ADAO099259

PREPARED FOR

DTIC FILE copy

¥
AR /'~,) SPERRY<UNIVAC
e re j/

. -

MIL-STD-1750 CERTIFICATION STUDY
FINAL REPORT

CONTRACT NO. F33657-80-C-0118
CDRL NO. 3

o1&

EIWELE L
“wW'

DISTRIBUTION STfW‘

Approved fer public re'sase;

Distribution {inimited
USAF/AFSC
Aeronautical Systems Division
Mark for: ENAS/XRE/PMWB
Wright-Patterson AFB, Ohio 45433
81 3 19 039

T R

PR

¢

PR

Y —

=

LIS S N DA DT

INCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dalﬂ!mored)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

]

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

47925

4 i JITLE (md Subtitie)

\
(Y i | MIL-STD- 17;0’ CERTIFICA’I‘ION STUDY

=

S.- WQQERIOD COVERED
G FINAL REPGRT. -
4] %1 Jan w88 —6 Jun 1980 .1
[}

. PERFORMING ORG. REPORT NUMBER
PX 13243

7. AUTHOR(®)

8. CONTRACT OR GRANT NUMBER(s)

// F33657-8f-C-fl18 /

Sperry Rand Corp.

@;{ uA/IV/?c -DED y(ssldmlgj (

P.0. Box 3525

10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBE

Sperry Univac Division St. Paul, MN T
Sperry Univac Defense Systems 55165 / j

11. CONTROLLING OFFICE NAME AND ADDRESS 1B REPONT DATE]
ASD/XRE ; 6 Jun M8
WPAFB, Oll 45433 18 l"g;'““ OF PAGES

ASD/ENASD

WPAFB, OH 45433

14. MONITORING AGENCY NAME & ADDRESS(" different from Con!rol“n, Ottice)

LT

18. SECURITY CLASS. (of this report)

! UNCLASSIFIED

| 15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release;
Diatribution. Unirnited

P o msrtmmannd

‘7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Instruction Set Architecture
MIL-STD-1750

Computer Architecture Verification
Computer Testing

19. KEY WORDS (Continue on reverae aide if neceasary and identify by block number)

for compliance with MIL-STD-1750.

20. ABSTRACT (Continue on reverse side |f necessary and identify by block number)

This study evaluates a number of different validation techniques and
nrocedures that can be used by the Air Force to validate a candidate comnuter

4
,

EDITION OF 1 NOV 65 1S OBSOLETE

DD ,38%s 1473

UNCLASSIFIED L‘/JX_IQ b

SECURITY CLASSIFICATION OF THIS PAGE ('h.n Deta Entered)

VY-

———
-t

(ORI

S S |

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) N v

RN

-

SECURITY CLASSIFICATION OF THIS PAGE/Whan Data Fnl_v-”re«‘

DOCUMENT NO.
PX 13243
TABLE OF CONTENTS
1. INTRODUCTION AND SUMMARY
1.1 Objective
1.2 Approach
1.3 Summary of Recommendations
2, BACKGROUND
2.1 Reduction of Risk
2.2 Hardware Independent Certification
2.3 Testability Requirements
2.4 Levels of Completeness
2.4.1 Structural Assumptions
2.4.2 PFunctional Assumptions
3. CERTIFICATION PROCEDURE ISSUES
3.1 Resource Requirements
3.1.1 Hardware Requirements
3.1.2 Software Requirements
3.2 A Secondary 1750 Golden Standard
3.2.1 Golden Standard Uses
3.2.2 Golden Standard Development
3.2.3 Golden Standard Validation
3.3 Certification Procedure Validation
3.3.1 Completeness Validation
3.3.2 Accuracy Validation
3.4 Certification Procedure Contreol
3.4.1 Control Functions
3.4.2 Procedure Initialization
3.4.3 Control Methods
3.5 Certification Program Design

3.5.1 Organization Factors
3.5.2 Complexity Factors
3.5.3 Coding Techniques

NTIS
DTIC T8

Uniannouii

SPERRY=<=UNIVAC

pccession FoT

GRAXI

1

™ .

. e e ey —-
e s . s, -

)

N .
PX 13243

SPERRY<FUNIVAC

3.6

Certification Data Design

3.6.1 Minimum Requirements for Operands

3.6.2 Generation of Expected Results

3.6.3 Storage of Operands and Expected Results
Certification Procedure Report Generation

3.7.1 Methods of Generating Reports

3.7.2 Content and Format of Certification Reports
3.7.3 Detailed Failure Analysis

CERTIFICATION PROCEDURE EVALUATION

4.1
4.2

Test Methodologies

Evaluation Criteria

4.2.1 Efficiency _

4.2.2 Reliability

4.2.3 Cost o

Application of the System Efficiency Model

4.3.1 Simplifying Observations

4.3.2 Implications of Model as Design.Criteria

The Role of System Reliability

4.4.1 Expanded Definition of Completeness

4.4.2 Expanded Definition of Clarity

4.4.3 Expanded Definition of Verifiability

Certification Procedure Costs

Design Goals

Evaluation of Candidate Methodologies

4.7.1 Description of Candidate Methodologies

4.7.2 Detailed Evaluation
4,7.2.1 Evaluation of Test Completeness
4.7.2.2 Evaluation of Context Testing
4.7.2.3 Evaluation of Ease of Use
4.7.2.4 Evaluation of Test Expandability
4.7.2.5 Evaluation of Test Validity
4.7.2.6 Evaluation of Test Adaptability

4.7.2.7 Evaluation of Test Maintainability

4.7.2.8 Evion of Test Costs

'DOCUMENT NO.

| ox 13243 SPERRY<=UNIVAC
4.7.3 Summary of Candidate Methodologies
5. RECOMMENDED APPROACH
5.1 Overview of Recommended Approach
5.2 Test Control Program
5.3 Protocol Handler
5.3.1 VAX Resident Protocol Handler
5.3.2 UUT Resident Protocol Handler
5.4 Data Link Drivers
* 5.4.1 RS-232C Data Link Drivers
5.4.2 MIL-STD-1750 Data Link Drivers
5.5 MIL-STD-1750 Simulator
5.6 MIL-STD-1750 Test Programs
5.6.1 Factory Acceptance Tests
5.6.2 Data Link Test
5.6.3 Instruction Tests
5.6.4 Memory Test
- 5.6.5 Register Tests
5.6.6 Derived Address Tests
5.6.7 1Input/Qutput and Interrupt Tests
5.6.8 Jump and Branch Tests
5.6.9 Random Instruction Sequence Tests
5.6.10 Context Tests
5.7 Test Data Generation
5.7.1 Test Data Generation Using the Cross Assembler
5.7.2 Test Data Generation Programs
5.7.3 Test Data Generation Using the 1750 Simulator
5.8 Test Validation
5.8.1 Design and Validation of the Simulator and
the Test Program
5.8.2 Data Generation for the Initial Test Program
5.8.3 Independent Verification of the Test
Validation
5.9 EReporting Test Results
]

e

"EX 13243 SPERRY<SUNIVAC

5.10 Changes to MIL-STD-1750

5.11 Distribution and Control of Certification Tests
5.12 System Resource Requirements

5.13 Summary of Resources to be Developed

N REFERENCES

APPENDIX A, Optional Aspects of MIL-STD-1750

APPENDIX B. Recommendation for Changes to MIL-STD-1750

APPENDIX C. MIL-STD-1750 Simulator Subroutines

APPENDIX D. Protocecl Handler Subroutines

APPENDIX E. Sample Assembly Code for Generating Tables
of Operands and Results

APPENDIX F. Review of the AFAL (DAIS) AN/AYK-15A ATP
Program Design

APPENDIX G. Review of the Sperry Univac AN/AYK-15A
Acceptance Test Program Design

APPENDIX H. - Sorted List .of MIL-STD-1756 Instructioms

o 9243 SPERRY<=UNIVAC
LIST OF FIGURES AFTER PAGE

3-1. Majority Vote Validation 3-8
3-2. Use of Assembly Time Operations to Generate

Expected Results . . .+ « « « ¢ « « o« . . 3-24
3-3. Sample Page from AFAL AN/AYK-15A ATP Report . . . 3-27
3-4. Instruction Code Test -- Detailed Failure Report . 3-28
3-5. Instruction Code Test -~ Summary Failure Report . 3-28
4-1. System Efficiency Model+ .. .+ + .+ . 4-4
4-2. Architectural Entities that Reguire Thorough Testing 4-14
4-3, Relationship Between Risk and Cost 4-16
4-4, Possible Cost Curves for Four Certification Options 4-18
4-5., Rank Order Evaluation of Test Methodologies . . . 4-22
5-1. MIL-STD-1750 Certification Facility+ + .« . 5~-1
5-2. Instruction Test Control Structure+ .+ . 5-9
5-3, Typical Loop Test (D, DX Format Integer Instruction) 5-9
5-4. Register Test Program e e e e e e e e 5-11
5-5. Addressing Modes inh the 1750 Instruction Set . . 5-12
5-6. Sample of Code for Jump test« .+ .+ .« . 5-14
5-7. Conditional Branch/Jump Matrix e e e e e e 5~14
5-8. Certification System Resources e e v e e e 5-26
5-9. Test Resources to be Developed for ISA Certification 5-27

DOCUMENT NO.
PX 13243 SPERRY<SLINIVAC

1. INTRODUCTION

Current Air Force Avionics systems have a multiplicity of com-
puter architectures, system interface technologies, and related
software systems resulting in high development, acquisition,

and life-cycle costs. As a means of reducing these costs and
simplifying systems development, MIL-STD-1750 has been establish-
ed as the Air Force standard instruction set for Avionics com-
puter applications. Several efforts are under way to implement
MIL-STD-1750 for test and evaluation in avionics systems. The
ASD/ENA Systems Engineering Avionics Facility (SEAFAC) has been
given the responsibility for certifying compliance of vendor
produced computers with MIL-STD-1750. This feasibility study

of certification procedures was initiated to support development
of a certification facility at SEAFAC. The result of this study
is a discussion of background and procedural issues of instruc-
tion set architecture certification: an evaluation of test meth-
odologies; and a set of recommendations for a MIL-STD-1750 certi-
fication procedure. The report is relevant to the large class of
computers that are defined in terms of an instruction set archi-
tecture (ISA) which may be implemented in a variety of hardware

architectures.

1.1 Objective

“The objective of this study is to identify, evaluate, and select

from a wide variety of validation technigues and procedures that
can be applied by SEAFAC to validate a candidate computer for
compliance with MIL-STD-1750. The resulting certification pro-
cedure is a means by which SEAFAC can verify that a unit under
test (UUT) behaves as required by MIL-STD-1750, regardless of the
specific technology employed to implement the design or of the
end use for which the UUT was intended. The only characteristics
that various implementations can be expected to have in common

P

are those stated in MIL-STD-1750. =~ .. 1 ...

-
L

"lI-""“'“"'“'”'“"""“'""-'F'!.lllll-I-Il"""_"-'l-llllﬂnwf‘*

Bx 13243 SreER=Y<EUNIVAC

'Since these requirements are stated in the form of computational
processes, it follows that compliance can be verified by some

form of computational testing.
N

The fundamental assumption behind and major reason for develop-

ing a certification procedure is that validating the compliance of

a particular 1750 implementation will reduce the risk that the
hardware does not conform with MIL-STD-1750. It is assumed,

in addition, that the more thorough or complete the testing is,
the lower the risk will be. Because of the large number of
possible states of the 1750 processor, registers, and memory,
it is possible that a complete test of any 1750 computer would
take many years. Therefore, a certification procedure is
viewed as making reasonable tradeoffs between completeness and

other evaluation criteria such as cost and efficiency.

Consistent with the understanding that MIL-STD-1750 is a speci-
fication of an instruction set architecture and is indepeﬁdent
of particular hardware considerations, it is assumed that the
certification procedure requires no knowledge of the particular
hardware architecture of the UUT. This assumption requires that
to whatever extent possible, the UUT be treated as a black box,
and it implies that the test may not make use of hardware
implementation details that might normally be used to simplify

testing procedures.

This understanding also means that a test based upon a struc-

tural analysis of the UUT is ruled out, as is any test procedure
which involves inserting hardware probes into the UUT. 1Instead,
the test procedure is assumed to be based upon a functional :a
analysis of MIL-STD-1750. The goal of the testing procedure

is to verify that the UUT behaves as required by ascertaining
that it executes properly. It does that by detecting and

@M‘i;fz w SPERRY<FUNIVAC

i

reporting any functional flaws that might be in the UUT.

The specifics of all test failures, including the circumstances
and conditions required to reproduce the failure are of inter-
est, while the ability to detect and identify hardware component

failures is not of concern.

Within some constraints of reasonable test program conplexity

and execution time, the certification procedure should be as
complete as possible in verifying the functional characteristics

of the 1750 implementation under test. The motivation for pur-
suing such completeness comes primarily from the realization

that the certification procedure requires no prior knowledge of the
hardware used to implement MIL-STD-1750. Arguments about

related functions or instruction codes using the same hardware

and thus not requiring separate tests are not theoretically

justified. 1In practice, however, when exhaustive testing 1is not
practical, certain assumptions about hardware structure

can serve as guidelines for reducing the magnitude of the test
problem. These structural assumptions lead to a function '

oriented view of the 1750 instruction set architecture. o

1.2 Approach

The approach to this study of certification p.socedures involved

S ¥R

three phases: analysis of test methodology components, 1dent-
ification and application of evaluation c¢riteria, and recom-
mendation of specific procedures, test designs. and support
tools for use in certification. The first phase of the study
involved reviewing the literature related to ISA testing,
organizing knowledge about design certification available
through the experience of people at Sperry Univac, and examining
the two available Acceptance Test Programs for the AN/AYK-15A
(the AFAL (DAIS) ATP, SA 421 206 and the Sperry Univac Confi-

dence Test). A brief review of these two methodologies is

PAGE
1-3

DOCUMENT NO. oy
PX_ 13243 =‘1-‘ER"-Z.~<%UNIVAC

presented 1ia Appendices F and G. All of the information
gathered was well mixed with ideas from the authors in producing
the contents of the report. Key articles from the literature

are referenced in Section 6.

The analysis of test methodology components is presented in
Section 3 as a discussion of certification procedure issues.
Section 3.1 offers a discussion about hardware and software
resources not implicit in MIL-STD-1750 that might be required

for certification of a 1750 device.

Section 3.2 explores the concept of a "golden standard", as a
hardware or software device which implements MIL-STD-1750 and
serves as a functioning reference tool which could be used in
development, operation, and validation of certification tools
and procedures. Section 3.3 then underlines the importance of
validating whatever certification procedure is developed, and
it discusses some dimensions of tﬁat problem. The rest of
Section 3 provides some details about the major components of
test methodologies, namely, certification procedure control,
program and data design, and report generation. Individually
the subsections introduce approaches to control, preogram design
and data design which are motivated by a belief in the benefits
of a well-structured procedure. These benefits include ease

of use, validation, understanding, and modification. The final
section identifies a range of report geuneration techniques that

might be used in a selected test methodology.

The identification and application of evaluation criteria is
the subject of Section 4. Section 4.1 defines what a test
methodology is in terms of its attributes, and discusses the

methods of combining alternatives to each of these attributes.

Criteria for evaluating test methodologies are discussed in

4

ox 13243 SPERRY=<FUNIVAC

Section 4.2 and a system efficiency model is developed in

Section 4.3. Sections 4.4 and 4.5 expand upon previously
introduced evaluation criteria until certification procedure
design goals are introduced in Section 4.6. Finally., an eval-
uation of currently known certification procedure options
available to SEAFAC are introduced in Section 4.7. The overall
effect of the discussion of test methodologies and evaluation
procedures is to define relations between factors such as risk,
cost,-reliability, and completeness. The system efficiency model
is used generatively to develop design goals that are achievable

and cost effective.
1.3 Summary of Recommendations

The certification test methodology recommended by Sperry Univac
consists of procedures for loading, running, and reporting on
an extensive set of cert;fication test programs designed to
oberate in the MIL-STD-1750 uhit’under test. These programs
are designed to maximize the number of instruction codes and
instruction code sequences to be tested. An automated method
of generating test data is provided. This automated test data
generation capability allows expansion of test data to a level

of completeness limited only by time and/or cost constraints.

A MIL-STD-1750 instruction set simulator is recommended to pro-
vide one of the independent methods of generating test data and
to serve in the validation of the certification test programs
and data for correctness and accuracy. It is recommended that
all test programs and automated test data generation mechanisms
undergo rigorous validation procedures, including self~test and

validation against existing software components, before they

are utilized for certification of any implementations of

MIL-STD-1750.

DOCUMENT NO.)
PX 13243 SPERRY=<=UNIVAC

It is further recommended that the VAX-11/780 computer system
currently installed at SEAFAC host the program generation,
storage, and maintenance capabilities needed to support efficient
and effective MIL-STD-1750 certification procedures. The

use of available data links is specified to allow direct connec-
tion to the VAX-11/780 when appropriate hardware capabilities
are incorporated into the MIL-STD-1750 implementation under test.
This direct connection allows fully automatic operation of all
test procedures and assures proper operation and application of
test procedures by minimizing human intervention. Summary
reports produced by a VAX-11/780 resident test control program
provide descriptive information about specific options that were

tested. Further details are contained in Section 5.

Al

[

DOCUMENT NO.
PX 13243 SPERQ\’#LJNIVAC

2. BACKGROUND

Compliance of vendor produced computers to MIL-STD-1750 is of
major importance in the Air Force program to reduce life-cycle
costs. Fostering software commonality through standardization
of an instruction set architecture can only be realized if
functional specifications are specific, testable, and uniformly
applied. To this end, the MIL-STD-1750 control board and the
MIL-STD-1750 Users Group are in the process of revising the
standard to improve definition and clarity and to extend
functional capabilities. SEAFAC, with the help of industry
representatives, is preparing to develop the necessary tech-
nigues, tools, and experience to perform a thorough design
certification procedure. The goal of this procedure is to
verify that the UUT behaves as required by MIL-STD-1750. As

a basis for discussion of what the certification procedure
issues are, some assumptions about the process of certifying
a 1750 computer are offered here.

2.1 Reduction of Risk

The MIL~-STD-1750 Instruction Set Architecture (ISA) allows
multiple vendors to compete for a particular avionics computer
application while eliminating architecture proliferation in

Air Force avionics systems. Vendors are allowed complete
discretion in the detailed design of an avionic computer within
the physical and performance requirements for the application.
This wide latitude of vendor design and implementation requires
that the characteristics of the implementation conform exactly
in functional specifications rather than in construction details.
The purpose of certification is to verify that the functional
characteristics of candidate Air Force avionic computers comply
with MIL-STD-1750.

OOCUMENT NO.

PX 13243 sreR=Y==UNIVAC

f

The fundamental assumption, and in fact the major reason for
the certification procedure, is that by validating the design
of a particular implementation, the risk of that computer

not complying with MIL-STD-1750 will be reduced. It is
assumed, in addition, that the more thorough or complete the
certification testing is, the lower the risk will be. This is
shown graphically by the following curve, which is

asymptotic to both the risk and completeness axes. Risk is

at a maximum when no testing is done.

RISK

COMPLETENESS

and approaches zero as the amount of testing increases.
This curve also indicates that with relatively little testing
the risk can be substantially reduced, and that exhaustive

testing will yield only limited further reductions in risk.

PAGE

y

== <=UNIVAC

OOCUMENT NO.
PX 13243

2.2 Hardware Independent Certification

Vendor provided tests of conformance to specifications are
normally organized in a manner that will test and diagnose the
largest number of possible error ~<onditions with the minimum
amount of test code. This is usually done by utilizing speci-
fic knowledge of the processor design to reduqe/thé‘number of
tests conducted. For example, a particular 1750 implementation
could use the same adder logic for incrementing the instruction
counter, processing ADD instructions, and indexing:; therefore,
only tests of the ADD instruction might be used by the vendor
to validate operation of this one adder. This vendor provided
test might be perfectly adequate to test the specific imple-
mentation described but it would not be adequate to test another
implementation that utilized pipeline techniques and multiple

adders to achieve greater throughput.

Consistent with the understanding that MIL-STD-1750 is a speci-
fication of an instruction set architecture and is independent
of particular hardware considerations, it is assumed that the
certification procedure requires no knowledge of the particular
hardware architecture of the UUT. This assumption requires
that to whatever extent possible, the UUT be treated as a

black box, and it implies that the test may not make use of
hardware implementation details that might normally be used to
simplify testing procedures.

This understanding also means that a test based upon a struc-
tural analysis of the UUT is ruled out, as is any test procedure
which involves inserting hardware probes into the UUT. Instead,

|
‘ DOCUMENT NO. L {
| PX 13243 E==-<=UNIVAC

:

the test procedure is assumed to be based upon a functional
analysis of MIL-STD-1750. The goal of the testing procedure is
to verify that the UUT behaves as required by ascertaining

whether it executes properly. It does that by detecting and
reporting any functional flaws that might be in the UUT.

The specifics of all test failures, including the circumstances
and conditions required to reproduce the failure are of inter-
est, while the ability to detect and identify hardware component

failures is not of concern.

2.3 Testability Requirsements {

Because the standard is stated in terms of computational pro-

cesses, it is assumed that certification will require one or 17
more test programs to be generated for execution on the UUT. '{
These programs should, at a minimum, exercise and verify each ﬁ

functional capability specified in the standard. The results
of the interactions between the test program and the UUT will 3
! be used tc¢ determine compliance with MIL-STD-1750. Results
I will be considered acceptable if they do not conflict with

information in the standard.

In order to run test programs it is assumed that certification
of computer compiiance with the standard 1s directed towards an
implementation which is a general purpose programmable computer. i
In particular, the UUT is assumed to be able to run a program
that utilizes a specific subset of non-optiocnal 1instructions
and requires some minimum amount of memory to ;

be 1mplemented. This statement 1s intended to exclude from

A la X ed

cornsideration any implementations of MIL-STD-175C which are {
|

severely limited subsets of the standard 1in either instruction

repertoire or in memory.

P 13243 SFPERRY<SLINIVAC

Another testability assumption is that mechanisms for loading
programs and examining results are available. This assumption
is important because MIL-STD-1750 does not address questions of
electrical interface to the ISA. Instead, the functional char-
acteristics are specified, and any system constraints such as
physical and environmental characteristics are left to the
system designer. Program loading, program execution and status
monitoring capabilities can be designed to meet specific mission

requirements.

Isolation of system constraints is a distinct advantage to the
system designer, but presents a unique challenge to the certif-
ication test procedure. The extreme flexibility required to
test computers that could range from ultra small integrated
components, to relatively large stand-alone versions, to
computers completely embedded in higher level system components
is a significant challenge. The ability to completely specify
internal connections to a compliant computer would make testing
and validation much easier, but it might also unnecessarily
constrain the technclogy that could be used for implementation.

2.4 Levels of Completeness

Within some constraints of reasonable test program complexity
and execution time, the certification procedure should be as
complete as possible in verifying the functional characteristics
of the i1mplementation under test. The motivation for pursuing
such completeness comes primarily from the realization that the
certification procedure requlres no prior knowledge of the
hardwace used to implement MIL-STD-1750. Arguments aj out
related functions or instruction codes using the same hardware

and thus not requiring separate tests are not theoretically

DOCUMENT NO. e
PX 13243 s=<=UWNIVAC

|

justified. In practice, however, when thorough testing is not
possible, certain assumptions about hardware structure may be
acceptable as guidelines for reducing the magnitude of the test
problem. These structural assumptions lead to a function orien-

ted view of the 1750 instruction set architecture.
2.4.1 Structural Assumptions

One such assumption about the 1750 functional structure is that :
derived address calculations use common circuits for all in- ‘
structions of the same address mode. Thus, a complete test of

address calculation for one OPCODE need not be repeated for

others of the same address mode. However, because a particular

OPCODE may not be implemented or decoded properly, each separate }
instruction should still be tested in a limited way for its "

ability to use the common addressing mode hardware.

The premise here'conqérning the interaction between separate
instructions and common addressing modes is that it is un-
reasonable to completely test the derived address calculation
for each instruction. There are of course cases where for

even one particular instruction it is not reasonable to exhaus-
tively test its function. A specific example is the testing of
arithmetic instructions for correct uperation over all values ‘
of both operands. An adequate, though limited, level of testing

tor these instructions would depend on a careful selection of
data. This is discussed in detail in Section 3.6. So the
question remains for each situation where complete testing is
unreasonable as towhat level of testing is adequate. One '
answer is to make assumptions about how the 1750 arch-

. itecture would be implemented; then exploit the assumed struc-

ture to reduce the test complexity, while maximizing the effec-

PAGE

(ox 13243 SreR=Y=<=UNIVAC

tive level of completeness. Another answer for codes which per-
form arithmetic and logical functions on data is to do a care-
ful job of selecting test Jjata. Such a selection process might
well include the random generation of data as a means of
sampling the space of all possible values.

2.4.2 Functional Assumptions

Pursuing the assumption that derived address calculations use

a common hardware path for all instructions leads to the obser-
vation that the storage locations referenced by the address cal-
culation -- that is, the registers and memory -- might rea-
sonably be tested separately from tests for the individual
OPCODES. If we also accept the additicnal assumption that
verification of the abilitv of each register and memorv cell

to hold all data values can be done once instead of separately
for each OPCODE, then any certification of 1750 functions can
bg‘divided into tests of registers, memory) and instruction

codes.

The register and memory tests would focus on confirming the
ability to address all locations and write and read all pos-
sible data values in those locations. In the case of memory,

it may not be reasonable to try all bit patterns in every
location, so some sort of compromise in the level of complete-
ness may be required. Some bit patterns commonly used in memory
tests include all ones, all zeros, shifting ones, shifting
zeros, alternating ones, varying length sequences of ones/

zeros, and addresses.

R e —

abiath

-y

i o

F ey

Box 13243 SeERRY<EUNIVAC

With confirmation that derived addressing and that arbitrary
data value storage function properly, then the individual OPCODE
tests are free to pursue verifying the correct performance of
the operation aspect of the instruction. This verification
involves trying all data values necessary to reasonably con-
firm the function of the instruction, particularly with arith-
metic and logical operations. There is still the need for each
instruction to confirm its ability to use the addressing struc-
ture previously confirmed as a general capability. That is,
for each OPCODE test, a variety of registers and derived
addresses should be employed. One method of selecting registers
to use that would ensure a good variety of register use is a
random selection process embedded in the test program creation
procedure. For OPCODES that gllow use of an index register,

it would be important to try the OPCODE with RX = Rf as well as
with a selection of actual registers (i.e., try the instruction
with. and without indexing).

The instruction code tests, then, verify that with specified
operands, the correct result is produced. The result includes
not only the specific answer produced by the instruction -~
e.g., the sum resulting from the ADD instruction -- but also the
correct setting of the status word and the correct generation

of interrupts as appropriate -- i.e., fixed and floating point
overflow, floating point underflow, or illegal OPCODE inter-
rupts. To be complete, the notion of correct setting would
include not only that the status word is set and/or interrupts
occur when required, but also that they do not get set or

occur when they are not supposed to.

Unfortunately, the concept of confirming that undefined changes

do not occur represents a task which is at least an order of

o% 13243 SPERRY=<FUNIVAC

magnitude more difficult than verifying the specific correct
actions of each instruction. For example, in doing the memory
test, the required result of storing a data value at a particular
location is that the data value correctly reach the intended
location, an action verified by reading the value from that loca-
tion. But to verify that neo unintended action occurs implies
checking all other locations in memory to determine whether the
store operation sent the data value elsewhere in error.

An appropriate compromise in level of completeness might be

to check for unintended actions on the basis of instruction
function. Thus, a check that the word being transferred goes
only to the correct place would only be done with loads and
stores, and not arithmetic instructions. Checks for overflow/
underflow interrupts would always be done with arithmetic
instructions, whether the data is supposed to produce them or
not, but such. a check would not be doneafor locads and stores.

The fﬁll complemeht of locations which might possibly be checked -

includes the general registers, special registers, and all of

memory.

So far, the discussion has identified that registers, memory,
and individual OPCODES are the major components of the 1750

to test for correct operation. These components cover most

1750 functions. Including the input and output commands and the
full complement of possible interrupts as separate though
overlapping categories provides a more complete picture of the
architecture. Although the individual OPCODES verify the
functioning of interrupts for overflow, underflow, and illegal
instructions, the interrupt structure needs to be specifically
verified with respect to the operation and interaction of the

interrupt mask (IM), pending interrupt (PI), and fault (FT)

PAGE

¥

0OCU T NO. :
Pox 13243 SPERRY<EUNIVAC

In summary, a relatively complete procedure for certifying
compliance with MIL-STD-1750 needs to examine the areas of
register and memory function, specifically addressing modes
and data storage; the operation of all OPCODES, including

a check of all illegal codes; the full operation of the
interrupt mechancisms; and the capabilities fo I/0 commands

not verified elsewhere in the separate tests.

i
)
I

DOCUMENT NO.
PX 13243

gi

s=v=<=UNIVAC

3. CERTIFICATION PROCEDURE ISSUES

The purpose of this section of the report is to raise and dis-
cuss the key issues involved in specifying certification pro-
cedure test methodologies. Section 3.1 offers a discussion

about hardware and software resources not implicit in MIL-STD-

1750 that might be required for certification of a 1750 device.

Section 3.2 explores the concept of a "golden standard", as a
hardware or software device which implements MIL-STD-1750 and
serves as a functioning reference tool-which could be used in
development, operation, and validation of certification tools
and procedures. Section 3.3 then underlines the importance of
validating whatever certification procedure is developed, and
it discusses some dimensions of that problem. The rest of
Section 3 provides some details about the major components of
test methodologies, namely, certification procedure control,
program and data design, and report generation. Individually,
the subsections introduce approaches to control, program design
and data design which are motivated by a belief in the benefits |
of a well-structured procedure. These benefiits include ease

of use, validation, understanding, and modification. The final
section identifies a range of report generation techniques that

might be used in a selected test methodology.
3.1 Resource Requirements 7

The assumptions made in Section 2 indicate that at a minimum,
any certification procedure would consist of test code which
can be loaded and executed on a 1750 implementation capable of
executing programs of moderate size. As a matter of practical :
necessity, these assumptions impose some requirements for hard-

ware and software resources which are beyond those contained in

DOCUMENT 0. CLL
PX 13243 SFERRY<FUNIVAC

MIL-STD-1750. This section will discuss some minimum require-
ments in these areas and attempt to identify a range of resources
needed to support the certification procedures mentioned in the

rest of Section 3.
3.1.1 Hardware Resources

Hardware resources of the UUT necessary to support a certifica-

tion procedure include a loading mechanism, control functions

(processor reset, start, and stop), and a processor state dis-

play. For a certification procedure which is self-contained in

the UUT, these requirements could translate intc a control panel

with switches that implement the control functions, and lights

that provide the display capability:, a bootstrap loader in ROM

or entered through the switches; and an input device such as ¥
magnetic tape for loading the certification programs. For a

certification p:ocedure in which the test program is loaded and

monitored from a test control computer, the hardware needed

would be the same as before plus the test contreol computer and

a communication channel to the UUT. The previous resources N
would still be needed to load communication software into the ‘
UUT. A variant of the procedure utilizing a standard interface

between the two computers involves enhancing the channel to be

a special purpose data and contrecl interface which allows the

loading, control, and display functions to be performed directly

by the test control computer. This special hardware interface

could replace the locally defined control panel and bootstrap

loader.

A separate hardware resource that might be required by some
certification procedures is a MIL-STD-1750 reference implementa-
tion or golden standard. 1Its previously certified, known good
performance could be used in the development, execution, or

validation of the certification procedure, as detailed in

PAGE
3-2

DOCUMENT NO. —
PX 13243 S -=<=WNIVAC

Section 3.2.
3.1.2 Software Resources

In addition to the certification test programs themselves,
certain software resources might be required to support various
certification procedures. Already mentioned was the need for
communication protocol software by procedures using a channel
for interaction between the UUT and a test control computer.
But prior to that stage of the certification process, a 1750
Assembler or Cross Assembler would probably be necessary for
the development of the test programs. The development and
general administration (control, maintenance, and medification)
of the programs could reasconably require file manipulation
software such as is generally available on large time-shared ¥
computers.

During the devleopment, execution, or validation of the certifi-
cation procedure, the need for a golden standard as mentioned
above could be met by a software implementation of MIL-STD-
1750. Such a simulator could conceivably run on 1750 hardware,
but the creation and use of 1750 simulator software would more
reasonably be pursued on a test control computer, as outlined

1. Section 3.2. The generation of test data used in certifi-
cation test programs might require a partial 1750 .-mulation,
such as for a 1750 arithmetic and logical cperation simulator.

This idea is expanded in Section 3.6.

PAGE
3-3

F

DOCUMENT NQ.
PX 13243

3.2 A Secondary 1750 Golden Standard

SRRY=<=UNIVAC

l_ﬂ

At several stages in the development of the certification pro-
cedure, the potential need arises for programs to have direct
computational access to a 1750 equivalent computer, either in
the form of a hardware device or a software simulation. Such a
1750 reference or "golden standard" is secondary to the primary
MIL-STD~-1750, but serves as a functioning standard for deter-
mining arithmetic, logical, or other machine state results

from the execution of any desired sequence of 1750 instructions.
The purpose of this section is to introduce the concept of a
golden standard, outline the possible uses of the standard,

and propose how a standard might be developed and validated.
3.2.1 Golden Standard Uses

One important potential use of a golden standard 1750 would be
to generate or validate the test data results used by the certi-
fication procedure. For example, a programmer might well use
an ordinary desk calculator to determine arithmetic results for
16 bit integer operations. In this case, the calculator serves
as a golden standard for a particular 1750 function. It would

probably not be adequate, however, for producing arithmetic
results for extended floating point calculations. Such data
might be successfully produced manually, relying upcon hand cal-
culations and the programmer's ability to interpret correctly
the definitions in MIL-STD-1750. But in practice, a specific
golden standard 1750 device would be very useful for calcula-
ting floating point or any other test data results. A golden
standard for 1750 arithmetic could be built into an assembler
which had the ability to evaluate expressions and thereby
calculate test results stored in the program at assembly time.

But even if the original test data results were calculated

PAGE
3-4

DOCUMENT NO.
PX 13243 SPERRY=SFUNIVAC

manually, it would be of value to employ a golden standard for
later independent validation of the numbers.

Another potential use of a golden standard in the certification
procedure is to execute programs in parallel with the

running of those programs in the UUT. Results obtained from the
two 1750 devices could be compared and any discrepencles attri-

buted to errors in the UUT. One example of this use is to

compare the uperation of a particular instruction on randomly
generated operands to see if the UUT produces the correct result.
In fact, having a golden standard is the only practical way
randomly generated data can be employed in the certification,
because it is the only run-time method of obtaining a known

good result. v

A third use that a golden standard might serve is to aid in the
process of validating the certification procedure itself. The
approach is to simply run the certification procedure on the
golden standard as if it were the UUT. Any procedure that runs
without error is inecessarily an accurate procedure since a

golden standard is by definition error free.
3.2.2 Golden Standard Development

The development of a golden standard MIL-STD-1750 implementation
is analagous to the certification by the National Bureau of
Standards (NBS) of a secondary standard meter. The NBS certifi-
cation implies that the secondary standard is a "true" meter
with traceability tc the "standard" meter. The big difference
in the development o. the golden standard MIL-STD-1750 imple-
mentation is that the "true" or first level standard exists
on paper only, while the secondary standard is either hardware

or a software simulation,

PAGE

(B 13243 SPERRY<-LUNIVAC

A hardware golden standard is of course what every 1750 imple-
mentation purports to be, and the existence of such a computer
is the reason for creating a certification procedure. So if
the decision were to develop a hardware 1750 golden standard,
then the selection of any actual implementation would do as
well as any other. A major concern with the use of a hardware
golden standard is the susceptibility of components to fail
over time, witﬁ the resulting necessity of re-certifying the
computer periodically.

The other possibility for developing a golden standard is a
software (or firmware) simulation (or emulation) of MIL-STD-1750.
This approach shares a similar problem to the hardware imple-
mentation: namely, going from MIL-STD-1750, which is on paper,
to the secondary standard involves interpretation and trans-
lation of the primary standard, with the accompanying possibil-
ities for error. However, there are a number of important
advantages to a simulation in addition to that of independence
from component failures. Because a simulator serves, as a
hardware implementation does, to translate a paper definition
into a working model, it provides an opportunity to resolve any
ambiguities or weak areas in the standard. It also provides an
opportunity to examine the potential impact of any changes in
the instruction set architecture without actually making any

hardware changes.

A straightforward approach to developing a 1750 software golden
standard would be to work directly from the definition of
MIL-STD-1750 using an appropriate high-level language such as
FORTRAN, together with the system software resources of the host
computer. A 1750 emulation could be accomplished with the aid
of special purpose hardware such as the Nanodata QM-1, as de-
scribed by Clark and Troutman (1979). Or a golden standard

PAGE

DOCUMENT NO. \
—,—::‘:‘vﬂ
PX 13243 ==y ==LNIVAC

could be developed with the use of a register transfer language
or computer hardware description language (CHDL). This approach,
which is already utilized by MIL-STD-1750 to describe aspects

of individual instructions, has been successfully pursued by

a multitude of CHDL's (Shiva, 1979).

The motivating factor for considering the use of a CHDL in
describing 1750 is that the major CHDL's have well-developed
simulators for their language; thus, a 1750 CHDL description
simulation would be the 1750 golden standard. The value of a
CHDL description of 1750 would be not only to provide this
simulation capability, but also to produce a compact, formal
description of 1750 which lends itself to automatic design
verification at various levels of detail. For example, lan-
guages such as SMITE and ISP provide syntax rules whose appli-
cation to the CHDL description of 1750 would allow checking for
any ambiguities.

To insure that an extension of MIL-STD-1750 into a CHDL would
be successful and that all implementers of 1750 were working
from the same description, it would be appropriate for the CHDL
description of 1750 to become the true binding standard, with
the existing written descriptions becoming neon-binding explana-
tions. Use of a CHDL for computer architecture dcscription has
been complished successfully for a number of existing computers
(BRarbacci et.al., 1977) and would enjoy the benefits of consid-
erable government sponsored research and development work in
the area of computer architecture specification, evaluation,
and validation (Barbacci et.al, 1979, and Advanced SMITE
Training Manual., 1979).

3.2.3 Golden Standard Validation

Use of a golden standard 1750 requires validation of that

standard. This is in essence a chicken-and-egg problem which
PAGE

3-7

T SPER=Y<=UNIVAC

}

requires certifying the golden standard machine for use in the
certification procedure. There are three fundamental methods

of validating a golden standard. "Self Test" methods of
validation include manual test and analysis of the proposed
standard, use of building block tests of individual functional
{(or structural) components, and/or algoritlmic test and functional

capabilities (e.g., checking multiplication by repeated addi-
tion) . "Majority-vote" methods of validation require several
copies of independent test programs to be run on one or more
independently produced 1750 implementations. Each of the tests
should be thorough tests of all 1750 functions and must be
generated independently of the proposed standard implementation
(s) and other test procedures as shown in Figure 3-1. The
third method of validating a standard is by defining a parti-
cular implementation as being the golden standard. This third 'ﬁ
method has the disadvantage of diminishing the roll of the MIL- :
STD-1750 document to the role of a design document and makes
the particular implementation the formal standard.

3.3 Certification Procedure Validation

An important issue in the overall design of a certification
procedure is the consideration of how to validate its complete-
ness and accuracy. The validation of completeness involves
establishing to a high degree of certainty that the certifi-
cation procedure tests for full compliance with MIL-STD-1750, '
leaving no required part of the standard untested. The vali- :
dation of accuracy is a matter of developing confidence that the

certification procedure contains correct reference results in

its various tests of individual MIL-STD-1750 functions. 1In i
other words, whenever the procedure is applied to a MIL-STD- i
1750 implementation, it is essential that reported errors do
in fact represent problems in the UUT and not problems in the

procedure. In practice, it is likely that validation of the !

certification procedure will be an on-going process which
PAGE
3-8

lpx 13243 SreET=- <=UNIVAC

FIGURE 3.1. MAJORITY VOTE VALIDATION

Vi

TEST TEST 1750 1750
PROGRAM| * * * |[PROGRAM COMPUTER * * ¢ COMPUTE%
#1 #N #1 &#M

® Run all N programs on all M implementations of MIL-STD-1750.
e Resolve all conflicts by reference back to MIL~-STD-1750
- The computer may have a flaw.
- The program may have a bug.
-~ The MIL-STD may be ambiguous.
e Results of this method improve as
- The number of independently produced test programs
increase
- The number of independently produced 1750 implementa-
tions (including simulators) increases, and

- The completeness of each test program increases.

4

T NO.
s aras SPERRY<-UNIVAC

asymptotically approaches completion; any errors detected in a
UUT will require careful examination to confirm that the error
is not in the procedure or in its interpretation of an ambiguous

aspect of the standard.
3.3.1 Completeness Validation

Validation of the completeness of the certification procedure

is initially accomplished with a careful design process that
matches a test procedure with each function of the MIL-STD-1750.
Part of this process is a clear understanding of which aspects
of MIL-STD-1750 are optional and which are required, and which
aspects are required but not well enough defined to ke tested.

H Aspects that have been noted in these categories are listed

in Appendices A and B. Recommendations for changes to more '1
precisely define MIL-STD-1750 have been made to the MIL-STD-
1750 Control Board by the MIL-STD-1750 Users Group.

.These recommendations are included within MIL-STD-1750A.) 4

Functional capabilities required by MIL-STD-1750 can be uniformly

and unambiguously tested for all candidate implementations:

optional features can be tested for their existance in the UUT

(features not implemented should generate illegal OPCODE

interrupts) and extensive tests can be automatically inaitiated

for those optional features that are functionally specified by g
the standard. Separate test procedures can be utilized to test

those opticnal features that are allowed by MIL-STD-1750 but

are fully specified only within documents associated with a

specific implementation of MIL-STD-1750.

A procedure which has been used successfully in the area of !
software testing to assess the completeness of test programs 1is
to introduce errors in the object being tested and determine

if the test program detects them (Budd et.al, 1978). 3Since

PAG

3-9

Px 13243 SPeERRY<L=UNIVAC

the certification procedure is actually the entity being tested,
the 1750 implementation should be a reference or golden standard
1750 so that errors are introduced in a controlled way to a
known good implementation. Since intreoducing errors requires
potentially complex modifications to the golden standard
implementation, it is more desirable to use a software simula-
tion golden standard.

3.3.2 Accuracy Validation

In addition to validating the completeness of the certification
procedure, it is important to consider methods of validating

its accuracy. One approach is to use the computer itself to cal-
culate test answers using alternate algorithms. For example,
verify the accuracy ~2f multiplication test answers by repeated
addition of the operand to form the product. Similarly,)
division can be verified by repeated subtraction, subtraction by
addition of the two's complement, addition by a series of log-
ical operations, and so on, in a hierarchical ordering that
assumes the correctness of levels below it. At the lowest

level, some manual checking or exhaustive enumeration is nec-
essary. This self-validation concept is inherent in the building
block approach described in Section 3.5.1. If that approach is
used by a certification procedure, then to a large extent it

can claim that its test results are necessarily accurate.

An external approach to accuracy validation is to run the certi-
fication procedure on a golden standard MIL-STD-1750. Any
procedure that runs correctly, that is without error, is by defi-
nition accurate since a golden standard is by definition error
free. 1In practice, of course, standards with the complexity of

a computer must always be viewed as possibly having errors, and
thus validating a test procedure with a standard will be a trial
and error process which converges to an acceptable level of

confidence. In conducting a validation as well as in running

PAGE

3-10

=griin | SPERRY<=UNIVAC

a certification procedure on a UUT, it is very important that a

careful and thorough analysis of error findings is conducted.
The conelusion may be that the UUT has a flaw, but it must be
considered that the test may be in error or that MIL-STD-1750
may be ambiguous with respect to the test and the UUT.

3.4 Certification Procedure Control

Issues of certification procedure control are central to actu-
ally implementing and executing the certification test. In-
cluded are such concerns as: how is the UUT initialized, what
are the operator requirements, what control scoftware is required
beyond the basic test programs, what is the procedure for
loading the test programs and data, and what is the method for
retrieving final results. In the sense that they are matters
beyond the scope of MIL-STD-1750, these control issues are
conceptually distinct from the basic design of test programs

and data. But depending on the extent toc which control is
inherent in selfcontained programs resident in a UUT or is
distributed between those programs and a test control computer,
the appropriate delegation of control is an integral part of

the certification procedure design. This section will propose

a set of control functions which must be available manually or
under program control, discuss a range of methods for initiali-
zing the certification procedure, and then outline several
scenarios of control methods applicable during the certification

process.
3.4.1 Control Functions

The following is a list of control functions which must be
available to any certification procedure.

. Bootstrap Program Load

. Processor Reset

. Processor Start at Address Given
[PAGE |
3-11

y

DOCUMENT NO. I
13243 RRY<=UNIVAC

A

. Processor Halt
. Register Load
. Register Read
. Memory Load

. Memory Read

These basic functions are likely to be available on every MIL-
STD-1750 implementation, since they would be required in most
cases for normal development of a computer. While the last
four (or six) functions are available as individual instrue-
tions in the UUT, the first two (or four) are functions bkeyond
MIL-STD-1750. Whether the functions require manual inter-
vention, are implemented in firmware, or are supported by
software is not theoretically significant, as long as they

are available. Normally they would be implemented using
switches on the computer maintenance panel (e.g., START,

STOP, MASTER CLEAR) and special purpose firmware (e.g., a
bootstrap loader in ROM). The control functions could also
be made available across a standard communications channel to
a separate computer by developing software protocol handlers
for both computers. Standard channels which might be consid-
ered in pursuing this approach are RS-232C, MIL-STD-1553B,

and MIL-STD-1397. A third option for program contrel is a
channel with special control hardware, as is available with
the AN/AYK-15A PMIU (SA 701 311) and the Users Consocle (SA

301 310).

3.4.2 Procedure Initialization

As indicated above, MIL-STD-1750 does not specify the mechan-
isms for processor initialization and program loading. As

key aspects of initializing the certification procedure, these
capabilities require some consideration. There is some

indication in MIL-STD-1750, although incompietely specified,

DOCUMENT NO. J
Pt 25245 SFERRY=<FUNIVAC

that the power down, power up sequence is of interest. If
so, then it is important to clarify what the state of the
machine is after power up. The control function of processor
reset is essential to initializatiorn because it would clear
specific registers to a known state.

The options for program and data loading are those mentiocned
above: a bootstrap load from peripherals local to the UUT,
loading across a standard channel from a second computer
relying on software handlers in both, or loading across a
special channel which has hardware control features. The
first two options require the ability to load code into the
UUT separately from any test computer. This could be done
manually with panel switch entry, from a ROM, or with UUT
peripherals like magnetic tape utilizing a resident loader.
The third option would not require manual intervention once

the processor is powered up and reset.

3.4.3 Control Methods

The basic control method scenario is one in which the test
program is written to run by itself on the MIL-STD-1750 UUT.
Although some hardware resources must be available to load
the programs and data, and to indicate any errors upon test
completion, contrecl of the procedure is an integral part of
the test programs within the UUT. Within this scenario,
there may be a range of control complexity from a procedure
which runs unattended, to a procedure which allows consider-
able operator interaction. For example, the AFAL Acceptance
Test Program (SA 421 206) for the AN/AYK-15A contains a
control executive which allows the operator to specify which
test program modules to run, whether they should be run in

sequence iteratively, and what to do when an error is

O -
DOCUMENT NO. !
—=orTE. =

PX 13243 =R =<FUNIVAC

detected. The various test modules set flags for errors
sncountered, and the error flags are examined by an error
processing routine at the conclusion of each test module.

An interrupt handler sets flags so that each test module can
monitor expected and unexpected interrupts. The Sperry Univac
ATP (1979) for the AN/AYK-15A also fits this control scenario,
but utilizes a different error reporting scheme: the

program halts when an error is detected, providing with the

halt address a pointer into the heavily documented test code.

Another scenario of control methods introduces a second
computer and a standard communication channel as a means of
distributing the control of the certification procedure.

With this approach, the control executive of the Acceptance
Test Program would be moved to the test control computer,
which would load each test module and process the error flags
to produce error reports. More of the control aspects of
test program code are assuﬁed by the control computer, with
code in the UUT becoming more restricted to what 1is relevant
to the function being tested. This control scenario also
supports the technique mentioned as a use of a golden standard,
where a test program is run in parallel in the UUT and 1in a
golden standard. The control computer would compare the
results of the two programs, marking any discrepancies as
potential errors in the UUT. A third possible control
structure has the control computer sending one or more
instructions at a time across the channel to the UUT, pro-
viding boundary conditions first, then transfering control

to the few UUT instructions, and evaluating the machine

state after each test. Control is mostly with the test

computer as it compares the state of the UUT with known

results.

PAGE

3-14

DOCUMENT NO.

e -
PX 13243 == UNIVAC

)

A third scenario is like the second, but elevates the communi-
| cation channel to a special purpose data and control interface.
Such an interface would allow the test control computer

to directly access memory and registers of the UUT as well

as control and monitor its performance, such that no socftware

protocol handlers or initialization procedures would be

required for the UUT. The control computer would contain all

control software and would have the capability of replacing

or simulating all functional components of the UUT, to

isolate a particular MIL-STD-1750 function for test. For

example, the test computer could replace the memory, registers,

1/0, and/or locad and store to memory operation of the UUT.]
In this way, minimal functional elements of the UUT are

employed during each instruction or function test, with all tr
other elements being substituted for by corresponding

simulated functions which are know to operate correctly, 3
then any errors detected are easily pinpointed in the

JUT.

3.5 Certification Program Design i

In discussing the matter of how complete the certification

procedure could reascnably be made, Section 2 propecsed a func-

tional analysis of the 1750 architecture which could be used]
as the basis for organizing the test programs. There are,
however, several additional program design issues. They in-
clude the necessity of ordering test programs, the desirability
cf having some level of complexity for the contexts in which to
verify instructions, and the value of employling certain coding
techniques in writing the test programs. One tradeoff that

arises in considering test program design 1s whether the test

should consciously focus on diagnosis, in terms of 1sclating

PAGE
3-15
$-15

DOCUMENT NO. —
PX 13243 =ree-=<=UNIVAC

|

particular errors found, or should aim at certification only,

in the sense of just detecting errors.
3.5.1 Organization Factors

A central issue of program organization 1s the matter of
whether the testing of instructions and functions need to be \
ordered using a building-block approach, or whether it is
reasonable for purposes of certification to assume that all
instructions and functions not under test are correct. An
ordered test organization for individual instructions would
| incrementally test a few basic instructions at a time, using i
i only previously tested instructions in successive tests.
j Carried to an extreme, the ordering would possibly employ $3
repeated ADD's to test a MULTIPLY, and lower level logic
instructions to test the ADD. Sic-~e untested instructions ' i
§ : are being examined one at a time, a aiagnosis of the instruc-

tion causing any error 1is readily accomplished.

This building block approach also suggests a test ordering

in terms of functional capability. For example, verification

that all registers are addressable and can contain all

possible values would logically precede the verification of

instructions which use the registers to store their operands. 1
After confidence is developed in a set of known capabilities,

later test segments are able to utilize fairly sophisticated i
coding methods which are efficient, compact, and representa-
tive of instruction mixes which may be found in mission soft-

ware. An ordered test organization does require a careful

design of the certification procedure to take into account

the dependencies of instructions for functions.

PAGE !

3-16 t

DOCUMENT NO.

PX 13243 SPER=Y<=UNIVAC

The opposite alternative is to assume that the UUT is essen-
tially fully operable, and to focus the certification procedure
on subtle errors in design or implementation. This approach
assumes the correct operation of all instructions which are

not specifically under test and no ordering is required. Subtle
errors which exist are just as likely to be encountered as in
the ordered approach, but the ability to identify where the
error occurred is reduced, because the error may well be in the
code surrounding the instruction being tested. The focus of
this approach is certification only, at the expense of diag-
nosis. However, this unordered approach not only enjoys all
the advantages of allowing sophisticated coding methods, it
considerably simplifies the design of the entire certification
procedure, since a regular format can be imposed on all in-~
struction tests without regard to test order. And it may be
concluded from real-world experience that machine errors are
frequently found in unpredicted conjunction with tests designed

to discover completely different problems.
3.5.2 Complexity Factors

Another major issue which affects the test program organization
is the nature of theinstruction sequence which serves to verify
a given instruction. In particular, the guestion arises as to
whether in testing an individual OPCODE, the simple context of
setting up operands, performing the operation, and verifying
the results constitutes an adequate test of the instruction.
The concern is that architectural flaws might exist that relate
to performing one operation immediately after another operation
that uses common hardware: Such an error is important to find
because it would affect the ability of the UUT to perform real

applications software.

DOCUMENT NO. —
PX 13243 SFERRYSFWUNIVAC

One basis for this concern is the notion that a complete certi-
fication procedure should offer, in addition to a thorough veri -
fication of functional performance, some confidence that a certi-
fied computer would perform correctly under mission conditions.
It is known that design/implementation errors are often of the
sort that are evident only‘under conditions of complex software
operations, particularly with concurrent interrupt and 1/0
processing. The problem suggests two possible answers: use
some real applications software as part of the test procedure
and/or try to simulate an instruction mix representative of
actual software through random generation of instructions or
by writing sample programs which bring together archtype seg-

ments of mission software.

In practice, the use of actual mission software would be diffi-
cult since such programs usually depend on real-time data ac-
quisition and computer response. However, it might be worth-
thle to examine some operationai software to aid in developing
the basis for sample programs, if not to discover code segments
which could be used for test purposes. In either case, what is
expected to be gained from this selection is test programs which
offer a diverse mix of instructions, including, for example, a
mix of long and short formats or a high density of repeated
arithmetic, bit manipulation, or other category of instructions
in a branching control structure. Such programs can offer a
more complex testing context than the more basic portion of

the certification program.

The use of actual or sample mission programs satisfies a certi-
fication need without offering much diagnostic power. Because
the program is designed to manipulate data, to produce a
particular functional result, any machine errors which are en-

countered would cause program failure in an unpredictable fashion.

(o 13245 SrERRY<=UNIVAC

It is thus a kind of go/no-go test which may be useful for
certification, but which tells little about the nature of any
errors. It is also possible that multiple faults might cancel

each other, thus masking completely an existing error condition.

Another method of creating a more complex context for instruc-
tion testing is that of executing a randomly generated sequence
of instructions, limiting perhaps jumps, branches, and store
instructions to a constrained address space. Such a test is not
representative of any actual code sequences, but it does have
advantages in simplicity of generation and the ability to run
indefinitely long sequences. The test could be diagnostic in
nature, stopping at a machine fault, or running for a long time
as evidence of there being no errors. By using a golden stan-
dard, the test could run the random sequences in parallel, com-
paring the final results from the two runs. And with a mech-
anism for controlling the number of instructions executed in
the UUT, the test procedure could take snapshot comparisons of
the current UUT machine state with that of the golden machine

state.
3.5.3 Coding Techniques

A final area of test program design that merits some discussion
is the software engineering of code generation. What coding
techniques will aid in producing a well-structured certification
procedure which is reliable, readable, and extendable, as well
as straightforward to generate from design specifications. Two
techniques which seem to be particularly relevent are: one,
that the program and data be physically independent, with the
program referencing the data as a table or array: and two,

that the program code be regular and repetitive in structure,

making use of loops to access data and modify variables, and of

DOCUMENT NO.
P 2a3 SPERRY<UNIVAC

macros or other meta-language constructs to express repeated
structures with variable portions.

The notion of separating the test code from the test data ocffers
a number of benefits, including easy access to the data and the
possibility of efficient and modular cocde. This technique
applies primarily to the testing of individual instructions,
where one or two operands are operated on to produce a known
result. Structuring of data tables containing operands and
results produces test programs which are inherently easy to
read, update, and extend. The emphasis on readability implies
an increased ability to validate by inspection the comprehen-

siveness of the test program.

The benefits that accrue in allowing efficient and modular code]
come from the necessity of referencing a table of data in a
regular fashion as with a loop structure. Loops can provide a
compact, efficient mechanism for accessing a large amount of
data. Loops are also an effective method of reducing memory
requirements when used to generate code sequences by varying
data fields within particular instructions. For example, it
might be desirable to have a sequence of instructions which
loads and tests a particular register apply to many registers,
This could be done without duplicating the sequence physically
many times, by placing the sequence in a loop which, using bit
manipulation instructions, modifies the actual instructions to
change the in-line register references. Use of this type of
self modifying or self generating code can be justified on the
basis of a large savings in memory and test execution time since

there are no requirements for reentrancy or fail-safe operation.

Various coding techniques are employed in part of make tradeoffs
in program and data size, and thus speed of lcading the test, and
execution speed. There is also a tradeoff between code complex-

ity and ease of code generation. Macros are a method of easily

generating code sequences with regular changes. And, although

PAGE,

ENT NO.
Pox 13243 SPERRY<=UNIVAC

extensive use of macros tends to produce large programs, the
regular structure of the code means high readability and
reliability, since the shorter sequence in the macro definition
is more likely to be written correctly and is iore readily

debugged.

3.6 Certification Test Data Design

The discussion in previous paragraphs of coding techniques
which involve separating data from code was aimed primarily at
testing the arithmetic and logical operations available in the
MIL-STD-1750 instruction set. Such tests take as input one or
more operands, perform the indicated operation in the UUT,

and compare the computed result with an expected, known good
result. This section identifies minimum requirements for
selecting operands to use as input data and then proposes
several .nrethods which, functioning as 1750 golden standards,

might be used to generate expected results from those operands.

3.6.1 Minimum Requirements for Operands

Each operand to be used in a calculation can be characterized

by its data format as defined in MIL-STD-1750. Data formats

are defined explicitly for single precision fixed point, double
precision fixed point, floating point, and extended precision
floating point operands. Careful selection of data values, com-
bined with specific knowledge of circuitry used to implement a
particular function is often used by hardware manufacturers to
define a limited subset of operands which will thoroughly test

a particular function. In the case of MIL-STD-1750 certifica-
tion, such detailed implementation details are not always avail-
able, and therefore extensive (or even exhaustive) testing may

be required for specific operations. Extensive sets of oper-

ands can be randomly selected to assure a wide distribution

DOCUMENT NO.

PX 13243 SFERRY=<E=UNIVAC

of operand values even when the range of possible values 1is
large. Certain values, however, should always be included in
the operand set even if the rest of the data is randomly se-
lected.

A minimal set of operand values for arithmetic operations would

include:
. zero
. the largest positive number
. the smallest positive number
. the smallest negative number
. the largest negative number
These values represent all arithmetic boundary values, which r

when used in all possible combinations will guarantee the gen-
eration of overflow and underflow conditions. They also
represent all four quadrants so as to generate all appropriate

tests of sign manipulatiom.

Flocating point operands should include all combinations of the

above values in both the mantissa and exponent fields (i.e., a

total of 25 values would be required). In addition the expo-

nent fields should contain a set of values that result in the

difference of the values being equal to the boundary conditions L

described apove, and also close to the number of bits in the .
mantissa. This will force testing of scaling operations that

e e B v e e w -

are performed during floating point add/subtract type operations.

For logical or bit manipulation operations, a minimal set of
% operand values would include:
: all bits zero

all bits one

bits alternating one and zero

o

JOOCUMENT NO.
PX 13243 = EF?.V%%UNIVAC
. bits alternating zero and one

These values represent the logical operation boundary conditions
witn all zeros and all ones, and the independence of bits with
the alternating patterns. Used in all combinations of pairs,
they will set all relevant states of the status word and con-

firm all bit changes, i.e., 1-> 0, 0->» 1, 1-> 1, 0-> 0.
3.6.2 Generation of Expected Results

Each functional test or sub-test requires a unique set of
expected results for the operand or operand pairs to be tested.
The number of results to be tested can be extensive, even if
only a few operands are tested. For example, if only ten
operands are in each of two operand lists, then 100 results
must be checked if all combinations are used for each calcu-
lation that uses two operands. The total number of results that
must be checked will likely'bé uneconéomical wiﬁh manual calcu-
lation. Therefore, automated techniques for generating correct
results must be available. And since these techniques are per-
forming 1750 operations, they must represent 1750 golden stan-

dard devices.

The most obvious method of generating expected results 1is to
use a complete 1750 implementation in which to run test code
that performs the indicated operation on the input set of
operands. This approach could use existing 1750 hardware--at
least two machines are now available--or it could use a 1750
software simulator--one is scheduled to become available to
SEAFAC soon. The method has other advantages, including the
usefulness of actual test code and the ability to provide all

necessary results of the opeation: the results, the condition

code, and the occurrence of any interrupts.

PN

T w — \ .
o% 13243 sre==-<=UNIVAC

An alternate approach to the same end 1s to write a stand alore
1750 arithmetic and logical golden standard simulator on a sep-
arate computer with accuracy that equals or exceeds the require-
ments of MIL-STD-1750. This simulator could simply calculate
results in the format of the host computer and convert the

numbers to 1750 representation, with appropriate tests for over-

flow, underflow, and condition code. This method 1s attractive
in that a large amount of data can be generated with a mirimum

of programming effort.

A third approach is to rely on a 1750 golder standard capability

embedded in an assembler used to generate the test programs.

This technique is conceptually simple, as can be seen from the

example in Figure 3-2. It has the disadvantage of not providing '
for all the required results, since no condition code or inter-

rupt information is available at assembly time. However, 1¢

such an assembly capability were available, it would provide an

alternate method of calculation which would be useful as a

| validation procedure.
3.6.3 Storage of Operands and Expected Results 4

The expected results for an instruction or series of instruc-

tions under test must somehow be incorporated into the test

e

procedures themselves. The method of incorporating the expected
results into the test procedures will depend heavily upon such
factors as: when the expected results are generated relative

to the time they are used for verification or results, and how 4
the expected results are compared to the results provided by
the UUT. j

Tables of expected results can be generated in core image for-
mat, transferred to a storage medium, and loaded 1nto the UUT

for comparison against actual results by programs residing 1in

PAGE

3-24

r— e — “

DOCUMENT NQ L
PX 13243 srerR=~<FUWNIVAC

FIGURE 3.2. USE OF ASSEMBLY TIME OPERATICNS
TC GENERATE EXPECTED RESULTS

opP1l EQU 1
OP2 EQU -32768
DATAZ + oP2
LIM R1,0P1 . locad first operand
A R1,DATAZ2 . ADD to second operand
CIM R1,0P1+0P2 . compare to expected results

JC NE, ERROR . exit 1f error detected

PX 13243 SPEE?V%%—UNNAC

the UUT. Alternatively, expected results can be converted to
symbolic data in a format that is'acceptable to the MIL-STD-1750
assembler and incorporated directly into the test program re-
sidiﬁg in the UUT. Yet another scenario would transfer results
computed in the UUT to the test computer for comparison.

3.7 REPORT GENERATION PROCEDURES

A full and complete report of the results obtained during an
attempt to certify a particular implementation of MIL-STD-1750
should be provided. This report is required to document the
fact that an attempt to certify the implementation was made,
and to identify specific test failures that may have occurred.
In addition, any results that may differ from implementation to
implementation due to inclusion or exclusion of specific
options, or other ambiguities allowed by the specifications
should be reported. The following paragraphs outline procedures,
. data fbrmats, and information content of various reporting
possibilitiés.

3.7:1 Methods of Generating Reports

Report generation procedures may vary from simple manual methods
to complex computer generated description and analysis reports.
Choice of a report generation method depends strongly on the
level »f detail required. A simple pass/fail report can easily
be generated by manual techniques; a report that includes
extensive data that can be used for failure analysis should be
automated so that extraneous errors and/or loss of diagnostic
information will not be introducted by clerical errors.

Compromise methods of generating reports such as handling all
pass conditions manually and utilizing hand edited memory dumps

P 1eohs SPERRY<-UNIVAC

for reporting test failures should be given careful consideration

because of the low costs of such a compromise. More complex
failure analysis performed by a computer would probably allow
(require) more sophisticated error reporting.

3.7.2 Content and Format of Certification Reports

Any certification report, regardless of how it is produced,
should include certain minimum information about the certi-
fication process.

This information includes:

- The manufacturer, model, and serial number of the
unit under test.

s The date and time the test was started/completed.

. Identification of any previous test reports that were

issued for the specific model under test.

s The re ision of MIL-STD-1750 to which the certifica-
tion is being performed.

5 The revision level(s) of the certification test
programs and procedures.

: The project, system, or subsystem for which the unit
under test is being certified (i.e., the end user).

5 The names and affiliation of individuals witnessing

the certification process.

DOCUMENT NO.

PX 13243 SPERRY=<E=UNIVAC

. The results of the test at least to the level of
pass/fail.

Additional information that would be helpful includes a list cf

all possible tests (or subtests) that are included in the certi-

fication process annctated as shown in Figure 3-3. The ad-

v atages of this type of reporting are:

Specific indentification of all tests that have been

executed is provided.

. Each test that failed is identified.

The MIL-STD-1750 instruction or function relevant

to the test is identified.

. Results of action taken to determine the nature of

any failure are i1dentified.

3.7.3 Detailed Failure Analysis

Many automated failure analysis reports can be generated if
sufficient error information is retained by the certification
test programs. The information requirements will vary with the
structure and content of the particular test component that
detects the error as well as the level of analysis desired.
Figure 3.4 shows a sample report that indicates one type of
reporting possible. This report could conceivably be used to

detect failures of the following architectural entities:
OP CODE (Functions)
Registers

Addressing Modes

PAGE

w
!

[9}
~d

st AN i HANY 21 - ¢« e

t I | \
{ “UOBITDIINSAUT JIPUN SIINEIY "wILUOIA uy !t ATUTILL { . B L '
t i ’ ' L \ '

L e

Y@y =C¢r=¢cot o 1
L L 1
iceecamans
1 ’ { o L ’ [' ' 1
4 ‘UOBITDIIBRAUL Japun PITNBEY ‘wATUOIU dE'l F[U}¥SOd . \ 3 3 ¢ U Uy To=ct=cut ne 4

1 ’) . ' : i t 1 1 t | \ !

‘e

esssessrecscasssncnsvatlascrnsvvionnannnsta

leseccanccsncarnccersanssoncaannan cccerpercemtctoamcncnctccmamaney

cfeccecccnsa

1 ' ’ ’ { I ’ 1 [T \ i L
1 ‘UOEITDITRAUT Jepun SINSeY T@a{40J0 uE'l Stujsvod 1\ { é) & I udivd tub=Ci=¢ri nsd |
1 - ‘ 1 v 1 i !
leeecccncvescscsccccccansnanscnsrasnsosaranencsstsnancanndsane !
1 . C C i
1 i
1 {
{wescnaqvrocernsscssronconenencenranenne etmaverugrioan slemtonvrcnnton
| . o) ’ { ’ e i { i t - N i (
1 i t i L adsyvd Teu=21=zvl CLEI
t 3 1 1 \ | l 1
[eeasvscnrnrcnacanercvsnsenacosmccanrnsrresavssencanascssasdonnsncnctrosavacctons embosmscvanante
’ ') t) ’ { t . i N i i
- [i uidssva Tou=zi=¢ul 'LFE

ewaveceomtreovenent

-d
1 ’ .h t - t
I adswvg Tue=ci=gui T
\ . 1 1 '

cratresccccccostas

wecosscvsorcntennan

sbtomncsvenanete

- - 4
-

4 1 | { 1 i i
-4
{ t \

[I 2 T P —

Tt :) : { T 1 {
1 t t \ U adssva Tee=zi=gzul wvds L aze
1 € 1 t 1 T t 1

| R T L T T T PRI O PR PUEY Y7 T T yey S ppEpp iy D

PR SR elenew clmomncccaceta

{ { {
U AdeA ® Aq lequnu 0bi®; ® putpiAfp w043 "3 (NSeA w102ig | 1 i {) I og1tvd fug=gi=zul wa L Ayl
| S .) T o \ t 1 l

lecscaccsnscnrccoosvomcosrnasaversrvasorrranmonremnne

T 7 *3udldisid 82¢ 03tnedld paiddond Qi “iaqufu jtews |

ecncavseate

mecleercaccccntae
) " T { ’ N ’ [t
1 AJ3A ® AQ Jaqend ebley ® puiplajp wo4j ‘Itnwed si013a | t ¢ | [I usiivd hcz.a_-as_ Moo | 31e
1 : ; . - : ’ { i ' - 1] 1

[eocovmccrcracacommranascmsssssnemsessrancacananaasrsanctocane

T “ubieilfie 210 $31n8el2 paldeaRa Q1 “dadquhu (tews |

Isvercccccccncscocccanssncsncsscncsranrsssrccssusassrrenctocnsccsntcncenanclcacrncantsncansnasariocnanacntonrncnccnctana

1
!
1
]
1
1
1
1
1
1
1
1
1
1
T 7 *judlejitp a2e ta{nsed paltddana ayl *laqunu (lews | o ’ 1 { o [1 1
\
1
\
1
1
1
\
t
\
1
1
|
\
t
\
A

1 AddA ® AQ 13qunu abIRY @ OULP(AjP w04J A(NBEL S04l] ¢ i ¢ U danivg Tou=t1=¢al vy t ate
] ’ : o o ’ t \ \) t I ' t

lecosncrocncosnnunrunccncnsesannhecuseanccocecncanccsncactoancnanctoccncarclocacscnclonsencecssatocncnccnbosnnanacnnban

TOtublesitp 01e 3Tnse) peldsans AL ‘13Q4AU (tees oy . R \ {
Ad3A ® Aq lequnu eplwy @ DUIPAfP wWOdj ‘ItnNed mloadg | | ¢ | ¢ t udnivd lue=ti~¢vr vy U Die
h : oo o { { \ \ 1 \ \

Cemscresssrrcs e r R AN RSB RN R AR c R ra st e tuncenstaansvarslcarrscn tensntesntacasarcalecnsncnccsslasccavnctonconncancton

o ’ . 1 ’ v) { { [1 '
1 1 1 | usssvd VeweZyeget
\ Vo l \ 1 L
Jearnccancaccnancseraronssovonerretoncncsnacnacnsasneassafous cctrcoceanaia
v : _ : : ST) : i N T T .
| { , t t l | udssvd fen=i1=zul e 1 wvye
{ . !

- ow wt -t ot o oY

-l -

cncnsswelece

1 [l t i i t

{e=wccccrrcccrcnaccerncannsn ccaveenw -d cacemeta cnmbe ensamsesmtoenana -t cmmmtoave
1 : ’ (Ma1vuda Iwa1vodo (wadvodg « Hlvasssvda @ gawu | FISL] [T
1 I J4ads U dyuv (B Y \) 1 un lomcecncccnnccosaal
1 CETLL Y] ermescasmoceanal ‘Uglsdd L sv4A | IETY 1
! udtregd 41 ' i [dasas o PLYNTAIY | \

et A e e L L L L L T T R A Y A ey Y R R bl e L L L L T T PN

SLIMME BNLVAY wEl Dealun 122 40 (o taovd Lh1ie tanil’ Penevaa=tl tdavy) T LuaiIodERUY dALdnogxai sae Huss0UNd’

Report

ATE

&

Page from AFAL AN/AYK-15

DOCUMENT NO.

PX 13243 SreR=Y<=UNIVAC

Operand Types
. Memory Addressing

Memory Data

Automated reporting of this type can have the disadvantage of
producing mountains of data that requires further analysis to
determine the specific architectural component(s) that failed.
Summary reports can perform this valuable task as shown in
Figure 3-5. In this example, the information presented in the
detailed report is summarized in terms of various distributions
of the failures. Careful examination of these distributions can

provide an indication of specific malfunctions even when the

errors have a multiplicity of symptoms.

OOCUMENT NO. AL
N | - vv\/—J

PX 13243 SFEFR=YFUNIVAC

FIGURE 3-4. INSTRUCTION CODE TEST -- DETAILED FAILURE REPORT

OPCODE

RA register

RX register
Label field
Operand type
(RA)

(RX)

DA

DO

Results
Expected results
Failed bits
Expected status
Received status

Expected interrupt

Received interrupt

L

[DOCUMENT NO. —
PX 13243 SFER=Y<FUNIVAC

FIGURE 3-S5. INSTRUCTION CODE TEST -- -SUMMARY FAILURE REPORT

Frequency of Failures for Test Failures
OPCODE % _Failures # Fajlures

-

RA Registers

RX Registers

Bits in RA

Bits in RX

Bits in DA

Bits in DO

Error bits

in Result

Error bits

in Status

% Failures

% Failures

% Failures

Failures

e

¢

Failures

3¢

% Fajlures

% Failures

% Failures

Fajlures
4 Failures
Failures
4 Failures-
Failures

Failures

4 Failures

& Failures

DOCUMENT NO.

:’:‘:‘,—‘L
PX 13243 ===-=2>=LUNIVAC

Y

4., CERTIFICATION PROCEDURE EVALUATION

The purpose of this section of the report is to raise and
discuss the key issues involved in evaluating various test
methodologies. Section 4.1 defines what a test methodology
is in terms of its attributes, and discusses the methods of
combining alternatives to each of these attributes. Criteria
for evaluating test methodologies are discussed in section

4.2 and a system efficiency model is developed in section

4.3. Subsequent sections expand upon previously introduced
evaluation criteria until certification procedure design goals
are introduced in section 4.7. Finally, an evaluation of
currently known certification procedure options avai able to
SEAFAC are introduced in section 4.8. The overall € ‘ect of
the discussion of test methodologies and evaluation ocedures
is to define relations between factors such as -~isk, cost,
reliability, and completeness. Specific models are proposed
which are used generatively to develop design goals thét are

achievable and cost effective.
4.1 Test Methodologies

A test methodology can be described as a collection of pro-
cedures, and data used to 1) provide test programs and input data
for those programs, ' 2) execute those programs on any 1750 com-
puter (subject to the constraints defined in section 2.4.2) and
3) evaluate the resulting output data to determine whether the
UUT complies with MIL-STD-1750. 1In order to evaluate and
compare proposed test methodologies, each one must be thoroughly
and unambiguously described in terms of its attributes. The
following attributes are considered germane to the specification

of a test methodology.

1. The design of test programs

2. The design of test data

PAGE
4-1

N —— o - T

DOCUMENT NO. —_—
PX 13243 Sre==y==UWUNIVAC

¢

3. The method of evaluating test programs and data
for correctness

4. The method of loading and initiating test programs
and associated data structures

5. The method of recovering, analyzing and reporting
test results.

6. The method of adapting the test metheodeology to
optional features and/or changes in MIL-STD-1750

A great number of possible test methodologies can be

derived by listing alternative procedures and Jdata for

each of the attributes mentioned above. If only

two alternatives were available for each of thcse six attribut-
es, then a total of sixty-four (64) possible test methodologies
would exist. Fortunately, most of the alternatives selected
for one attribute will limit the possible selection of
other attributes. Therefore, the total number of
reascnable methodoloéies is much smaller than the number that

can be derived by simply combining attributes.

Evaluation of alternatives within each
attribute category cannot be used to select a whole test
methodology because they cannot be combined arbitrarily.

But, separate evaluations can be used to measure the effects of
applying more than one test methodology to the certification
problem. For example, testing of the ADD operation might not
be considered complete if only boundary values are used for
testing:; also it might not be considered complete if only a

few random values were used. Application of both techniques

however might provide an adequate level of completeness.
4.2 Evaluation Criteria

Each test methodology and, indeed, each attribute alternative

can be evaluated with respect to various criteria. The three

e

[DOCUMENT NO._
PX 13243 SPERRY<MUNIVAC

major evaluation criteria are discussed in this section: test

efficiency, program reliability and cost 1mpact.

4.2.1 Efficiency

Each attribute, alternative da2fines parameters that can be used
to determine overall test efficiency with respect to total test
time and/or memory requirements. Efficiency measures can be
estimated by counting UUT memory references used to execute a
particular test sequence. The functicnal efficiency of the test
code is defined as the ratio of the number of memory references
required for the instruction(s) being tested to the total number
of memory references used for setup, execution, and examination

of results.

This functional efficiency and several physical constants of the
unit under test define the time vs memory trade-off and can be
used to compute the total time required to execute a certifi-
cation test component for a given unit under test by proper
application of the system efficiency model shown in Figure 4.1.
This model shows that the total test time is the sum of the

time required to load the test and test data, Si/Rit the time to
execute the code, (I/(E‘Rx), and the time taken to retrieve the

results, S /R .
o o

4.2.2 Reliability

Reliability of the certification process can be measured

largely in terms of the completeness, clarity, and verifiabili-
ty of the test code, 1If a particular test methodology tests
more unigue machine states than another, then 1t 1s more
complete, If a particular segment of test code 1s more straight
forward or more easily understood than another, then 1t has
greater clarity. If one certification procedure utilizes mcre

PAGE
4.

Loaar S AL TR

-~ - -------- - - - - - - - -uyot3enbyg suwr- - - - - - - - - - - - - - - - - - - -

- =<=UNIVAC

X
93RY uUOTI3INDAXT - N

-
.

n---------=-=--= - =7 7~ SYALIWYEYd 0G6LT - - - - - - - - - - - - = - = - - - -

o .
a3ex 3ndino - Yy 21p1 Indutr - ¥

- - - - - = - - - - - - - - - - - gId}jowWeled paieys- - - - - - - - - = - - - - - ~ - - -

PAGE
4-4

Lous1o133m TRUOTIOUNI - I
o {ssauajaTdwod) poa3sal
2z1s ndano - g SpIOM uUOT3IONIJISUT "ON - T 2z1s Indurt

!
w0

- - - = = - - = - - - - - - - - si@laueird weibold ISIL- - - - - - — — ~ — — — — — — — -

X . -
o31ey uortijzelnduio)’ 1 1
() Rads PR3 O ('¥) aLvyd "SYdZ1IS

[d4) AouaTOoT3IIH [eRUOTIOUN]® A.:i

- ‘ o
(|’ syazis (M) dILVvH
—
<
LNndano ILNdLNo

(I) ssauajardwon* INdNT LNANT |

S110S3Y T Imm SWYHO0¥d
153dL e R VIvd 1S3l

— PP, PR - o

PX 13243

19POW ADouatoTIIg walysks 1" ainbig

DOCUMENT NO.

N . .
P 224 SPERRY<UNIVAC

independently produced data to validate the process then it

has greater verifiability.
4.2.3 Cost

Each attribute alternative will have associated requirements
for hardware facilities, support software facilities, skill
levels, amount of operator involvement, and other costs
associated with development or use of the certification
component. These requi}ements can be rank ordered for each
attribute such that the highest cost alternative is given a
rank of one, the next highest cost a rank of two and so on.
Alternatives that have nearly equal costs (within 25%) will be
given equal ranks.

4.3 Application of the System Efficiency Model

The system e€fficiency model shown 'in Figure 4.1 can be used
to conceptually define the most time efficient test procedure.
To do this the time equation:

I

E*'R
X

S,
T=E!"+
i

must be minimized with respect to one or more of the input
parameters.

4.3.1 Simplifying Observations

Several practical observations will be helpful at this point.
First, the data transfer rates into and out of the UUT will
very likely be of similar speed. For example, if a magnetic
tape unit is utilized for program and data loading then it can
also be used for logging of the test results. If a test

computer link is used to transfer data to the UUT then it will
PAGE

.4-5

| PX 13 22‘3 SPERRY<>=UNIVAC

probably be used for collection of results. This observation

allows the time equation to be simplified to two terms:

S, + S
N P - |

where R. =R, =R

A second simplifying observation is that two alternatives
exist for the location of known good results. Either the
known good data resides within the UUT or outside the UUT.

In either case, the amount of data transferred into or out of
the UUT will be the same, assuming that results are similarly
coded in either case. This simplifying assumption allows us
to rewrite the time equation again.

S I
T =L+
RL- E-Rx
where S, =S. + 8§
L i Q

A third simplifying observation is that for a wide variety
of test programs, SL is directly proportional to the number
of instructions being tested. 1In order to better demonstrate

this relationship, two examples are presented below.

Case I. Non-looping ADD Test with Comparison in UUT
NUMBER OF MEMORY

REFERENCES
LIM R1,IOP1 2
A R1,MOP2 3
CIM R1,RESULT12 2
JC NE, ERROR 2

- .

DOCUMENT NO.
PX 13243 ST:ER?\H}UNIVAC
NUMBER OF MEMORY
REFERENCES
LIM R1l, IOP5 2
A R1, MOP7 3
CIM R1,RESULTS7 2
Jc NE, ERROR 2

In this example each test of the ADD instruction requires

eight memory references for program code plus one additional

reference for each operand of the add instruction, bringing

the total memory requirement to nine cells. The total memory

requirement is therefore nine cells per tested instruction.

The only requirement for output is a single error flag. The ¥
total execution time for testing 100 add instructions with case

I is approximately:

100 x 9 , 100
R E R
L X

T =

The definition of the functional efficiency E as the number of
1 memory references in the tested instruction divided by the total
number of memory references allows us to estimate the total
execution time in terms of the data link transfer rate, RL’
and the UUT execution rate, Rx

100 x 9 - 100

T =
R (3/9).RX

L

Case II. Looping ADD Test with Comparison in Test

Computer

4-7

Gttty SPERRY=<=UNIVAC

NUMBER OF MEMCRY

REFERENCES

LIM R4,M*N 2

LIM R2,M 2

OUTER LIM R3,N 2
INNER L R1,OPERAND,R2 3

A R1, OPERAND, R3 3

s R1,RESULT, R4 3

AISP R4,1 1

SoJ R3, INNER 2

SoJ R2,OUTER 2

In this example, each test of the ADD instruction requires
slightly over twelve memory references, yielding an efficiency of
E = 3/12. The number of memory cells transferred for 100 test

instructions is:

20 cells in program
+10 cells in OPERAND Table
+100 cells for storage of results

130 cells total
The total execution time for Case II is:

130 100

+
RL (3/12).Rx

The number of words transferred in Case I and Case II is bounded
by a linear function of the number of individual instructions
tested, I, and consists of:
. program code that may be either a linear function of
I (Case I) or a constant (Case II).
. operands that may be included in the code (Case 1) or
stored in tables (Case II). Use of a single table for
both operands of a two operand instruction can reduce

the number of operands required to be proportional to
PAGE

4-8

NT NO.

<\

the square root of I as in Case II.

. expected results are a linear function of I since
each execution of an instruction produces a consistant
and finite number of results. (Specific exceptions to
this rule do exist. e.g., the MOV instruction or
algorithmic self test methods (section 3.2.3).

The fourth and final simplifying observation deals with typical
values for RL and Rx' Current memory technology and imple-
mentation techniques dictate a range of values for Rx that are
centered around Rx-= 106 references per second with a range

of about Rx = 105 for slow microprogrammed processors to Rx

= 10.7 for pipeline processors with relatively fast semi-

conductor memory.

The value range for various data links is as follows:

Data Link RL (words/second)
DMA channel 1.0 x 106
MIL-STD-1553B 5.0 x 10°
Magnetic Tape 1.0 x lO4
RS-232 (9600 baud) 4.0 x 102

Slow paper tape 1.0 x lO1
Manual entry 1.0 x 1071

With the exception of directly coupled memory links, RL is

very much smaller than Rx and can be considered the major
efficiency factor until the product of the functional effici-

ency, E, and the execution rate Rx becomes small with respect

to RL' To illustrate, assume values of RL = lO4 and Rx = 106

in the time equations for Case I and II:

DOCUMENT NO .
_—rlTe\y =
Case 1 Case I1
T = 100 x Z + 100 - T = 130 7+ 100 -
I x 10 (3/9) x 10 1 x 10 (3/12) x 10

4 4

=9 x107% + 3 x 107 1.3 x 1072 + 4 x 10°

2 2

= 9,03 x 10~ 1.34 x 10”7

In each of these equations, the error introduced by completely

dropping the process execution time is negligible.

The third simplifying assumption above was that the amount of

data transferred, S and the number of instructions tested,

I, were functhnall; related. There is, however, a class of
test programs for which this relation is not apparent. Tests
in this class might be considered as functional component
tests where the efficiency model described applies at the
level of a particular functional component within the UUT, but
does not apply to the larger system consisting of the UUT and
1ts environment. An example of this type of test program is a

memory test,

A memory test confirms that a set of test data can be lcaded
into registers, transferred to the memory unit under test,
retrieved, and tested against the register contents. In a

more formal notation, a possible memory test is:

b b
my t((l) 1 = a
b
M fkfl) i = a kK = m
T PaGE |
4-19!

DOCUMEN . ‘)
[4545 SPERRY<=UNIVAC

These equations show that a single program containing n-m+l
different data functions and testing b-a+l different addresses
can test (n-m+l) times (b-a+l) different machine states. 1In
this case changing the address limits, a and b, does not affect

the size of the program that must be transferred to the UUT,
but it does have a significant effect on the execution time
of the program.

The point is that for this class of test programs, the total
number of instructions transferred to the UUT is very small

with respect to the number of states tested and is therefore
not limited by the data rate, RL.

however, remain in effect. Smecifically, total test time is a
function of completeness and the functional efficiency of the

Other program relationships,

test code.
4,3.2 Implications of the Model as Design Criteria

The following major conclusions can be drawn from the system
efficiency model. These conclusions can and should be-applied
as design criteria for generating certificatic.i test procedures
and/or evaluating the efficiency of test designs.

1. The total execution time required to perform tests
of the type described is controlled by the mechanism
for transferring programs and data, therefore use of
manual techniques for entering or retrieving informa-
tion should be avoided.

2. The amount of data transferred (and therefore the
execution time) for programs that test the correct-
ness of results in the UUT is the same as that
required for determination of correctness outside
the UUT. Therefore, by performing checks within
the UUT, rather than in a locally connected test

PAGE
4-11

DOCUMENT NO
PX 13243

-

y

=== <E=UNIVAC

computer, the test can be performed with a stand-
alone UUT, appropriate maintenance console and

load Jdevice.

Program loops can be used to reduce memory require-

ments with little impact on total test time provided

that E/(EJRX) remains small with respect to SL/RL'

The monotonically decreasing risk as a function of
completeness described in Section 2.1 indicates
that minimizing risk involves maximizing instruction
completeness by increasing the number of instruc-
tions tested (I in the system efficiency model).
To do this requires as large a code and tests data
base as can be effectively generated and maintained.
Note that memory (long term storage) requirements
are linear functions of completeness as shown in both ¥
Case I and Case II.
Reducticon of risk as described above corresponds to
increasing ahy and perhaps all of the following
certification test parameters:

. the total test time

. ~.he total number cof instructions (or data

variants) tested

the functional efficiency of the test code

DOCUMENT NO. » %
e SPERRY=<=UNIVAC

4.4 The Role of Reliability

Test certification reliability was defined in section 4.2.3 in
terms of completeness, clarity, and verifiability of test
code. Section 4.3.2 related the completeness issue to the
number of unique instructions tested. An extension of this
idea of completeness can be related to the number of unique
machine status and state transitions tested. It is obvious

by simple inspection that the number of machine state
transitions possible is well beyond the realm of testibility,
but simple architectural assumptions can be used to reduce

the number of degrees of freedom of the test.

4.4.1 Expanded Definition of Completeness

The major assumption to be made is that each functional
entity can be individually tested. This means, for instance,
that each bit in each memory cell and register cén be';ndivid-
ually tested for its ability to be set and cleared. It would
also mean that each byte could be tested for its ability to
contain all 256 possible bit patterns. The assumption of
architecturally divisable components would allow simple
reduction of the number of tests required in the following
manner.

Assume that a 1024 (210) word by 16 bit segment of memory is
to be tested, and that each word is defined as consisting of
two bytes. A functionally sound test might attempt to
verify that all possible values can be stored in the memory.
To do this the memory can be tested as a word addressable
unit with each word having a possibility of assuming 216
different states. Under these conditions 226 different combi-
nations must be tested. Note however, that by assuming func-

10

tional :independence of each byte the 2 word memory can be

considered as a 2ll byte memory with each byte having 28
PAGE
4—l3|

% s SPERRY<=UNIVAC

possible states. To test this same memory now requires only
219 test combinations, less than one percent of the number

required by assuming a word organization.

Note that when implementation details are unknown, as is the
case in 1750 certification, then the assumption that the
physical hardware is organized in 16 bit words is completely
unfounded. There is no reason why the memory can't be organ-
ized as 56 bit words, with 16 bits of polynomial error checking,
for example. The real reason for choosing functional

entities to simplify testing is that each of these abst-actions
is completely defined by MIL-STD-1750.

Figure 4.2 outlines possible functional entities that can
be used to reduce the number of individual tests and still
guarantee a high level of completeness. This is done by
varying a particular entity over its entire range while at
the same time othér functional eéntities are varied over a
small sampling of their entire range. Completeness of any
methodology can be measured in terms of the number of samples
of each functional entity that are tested in this manner

relative to the performance "standard" presented in the figure.
4.4.2 Expanded Definition of Clarity

The same figure used to define completeness also simplifies

and defines the meaning of conceptual clarity by identifying
which test module provides the major test of a particular
functional component. This level of clarity provides
insight into where a particular functional entity should be
tested, but it must be pointed out that it does not necessarily
indicate all modules where it is used or referenced. This is
important for functional entities that may undergc change

or re-definition, such as the proposed change in base register

assignment from general registers R4-R7 to R12-R15.
PAGE

1-14

0z 0z

91

| X4

SR U

i
'

[SE—

Av9

A% 9

A%9

91

R N ———- PR

et T

y#l} —— e e

183],

s3a1dwo)

R{ch N -1-51:-51
_30_TequnN

e3dniasjur

gUOTIONIISUL
0/1

suUot13oNISUT

PR

K1owap

b — - -

eieq
___ 1easthey

burssaappy

paATIag

SaSS2IppY

K1omow

S

sossaIppY

Ja3sthay

sLe

g3dnax
. - 193Ul

uoyTIoNISUT
o/1

sSuoT3IONIISUY

ag/dunp

evleQq

Kaowaw

eayeqg
J9351hoay

Butssaappy

paAtTIaqg

Butasa] ybnoaoyy axrnbay eyl saratyuy

§28321ppPY

Kxourow

sSUoTIONIISUT

1033U05-UON

595831ppY]

I33s1bhay

uoTIONIISUY
10I3U0)-UON

1531

*Z-v 21InbB13

ALTIINT

DOCUMENT NO. ——m—uas
PX 13243 SreEREY=FUNIVAC

4.4.3 Expanded Definition of Verifiability

Section 3.3 indicated the various methods of verifying the
correctness of the certification procedures. The most easily
applied and easily understood methods are the majority vote
and self test methods. The majority vote method is rapidly
becoming an available possibility because "votes" have been
cast by Sperry Univac, Westinghouse, and DAIS in the form

of AN/AYK-15A hardware and test software, and the time is
rapidly approaching when the Advanced Digital Avionics Module
(ADAM) project will be able to provide additional votes in

the form of both hardware and software.

The fact that each of the participants have independently
pursued implementation and/or test of MIL-STD-1750 hardware or
software, while at the same time communicating their findings
to the MIL-STD-1750 Users Group to identify and resolve any
conflicting views lends é great deal of substance to each

vote.
4.5 Certification Procedure Costs

Section 2.1 outlined the relationship of risk to completeness
and Section 4.3.1 established simplified linear relationships
between execution time and memory requirements with respect to
test completeness. The development and/or operating costs
associated with any particular test program design will normally
exhibit this linear increase in proportion to the level of
completeness thus allowing cost to be substituted for complete-

ness as shown in Figure 4.3.

We know from the shape of the risk curve that there are
diminishing returns in both dimensions. The level of complete-

ness outlined in section 4.4.1 provides a reasonable upper
PAGE

4-16

DOCUMENT NO. e
PX 13243 SPERRYS~=UNIVAC
RISK
COST
(COMPLETENESS)

Figure 4-3.

Relationship Between Risk and Cost

DOCUMENT NO. e
PX 13243 SPERRVY<FUNIVAC

bound for the amount of functional testing to be done. This
method of limiting test completeness establishes a linearly
increasing amount of testing required to validate operation of
each additional functional entity. That is, functional
entities are assumed to be adequately tested if each feature
is tested in the context of only a few samples of state for
all other related functional entities. Thus, for example,

the isntruction tests cover all opcodes, but use only a
limited number of memory and register addresses and data
values; the address and data functions are the focus for

separate tests. Any assumption other than independent testing
of functions leads to either an inadequate test or an expon-

ential increase in the number of required test states, with an

associated rise in cost.

Several important cost factors should be identified at this

point,

1. Using existing code is probably the least costly
alternative for a given level of completeness.

2. Extending the completeness of a particular test J
adds to the cost.

3. Verifying existing code adds to the cost and lowers
risk, but does not extend completeness.

4. Costs associated with increasing program completeness
depends upon the program design. Some program
designs are more easily extended than others.

5. Excessive costs may be incurred if an attempt is :
made to extend program completeness beyond its
design limits. (e.g., a new test module may be
required to completely test a feature that was

partially tested in the past}).

6. The most cost effective approach can only be
determined 1f a level of completeness 1is specified,.

PAGE

4-18

DOCUMENT NO. - e
PX 13243 SrERES ~.}LJNI\/AC
4.6 Design Goals

Several candidate design goals have been previously indicated,

these goals will now be made explicit with references made to

appropriate sections of the report. Specific recommendations

for implementation of procedures that meet these goals are also

given, as references to Section 5.

Design Goal Reference(s) Recommendation(s)
1. Each functional entity 2.4 - 2.4.2, 5.6.3-5.6.7

should be completely

tested (within reasonable-

ness constraints) ¥
2. Tests of context including 3.5.2 5.6.8, 5.6.9

interrupts, I/0, and

processing should be

included ' ' i
5.2 - 5.4,
5.11, 5.13
procedures should be 4

W

3. The system should be easy 3.4.

[

to use; complex operating 4.3

autome ted
4, The amount of test data 3.6.2, 5.7 - 5.7.3

should be easily expanded, 3.6

3
A

[V

preferrably by an automated 4
process

5. The certification process 3.3 - 3.3.2 5.8 - 5.8.3
should itself be validated

6. The certification process 5.9 -
should be adaptable to

[Ux)

.10

specific options and/or
changes in MIL-STD-1750
7. The certification facility 3.1 - 3.1.2 5.

[\
U
u
U
.
—
[

should provide a means

of generating, testing, and

}
|
archiving test procedures [PacE E
4-19 ‘

|

DOCUMENT NO. L
——‘c ~ \J—J

PX 13243 sSreRRY<S=WUNIVAC

4.7 Evaluation of Candidate Methodologies

Existing or planned test procedures can now be evaluated
relative to the design goals just specified. Normalized rank
ordering of alternate methodologies against each design goal
has been chosen as a measurement technigque. This technique
allows subtle differences in quality to be differentiated on
the basis of rank, and limits the dominance of any wide
disparity found for one comparison of candidate methodology

and design goal.
4.7.1 Description of Candidate Methodologies

Two broad options are available for selection of test method-
odologies. First, an existing test such as the AFAL (DAIS)

ATP, described in Appendix F, and/or the Sperry Univac ATP,
descriped in Appendix G, can be used as a baseline for producing
the desired test. The second option is to develop new test
programs and procedures that meet the design goals eneumerated

in Section 4.6.

A range of test procedure implementation possibilities exists
for each of the two broad options. The first option would
provide three major implementation possibilities:
. Use the existing test(s) with minimum modification
or extension.
. Use the existing test(s) as a framework for a test
with increased completeness
. Use either of the above two possibilities with the

addition of an independent validation of the test(s).

The second option, developing a '.ew test, would allow reason-

able design trade-offs to be made for each of the six attributes

introduced 1in Section 4.1. A major consideration for any new

¥

DOCUMENT NO. '
PX 13243

|

test is careful selection of the factors that affect the time
vs completeness trade-off as described by the system efficiency
model (cf. Section 4.3). Specifically, the level of test
automation must be given careful consideration when the amount
of test data and/or the number of core load modules becomes

large.

The many test procedure implementation possibilities that
utilize either existing baseline tests or new test programs
can be represented by candidate test methodologies. Four test

methodologies are considered representative candidates for use

in certifying compliance with MIL-STD-1750: the existing ATP(s):

the existing ATP(s) with further validation of design perform-
ance; a new test procedure that executes on the UUT without
benefit of connection to a test control computer:; and a new
test procedure that utilizes a "standard" communication link

to a test control computer.

A detailed description of the last two approaches will be found
in Section 5. These methodologies represent selection of
specific trade-offs based on the assumptions described in
Section 2, the techniques described in Section 3, and the
system efficiency model and design criteria developed in
Section 4. This detailed de- ~n approach was taken so that
specific functional test > . ents could be defined to the
point where coding teclt. gJgues, .low charts, and data designs
could be used to reduce the number of subjective judgements
that must be made when methodologies are evaluated based on
more general descriptions. The following paragraphs summarize
each candidate methodology.

Methodology I - Use the existing AFAL ATP and/or the existing

Sperry Univac ATP. The major advantages of this option are

the low cost of implementation and the simplicity of operation.

SRRy <=UNIVAC

DOCUMENT NO. e

— b
PX 13243 = =Z<=UNIVAC

U

The AFAL ATP seems to be more complete and less hardware
dependent than the Sperry Univac ATP, but the latter employs
some desirable coding techniques, such as the use of tables
for operand storage. Thus, some combination of the two ATP's

might be appropriate.

Methodology II -~ Validate and use either or both ATP's. This

method requires the development and use of a golden standard
(simulator) as described in Sections 3.2 and 3.3. The advantage
cf this method over method I is that additional emphasis 1is

placed on verifying that the test actually performs as intended.

Methodologies ITII and IV -~ Design a new set of test programs to

meet the design goals. One possible set of programs that can ¥V
meet the design goals is described in Sections 5.6 through 5.8,
Those programs use a variety of techniques to achieve a high
degree of completeness as discussed in Section 4.4.1. Validity
of the process 1is assured by use of a simulator as in method II,
but with the additional confirmation of correct functioning of
all components cross checked by use of the AFAL ATP as described

in Section 5.8.3.

Two methodologies deriving from this design are possible. The
first, method III, would be manually controlled. That 1s, it

would utilize bootstrap and/or control (or maintenance) console k
functions for entering programs and test data and for reporting

results as described in Section 3.4.

The second methodology, method IV, would be controlled from the
VAX-11/780 computer via data links as described in Sections 5.2
through 5.4.2. The advantage of this variant is that the large
test data base can be automatically transferred and controlled d

by the VAX-11/780. s

4.7.2 Detailed Evaluation

DOCUMENT NO. _,_aL
PX 13243 SFeERRY=FUNIVAC

A detailed evaluation of the four candidate methodologies has
been performed using rank ordered scoring techniques. Use of
rank ordering allows subtle differences between methodeclogies
to be represented while at the same time preventing any one
characteristic from dominating the score. Rank order scores
were assigned to each of the test methodologies for each of
the seven design goals and cost (cf. Section 4.6). Highest
ranks are most desirable. A weighted score for each of the
candidate methodologies was computed by the following process:
1. Normalize the rank for each design goal by the
highest rank for that design goal
2. Multiply the normalized ranks for each design
goal by the relative weight for that design goal
3. Sum the weighted normalized ranks for each
methodology
4. Divide the sum claculated in step 3 by the sum

of the relative weights

The scores shown i1n Figure 4-5 are for equal weighting of all
seven design goals and for cost. A different set of test
scores and perhaps even a different outcome will result if
different relative weights are applied as shown 1in Figure 4-o.
Note, however, that Method IV is exceptionally broad in scope
1n that 1t has the highest rank in seven of the eight

evaluation criteria.

This section of the report summarizes the reasons for placing
2ach of the four candidate methodologies 1n 1ts respective
rank as shown 1in Figure 4-5.

4.7.2.1 Evaluation of Test Completeness

Methods I and II are given lowest and equal ranks because they

both have a small amount of test data (about ten operand pailrs

per 1nstruction). Method III is given the next rank because
PAGE

A-22A

DCCUMENT NO.
13243

SrERRY=UNIVAC

it is capable of supporting test completeness at or near the
levels shown in Figure 4-2 subject to test time as constraining
factor. Method IV is given a higher rank than Method III for
two reasons.

First, automation of the data transfer will eliminate many of
the delays associated with manual bootstrap methods by allowing
more test data to be used per unit of test time. Second,
several tests, including the Random Instruction Sequence Tests
and the Context Tests described in Sections 5.6.9 and 5.6.10
require the use of an external test facility capable of deter-
ming the final machine state of the UUT.

4.7.2.2 Evaluation of Context Testing (cf. Section 3.5.2)

Methods I and II are given lowest and equal ranks for the
following reasons. Method I and method II are equal because
they represent the same initial .test code. Method III includes
Methods I and/or II as a test of context (cf. Section 5.6.10)
and uses sequence tests in addition (cf. Section 5.6.9). There
fore, test III is more complete in context than Methods I or
II. Method IV has a more complete test of context than Method
III because it contains all of the tests in Method III plus an
additinonal random instruction sequence test described in
Section 5.6.9.

4.7.2.3 Evaluation of Ease of Use

Evaluation of the Ease of Use supported by each of the test
methodologies requires some independent judgement of quality
for each methodology. The Sperry Univac ATP is designed as a
stand alone test that utilizes the minimum amount of support
hardware. 1Its use in a stand alone mode is simple and effic-
ient. The AFAL ATP executive includes a control capability
that supports interaction with a test administrator. This

PAGE
4-23]

l PX 1N324j SPER?\‘%%UN]VAC

manual intervention in the form of loading and/or preparing many

test modules (in cthe range of 20-30 core loads) and of recording
test results. For this reason method III is ranked below methods
I and II. Method IV is the only method that specifically
addresses the question of connecting a test computer to an
arbitrary implementation of MIL-STD-1750. Therefore, it ranks
the highest of the methods in level of automation, even though
the use by the AFAL ATP of the AN/AYK-15A Users Console provides
an equivalent control capability.

The AN/AYK-15A Users Console (SA 301 310) provides a hardware
mechanization of the protocol and data link handler function
described in Sections 5.3 through 5.4.1. This device provides
equivalent and in some sense superior levels of hardware control
for the purpose of certification testing:; but, it does so at the
expense of generality. The Users Console is an excellent, but
implementation specific version of the capabilities dgfined for
method IV in Sections 5.2 through 5.4.2. Method IV is ranked’
above the AN/AYK-15A mechanization of methods I and II because

of its general applicability to MIL-STD-1750 testing.

4.7.2.4 Evaluation of Test Expandability

Methods I and II are given lowest and equal ranks because theyvy
require examination of code segments and insertion of data into
the appropriate places. Methods III and IV, on the other hand,
have tables of data for easy expansion (cf. Section 5.7).
Method IV is given a higher rank than method III because it is
capable of generating the random test sequences which require

a simulator (cf. Section 5.6.9).

e ot SrERE-<-UNIVAC
DESIGN GOAL RELATIVE METHOD (Section 4.7.1)
(Section 4.6) WEIGHT . T ITT v

l. Completeness 1 1 1 2 3
2. Context 1 1 1 2 3
3. Ease of Use L 2 2 1 3
4. Expandability 1 1 1 2 3
5. Validation 1 1 2 3 3
6. Adaptability 'l 2 1 3 3
7. Maintainability 1 2 1 3 4 j
8. Low Cost 1 4 3 2 1
WEIGHTED SCORE .52 .46 .70 .91

Figure 4-5. Rank Order Evaluation of Test Methodologies

(equal weighting of design goals)

P N

DOCUMENT NO —
DX 13243 Sre=y<=UNIVAC
DESIGN GOAL RELATIVE METHOD (Section 4.7.1)
(Section 4.6) WEIGHT I 11 111 Iv
1. Completeness 1 1 1 2 3
2. Context 1 1 1 2 3
3. Ease of Use
1 2 2 1 3
4. Expandability 1 1 1 2 3
5. Validation 1 1 2 3 3
6. Adaptability 1 2 1 3 3
7. Maintainability 1 2 1 3 4
8. Low Cost 10 4 3 2 1
WEIGHTED SCORE 77 .61 .59 .56

Figure 4-6. Rank Order Evaluation of Test Methodologies

(high weighting for cost)

DOCUMENT NO. .
PX 13243 ‘

4.7,2.5 Evaluation of Test Validity

Method 1 is validated in the sense that independent Air Force
and industry representatives have cooperated to test their
individual interpretations of MIL-STD-1750 as described in
Section 5.8.3. The level of validation proposed for Method II
would add another vote to that process, in the sense of utiliz-
ing another independently developed simulator as an independent
functional test. Method II is therefore at a higher rank than
Method I. Likewise, Methods III and IV will undergo testing

on an independently developed simulator, but will have the
additional advantage over Method 1I of having another independ-
ent vote in the form of the test programs themselves and the

test data generation procedures (cf. Section 5.8.2).
4.7.2.6 Evaluation of Test Adaptability

Methods I and II utilize a large number of program modules
organized by opcode. Each opcode test module consists of two
to five parts each of which samples basic operation of the
instruction, lack of extraneous interrupts, correct status
word settings, correct interrupt generation, and correct
operation of indexing. (cf. Appendix F). Typical opcode

test modules requ..e two hundred scurce lines to implement
these five parts:; source lines include a mixture of program

code, test data, and expected results.

In contrast, Methods III and IV utilize program loops common
to several instructions. These loops typically consist of
sixty source lines of code. Test data and expected results
are stored in tables separated from these code loops (cf.
Sections 5.6.3 through 5.7.3).

Methods III and IV are considered more adaptable then Methods

I and II because changes will normally be 1isclated to specific
PAGE

~-25

DOCUMENT NO. o
—4= ™= LI | .
pX_ 13243 SrERRY<=UNIVAC

code or data segments common to all instructions utilizing

the changed feature. For example, expected results for all
tests of integer divide by zero with 32 - bit rwsult would
reside in a single results table for Methods III and IV,

but would appear in five different modules for Methods I and
II. Another example of test adaptability would be instruction
format changes such as modifying the definition of base
registers for the B and BX formats. Methods I and II would
require many modifications to be made in each of thirty-two
test modules (about 6400 lines of code) while Methods II1 and
IV would require modifications to a small number of instructions
in each of 16 program loops (about 960 lines of code}). Methods
III and IV are clearly more adaptable because the code is
functiconally organized in several dimensions, not just opcode.
Method I has been given a higher score than Method II because
no modification of validation code (the simulator) would be

required.

4.7.2.7 Evaluation of Test Maintainability

All four certification test methods outlined will undoubtedly
utilize equivalent program storage and maintenance techniques
provided by the VAX-11/780 computer system. Method IV has the
unique advantage of being able to archive procedures, test data,
and certification test results in addition to having simple
storage capabilities (cf. Section 5.2). Method IV is given the
highest rating because of this advantage. Method III is rated
higher than Methods I and II because it utilizes functionally

DOCUMENT NO.

PX 13243 SeeER=-<=UNIVAC

organized code segments than are common to several instructions
rather than individually coding each opcode variant and data
point to be tested. Method I is more maintainable than Metheod

II because no simulator maintenance 1is required.

P — O s S =\l s Vi e T

4.7.2.8 Evaluation of Test Costs

The final detailed evaluation to be performed is that of cost.
The lowest cost should receive the highest rank in this case.
Obviously, Method I is the lowest cost alternative because it
requires simple incorporaticn of available source programs into
a VAX-11/780 resident data base. Recurring costs should
consist of normal program maintenance, conversion of object
3 code to the appropriate bootstrap media format, and operation Y
‘ of this very short test. Method II should be ranked next
because it requires development of the fewest additional capa-
bilities. Major additional costs for Method I1 are the increas-
ed maintenance costs for additional software (the simulator),
i and a significant development cost relative to costs for Method
: I in the form of testing requirements. Method III contains
significantly more develcpment than Method II, and therefore
is ranked lower.

Any savings in maintenance costs for Method I1I over methods

I and II are probably offset by increased program size (cf.
Section 4.7.2.6). Method IV has development costs which are
about 30% higher than for Method III (cf. Section 5.13 and
Figure 5-9). In time, these additional costs will probably

be covered relative to Method III, through greater ease of
operation. Nevertheless, Method IV 1s ranked lower to indicate
costs relative to the first unit tested rather than extending

development costs over the life of the certification facility.

DOCUMENT NO. o

PX 132423 :

LNIVAC

4
Y

y

4.7.3 Summary of Results

Figure 4-5 and 4-6 summarize the results of the detailed
evaluation performed in Section 4.7.2. The scores shown in
Figure 4-5 are for equal weighting of all seven design goals
and for cost. The scores shown in Figure 4-6 are for high
weighting of cost. Note that cost factors play a significant
role in determining which methodology is chosen. In general,
Method IV is technically superior to the other methods while
Method I is lowest cost and will have the highest score
whenever the relative weight of the cost goal is greater than

42% of the sum of the weights. The major decision to be made

is between cost and technology!

Px 13243 SEeR=y<=UNIVAC

e ese—

5. RECOMMENDED APPROACH

This section recommends specific procedures, test designs, and
support tools to be used by SEAFAC for certification of various
implementations ¢of MIL-STD-1750.

5.1 Overview of Recommended Approach

The recommended approach is designed to maximize the number of
instruction codes and instruction code sequences to be executed
by the unit under test while at the same time minimizing the
amount of effort required to generate, document, and maintain
test programs and data. Functional test modules are defined so
that testing effort can be concentrated in a particular archi-
tectural entity. Most test modules have provisions for extending
the test using random variables. Expected results are obtained
from a simulator which is used as a secondary standard. This
simulator will undergo rigorous testing during the generation
of test programs. Test programs, data, and expected results
are transferred between the unit under test and the VAX-1ll test
control computer thru a vendor supplied adapter unit which
connects the UUT to the test control computer via a MIL-STD-
1553B, RS-232C, or other agreed upon interface. A UUT resident
program interfaces I/0 device handler software provided by the
vendor to the test modules used for certification. Summary
reports are produced by the VAX resident test control program.
These reports indicate which test modules were executed and
provide descriptive information about the nature of any test
failed. Provisions for identifying specific options that were/
were not tested are automatically invoked by the test control

program. Figure 5-1 shows the recommended certification

facilaty.

5.2 Test Control Program

R SN B

K3yTroed uoTIEOTITIISD O0GLT-ALS-TIW °1°g 2Inb14

dTOSNOD
SHOLYHIJO
LSAL

¥ALNAWOD 1LSAL ——
08L/TT1-XVA mm¢Qs;aﬂ
Jd asm
| WYHO0Ud 2 .
() W7uDOud S1M0dAY TOMINOD o Tt
1saL _— LSAL
¥ATANVH ¥ATANYH
100010¥d 1000L0Y¥d
[| . R
AT “ o " NI YIVa N
NI €21 yaravavi€ 2
" IsaL 1 ANIT
o]
ol @ESST IO DZEZ-SH
IS3L ¥AANn LINN YOLYINWIS
1-a1S-TIW
0sL 0SLT

- <\
S SPERRY<FUNIVAC

A Test Control Program (TCP) capable of sequencing all phases
of the certification process assures proper

operation and application of test procedures by minimizing human
intervention. The TCP utilizes program modules and data stored
in the certification test data base to thoroughly exercise all
UUT functions defined in MIL-STD-1750 and produce a summary
report for each module exercised.

Simple operator controls allow the following functions to be
performed.

. Sequence thru all certification tests

. Define the test sequence

. Select a specific test module for execution

. Add a new test module to the data base

. Delete an existing test module from the data base

. Archive an entire data base

. Restore an archived data base _

. Save the UUT state (including memory) in the data
base

. Select the simulator or UUT for execution

. Control/suppress levels of reporting

. Control sequencing in event of errors

. Provide diagnostic/debug aids

5.3 Protocol Handler

A Protocol Handler is provided as a means of allowing the test
control program (TCP) to control the testing to be performed
within the unit under test. The protocol handler is distri-
buted between the test computer and the unit under test. Within
the test computer, the protocol handler encodes/decodes message
blocks to be transferred between the TCP and the unit under test.
These message blocks are translated into appropriate action by

PAGE

r

DOCUMENT NO. R .
PX 13243 SeerRY=E=UNIVAC

the protocol handler program residing within the unit under
test.

5.3.1 VAX Resident Protocol Handler

The portion of the protoceol handler resident in the VAX-1ll

is designed to interface the test control program to the unit
under test via a series of FORTRAN calls within the TCP. These
calls provide the following functions:

. Stop execution of any test module currently being
executed

. Restart or start execution of a test module

. Transfer the contents of specified register(s) to
the VAX

. Transfer data to the specified register(s)

. Transfer data to the specified memory location(s).
(This function overrides any memory proﬁection
features.)

Perform the single instruction specified

. Signal the specified interrupt(s)

A more detailed discussion of the VAX resident protoceol handler

is provided in Appendix E.
5.3.2 UUT Resident Protocol Handler

The protocol handler resident in the unit under test .s respon-
sible for processing control information from the VAX computer
and providing appropriate status messages to the VAX. This
handler contains a storage area for the contents of the machine
state. In effect, the 1750 resident protocol handler 1is
responsible for switching the UUT between the test and control

states. In the test state, the 1750 executes the currently

resident test module using the hardware registers. Wwhen an

PAGE

| -t
e

| PX ;_‘ ;24'3 SrFE R?Y%%LJNIVAC

interrupt is generated in the 1750 in response to a message

sent by the test control program, the contents of the hardware
registers are saved in the machine state storage area and the

message is processed by the protocol handler.

Individual messages may command that data be transferred
between the test computer and the UUT memory or simulated
registers. Provisions are made to release memory lockout when
access is requested by the test computer. Once the requested
message has been initiated, the machine state stored in the
simulated registers is loaded into the hardware registers and
processing of test code continues. Concurrent execution of
test code and 1I/0 transfer may be performed within the UUT
provided memory lockouts were not removed and simulated reg-

isters are not affected.

Test modules resident in the UUT are able to invoke status -
transfer subroutines within the prdtocol handler. This entry -
point makes it possible for test modules to pass diagnostic
information to the test computer for error reporting. Another
entry point is available to return a complete status to the

test computer and suspend execution of the test program.
5.4 Data Link Drivers

Data link drivers provide a media dependent path between the
test computer resident protocol handler and the protocol
handler that resides in the UUT. These handlers transmit the
received binary data blocks via a MIL-STD-1553B data bus,
RS-232C communications link, or other agreed upon interface.
Only those handlers actually needed to establish and maintain
communications Detween the VAX and the UUT need to be configur-
ed at the time a certification is performed. For example, if

a 1553B data link is to be used to certify a particular 1750
implementation, then neither the test computer nor the unit

PAGE

"X 13243 SPERRY<L-UNIVAC

under test 1is required to support an RS-232C connection.

The data link drivers are required to transmit and receive
physical blocks of binary data without regard for specific

data content. To accomplish this, different handlers are
provided for RS-232C and 1553B links. In addition, the require-
ments for the VAX resident link driver may be different from
the UUT resident handler.

5.4,1 RS-232C Data Link Drivers

Data link drivers for RS-232C data links will require internal
buffers, coding algorithms, decocding algorithms, synchroniza-
tion, and error checking routines to establish a robust connec-
tion between the test computer and the UUT. Entry points into
the data link drivers will be limited to transmit, receive,

and check status functions. '

The transmit routine will pass a buffer address and word count
to the data link drivers and return a normal completion or
error status to the calling program. The receive routine will
pass a buffer address and maximum word count to the driver
program which will return an actual word count or error status.
A status checking function will allow the calling program to
determine how many data words are currently buffered in the

link driver or indicate that a data loss has occurred.

The binary data to be trziasmitted over the serial data link

is converted to hexadszcimal ASCII characters before trans-
mission to avoid inveoking any special functions that may be
incocporated in the transmission of data path. In addition, syn-
chronization, word count, and block check characters are added

so that proper receipt of data can be verified. Each block of
binary data transmitted on the RS-232 interface will consist of

one or more space codes used for synchronization followed by
PAGE

5-5

[DOCUMENT NO.
"PX 13243 SPERRY<EUNIVAC

four ASCII characters indicating the 16-bit word count in hexa-
decimal, followed by ASCII characters representing the words

to be transmitted in hexadecimal, followed by four ASCII char-
acters representing the 16 low order bits of the twos comple-
ment sum of all the binary data transmitted including the

word count.

The receiving data link driver responds to the receipt of a
message block by sending a status word consisting of one or
more space codes followed by the ASCII coded characters ACK,
indicating correct receipt of data or NAK, indicating that an
error was detected. The transmitting link will attempt to

retransmit a message up to five times before an error status

is returned to the calling program.

Data link drivers contain one or more fixed size buffers for
receipt of unsolicited messages. The size and/or number of
these biuffers as'well'aS'the largest physical record that will
be transmitted on the data link are defined by compile time
variables that must be compatible within the drivers at both
ends of the line.

5.4.2 MIL-STD-1553B Data Link Drivers

Data link drivers for 1553B data 1l nks will require internal
buffers for receipt of unsolicited messages; however, coding
and decoding of the binary data is not necessary since the
data link allows for transmission of binary data. Another
advantage of the 1553B interface is that synchronization,
control, error detection, and status reporting are all defined
by the standard. The main responsibility of 1553B data link
drivers is to provide a terminal address and divide the buffer
provided by the calling program into block of 3< or fewer
words as required by the 1553 protocol. The 1553B data link
driver resident in the VAX-1ll computer will act as the bus

PAGE
5-6

5% 13243 SPERRY<-LINIVAC

controller. The UUT will act as a remote terminal which res-

ponds only to its own terminal address which may be selected

by a compile time parameter. No action is required in response
to any other terminal address including the "broadcast" address.
Messages that are received in error will be retransmitted up

to five times before an error status is indicated at the
transmitting end.

5.5 MIL-STD-1750 Simulator

A MIL-STD-1750 instruction set simulator is provided for genera-
ting expected results and debugging test program code. The
simulator is a set of FORTRAN subroutines that simulate all
architecturally relevant features of MIL-STD-1750 in a manner
that makes the simulator indistinguishable from a unit under
test.

. A software switch is provided witﬁin the VAX fesident protocol
handler to transfer control information and data to the simu-
lator rather than sending it on to the device handler. 1In
effect, the simuator is a unit under test that shares its
device handler interfaces with the test computer protocol
handler at one end, and the UUT protocol handler written in
1750 instruction set on the other hand. The simulator is
"started" whenever the test computer protocol handler sends a
message to the UUT, and execution is suspended whenever the

UUT replies through its protocol handler.

The simulator is coded in such a way that it can be linked to
programs other than the TCP by calls to the FORTRAN subroutines
shown in Appendix C. These subroutines allow *lie -etrieval

of expected results and provide a means of gen. ="' ng and
validating arbitrary sequences of code as described in section

5.6.3.

PAGE

[DOCUMENT NO.
"PX 13243 i SPERRY<=LNIVAC

5.6 MIL-STD-1750 Test Programs

This section recommends a set of test programs to be executed
within the unit under test to verify that it conforms to the
requirements of MIL-STD-1750. These tests are functionally
organized and should normally be executed in the order speci-
fied.

5.6.1 Factory Acceptance Test

Each vendor of a MIL-STD-1750 implementation should be encour-
aged to employ any hardware and/or software diagnostic tests
they may have available to verify that the implementation to be
certified conforms in every respect to the vendors specifi-
cations and expectations. This optional test would be most
suitably employed while the UUT is in place at SEAFAC so that
the likelihood of attempting to certify an improperly installed

or somehow subtly damaged unit is minimized.

5.6.2 Data Link Test

A test of the data link software should precede the actual
certification tests to be employed. This test is designed to
verify that data can be successfully transferred between the
test computer and the UUT. It utilizes the protocol functions
described in Appendix E to perform the following operations.

. Transfer a large number of data words to UUT memory

. Retrieve the same number of data words from UUT
memory and verify contents

. Transfer and retrieve successively smaller data
blocks assuring that data is not added or deleted

. Test the transfer of all 65K possible bit patterns

r-o—aTuEm NG. L
PX 13243 SPERRY=SFUNIVAC

5.6.3 Instruction Tests

A series of tést modules are required to thoroughly test all
instruction codes. Several test modules are needed since
"known good" values stored within the UUT for comparison to
derived values requires more than 65K of data storage. The
"known good" values include the minimum required operands
described in section 3.4.1 plus an arbitrary number of randomly
generated operands that are produced as described in section

L 5.7.

Figure 5-2 shows a control structure for the Instruction Tests

which derives information about the data to be tested from a
series of tables. An opcode table contains the opcode to be
tested, a type code that indicates the test loop to utilize

for testing the instruction, and pointers to UUT resident tables
that contain expected results and operands used to generate

the results. Figure 5-3 shows a typical test loop that provides
for testing of all combinations of RA and RX registers for £he
instruction under test with a specifiable number of operands to
be used in the RA and RX fields, and a (possibly) different

set of operands stored in memory.

Use of tables to define operand values and expected results
offer many distinct advantages:

. New or different operands can be added at will up to
the limits imposed by available memory ¥
. Operands and instructions can be independently
repositioned in memory by use of separate compiles
and/or relinking 1

. Program code can remain in UUT memory while new data i

tables are transferred
. Simple coding sequences within the VAX can divide

available data space_into two or more partitions.
PAGE

b-9

N

Get opcode, type, and

table pointers from
opcode: table

Undef ined

lj?pe=A : J:ypeza ' \Lrypezz
rocess Tab- Process Tab- rocess Tab- SIGNAL
les for reg- les for regq. es for dir. TABLE
ister mode mode double ... lhode integer|....
integer inst| integer insti nstruction ERROR
SIGNAL
. END OF
/ TEST
A |
XIT
Figure 5.2 . Instruction Test Control Structure

Exit

4

INITIALIZE RESULT POINTER

SAVE NUMBER OF OPERANDS
INITIALIZE OPl POINTER (PTRL1)

r

-
> o —— e e

INITIALIZE OP2 POINTER (PTR2)

T

>

Cd

VI

INITIALIZE (RX) POINTER (PTR3)

¥

d}

INITIALIZE RX VALUE

21

N

INITIALIZE RA VALUE

_fi—

Move values pointed to by PTR3, and PTR1
to RX and RA storage areas (order is important

~

= Set ADDR
Field to PTR3

RX: %

#

Computer ADDR field of instruction from
ADDR = PTR3 - (stored RX)

Form and store instruction for execution
Save control registers

Load test registers

Execute instruction under test

Save test registers

T e

D ST S PR N

e L A e

oot aala

Compare

Results
to

Expected

, Not Equal

Error

|—sSIGNAL

Equal

> 15
/

/

Increment and
Check RX Value

Increment and ‘\
Check RA Value 4/

> 15

Check for end of ‘Loop

Increment PTR 3,. . Not End

Pl

lEnd of Loop

Increment PTR 2
Check for end of Loop

I;

End of Loop

Increment PTR 1
Check for end of Loop

End of Loop

SIGNAL

End of
Sub-Test

-\. EXIT :

FIGURE 5.3. (CONTINUED)

'!'lI!U-'-“-fF”-"-f--'!-IIllIl-..-.".'.-.l-.-.'!.--.I-ll-llll---t

T

(o t3243 SPERRY<L=UNIVAC

One partition can be loaded from the VAX while the

other ig being processed by the UUT. This allows
the test to proceed while interrupts and concurrent
I/0 are being processed.

Several points should be highlighted at this time. First, not ;

all instructions can be effectively tested in this mode of 1

operation. The MOV instruction, for example, has a unique ;
format and requires that one or more interrupts occur during i
the actual test of the instruction. To thoroughly test the
MOV instruction requires the injection of an interrupt that is
not synchronized with the MOV instruction itself, and the
interrupt processing routine must be able to assist in verify-

ing that the interrupt occurred during the operation and not

|
immediately before or after instruction execution. The level f
of interaction between the test computer and the UUT required i
for this type of test warrants a separate test component. ;
A second point to be highlighted is that the results that sbould
be checked include interrupts, status word contents, and
affected memcry contents, not just the contents of affected
registers. Detailed study of each instruction to be performed
.8 required in order to select the appropriate test data,
expected interrupt conditions, and expected status word con-

tents; these factors will determine which test type is appropri-
ate for the instruction.

A third point is that information needed for detailed error
reporting as defined in section 3.7.3 should be provided at
the time an error condition is indicated to Lhe test control
program even if this information is not used for automated
reporting. One mechanism for providing this information is

to pass the address of a data record containing detailed error
information to the test control program as a status indicator.
This record can be retrieved b ”;he TCP if detailed reporting

DOCUMENT NO.
X 13243

SPERRY=<E=UNIVAC

is required; otherwise the test procedure can continue or ::
terminate at the discretion of the TCP and/or test operator.

5.6.4 Memory

Tr.2 AFAL ATP memory test program described in Appendix F should ?

be modified to allow its incorporation into the test program(s)

(cf. Section 2.4.2) by protecting the UUT resident protocol ﬁ

handler and device handler areas from access. Tests of optional }

features such as memory protect and start-up ROM should be

removed from the memory test and placed into separate test f
j - modules that can be included (excluded) based on the configura- if
tion of the UﬁT. Diagnostic features of the test such as
restricting the patterns to be tested should be removed or
controlled thru interaction with the TCP to avoid "short-cir-
cuiting" of the entire test procedure during the certification
process. -

s o e

5.6.5 Register Tests

A test of all general registers is recommended (cf. Section 2.4.
2). This test should check for all 64K data patterns in each
of the 16 general registers. Tests for correct contents of ;
all 16 registers should be made after each test pattern is
generated. Figure 5-4 shows the register test component.
Contents of other registers should be checked in the I/O test.

5.6.6 Derived Address Tests

Although the Instruction Tests as defined earlier will test
the ability of each instruction to access data in a limited
number of the possible derived addresses, a separate test of

derived address calculations is recommended. It will provide
a systematic and more comprehensive check on the ability of
the UUT to correctly compute derived addresses on each address-

ing mode. A summary of the fourteen distinct addressing

PAGE
5-1

T e e

. Initialized expected results to 32767

. Set register pointer to g (K = g)

1

. Set expected value to -32768
(E(K) = -32768)

m

. Save current value of K
. Load expected values into register
(R(1) = E(i) for { =92, 1, ... 15)

SIGNAL :

R(i):E(1i)
or I=¢4.,1,..,1

Error

E(K) E(K) +1

1
h'74

complete{

s

10.
11.
12.
13.

14.

Addressing Mode

Derived Address

N ” T

Derived Operand

Register Direct

Memory Direct

Memory Direct Indexed
Memory Indirect

Memory Indirect Indexed
Immediate Long

Immediate Long Indexible
- with RX=0

Immediate Short Positive
Immediate Short Nega;ive
‘'IC Relative

Base Relative

Base Relative Indexible

- with RX=0

RB

ADDR

ADDR+ (RX)
[ADDR]
[ADDR+ (RX)]
DSPL+(IC)
DSPL+ (BR)
(BR) + (RX)
(BR)

(RB)

{ADDR]

[ADDR+ (RX)]
([ADDR]]

[[ADDR+ (RX) 11
I

I+ (RX)

I

+I+1

-1-1

[DSPL+ (BR)]
[(BR)+(RX)]

[(BR)]

Note: Double Precision and Floating Point Instructions

reference DA, DA+1 as a unit,

and Extended Float-

ing Point Instructions reference DA, DA+1, DA+2.
The notation used here is defined in MIL-STD-1750.

Figure 5-5. Addressing Modes in the 1750 Instruction Set

DOCUMENT NO. o
PX 13243 SrERRY<EUNIVAC

modes defined by MIL-STD-1750 is given in Figure 5-5. Note
that for the Immediate modes 6-10, the derived address is not
relevant because it is part of the instruction itself. Thus
no addressing tests need bz performed for the Immediate modes
separate from the Instruction Tests. The IC Relative mode 11
is only used for the Branch instruction, which is adequately
tested already in the Instruction Tests. 1In addition, the
Register Direct mode 1 is fully tested in the Register Tests,
which verify both data wvalues and derived address values for
all registers. This leaves seven addressing mcdes to test:
2-5 and 12-14.

Since the Memory Test and the Register Tests are concerned

with the storage and retrieval of possible data values, this

addressing test need not be concerned with any variety in f,
data values manipulated except so far as they help verify that
the appropriate address was indeed reached (e.g. using addresses
as the data). Also, since the Instruction Tests will cover .
all OPCODESs, this test can be constructed using a single
instruction such as LOAD, which spans all addressing modes.

The test strategy then is to reference all derived addresses

of the mode being verified and confirm the reference using
instructions which are of a different addressing mode. For
memory direct, this would amount to performing LOAD's for all
64K addresses, pre-storing and confirming address data with
instructions of some other addressing mode.

For derived addresses which are indirect or involve a sum of

a register and an address, displacement, or some other register,

the number of possible addresses is too large to be testable

in a reasonable time. For example, with Memory Direct Indexed 1:
mode the complete specification of ways to compute ADDR+ (RX) y
is 64K x 64K x 16, counting all addresses, all values of RX,

and all RX's. A reasonable compromise with completeness is

to perform three subtests, fixing two of the three variables
PAGE

5-12

g dhin: SPERRY<=UNIVAC

each time while varying the third over its entire range. The
values which are fixed would be chosen at random from their
range of possibilities. This scheme is easily extended to
apply to the other modes which involve sums in computing their
derived addresses.

5.6.7 Input/Output and Iucerrupt Tests

A functional components for testing all non- optional I/0
capabilities is recommended. These tests should confirm correct
addressing and value storage fof all registers available through
input/output instructions. These registers include:

. Status Word Register (SW)
. Fault Register (FT)

. Interrupt Mask (IM)

" Pending Interrupt (PI)

Functional testing of these registers requires careful ordering
of instructions, use of specialized instructions, and in some
cases use of instructions that will be added in the first
revision of MIL-STD-1750. For example, testing of the status
word register will require that all combinations of the four
upper bits be tested. The standard does not currently define
the use or operation of the lower twelve bits of the status
word; therefore, the results of testing should be reported,
but strictly speaking, any value that is returned is allowed.
(This particular problem and many others will be addressed in
MIL-STD-1750A.)

Interrupt testing can logically be done in this test component
although interrupts normally associated with overflow, under-
flow, illegal opcode, and other errors that can e generated
by software will be more extensively tested in other test
modules as well. Additional capibilities are being defined

PAGE

y

DOCUMENT NO. :.‘"':\..JL
PX 13243 Jl ==Y ==UNIVAC

in MIL-STD-1750A that will allow more compliete testing of

fault detection and interrupts. The ability to set the contents
of the pending interrupt register is crucial tc testing inter-
rupt acceptance and priority without introducing implementation-

dependent test hardware.
5.6.8 Jump and Branch Tests

Proper operation of conditional and unconditional branching

should be performed in a separate test module. Conditional

branches that do not cause control to be transferred should be

checked before those that do cause control to be transferred

as shown in Figure 5-6. Conditional jumps and branches will

require 256 jump instructions to be executed for each of the \
five addressing modes (D,DX,I,IX, and ICR) as shown in ‘

s e i

Figure 5-7.

Several : jumps require special handling by individual

tests. For example, the stack pointer and return address 1

should be verified for the stack IC and jump to subroutine]

(SJS) instruction.
5.6.9 Random Instruction Sequence Tests

A series of test modules that incorporate sequences of instruc- q

tions should be provided. These sequences should be of two
forms. The first form would consist of a series of executions
of the same instruction. The purpcse of this type of test is i
to attempt to fill any pipeline(s) that may have been used to

implement a particular function. The number of instructions in

the sequence should be large enough to fill any reasonable

size pipeline. One-hundred instructions would be more than

adequate. One convenient method for generating this sequence ’

of instructions is to modify the loop shown in Figure 5-3 to

store copies of the same instruction in successive memory
PAGE

l
5-14 i
|

‘Nﬁlll.iﬁiiﬂai?!arj;) —r—— v po—y . wr——y e — -
. AN . L . - R - A : D ottt oo s

XTa3ew dung/youelg [RUOTIITPUO) *1°G ainbrg

pP23INOaxXs aq PINOYS UOTIDONIISUT IXBN = N
uayey aq pinoys dump = p

r r Iy fy fy r Iy N r r r r r r r N K| 111
r r r r fy r r N [y Iy Iy Iy Iy r N N a oTr1T
r Iy r Iy r r r N I r c r r N r N a 1011
r r r fy Iy [y r N r |0 r r N N N N o) 00Tt
r r Iy r Iy Iy r N Iy r r N Iy r r N d 1101
r r r r r Iy Iy N e |r N N r [y N N v 0101
r r o r Iy c Iy N r | N r N r N r N 6 1001
r r fy r C r Iy N r N N N N N N N 8 0001
r r Iy r Iy C Iy N r r r Iy Iy fa r N L 1110
r r [y r r r N N r r r r fa r N N 9 0710
[y r Iy Iy 'y N Iy N Iy Iy Iy [y Iy N [y N S 1010
r r r 'y N N N N c | [y Iy N N N N v 0010
r [y Iy N r r r N C r C N r [y r N € 1100
r r N N C r N N [y C N N r r N N Z 0100
c N c N c N Iy N r N Iy N C N [y N 1 1000
N N N N N N N N N | N N N N N N N) 0000
d il a o] | L4 6 8 L 9 S 14 3 4 T /) QoM

SNLVIS
T tjorrrftotrtfoott| trotl.oror| 1001|000t} 117 "ot110f 1010{ 0010} T100{0100{ 1000} 0000} 3AC™ -

XXa _mom ZNd {1968 (379 (z3d {LT1d {XXE { NOLLI. O

|
LOAD STATUS WORD
SIAL
CONDITION
SATISFIED ERROR
CONDITION o
SATISFIED
|
SATISFIED '
SIGNAL f
t
© ERROR !
y i
THAT SHOULD CONDITION
TRANSFER SATISFIED
NOQT
SATISFIED
4
SIGNAL
ERROR J
Figure 5.6 . Sample of Code for Jump Test

DOCUMENT NO.
I PX 13243 SPERRY<EUNIVAC

locations. If this technique is used, precautions must be
taken to avoid problems associated with modification of the
derived address of the pre-stored instructions. This occurs
in the DX format when RA=RX. Simple checks can be made to
bypass tests of this type.

Final results for this sequence test are similar to those
encountered in the single instruction tests except that the
number of interrupts becomes significant, and more than one
type of interrupt may occur. This type of testing may not be
valid for certain combinations of instructions and operands.
For example, the single precision integer divide instruction
in register format (DVR) will yield indeterminant results when
RB = RA + 1 and the remainder of a divide preceeding the last
in the sequence is zero. Subtle conditions such as this can
only be derived from a detailed analysis of individual instruc-
tions as has been indicated in Section 5.6.3. Fortunately,

in the case of integer divide the inteder overflow interrupt

can be used to indicate that the results are not well defined,

A second form of instruction sequence test provides random

data and instruction sequences (cf. Section 3.5.2) by utilizing
special features of the MIL-STD-1750 simulator. The following
procedures indicate the method to be used to generate a random
set of code and data using the simulator.

1. Define a memory space to be used for the test.

2. Fill the simulated memory space with random number

sequences. (These sequences may have specified statistics).

3. Initialize simulated general registers with random
number sequences.

4, Select a subset of simulated memory to be designated’
as the instruction area.

5. Load the IC register with a random number whose value

within the instruction area.
PAGE

5-1

L
s

o

) - U ﬂ‘
DOCUMENT NO. P
PX 13243 SPERRY=<=UNIVAC
6. Set breakpoints to halt execution of the simulator if

10.
11.

12,

13.

14,

15,

16,

17,

any memory reference outside the defined memory space
is attempted. '

Set breakpoints to halt execution of the simulator if
any execution reference outside the instruction area
is attempted.

Set breakpoint to halt execution of the simulator if
any operand references are attempted inside the
instruction area. }
Save a copy of the initial machine state including

memory contents for later reference.

Initiate execution of a single instruction.

Examine the completion status of the simulator. If

no breakpoint conditions were satisfied, repeat step

10 otherwise go to the next step. *
Cne of the test ground rules has been viclated; there-
fore the instruction pointed to by the IC should be
modified by éélecting a new random variable to replace
the instruction in the copy saved in step 9.

The initial machine state and modified memory contents
are loaded from the saved copy and step 10 is repeated.
Step 10 should be repeated N times. A jump to the test
completion entry in the UUT Protocol handler should be \
inserted into the stored code at the IC location on

the (N+1)st instruction execution.

The modified copy of the initial machine state should

be reloaded and a maximum of N + 100 instructions should

be simulated.
If N + 100 operations are executed without a jump to

the test completion entry, the attempt should be

aborted. Another attempt to create a test can be made

by starting at step 1.

If the test completion entry is reached, the final

machine state including memory contents are saved for

comparison with the results produced by the UUT.
PAGE

5-16

oo SPERRY<UNIVAC

13243

The results of this long and arduous (but fully automated)
process is a test program (the initial machine state), and

the expected results (the final machine state). A specific
unit under test can be loaded with the stored test code and the
test initiated under control of the test control program (TCP).
When the UUT indicates test completion, the TCP retrieves the
current machine state from the UUT and compares these results
to the expected results stored in the test database.

5.6.10 Context Tests

Application programs provide a natural extension to the avail-
able test software. Any well -documented program or subprogram
that does not depend upon time or implementation specific
facilities can be used to increase the level of test complete-
ness. These programs have significant advantages over the
random sequences of code described in the previous section

in that they represent a realistic mix of instructions that
serve a useful purpose (¢cf. Section 3.5.2). Extensive use of
these routines would provide proof positive that these specific
-programs can be used with certified implementation of 1750.

Availability of these mission software components will become
increasingly available with the passage of time,but few will be
available at the time of the first 1750 certification. One
acceptable first substitute for these components are the DAIS
and Sperry Univac ATP's for the AN/AYK-15A. These tests should

be augmented as mission software components become available.

Among the first general purpose software components that will
become availabtle will undoubtedly be mathematical subroutines
such as SIN and COS functions. These functions can be very
easily tested by using the well known trignometric identity:

SIN® (x) + COS® (x) = 1

5M¥-

[DOCUMENT NO.
" SPERRY<EUNIVAC

A simple test procedure would preform the necessary operations
for a wide range of values for (x) and assure that the result
was within the limits of accuracy of the algorithm implemented
on the 1750. Use of the 1750 simulator or other secondary
standard to generate results would allow testing for exact

values rather than using extreme limits.

5.7 Test Data Generation f‘

The tables of opcodes, operands, and expected results des-
cribed in Section 5.6.3 can be built by use of ass.mbly
directives, by use of VAX resident data generation programs, ‘
and by use of simulator results. All three methods of gen- l’
eration are desirable for use in validating the test fac- *
ilities as described in Section 5.8. Any one method of test T?
data generation is adequate for generating the appropriate s
tables; alternate methods provide an independent means of i
verifying the results.

The type code described in Section 5.6.3 is fixed for each
instruction. The actual code to be assigned is dependent
upon the particular implementation used for the instruction |
test. One organization of the instruction test would utilize E
a sorted list of all instructions similar to Appendix F to !
define when a type code is needed. This list is sorted in r

the order: addressing mode, operand/result format(s), and P
instruction class (load, store, register, etc). Each change f
in the contents of one of these fields would indicate need !
for another type code. Once the relationship between type
code and operation code has been established, test tables

can be generated using any of the following techniques.

5.7.1 Test Data Generation Using the Cross Assembler.

DOCUMENT NO. ,
[—;x 13243 SPERRY=<=UNIVAC

Tables of test data can be generated using the capabilities

of the VAX hosted 1750 cross assembler. Assembly-time
capabilities play a vital role in determining the relative
ease of generating these tables. Factors that influence these
capabilities are:

. The constant data formats supported (integer,
double, floating point, etc.)

. The operations that can be performed on each data
format (add, subtract, multiply, divide, shift,
logical, etc.)

. The ability to utilize parameterized macros
. The ability to utilize assembly-time tables
. The ability to process assembly-time decisions

A section of assembly code capable of generating tables of

operands and results is shown in Appendix G. This sample
code indicates the relative simplicity of génerating large
sequences of ﬁest code when appropriate assembly-time facili-
ties are available. The samples chosen are purposely small
since the number of output cells for this particular example
1s approximately five times the square of the number of oper- %
and pairs entered. If one hundred operand pairs were entered,
slightly over fifty thousand data values would be generated.

5.7.2 Test Data Generation Programs

Relatively simple programs can be written in FORTRAN ({(or other

suitable language) to generate data tables. These programs

can be used to produce appropriate source or core images by

accepting user supplied or randomly generated operands, per-

forming the required functional operations.and producing a
table of expected results using the internal data format(s)
of the VAX. Utility routines for conversion of internal

format data to equivalent 1750 data representation must be
[PAGE
5-1

|°°§<MT ;;; SPERRY=<SLINIVAC

provided.

5.7.3 Test Data Generation Using the 1750 Simulator)

Lo

Test programs can be modified to act as test data generation
routines by replacing the section of code that compares results
with code that stores the computed results in the appropriate
simulated memory cells. Operand tables can be either manually
entered into the test program code, or generated in the test
computer and transferred into the appropriate simulated memory
area by invoking protocol routines. Once the operands and 4
results are in simulated memory, they can be retrieved from 4

simulated memory and stored in the test data base for later

use with the unmodified test program.
5.8 Test Validation

Test programs and the 1750 simulator shoula‘be verified to
be correct before beginning certification of a 1750 imple-
mentation. In effect, this test validation is the first {
certification of an implementation of MIL-STD-1750, the

1750 simulator. The following paragraphs outline procedures
that can be used toc validate both the test programs and the

simulator. The validation described uses majority vote and

is always subject to question. Confidence in the accuracy ;
of the simulator and test programs used as secondary standards 'Y
is relatively high because of the number of independent checks '

of correctness that are made. 4

5.8.1 Design and ’alidation of the Simulator and Test

Program :

Design and coding of the 1750 simulator and the 1750 test
programs should be carried on independently until both are

complete and ready to validate. This constraint is relatively
PAGE

5-20

'..-.-----—--—w--n—-u---Iu-l--.-l-l-"'"““’"-—--ﬂﬂ"'”“‘””"‘*“’

DOCUMENT NO. - L
PX 13243 SPERRVY<FUNIVAC

easy to assure because the language and implementation
constraints are so different. The simulator will use MIL-STD-
1750 to form the basis of a software design that will be
implemented in FORTRAN operating on and targeted to a VAX-~1ll
computer. The test programs on the other hand use MIL-STD-
1750 as the basis of their design. They will be implemented
entirely in 1750 assembly code. Note that each component
attempts to use all opcodes and addressing capabilities of
MIL-STD--1750 within its implementation. Therefore, by attempt-
ing to concurrently test the two components (assuming some
initial level of independent code debugging including desk
debugging) any code discrepencies can be resolved by reference
to MIL-STD-1750.

Each program fault or error indication encountered during the
test must be carefully analyzed to determine if the indication
is caused by an error in the simulator design, the test code,
or a difference in interpretation of MIL-STD-1750. A test
review board consisting of one or more individuals responsible
for simulator implementation, one or more individuals respon-
sible for implementation of test code, and one or more repre-
sentatives of SEAFAC should be responsible for giving final
approval to all program changes during test validation. Any
changes made should have unanimous approval of the review

board. If unanimous approval cannot be arrived at, an ambigu-

ity or discrepency in MIL-STD-1750 will undoubtedly be involved.
Testing of the disputed code will be kypassed, and the issue
brought before the 1750 users group for resclution. Any
certification to be performed would then note that testing

in the disputed area would be limited to reporting results as

described in Section 3.7.

5.8.2 Data Generation for the Initial Test Program

Test data used for the purpose of validating the simulator and
PAGE

5-21

'-lIIII-------n--u----u-ul-!lllu-.|lIllnn--'---IIll--l-uw

[DOCUMENT NO. b
PX 13243 SFER=Y=FUNIVAC

test program should include the boundary conditions described
in Section 3.6. This data should be manually generated and
incorporated within the source code of the data tables des-
cribed in Section 5.6.3. Manual methods of data generation
would include use of calculators and small programs to
generate expected results.but care should be taken not to

use the same set of programs and programming assumptions used
in coding the 1750 simulator. This restriction will assure
that the simulator logic is not being tested against itself.

A minimum of two values for each operand should be chosen at
random between each pair of boundary conditions. For integer
and double precision data types a total of nine operand values
would be used:

. zero
. minimum positive value (+1)
. maximum positive value

. minimum negative value

. maximum negative value (-1) _
. two random positive numbers i

. two random negative numbers

These nine operand values would require a total of nine times ;
nine or eighty-one "known good" values to be computed for
each arithmetic type. Use of assembly-time tools such as
those described in Section 5.7 will significantly reduce the
drudgery involved in this effort. 14

Floating point operands will require significantly more ﬁ
patience to develop unless techniques similar to those des-

cribed in Section 5.7.2 are utilized. The results of any

data generated in this manner should be randomly sampled and

verified by manual techniques before verification begins.

DOCUMENT NO.

PX 13243 SPERRY=<=UNIVAC

5.8.3 1Independent Verification of the Test Validation

A cross check on the test and simulator validation procedure
will be performed by executing the Automated Test Program
(ATP) produced for the Air Force Aviocnics Laboratories (AFAL)
DAIS program on the 1750 simulator. This program has under-
gone testing similar to that described in Section 5.8.1 except
that a different simulator was first utilized for testing:;
then the program was executed on two MIL-STD-1750 implementa-
tions: cne produced by Sperry Univac and the other produced by
Westinghouse.

Any discrepencies noted in the results will be resolved by the
same review board described in Section 5.8.1. Any discrep-
encies and possible resolutions of difference in the ATP will
be reported to the DAIS program office: however, no mandatory
action is required.

5.9 Reporting Test Results

The Test Control Program (TCP) will produce an automated

report file which can be saved as a permanent and reproduclble
record of the certification results. The first portion of this
file is a fixed format report containing the information
described in Section 3.7.2. Descriptive information about the
unit being certified is entered via the operator console in
response to requests generated by the TCP. As each program
block is transferred from the certification test data base,
under control of the TCP, the start time for the test is

entered into the report file,and the completion time is

entered into the appropriate slot.

The TCP receives error information from the currently
resident test module as described in Section 5.3.2. This

error information is stored in an error diagnostic file,a.ong
PAGE

5-23

s “ih

Px 13243 SPERRY<EUNIVAC

with information that indicates the test module, type of
failure, expected results, and received results. This infor-
mation can be processed by a separate report generation com-
ponent to analyze the nature and extent of any failure.

Results of operations that have undefined results (e.g. results
of integer divide by zero) are stored in the diagnostic file
but are listed separately from error diagnostics.

5.10 Changes to MIL-STD-1750

MIL-STD-1750 is currently being revised to provide improved defi-
nition of existing requirements and to extend the defined capa-
bilities to include extended memory and improved I/0. These
enhancements will obviously require additional features to be

added to the test components described in Section 5.6.

The cost impact of these changes will be minimal for the programs
defined in Sécfién 5 for three reasons. First, all changes to
the MIL-STD can be incorporated during the detailed design phase
without the need for re-programming. Second, costs may actually
be reduced for some tests because ambiguous or difficult to
interpret specifications are being revised in such a way that
specific results are expected (e.g., results of divide by zero)
Third, the recommended approach defines that functional testing
of new features such as memory extension be tested in a manner
that requires a linear extension of the amount of test code
required rather than an extensive modification or addition as
would be required if the existing ATP's were to be employed (cf.
Sections 2.4.2, 4.4.1, 4.5, 4.7.2.6).

Future changes to MIL-STD-1750 are anticipated in the recommend-
ed approach. The 1750 simulator and the certification test
programs will undoubtedly require extension to meet these changes
as they develop. Each revision of the test data base, test

control program, and 1750 simulator should be archived at the
PAGE

2-=24

DOCUMENT NO. Y
X 13243 SFeER=Y=F=UNIVAC

time it is released so that the ability to certify or re-certify
to a previous level of MIL-STD-1750 is maintained.

DOCUMENT NO. —_— _
SeerRy==LNIVAC

-

X 13243 r

5.11 Distribution and Control of Certification Test Software

Widespread distribution of Certification Test code is recommended.
This distribution of material will tend to assure continued use

of the tests in development and checkout of both hardware and
software components. If indeed the 1750 vendors extensively
utilize the tests in the development of new implementations of
1750 and verification of continuing compatibility of previously
certified designs, then additional confidence in the validated

test components will be developed.

Test components should be distributed in core image format with
appropriate source listings and/or as symbolic source images
on magnetic tape. Components such as the test control program,
protocol handlers, and device drivers will be provided on
request but it is assumed that the vnedor will not necessarily
have a VAX computer available to control processing. This
situation can be remedied by the vendor in either of two ways.
First, the TCP, protocol handler, and 1750 simulator can be
converted to an available test computer and appropriate device
handlers supplied in both the test computer and the unit under
test. Or second, the UUT resident protocol handler can be
replaced by a simple control program that displays or stores
results on a console device or storage media provided by the
vendor. The test setup for the second alternative may be as
simple as a maintenance console and bootstrap load device with
stop instructions at the protocol entry points for signaling

errors and completion.

SEAFAC should assume management responsibility for correcting
arrors or comissions in test code that may be detected by vendors
that are under contract to develop or produce implementations of
MIL-STD-1750. These errors or omissions should ke indicated to
SEAFAC in writing with sufficient detail to allow a determination
of the validity of the claim. Any disputes that may arise from
this process should be resolved by the MIL-STD-1750 User Group as

defined in Section 5.7.1. PAGE

5-25

°°§;”‘222';' 3 sSreF=v<3=UNIVAC

The purpose of distributing this test code is to allow each
vendor to prepare for certification of a particular 1750
implementation. The certification process itself can only

A take place with a released version of the certification
programs. These programs may include different data sets or
program code from that provided to the vendor.

5.12 System Resource Requirements
The specific resources required to implement, maintain, docu-

ment, distribute, and control programs and test procedures 1

defined in this recommendations section of the final report

v - i~

are listed in Figure 5.8. The hardware facilities available
at SEAFAC are ample to support any software development and

maintenance procedures needed for certification of the MIL- tw
STD-1750 ISA. The only hardware additions that would be
necessary for support of the MIL-STD-1750 certification pro- !
cedures are the incorporation of additional types of media
for program data transfer to a specific implementation of

1750 and/or the addition of a vendor supplied UUT adapter unit. 1

The software facilities available on the VAX-11/780 are ample
to provide program maintenance and to develop VAX resident

data generaticon and analysis capabilities that are described

W

in Sections 5.1 thru 5.5 and Section 5.7. Missing support

software capabilities include a 1750 cross assembler, a link-
edit capability.and a 1750 ISA simulation capability. These
software components are or socon will be available through]

other government facilities located in Dayton. 3

Currently available cross assembler and linkage capabilities
include the ALAP assembler and LINKS linkage editor now
being used by the DalS project at AFAL, and the JOCIT facility

at RADC. These capabilities are written in FORTRAN and are

1
|
highly portable. Another FORTRAN based capability being !
FRGE ’

|

5-26

SADAUNOSHY WHLSAS NOIILVIIATILYAD

8°G6 IAYNOI4

agl 12410
0861 2unp (WVay) dasy
21qe31od 21BM]J0OS i10jBINUWIS
-suei] 3q jou Ley (S1va) 1vay 3 Thurs 0scl
agl 13410
0861 Bunrgp (WVaAv) 4sv
- 3iem3ijo 11 urt
mON (SIvd) 1vav jos Tpa MUTIT 0SL1
adl 19410
0861 aunr (WVAv) asv 31eMm]]0S K£311t1qedeny oxdsey ¢/
agl 13410
0861 2unr (WVQV) dsvV —)
130 13]qQuassy SS01
AoN (S1va) 1vav jos 14 \j 2 0¢tL1
MoN ovdavias 3iemijos S3T14 O3 Ss2D0y wopuey NVYLIVO04
Moy IVAViIS ?1em31308 (XVA) wa3iskg Butrzeaadg
MON OVJIVIS 21EM]IJOS (XVA) 121quassy
MON Iv4avis 31eM13JOS (XVA) a=»urlTt
MON ovavis 21BM]]JOS (XvA) 193ndwo) NVY1¥0d4
0861 2unr IVIVIS 21BMm3]JoOS /aiempiey £3r111qede) sng g6
moN ovavias 21emIjoOg/2aemplEY £3111qedE) ZE7-SY¥
MON IVIVIS 21empieH 3a[osuo) [013ju0)H
MON oViVIS saempaey @221Aaq Adoopieg /asiutagd
MoN JOVJIVES 2aempael (s)rtupn adey orisuley
MON IVAVIS 21eMpaBH 28r10131g ssey ssadOy wopuey
MON IVd4aVvaS 2i1empieH 123ndwoy 8L/ 1T1-XVA
ILVA FTIVIIVAVY (s)32¥nos AYVMIIOS /IIVMAYVH NOIILdI¥OSId LNINO4WOD

)

EF=Y<FUNIVAC

DOCUMENT NO.
PX 13243

developed for the ADAM program is available within ASD, and

includes a macro generation capability that is highly desirable
(see Section 5.7.1). A preliminary copy of the ASD cross-
assembler and linkage capability has been installed on the
PDP-11/55 computer at SEAFAC, but has not been thoroughly
tested. A released VAX version of the ADAM support software
package will be available in June of 1980. 1In short, the
support software tools needed to provide a MIL-STD-1750 certi-
fication capabi.iity are readily available at low cost and low
risk.

5.13 Summary of Resources to be Developed

The certification test components and capabilities to be |
developed are shown in Figure 5.9. Several of these items
are unique to the implementation being certified and are
therefore listed as vendor supplied items:; all other items
are to be- supplied by the Air Force (SEAFAC) at the time
certification is attempted. 1In general, item numbers twelve
thru twenty-one are mandatory and cannot be eliminated or
reduced in scope without affecting test completeness. Other
items with the exception fo the 1750 bootstrap capability
may be considered as optional in that alternate methods can
be developed to support the necessary documentation, archive,
and test administration procedures with a corresponding need
for greater overall knowledge and care in administering

certification tests.

Estimates of the number of source lines required to generate
a particular test compui.ent, the number of 1750 memory cells
required to hold the resultant code, and relative develop-

ment cost estimate were made by implementing a few typical

sections of code and extrapolating from those code segments.

NOILVOIJI1¥3D VSI d04

d3do13AIqa 39 01 SIDYNOSAY LSAL

"6°G AYNOIA

ot WSV 06G!1 £€°'8°¢ av 21BM]130S dlv (SIvd) 1vav} ¢
06 ‘g6 av 21eMm1J 0G| UO1J1EPTIEA JOJE[NWIS pu® 1s2)| (¢
aglr mewﬂ mmMM 0l g-¢ 21eM]JO0S (5)3soyl 1%X21003| 0¢

pajeiaua)n

0¢ adl weido1g 6°9°'¢ av 21BM]30S 3s3] 1aduanbag wmopuey| ¢1
4 0061 0001 | WSV 061 8°9°¢ av 21emijog s3sa] yocueag pue dunp| gy
Sy 000¢ 006t WSV 06!L1 L'9°¢ Jv 21eMm]3Jos 1§31 3dnx1I33Uu] pue /I L1
od 0001 00ST{ WSV 06¢1 9°9°¢ av 21eM]3JOS 8§31S@] SS2IpPpPV PIATIAG] 91
T g 00" 00| WSV 06Z1 € 9°¢ dv | 2iem3jos 1591 1931s1394| 1.
S 0001 006] RSV 06/1 7°9°¢ Jv 21EM] JOS 189l Azowan| 1
08 000°000'¢ SNOTIBH 1°G v 218M]1JOS Tl1EB(Q 169] uUOT3IONIISUT| ¢t}
(XA 0009 000%{ WSV 06/L1 £°9°¢ av 21eM]30g 1s3)] uotridnaysuyri gy
i 00¢ NViIL¥O04 2°9°¢ av 2I1BM]JOS 1s2a] Juil eieaj) 11
WSV 0G/1 1°9°¢ A 21eMIJOg8 Jsa] @ooueldaody KAio3oej} o1

lojeinulg

s 0001 NVII¥04 1°'8°6¢°¢°¢ av 21emj3jog 0GL1 ©3 2O583133U] NVYLYO0J]| 6

4 00¢ NVild04d [AR av 21eMm]130S (d€SGT-XVA) I12ATIQ JUTT| 8

4 oo% NVild04d T°%°¢ Jv 21eM]]JOg (CTE€C-S¥-XVA) 13aarag urgy ¢

9 0001 009 WSV 06!L1 [R av 21eM]I]IOS (1an) I31pueH (020131014} 9

S ooot NV31d04 1°€°6 av 21eM]1]J0G (XVA) I31pu®eH 10d0101d{ ¢

o% 000¢ NVILiIOd [AY av 21eM]]08 wei301q {ox3uo) 31say| ¢

ki 0001 00%] WSV 06GLI1 VAR A 21em3jog 13AaT2q Nqutrg rnnj ¢

1°6 A aiempiey Jtun x9adepy 1s3aL| ¢

1°1°¢ 21emM]13J0§
A | /2xempaey £3t11qedey dexisyoog 0GL1 1
4zZ1s

150D Y03 | SANIT{ FIVAONVT JYVMLIO0S * ON

JAILVTIAY 06L1]3D24NOS 434N0S [(S)HIVUOVHEVI >\m< /3¥VMA¥VH NOILdIN¥DSAd LNINOAWOD |WIL]Y

[P

-

"B 13243 SPerRY<=UNIVAC

6. REFERENCES

Advanced SMITE Training Manual (1979), Contract F30602-78-~C-
0016, CDRL 007 and CDRL 010, September.

Barbacci, M. R., Dietz, W. B., and Szewerenko, L. J. (1979)
“Specification, Evaluation, and Validation of Computer Archi-
tectures Using Instruction Set Processor Descriptions', Proc.
4th International Symposium Computer Hardware Description
Languages, October, pages 14 - 20.

Barbacci, M. R. and Parker, R. A. (1978) "Using Emulation to
Verify Formal Machine Descriptions", COMPUTER, Volume II,
No. 5, May.

Budd, T. A., DeMillo, R., Lipton, R. J., and Sayward, F.
(1978) "“The Design of a Prototype Mutation System for Program

Testing", Proc. National Computer Conference.

Clark, N. B. and Troutman, M. A. (1979) "The System Archi-
tecture Evaluation Facility, An Emulation Facility at Rome
Air Development Center"”, preprint.

Clary, J. B. and Smith, F. M. (1979) "Verification of Built-In-
Test Performance in Modular Digital Systems using Instruction
Set Processer (ISP) Language Descriptions”, Proc. AUTOTESTCON
'79, September, pages 96 - 101l.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978)
"Hints on Test Data Selection: Help for the Practicing

Programmer", Computer, April, pages 34 - 41.

PAGE

oo SPERRY<E=UNIVAC

PX 13243

Goodenough, J. B. and Gerhart, S. L. (1975) "Toward a Theory
of Test Data Selection", Proc International Conference on
Reliable Software, April, pages 493 - 510.

Howden, W. E. (1975) "Methodology for the Generation of
Program Test Data'", IEEE Trans on Computers, Volume C-24,
No. &, May, pages 554,' 559.

Ramamoorthy, C. V. and Ho, S. F. (1976) "On the Automated
Generation of Program Test Data"”, IEEE Trans on Scoftware
Engineering, Volume SE-2, No. 4, December, pages 293 - 300.

SA 301 310 (1979) "AN/AYK-15A USER CONSOLE Interface Control

Document", October.

SA 421 206 (1979) "Computer Program Developmant Specification
for the AN/AYK-15A Acceptance Test Program', June,

SA 701 311 (1980) "PMIu Development Specification", Type

(BS), Preliminary, January.

Shiva, S. G. (1979) "Computer Hardware Description Languages
--A Tutorial”, Proc. IEEE, Volume 67, No. 12, December,
pages 1605 - 1615.

Sperry Univac (1979) "Digital Processor AN/AYK-15A Acceptance
Test Procedures For", Specification No. 7314458, Preliminary,

November 5.

Sperry Univac (1979) "AN/AYK-15A Acceptance Test Program",
Computer Product Specification, Data Item Description No.
DI-E-3120A, CDRL 44, Contract F33615-79-C-1910.

Tasar, O. and Tasar, V. (1977) "A Study of Intermittent Faults
in Digital Computers", Proc. National Computer Conference,
pages 807 - 811.

PAGE

[

: DOCUMENT NO.
| PX 13243

d
il
ot

pm——\
- -
-

A
Y

UNIVAC

y

APPENDIX A

NON-QOPTIONAL ASPECTS OF MIL-STD-1750 WHICH
ARE NOT WELL ENOUGH DEFINED TO BE TESTED

1. From Paragraph 4.1.7 Results on Fixed Point Overflow

Although ADD and SUBTRACT may reasonably be assumed from the
example to wrap around in the conventional twos complement fash-
ion, there is no such obvious result from MULTIPLY and DIVIDE

Overflow, which must be assumed to produce an undefined result.

2. From Paragraph 4.3.2 Special Registers

Mention is made once here of the "input/output register". Since

it is never mentioned again, it remains undefined.

3. From Paraéraph 4.3.2.3 Fault Register

Since the PIO channel is not clearly Jdefined (see 4.B) below),
bit 3, PIO channel parity errccr is of some concern, although

the function of a parity error is clear enough.
4. From Paraaraph 5 DETAIL REQUIREMENTS

a) For all Double Precision, Floating Point, and Extended
Floating Point instructions in Regis ter Direct Addressing Mode:
It is not clear whether or not it is possible and/or required
for the operands to be the same or to overlap. The instruct-
ions under consideration are:

Double Precision (where RB = RA-1, RA, or RA+1
DAR DMR DABS DCR
DSR DDR DNEG DLR

PAGE

A e mrmn 4

[DOCUMENT NG, — .
PX 13243 SreERE<FUNIVAC
Fl ing Point (where = -1 Qo +1
FAR FMR FABS RCR
FSR FDR FNEG FIX*

* (where RB = RA~1 or RA only)

Extended Floating Point (where RB = RA-2, RA-1, RA, RA+1l,
RA+2

EFAR EFMR EFCR EFLT*

EFSR EFDR EFIX**

* (where RB RA-1, RA, RA+l, or RA+2 only)
** (where RB RA-2, RA-1, RA, or RA+l only)

1

b) For the IN and OUT instructions related to the PIO channel
(IN RA,PI,RX, and OUT RA,PO,RX). the legal range of values
of RX (i.e., the number cf ports) is not defined. '1

c) For the OUT instruction: reset normal power up discrete
bit (QUT RARNS), the meaning, location, and ability to read
this bit are all undefined.

d) For the breakpoint instruction (BPT), there is mention, but

no definition cf "the maintenance console'.

e) For all instructions of address mode DX, can RA = RX? For ‘
example, with the jump to subroutine command: ,7
JS RA,LABEL,RX s

The register transfer description is (p 114):
(RA)&«—(IC) + 2 i
(IC)&«— DA '3

where DA = LABEL + (RX). If RA = RX, then the result of the

jump depends upon whether the calculation of DA is done before

or after the calculation of (RA}.

PAGE
¥ A-2

_ _

T NO.
(5% 13243 ez~ <=UNIVAC

£) For IN and OUT instructions regarding Timers A and B, no
mention is made of when (or even whether) an interrupt is to

be generated. In fact, the only mention of timer interrupts

is in Table I. Interrupt definjtjons.

g) For all instructions, it would be useful to clarify if there

is an implied (though not stated) specification that "all

registers and storage locations not expressly affected accord-
ing to statements in 5. DETAIL REQUIREMENTS shall be un-
changed by the operation of the instruction'.

GOCUMENT NO. e
Px 13243 SeE==-<=UNIVAC

APPENDIX B

OPTIONAL ASPECTS OF MIL-STD-1750

1. From Paragraph 4.3.2.3 Fault Register:

Bits set by optional equipment.

Bit

0 CPU Memory Protect

1 DMA Memory Protect

7 Other I/0 Errors

13 Built In Test Equipment (BITE) Error
14-15 BITE Optional Bits

2. From Paragraph 4.4.3 Memory Parity
3. From Paragraph 4.4.4 Memory Block Protect

4. From Paragraph 4.6.3 Optional Input/Output Commands:

see below.

5. From Paragraph 5. DETAIL REQUIREMENTS

Optional Input Commands
TPIO (I/0 Buffer) RDOR (Discrete Output Register)
RDI (Discrete Input) ' Cl (Console Interface Word)
RMP (Memory Protect RAM) RCS (Console Interface Status)
{
Optional Qutput Commands i
CO (Console Interface Word) DMAE (Enable DMA)
CLC (Clear Console Interface Word) DMAD (Disable DMa)
GO (Trigger GO) DSUR (Disable Start i
MPEN (Memory Protect Enable) ADb (Dizgrigz)ﬁutput) t
ESUR (Enable 3tart Up Rom) LMP (Load Memory '
s Protect) l
(B-1

(5% 13243 SPERRY<EUNIVAC

APPENDIX C

MIL-STD-1750 SIMULATOR SUBROUTINES

MASTER CLEAR
Call IsaMC

INIT CUTION
Call ISAXQT (NCYCLS)
NCYCLS - The number of instructions to be executed. If
NCYCLS is less than one, execution will continue until
a breakpoint is encountered.

F DAT T RY
Call ISAMW (IBUF, NBUF, IADDR)
IBUF - Array of data to be transferred.
NBUF - Number of words to transfer.
IADDR - Address of data in gimulated memory.

SF DAT, M T OR
Call ISAMR (IBUF, NBUF, IADDR)
IBUF - Array to receive data.
NBUF - Number of words to be transferred.
IADDR - Address of data in simulatéd memory.

F DATA T IMU ED REGISTERS
Call ISARW (IBUG, NBUF, IREG)
IBUF - Array of data to be transferred.
NBUF - Number of words to transfer.
IREG - Register number of first register (See Paye C-4).

Call ISARR (IBUF, NBUF, IREG)
IBUF - Array to receive data.

PAGE
c-1

PX 13243

DOCUMENT NO.

SFER=Y=<=UNIVAC

NBUF - Number of words to transfer.

IREG - Register number of first register (See page C-4).

SET THE SPECIFIZD BREAKPOINT
Call ISAWB (NBKPT, ITYPE, ILOA, IHIA, ILOV, IHIV, MASK)
NBKPT - Breakpoint number between one and ten.

ITYPE

S e S B - PUR S T -~

Type

of breakpoint:

ignore entry

instruction

derived operand

instruction or operand

register

transfer of control

write reference

read

ILOA - Lower

IHIA
ILOV
IHIV
MASK

RETU

EXECUTION
Call ISARB (NBKPT, ITYPE, ILOA, IHIA, ILOV, IHIV, MASK, IADDR,

IVAL)

Upper
Lower
Upper

reference

address (register) limit
address (register) limit
value limit

value limit

Mask to AND with value before testing limits

TI

BOUT THE BREAKPOINT THAT TE D

NBKPT - The breakpoint number that halted the simulation.

A value of @ indicates that a breakpoint instructior. was

encountered.
ITYPE - The type of breakpoint.

ILOA
IHIA
ILOV
IHIV
MASK

Lower
Upper
Lower
Upper

address (register) limit.
address (register) limit.
value limit.
value limit

Mask applied to value.

c-2

(B2 13243 SPERRY=<EUNIVAC

IADDR - Address or register number where breakpoint occur-
red.
IVAL - Actual data value encountered.

N A
PX 13243

SPERRY=<E=UNIVAC

MIL-STD-1750 SIMULATOR REGISTER NUMBERS

REGISTER

NUMBER __ REGRIST IPTION

0 General Register RO

1 General Register R1

2 General Register R2

3 General Register R3

3 General Register R4

5 General Register R5

6 General Register R6

7 General Register R7

8 General Register R8

9 General Register R9

10 General Register R10

11 General Register R11

12 General Register R12

13 General Register R13

14 General Register R14

15 General Register R15

16 Instruction Counter (IC)
17 Status Word (Sw)

18 Fault (FT)

19 Interrupt Mask (IM)

20 Pending Interrupt (PI)
21 Interrupt Enable

22 Power Up Discrete

23 Timer A

24 Timer B

25% Output Buffer Register (ICR)
26%* Console Output Register
27* ’ Console Status Register

PAGE
Cc-4

o e SPERRY<=UNIVAC

REGISTER

NUMBER REGISTER DESCRIPTION

28* Go Indicator

29* Memory Protect Enable

30* Start Up ROM Enable

31* DMA Enable

1488 + XXX* Memory Protect RAM Number XXX .
2898 + XXX* Discrete Input Register Number XXX %
3999 + XXX* Discrete Output Register Number XXX '
4933 + XXX* Programmed I/O Register Number XXX

* Implementation of these registers is optional

PAGE

P S ——— - Tm e

ggu?ggzgi === =z=UNIVAC

APPENDIX P

PROTOCOL HANDLER SUBROUTINES

INITIALIZE HANDLERS
‘B call UUTMC

INITIATE UUT EXECUTION
Call UUTXQT

| TERMINATE UUT EXECUTION
i call UUTSTP

TRANSFER DATA TO UUT MEMORY
Call UUTMW (IBUF, NBUF, IADDR)

IBUF ~ Array of data to be transferred.
NBUF ~ Nummber of words to transfer.
IADDR - Address of data in UUT memory.

TRANSFER DATA FROM UUT MEMORY
Call UUTMR (IBUF, NBUF, IADDR)

IBUF - Array to receive data.

NBUF - Number of words to be transferred.

IADDR - Address of data in UUT memory.

TRANSFER DATA TO UUT REGISTERS
Call UUTRW (IBUG, NBUF, IREG)
IBUF - Array of data to be transferred.

NBUF - Number of words to transfer.

IREG - Register of number of first register (See Appendix D).

TRANSFER DATA FRCOM UUT REGISTERS
Call UUTRR (IBUF, NBUF, IREG)

IBUF - Array to receive data.

PAGF

D-1

Px 13243 see==-<>UNIVAC

NBUF - Nuber of words to transfer.

IREG -~ Register number of first register (See Appendix D).

SELECT UUT DATA LINK
Call UUTSW (PATH)
PATH - Data Link to UUT.
g - MIL-STD-1750 Simulator.
1 MIL-STD-1553B.
2 RS-232C.

SET A UUT_ INTERRUPT
Call UUTINT (PIW)
PIW - Pending interrupt word.

SINGLE STEP UUT
Call UUTSS (NWRDS, INST)

‘NWRDS -~ The number of UUT words in the instruction (one or

two) .
INST - An array containing the MIL-STD-1750 instruction to be

executed.

CHECK UUT STATUS
Call UUTCS (CODE)
CODE

Coded status word

< g - No status has been received.
g - The UUT is idle, no status can be received.

D@ - The number of words in the status message.

READ UUT STATUS
Call UUTRS (IBUF, NBUF)

IBUF - Array to receive status message.

NBUF - Number of words to be transferred.

DOCUMENT NO.
PX 13243

APPENDIX E

SAMPLE MACRO ASSEMBLY CODE

FOR GENERATION OF TEST PROGRAMS AND DATA

DOCUMENT NO.
PX 13243

SPERRY<FUNIVAC

The following pages of MIL-STD-1750 assembly code illustrate

the use of macro capabilities for generation of test data and

repetitive code segments. Many pages of output code have been

removed to conserve paper in repetitive areas. The following

index can be used to locate specific items of interest.

PAGE

61

119

120 - 122

123

CONTENT

Initialization of assembler to MIL-STD-1750
generation

Macro to perform setup of data tables (see
page 120 also)

Macros to generate a simple test of all
combinations of RA, (RA), and DO for a
specified OP code and list of values for
(RA) and DO.

The macro reference that specifies the
ihstructxon to be tested (ADD), the number
of values of (RA) and DO, and the table
addresses for (RA), DO, and known results
The macro reference equivalent to the one
on page 3 for the subtract instruction

A dummy error routine called if an error is
detected.

Macro definitions to generate tables of
operands and expected results for ADD, Sub-
TRACT, AND, OR, and XOR operations.

Macro reference to generate operand tables

and compute results using the macros defined

on pages 120 - 122,

IN3W3TdW0D SOML

S3iA8 118 8 2

Q¥OM 103r80 118 91

TYNID3G 3dyY SHIBWNN HIHLIO Y
«330I8Y68L9GHEZ L0, X = ¥3IH
1L9SPETI10,0 =:: IVIO0
«01010,8 =1 AYVYNIG

e L adnar B3 B2 o = P, -

o e

{(Wsa-t-)-(0=wsqg)- $93IN wsa
8'Z 3lAm

91 aym

-

~-NMTOONDPO

$x08
1SIX3H
$1Svad
1531 vHIIN«
?5:60:C1 1v 08 834 81 SO NOISIA3Y M¥IVOWISSY ¥dD TT 314D
. “$4d1°1VIIdAL 1vO0T S '9bvdD 9191NsIINMe
NOT1VITJIH¥3IA 0S21-01S~TIW HOJ SOYOVYW NOILVH3INID VIVO d DOHe
002000002000 ONINMYM AL11V]Dvy
‘4dSNSY V' 'OSve

aN3 ‘3 E

. L+dN $13S +«dN* (1):55vVd={0-):SSvd DOQ ‘0€

. (T'1)d no3a (dN)*ZdO ‘6T

: (v')d no3l (dN. *1d0 14

. ‘LT

O¥OVW STH) Ol 3IONINIJIY HOvI . ‘9z

HO4 IONO O3IINIWIYINT S1 (dN) ZdO ¥ 140 OINI X3IANT IHL y ‘6T

ZdD 9 140 SI10BWAS 031dINISHNS NI 030V1d 3dv SANVYILO : v

:sindino ° X4

ONVHId0 ONOD3IS =:: T# . "TT

ONYHILO LSHIS =:: in : 1z

1SINGNT * 14

. "6

. Zet LN $Sd0 .]

w :1yWwd04 DNIQ02 L
; : ‘9t
§I1aVL ONVYHI4O0 IHL 40 4N13IS 3IHL SWHO4Y3d O¥IVW STHL ° 1

, . X2
4 IWYN +$5d0 €

. OHOVW d T

/ it

W | 39Vd 088120 3lva NOILYDT4THIA OGLI~CLIS-T1IN HO4 SOHOVW NOTIVH3INID viva

NOILONUISNT WHOJINId

0881Z0 3iVvQ

OM1 SSVd NO L1Nhd41nh0 -

+1Y H1vd ONVHIHO 3HL HO4 SHILSIDIY 91 v, ‘&b

d (Z°1)d+¥0uYy3'S ar
. (6*4)d*(Z'1)d o)
c(pt1¥do(Z2)d (1 1)y, . XYX
91'v'p's WH04 XXX
GNYH3dO 1St Qv0y (€*1)d'(Z°1)d 1
: - INYN *$HISNT
XTHIVW LINSIY 40 SS3¥aAav =:: (G5°t)d :
HOL1D3IA Zd0 40 SS3I¥aQv =:: (p*1)d :
HO1D3A 140 40 SSIHQAAY =:: (€')d .
35N 01 HILSIO3Y =:: (Z*'V)d :
300340 NOTLIONHMISNT =:: (1‘1)d :
tSINdNT -
0¥IYW 4
QN3
(P1)d* (E*1)d' (2 1)d" 1-1"(1'1)d $HISNI * 91 0OQ t
. X1
z 14d
: ., ONY ,‘'so'y 103
td0 40 $S3IYAQAVY (e'1)d‘08'0 103
1d0 40 SS3IHAAV - (T'11d'09'0 103
v 103
INIY HYID ZEL'ZEL X 103
. 1x1
: IWYN D3y
XIYIVWN LINS3Y¥ 40 SS3I¥QAv =:: (p'1ld .
HOL23IA zdO 40 Ss3uaagv =:: (€'1)d :
HO1D3A 140 40 SS3IHAOVY =:: (Z°1)d :
300040 NOTLIONYLISNT =1t (1'i)d :
1SLINdNT
: o¥dvw d
ON3

(1)d=1=-1+(G 1)+ ((Z 1)d*P)+

XI¥LIYW 1INS3Y 40 SS3I¥OOV
¥OLD3A ZaD 40 SS3yAQY
¥OLO3A 140 40 SS3I¥AQY

SHO133A ONVY3d0 40 321S
3002340 NOT1JNYESNI

P -T14(0)4 L-P+(E‘1)d' (1 1)d D34 * 14(2'1)d 00 1*' 1+(Z°4)d OO P

JWYN *$d0

(6'1)d *
(b t)d :
(€'11d .
{(Z'1)d :
(1'1)d :

SiNdND

e ee s ae ae

o¥OwW d

NOTLYITJIHIA 0GL1~-01S-TIW Y04 SO¥IVYN NOITIVHINID Vivd

—

€

39vd

9161

0 9 Ov
11614

0 9 08
S061L

0 S 0L
gi6

0 G 04
. 9161
0 S Ov
11614

0 S 08
v061
06 0L
8161

0 v 04
ai6i

0 b 0OV
1161
0t 08
€061

0 S 0L
gi6t

0 € 04
9161

0 € ov
(161

0 € 08
T061

0 S 0L
g6\
0Z 04
9161
0T ov
1161
0Z 08
1061

0 S 0oL
ai6t
0V 04
9161
0ot oV
1161
0t 08
0061t

0 S 0L
ali6l
00 04
a16!
00 Ov
1161
8v1$00v'8v1$Z40‘'8Y1$1d40°‘Y ' Q0Y $d40 0 0 08

€€0000
TE0000
L€0000
0£0000
420000
320000
0C0000
220000
820000
vZ0000
620000
8Z0000
LZ0000
Qzoo000
G§Z0000
rZ0000
€Z20000
ZZO0000
120000
020000
410000
310000
Q10000
210000
810000
V10000
610000
810000
L10000
910009
S10000
r 10000
€10000
210000
110000
010000
100000
300000
aooo000
200000
800000
v00000
600000
800000
L00000
900000
500000
00000
€00000
00000
100000
000000

00

x4:]

azvv 10000000 ONVY 1Zb10000000 1y ¥IVd ONVY¥I40 3IHL HO04 <43 L1SID3Y 91 1Y

300240 aav - 0V, X no3 oav/ ovoo

088120 31vQ NOTLVOT4THIA 0GLV-QLS-TIN HO4 SOHOVAN NOTIVYH3INID Viva

‘18

v 39vd 088120 3iva

a o4
9161
a ov
L1161
a 08
2061
S 0L
816t
) 03
gi6t
3 ov
L1161
D 08
€061
S 0L
gié6i
8 03
9i61
8 ov
11614
a8 08
Vo6 i
S 0L
a161t
v 04
9161
v Ov
tiet
v 08
6061
S 0L
gi161
6 04
at61i
6 Ov
tiet
6 08
8061
S 0L
gi61
8 04
91614
8 ov
L6l
8 08
L0611
S 0L
gi6t
L 04
91614
L Ov
1161
L 08
9061
S 0L
gi61
9 04

280000
890000
v90000
690000
890000
L90000
Q90009
$90000
t+90000
€30000
90000
190000
090000
460000
360000
as0000
360000
850000
v50000
650000
860000
LG0000
960000
650000
+50000
£50000
250000
150000
060000
ir0000
30000
av0000
Jr0000
80000
vt0000
60000
80000
L+0000
3+0000
S+0000
t+0000
€E+0000
Zv0000
10000
otr0000
60000
3€0000
agoo0o00
J2€£0000
8£0000
vEO0O000
6€0000
8E0000
LEOOOO
Q£0000
SE0000
t€0000

NOTLVDISTHIA OSLI-01S-T1IW H0J SONDIVN NOTLIVHINID V]vad

S

2

]

LZY»i0000000 ONY 1Zpy10000000 lv H1vd QNYH3Id40

39vd 088120 3Iiva

v OV
L6}
v 0OR
€061
S D¢
A
£ N4
L6
£ Ov
[N
€ 08
ZNR1
S 0¢
Jik
Z 04
Li6
Z ov
[N
Z 08
1061
S 0L
Si161
v 03
L1RL
I ov
L6l
I 0R
0061
S 0L
J161
0 04
LI61
0 Oov
1161
0 08

3H1 ¥04 SH3ILISIODIY 91 VY

4061t
S 0L
at6l
i 04
9161
i Ov
1161
4 08
3061
S 0L
161
3 04
9161
3 ov
1161
3 08
Qo061
S 0L
161

rTvoone
1Y00°0
CY2070
360000
IE00ND
n60000
NENGNQ
a60000
YbNnenQ
661000
RAENONDO
LEOOND
Q6ENDND
C£0000
60000
£600N0
760000
160000
060000
sR00NO0
3R0000
ax0000
2R00020
ARO000
vR0O000
680000
KRO0CO
LRNOOO0
QRO000
GRO0000
80000
£BQO0O
ZROONO
LROONO
0R0000

4L0000
3.0000
aLoCd0
JL0000
8L0000
VL0000
6L0000
8L0000
LLOOOO
9L0¢00
§L0000
vL0000
€L0000
ZL0000
10000
0L0000
490000
390000
a90000

NOTLIVOI4INIA 0GL1-01S-V1IN H0O3J SONOVYW NDOTIVHINID ViVO

9161 €82000
0 9 08 Z81009
1161 t82000
0 9 08 082000
G061 1¥vD000
06 0L IvI000
pE61 QOVv)H000
0 6 04 2¥000
9161 BYI000
06 08 vvH00D
(161 6v0N0
0 S 0R 8YHOQQ
t061 LYD0D0
0 6 0L 9vd000
rE6L SVYDOQD
0 v 04 tv2000
9161 FY"N0O
0t 08 ZvO0ono
Lig LY 0N0
0 v 0R DNV Q00
€0h 1t 167000
0 6 0L 13IAD0N0
rE6et 0e00N0
0 € 01 DEDDDO
9161 RAEN0D
0o £ 08 v6ED0N0
LIRL &6NANO
0 € 08 R0
o0~ 167 0NC
0 & 0L 9E&ED0N0
[4N SEINND
0 04 tENO
9l61 €6 000
0 C 08 767000
Pift 160000
0 Z R 0RDID00
L0AL 4RDONDO
06 0L 347300
rf6l aORYONQ
0 L 04 ORMONO
Q1h) RRYO0O0
O &t 08 vROINDO
1161t FRIO0Q0
0 L OR RARYOD0
0061 (RDO00
0 6 07 9RN600
tf61L SANNND
600 04 tRINND
alRt fRYI0NG
0 0 08 ZRAYONO

LERL tRYNODD
avi1$8Ns '8y (¢240'8v 1840’ b ANS $40 0 0 0" 08Y0NO ‘v8
azev 1000000 GNY 1ZPPri 0000000 iv HIVa QONYHI4O 3IHL HMNY Sy IiSIDIN 91 Ny
,06 . ¥ [alel] anc/ 0800 ‘€8

Jovd 08BiIZO0 31v0 NC!D VDT 4TH3IA 062V -01S TIW 404 SONYYW NOTIVYINID VivQ

a1t

39vd

088120 31vO

0

0

4061
S 0L
8re6t
4 04
vi6l
4 08
Gi61
4 08
3061
S 0L
8v61
3 04
vi6l
3 08
S161¢
3 08
aosi
G 0L
8r6t
a 04
viel
a 08
5161
a o8
2061
S 0L
8r6 L
J 04

449100
348100
ag48100
J48100
848100
V48100
648100
848100
L38B100
948100
$48100
t48100
£38100
¢48100
148100
048100
438100
338100
038100
J3R100
838100
V3Iri00
63R100
f83R100
L3IRLOO
938100
G300
+3Q100

NOTLIVOT4IHIA OGLI-01S-TIW ¥O4 SOuIVW NOTIVEINID viva

811

39vd

0881IZO0 31lvO

1d6

91

0a
nd3

4 4 44
4 4 44
4 4 44
4 4 44
3 4 449
4 4 44
3 4 3
4 4 44
4 4 44
4 4 44
4 4 34
4 3 44
4 4 44
4 4 43
4 4 44
4 4 44
xoaxw 0061

NOILYOIJTHIA OGLL-ALIS-TIN Y04 SOHOVNW

306100
306100
006100
206100
806100
Y06100
606100
806100
106100
906100
S06100
v06100
€06100
t06100
106100
006100

‘L8
1
‘68

NOT1V¥3INID VivVO

»

L

d001%00v 09 ‘Evl
o 1%y g4
Zz 144 bl
. A‘vz'a 103 ‘ovl
s ¥ NWNTOD +ees, 'biL'y 103 “BEL
ZEL'ZEL X 103 ‘BE1
AN 1%t LE
* 14001$QQY 09 ' ¢N=A DQ ‘g€
. L+A $135 A GE
: 0 $13s X vt
* 4007%Q0Qv 09 ' dN>X 0Q €€y
: L+X $135 X A
: (A)Zd0+(X)1d0 + 1Ed
JWYN +d001%0Qv T0E
: 0 $13S A ‘6Tt
: 0 $13S X ‘BT
‘«8v1$00v LT
. ' 1%1 ‘9zl
0 ¥ NWNTIOD *sew, ISt ‘GZi
Lo X1 vz
,ees s JIGYL LINSIH NOTLIOQQY *ess, 1x1 EZ
: (1-%X)2d0 + ' dN [ald] X Tz
*+8Y1$2d0 i e
yeess I7QVL OML ONVHIAO #ssv+, X1 eI
. {(i-%)1d0 + ° dN 0a X "By
*#@Vi$ido ‘81t
(kexs 378Y1 INO ONYYHIAO #ans, x4 Lbl
. dN + *SWHYAN ‘gt
yeed e SHILINVYYD 40 HIGWNN s wee 1x1 ‘G
: vl
1S31SVvd 240 ONIANVA A8 17INQ 3¥v S3I1EvL 11NS3H IHL . gl
exe JION T
. b
378v1 1INS3Y HO IAISNIIXI IVIIDO0Y =:: BAVI$YOX : ot
3718v1 17NS3Y HO IvIIDOY =:: AVI$HO . ‘601
378v1 £INS3IH ONY 1VDIDOT =:: BVI$ANY : ‘801
37gv: L1INS3IH NOIIOVHLIANS 8v1i$ens ‘ A

3718v1 1INS3Y NOTL10Qv gvi$qaay . ‘ao01 :

378vi oML ONV¥3IHO =:: 8V1$ZdO : ‘G0t ,
378Vl INO ONVH3IHO =:: B8V1$1d0 . vOl
:1SindinoD “€01
. B4R
*2d0 ? 140 ST108WAS 031414D2SENS ONY . 101t
dN TOBWAS WOM4 G3INIVIBO 3J¥v SINANT TvNOIL1dGv . ‘00t
DYOVW SIH) 01 SINdNT ¥313WVHYd ON JHY 3J¥3IH) ' ‘66
:SINdNT - ‘86
. L6
: ViVQONTJ : ‘a6
:1YWY04 ONIQOD ‘66
' 6
‘$379vL LINSIH OGNV ONVHIL0 3HE salIng ‘E6
ONY 3ON3INO3IS NOTLINIZSIO ONVYIMO 3IHL SIIVNIWYII OHOVW SIHL ° ‘6
. “16
: JWYN «vivONT 4 ‘06
: O¥IVYW d ‘68
/ ‘88

ozt 39vd 088120 31va NOTIVOTJINIA O0GLE-QiS-T1IW d0d4 SOHMIVW NOILVNINID Viva

e o e g e

: 14X $135 X 002
* (A)Z2d0++(X)1d0 . + ‘661
i IWYN +d001$YHO 861
ﬁ) 0 $13s A ‘L6
, . 0 $13S ¥ ‘961
' ix1l "GH1
0 # NWMIOD 4ese, 1x1 R3]
! ' . 1x1 FHI
*«89Y18H0 Z61
veees 37GVE LTNASIY MO TVIID0T#4es - 1x1 161
JWYN «1d0DT1$ANY 061
d001$aNY 7 09 681
' ' 11X ‘881
4 14d L8
: A'bZ'a 103 -1:1
« ¥ NWNIOD *+*e, ‘bil'y 103 ‘Gl
TEL'ZEL "X 103 r8t
v 1x1 €81
* 14d001$GNY 09 ' dN=A 0Q "Z8l
’ L+ $13S A 18
. 0 $13S X ‘08t
* dO0VY$GNY 09 ' dN>X 0Q 6Lt
: p+X . $13s X ‘gLl
' (A)zdDe«s(X)1d0 + L
JWYN +d00T$ANY ‘oLl
. 0 $13S A ‘6L
: 0 $13S X ‘oLt
P ix1 €LY
'O ¥ NWNIDD wees, X1 T
. 1x1 L
*«8Y1$ONY YA
(rexe 378YL LINSIH ONY TYDID0T #eee, Coaxy ‘691
3WYN »1400188NS 891
d001%8ns 0o “L91
o 1x1 a9}
z 1ud ‘691
. A‘vZ'0 103 -1
« 4 NANIDD #sse, by 103 ‘€91
ZEL'ZEL'Y 103 *Z9\
' ' 1xt 191
* 1d4001%aNS 09 ' dN=A 0Q *091
. L+A $135 A ‘66t
: 0 " $13S X -1}
© 4001%8NS 09 ' dN>X 00 TLSH
: . L+x $13S X ‘961
i : (A)Zd0-(X)1dD + g-1-1]
JWYN +«d001%ENS 61
' 0 $135 A ‘ES1
‘ 0 $135 X 41
. - Ixy “16)
0 # NWAIDD #ese, Ixt ‘061 N
v 1x1 6t
ceAv1$8NS N:1A
I 1%t vt
yeeds JIGYL LINSIH NOTLIVHIBNS #«e s, x4 -1
' i1xi ‘Gpi
IWYN +1d4001$0QY o

i 1z 39v4d 088120 31va NOTIVOT4THIA OGLI-Q1S~-TIW HO4 SOMOVW NOITLVMNINID vivd

(44

39vd

0

d001$40X

1 t

z

A'bZ'a

NWNIDD *ax+,'bL'Y
TEL'ZEL X

1 1]

* 1dDOT$YOX 0D
L+A

0

* 400T1$HOX 0D
14X
(A)2d0--(X)1d0

0
[
1

¥ NWNTDD #*us,

ve#ees JIBYL LINS3IY HO JAISATIOINI TYII00Teses |

088120 3L1va

.

L

d001$40

L}]

[4

Atez'a

NRNTDD *##%s, "D’y
TEL'ZEL'X

' 4

' 1d00Y$HO 09
L+A

0

* dD01%40 09

.

an3 "GET
JWYN »1J00T$HOX ‘vET
09 “E€Z

1x1 ‘ZEC

i4d “LEZ

103 ‘0€2

103 ‘6ZC

103 ‘RZT

1xl RAA
dN=A 0Q Y44
$13S A ‘gze
$13S X vzl
dN>X 00 ‘€2
$13S X "zTe

+ 1ze

INYN «d00T18¥0OX ‘oz
$13S A "6\
$13S X ‘81
1x1 WAYA

ix1 ‘aleg

1X1 ‘s12
ME:1 2% 1:10) ¢ RAX4

X1 ‘€1z
JWUN « 1 d0DISHO AT

09 e

1X1 ‘ole

1y¢ ‘602

1a3 “302

103 [¢}4

103 0z

1x4 ‘G0¢
dN=A 0O 02
$13S A ‘€02
$13S X *zoe
dN>X 04 ‘3102

NOTLVOTJTIH3A 0GL1-0L1S~-TIN ¥O4 SOHOVW NOIIVHINID viva

€S5S VvI6100
€ # NANTOD esese

gd44L 626100
3444 8T6100
444 £T6100
444L 976100
342L GZ6100

T # NANTOD wens

0000 ©vZ6100
1008 €Z6100
0008 ZZ6100
Z000 126100
1000 026100

i ¥ NANTIOD eese

3444 416100
0008 316100
444L Q16100
1000 216100
0000 8Ll6100

0 # NWNTI0D esne

#*ve+ IIYL LINSIY NOILIQOY see»
3444 VYI610D
GG6SS 616100
334L 816100
1000 (L16100
0000 916100
*+xs 31GVL OML ONVHIA0 esee
3344 GI6100
0008 b!6100
344L €16100
1000 Z16100
0000 116100
e sesx 379V 1 INDO ONYHIAO seee
. <p<az_m moooo,m_oo .mvw

#oex SHIIIWVHVYA 30 HIBANN esee

: c-'1- $Sd0 ‘8vZ

* 16Z62S,0°,0008.X $Sd0 e

* WQLLLL,O' G LLLLLO $sd0 144

: (I} $5d0] 44

* o'o $5d0 14

‘ 324

YIINNDD d0 3IHL 3ZITIVILINI ° 0 $135 dN 0000 4 L4
IR R R R R E R R R L R Ry R R T T Y RN 2 K24
* “ovt

NOTL1D3S NOTIYHINID vivg NIVW ° ‘6€T

: "BET

L T L L TN Ny L R T LET
/ i:1 %4

€ct 39ovd 088120 31Vv0 NOIAVOI4IH3A 0G21-0L1S-TIW MOJ SO¥IVW NOITLIVNINID viva

see+ QYL 1INSIH ANV IVIIOD0) eeee
1000 DJv6100
2008 8v6100
1008 vP6100
€000 6r6100
Z000 8v6100

14 # NANT0D) eeee

vyvvy (6100
8YvZ 9v6L00
vvvZ Gr6100
Jvvy oppr6100
8vvvy €r6100

£ # NANTOD seee

1008 Zr6100
Z00O0 (6100
1000 O0vé6t00
€008 JE6100
2008 3E6100

Zz # NANTOD eesee

3444 O0€6100
444L DJE6100
314/ BEGLIOO
0000 VEGLOO
4444 6£6100

| # NNNT0DD eeesn

3444 BE6100
0008 LE6100
3444 9E6100
1000 GE6100
0000 t€6100

0 # NNNTOD eeee

*ssx JIBYL 1INSIY NOTLOVYLIEANS eees

Q444 €EBL0O
344L TE6100
a44L 1€6100
3444 0E£6100
3434 JZ6100

v # NANTOD eese
bSG6S 3IT6HL00
S§G660 0Z6100
. rSsQ 2JZ6100
89665 826100

1240 39Vvd 088120 3iva NOTLVOIJdTY3IA OGL1-QIS-TIW HO4 SOHDOVW NOTIVHINID ViVvQ

0881Z0 31VQ

LE RN

0000
1008
4:4¢L
1000
1000

3444
0008
EER YA
1000
0000

496100
396100
Q96100
296100
896100

v36100
696100
896100
L96100
996100

o]

NANTDD seses

NANTIOD sese

318vL 1INS3H H0 TVIID0Vewes

[<EEF]
0008
as4¢L
1000
0000

vSSS
0000
65666
1000
0000

344¢
0000
343L
0000
0000

0000
0000
1000
1000
0000

0000
0000
0000
0000
0000

596100
r96100
£96100
296100
196100

096100
166100
366100
as6100
266100

£

856100
vS6100
656100
856100
L56100

966100
666100
vS6100
£S6100
256100

1G6100
066100
4+6100
I+6100
ar6100

(4]

NOTLVII4TIYHIA OSLLI-CIS-TIW HOS SOHDIVWN NOIIVHINID

NANIOD seee
NANNIDD sess
NANTOD sees
NNNTIDD sene
NNNT0D sess

viva

ovvy Z66100
6660 166100
yvyvZ 066100
vGSS 486100
666G 3IR6100

€ 4 NNNTI0OD eses

1008 (086100
3444 086100
1000 886100
443L V86100
3444 686100

4 # NRNTDD) ssee

0000 686100
1008 (B6100
344L 9886100
0000 G86100
1000 rR6100

] # NANNOD esen

3444 €86100
0008 ZB6100
3444 186100
1000 O0B6100
0000 4L6109

o} # NANTOD eesee

stee JIBYL 1INSI¥ HD IAISNIINT IWIIOQTsees
0000 3L6100
3444 QL6100
0000 J.6100
3444 8GL6100
3444 VL6100

14 2 NANIDD sses

0000 616100
6S5S0 BL6100
444L LL6VOO
6565 916100
666G SL6100

€ # NNNT0D esee

, 4414 ©L6100
3444 €L6100
: 444L ZTL6LOO
ﬁ 444L 116100
, 344L 016100 :

4 ”# NRNIDD eesse

; 14} 39vd 0861Z0 31va NOTIVITAIH¥IA 0GL1-0LS-TIN HO4 SO¥IVA NOTIVHINID YiVvVO

Let

3ovd

“LST
114
5114
N 214
a4
"Tel
"162
06Z

————— e y— T Y
' - - - -
SINING 1ewdBe
anN3
8Y1$Y0 no3 Ld 9961\
A NG .[0) ¢ nob3 94 L6l
Vv 1$aNY no3 G4 arét
gvisans nos3 | £} vE6)
avisaoqv no3 €4 g161
av1is$Zd0 no3 (4] 9161
avisido nob3 (] 1161
€000 166100
344L 9566100
€008 666100
0434 66100
3444 E66100
4 # NNANOD eeee

088120 31vQ

NOTAIVOTATHIA OGLI-01S-TIW HO4 SOHOVN

NOTiVv¥INID ViIVE

r____,,_ o s A .

.

T NO.
ok 13243 SPERRY<-LINIVAC

APPENDIX F

REVIEW OF THE AFAL (DAIS) AN/AYK-15A ATP PROGRAM DESIGN

The test methodology represented by this ATP (PA 401 205) is
a controlled procedure for executing one or more times part-
icular test modules (programs), which verify the MIL-STD-1750
functional characteristics by running instruction sequences
which exercise desired aspects of the computer repetoire.
Scme test modules such as the memory test and power on/off

sequencing require separate load modules, but most are sub-

programs under the control of an executive.

The executive allows the user to specify which test modules
to run, whether they should be run in sequence or iteratively,
and what to do when an error is detected. The various test

modules generally set a unique flag for every different error,

and those error ‘flags are examined by an error processing
routine at the conclusion of each test module. Similarly,
interrupt handlers set flags associated with the potential
interrupts so that each test module can monitor expected and
unexpected interrupts.

According to the specification (SA 421 206), there are twenty-

seven processor test modules. Some are concerned with matters

outside MIL-STD-1750 or aspects of MIL-STD-1750,
Others are function-
ally related under an organization which might be summarized 1

as follows:

Processor Test Modules

. Instruction Set
Registers '
. Memory ‘ﬂ
Input/Output J

’
= |

=W N
. .

BT T, AR ———— - e m .

[FOCTMENT 0. SPERRY<UNIVAC

PX 13243

5. Interrupts

Instruction Set Tests

Four of the five instruction set tests are relevant to the
certification of MIL-STD-1750: individual instruction tests,
indexing test, illegal instruction test, and hand test.

{The benchmark or throughput test is not directly related

since it is concerned with timing, a hardware consideration,
and not with functional operation.) The individual instruction
tests are organized with one subroutine per opcode, with the
exception of the I/0 commands, which are verified separately.
These tests constitute most of the entire ATP, and their

internal structure will be described in detail later.

The indexing test was specified to verify separately from

the individual tests, that for at least one opcede which
allows indexing, all possible index values would be checked
for generating a legal address. The illegal instruction test
verifies that illegal opcodes correctly generate a machine
error interrupt and set the illegal opcode bit in the fault
register. Although this test is grouped with the instruction
set tests, it overlaps in its scope with the interrupt and
register tests. The hand test specifies that random but
legal sequences of instructions should be executed in order
to check for errors which relate particularly to context
effects. Presumably jump and branch instructions are excluded

from this test.

The individual instruction tests are implemented are organized
into two parts which are common to all tests and three parts
which are used whenever they apply to the particular opcode.
The common parts are first to verify that known outputs

cderive from the operation of the opcode with known inputs and

initial conditions, and second_that no overflow or underflow
[jf?j
F-2

T SPERRY<PFUNIVAC

RX 13243

interrupts occurred when they were not supposed to. The ATP
specifications about what inputs values to use are fairly
brief: they say that arithmetic instructions should use
selected values in each of the four quadrants and test add/
subtract and multiply/divide as pairs to confirm that these
operations are symmetric. In addition, bit manipulation,
logic function, and controcl instructions are to be tested
using all four bit sections of 16 bit operands and all bit :
changes (i.e., i =-» 0, 0 -3 1, 1 -3 1, 0 -» 0).]

The other three parts of the individual instruction tests,

which are done where applicable are 1) to verify the correct

setting of all required status bits, 2) to verify the correct
generation of overflow or underflow interrupts, and 3) to
verify the operation of indexable instructions with a selection
of different index registers and index values. Of these

three tests, 6nly the check of the condition status is a
complete or exhaustive tests in the sense that all possible
status word settings are confirmed. The other tests are

sample checks where typical cases are verified.

In summary, the instructicn set tests are organized by opcode
with separate tests to verify illegal instruction operation,
the indexing mode of addressing, and the execution of
instructions in a random context (the hang test). The individ-
ual instruction tests are organized into parts that verify
basic operation of the instruction, lack of extraneous over-
flow/underflow interrupts, and where relevant, correct

setting of all required status bits, correct generation of
overflow/underflow interrupts, and correct operation of

indexing for a few test cases.

Several comments may be made about what is not specified in

the instruction set tests. One thing is any direction about

PAGE
F-3

PR 13248 SPERRY<UNIVAC

the order of testing opcodes (apparently the default sequence

is by opcode value) and what iastructions can be used in
writing tests of other instructions (in the actual code a
fixed subset of unverified instructions are used to test all
others). Another thing is that addressing modes other than
those using an index register are not specifically tested
by separate modules. Thus, for example, indirect addressing
as such is not specificially tested. It is used in limited
variety only, with each opcode that has indirect addressing.
A third consideration is that there is no central organization
of opcodes by function, such as the use of common data tables
for arithmetic operations. Thus it is hard to tell whether
add/subtract have been tested for symmetry and hard to examine
the operands used in arithmetic or logical instructions with-
out going to the code for each separate opcode test. Finally,
the only check on whether an instruction has extraneous
unwanted ‘effects on the on the machine is the check on
whether overflow/underflow interrupts occurred when they were
not supposed to.

Register Tests

The register test module is specified to be a program which
verifies the capability to address, set and reset all possible
values of the general registers and the writable specizl
registers, namely: the status word, the instruction counter,
and the interrupt mask. (The pending interrupt register is
also writable, but is tested as part of the interrupt test).
For each general register, the method of verification is to
load from memory all possible 16 bit values, checking each time
that the value loaded is correct and that no other general
registers are affected. The same check is performed on the
status word and the interrupt mask except that no other regis-
ters are checked for changes. For the instruction center
(IC), the test is to fill core (one half at a time) with a one

Po% 13243 SF_‘ER?V+UNIVAC

instruction which increments a general register by one.

Assuming the increment instruction words and was put into
memory correctly, then at the end of the test the general
: 2,gister and the IC should have the same value, indicating
that the IC incremented correctly through memory.

All of these test overlap somewhat with the intrinsic testing
of registers done in all other tests where registers are
referenced. Here, of course, the intent is to more thoroughly
verify register operation by controlling the data wvalues

that pass through them. These tests especially highlight the
fact that every test in the ATP assumes the correct operation
of the instructions used to conduct the test. Since there is
no ordering or hierarchical structure to the ATP test modules,
the inherent redundancy of the various tests is the method
employed to cross-check instructions against each other.

Memory Tests

Two memory tests are specified for the ATP: the first, a
memory integrity test verifies the ability to address, write,
and read all of memory; and the second, and illegal memory
address test confirms that a machine error interrupt is
generated when a memory module is removed and reference is
made to an address therein.

For the memory integrity test, several bit patterns are
tested (addressed, all ones, all zeros, and a worst case
pattern which is of course hardware dependent). Considering
the memory space (65K) divided into four portions, the bit
pattern tests are conducted over portions 1 and 2, 3 and 4,
2 and 3, and 1 and 4. After tests in each portion, the rest
of memory is to be checksummed to see if illegal changes to

[rs]

memory occurred.

DOCUMENT NO. y
PX 13243 SPER?Vq%UNIVAC

Input/Output Tests

The I/0 tests focus on the INPUT and OUTPUT instruction

codes for programmed I/O ports (PIO) and the two timers.

The other I,0 commands are verified in either the register
tests or the interrupt tests. Testing the PIO capability
involves a hardware connection from the output port to the
input port which allows an IN PI command to verify data
written via an OUT PO. Confirming all possible 16 bit patterns
completes this test. Since the two timers have specified time
increments, the timer test also involves external hardware

to confirm those values. The specified procedure is to start
the timers with known values, stop them after known intervals,
and compare their contents. A second timer test apparently
compares the actual and exp-cted times when a timer interrupt
occurs. The point of timer interrupt is not defined by MIL-
STD-1750. A final part of the I/0 tests tries all illegal
cohmands for 'IN and OUT, verifying that they give a machine

error interrupt.

Interrupt Tests

The interrupt tests are intended to verify those interrupts

not previously tested in the register and I/0 tests. According
to the standard, the only remaining interrupts are for optional
aspects of 1750. However, IN and OUT commands related to the
pending interrupt register and fault register, and the OUT
—commands enable and disable interrupts all remain to be
specifically verified at this point. The ATP specification
states that external hardware should be used to exercise

these registers wich associated IN and OUT commands with
interrupts masked and unmasked. With respect to testing the
various bits in these registers, this test is similar to the

register tests.

DOCUMENT NO. 4
; e e, SPERRY<FUNIVAC

1)
g APPENDIX G

N Review of the Sperry Univac AN/AYK-15A Acceptance Test Program

| Design

The Confidence Test (1979) represents another test methodology
which verifies functional characteristics of MIL-STD-1750.
Although aimed more as a factory acceptance test than as a
design certification test, if offers some alternative approach-
es from those of the ATP. Structurally, the Confidence Test

is organized as two core loads: a package containing 24
ordered test modules defined by 1750 functional capabilities 1

and a standalone memory test.

The first of the ordered test modules performs a basic opera-
tion test of 12 load, store, add, jump, and compare instruc-
tions, plus the reading and writing of the Status Register and
the Interrupt Mask Register. Successive modules then use
these partially verified instructions to perform functional
tests beginning with jump and branch instructions, single
precision load and store, and so forth, ending with tests of
Base Register Relative Addressing, Interrupts, Timers, and
the Fault Register. A complete list of the modules appears
in Figure I-1l. The modules are actually written so they can
be called as subroutines from some executive, but because
they build on each other in terms of capabilities verified,

they would be run in order at least the first time.

The effect of this ordering is that test modules after the
first few are free to utilize fairly sophisticated code

segments to provide both a good mix of instructions tested and

a variety of techniques such as loops, access of data tables,
etc. with which to write efficient code. The separation of

test data from test code is effective in making the code

—

|

PAGE §

G-1 '
|
\

CUMENT NO.
POCIENT RS, SPERRY<=UNIVAC

readable. And the freedom to write well-structured routines
gained from the ability to use much of the instruction set
means that the resulting test code will be more likely to be

correct and easier to debug.

Resulting style of coding is more similar to that used in

real mission software than is the regular, simple structure of

code in the ATP. For example, the ATP tested a multiply

instruction by setting up the operands, doing one multiply,

then checking the results. Thus the density of multiply

executions during the test is very low. The Confidence Test

places multiply instructions in loops and also performs them

in sequence. This offers the possibility of more easily

testing the instruction more often and of testing the instruc-

tion in a repetitive context which in some sense exercises ¥

the multiply operation more heavily.

Because it was written for a particular 1750 implehentation,
the Confidence Test is oriented towards a known computer archi-
tecture. The Univac Confidence Test toock advantage of this
knowledge, taking short cuts in the test design whenever

common hardware was known. Thus using the functional organi-
zation of the test modules, the test of an Add could, for
example, fully verify the add function in one address mode

and make assumptions that the adder worked in tests of other

address modes.

DOCUMENT NO. —
PX-13243 SPEIREN ﬂ%LJNIVAC

SORTED

APPENDIX H

LIST OF MIL-STD-1750 INSTRUCTIONS

FAGE
H-1

DOCUMENT NO.
PX 13243

)

==Y =<=UNIVAC

The following list of MIL-STD instructions is sorted in the
order: '

. addressing mode

. data format

. instruction class

The purpose of using this sort order is to assist in parti-
tioning of individual instruction test loops as outlined in
Section 5.6.3.

Column headings and associated data values are as follows:

OC - Operation Code in hexadecimal. The letter B
following the code indicates that the value of
the active base register (g-3) should be added
to the operation code. The third hexadecimal
character on base relative and immediate in-
structions indicates the operation code

extension value.
MN - Instruction mnemonic from MIL-STD-1750

AM - Addressing Mode
B - Base relative
BX - Base relative indexed
I - Indirect and Indirect indexed
IR - IC relative
IM - Immediate long and Immediate long indexed
IS - Immediate short positive and Immediate short
negative
M - Memory direct and Memory direct indexed

R - Register direct

S - Special format

—

DOCUMENT NO.
PX 13243

SPERRY=<=UNIVAC

DF

IN

Cs

IC

Data Format
B - Bit

c

0w+ 9 MmO

Condition

Double precision (32 bits)
Extended floating point (48 bits)
Floating point

Integer (16 bit)

Special format

Interrupts Generated

N - No interrupts

O - Integer overflow

FOU - Floating overflow and underflow

OFU - Integer overflow, floating point underflow

E - Instruction error

Condition Status
N - Status word not affected
C -~ Carry and status are set

S - Status is set, carry will be g

Instruction Class

X n o o 4qg 0

-—

Compare class

Jump class

Load or arithmetic class
Memory replace class
Store class

Special class

PAGE
H-3

JDOCUMENT NO.

b
ocC "N AM DF IN cs IC DESCRIPTION PARGE
44 E ILLEGAL OPERATION
45 [ILLEGAL OPERATIOMN
46 £ ILLEGAL. OPERATION
47 £ ILLEGAL CPERATION
480 £ ILLEGAL. OPERATION
4R8C E ILLEGAL OPERATION
4AaD £ ILLEGAL OPERATION
4AE E ILLEGAL OPERATION
46F E ILLEGAL. CPERATION
4B £ ILLEGAL. OPERATION
4c E ILLEGAL OPERATICN
4D E ILLEGAL QPERATICN
4E E ILLEGAL OPERATION
4F E ILLEGAL. OFERATION
SB £ ILLEGAL OPERATION
SD E ILLEGAL OPERATION
SF £ ILLEGAL OPERATION
54 E ILLEGAL. CTPERATION
63 £ ILLEGAL OFPERATION
77 £ ILLEGAL TPERATION
C £ ILLEGAL OPERATIGN
95 £ ILLEGAL JPERATION
AD E ILLEGAL OPERATION
AE £ ILLEGAL OFPERARTION
AF £ ILLEGAL CPERATICON
BD [TLLEGAL CTPERATION
BE £ ILLEGAL OPERATION
BF £ ILLEGAL CPERATION
cc £ ILLEGAL CFERATICN
cD £ ILLEGAL OFERATICN
CE E IILLEGAL OPERATICON
CF E ILLEGAL CPERATION
DC E ILLEGAL OPERATION
DD E ILLEGAL OPERATIOM
DE £ ILLEGAL OPERATION
DF £ ILLEGAL CPERATION
EE E ILLEGAL OPERATION
EF E ILLEGAL OPERATION
FS E ILLEGAL OPERATION
FC £ ILLEGAL OPERATICN
FD £ ILLEGAL OPERATION
FE E ILLEGAL. OPERATION
24B DLB B D N S L DOUBLE LORD 9e
QCB DSTB B D N N S DOUBLE STORE 101
3CB FCB B F N S C FLOATING PQINT ZCHMPARE 59
298 FAB B F FoU S L FLOATING POINT RID s
2CB fFDB B F FOU S L FLOATING POINT DIVIDE 41
288 FMB B = FOU S L FLOATING POINT MULTIPLY 39

T

DOCUMENT NO. seEF=-<=UNIVAC
SmEma e RF
PX 13243 !
O M AM DF IN CS IC DESCRIPTION PAGE
248 FSB B F FOU S L FLOATING POINT SUBTRACT 37
3B CB B I N S C INTEGER COMPARE 57
108 AB B I O C L INTEGER ADD 25
3B aNDBB I N S L LOGICAL AND 67
@B LB B I N S L INTEGER LOAD 31 ,
3B ORB B I N S L IMNCLUSIVE LOGICAL OR 56
148 SBB B I O © L INTEGER SUBTRACT 27 4
@B STB B I N S S INTEGER STORE 100
188 MB B ID O S L INTEGER MULTIPLY 3 BIT FROD. 30
1CcB DB B IS O 5 L IMTEGER DIVIDE 32 BITS 33
40B1 DLBX BX D M 5 L DOUBLE LOAD 32
40B3 DSTX BX D N N S DOUBLE STORE W BASE REG 101
4087 DBX BX DS O 5 L INTEGER DIVIDE 32 BITS 33 i
49BD FCBX BX F N S C FLOATING FOINT COMPARE 59 ¥
40B8 FABX BX F FOU S L FLOATING POINT DD W BASE RES 35
40BB FDBX 3x F FOU 5 L FLOATING POINT DIVIDE a1
40BA FMBX BX F FOU S L FLOAWTING POINT MLLTIPLY 39
40B9 FSBX BX F FOU S L FLOATING POINT SUBTRACT 7 ;
40BCCBX BX I N S C INTEGEP COMPRRE ' 57 i
40B4 ¥BX BX I O ¢ L INTEGER ADD 25 i
40BE ANDX BX I N S L LOGICAL &ND 57 :
40B2 LBX BX I M S L INTEGER LOAD 21)
49BF ORBX BX I N 3 L INCLUSIVE LOGICAL OR 56 ,
40BS SBBX BX I 0 C L INTEGER SUBTRACT ? !
B2 3TBX 3¢ I N S 3 INTEGER STORE 100 |
40B6 MBX BX ID 9 S L INTEGER MULTIPLY 32 BIT PROD. 30 |
8 WBII 8 N S L LOAD FROM LOWER BYTE INDIRECT 95
3D LUBI I 3 x| S L LOAD FROM UPPER BYTE INDIRECT S4)
9E SLBII 8 ™ N S STORE IN LOWER BYTE INDIRECT 106 |
9D SUBII 8 M N S STORE IN PPER BYTE INDIPECT 10S “
ss PBI I B N N R PRESET BIT 25
s2 SBI I B N N R SET BIT 24
8 TBI I B N 3 R TEST & SET BIT 26 ‘
- ——— 4
71 JI I C N N J JUMP ON CONDITION INDIRECT 113 :
38 DLI I D N 5 L DOUBLE LORD INDIPECT 32

e

DOCUMENT NO
—ﬂ:—\
=CEEAT LJ WAC
PX 13243 NV

n'} MN A DF N S IC DESCRIPTION PRGE
32 DSTI I D M ™ S DOUBLE STORE INDIRECT 191
3 3TCL 1 H ™~ M 3 STORE HEX CONSTARNT IMDIRECT 103
B4 LI I I ™ S L INTEGER LCAD INDIRECT 91
34 ST 1 I N N S INTEGER STORE INDIRECT 101
4A5 DIM IM DS 0]) L INTEGER DIVIDE 32 BITS 33
44ma CIM Im I N S c INTEGER COMPRRE =Y4
4Aa1 AIM Im I g C L INTEGER ADD P=i
437 BNCM I I N S L LOGICAL AND 57
39 LIM Im I N S L INTEGER LJARD IMMEDIATE 31
4A/3 MIM IMm I In} S L INTEGER MULTIPLY 22 BIT PROCD. 30
44 MSIMIM I O S5 L INTEGERP MULTIPLY 16 BIT PROD. 29
4RB NIM IM I ™ 3 L LOGICAL MAMD 39
488 SRIMIM I M S L INCLUSIVE LOGICAL CR 55
4GS bIN M 1] [L INTEGER SUBTRACT IMMEDIATE -
Mg KORM IM I M S L ENCLUSIVE LOGICAL OR 53
4P DVIM IM 15 Q) L INTEGER DIVIDE 15 BITS 32 *
7S BEZ IR C ™ N J BRAMNCH EGial TQ ' ZERD: 117
? BGE IR) M M J BFAMCH GRESTER TiHeid OR = O z2
73 BGT IR [N N J BRANCH GRERTER (ZEFQ) 129
23 BLE IR € N M J ERAMCH LESS THeM oF EQUAL (@113
7 BLT IR [N N J BRENCH LESS THARMN TZERO) 113
) BNZ IR [Kl M J BRANCH NOT ECURL T (ZEPD) 121
74 BR IR C i N 1 BEPANCH UNCONDITIONAL 115
F3 CISN IS I ™ 3 (o} COMPARE NEG. HE< DIGIT s7
2 CISP IS I N 5 C COMPeRE HE< DIGIT =
A AISP IS I 0 © L ADD A& POSITIVE HEX 25
D3 DJISN IS I o5 5 L INTEGER HEX DIVILE 16 BITS)
D2 CISP IS I A S L INTEGEP POS HEN DIVIDE 18 BIT 22
23 LioN IS I N 35 L HEY DIGIT LOARD IMMEDIATE 31
32 LISP IS I ™ 3 L HEY DIGIT LOAD IMMEDIATE 31
3 mMIsNIS I o 5 L INTEGER NESATIVE HEX DIGIT 0
c2 MISPIS I O 35 L MULTIPLY HEX DIGIT 29
B2 SISP IS5 I 5 © L SUBTRACT A HEX DIGIT R
RC LLB M 3 ™ S L LOAD FPOM LOWER BYTE B
2B LB M 8 M 3 L LOAD FROM UPFER BYTE 34
3C STLB M 3 N N S STORE INTD LOWERP BYTE 100
98 STUBM 8 M N 3 STORE INTO UPPER BYTE 105
S3 ~B M B N ™ R FESET BIT 25
<9 3B M B Xl N R SET BIT 24
Sh T ™M B &l) R TEST & 3ET BIT B
e TSB M B x|) F TEST «ND SET BIT v

DOCUMENT NO. L A
/ OC ™MN AM DF IN CS IC DESCRIPTION PAGE
\

70 I M c N N J JUMP ON CONDITION 113
F6 DC M D N 5 o DOUBLE CCMPARE 58
B DA M D 0 c L DOUBLE IMTEGER ADD 26
3 DL M D N 3 L DOUBLE LO®D 92
6 DM M D 5] 35 L DOUBLE PRECISION MULTIPLY 31
B8 D3 M D Q c L COUBLE INTEGER SUBTRACT S
36 D3T M D N 35 DOUBLE STCRE 101
D6 DD ™ DS 5 L DOUBLE PRECISION DIVIDE 34
D4 D M DS 5 L INTEGER DIVIDE 32 BITS 33
FA EFC M E N 5 c EXTENDED FLOATING ~OMPSRE 50
AR EFA M £ FOU S L EXTENDED FLOATIMG ADD a2
DA EFD M E FOU 3 L EXTENDED FLOATING SIVIDE 43
2A EFL M E M 35 L EXTENDED FLOATING FOINT LOAD 93
CA EFM M E Fou S L EXTENCED FLOATING MULTIPLY a5
B EFS M £ FCU S L EXTENCED FLOATING SUBTRACT 44
A EFST M E N N 3 EXTENDED FLOAT STORE 102
FR Fo M F M 3 C FLIATING POINT COMPARE 53
A2 Fa F FoU 5 L FLOATING POINT AOD 35
S FD M F cou 3 L FLCATING OINT DIVIDE a1
2 OFM M F FOU 5 L FLOATING FOINT MULTIFLY 3

B3 F5 M F FOU 35 L FLOATIMG POINT SUETRACT 37
FO © M 1 N 3 c INTEGER COMPARE 57
F4 CBL M I N = C COMPERE BETWEEN LIMITS A1
72 s M 1 M N J JUMP TO SUBROUTINE 114
23 30J M I M N J JUP BACK AMD COUMT 115
7F RS M I N J UMSTACK & SUBRGUTIME FETURM 112
A A M I o) o L INTESER ADD 25
E2 aND M I N 5 L LOGICAL AMD &7
20 L M 1 N 3 L INTEGER LOAD 91
> LDST ™ 1 N c L LOAD STATLS 5
ca ™ M I o) 5 L INTEGERP MULTIPLY 32 BIT PPOD. 20
e oMS M I 2 3 L INTEGER MJLTIFLr 15 BIT FROD. 29
E6 M M I N 5 L LOGICAL N&MD 59
€0 R M I N 35 L TNCLUSIVE LOGICAL "R ~5
BO S M I) S L INTEGER SUBTPACT a7
B3 LECM M I 3 > R CECPEMENT MEMORY BY INTESER S0

PAGE

DOCUMENT NO. '
=ee~=Y=<=UNIVAC
-l ami e~ b}
pX_13243 r
O M AaM DF IN CS IC DESCRIPTION PAGE
A3 INOMM I 0 C R INCREMENT MEMORY BY HEX DIGIT 49
%@ ST M I N N S INTEGER STORE 100
31 3Tt M I N N 5 STORE POSITIVE HEX CONSTANT 103
Do Dv M IS (e} S L INTEGER DIVIDE 16 BITS 32
9?7 SRM M S N N S STORE REGISTER THROUGH MaSK 104
54 RBR R B N N [RESET BIT patey
S1 SBR R B N N L SET BIT, BIT IN PEGISTER 34
S? TBR R B N S L TEST & SET BIT 26
F? DR R D N S © DOUBLE COMPARE REG. S3
A5 DRBSR D N S L DOUBLE ABSOLUTE VALUE 52
A7 DrR R D 0 C [DCUBLE INTEGER &[0 REG. Pl
? DR R D O 5 (DCUBLE FRECISION CIVILE 34
v LR R D ™ 3 L DCUBLE LORD PEGISTER 3’
C? DM R D O 5 L DCUBLE FRECISION MULTIFLY FEG 3
BS DGR b 5 2 U DAUBCE FRECIOIAN HEGATE REn .
5 DSPRR D M 3 L DOUBLE SHIFT PRITH FEG. COUNT &2 1
oF DSCR R D N 5 L DCUBLE SHIFT CWCLIC RES COUMT 33 w
68 DSLCR D M 3 L DOUBLE SHIFT LEFT cveLIC == >
(=) DSLL R D ™) L DOUBLE SHIFT LEFT LOGICAL T4 .
=D DSLR R D r S L DOUBLE SHIFT LORICAL PEGISTER 21
B? DSPR R D v} C. L DOUBLE IMTEGER SUBTRACT 23
857 DSRA R D N S L DOUBLE SHIFT RIGHT wRITHMETIC 785
56 ‘DSRL R D N S [DCUBLE SHIFT RIGHT LOGICAL S
EB EFLT R DE ™ S L 32 BIT INT TO EXTENDED FLOAT £3
DS DR P DS a} S L IMNTEGER DIVIDE 22 RIT PEG. 23
FB EFCR R = M S C ETENDED FLOATING COMiPRRE aQ
PB EFAR R E FOJ S L EXTENDED FLORTING =DD RES 42
DB EFCR R E FOU S L EMTENLDED FLCATIMN: DIVIDE 543
ER EFIX R = OF) S [EXTEMDED FLORT T2 €I 32 BIT &S
B EFMRE R = FOU 5 [ETEMDED FLT. MULTIFLY FEG. 45
BB EFSR R E FOL 5 L S<TEMDED FLT SUBTRACT PEG. 44
F FR R F N 5 ¢ LOATING POINT COMFARE FEG 53
AC FAaBs R F N 3 ‘. - JOATING POINT ABSCLUTE VALUE S3
A9 FaR R F Fogy = N AV ING POINT DD REG TO REG 35
D3 FOR R F Fou 3 . FLOATING POINT DIVIDE 41
£R FIx R F [/ I CONVERT FLOAT TD FIx 18 BITS o4
o3 FMR R F 3 L SLOATING ROINT MOLTIPLY FEQ. =9
BC FNEG R F ey S I_ FLOATING POINT NECATE ==
BS FSR P F Foy S [FLOATING POINT ZLBTPACT 37
F1l R ~ M M 3 2 INTEGER OHMPARE REV. 57T

[PX 13243 S’ER?V%%UNlVAC

O M AM DF IN C5 IC DESCRIPTION PRGE
SE TYBR R I N S c TEST YARIABLE BIT IN REGISTER 9@
A4 ABS R 1 N S L INTEGER ABSOLUTE VALUE S1
E3 ANDRR I N S L LOGICAL AND REG. TO REG. 67
AL AR R I 0 c L INTEGER ADD REG. TO REG. as
81 LR R I N S L LOAD REG. TO REG. 91
¢S5 M R I 0 S L INTEGER MULTIPLY REG. TO REG. 39
Ci MSR R I o) S L INTEGER MULTIPLY 29
B4 MNEG R I o} S L INTEGER NEGATE REGISTER 5S4
E? MR R I N S L LOGICAL NAND REG. TO REG 63
El ORR R I N S L INCLUSIVE LOGICAL OR REG. 66
SC RYBR R I N N L RESET VARIABLE BIT IN REG. 89
6B SAR R I N S L SHIFT ARITH, COUNT IN REG. 79
6C SCR R I N S L SHIFT CYCLIC, COUNT IN REG. 380
63 SLC R I N S L SHIFT LEFT CYCLIC 73
61 SLL R I N S L SHIFT LEFT LOGICAL 70
6A SLR R I N S L SHIFT LOGICAL, COUNT IN REG. 78
Bl SR R I o} Cc L INTEGER SUBTRACT REG. TO REG. 27
62 SRA R I N S L SHIFT RIGHT ARITHMETIC 72
61 SRL R I N S L SHIFT RIGHT LOGICAL 71
SA SYBRR I N N L SET VARIABLE BIT IN REGISTER 29
EC XBR R I N S L EXCHANGE BYTES IN REGISTER 112
E4 MXOR R I N S L EXCLUSIYE LOGICAL OR 53
ES XORR R I ™N S L EXCLUSIVE LOGICAL OR REG. 63
ED XWR R I N S L EXCHANFLW WORDS IN PEGISTERS 99
E9 . FLT R IF N S L CONVERT INTEGER TO FLT POINT &2
D1 DWR R IS o S L INTEGER DIVIDE 16 BITS 3a
7E SJS5 S I N J STACK IC, JUMP TO SUBROUTINE 111
48 IN S I N bt INPUT 124
49 OUT S I N X QUTPUT 124
8 wm 5 M N N X LOAD MULTIPLE (Q<N<1S) 9?
93 MOV S M N N X MOYE MULTIPLE WORDS 107
8F POPM S M N N X POP MULTIPLE REG COFF STARCK 110
9F PSHM S M N N X PUSH MULTIPLE REG ONTO STACK 109
99 S™M S M N N bes STORE MULTIPLE REGISTERS 108
FF BPT S N N N b BREAKPOINT 132
FF MNOP S N N N X NO OPERATION 192
PAGE

