide a

compact, efficient mechanism for accessing a large amount of

data. Loops are also an effective method of reducing memory

requirements when used to generate code sequences by varying

data fields within particular instructions. For example, it

might be desirable to have a sequence of instructions which

loads and tests a particular register apply to many registers.

This could be done without duplicating the sequence physically

many times, by placing the sequence in a loop which, using bit

manipulation instructions, modifies the actual instructions to

change the in-line register references. Use of this type of

self modifying or self generating code can be justified on the

basis of a large savings in memory and test execution time since

there are no requirements for reentrancy or fail-safe operation.

Various coding techniques are employed in part of make tradeoffs

in program and data size, and thus speed of Icading the test, and

execution speed. There is also a tradeoff between code complex-

ity and ease of code generation. Macros are a method of easily

generating code sequences with regular changes. And, although



DOCUMENNO. iFY+U N VAC
PX 13243

extensive use of macros tends to produce large programs, the

regular structure of the code means high readability and

reliability, since the shorter sequence in the macro definition

is more likely to be written correctly and is more readily

debugged.

3.6 Certification Test Data Design

The discussion in previous paragraphs of coding techniques

which involve separating data from code was aimed primarily at

testing the arithmetic and logical operations available in the

MIL-STD-1750 instruction set. Such tests take as input one or

more operands, perform the indicated operation in the UUT,

and compare the computed result with an expected, known good

result. This section identifies minimum requirements for

selecti %g operands to use as input data and then proposes

several' sethods which, functioning as 1750 golden standards,

might be used to generate expected results from those operands.

3.6.1 Minimum Requirements for Operands

Each operand to be used in a calculation can be characterized

by its data format as defined in MIL-STD-1750. Data formats

are defined explicitly fo single precision fixed point, double

precision fixed point, floating point, and extended precision

floating point operands. Careful selection of data values, com-

bined with specific knowledge of circuitry used to implement a

particular function is often used by hardware manufacturers to

define a limited subset of operands which will thoroughly test

a particular function. In the case of MIL-STD-1750 certifica-

tion, such detailed implementation details are not always avail-

able, and therefore extensive (or even exhaustive) testing may

be required for specific operations. Extensive sets of oper-

ands can be randomly selected to assure a wide distribution
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of operand values even when the range of possible values is

large. Certain values, however, should always be included in

the operand set even if the rest of the data is randomly se-

lected.

A minimal set of operand values for arithmetic operations would

include:

zero

the largest positive number

the smallest positive number

the smallest negative number

the largest negative number

These values represent all arithmetic boundary values, which

when used in all possible combinations will guarantee the gen-

eration of overflow and underflow conditions. They also

represent all four quadrants so as to generate all appropriate

tests of sign manipulation.

Floating point operands should include all combinations of the

above values in both the mantissa and exponent fields (i.e., a

total of 25 values would be required). In addition the expo-

nent fields should contain a set of values that result in the

difference of the values being equal to the boundary conditions

described above, and also close to the number of bits in the

mantissa. This will force testing of scaling operations that

are performed during floating point add/subtract type operations.

For logical or bit manipulation operations, a minimal set of

operand values would include:

all bits zero

all bits one

bits alternating one and zero

.. ....... H ...... . .. ..II . .. ....'. .. . . .... ....7. . .
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bits alternating zero and one

These values represent the logical operation boundary conditions

with all zeros and all ones, and the independence of bits with

the alternating patterns. Used in all combinations of pairs,

they will set all relevant states of the status word and con-

firm all bit changes, i.e., 1-* 0, 0-* 1, 1-> 1, 0-> 0.

3.6.2 Generation of Expected Results

Each functional test or sub-test requires a unique set of

expected results for the operand or operand pairs to be tested.

The number of results to be tested can be extensive, even if

only a few operands are tested. For example, if only ten

operands are in each of two operand lists, then 100 results

must be checked if all combinations are used for each calcu-

lation that uses two operands. The total number of results that

must be checked will likely be uneconomical with manual calcu-

lation. Therefore, automated techniques for generating correct

results must be available. And since these techniques are per-

forming 1750 operations, they must represent 1750 golden stan-

dard devices.

The most obvious method of generating expected results is to

use a complete 1750 implementation in which to run test code

that performs the indicated operation on the input set of

operands. This approach could use existing 1750 hardware--at

least two machines are now available--or it could use a 1750

software simulator--one is scheduled to become available to

SEAFAC soon. The method has other advantages, including the

usefulness of actual test code and the ability to provide all

necessary results of the opeation: the results, the condition

code, and the occurrence of any interrupts.
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An alternate approach to the same end is to write a stand alone

1750 arithmetic and logical golden standard simulator on a sep-

arate computer with accuracy that equals or exceeds the require-

ments of MIL-STD-1750. This simulator could simply calculate

results in the format of the host computer and convert the

numbers to 1750 representation, with appropriate tests for over-

flow, underflow, and condition code. This method is attractive

in that a large amount of data can be generated with a mirimum

of programming effort.

A third approach is to rely on a 1750 golder standard capability

embedded in an assembler used to generate the test programs.

This technique is conceptually simple, as can be seen from the

example in Figure 3-2. It has the disadvantage of not providing

for all the required results, since no condition code or inter-

rupt information is available at assembly time. However, if

such an assembly capability were available, it would prov:de an

alternate method of calculation which would be useful as a

validation procedure.

3.6.3 Storage of Operands and Expected Results

The expected results for an instruction or series of instruc-

tions under test must somehow be incorporated into the test

procedures themselves. The method of incorporating the expected

results into the test procedures will depend heavily upon such

factors as: when the expected results are generated relative

to the time they are used for verification or results, and how

the expected results are compared to the results provided by

the UUT.

Tables of expected results can be generated in core image for-

mat, transferred to a storage medium, and loaded into the UUT

for comparison against actual results by programs residing in
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FIGURE 3 -2 USE OF ASSEMBLY TIME DPERA.TIONS

TO GENERATE EXPECTED RESULI'S

OPl EQU I

UP2 EQU -32768

DATA2 + OP2

LIM Rl,OP1 load first operand

A R1,DATA2 ADD to second operand

CIM RI,OPl+OP2 compare to expected results

JC NE,ERROR exit if error detected
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the UUT. Alternatively, expected results can be converted to 

symbolic data in a format that is acceptable to the MIL-STD-1750 

assembler and incorporated directly into the test program re

siding in the UUT. Yet another scenario would transfer results 

computed in the UUT to the test computer for comparison. 

3.7 REPORT GENERATION PROCEDURES 

A full and complete report of the results obtained during an 

attempt to certify a particular implementation of MIL-STD-1750 

should be provided. This report is re~uired to document the 

fact that an attempt to certify the implementation was made, 

and to identify specific test failures that may have occurred. 

In addition, any results that may differ from implementation to 

implementation due to inclusion or exclusion of specific 

options, or other ambiguities allowed by the specifications 

should be reported. The following paragraphs outline procedures, 

data formats, and information content ~f various reporting 

possibilities. 

3.7.1 Methods of Generating Reports 

Report generation procedures may vary from simple manual methods 

to complex computer generated description and analysis reports. 

Choice of a report generation method depends strongly on the 

level ~f detail required. A simple pass/fail report can easily 

be generated by manual techniques; a report that includes 

extensive data that can be used for failure analysis should be 

automated so that extraneous errors and/or loss of diagnostic 

information will not be introducted by clerical errors. 

Compromise methods of generating reports such as handling all 

pass conditions manually and utilizing hand edited memory dumps 
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for reporting test failures should be given careful consideration 

because of the low costs of such a compromise. More complex 

failure analysis performed by a computer would probably allow 

{require) more sophisticated error reporting. 

3.7.2 Content and Format of Certification Reports 

Any certification report, regardless of how it is produced, 

should include certain minimum information about the certi

fication process. 

This information includes: 

The manufacturer, model, and serial number of the 

unit under test. 

The date and time the test was started/completed. 

Identification of any previous test reports that were 

issued for the specific model under test. 

The r~ ;ision of MIL-STD-1750 to which the certifica

tion is being performed. 

The revision level(s) of the certification test 

programs and procedures. 

The project, system, or subsystem for which the unit 

under test is being certified (i.e., the end user). 

The names and affiliation of individuals witnessing 

the certification process. 
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The results of the test at least to the level of

pass/fail.

Additional information that would be helpful includes a list of

all Possible tests (or subtests) that are included in the certl-

fication process annotated as shown in Figure 3-3. The ad-

i .tages of this type of reporting are:

Specific indentification of all tests that have been

executed is provided.

Each test that failed is identified.

The MIL-STD-1750 instruction or function relevant

to the test is identified.

Results of action taken to determine the nature of

any failure are identified.

3.7.3 Detailed Failure Analysis

Many automated failure analysis reports can be generated if

sufficient error information is retained by the certification

test programs. The information requirements will vary with the

structure and content of the particular test component that

detects the error as well as the level of analysis desired.

Figure 3-4 shows a sample report that indicates one type of

reporting possible. This report could conceivably be used to

detect failures of the following architectural entities:

OP CODE (Functions)

Registers

Addressing Modes
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Operand Types

Memory Addressing

Memory Data

Automated reporting of this type can have the disadvantage of

producing mountains of data that requires further analysis to

determine the specific architectural component(s) that failed.

Summary reports can perform this valuable task as shown in

Figure 3-5. In this example, the information presented in the

detailed report is summarized in terms of various distributions

of the failures. Careful examination of these distributions can

provide an indication of specific malfunctions. even when the

errors have a multiplicity of symptoms.

P
3-28
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FIGURE 3-4. INSTRUCTION CODE TEST -- DETAILED FAILURE REPORT

OPCODE

RA register

RX register

Label field

Operand type

(RA)

(RX)

DA

DO

Results

Expected results

Failed bits

Expected status

Received status

Expected interrupt

Received interrupt
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FIGURE 3-5. INSTRUCTION CODE TEST -SUMMARY FAILURE REPORT

Frequency of Failures for Test Failures

OPCODE % Failures 4 Failures

RA Reisters % Failures 4 Failures

RX Registers % Failures 4 Failures

Bits in RA % Failures # Failures

Bits -in RX % Failures 4 Failures,

Bits in DA % Failures # Failures

Bits in DO % Failures 4 Failures

Error bits
in Result % Failures # Failures

Error bits
in Status % Failures # Failures
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4. CERTIFICATION PROCEDURE EVALUATION

The purpose of this section of the report is to raise and

discuss the key issues involved in evaluating various test

methodologies. Section 4.1 defines what a test methodology

is in terms of its attributes, and discusses the methods of

combining alternatives to each of these attributes. Criteria

for evaluating test methodologies are discussed in section

4.2 and a system efficiency model is developed in section

4.3. Subsequent sections expand upon previously introduced

evaluation criteria until certification procedure design goals

are introduced in section 4.7. Finally, an evaluation of

currently known certification procedure options avai'able to

SEAFAC are introduced in section 4.8. The overall e ect of

the discussion of test methodologies and evaluation ocedures

is to define relations between factors such as -isk, coat,

reliability, and completeness. Specific models are proposed

which are used generatively to develop design goals that are

achievable and cost effective.

4.1 Test Methodologies

A test methodology can be described as a collection of pro-

cedures, and data used to 1) provide test programs and input data

for those programs, 2) execute those programs on any 1750 com-

puter (subject to the constraints defined in section 2.4.2) and

3) evaluate the resulting output data to determine whether the

UUT complies with MIL-STD-1750. In order to evaluate and

compare proposed test methodologies, each one must be thoroughly

and unambiguously described in terms of its attributes. The

following attributes are considered germane to the specification

of a test methodology.

1. The design of test programs

2. The design of test data

PAGEnm a 
"
" ' , .



DOCUMENT NO. I
PX 13243 1

3. The method of evaluating test programs and data

for correctness

4. The method of loading and initiating test programs

and associated data structures

5. The method of recovering, analyzing and reporting

test results.

6. The method of adapting the test methodology to

optional features and/or changes in MIL-STD-1750

A great number of possible test methodologies can be

derived by listing alternative procedures and data for

each of the attributes mentioned above. If only

two alternatives were available for each of thcse six attribut-

es, then a total of sixty-four (64) possible test methodologies

would exist. Fortunately, most of the alternatives selected

for one attribute will limit the possible selection of

other attributes. Therefore, the total number of

reasonable methodologies is much smaller than the number that

can be derived by simply combining attributes.

Evaluation of alternatives within each

attribute category cannot be used to select a whole test

methodology because they cannot be combined arbitrarily.

But, separate evaluations can be used to measure the effects of

applying more than one test methodology to the certification

problem. For example, testing of the ADD operation might not

be considered complete if only boundary values are used for

testing; also it might not be considered complete if only a

few random values were used. Application of both techniques

however might provide an adequate level of completeness.

4.2 Evaluation Criteria

Each test methodology and, indeed, each attribute alternative

can be evaluated with respect to various criteria. The three

4-.-
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major evaluation criteria are dscussed in this section: test

efficiency, program reliability and cost impact.

4.2.1 Efficiency

Each attribute, alternative defines parameters that can be used

to determine overall test efficiency with respect to total test

time and/or memory requirements. Efficiency measures can be

estimated by counting UUT memory references used to execute a

particular test sequence. The functional efficiency of the test

code is defined as the ratio of the number of memory references

required for the instruction(s) being tested to the total number

of memory references used for setup, execution, and examination

of results.

This functional efficiency and several physical constants of the

unit under test define the time vs memory trade-off and can be

used to compute the total time required to execute a certifi-

cation test component for a given unit under test by proper

application of the system efficiency model shown in Figure 4.1.

This model shows that the total test time is the s:m of the

time required to load the test and test data, SI/R the time to

execute the code, (I/(E-R ), and the time taken to retrieve the

results, S /R0 0

4.2.2 Reliability

Reliability of the certification process can be measurea

largely in terms of the completeness, clarity, and verifiabli-

ty of the test code. If a particular test methodology tests

more unique machine states than another, then it is more

complete. If a particular segment of test code is more straiqht

forward or more easily understood than another, then it has

greater clarity. If one certification procedure utilizes more

PAGE
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independently produced data to validate the process then it 

has greater verifiability. 

4.2.3 Cost 

Each attribute alternative will have associated requirements 

for hardware facilities, support software facilities, skill 

levels, amount of operator involvement, and other costs 

associated with development or use of the certification 

component. These requirements can be rank ordered for each 

attribute such that the highest cost alternative is given a 

rank of one, the next highest cost a rank of two and so on. 

Alternatives that have nearly equal costs (within 25%) will be 

given equal ranks. 

4.3 Application of the System Efficiency Model 

The system efficiency· model shown ·in Figure 4~1 can be used 

to conceptually define the most time efficient test. procedure. 

To do this the time equation: 

S. I 
T = ~ + 

R. E •R 
l. X 

+ 
s 
~ 
R 

0 

must be minimized with respect to one or more of the input 

parameters. 

4.3.1 Simplifying Observations 

Several practical observations will be helpful at this point. 

First, the data transfer rates into and out of the UUT will 

very likely be of similar speed. For example, if a magnetic 

tape unit is utilized for program and data loading then it can 

also be used for logging of the test results. If a test 

computer link is used to transfer data to the UUT then it will 

~ 
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probably be used for collection of results. This observation 

allows the 

T 

where 

time equation 

s . + s 
= J. . 0 

RL 

R 
0 

to be simplified -to two terms: 

I 
+ 

E•R 
X 

A se~ond simplifying observation is that two alternatives 

exist for the location of known good results. Either the 

known good data resides within the UUT or outside the UUT. 

In either case, the amount of data transferred into or out of 

the UUT will be the same, assuming that results are similarly 

coded in either case. This simplifying assumption allows us 

to rewrite the time equation again. 

where 

I 

= S . + 5 
J. 0 

A third simplifying observation is t hat for a wide variety 

of test programs, SL is directly proportional to the number 

of instructions being tested. In order to better demonstrate 

this relationship, two examples are presented below. 

Case I. Non-looping ADD Test with Comparison in UUT 

NUMBER OF MEMORY 
REFERENCES 

LIM Rl , IOPl 2 

A Rl , MOP2 3 

CIM Rl,RESULT12 2 

JC NE,ERROR 2 
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NUMBER OF MEMORY

REFERENCES

LIM Rl,IOP5 2

A R1,MOP7 3

CIM R1,RESULT57 2

JC NE,ERROR 2

In this examole each test of the ADD instruction requires

eight memory references for program code plus one additional

reference for each operand of the add instruction, bringing

the total memory requirement to nine cells. The total memory

requirement is therefore nine cells per tested instruction.

The only requirement for output is a single error flag. The

total execution time for testing 100 add instructions with case

I is approximately:

100 x 9 + 100
RL E Rx

The definition of the functional efficiency E as the number of

memory references in the tested instruction divided by the total

number of memory references allows us to estimate the total

execution time in terms of the data link transfer rate, R

and the UUT execution rate, R .

100 x 9 1 100
RL  (3/9).R

x

Case II. Looping ADD Test with Comparison in Test

Computer

.. ... . . . . .-. . .. . . . . .. . . . . .... ,m,.. . . .. . . . . .J . ~ .
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OUTER 

INNER 

LIM 

LIM 

LIM 

L 

A 

s 
AISP 

SOJ 

SOJ 

R4,M*N 

R2,M 

R3,N 

R1,0PERAND,R2 

R1,0PERAND,R3 

Rl,RESULT,R4 

R4,1 

R3,INNER 

R2,0UTER 

NUMBER OF MEMORY 
REFERENCES 

2 

2 

2 

3 

3 

3 

1 

2 

2 

In this example, each test of the ADD instruction requires 

slightl y over twelve memory references , yielding an efficiency of 

E = 3/12. The number of memory cells transferred for 100 test 

instructions is: 

io cells in program 

+10 cells in OPERAND Table 

+100 cells for storage of results 

130 cells total 

The total execution time for Case II is: 

T = 
100 

+(3/12).R 
X 

The number of words transferred in Case I and Case II is bounded 

by a linear function of the number of i ndividual instructions 

tested, I, and consists of: 

• program code that may be either a linear function of 

I (Case I) or a constant (Case II) . 

• operands that may be included in the code (Case I) or 

stored in tables (Case II). Use of a single table for 

both operands of a two operand instruction can reduce 

the number of operands~ r~u~red to be proportional to 

4-



the square root of I as in Case II. 

expected results are a linear function of I since 

each execution of an instruction produces a consistant 

and finite number of results. (Specific exceptions to 

this rule do exist. e.g., the MOV instruction or 

algorithmic self test methods (Section 3.2.3). 

The fourth and final simplifying observation deals with typical 

values for RL and Rx. Current memory technology and imple

mentation techniques dictate a range ~£ values for R that are 
6 X 

centered around R · = 
5x 

10 refere nces per second with a range 

of about Rx = 10 for slow microprogrammed processors to Rx 
7 = 10 for pipeline processors with relatively fast semi-

conductor memory. 

The value range for various data links is as follows: 

Data Link RL {wo[dsLsecond} 

DMA channel 1.0 X 10
6 

MIL-STD-15538 5.0 X 105 

Magnetic Tape 1.0 X 104 

RS-232 (9600 baud) 4.0 X 102 

Slow paper tape 1.0 X 101 

Manual entry l.Ox 10-l 

With the exception of directly coupled memory links, RL is 

very much smaller than R and can be considered the major 
X 

efficiency factor until the product of the functional effici-

ency, E, and the execution rate R becomes 
X 

to RL. To illustrate, assume values of RL 

in the time equations for Case I and II: 

small with respect 

= 10
4 

and R = 10
6 

X 
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Case I Case II

100 x 9 100 130 100
Ix 10 ( x 10 T 1 x 10 (3/12) x 10

= 9 x 10-2 + 3 x 10- 4  = 1.3 x 10-2 + 4 x 10 - 4

= 9.03 x 10 - 2 = 1.34 x 10 - 2

in each of these equations, the error introduced by completely

dropping the process execution time is negligible.

The third simplifying assumption above was that the amount of

data transferred, SL' and the number of instructions tested,

I, were functiinally related. There is, however, a class of

test programs for which this relation is not apparent. Tests

in this class might be considered as functional component

tests where the efficiency model described applies at the

level of a particular functional component within the UUT, but

does not apply to the larger system consisting of the UUT and

its environment. An example of this type of test program is a

memory test.

A memory test confirms that a set of test data can be Icaded

into registers, transferred to the memory unit under test,

retrieved, and tested against the register contents. In a

more formal notation, a possible memory test is:

b b

m I~ ) ~

b
M :fk i)

k i =a k m

PAGE T
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These equa~ons show that a single program containing n-m+l 

different data functions and testing b-a+l different addresses 

can· test (n-m+l) times (b-a+l) different machine states. In 

this case changing the address l~its, a and b, does not affect 

the size of the program that must be transferred to the UUT, 

but it does have a significant effect on the execution time 

of the program. 

The point is that for this class of test programs, the total 

number of instructions transferred to the UUT ts very small 

with respect to the number of states tested and is therefore 

not l~ited by the data rate, RL. Other program relationships, 

however, remain in effect. S~ecifically, total test time is a 

function Qf completeness and the functional efficiency of the 

test code. 

4~3.2 Implications of the Model as Desi9n Criteria 

The following major conclusions can be drawn from the system 

efficiency model. These conclusions can and should be ~applied 

as design criteria for generating certificatic.1 test procedures 

and/or evaLuating the efficiency of test designs. 

1. The total execution time required to perform tests 

of the type described is controlled by the mechanism 

for transferring programs and data, therefore use of 

manual techniques for entering or retrieving informa

tion should be avoided. 

2. The amount of da·ta transferred (and therefore the 

execution time) for programs that test the correct

ness of results in the UUT is the sa~e as that 

required for determination of correct n e ss outside 

the UUT. Therefore , by performing checks withi n 

the UUT, rather than in a locally connected test 

· 14~1 
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computer, the test can be performed with a stand-

alone UUT, appropriate maintenance console and

load device.

3. Program loops can be used to reduce memory require-

ments with little impact on total test time provided

that E/(ER ) remains small with respect to S L/RL 'xLL

4. The monotonically decreasing risk as a function of

completeness described in Section 2.1 indicates

that minimizing risk involves maximizing instruction

completeness by increasing the number of instruc-

tions tested (I in the system efficiency model).

To do this requires as Large a code and tests data

base as can be effectively generated and maintained.

Note that memory (long term storage) requirements

are linear functions of completeness as shown in both

Case I and Case II.

5. Reduction of risk as described above corresponds to

increasing any and perhaps all of the following

certification test parameters:

.the total test time

. 'he total number of instructions (or data

variants) tested

. the functional efficiency of the test code

- .
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4.4 The Role of Reliability 

Test certification reliability was defined in section 4.2.3 in 

terms of completeness, clarity, and verifiability of test 

code. Section 4.3.2 related the completeness issue to the 

number of unique instructions tested. An extension of this 

idea of completeness can be related to the number of unique 

machine status and state transitions tested. It is obvious 

by simple inspection that the number of machine state 

transitions possible is well beyond the realm of testibility, 

but simple architectural assumptions can be used to reduce 

the number of degrees of freedom of the test. 

4.4.1 Expanded Definition of Completeness 

The major assumption to be made is that each functional 

entity can be individual! y tested. Th_i s means, for instance, 

that e~ch bit in each memory cell and register can be · ~ndivid

ually tested for its ability to be set and cleared. It would 

also mean that each byte could be tested for its abi l ity to 

contain all 256 possible bit patterns. The assumption of 

architecturally divisable components would allow simple 

reduction of the number of tests required in the following 

manner. 

Assume that a 1024 ( 210} word by 16 bit segment of memory is 

to be tested, and that each word is defined as consisting of 

two bytes. A functionally sound test might attempt to 

verify that all possible values can be stored in the memory. 

7o do this the memor y can be tested as a word addressable 

unit wieh each word having a possibility of assuming 21 6 

different states. Under these conditions 2 26 different combi 

nations must be tested. 

tional · independence of 

Note however, that by assuming func

each byte the 210 word memor y can be 

considered as a 2
11 byte mem~r~~th each byte 

4- 13 
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possible states. To test this same memory now requires only 

219 test combinations, less than one percent of the number 

required by assuming a word organization. 

Note that when implementation details are unknown, as is the 

case in 1750 certification, then the assumption that the 

physical hardware is organized. in 16 bit words is completely 

unfounded. There is no reason why the memory can't be organ

ized as 56 bit words, with 16 bits of polynomial error checking, 

for example. The real reason for choosing functional 

entities to simplify testing is that each of these abst - actions 

is completely defined by MIL-STD-1750. 

Figure 4.2 outlines possible functional. entities that can 

be used to reduce the number of individual tests and still 

guarantee a high level of completeness. This is done by 

varying a particular entity over its entire range while at 

the same time other functional entities are varied over a 

small sampling of their entire range~ Completeness of any 

methodology can be measured in terms of the number of samples 

of each functional entity that are tested in this manner 

relative to the performance "standard" presented in the figure. 

4.4.2 Expanded Definition of Clarity 

The same figure used to define completeness also simplifies 

and defines the meaning of conceptual clarity by identifying 

which test module provides the major test of a particular 

functional component. This level of clarity provides 

insight into where a particular functional entity should be 

tested, but it must be pointed out that it does not necessarily 

indicate all modules where it is used or referenced. This is 

important for functional entities that may undergo change 

or re-definition, such as the proposed change in base register 

assignment from general registers R4-R7 to Rl2-Rl5. 

~~I 
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4.4.3 Expanded Definition of Verifiability

Section 3.3 indicated the various methods of verifying the

correctness of the certification procedures. The most easily

applied and easily understood methods are the majority vote

and self test methods. The majority vote method is rapidly

becoming an available possibility because "votes" have been

cast by Sperry Univac, Westinghouse, and DAIS in the form

of AN/AYK-15A hardware and test software, and the time is

rapidly approaching when the Advanced Digital Avionics Module

(ADAM) project will be able to provide additional votes in

the form of both hardware and software.

The fact that each of the participants have independently

pursued implementation and/or test of MIL-STD-1750 hardware or

software, while at the same time communicating their findings

to the MIL-STD-1750 Users Group to identify and resolve any

conflicting views lends a great deal of substance to each

vote.

4.5 Certification Procedure Costs

Section 2.1 outlined the relationship of risk to completeness

and Section 4.3.1 established simplified linear relationships

between execution time and memory requirements with respect to

test completeness. The development and/or operating costs

associated with any particular test program design will normally

exhibit this linear increase in proportion to the level of

completeness thus allowing cost to be substituted for complete-

ness as shown in Figure 4.3.

We know from the shape of the risk curve that there are

diminishing returns in both dimensions. The level of complete-

ness outlined in section 4.4.1 provides a reasonable upper
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RISK

COST

(COMPLETENESS)

Figure 4-3. Relationship Between Risk and Cost
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bound for the amount of functional testing to be done. This

method of limiting test completeness establishes a linearly

increasing amount of testing required to validate operation of

each additional functional entity. That is, functional

entities are assumed to be adequately tested if each feature

is tested in the context of only a few samples of state for

all other related functional entities. Thus, for example,

the isntruction tests cover all opcodes, but use only a

limited number of memory and register addresses and data

values; the address and data functions are the focus for

separate tests. Any assumption other than independent testing

of functions leads to either an inadequate test or an expon-

ential increase in the number of required test states, with an

associated rise in cost.

Several important cost factors should be identified at this

point,

1. Using existing code is probably the least costly

alternative for a given level of completeness.

2. Extending the completeness of a particular test

adds to the cost.

3. Verifying existing code adds to the cost and lowers

risk, but does not extend completeness.

4. Costs associated with increasing program completeness

depends upon the program design. Some program

designs are more easily extended than others.

5. Excessive costs may be incurred if an attempt is

made to extend program completeness beyond its

design limits. (e.g., a new test module may be

required to completely test a feature that was

partially tested in the past).

6. The most cost effective approach can only be

determined if a level of completeness is specified.

IPA,
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4.6 Design Goals

Several candidate design goals have been previously indicated,

these goals will now be made explicit with references made to

appropriate sections of the report. Specific recommendations

for implementation of procedures that meet these goals are also

given, as references to Section 5.

Design Goal Reference(s) Recommendation(s)

1. Each functional entity 2.4 - 2.4.2, 5.6.3-5.6.7

should be completely

tested (within reasonable-

ness constraints)

2. Tests of context including 3.5,2 5.6.8, 5.6.9

interrupts, I/O, and

processing should be

included

3. The system should be easy 3.4.3, 5.2 - 5.4,

to use; complex operating 4.3.1 5.11, 5.13

procedures should be

automated

4. The amount of test data 3.6.2, 5.7 - 5.7.3

should be easily expanded, 3.6.3

preferrably by an automated

process

5. The certification process 3.3 - 3.3.2 5.8 - 5.8.3

should itself be validated

6. The certification process 5.9 - 5.10

should be adaptable to

specific options and/or

changes in MIL-STD-1750

7. The certification facility 3.1 - 3.1.2 5.2, 5.5, 5.12

should provide a means

of generating, testing, and

archiving test procedures P

1 1
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4.7 Evaluation of Candidate Methodologies

Existing or planned test procedures can now be evaluated

relative to the design goals just specified. Normalized rank

ordering of alternate methodologies against each design goal

has been chosen as a measurement technique. This technique

allows subtle differences in quality to be differentiated on

the basis of rank, and limits the dominance of any wide

disparity found for one comparison of candidate methodology

and design goal.

4.7.1 Description of Candidate Methodologies

Two broad options are available for selection of test method-

odologies. First, an existing test such as the AFAL (DAIS)

ATP, described in Appendix F, and/or the Sperry Univac ATP,

described in Appendix G, can be used as a baseline for producing

the desired test. The second option is to develop new test

programs and procedures that meet the design goals eneumerated

in Section 4.6.

A range of test procedure implementation possibilities exists

for each of the two broad options. The first option would

provide three major implementation possibilities:

Use the existing test(s) with minimum modification

or extension.

Use the existing test(s) as a framework for a test

with increased completeness

Use either of the above two possibilities with the

addition of an independent validation of the test(s).

The second option, developing a ',ew test, would allow reason-

able design trade-offs to be made for each of the six attributes

introduced in Section 4.1. A major consideration for any new
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test is careful selection of the factors that affect the time

vs completeness trade-off as described by the system efficiency

model (cf. Section 4.3). Specifically, the level of test

automation must be given careful consideration when the amount

of test data and/or the number of core load modules becomes

large.

The many test procedure implementation possibilities that

utilize either existing baseline tests or new test programs

can be represented by candidate test methodologies. Four test

methodologies are considered representative candidates for use

in certifying compliance with MIL-STD-1750: the existing ATP(s);

the existing ATP(s) with further validation of design perform-

ance; a new test procedure that executes on the UUT without

benefit of connection to a test control computer; and a new

test procedure that utilizes a "standard" communication link

to a test control computer.

A detailed description of the last two approaches will be found

in Section 5. These methodologies represent selection of

specific trade-offs based on the assumptions described in

Section 2, the techniques described in Section 3, and the

system efficiency model and design criteria developed in

Section 4. This detailed de- -n approach was taken so that

specific functional test )-, - ents could be defined to the

point where coding tech ques, -low charts, and data designs

could be used to reduce the number of subjective judgements

that must be made when methodologies are evaluated based on

more general descriptions. The following paragraphs summarize

each candidate methodology.

Methodology I - Use the existing AFAL ATP and/or the existing

Sperry Univac ATP. The major advantages of this option are

the low cost of implementation and the simplicity of operation.

4-2
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The AFAL ATP seems to be more complete and less hardware

dependent than the Sperry Univac ATP, but the latter employs

some desirable coding techniques, such as the use of tables

for operand storage. Thus, some combination of the two ATP's

might be appropriate.

Methodology II - Validate and use either or both ATP's. This

method requires the development and use of a golden standard

(simulator) as described in Sections 3.2 and 3.3. The advantage

of this method over method I is that additional emphasis is

placed on verifying that the test actually performs as intended.

MethodoloQies III and IV - Design a new set of test programs to

meet the design goals. One possible set of programs that can

meet the design goals is described in Sections 5.6 through 5.8.

Those programs use a variety of techniques to achieve a high

degree of completeness as discussed in Section 4.4.1. Validity

of the process is assured by use of a simulator as in method II,

but with the additional confirmation of correct functioning of

all components cross checked by use of the AFAL ATP as described

in Section 5.8.3.

Two methodologies deriving from this design are possible. The

first, method III, would be manually controlled. That is, it

would utilize bootstrap and/or control (or maintenance) console

functions for entering programs and test data and for reporting

results as described in Section 3.4.

The second methodology, method IV, would be controlled from the

VAX-Ii/780 computer via data links as described in Sections 5.2

through 5.4.2. The advantage of this variant is that the large

test data base can be automatically transferred and controlled

by the VAX-ll/780.

4.7.2 Detailed Evaluation

.. . .. . . .... . - ' " • . .. . .. " ' ' ' ' .. , :' ' .. .
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A detailed evaluation of the four candidate methodologies has

been performed using rank ordered scoring techniques. Use of

rank ordering allows subtle differences between methodologies

to be represented while at the same time preventing any one

characteristic from dominating the score. Rank order scores

were assigned to each of the test methodologies for each of

the seven design goals and cost (cf. Section 4.6). Highest

ranks are most desirable. A weighted score for each of the

candidate methodologies was computed by the following process:

1. Normalize the rank for each design goal by the

highest rank for that design goal

2. Multiply the normalized ranks for each design

goal by the relative weight for that design goal

3. Sum the weighted normalized ranks for each

methodology

4. Divide the sum claculated in step 3 by the sum

of the relative weights

The scores shown in Figure 4-5 are for equal weighting of all

seven design goals and for cost. A different set of test

score% and perhaps even a different outcome will result if

different relative weights are applied as shown in Figure 4-6.

Note, however, that Method IV is exceptionally broad in scope

in that it has the highest rank in seven of the eight

evaluation criteria.

This section of the report summarizes the reasons for placing

each of the four candidate methodologies in its respective

rank as shown in Figure 4-3.

4.7.2.1 Evaluation of Test Completeness

Methods I and II are given lowest and equal ranks because they

both have a small amount of test data (about ten operand pairs

per instruction). Method III is given the next rank because



it is capable of supporting test completeness at or near the 

levels shown in Figure 4-2 subject to test time as constraining 

factor. Method IV is given a higher rank than r.~ethod III for 

two reasons. 

First, automation of the data transfer will elimj.nate many of 

the delays associated with manual bootstrap methods by allowing 

more test data to be used per unit of test t~e. Second, 

several tests, including the Random Instruction Sequence Tests 

and the Context Tests described in Sections 5.6.9 and 5.6.10 

require the use of an external test facility capable of deter

ming the final machine state of the UUT. 

4.7.2.2 Evaluation of Context Testing (cf. Section 3.5.2) 

Methods I and II are given lowest and equal ranks for the 

following reasons. Method I and method II are equal because 

the y represent the same initial .test code. Method III includes 

Methods I and/or II as a test of context (cf. Section 5.6.10) 

and uses sequence test$ in addition (cf. Section 5.6.9). There 

f ore, test III i~ more complete in context than Methods I or 

II. Method IV has a more complete test of context than Method 

III because it contains all of the tests in Method III plus an 

additional random instruction sequence test described in 

Section 5.6.9. 

4.7.2.3 Evaluation of Ease of Use 

Evaluation of the Ease of Use supported by each of the test 

methodologies requires some independent judgement of quality 

for each methodology. The Sperry Univac ATP is designed as a 

stand alone test that utilizes the minimum amount of support 

hardware. Its use in a stand alone mode is simple and effic

ient. The AFAL ATP executive includes a control capability 

that supports interaction with a test administrator. This 

14:;31 
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manual intervention in the form of loading and/or preparing many 

test modules (in the ra~ge of 20-30 core loads) and of recording 

test results. For this rea~Qn method III is ranked below methods 

I and II. Method IV is the only method that specifically 

addresses the question of connecting a test computer to an 

arbitrary impleme~tation o£ MIL-STD-1750. Therefore, it ranks 

the highest of the methods in level of automation, even though 

the use by the AFAL ATP of the AN/AYK-15A Users Console provides 

an equivalent control capability. 

The AN/AYK-15A Users Console (SA 301 310) provides a hardware 

mechanization of the protocol and data link handler function 

described in Sections 5.3 through 5.4.1. This device provides 

equivalent and in some sense superior levels of hardware control 

for the purpose of certification testing; but , it does so ~t the 

expense of generality. The Users Console is an excellent, but 

implementation specific version of. tbe capabilities defined for 

method· IV in Sections ·-5.2 through 5.4.2. Method IV is ranked 

above the AN/AYK-15A mechanization of methods I and II because 

of ~ts general applicability to MIL-STD-1750 testing . 

4.7.2.4 Evaluation of Test Expandability 

Methods I and II are given lowest and equal r ank s because they 

require examination of code segments and insertion of data into 

the appropriate places. Methods III and IV, on the other hand, 

have tables of data for easy expansion (cf. Section 5.7). 

Method IV is g i ven a higher rank than method III because it is 

capable of generating the random test sequences which require 

a simulator (cf. Section 5.6.9). 
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DESIGN GOAL RELATIVE METHOD (Section 4.7.1)
(Section 4.6) WEIGHT 1

1. Completeness 1 1 1 2 3

2. Context 1 1 2 3

3. Ease of Use 2 2 1 3

4. Expandability 1 1 2 3

5. Validation 1 2 3 3

6. Adaptability 2 1 3 3

7. Maintainability 2 1 3 4

8. Low Cost 4 3 2 1

WEIGHTED SCORE .52 .46 .70 .91

Figure 4-5. Rank Order Evaluation of Test Methodologies

(equal weighting of design goals)
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DESIGN GOAL RELATIVE METHOD (Section 4.7.)
(Section 4.6) WEIGHT II

1. Completeness 1 1 2 3

2. Context 1 1 2 3

3. Ease of Use
1 2 2 1 3

4. Expandability 1 2 3

5. Validation 1 2 3 3

6. Adaptability 1 2 1 3 3

7. Maintainability 1 2 1 3 4

8. Low Cost 10 4 3 2 1

WEIGHTED SCORE .77 .61 .59 .56

Figure 4-6. Rank Order Evaluation of Test Methodologies

(high weighting for cost)

~I
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4.7.2.5 Evaluation of Test Validity

Method I is validated in the sense that independent Air Force

and industry representatives have cooperated to test their

individual interpretations of MIL-STD-1750 as described in

Section 5.8.3. The level of validation proposed for Method II

would add another vote to that process in the sense of utiliz-

ing another independently developed simulator as an independent

functional test. Method II is therefore at a higher rank than

Method I. Likewise, Methods III and IV will undergo testing

on an independently developed simulator, but will have the

additional advantage over Method II of having another independ-

ent vote in the form of the test programs themselves and the

test data generation procedures (cf. Section 5.8.2).

4.7.2.6 Evaluation of Test Adaptability

Methods I and II utilize a large number of program modules

organized by opcode. Each opcode test module consists of two

to five parts each of which samples basic operation of the

instruction, lack of extraneous interrupts, correct status

word settings, correct interrupt generation, and correct

operation of indexing. (cf. Appendix F). Typical opcode

test modules requ_--e two hundred source lines to implement

these five parts; source lines include a mixture of program

code, test data, and expected results.

In contrast, Methods III and IV utilize program loops common

to several instructions. These loops typically consist of

sixty source lines of code. Test data and expected results

are stored in tables separated from these code loops (cf.

Sections 5.6.3 through 5.7.3).

Methods III and IV are considered more adaptable then Methods

I and II because changes will normally be isolated to specific

-25
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code or data segments common to all instructions utilizing

the changed feature. For example, expected results for all

tests of integer divide by zero with 32 - bit r:sult would

reside in a single results table for Methods III and IV,

but would appear in five different modules for Methods I and

II. Another example of test adaptability would be instruction

format changes such as modifying the definition of base

registers for the B and BX formats. Methods I and Ii would

require many modifications to be made in each of thirty-two

test modules (about 6400 lines of code) while Methods III and

IV would require modifications to a small number of instructions

in each of 16 program loops (about 960 lines of code). Methods

III and IV are clearly more adaptable because the code is

functionally organized in several dimensions, not just opcode.

Method I has been given a higher score than Method II because

no modification of validation code (the simulator) would be

required.

4.7.2.7 Evaluation of Test Maintainability

All four certification test methods outlined will undoubtedly

utilize equivalent program storage and maintenance techniques

provided by the VAX-11/780 computer systea. Method IV has the

unique advantage of being able to archive procedures, test data,

and certification test results in addition to having simple

storage capabilities (cf. Section 5.2). Method IV is given the

highest rating because of this advantage. Method III is rated

higher than Methods I and II because it utilizes functionally

PG
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organized code segments than are common to several instructions

rather than individually coding each opcode variant and data

point to be tested. Method I is more maintainable than Method

II because no simulator maintenance is required.

4.7.2.8 Evaluation of Test Costs

The final detailed evaluation to be performed is that of cost.

The lowest cost should receive the highest rank in this case.

Obviously, Method I is the lowest cost alternative because it

requires simple incorporation of available source programs into

a VAX-11/780 resident data base. Recurring costs should

consist of normal program maintenance, conversion of object

code to the appropriate bootstrap media format, and operation

of this very short test. Method II should be ranked next

because it requires development of the fewest additional capa-

bilities. Major additional costs for Method II are the increas-

ed maintenance costs for additional software (the simulator),

and a significant development cost relative to costs for Method

I in the form of testing requirements. Method III contains

significantly more development than Method II, and therefore

is ranked lower.

Any savings in maintenance costs for Method III over methods

I and II are probably offset by increased program size (cf.

Section 4.7.2.6). Method IV has development costs which are

about 30% higher than for Method III (cf. Section 5.13 and

Figure 5-9). In time, these additional costs will probably

be covered relative to Method III, through greater ease of

operation. Nevertheless, Method IV is ranked lower to indicate

costs relative to the first unit tested rather than extending

development costs over the life of the certification facility.
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4.7.3 Summary of Results

Figure 4-5 and 4-6 summarize the results of the detailed

evaluation performed in Section 4.7.2. The scores shown in

Figure 4-5 are for equal weighting of all seven design goals

and for cost. The scores shown in Figure 4-6 are for high

weighting of cost. Note that cost factors play a significant

role in determining which methodology is chosen. In general,

Method IV is technically superior to the other methods while

Method I is lowest cost and will have the highest score

whenever the relative weight of the cost goal is greater than

42% of the sum of the weights. The major decision to be made

is between cost and technology!
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5. RECOMMENDED APPROACH

This section recommends specific procedures, test designs, and

support tools to be used by SEAFAC for certification of various

implementations of MIL-STD-1750.

5.1 Overview of Recommended Approach

The recommended approach is designed to maximize the number of

instruction codes and instruction code sequences to be executed

by the unit under test while at the same time minimizing the

amount of effort required to generate, document, and maintain

test programs and data. Functional test modules are defined so

that testing effort can be concentrated in a particular archi-

tectural entity. Most test modules have provisions for extending

the test using random variables. Expected results are obtained

from a simulator which is used as a secondary standard. This

simulator will undergo rigorous testing during the generation

of test programs. Test programs, data, and expected results

are transferred between the unit under test and the VAX-li test

control computer thru a vendor supplied adapter unit which

connects the UUT to the test control computer via a MIL-STD-

1553B, RS-232C, or other agreed upon interface. A UUT resident

program interfaces I/O device handler software provided by the

vendor to the test modules used for certification. Summary

reports are produced by the VAX resident test control program.

These reports indicate which test modules were executed and

provide descriptive information about the nature of any test

failed. Provisions for identifying specific options that were/

were not tested are automatically invoked by the test control

program. Figure 5-1 shows the recommended certification

facility.

5.2 Test Control Program
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A Test Control Program {TCP) capable of sequencing all phases 

of the certification process assures proper 

operation and application of test procedures by minimizing human 

intervention. The TCP utilizes proqram modules and data stored 

in the certification test data base to thoroughly exercise all 

UUT functions defined in MIL-STD-1750 and produce a summary 

report for each module _.exercised. 

Simple operator controls allow the following functions to be 

performed. 

Sequence thru all certification tests 

Define the test sequence 

Select a specific test module for execution 

Add a new test module to the data base 

Delete an existing test module from the data base 

Archive an entire data base 

Restore an archived data base 

Save the UUT state (including memory) in the data 

base 

Select the simulator or UUT for execution 

Control/suppress levels of reporting 

Control sequencing in event of errors 

Provide diagnostic/debug aids 

5.3 Protocol Handler 

A Protocol Handler is provided as a means of allowing the test 

control program (TCP) to control the testing to be performed 

withiti the unit under test. The protocol handler is distri

buted between the test computer and the unit under test. Within 

the test computer, the protocol handler encodes/decodes message 

blocks to be transferred between the TCP and the unit under test. 

These message blocks are translated into appropriate action by 
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the protocol handler program residing within the unit under

test.

5.3.1 VAX Resident Protocol Handler

The portion of the protocol handler resident in the VAX-I

is designed to interface the test control program to the unit

under test via a series of FORTRAN calls within the TCP. These

calls provide the following functions:

Stop execution of any test module currently being

executed

Restart or start execution of a test module

Transfer the contents of specified register(s) to

the VAX

Transfer data to the specified register(s)

Transfer data to the specified memory location(s).

(This function overrides any memory protection

features.)

Perform the single instruction specified

Signal the specified interrupt(sJ

A more detailed discussion of the VAX resident protocol handler

is provided in Appendix E.

5.3.2 UUT Resident Protocol Handler

The protocol handler resident in the unit under test .s respon-

sible for processing control information from the VAX computer

and providing appropriate status messages to the VAX. This

handler contains a storage area for the contents of the machine

state. In effect, the 1750 resident protocol handler is

respon ible for switching the UUT between the test and control

states. In the test state, the 1750 executes the currently

resident test module using the hardware registers. when an

. . . ..... ..... ... I I .. . ' . . r ' : : ,, , , ,f . ...... . . . ,'PA"G.E" : _ _
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interrupt is generated in the 1750 in response to a message 

sent by the test control program, the contents of the hardware 

registers are saved in the machine state storage area and the 

message is processed by the protocol handler. 

Individual messages may command that data be transferred 

between the test computer and the UUT memory or simulated 

registers. Provisions are made to release memory lockout when 

access is requested by the test computer. Once the requested 

message has been initiated, the machine state stored in the 

simulated registers is loaded into the hardware registers and 

processing of test code continues. Concurrent execution of 

test code and I/O transfer may be performed within the UUT 

provided memory lockouts were not removed and simulated =eg

isters are not affected. 

Test modules resident in the UUT are able to invoke status · 

transfer. subroutines within the protocol han9ler. Thi$ entry 

point makes it possible for test modules to pass diagnostic 

information to t~e test computer for error reporting. Another 

entry point is available to return a complete status to the 

test computer and suspend execution of the test prograrr.. 

5.4 Data Link Drivers 

Data link drivers provide a media dependent path between the 

test computer resident protocol handler and the protoco~ 

handler that resides in the UUT. These handlers transmit the 

received binary data blocks via a MIL-STD-15538 data bus, 

RS-232C communications link, or other agreed upon interface. 

Only those handlers actually needed to establish and maintain 

communications between the VAX and the UUT need to be configur

ed at the time a certification is performed. For example, if 

a 15538 data link is to be used to certify a particular 1750 

implementation,then nei~her the test computer nor the unit 

Is~ I 
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under test is required to support an RS-232C connection. 

The data link drivers are required to transmit and receive 

physical blocks of binary data without regard for specific 

data content. To accomplish this, different handlers are 

provided for RS-232C and 15538 links. In addition, the require

ments for the VAX resident link driver may be different from 

the UUT resident handler. 

5.4.1 RS-232C Data Link Drivers 

Data link drivers for RS-232C data links will require internal 

buffers, coding algorithms, decoding algorithms, synchroniza

tion, and error checking routines to establish a robust connec

tion between the test computer and the UUT. Entry points into 

the data link drivers will be limited to transmit, receive, 

and check status functions. 

The transmit routine will pass a buffer address and word count 

to the data link drivers and return a normal completion or 

error status to the calling program. The receive routine will 

pass a buffer address and maximum word count to the driver 

program which will return an actual word count or error status. 

A status checking function will allow the calling program to 

determine how many data words are currently buffered in the 

link driver or indicate that a data loss has occurred. 

The binary data to be tra ilSmi tted over the serial data link 

is converted to hexa c e cimal ASCII characters before trans

mission to avoid invoking any special functions that may be 

incocporated in the transmis~ion of data path. In addition. s yn

chronization, word count , and block check characters are addeu 

so that proper receipt of data can be verified. Each block of 

binary data transmitted on the RS- 2 32 interface will consist of 

one or more space codes used for synchronization followed by 

Is~ I 
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four ASCII characters indicatinq the 16-b±t word count in hexa

decimal, followed by ASCII characters representing the words 

to be transmitted in hexadecimal, followed by four ASCII char

acters representinq the 16 low order bits of the twos comple

ment sum of all the binary data transmitted includinq the 

word count.. 

The receivinq data link driver responds to t~e receipt of a 

messaqe block by sendinq a status word consistinq of one or 

mo1:e space codes followed by the ASCII coded characters ACK, 

indicatinq correct receipt of data or NAK, indicatinq that an 

error was detected. The transmittinq link will attempt to 

retransmit a messaqe up to five times before an error status 

is returned to the calling program. 

Data link drivers contain one or more fixed size buffers for 

receipt of unsolicited messages. . The size and/or number of 

these ~'liffers as ·~ell · as · ·the largest physical record. that w.i.ll 

be transmit~ed on the data link are defined by compile time 

variables that must be compatible within the drivers at both 

ends of the line. 

5.4.2 MIL-STD-1553B Data Link Drivers 

Data link drivers for 1553B data l "nks will require internal 

buffers for receipt of unsolicited messages; however, coding 

and decoding of the binary data is not necessary since the 

data link_ allows for transmission of binary data. Another 

advantaqe of the 1553B interface is that synchronization, 

control, error detection, and status reporting are all defined 

by the standard. The main responsibility of 155JB a ta link 

drivers is to provide a terminal address and d i v ide ~he buffer 

provided by the calling program into blocY of 32 or fewer 

words as required by the 1553 protocol. The 1553B data link 

driver resident in the VAX-11 computer will act as the bus 

ls:7J 
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controller. The UUT will act as a remote terminal which res

ponds only to its own terminal address which may be selected 

by a compile time parameter. No action is required in response 

to any other terminal address including the "broadcast" adrlress. 

Messages that are received in error will be retransmitted up 

to five times before an error status is indicated at the 

transmitting end. 

5.5 MIL-STD-1750 Simulator 

A MIL-STD-1750 instruction set simulator is provided for genera

ting expected results and debugg4ng test program code. The 

simulator is a set of FORTRAN subroutines that simulate all 

architecturally relevant features of MIL-STD-1750 in a manner 

that makes the simulator indistinguishable from a unit under. 

test. 

A software switch i .s provided within the VAX resident protocol 

handler to transfer control information and data to the simu

lator rather than sending it on to the device handler. In 

effect, the simuator is a unit under test that shares its 

device handler interfaces with the test computer protocol 

handler at one end, and the UUT protocol handler written in 

1750 instruction set on the other hand. The simulator is 

"started" whenever the test computer protocol handler sends a 

message to the UUT, and execution is suspended whenever the 

UUT replies through its protocol handler. 

The simulator i :i coded in such a way that it can be linked to 

programs other than the TCP by calls to the FORTRAN subroutines 

shown in Appendix c. These subroutines allow .. ~~ : ·e trieval 

of expected results and provide a means of gen _ ,~ ~ .ng and 

validating arbitrary sequences of code as described in section 

5.6.3. 
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5.6 MIL-STD-1750 Test Programs

This section recommends a set of test programs to be executed

within the unit under test to verify that it conforms to the

requirements of MIL-STD-1750. These tests are functionally

organized and should normally be executed in the order speci-

fied.

5.6.1 Factory Acceptance Test

Each vendor of a MIL-STD-1750 implementation should be encour-

aged to employ any hardware and/or software diagnostic tests

they may have available to verify that the implementation to be

certified conforms in every respect to the vendors specifi-

cations and expectations. This optional test would be most

suitably employed while the UUT is in place at SEAFAC so that

the likelihood of attempting to certify an improperly installed

or somehow subtly damaged Unit is minimized.

5.6.2 Data Link Test

A test of the data link software should precede the actual

certification tests to be employed. This test is designed to

verify that data can be successfully transferred between the

test computer and the UUT. It utilizes the protocol functions

described in Appendix E to perform the following operations.

* Transfer a large number of data words to UUT memory

* Retrieve the same number of data words from UUT

memory and verify contents

* Transfer and retrieve successively smaller data

blocks assuring that data is not added or deleted

* Test the transfer of all 65K possible bit patterns
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5.6.3 Instruction Tests

A series of test modules are required to thoroughly test all

instruction codes. Several test modules are needed since

"known good" values stored within the UUT for comparison to

derived values requires more than 65K of data storage. The

"known good" values include the minimum required operands

described in section 3.4.1 plus an arbitrary number of randomly

generated operands that are produced as described in section

5.7.

Figure 5-2 shows a control structure for the Instruction Tests

which derives information about the data to be tested from a

series of tables. An opcode table contains the opcode to be

tested, a type code that indicates the test loop to utilize

for testing the instruction, and pointers to UUT resident tables

that contain expected results and operands used to generate

the results. Figure 5-3 shows a typical test loop that provides

for testing of all combinations of RA and RX registers for the

instruction under test with a specifiable number of operands to

be used in the RA and RX fields, and a (possibly) different

set of operands stored in memory.

Use of tables to define operand values and expected results

offer many distinct advantages:

New or different operands can be added at will up to

the limits imposed by available memory

• Operands and instructions can be independently

repositioned in memory by use of separate compiles

and/or relinking

. Program code can remain in UUT memory while new data

tables are transferred

* Simple coding sequences within the VAX can divide

available data space into two or more partitions.

mAGE
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One partition can be loaded from the VAX while the

other is being processed by the UUT. This allows

the test to proceed while interrupts and concurrent

I/O are being processed.

Several points should be highlighted at this time. First, not

all instructions can be effectively tested in this mode of

operation. The MOV instruction, for example, has a unique

format and requires that one or more interrupts occur during

the actual test of the instruction. To thoroughly test the

MOV instruction requires the injection of an interrupt that is

not synchronized with the MOV instruction itself, and the

interrupt processing routine must be able to assist in verify-

ing that the interrupt occurred during the operation and not

immediately before or after instruction execution. The level

of interaction between the test computer and the UUT required

for this type of test warrants a separate test component.

A second point to be highlighted is that the results that should

be checked include interrupts, status word contents, and

affected memory contents, not just the contents of affected

registers. Detailed study of each instruction to be performed

.,s required in order to select the appropriate test data,

expected interrupt conditions, and expected status word con-

tents; these factors will determine which test type is appropri-

ate for the instruction.

A third point is that information needed for detailed error

reporting as defined in section 3.7.3 should be provided at

the time an error condition is indicated to the test control

program even if this information is not used for automated

reporting. One mechanism for providing this information is

to pass the address of a data record containing detailed error

information to the test control program as a status indicator.

This record can be retrieved bthe TCP if detailed reporting
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is required; otherwise the test procedure can continue or

terminate at the discretion of the TCP and/or test operator.

5.6.4 Memory

The AFAL ATP memory test program described in Appendix F should

be modified to allow its incorporation into the test program(s)

(cf. Section 2.4.2) by protecting the UUT resident protocol

handler and device handler areas from access. Tests of optional

features such as memory protect and start-up ROM should be

removed from the memory test and placed into separate test

modules that can be included (excluded) based on the configura-

tion of the UUT. Diagnostic features of the test such as

restricting the patterns to be tested should be removed or

controlled thru interaction with the TCP to avoid "short-cir-

cuiting" of the entire test procedure during the certification

process.

5.6.5 Register Tests

A test of all general registers is recommended (cf. Section 2.4.

2). This test should check for all 64K data patterns in each

of the 16 general registers. Tests for correct contents of

all 16 registers should be made after each test pattern is

generated. Figure 5-4 shows the register test component.

Contents of other registers should be checked in the I/O test.

5.6.6 Derived Address Tests

Although the Instruction Tests as defined earlier will test

the ability of each instruction to access data in a limited

number of the possible derived addresses, a separate test of

derived address calculations is recommended. It will provide

a systematic and more comprehensive check on the ability of

the UUT to correctly compute derived addresses on each address-

ing mode. A summary of the fourteen distinct addressing

" 7w1
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Addressing Mode Derived Address Derived Operand

1. Register Direct RB (RB)

2. Memory Direct ADDR [ADDR]

3. Memory Direct Indexed ADDR+(RX) [ADDR+(RX)]

4. Memory Indirect [ADDR] [[ADDR]]

5. Memory Indirect Indexed [ADDR+(RX)] [[ADDR+(RX)]]

6. Immediate Long - I

7. Immediate Long Indexible - I+(RX)

8. - with RX=0 - I

9. Immediate Short Positive - +I+l

10. I ediate Short Negative - -I-i

11. IC Relative DSPL+(IC) -

12. Base Relative DSPL+(BR) [DSPL+(BR)]

13. Base Relative Indexible (BR)+(RX) [(BR)+(RX)]

14. - with RX=0 (BR) [(BR)]

Note: Double Precision and Floating Point Instructions
reference DA, DA+1 as a unit, and Extended Float-
ing Point Instructions reference DA, DA+1, DA+2.
The notation used here is defined in MIL-STD-1750.

Figure 5-5. Addressing Modes in the 1750 Instruction Set
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modes defined by MIL-STD-1750 is given in Figure 5-5. Note

that for the Immediate modes 6-10, the derived address is not

relevant because it is part of the instruction itself. Thus

no addressing tests need b3 performed for the Immediate modes

separate from the Instruction Tests. The IC Relative mode 11

is only used for the Branch instruction, which is adequately

tested already in the Instruction Tests. In addition, the

Register Direct mode 1 is fully tested in the Register Tests,

which verify both data values and derived address values for

all registers. This leaves seven addressing modet to test:

2-5 and 12-14.

Since the Memory Test and the Register Tests are concerned

with the storage and retrieval of possible data values, this

addressing test need not be concerned with any variety in

data values manipulated except so far as they help verify that

the appropriate address was indeed reached (e~g. using addresses

as the data). Also, since the Instruction Tests will cover

all OPCODESs, this test can be constructed using a single

instruction such as LOAD, which spans all addressing modes.

The test strategy then is to reference all derived addresses

of the mode being verified and confirm the reference using

instructions which are of a different addressing mode. For

memory direct, this would amount to performing LOAD's for all

64K addresses, pre-storing and confirming address data with

instructions of some other addressing mode.

For derived addresses which are indirect or involve a sum of

a register and an address, displacement, or some other register,

the number of possible addresses is too large to be testable

in a reasonable time. For example, with Memory Direct Indexed

mode the complete specification of ways to compute ADDR+(RX)

is 64K x 64K x 16, counting all addresses, all values of RX,

and all RX's. A reasonable compromise with completeness is

to perform three subtests, fixi two of the three variables



f each time while varying the third over its entire range. The 

values which are fixed would be chosen at random from their 

range of possibilities. This scheme is easily extended to 

apply to the other modes which involve sums in computing their 

derived addresses. 

5.6.7 Input/Output and Ihcerrupt Tests 

A functional components for testing all non- optional I/O 

capabilities is recommended. These tests should confirm correct 

addressing and value storage for all registers available through 

input/output instructions. These registers include: 

Status Word Register (SW) 

Fault Register (FT) 

Interrupt Mask (IM) 

Pendinq Interrupt (PI) 

Functional testing of these registers requires careful ordering 

of instructions, use of specialized instructions, and in some 

cases use of instructions that will be added in the first 

revision of MIL-STD-1750. For example, testing of the status 

word register will require that all combinations of the four 

upper bits be tested. The standard does not currently define 

the use or operation of the lower twelve bits of the status 

word; therefore, the results of testing should be reported, 

but strictly speaking, any value that is returned is allowed. 

(This particular problem and many others will be addressed in 

MIL-STD-1750A.) 

Interrupt testing can logically be done in this test component 

although interrupts normally associated with overflow, under

flow, illegal opcode, and other errors tr.at can ~e generated 

by software will be more extensively tested in other test 

modules as well. Additional capibilities are being defined 

ls:731 



DOCUMENT NO -Sr~ \ UNIVUN AC
PX 13243

in MIL-STD-1750A that will allow more compiete testing of

fault detection and interrupts. The ability to set the contents

of the pending interrupt register is crucial to testing inter-

rupt acceptance and priority without introducing implementation-

dependent test hardware.

5.6.8 Jump and Branch Tests

Proper operation of conditional and unconditional branching

should be performed in a separate test module. Conditional

branches that do not cause control to be transferred should be

checked before those that do cause control to be transferred

as shown in Figure 5-6. Conditional jumps and branches will

require 256 jump instructions to be executed for each of the
five addressing modes (D,DX,I,IX, and ICR) as shown in

Figure 5-7.

Several jumps require special handling by individual

tests. For example, the stack pointer and return address
should be verified for the stack IC and jump to subroutine
(SJS) instruction.

5.6.9 Random Instruction Sequence Tests

A series of test modules that incorporate sequences of instruc-

tions should be provided. These sequences should be of two

forms. The first form would consist of a series of executions

of the same instruction. The purpose of this type of test is

to attempt to fill any pipeline(s) that may have been used to

implement a particular function. The number of instructions in

the sequence should be large enough to fill any reasonable

size pipeline. One-hundred instructions would be more than

adequate. One convenient method for generating this sequence

of instructions is to modify the loop shown in Figure 5-3 to

store copies of the same instruction in successive memory

PAGE
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locations. If this technique is used, precautions must be

taken to avoid problems associated with modification of the

derived address of the pre-stored instructions. This occurs

in the DX format when RA=RX. Simple checks can be made to

bypass tests of this type.

Final results for this sequence test are similar to those

encountered in the single instruction tests except that the

number of interrupts becomes significant, and more than one

type of interrupt may occur. This type of testing may not be

valid for certain combinations of instructions and operands.

For example, the single precision integer divide instruction

in register format (DVR) will yield indeterminant results when

RB = RA + 1 and the remainder of a divide preceeding the last

in the sequence is zero. Subtle conditions such as this can

only be derived from a detailed analysis of individual instruc-

tions as has been indicated in Section 5.6.3. Fortunately,

in the case of integer divide the integer overflow interrupt

can be used to indicate that the results are not well defined.

A second form of instruction sequence test provides random

data and instruction sequences (cf. Section 3.5.2) by utilizing

special features of the MIL-STD-1750 simulator. The following

procedures indicate the method to be used to generate a random

set of code and data using the simulator.

1. Define a memory space to be used for the test.

2. Fill the simulated memory space with random number

sequences. (These sequences may have specified statistics).

3. Initialize simulated general registers with random

number sequences.

4. Select a subset of simulated memory to be designated'

as the instruction area.

5. Load the IC register with a random number whose value

within the instruction area.

5-
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6. Set breakpoints to halt execution of the simulator if

any memory reference outside the defined memory space

is attempted.

7. Set breakpoints to halt execution of the simulator if

any execution reference outside the instruction area

is attempted.

8. Set breakpoint to halt execution of the simulator if

any operand references are attempted inside the

instruction area.

9. Save a copy of the initial machine state including

memory contents for later reference.

10. Initiate execution of a single instruction.

11. Examine the completion status of the simulator. If

no breakpoint conditions were satisfied, repeat step

10 otherwise go to the next step.

12. One of the test ground rules has been violated; there-

fore the instruction pointed to by the IC should be

modified by selecting a new random variable to replace

the instruction in the copy saved in step 9.

13. The initial machine state and modified memory contents

are loaded from the saved copy and step 10 is repeated.

14. Step 10 should be repeated N times. A jump to the test

completion entry in the UUT Protocol handler should be

inserted into the stored code at the IC location on

the (N+l)st instruction execution.

15. The modified copy of the initial machine state should

be reloaded and a maximum of N + 100 instructions should

be simulated.

16. If N + 100 operations are executed without a jump to

the test completion entry, the attempt should be

aborted. Another attempt to create a test can be made

by starting at step 1.

17. If the test completion entry is reached, the final

machine state including memory contents are saved for

comparison with the results produced by the UUT.

.... ." .. .. . .. .. .. . n . .. ..... .Il l .... ..... ....... I I
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The results of this long and arduous (but fully automated)

process is a test program (the initial machine state), and

the expected results (the final machine state). A specific

unit under test can be loaded with the stored test code and the

test initiated under control of the test control program (TCP).

When the UUT indicates test completion, the TCP retrieves the

current machine state from the UUT and compares these results

to the expected results stored in the test database.

5.6.10 Context Tests

Application programs provide a natural extension to the avail-

able test software. Any well-documented program or subprogram

that does not depend upon time or implementation specific

facilities can be used to increase the level of test complete-

ness. These programs have significant advantages over the

random sequences of code described in the previous section

in that they represent a realistic mix of instructions that

serve a useful purpose (cf. Section 3.5.2). Extensive use of

these routines would provide proof positive that these specific

-programs can be used with certified implementation of 1750.

Availability of these mission software components will become

increasingly available with the passage of time,but few will be

available at the time of the first 1750 certification. One

acceptable first substitute for these components are the DAIS

and Sperry Univac ATP's for the AN/AYK-15A. These tests should

be augmented as mission software components become available.

Among the first general purpose software components that will

become available will undoubtedly be mathematical subroutines

such as SIN and COS functions. These functions can be very

easily tested by using the well known trignometric identity:

SIN 2 x) + COS (x) =
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A simple test procedure would preform the necessary operations

for a wide range of values for (x) and assure that the result

was within the limits of accuracy of the algorithm implemented

on the 1750. Use of the 1750 simulator or other secondary

standard to generate results would allow testing for exact

values rather than using extreme limits.

5.7 Test Data Generation

The tables of opcodes, operands, and expected results des-

cribed in Section 5.6.3 can be built by use of ass..mbly

directives, by use of VAX resident data generation programs,

and by use of simulator results. All three methods of gen-

eration are desirable for use in validating the test fac-

ilities as described in Section 5.8. Any one method of test

data generation is adequate for generating the appropriate

tables; alternate methods provide an independent means of

verifying the results.

The type code described in Section 5.6.3 is fixed for each

instruction. The actual code to be assigned is dependent

upon the particular implementation used for the instruction

test. One organization of the instruction test would utilize

a sorted list of all instructions similar to Appendix F to

define when a type code is needed. This list is sorted in

the order: addressing mode, operand/result format(s), and

instruction class (load, store, register, etc). Each change

in the contents of one of these fields would indicate need

for another type code. Once the relationship between type

code and operation code has been established, test tables

can be generated using any of the following techniques.

5.7.1 Test Data Generation Using the Cross Assembler.
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Tables of test data can be generated using the capabilities

of the VAX hosted 1750 cross assembler. Assembly-time

capabilities play a vital role in determining the relative

ease of generating these tables. Factors that influence these

capabilities are:

* The constant data formats supported (integer,

double, floating point, etc.)

* The operations that can be performed on each data

format (add, subtract, multiply, divide, shift,

logical, etc.)

• The ability to utilize parameterized macros

* The ability to utilize assembly-time tables

* The ability to process assembly-time decisions

A section of assembly code capable of generating tables of

operands and results is shown in Appendix G. This sample

code indicates the relative simplicity of generating large

sequences of test code when appropriate assembly-time facili-

ties are available. The samples chosen are purposely small

since the number of output cells for this particular example

is approximately five times the square of the number of oper-

and pairs entered. If one hundred operand pairs were entered,

slightly over fifty thousand data values would be generated.

5.7.2 Test Data Generation Programs

Relatively simple programs can be written in FORTRAN (or other

suitable language) to generate data tables. These programs

can be used to produce appropriate source or core images by

accepting user supplied or randomly generated operands, per-

forming the required functional operations,and producing a

table of expected results using the internal data format(s)

of the VAX. Utility routines for conversion of internal

format data to equivalent 1750 data representation must be
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provided.

5.7.3 Test Data Generation Using the 1750 Simulator

Test programs can be modified to act as test data generation

routines by replacing the section of code that compares results

with code that stores the computed results in the appropriate

simulated memory cells. Operand tables can be either manually

entered into the test program code, or generated in the test

computer and transferred into the appropriate simulated memory

area by invoking protocol routines. Once the operands and

results are in simulated memory, they can be retrieved from

simulated memory and stored in the test data base for later

use with the unmodified test program.

5.8 Test Validation

Test programs and the 1750 simulator should be verified to

be correct before beginning certification of a 1750 imple-

mentation. In effect, this test validation is the first

certification of an implementation of MIL-STD-1750, the

1750 simulator. The following paragraphs outline procedures

that can be used to validate both the test programs and the

simulator. The validation described uses majority vote and

is always subject to question. Confidence in the accuracy

of the simulator and test programs used as secondary standards

is relatively high because of the number of independent checks

of correctness that are made.

5.8.1 Design and "alidation of the Simulator and Test

Program

Design and coding of the 1750 simulator and the 1750 test

programs should be carried on independently until both are

complete and ready to validate. This constraint is relatively

"- ".. . . . .. . II II .. .. . . . . . .. .. - . .. .,2 0I 
1
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easy to assure because the language and implementation

constraints are so different. The simulator will use MIL-STD-

1750 to form the basis of a software design that will be

implemented in FORTRAN operating on and targeted to a VAX-lI

computer. The test programs on the other hand use MIL-STD-

1750 as the basis of their design. They will be implemented

entirely in 1750 assembly code. Note that each component

attempts to use all opcodes and addressing capabilities of

MIL-STD--1750 within its implementation. Therefore, by attempt-

ing to concurrently test the two components (assuming some

initial level of independent code debugging including desk

debugging) any code discrepencies can be resolved by reference

to MIL-STD-1750.

Each program fault or error indication encountered during the

test must be carefully analyzed to determine if the indication

is caused by an error in the simulator design, the test code,

or a difference in interpretation of MIL-5TD-1750. A test

review board consisting of one or more individuals responsible

for simulator implementation, one or more individuals respon-

sible for implementation of test code, and one or more repre-

sentatives of SEAFAC should be responsible for giving final

approval to all program changes during test validation. Any

changes made should have unanimous approval of the review

board. If unanimous approval cannot be arrived at, an ambigu-

ity or discrepency in MIL-STD-1750 will undoubtedly be involved.

Testing of the disputed code will be bypassed, and the issue

brought before the 1750 users group for resolution. Any

certification to be performed would then note that testing

in the disputed area would be limited to reporting results as

described in Section 3.7.

5.8.2 Data Generation for the Initial Test Program

Test data used for the purpose of validating the simulator and
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test program should include the boundary conditions described

in Section 3.6. This data should be manually generated and

incorporated within the source code of the data tables des-

cribed in Section 5.6.3. Manual methods of data generation

would include use of calculators and small programs to

generate expected results,but care should be taken not to

use the same set of programs and programming assumptions used

in coding the 1750 simulator. This restriction will assure

that the simulator logic is not being tested against itself.

A minimum of two values for each operand should be chosen at

random between each pair of boundary conditions. For integer

and double precision data types a total of nine operand values

would be used:

zero

d minimum positive value (+1)

maximum positive value

* minimum negative value

• maximum negative value (-1)

two random positive numbers

* two random negative numbers

These nine operand values would require a total of nine times

nine or eighty-one "known good" values to be computed for

each arithmetic type. Use of assembly-time tools such as

those described in Section 5.7 will significantly reduce the

drudgery involved in this effort.

Floating point operands will require significantly more

patience to develop unless techniques similar to those des-

cribed in Section 5.7.2 are utilized. The results of any

data generated in this manner should be randomly sampled and

verified by manual techniques before verification begins.
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5.8.3 Independent Verification of the Test Validation

A cross check on the test and simulator validation procedure

will be performed by executing the Automated Test Program

(ATP) produced for the Air Force Avionics Laboratories (AFAL)

DAIS program on the 1750 simulator. This program has under-

gone testing similar to that described in Section 5.8.1 except

that a different simulator was first utilized for testing;

then the program was executed on two MIL-STD-1750 implementa-

tions: one produced by Sperry Univac and the other produced by

Westinghouse.

Any discrepencies noted in the results will be resolved by the

same review board described in Section 5.8.1. Any discrep- 1'
encies and possible resolutions of difference in the ATP will

be reported to the DAIS program office; however, no mandatory

action is required.

5.9 Reporting Test Results

The Test Control Program (TCP) will produce an automated

report file which can be saved as a permanent and reproducible

record of the certification results. The first portion of this

file is a fixed format report containing the information

described in Section 3.7.2. Descriptive information about the

unit being certified is entered via the operator console in

response to requests generated by the TCP. As each program

block is transferred from the certification test data base,

under control of the TCP, the start time for the test is

entered into the report file,and the completion time is

entered into the appropriate slot.

The TCP receives error information from the currently

resident test module as described in Section 5.3.2. This

error information is stored in an error diagnostic file,aiong
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with information that indicates the test module, type of

failure, expected results, and received results. This infor-

mation can be processed by a separate report generation com-

ponent to analyze the nature and extent of any failure.

Results of operations that have undefined results (e.g. results

of integer divide by zero) are stored in the diagnostic file

but are listed separately from error diagnostics.

5.10 Changes to MIL-STD-1750

MIL-STD-1750 is currently being revised to provide improved defi-

nition of existing requirements and to extend the defined capa-

bilities to include extended memory and improved I/O. These

enhancements will obviously require additional features to be

added to the test components described in Section 5.6.

The cost impact of these changes will be minimal for the programs

defined in Section 5 for three reasons. First, all changes to

the MIL-STD can be incorporated during the detailed design phase

without the need for re-programming. Second, costs may actually

be reduced for some tests because ambiguous or difficult to

interpret specifications are being revised in such a way that

specific results are expected (e.g., results of divide by zero)

Third, the recommended approach defines that functional testing

of new features such as memory extension be tested in a manner

that requires a linear extension of the amount of test code

required rather than an extensive modification or addition as

would be required if the existing ATP's were to be employed (cf.

Sections 2.4.2, 4.4.1, 4.5, 4.7.2.6).

Future changes to MIL-STD-1750 are anticipated in the recommend-

ed approach. The 1750 simulator and the certification test

programs will undoubtedly require extension to meet these changes

as they develop. Each revision of the test data base, test

control program, and 1750 simulator should be archived at the
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time it is released so that the ability to certify or re-certify

to a previous level of MIL-STD-1750 is maintained.
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5.11 Distribution and Control of Certification Test Software

Widespread distribution of Certification Test code is recommended.

This distribution of material will tend to assure continued use

of the tests in development and checkout of both hardware and

software components. If indeed the 1750 vendors extensively

utilize the tests in the development of new implementations of

1750 and verification of continuing compatibility of previously

certified designs, then additional confidence in the validated

test components will be developed.

Test components should be distributed in core image format with

appropriate source listings and/or as symbolic source images

on magnetic tape. Components such as the test control program,

protocol handlers, and device drivers will be provided on

request but it is assumed that the vnedor will not necessarily

have a VAX computer available to control processing. This

situation can be remedied by the vendor in either of two ways.

First, the TCP, protocol handler, and 1750 simulator can be

converted to an available test computer and appropriate device

handlers supplied in both the test computer and the unit under

test. Or second, the UUT resident protocol handler can be

replaced by a simple control program that displays or stores

results on a console device or storage media provided by the

vendor. The test setup for the second alternative may be as

simple as a maintenance console and bootstrap load device with

stop instructions at the protocol entry points for signaling

errors and completion.

SEAFAC should assume management responsibility for correcting

errors or omissions in test code that may be detected by vendors

that are under contract to develop or produce implementations of

MIL-STD-1750. These errors or omissions should be indicated to

SEAFAC in writing with sufficient detail to allow a determination

of the validity of the claim. Any disputes that may arise from

this process should be resolved by the MIL-STD-1750 User Group as

defined in Section 5.-.l.

5-25
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The purpose of distributing this test code is to allow each

vendor to prepare for certification of a particular 1750

implementation. The certification process itself can only

take place with a released version of the certification

programs. These programs may include different data sets or

program code from that provided to the vendor.

5.12 System Resource Requirements

The specific resources required to implement, maintain, docu-

ment, distribute, and control programs and test procedures

defined in this recommendations section of the final report

are listed in Figure 5.8. The hardware facilities available

at SEAFAC are ample to support any software development and

maintenance procedures needed for certification of the MIL-

STD-1750 ISA. The only hardware additions that would be

necessary for support ot the MIL-STD-1750 certification pro-

cedures are the incorporation of additional types of media

for program data transfer to a specific implementation of

1750 and/or the addition of a vendor supplied UUT adapter unit.

The software facilities available on the VAX-ll/780 are ample

to provide program maintenance and to develop VAX resident

data generation and analysis capabilities that are described

in Sections 5.1 thru 5.5 and Section 5.7. Missing support

software capabilities include a 1750 cross assembler, a link-

edit capability,and a 1750 ISA simulation capability. These

software components are or soon will be available through

other government facilities located in Dayton.

Currently available cross assembler and linkage capabilities

include the ALAP assembler and LINKS linkage editor now

being used by the DAIS project at AFAL, and the JOCIT facility

at RADC. Thesa capabilities are written in FORTRAN and are

highly portable. Another FORTRAN based capability being

15-261
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developed for the ADAM program is available within ASD, and

includes a macro generation capability that is highly desirable

(see Section 5.7.1). A preliminary copy of the ASD cross-

assembler and linkage capability has been installed on the

PDP-11/55 computer at SEAFAC, but has not been thoroughly

tested. A released VAX version of the ADAM support software

package will be available in June of 1980. In short, the

support software tools needed to provide a MIL-STD-1750 certi-

fication capab.iAity are readily available at low cost and low

risk.

5.13 Summary of Resources to be Developed

The certification test components and capabilities to be

developed are shown in Figure 5.9. Several of these items

are unique to the implementation being certified and are

therefore listed as vendor supplied items: all other items

are to be-supplied by the Air Force (SEAFAC) at the time

certification is attempted. In general, item numbers twelve

thru twenty-one are mandatory and cannot be eliminated or

reduced in scope without affecting test completeness. Other

items with the exception fo the 1750 bootstrap capability

may be considered as optional in that alternate methods can

be developed to support the necessary documentation, archive,

and test administration procedures with a corresponding need

for greater overall knowledge and care in administering

certification tests.

Estimates of the number of source lines required to generate

a particular test compu.,ent, the number of 1750 memory cells

required to hold the resultant code, and relative develop-

ment cost estimate were made by implementing a few typical

sections of code and extrapolating from those code segments.

12
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APPENDIX A

NON-OPTIONAL ASPECTS OF MIL-STD-1750 WHICH

ARE NOT WELL ENOUGH DEFINED TO BE TESTED

1. From Paragraph 4.1.7 Results on Fixed Point Overflow

Although ADD and SUBTRACT may reasonably be assumed from the

example to wrap around in the conventional twos complement fash-

ion, there is no such obvious result from MULTIPLY and DIVIDE

Overflow, which must be assumed to produce an undefined result.

2. From Paragraph 4.3.2 Special Registers

Mention is made once here of the "input/output register". Since

it is never mentioned again, it remains undefined.

3. From Paragraph 4.3.2.3. Fault Regis-.er

Since the PIO channel is not clearly defined (see 4.B) below),

bit 3, PIO channel parity erroc is of some concern, although

the function of a parity error is clear enough.

4. From Paraaraph 5 DETAIL REQUIREMENTS

a) For all Double Precision, Floating Point, and Extended

Floating Point instructions in Register Direct Addressing Mode:

It is not clear whether or not it is possible and/or required

for the operands to be the same or to overlap. The instruct-

ions under consideration are:

Double Precision (where RB = RA-I, RA, or RA+l

DAR DMR DABS DCR

DSR DDR DNEG DLR
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Floatina Point (where RB = RA-1, RA. or RA+l)

FAR FMR FABS RCR

FSR FDR FNEG FIX*

* (where RB = RA-1 or RA only)

Extended Floating Point (where RB = RA-2, RA-1, RA, RA+l,

RA+2

EFAR EFMR EFCR EFLT*

EFSR EFDR EFIX**

* (where RB = RA-1, RA, RA+I, or RA+2 only)

** (where RB = RA-2, RA-l, RA, or RA+I only)

b) For the IN and OUT instructions related to the PIO channel

(IN RA,PI,RX, and OUT RA,PO,RX), the legal range of values

of RX (i.e., the number cf ports) is not defined.

c) For the OUT instruction: reset normal power up discrete

bit (OUT RARNS), the meaning, location, and ability to read

this bit are all undefined.

d) For the breakpoint instruction (BPT), there is mention, but

no definition cf"the maintenance console".

e) For all instructions of address mode DX, can RA = RX? For

example, with the jump to subroutine command:

JS RA,LABEL,RX

The register transfer description is (p 114):

(RA)--- (I C) + 2

(IC)<-- DA

where DA = LABEL + (RX). If RA = RX, then the result of the

jump depends upon whether the calculation of DA is done before

or after the calculation of (RA).

AG

A-2
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f) For IN and OUT instructions regarding Timers A and B, no

mention is made of when (or even whether) an interrupt is to

be generated. In fact, the only mention of timer interrupts

is in Table I. Interruyt definitions.

g) For all instructions, it would be useful to clarify if there

is an implied (though not stated) specification that "all

registers and storage locations not expressly affected accord-

ing to statements in 5. DETAIL REQUIREMENTS shall be un-

changed by the operation of the instruction".
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APPENDIX B

OPTIONAL ASPECTS OF MIL-STD-1750

1. From Paragraph 4.3.2.3 Fault Register:

Bits set by optional equipment.

Bit

0 CPU Memory Protect

1 DMA Memory Protect

7 Other I/O Errors

13 Built In Test Equipment (BITE) Error

14-15 BITE Optional Bits

2. From Paragraph 4.4.3 Memory Parity

3. From Paragraph 4.4.4 Memory Block Protect

4. From Paragraph 4.6.3 Optional Input/Output Commands:

see below.

5. From Paragraph 5. DETAIL REQUIREMENTS

Optional Input Commands

TPIO (I/O Buffer) RDOR (Discrete Output Register)

RDI (Discrete Input) CI (Console Interface Word)

RMP (Memory Protect RAM) RCS (Console Interface Status)

Optional Output Commands

CO (Console Interface Word) DMAE (Enable DMA)

CLC (Clear Console Interface Word) DMAD (Disable DMA)

GO (Trigger GO) DSUR (Disable Start
"p ROM

MPEN (Memory Protect Enable) OD (Discrete )utput)
ESUR (Enable Start Up Rom) LMP (Load Memory

Protect)
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MIL-STD-1750 SIMULATOR SUBROUTINES 

MA$TER CLEAR 

Call ISAMC 

INITtATE EXECUTIQN 

Call ISAXOT (NCYCLS) 

NCYCLS - The number of instructions to be executed. If 

NCYCLS is less than one, execution will continue until 

a breakpoint is encountered. 

TBANSFEB DATA TO SIMQLATEQ MEMQRY 

Call ISAMW (IBUF, NBUF , IADDR) 

IBUF - Array of data to be transferred. 

NBUF - Number of words to transfer. 

IADDR - Address of data in ~imulated memory. 

TR5NSFER DATA FROM SIMt~TED MEMORY 

Call ISAMR (IBUF, NBUF, IADDR) 

IBUF - Array to receive data. 

NBUF - Number of words to be transferred. 

IADDR - Address of data in simulated memory. 

TRANSFER DATA TO SIMULAIED REGISTERS 

Call ISARW (!BUG, NBUF, !REG) 

IBUF - .~ray of data to be transferred. 

NBUF - Number of words to transfer. 

!REG - Register number of f~rst register (See Page C-4). 

TRANSFER DATA FRQM SIMULATED REGISTER 

Call ISARR (IBUF, NBUF, !REG) 

IBUF - Array to receive data. 
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NBUF - Number of words to transfer. 

IREG - Register number of first register (See Page C-4) • 

SET THE SPECIFI~~ BREAKPOINT 

Call ISAWB (NBKPT, !TYPE, ILOA, IHIA, ILOV, IHIV, ~~SK) 

NBKPT - Breakpoint: number between one and ten. 

!TYPE - Type of breakpoint: 

~ - ignore entry 

1 - instruction 

2 - derived operand 

3 - instruction or operand 

4 - register 

5 - transfer of control 

6 - write reference 

7 - read reference 

ILOA - Lower address (register) limit 

IHIA - Upper address lregister) limit 

ILOV - Lower value limit 

IHIV - Upper value limit 

MASK - Mask to AND with value before testing limits 

RETURN INFORMATION ABOUT THE BREAKPOINT THAT TEBMINAT~ 

EXECUTION 

Call ISARB (NBKPT , !TYPE, !LOA, IHIA, ILOV, IHIV, MASK, IADDR, 

IVAL) 

NBKPT - The breakpoint number that halted the simulation. 

A value of ~ indicates that a breakpo~nt instructioL was 

encountered. 

!TYPE - The type of breakpoint. 

ILOA - Lower address (register) limit. 

IHIA - Upper address (register) limit. 

ILOV - Lower value limit. 

IHIV - Upper value limit 

MASK - Mask applied to value. 
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~DR - Address or register number where breakpoint occur

red. 
rvAL - Actual data value encountered. 
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REGISTER 
NUMBER 

0 

1 

2 

3 

21 

5 

6 

7 

8 

9 

1P 
11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25* 

26* 

27* 

MIL-STD-1750 SIMULATOR REGISTER NUMBERS 

REGRISTEB DESCBIPTION 

General Register RO 

General Register R1 

General Register R2 

General Register R3 

General Register R4 

General Register R5 

General Register R6 

General Register R7 

General Register R8 

General Register R9 

General Register R10 

Genera l Register. R11 

General Register R12 

General Register R13 

General Regi~ter R14 

General Registe r RlS 

Instruction Count er (IC) 

status Word (SW) 

Fault (FT) 

Interrupt Mask (IM) 

Pending Interrupt (PI) 

Interrupt Enable 

Power Up Discrete 

Timer A 

Timer B 

Output Buffer Register (IOR) 

Cousole Output Register 

~onsola Status Register 
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REGISTER

NUMBER REGISTER DESCRIPTION

28* Go Indicator

29* Memory Protect Enable

30* Start Up ROM Enable

31* DMA Enable

i00 + XXX* Memory Protect RAM Number XXX

2000 + XXX* Discrete Input Register Number XXX

3000 + XXX* Discrete Output Register Number XXX

4000 + XXX* Programmed I/O Register Number XXX

* Implementation of these registers is optional

.. .. .. .. ... .. .. ....... ... . , , ......... |1... .. .. .. . . .. "il l'| 
'

]"-PAM' ..
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APPENDIX P

PROTOCOL HANDLER SUBROUTINES

INITIALIZE HANDLERS

Call UUTMC

INITIATE UUT EXECUTION

Call UUTXQT

TERMINATE UUT EXECUTION

Call UUTSTP

TRANSFER DATA TO UUT MEMORY

Call UUTMW (IBUF, NBUF, IADDR)

IBUF - Array of data to be transferred.

NBUF - Nuinber of words to transfer.

IADDR - Address of data in UUT memory.

TRANSFER DATA FROM UUT MEMORY

Call UUTMR (IBUF, NBUF, IADDR)

IBUF - Array to receive data.

NBUF - Number of words to be transferred.

IADDR - Address of data in UUT memory.

TRANSFER DA"A TO UUT REGISTERS

Call UUTRW (IBUG, NBUF, IREG)

IBUF - Array of data to be transferred.

NBUF - Number of words to transfer.

IREG - Register of number of first register (See Appendix D).

TRANSFER DATA FROM UUT REGISTERS

Call UUTRR (IBUF, NBUF, IREG)

IBUF - Array to receive data.

PAO
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NBUF - Nuber of words to transfer.

IREG - Register number of first register (See Appendix D).

SELECT UUT DATA LINK

Call UUTSW (PATH)

PATH - Data Link to UUT.

0 - MIL-STD-1750 Simulator.:

1 - MIL-STD-1553B.

2 - RS-232C.

SET A UUT INTERRUPT

Call UUTINT (PIW)

PIW - Pending interrupt word.

SINGLE STEP UUT

Call UUTSS (NWRDS, INST)

NWRDS - The number of UUT words in the instruction (one or

two).

INST - An array containing the MIL-STD-1750 instruction to be

executed.

CHECK UUT STATUS

Call UUTCS (CODE)

CODE - Coded status word

< 0 - No status has been received.

0 - The UUT is idle, no status can be received.

>0 - The number of words in the status message.

READ UUT STATUS

Call UUTRS (IBUF, NBUF)

IBUF - Array to receive status message.

NBUF - Number of words to be transferred.
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SAMPLE MACRO ASSEMBLY CODE

FOR GENERATION OF TEST PROGRAMS AND DATA

E-
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The following pages of MIL-STD-1750 assembly code illustrate

the use of macro capabilities for generation of test data and

repetitive code segments. Many pages of output code have been

removed to conserve paper in repetitive areas. The following

index can be used to locate specific items of interest.

PAGE CONTENT

Initialization of assembler to MIL-STD-1750

generation

1 Macro to perform setup of data tables (see

page 120 also)

2 Macros to generate a simple test of all

combinations of RA, (RA), and DO for a

specified OP code and list of values for

(RA) and DO.

3 The macro reference that specifies the

instruction to be tested (ADD), the number

of values of (RA) and DO, and the table

addresses for (RA), DO, and known results

61 The macro reference equivalent to the one

on page 3 for the subtract instruction

119 A dummy error routine called if an error is

detected.

120 - 122 Macro definitions to generate tables of

operands and expected results for ADD, Sub-

TRACT, AND, OR, and XOR operations.

123 Macro reference to generate operand tables

and compute results using the macros defined

on pages 120 - 122.
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APPENDIX F

REVIEW OF THE AFAL (DAIS) AN/AYK-15A ATP PROGRAM DESIGN

The test methodology represented by this ATP (PA 401 205) is

a controlled procedure for executing one or more times part-

icular test modules (programs), which verify the MIL-STD-1750

functional characteristics by running instruction sequences

which exercise desired aspects of the computer repetoire.

Some test modules such as the memory test and power on/off

sequencing require separate load modules, but most are sub-

programs under the control of an executive.

The executive allows the user to specify which test modules

to run, whether they should be run in sequence or iteratively,

and what to do when an error is detected. The various test

modules generally set a unique flag for every different error,

and those error flags are examined by an error processing

routine at the conclusion of each test module. Similarly,

interrupt handlers set flags associated with the potential

interrupts so that each test module can monitor expected and

unexpected interrupts.

According to the specification (SA 421 206), there are twenty-

seven processor test modules. Some are concerned with matters

outside MIL-STD-1750 or aspects of MIL-STD-17 50.

Others are function-

ally related under an organization which might be summarized

as follows:

Processor Test Modules

1. Instruction Set

2. Registers

3. Memory

4. Input/Output
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5. Interrupts

Instruction Set Tests

Four of the five instruction set tests are relevant to the

certification of MIL-STD-1750: individual instruction tests,

indexing test, illegal instruction test, and hand test.

(The benchmark or throughput test is not directly related

since it is concerned with timing, a hardware consideration,

and not with functional operation.) The individual instruction

tests are organized with one subroutine. per opcode, with the

exception of the I/O commands, which are verified separately.

These tests constitute most of the entire ATP, and their

internal structure will be described in detail later.

The indexing test was specified to verify separately from

the individual tests, that for at least one opcQde which

allows indexing, all possible index values would be checked

for generating a legal address. The illegal instruction test

verifies that illegal opcodes correctly generate a machine

error interrupt and set the illegal opcode bit in the fault

register. Although this test is grouped with the instruction

set tests, it overlaps in its scope with the interrupt and

register tests. The hand test specifies that random but

legal sequences of instructions should be executed in order

to check for errors which relate particularly to context

effects. Presumably jump and branch instructions are excluded

from this test.

The individual instruction tests are implemented are organized

into two parts which are common to all tests and three parts

which are used whenever they apply to the particular opcode.

The common parts are first to verify that known outputs

derive from the operation of the opcode with known inputs and

initial conditions, and second th t no overflow or underflow
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interrupts occurred when they were not supposed to. The ATP

specifications about what inputs values to use are fairly

brief: they say that arithmetic instructions should use

selected values in each of the four quadrants and test add/

subtract and multiply/divide as pairs to confirm that these

operations are symmetric. In addition, bit manipulation,

logic function, and control instructions are to be tested

using all four bit sections of 16 bit operands and all bit

changes (i.e ., I - -0, 0 -+ 1, 1 - -1, 0 - -0).

The other three parts of the individual instruction tests,

which are done where applicable are 1) to verify the correct

setting of all required status bits, 2) to verify the correct

generation of overflow or underflow interrupts, and 3) to

verify the operation of indexable instructions with a selection

of different index registers and index values. Of these

three tests, only the check of the condition status is a

complete or exhaustive tests in the sense that all possible

status word settings are confirmed. The other tests are

sample checks where typical cases are verified.

In summary, the instruction set tests are organized by opcode

with separate tests to verify illegal instruction operation,

the indexing mode of addressing, and the execution of

instructions in a random context (the hang test). The individ-

ual instruction tests are organized into parts that verify

basic operation of the instruction, lack of extraneous over-

flow/underflow interrupts, and where relevant, correct

setting of all required status bits, correct generation of

overflow/underflow interrupts, and correct operation of

indexing for a few test cases.

Several comments may be made about what is not specified in

the instruction set tests. One thing is any direction about
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the order of testing opcodes (apparently the default sequence 

~s by opcode value) and what instructions can be used in 

writing tests of other instructions (in the actual code a 

fixed subset of unverified instructions are used to test all 

others). Another thing is that addressing modes other than 

those .using an index register are not specifically tested 

by separate modules. Thus, for example, indirect addressing 

as such is not specificially tested. It is used in limited 

variety only, with each opcode that has indirect addressing. 

A third con·sideration is that there is no central organization 

of opcodes by function, such as the use of common data tables 

for arithmetic operations. Thus it is har1 to tell whether 

add/subtract have been tested for symmetry and hard to examine 

the operands used in ' arithmetic or logical instructions with

out going to the code for each separate opcode test. Finally, 

the only check on whether an instruction has extraneous 

unwanted ·~ffects on_the on the machine is the check on 

whether overflow/underflow interrupts occurred when they were 

not supposed to. 

Register Tests 

The register test module is specified to be a program which 

verifies the capability to address, set and reset all possible 

values of the general registers and the writable special 

registers, namely: the status word, the instruction counter, 

and the interrupt mask. (The pending interrupt register is 

also writable, but is tested as part of the interrupt test). 

For each general register , the method of verification is to 

load from memory all possible 16 bit values, checking each time 

that the val11e loaded is correct and that no other general 

registers are affected. The same check is performed on the 

status word and the interrupt mask except that no other regis

ters are checked for changes. For the instruction center 

(IC), the test is to fill core (one half at a· t i me) with a one w 
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instruction which increments a general register by one. 

Assuming the increment instruction words and was put into 

memory correctly, then at the end of the test the general 

L~gister and the IC should have the same value, indicating 

that the IC incremented corre.ctly through memory. 

All of these test overlap somewhat with the intrinsic testing 

of registers done in all other tests where registers are 

referenced. Here, of course, the intent is to more thoroughly 

verify register operation by controlling the data values 

that pass through them.. These tests especially highlight the 

fact that every test in the ATP assumes the correct operation 

of the instructions ~sed to conduct the test. Since there is 

no ordering or hierarchical structure to the ATP test modules, 

the inherent redundan~y of the various tests is the method 

employed to cross-check instructions against each other. 

Memory Tests 

Two ~emory tests are specified for the ATP: the first, a 

memory integrity test verifies the ability to address, write, 

and read all of memory; and the second, and illegal memory 

address test confirms that a machine error interrupt is 

generated when a memory module is removed and reference is 

made to an address therein. 

For the memory integrity test, several bit patterns are 

tested (addressed, all ones, all zeros, and a worst case 

pattern which is of course hardware dependent). Considering 

the memory space (65K) divided into four portions, the bit 

pattern tests are conducted over portions 1 and 2, 3 and 4, 

2 and 3, and 1 and 4. After tests in each portion, the rest 

of memory is to be checksummed to see if illegal changes to 

memory occurred. 
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Input/Output Tests

The I/O tests focus on the INPUT and OUTPUT instruction

codes for programmed I/O ports (PIO) and the two timers.

The other IO commands are verified in either the register

tests or the interrupt tests. Testing the PIO capability

involves a hardware connection from the output port to the

input port which allows an IN PI command to verify data

written via an OUT PO. Confirming all possible 16 bit patterns

completes this test. Since the two timers have specified time

increments, the timer test also involves external hard.are

to confirm those values. The specified procedure is to start

the timers with known values, stop them after known intervals,

and compare their contents. A second timer test apparently

compares the actual and exp-cted times when a timer interrupt

occurs. The point of timer interrupt is not defined by MIL-

STD-1750. A final part of the I/O tests tries all illegal

commands for IN and OUT, verifying that they give a machine

error interrupt.

Interrupt Tests

The interrupt tests are intended to verify those interrupts

not previously tested in the register and I/O tests. According

to the standard, the only remaining interrupts are for optional

aspects of 1750. However, IN and OUT commands related to the

pending interrupt register and fault register, and the OUT

commands enable and disable interrupts all remain to be

specifically verified at this point. The ATP specification

states that external hardware should be used to exercise

these registers wi:h associated IN and OUT commands with

interrupts masked and unmasked. With respect to testing the

various bits in these registers, this test is similar to the

register tests.

PAGE6
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APPENDIX G

Review of the Sperry Univac AN/AYK-15A Acceptance Test Program

Design

The Confidence Test (1979) represents another test methodology

which verifies functional characteristics of MIL-STD-1750.

Although aimed more as a factory acceptance test than as a

design certification test, if offers some alternative approach-

es from those of the ATP. Structurally, the Confidence Test

is organized as two core loads: a package containing 24

ordered test modules defined by 1750 functional capabilities

and a standalone memory test.

The first of the ordered test modules performs a basic opera-

tion test of 12 load, store, add, jump, and compare instruc-

tions, plus the reading and writing of the Status Register and

the Interrupt Mask Register. Successive modules then use

these partially verified instructions to perform functional

tests beginning with jump and branch instructions, single

precision load and store, and so forth, ending with tests of

Base Register Relative Addressing, Interrupts, Timers, and

the Fault Register. A complete list of the modules appears

in Figure I-1. The modules are actually written so they can

be called as subroutines from some executive, but because

they build on each other in terms of capabilities verified,

they would be run in order at least the first time.

The effect of this ordering is that test modules after the

first few are free to utilize fairly sophisticated code

segments to provide both a good mix of instructions tested and

a variety of techniques such as loops, access of data tables,

etc. with which to write efficient code. The separation of

test data from test code is eff,:tive in making the code

IG-1
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readable. And the freedom to write well-structured routines

gained from the ability to use much of the instruction set

means that the resulting test code will be more likely to be

correct and easier to debug.

Resulting style of coding is more similar to that used in

real mission software than is the regular, simple structure of

code in the ATP. For example, the ATP tested a multiply

instruction by setting up the operands, doing one multiply,

then checking the results. Thus the density of multiply

executions during the test is very low. The Confidence Test

places multiply instructions in loops and also performs them

in sequence. This offers the possibility of more easily

testing the instruction more often and of testing the instruc-

tion in a repetitive context which in some sense exercises

the multiply operation more heavily.

Because it was written for a particular 1750 implementation,

the Confidence Test is oriented towards a known computer archi-

tecture. The Univac Confidence Test took advantage of this

knowledge, taking short cuts in the test design whenever

common hardware was known. Thus using the functional organi-

zation of the test modules, the test of an Add could, for

example, fully verify the add function in one address mode

and make assumptions that the adder worked in tests of other

address modes.
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APPENDIX H

SORTED LIST OF MIL-STD-1750 INSTRUCTIONS
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The following list of MIL-STD instructions is sorted in the

order:

addressing mode

data format

instruction class

The purpose of using this sort order is to assist in parti-

tioning of individual instruction test loops as outlined in

Section 5.6.3.

Column headings and associated data values are as follows:

OC - Operation Code in hexadecimal. The letter B

following the code indicates that the value of

the active base register (0-3) should be added

to the operation code. The third hexadecimal

character on base relative and immediate in-

structions indicates the operation code

extension value.

MN - Instruction mnemonic from MIL-STD-1750

AM - Addressing Mode

B - Base relative

BX - Base relative indexed

I - Indirect and Indirect indexed

IR - IC relative

IM - Immediate long and Immediate long indexed

IS - Immediate short positive and Immediate short

negative

M - Memory direct and Memory direct indexed

R - Register direct

S - Special format

AGEl
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OF - Data Format

B - Bit

C - Condition

D - Double precision (32 bits)

E - Extended floating point (48 bits)

F - Floating point

I - Integer (16 bit)

S - Special format

IN - Interrupts Generated

N - No interrupts

O - Integer overflow

FOU - Floating overflow and underflow

OFU - Integer overflow, floating point underflow

E - Instruction error

CS - Condition Status

N - Status word not affected

C - Carry and status are set

S - Status is set, carry will be

IC - Instruction Class

C - Compare class

J - Jump class

L - Load or arithmetic class

R - Memory replace class

S - Store class

X - Special class
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00 MN AM DF IN CS IC DESCRIPTION PAGE

44 E ILLEGAL OPERATION
4S E ILLEGAL OPERATION
46 E ILLEGAL OPERATION
47 E ILLEGAL OPERATION
4AO E ILLEGAL OPERATION
4AC E ILLEGAL OPERATI ON
4AD E ILLEGAL OPERATION
4AE E ILLEGAL OPERATION
4AF E IL.LEGAL OPERATION
4B E ILLEGAL OPERATION
4C E ILLEGAL OPERATION
4D E ILLEGAL OPERATION
4E E ILLEGAL OPERATION
4F E ILLEGAL OFERATION
SB E ILLEGAL OPERATION
SD E ILLEGAL OPERATION
SF E ILLEGAL OPERATION
64 E ILLEGAL OPERATION
69 E ILLEGAL OPERATION
77 E ILLEGAL OPERPTION
?C E ILLEGAL OPERATION
95 E ILLEGAL OPERATION
AD E ILLEGAL OPERATION
AE E ILLEGAL OPERATION
AF E ILLEGAL OPERATION
BD E ILLEGAL OPERATION
BE E ILLEGAL OPERATION
BF E ILLEGAL OPERATION
Cc E ILLEGAL OPERATION
CD E ILLEGAL OPERATION
CE E ILLEGAL OPERATION
CF E ILLEGAL OPERATION
DC E ILLEGAL OPERATION
DD E ILLEGAL OPERATION
DE E ILLEGAL OPERATION
DF E ILLEGAL OPERATION
EE E ILLEGAL OPERATION
EF E ILLEGAL OPERATION
FS E ILLEGAL OPERATION
FC E ILLEGAL OPERATION
FD E ILLEGAL OPERATION
FE E ILLEGAL OPERATION

04B DLB B D N S L DOUBLE LOAD 92

OCB DSTB B D N N S DOUBLE STORE 101

3CB FCB B F N S C FLOATING POINT COMPARE 59

20B FAB B F FOU S L FLOATING POINT 6-DD 35
2CB FDB B F FOU S L FLOATING POINT DIVIDE 41
28B FMB B F FOU S L FLOATING POINT MULTIPLY 39

PrA11
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24B FSB B F FOU S L FLOATING POINT SUBTRACT 37

38B CB B I N S C INTEGER COMPARE 57

10B AB B I 0 C L INTEGER ADD 25
34B ANDB B I N S L LOGICAL AND 67
OOB LB B I N S L INTEGER LOAD 91
30B ORB B I N S L INCLUSIVE LOGICAL OR 66
14B SBB B I 0 C L INTEGER SUBTRACT 27

08B STB B I N S S INTEGER STORE 100

13B MB B ID 0 S L INTEGEF FULTIPLY 3E BIT PROD, 30
1CB DB B IS 0 S L INTEGER DIVIDE 32 BITS 33

40B1 DLB3X BX D N S L DOUBLE LOAD 92

40B3 DSTX BX D N N S DOUBLE STORE W BASE PEG 101

40B7 DBX BX DS 0 S L INTEGER DIVIDE 32 BITS 33

4OBD FCBX BX F N S C FLOATING POINT CTIPARE 59

40B8 FABX BX F FOU S L FLOATING POINT RDD W BRSE PEG 35
4OBB FDBX 3X F FOU S L FLORTING POINT DIVIDE 41
40BA FMBX BX F FOU S L FLOATING POINT MULTIPLY 39
40B9 FSBX BX F FOU S L FLOATING POINT SUBTRACT 37

40BC CBX BX I N S C INTEGER CONPHRE 57
40B4 ABX BX I 0 C L INTEGER ADD 25
40BE )NDX BX I N S L LOGICAL AND 67
40BO LBX BX I Ni S L INTEGER LOAD 91
40BF ORBX BX I N S L !NCLUSIVE LOGICAL. OR 63
40L5 SBBX BX I ,3 C L INTEGER SUBTRACT 27

40E2 STBX BX I N 5 5 INTEGER STORE 100

40B6 MBX BX ID 0 S L INTEGER MULTIPLY 32 BIT PROD. 30

-------------------------------------------------------------------SE LLBI 1 8 N s L LOAD FROM LOWER BYTE IN DIRECT 9S
8D LUBI I 8 f' S L LOAD FRO[" UPPER BYTE If-IDIRECT 94

9E SLBI I 3 r'j N S STORE IN LOWER BYTE INDIRECT 106
9D SUBI I 8 N N S STORE IN UPPER BYTE INDIRECT IOS

SS PBI 1 B N N R RESET BIT 8S
S2 SB I B .N N R SET BIT :34
S2 TBI I B N S R TEST & SET BIT 36

71 3C1 I C N N J JUMP ON CONDITION INDIRECT 113

:38 DLI I D N S L DOUBLE LOAD INDIRECT 92
-----------------------------------------------
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98 DSTI I D N N 5 DOUBLE STORE INDIRECT 101

92 STCI I H N N 5 STORE HE" CONSTAINT INDIRECT 103

84 LI I I N S L INTEGER LOAD INDIRECT 91

94 STI I I N N S INTEGER STORE INDIRECT 101

4AS DIM IN DS 0 5 L INTEGER DIVIDE 32 BITS 33

4#Ai CIM IN I N S C INTEGER COMPPRE 57

441 AIM IN I 0 c L INTEGER ADD 2E
4A7 ;NDM IN I N S L LOGICHL qND 67
3S LIM IN I N S L INTEGER LOAD IMMEDIATE 91
4A3 MIN IN I C' S L INTEGER MULTIPLY 32 BIT PROD. 30
4A4 MSIM IN I 0 L U INTEGER MULTIPL" 16 BIT PROD. 29
4AB NIM IN I N 3 L LOGICAL NAND 69
4A8 CRIM IM I N S L I'CLUSIVE LOGICAL CR 66
42 SIM IN I 0 L U INTEGER SUBTRACT INEDIATE 2?
4F9 XORM IN I 'l S L EXCLUSIVE LOGICAL OR 63

4A6 DVIM IN IS 0 S L INTEGER DIVIDE 16 BITS 32

75 BEZ IR C N N J BPF4f'-H ECUAL TO ZERO) 1
7B BGE IR C N N J BRANCH GRETER TH"4 OR = 0 1 n
79 BGT IR 0 N N J BRNCH OPEPTER NEO 120

7S BLE IR C N N J BRHNCH LES'S THAN CR, EOUAL (0) 119
76 OLT IR C N N J BP.NCH LESS THAN l:ZERO) 11i1
7A BNZ IR C N N J BF "NCH NOT EOUAL TO (ZEPO) 121
74 BR IR C H N J BRANCH 'JNCONDITIOf';;L 116

F3 CISN IS I NI 3 C COMPARE NEG. HEY/ DIGIT 57
F2 CISP IS I N S C COMPARE HEX DIGIT S7

A2 AISP IS I 0 C L ADD A POSITIVE HEX 25
D3 DISN IS I 0 L U INTEGER HEX DIVIDE 16 BITS 2D
D2 CZISP IS I 0 5 L ItiTEGER PS HEX ,'LIDE 16 BIT 32
83 LISN IS I N S L HEX DIGIT LOAD IMMEDIATE .1
32 LISP IS I N ' L HE. DIGIT LOAD IMMEDIATE

03 NISN IS I 0 '5 L INTEGER NEGATIVE HEX DIGIT 30
C0 MISP IS I 0 .5 L MULTIPLY HEX DIGIT 29
32 SISP IS I 0 C L SUBTRACT A HEN DIGIT 27

8C LLB M 8 N S L LOAD FROM LUWER 8,7E 95
8B LUB M 8 N S L LOAD FROM UPPER BYTE '94
9C STLB M 8 N N S STORE INTO LOWER BYTE 106
9B STUB M 8 N N S STORE INTO UPPER BYTE 10S

53 PB M B N N p PESET BIT 25
so SB M B N N R SET BIT 34
56 TB N B N F P TEST & SET BIT
59 TSB N B S P TEST WMD SET BIT
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?e JC M C N N 2 JUMP ON CONDITION 113

F6 DC M D N S C DOUBLE COMPARE 58

A6 DR M D 0 C L DOUBLE INTEGER RDD 26
,36 DL N D Ni S L DOUBLE LOAD 92
C6 DM M D 0 S L DOUBLE PRECISION NULTIPL 31
86 DS M D 0 0 L DOUBLE INTEGER SUBTRACT 23

'6 DST M D N N S DOUBLE STORE 101

D6 DD M DS 0 S L DOUBLE PRECISION DIVIDE 34

D4 D M DS 0 S L INTEGER DIVIDE 32 BITS 33

FA EFC M E N S C EXTENDED FLOATING COMPARE 60

;R EFA N E FOU S L EXTENDED FLOATING 4DD 42
DA EFD M E FOU S L EXTENDED FLOATING DIVIDE 43
8R EFL M E N S L EXTENDED FLOATING POINT LOAD 93
CA EFN M E FCU S L EXTENDED FLOATING !-,ULTIPLY 46
BA EFS M E FCU S L EXTENDED FLOATIr;G SUBTRACT 44

9A EFST M E N N S EXTENDED FLOAT STORE 102
FS F'C M F N S C FL:r.,TING POINT i:,DMPRE 59

R8 FR M F FOU 5 L FLORTING POINT 4DD 35
Do FD M F FlOU S L FLOATING POINT Di*.:DE 41
CS FM N F FOU S L FLOATING POINT MULTIPLY 39
88 FS M F FOU 3 L FLOATING POINT SUBTRCT 37

FO C M I N S C INTEGER COMPARE 57

F4 CBL M I N, S C CCMPr;RE BETWEEN LI.-1ITS 41

72 JS N I N N 2 JUIP TO SUBROUTINE 114

"3 SOJ I N N 2 JU[ P BACK AND COUNT 115

-'F URS pl I '4 fl 2 UNSTACK & SUBEOT Ii'!E RETURPl 112

Ao H i 0 C L INTEGER ADD 2S
E2 -ND M I N S L LOGICRL AND 67
30 L m I N S L INTEGER LOAD 91
.D LDST M I N C L LOOD STRPTUS 96
C4 M M 1 0 S L INTEGER MULTIPLY 32 BIT PROD. 30
Co MS M t 0 L INTEGER rIJLTIPL/ 16 BIT PROD. a29
ES N M I S L LOGICRL NArD G 9
EO OP M I N S L INCA,]LUSIVE LOGICAL 'P6
B S M I 0 C U INTEGER iIjBTPHCT

83 DECN M I C DECPEMENT EMO B",' INTEGER _
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A3 INCM M I 0 c R INCREMENT MEMORY 1Y HEX DIGIT 49

90 ST M I N N S INTEGER STORE 100
91 STC M I N N S STORE POSITIVE HE CONSTANT 103

DO DV M IS 0 S L INTEGER DIVIDE 16 BITS 32

97 -RM M S N N S STORE REGISTER THROUGH MASK 104

54 RBR R B N N L RESET BIT _S

Si SBR R B N N L SET BIT, BIT IN REGISTER 34
57 TBR R B N S L TEST & SET BIT 86

F7 DCR R D N S C DOUBLE COMPARE REG. 53

AS DPBS R D N S L DOUBLE ABSOLUTE VRLUE 52
A7 DAR R D 0 C L DOUBLE INTEGER ADD REG. 26
D7 DDR R D 0 S L DOUBLE PRECISION DIVIDE 34
37 DLR R D N S L DOUBLE LORD REGISTER 92
C DMR P D 0 S L DOUBLE PPECISION HULTIPL'," REG 21
BS DNEG R D 0 S L DOUBLE FFECISION rEGATE PEG. 5
6E DSpR R D N S L DOUBLE SHIFT OPITH REG. COUNT 32
GF DSCR R D N S L DOUBLE 3HIFT CYCLIC REG COUNT 33

63 DSLC R D IN S L DOUBLE SHIFT LEFT CYCLIC
65 DSLL R D N S L DOUBLE 'SHIFT LEFT LOGICAL 74
6D DSLR R D N S L DOUBLE SHIFT LOCiL REGISTER "!1
B7 DSR R D 0 C. L DOUBLE INTEGER SJBTRCT 23
67 DSRA R D N S L DOUBLE SHIFT RIGHT RITHMETIC 76
66 "DSRL R D N S L DOUBLE SHIFT RIGHT LOGICAL 75

EB EFLT R DE N S L 3a BIT INT TO EXTENhDED FLOAT 63

DS DR R DS 0 5 L INTEGER DIVIDE 32 3IT REG. 33

FB EFCR R E N 5 C EXTENDED FLOATING CcOV'PARE 60

PB EFP P E FOU S L EXTENDED FLOPT-hG cDD REG 42
DB EFDR R E FCU S L E:XTENDED FLCO4TIHG DIVIDE 4:3
EH EFIX R E OFU S L E:XTENDED FLOAT TO FIX 32 BIT r,5
1-B EFMR R E FOU S L EXTENDED FLT MULTIPLY REG. 46
BB EFSR R E FOU S L EXTENDED FLT SUBE!T CT REG. 44

F9 FCR R F N c 1 uOATING POINT ,'2NFOPE PEG 59

AO FABS R F N S -OTING POINT ABSOLUTE VALUE S3
R9 F-R R F FOU . AIHG POINT ADD PEG TO REG 35
D9 PDR P F FCU S - FLOA'ING POINT DIVIDE 41
E8 RIX R F CFU S L :CONVERT FLOAT TO FTX 16 BITS 64
9g FMP P F OU 3 u LSTIiG OINT H'Lr!PL'." P'EG 39

BC PNEG P F oU S FLOATING POINT ETE 6

B9 RSR P F ;O'U S L FLDATING POINT -STPACT 37

F1 CR P 1 " ' C INFEGEP ,Cr'P.PE E_,. 5'7

PAGE
H-8.



~DOCUMENT NO. 
;;13243 

oc 1'1"4 AM 

5E TYBR R 

A4 ABS R 
E3 ~R 
Al AR R 
81 LR R 
C5 I"R R 
C1 MSR R 
B4 I'£G R 
E7 I'R R 
E1 ORR R 
5C RVER R 
6B SAR R 
6C SCR R 
63 SL.C R 
61 SL.L R 
6A SL.R R 
81 5R R 
62 SRA R 
61 5RL R 
SA SVBR R 
EC XBR R 
E4 XOR R 
E5 XORR R 
EO >'.I..R R 

E9 FLT R 

01 OVR R 

7E SJS s 
48 IN s 
49 OUT s 
89 l.J'1 s 

DF IN cs IC 

I N 5 c 
I N 5 L 
I N 5 L 
I 0 c L 
I N 5 L 
I 0 s L 
I 0 s L 
I 0 s L 
I N s L 
I N 5 L 
I . N N L 
I N s L 
I N s L 
I N s L 
I N s L 
I N s L 
I 0 c L 
I N s L 
I N s L 

' I N N L 
I N s L 
I N s L 
I N 5 L 
I N 5 L 

IF N s L 

IS OP s L 

I N N J 

I N N X 

I N N X 

M I 'I N X 

DESCRIPTIOf'f PAGE 

TEST VARIABLE BIT IN REGISTER 90 

INTEGER ABSOL.UTE VALLE 51 
LOOICFL AND REG. TO REG . 67 
INTEGER ADO REG. TO REG . 25 
LOAD REG. TO REG . 91 
INTEGER I"U... TIPL Y REG . TO REG . 30 
INTEGER I'U... TIPL V 29 
INTEGER i'EGATE REGISTER 54 
LOGICFL NAND REG . TO REG 69 
Il'iCWSIVE LOGICAL OR REG. 66 
RESET VARIABLE BIT IN REG. 89 
SHIFTARITH, COl..NT IN REG . 79 
SHIFT CYCLIC I CCU'IT Hi REG . 80 
~IFT LEFT CYCLIC 73 
SH!FT LEFT LOGICAL ?0 
SHIFT LOGICAL, COlJNT IN REG. 78 
INTEGER SUBTRACT REG . TO REG. 27 
SHIFT RIGHT ARITHMETIC 72 
SHIFT RIGHT LOGICAL 71 
SET VARIABLE BIT I N REGISTER 89 
EXCHANGE BYTES IN REGISTER 112 
EXCLUSIVE LOGICAL OR 68 
E.XCLUSI'./E LOGICAL OR REG . 68 
EXCHAf'F'W WORDS IN ~GISTERS gg 

·---------------
CONVERT INTEGER TO FL T POINT 62 ------
INTEGER DIVIDE 16 BITS · 32 -------
STACK IC, .JlJ'P TO SUBROUTINE 111 ---
INPUT 124 --------------------
OUTPUT 124 -----
LOAD MULTIPLE C0<N<1S) 97 ------------------ ------

93 MOV s M N N X MOVE MULTIPLE WORDS 107 ---------------------
8F POF'M s M N N X POP MULTIPLE REG OFF STACK 110 --------------------·---·---
9F PSHM S M N N X PUSH 1'1 . .1L TIPLE REG ONTO STACK 109 ------- ----- -·---------
gg STM s M N N X STORE MUL. TIPLE REGISTERS 108 -------·---------
FF BPT s N N N X BREAKPOINT 132 -----------
FF NOP s N N N X NO OPERATION 131 -----------·-·----------·-----


