AD=AD99 253 MASSACHUSETTS INST OF YECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
SEMIAUTOMATIC TRANSLATION OF COBOL INTO HIBOL.f{U)
FEB 81 6 G FAUSY NO0O14=75-C=0661
UNCLASSIFIED MITV/LCS/TR=-256 NL

y] . MASSACHUSETTS
LABORAT O Y FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-256

SEMIAUTOMATIC TRANSLATION
OF
COBOL INTO HIBOL

Gregory Gerard Faust

This research was supported, in part, by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research Contract No. N00014-75-C-
0661, in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contracts N00014-75-C-0643 and N00014-80-C-0505,

and in part by National Science Foundation grant MCS-7912179.

R

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139
TTBIERTRA e

R T T ‘

R -~
2) 10\
SECURITY CLASSIFICATION OF THIS PAGE (When Date Fntered) 0(J —

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2 GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

i+ r-uT/LCS/TR-zs-e}i Ap- A9 5

& Tlm (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
O T S.M.Thesis - Jan. 1981
’ / Semiautomatic Translation of COBOL into HIBOL
S - 6. PERFORMING ORG. REPORT NUMBER
“MIT/LCS/TR-256 -
Lo 7. AGTHORCT— — _,...‘A B . C B. (s)
O G | Q NOP14-75-C-0661Y, D643
\ /] Gregory ®. Faust) | N00014-80-C-0505] V.
| ' : ! Mes-7912175”
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
MIT/Laboratory for Computer Science AREA & WORKCUNIT NUMBERS
v 545 Technology Square
; Cambridge, MA 02139 /1l
11, CONTROLLING OFFICE NAME AND ADDRESS 12, RERQORT QATE.- -

ONR/Dept. of the Navy NSF/Associate Prog.Dir. j Febwesampad 31 '
Information Sys.Program Office Comp.Activities 13, NUMBER OF PAGES
Arlington, VA 22217 Washington, D. C. 20550 119

r 14. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 15. SECURITY CLASS. (of this report)
b

s]
K Unclassified
: 7 15a. DECL ASSIFICATION/DOWNGRADING
Y : . SCHEDULE

' ’ B
*._ _ . Iy ! . I i
. 16. DlSTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different from Report;

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block numbaer)
program traslation
program understanding
COBOL
HIBOL
automatic programming

20 ABSTRACT (Continue on reverse sids {f necessary and identily by block number)

=T A severe software crisis is currently being experienced by the data processing community
due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation
of existing COBOL software into HIBOL; a very high level language that is significantly easier to
maintain. HIBOL, uses a single type of data object, called a “How™, which is an indexed stream of
data values. Computation is expressed as operations acting on flows, —— 7

—"

5 DD ,50%": 1473 eoition of 1 Nov 88 15 oBsOLETE Zj~ L ([é : 72,7/ ‘"'

SECURITY CLASSIFICATION OF THIS PAGE (ivn.n Data Entered) i
- |
< } ’J

i o o b

SRCURITY CLASSIFICATION OF THIS PAGE(When Dete Bntered)

nolation proress rohies on o mcthod for program abstraction developed by Richiard
Woaters which e prosues programs as o hierarchical structure, called an analyzed plan, in which
control and data flow is made explicit. In this formalism, loops are expressed as a composition of
stream operators acting on stream data flow.

This paper discusses in detail how an analyzed plan for a COBOL program can be translated
into a HIBOL program. It is currently possible to translate into HIBOL analyzed plans ior a relatively
small (but well definad) subset of COBOL programs. Suggestions are made as to how that subset
could be expanded through further research.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

o adbit .

Semiautomatic Translation

of

COBOL into HIBOL

by

Gregory Gerard Faust

February 1981

© Massachusetts Institute of Technology 1981

This research was supported. in part, by the Advanced Research Projects Agency of ihe
Department of Detense under Office of Naval Research Contract No. N0O0014-75-C-0661, in part by -
the Advanced Research Projects Ager}cy of the Department of Defense under Office of Naval i
Research contracts N0O0014-75-C-0643 and N00014-80-C-0505, and in part by National Science
Foundation grant MCS-7912179.

The views and conclusions contained in this paper are those of the author, and should not be
interpreted as necessarily representing the official policies, either expresses or implied, of the
Department of Defense, the National Science Foundation, or the United States Government.

L]
. e e - - - e o

Semiautomatic Translation
of
COBOL into HIBOL

by

Gregory Gerard Faust
Submitted to the Department of Electrical Engineering and
Computer Science on January 21, 1981 in partial fulfiliment

of the requirements for the Degree of Master of Science in
Computer Science

ABSTRACT

l{ ; A severe software crisis is currently being experienced by the data processing community
' due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation
E of existing COBOL software into HIBOL; a very high level language that is significantly easier to
maintain. HIBOL, uses a single type of data object, called a "flow", which is an indexed stream of

data values. Computation is expressed as operations acting on flows.

The translation process relies on a method for program abstraction developed by Richard
Waters which expresses programs as a hierarchical structure, called an analyzed plan, in which
control and data flow is made explicit. In this formalism, loops are expressed as a composition of
stream operators acting on stream data flow.

This paper discusses in detail how an analyzed plan for a COBOL program can be translated
into a HIBOL program. It is currently possible to translate into HIBOL analyzed plans for a relatively
smali (but well defined) subset of COBOL programs. Suggestions are made as to how that subset

! could be expanded through further research.

Thesis Supervisor: Dr. William A. Martin
Title: Associate Professor of Electrical Engineering and Computer Science -
i and Assaciate Professor of Management

Thesis Supervisor. Or. Richard C. Waters
Title: Research Scientist, Artificial intelligence Laboratory

Keywords: program translation, program understanding, COBOL, HIBOL, automatic program ming

- X

Acknowledgments

| would like to thank the following people without whose help this thesis would not have
become a reality.

- Bill Martin for the seminal idea that launched the entire project

- Dick Waters for the help he gave me in writing programs which interact with his plan formalism, and
for his constant guidance throughout this project

- Glenn Burke for the time he spent writing the COBOL parser, and helping me eliminate bugs in my
programs which no else could fathom

- Ramesh Patil and Harold Goldberger for their assistance in devising algorithms to perform various
tasks

- Dick waters and Bill Martin, my thesis advisors, and Chuck Rich for their constructive criticism of
several previous drafts of this paper

- Howard Sherman, Brij Masand, Glenn Burke, Ramesh Patil, Lowell Hawkinson, Harold Goldberger,
irwin Asbell, Bill Long, Bill Swartout, and Ken Church for their lively discussions, both over lunch and

* when my mind refused to apply itself to the problem at hand

- Ann Sexton for her companionship and understanding throughout the past year

- and especially, my parents, Alice and Vincent Faust, and the rest of my tamily for their constant
moral support throughout my academic career

|
{

Table of Contents -4 - Gregory G. Faust

CONTENTS
1. INIEOAUCTION .eiiiiiiiit ittt st e ittt e saaa s e e br et b s e aabesaasaseraeeeaasesebessabbaesareanaseesanesensnnas 9
1.1 MOIVAIION oottt ca e e e bttt re e e s e e e erbe e e e earaaaeas 9
1.2 SYSIEM OVEIVIEW ...oooniiiiiiiieiiin ittt et in e et e be s setbn e st e e st e s eseeenans 10
1.3 Related WOrKccooceiiiie et e 12
1.4 Example Programs and Their Transiationsc.ccoceeniieneniinieccienievce e 13
1.5 Outline of Remaining Chaperscceevirmvircnriniinnrenee e srerersnn e siaesseesseesens 22
2. COBOL oottt vr et e et e e et aaa st sa g oS re ket tste et b e st e e Rt s b e e b sEestaeberastrennes 23
2.1 EXAMPIE PIOGIAMS ...oveiciriiiiiiirienirisreeieeeessee bt rternssteseneesaee et eseaesuesascssnassasnsessnns 23
2.2 ENVIRONMENT DIVISIONooiiiiiiiiiriieenieerireentsntesteennesssnisssesseseressseessnasnosssessiens 26
2.3 DATA DIVISIONcocoviiiiiiitiiiinrtesieeenis ettt as e sae e b st sb e e s me et snasan 27
2.4 PROCEDURE DIVISION ...ccocooviiiiiniiniinieeereenieseseesniessrsssaeessseseesssssssssassnsessnesssessens 29
B. HIBOL oeiivieieiitirteeccrssnte st st cresanecoes st e sraavetsrs b e bees e e s reesres st s assessesasesenaesassesserenssssnsesreensenteenrens 32
3.1 DATA DIVISIONooiicreeieiiiniire st ienteniinntsscnssnenns sseesaassnebassesnesseshossancsssesnnssnnensesssses 32
3.2 COMPUTATION DIVISIONuooiiiiirieirreeerenieneresrenseseesasesssaeescessesnnsassesnsesssasssensens 33
3.3 Features of HIBOL ReVISIHEDccocvvrirciiriininmtiicinirieneesssiesssisiesnnessesssesessssesanes 38
4. Plans and Plan Building Methodsccccccciniiiiiiiineiieceiieercssnee st sees e srres s ssans e 40
A1 SUMACE PIANScviieciericitiiecrc e rreinnr et sttt n et e sttt o e srs e s sreesreseasanenes 40
4.2 Analyzed Plans and Plan Building Methodsc.ccociimiinininn, 43
4.3 CONCIUSION wuereuerrriereieniii e trseeissreesesiesseesteetanre st ssessasensenanssnsessesssnessentassneraessesaaans 54
5. Current Implementation of the Translation ProCessccccieivimierersinisiinnneeoneenseesonsesens 55
5.1 General DESCriPliONcc.cciciiiiiiiieniiieireriiri s iirasssrreesesssisessssenssasesssesssnrasans 55
5.2 Range of COBOL Programs Currently Translatableccccoccceennniinnnniniineennn, 57
5.3 Brief EXamPIE ..ottt et 59
5.4 Symbolic Evaluation of an Analyzed Planccccveviieevreereireinvenenenncinessreessneesens 62
5.5 DATA DIVISION QUETYoccomriniiarueinieiessssneerenssrenearesesessesnrssssssssssesssennsssnsssssanses 78
5.6 HIBOL ProQUCHION ...coocveriiiiriiiniiereinisetscstesisesstssinstnsssesssssssssesss seesssrensesasessnnensessns 78
6. Critique of the Current Implementation of the Translation Processcccceevvevvrvveeveennnens 88
6.1 Problems Arising in the Current Implementationccoiviiniiiciicniincnennee. 88
6.2 POSSIDIE EXIBNSIONScvvieeitiriiiviireciienses et ser e e esbs e sraeassatesebnennesans 98

Gregory G. Faust -5- Table of Contents
7. Critique of the SATCH SYSIEM ..ottt 103
7.1 Semiautomatic versus Automatic Translationccooeeeviiiiiiie e, 103
7.2 UsiNg AnAlYZEA PIANScoiiiiiiiiiiiiiiii ettt et st e e v a st e s 103
7.3 Future Direction for the Translation ProCeSSccovceeveeeeecvcvvonieiniceecsseesecie s 105
7.4 Translation of HIBOL int0 COBOLcooorvvveeeiiiciiec e cteeeeeeeees et eseseesnssesesseesssesnnnn 107
Appendix |. Plan Primitives for COBOL Programscccvivieeeireeiiioiveeinnreisrseinreeenesenssnesseaes 109
1.1, BOOIBAN PrIMILIVES «..ociiiii ittt et ntr et e vaa et e s sstteere s e s st s e s sessnes e 109
L2, ArITRIMELIC PRIMHEIVES .ooeiiiiii ettt s e s eeeeareates s aeeas 110
' L3, SHING OPEFALOrS ...ovoviiiiiiiii ettt e bbb sae s esbe b bes e s 110
i L4, File OPEIALOrSoicciiiiiiiie ittt et e st e e st r ettt s e e sae s esnteesbeevesreessssseeebensiassannns 1114
i
Appendix . HOW t0 RUNSATCHooiioii ettt ctb e inte s s ve s assassttessase st sstenaneesnnnes 113
REFEIENCES ...oiiivieeeceir ettt e e s bbb s e b e st s bba s s senr e resbb s e s e reareertasanes 115

ahia

Table of Figures -6 - Gregory G. fFaust
l FIGURES
Fig. 1. SATCH OVEIVIBWoiiiiiiiiiiiiiie ittt ettt sttt e sttt ava e sbaa e st e resane s eraeeneas 1
Fig. 2. COBOL Program Ior PAYROLLco.cccvvirinieeiinie et res s nns st aneaeeene e 14
Fig. 3. HIBOL Program for PAYROLLovviiiiiiiceeee ittt 15
Fig. 4. COBOL Program for PAYROLL2 ..ottt 16
Fig. 4. COBOL Program for PAYROLL2 (CONTINUED)cootriiiiieiie s seiccecnnccennen e e seaenens 17
Fig. 5. HIBOL Program for PAYROLLZ2ooviiiciiiiiice et are et e s era e 17
Fig. 6. COBOL Program for DBINIT ...ttt st et 18
Fig. 7. HIBOL Program for DBINITcoccoiviiiiiiiii e tete st 19
Fig. 8. COBOL Program for LOC-LIST ...t 20
Fig. 8. COBOL Program for LOC-LIST (CONTINUED)cocviioiiieiieie e ccveeereere e 21
Fig. 9. HIBOL Program for LOC-LIST ...cciiiiiiii et ntr et re e s e ste st enreasb e saeentee s 21
Fig. 10. COBOL Program for PAYROLLcoccvciiiiciniecnriniecnentrsieneeseesesssesaessreesssssesssesssenns 24
Fig. 10. COBOL Program for PAYROLL (CONTINUED) ...ccceoueiiieiiiirnniie e nreeneeereseesissnenens 25
Fig. 11. PICTURE EIEMENESoooiiiiiiiiiiriinne ettt insas s sssesaesstessa s s s st s remeesaesveseesaeassesnsearsass 27
Fig. 12. Example Use 0f 88 Variablesc.cccoeiiiiiiinieieninenissensrnee s s e e csvessenssesnrne e 28
Fig. 13. Simple Statements that Atfect Control FIOW ..., 29
' Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Callcc.ccocoveiviecvinnnns 29
Fig. 15. PERFORM Syntax when Used as a Loop COoNStruCtcceveeevireiivnnee e, 30
Fig. 16. Data Manipulation Statementscccciveiiiniinecre e e e 30
Fig. 17. File Manipulation Statementsc..cccivciiiiinniici et s e e rae s 31
Fig. 18. HIBOL Program for PAYROLLcocieiiiiiciiniiniinie i svaaesessies st enaeesnesaneaan 34
Fig. 19. HIBOL Syntax for Conditional EXEressionscccvireieviianeieonrioerrnenconnnsnresesiressas 34
Fig. 20. HIBOL Program Fragment with Conditianal FOrmccccoovinmiiniiiineenneineeninensnnnneens 35
Fig. 21. HIBOL Syntax for Arithmetic Operatorsccociviimncniciiinince s 35
Fig. 22. Expanded Forms of Arithmetic Flow EXPressionscccciniviiencicnesnieesveseevesnneeens 36
Fig. 23. HIBOL Syntax for Reduction Operatorscccocvevmiminiiiiiinriie e srt e erasassesvnanes 37
Fig. 24. Sample HIBOL Program Fragment with Reduction Operatorc..cccovceeciriniinenennne 37
Fig. 25. Partial Surface Plan for PAYROLLc.cc.ccoivviniiniinreneneninve e erenaeonse e srsecnenrnes 42
Fig. 26. Taxonomy of Plan Building Methodscoovuiiiniinininiiiniiiecses e 44
; Fig. 27. Generating Augmentation in the Analyzed Plan for PAYROLLccccoevvivveiveneernnennne, 47
b Fig. 28. Termination in the Analyzed Plan for PAYROLLccocoviviiiinernniinnenneenicsseinneeeeesne e 49
b Fig. 20, EXAMPIE FIMEE w.vvvvvorerseeeesuensnnsisssssasassrensssssssesss s ssssssssesssssssssssesssssssssssssssssssssssmsesesssens 51
Fig. 30. Temporal Composition in the Analyzed Plan for PAYROLLc.cococevniineneninneenennens 52
Fig. 31. Analyzed Plan for PAYROLL ...ttt ve e e e e 53
Fig. 32. Current SATCH IMpIementationcoocccviiieinieiieeniesenneisee s seesieesesreessssesssess s 56
Fig. 33. Partial Analyzed P1an 1or PAYROLLccooviviiniiiiiin e seesresreseesiensenns 60
Fig. 34. Transform to Remove XCASEs in Comparative FUnNCtionsc.cececinennncnenieornnrinns 70
Fig. 35. Example Predicate Simplification from PAYROLL2ccccoeeiiiviiivennree s 71
Fig. 36. Transform to Remove XCASEs in Arithmetic EXPressionsccciniens crnvesnennenns 72
Fig. 37. Transform to Eliminate Nested XCASESc..cooviiviiiiniiiniec e es e 73
Fig. 38. Transform to Condense Predicate- object Pairs containing Identical Objects 73

Gregory G. Faust -7- Table of Figures

Fig. 39. Example Simplification of an Object ASSertionc.ccoovvviiiiieiiiciiieee e 75
Fig. 3u. Esampie Simphtication of an Cbject Assertion (Continued)occooeevvvvvvveeneiiiiienne... 76
Fig 40. Information Transferred Between Phases in PAYROLL ..., 77
Fig. 41. Steps in the Production of the COMPUTATION DIVISIONoovvivveieiieiiiiieeeeieeeee 79
Fig. 42. Sketch of Analyzed Plan for File Merge Operationccccceeeevviviiviiiee evviiveiiienenenn, 82
Fig. 43. Predicates Contained in XCASEsinaFileMergeccooeeviiiniiiin e, 83
Fig. 44. Replacement PrediCatescccciiiiriiii ittt eaie st es e ers s vaee s 83
Fig. 45. Example of Predicate Replacementccccoociiiiiiiiiiniiiiiiieeniis e e 85
Fig. 46. COBOL Fragment with One Sequential and One Indexed Fileccoovvveviiiiiiniineen.n. 99

Fig. 47. COBOL Fragment with Two Indexed Filescocciviiniiiiiieci e, 100

Gregory G. Faust -9 Introduction

1. Introduction

In the last ten years. there have been many efforts to simplify the task of producing large
error-free software systems. Although no one would argue with the merits of such etforts. they alone
are not sufficient to relieve the current software crisis that is being experienced by the data
processing community. In addition to aids in the production of new software systems. aids in the
maintenance of existing software are needed. This thesis is a step toward such an aid.

The system, SATCH. is designed to perform the SemiAutomatic Translation of COBOL into
HIBOL. HIBOL is a very high level specification language in which data processing applications are
not programmed procedurally. but simply described as a group of stereotyped operations acting on
streams [3,18.27]. Since the HIBOL representation explicitly embodies the functional specifications
of the application system, it is relatively easy to understand and maintain. The HIBOL can
subsequently be translated back into COBOL [27]. The intent is that the COBOL produced by the
system will be considerably more structured, and potentially more efficient, than the input COBOL
program. More importantly, the HIBOL specification of the program can be retained so that future
changes to the functional specifications of the program can be implemented by modifying the HIBOL
program and automatically reyenerating the corresponding COBOL program.

1.1 Motivation

In order to see the long term potential of a system such as SATCH, the following scenario
can be envisioned. The manager of a data processing facility recognizes that one of his systems has
reached the point where the code is so convoluted that it can no longer be maintained in a
reasonable fashion. He would like to have the system rewritten from scratch, but he realizes the
tremendous cost involved. In addition, he simply does not have the personnel to place on such a
project. Without SATCH, he is doomed to live with the current system despite its shortcomings.

However, if a production version of the SATCH system did exist, he would have another
alternative. He can input the COBOL programs into SATCH one at a time. For each program so
processed, he gets an output of another COBOL program that is easier to understand and is probably
more efficient. More importantly, he receives a HIBOL program which embodies the functional
specifications tor the application. (For those COBOL programs that embody computations that
cannot easily be expressed in HIBOL, the original COBOL program is retained). The HIBOL program
can also be utilized as documentation for the system, and can therefore reduce the need for the time-

consuming production of bulky documents for the system written in some less concise form.

gk 5

Introduction 10 - Gregory G Faust

Faturs modification to the functiee ' oecihications can then ba imiplemanted as direct
alterations of the HIBOL code. the nesd to mantain the system via modifications .o COBOL progrems

\

is (lara=h} cuminated. The updated HIBOL program can then be used to automatcally produce the
newly desired COBOL program. Note that this process also updates the documentation for the

system with no additional effort.

Although the process of mitially converting from the existing COBOL programs to the HIBOL
programs would be expensive and somewhat difficult. it would not be nearly as had as a total system
rewrite in COBQL. In either case. itis a one time expense. The benefit of the conversion to HIBOL s

that the incremental cost of system maintenance is greatly reduced.

Admittedly. the above scenario will not be actualized in the immediate future. However, the
technology needed to produce such a system should be available within the foreseeable future, as
indicated by the level of the current technology discussed in this thesis. The companent of the
system introduced in this paper represents an attempt to overcome the only evident theoretical
barrier. Now that this component has been shown feasible, it should be possible to resclve the
remaining difficulties by further research and a lot of hard work in the form of some excellent
engineering. The obvious merits of the production of such a system should make the effort
waorthwhile.

1.2 System Overview

Figure 1 is a schematic representation of the entire systein. First, a surface plan is extracted
from the raw COBOL code. The surface plan is then analyzed in terms of Plan Building Methods
(PBMs). The analyzed plan is then translated into a valid HIBOL program. From this HIBOL program,
a new COBOL program can be produced. The process that translates an analyzed plan into a HIBOL
program is the novel component of the system.

The first process extracts a surface ptan from the raw COBOL code. A surface plan contains
all the information contained in the original code, but in a language independent form. It is a direct
abstraction of the control and data flow in the original program. Enough informa‘ on is explicit in the
surtface ptan that it is theoretically possible to execute it. The original notion of a plan was developed
by Rich and Shrobe [25]. The detailed structure of a surface plan was developed by Waters as part of
his PhD research [31,32]. Burke and Walters have written a program that produces surface plans for
COBOL programs.

The real interest in the surface plan repres..ni1tion of the COBOL program lies in the fact that
it can be automatically analyzed further in terms of PBMs. The PBMSs, the type and farm of which

were developed by Waters [31,32], are a small set of wall defined control and data flow structures into

Gregory G. Faust - 11 Introduction

Fig. 1. SATCH Overview

ANALYZED TRANSLATION HIBOL
PLAN PROGRAM
ANALYSIS
SURFACE CODE
PLAN GENERATION
PLAN
EXTRACTION
coBoL CoBOL
PROGRAM PROGRAM

which programs can be anaiyzed. He has implemented a program that produces an analyzed plan
from a surface plan.

The next component of the system embodies the current research. It is responsible for the
“translation of the analyzed plan for the COBOL program into a HIBOL program that performs the
same data processing fuinction. It is intended to produce HIBOL code that faithfully embodies the
original functional specification implicitly contained in the COBOL program.

Once the HIBOL is produced, it is used as input to a code generator. The target language
can be any conventicnal high level language such as COBOL or PL/1. Currently, PL/1 can be
produced from HIBOL by the use of an automatic programming system called PROTOSYSTEM | [27].
There are some problems with the unconstrained use of PROTOSYSTEM | to produce PL/1 from
HIBOL. Within the current scenario, however, the system can be constrained to avoid these
difficulties. It would be relatively straightforward to reimplement the portion of the PROTOSYSTEM |
which produces the target language syntax so that COBOL could be produced instead of PL/1.

It must be stressed that this thesis should be viewed as a feasibility study. The major thrust of
this thesis is to show that it is possible to produce HIBOL from COBOL with very little human
intervention using technology that is either currently available or which should become available in

the foreseeable future. It is not the intention of this thesis to present a final solution to the problem of
COBOL. to HIBOL translation.

Introduction 12 - Gregory G. Faust

1.3 Related Work

There have been three general approaches to the elimination of the software maintenance
) crisis. First, many attempts have been made to reduce the maintenance burden through the creation
of more structured and constrained programming languages [15.35] that are intended to facilitate the
writing of more correct programs. A second approach has been to design languages in which the
program is written in a form that resembles functional specifications for the program. and then have a

system automatically produce the actual code for the program. Many of these lahguages fall into the

category of the so called "very high level” languages {7.8.27). A third approach has been to design
interactive systems in which the programmer and the system assist one another in the design of a
program [4,6,16,25].

The first approach. constrained programming languages, has the advantage that once a
program is written that is accepted by the compiler for the language, it has a higher probability of
executing correctly. This reduces the need for maintenance aimed at assuring that the program
operates according to the functional specifications. It does nothing to reduce the maintenance
required when the functional specifications are changed. The second approach. very high level
languages, has the advantage that the resultant programs are easier to maintain when the functional
specifications change. This is a result of the fact that the programs reprasent the functional
specifications in a more stiaightiorward and therefore more perspicuous manner. The last approach,

interactive systems, reduces both types of mainlenance because the interactive system used to
produce the software can be employed for its maintenance as well.

Unfortunately, though all of these approaches can be used to reduce the cost of
maintenance of software systems that are implemented using them, they cannot be used to reduce
the maintenance of preexisting software systems. The system described in this document, SATCH, is
aimed at the reduction of the cost of maintaining existing software.

The reason that these approaches cannot be used to reduce the maintenance of existing
software is that they attempt to automatically translate increasingly high level program descriptions
into some lower level description. They do not attempt to translate from lower level languages to
higher level ones. To my knowledge, the work of Rich, Waters, and the other members of the
Programmer Apprentice Group at MIT [25,31,32] is the only effort that has been made to date to
automatically produce any type of an abstraction from an existing program. It is this work that is the
theoretical foundation of the SATCH system.

Some work has been done at the University of Texas at Austin by John Hartman [9] in an
attempt to provide a methodalogy for restructuring COBOL programs into abstract data modules.
Such a methodology could be applied by programmers to restructure existing COBOL programs prior

S St ————r— . ..
., & .
P i i 1 PEPRY W T S S WA Y j

- - e —————

Gregory G. Faust 13- Introduction

to performing maintenance on them thereby reducing maintenance costs for those cases in which the
meathodology is applicable. The goals of the work by Hartman ditfer from the goals of this thesis in
that Hartman's methodology is designed to be applied by a person, while we wish to abstract from an
existing program via a machine. Perhaps, through further research. his methodology could be made
precise enough to be automated. in any case, a HIBOL program is easier to maintain than a
restructured COBOL program for the same computation.

Within the data processing community. several systems have been designed to produce

COBOL from some "higher level" language based on the notion of stereotyped operations in COBOL

* [5.34] None of them, however. are in the form of specification languages: rather. they are essentially
macro packages or structured preprocessors. One of these, MetaCOBOL [2]. can be used to
translate from a COBOL program written to be executed on one vendor's machine into a COBOL

program that can be run on another vendor's machine. This is merely a syntactic change, however,
and does not involve either abstraction or non-trivial control or data fiow alterations.

Another project in language to language transiation was recently completed by Kent Pitman
at MIT [23]. He wrote a program to translate FORTRAN programs into LISP. The translation is done
in two steps. First, the FORTRAN is translated into a LISP form in which DO loops and other standard
FORTRAN constructs are expressed as LISP macros. In the second nhase. the macros are expanded
into an interpretable and/or compilable form. The two step process has the advantage that the form
caontaining the macros is somewhat maintainable. while the expanded form is much less so. Still, in

Pitman’'s project, maintainability (and therefore readability) of the resultant code was only a
secondary goal. while the maintainability of the HIBOL produced from a COBOL program was a major
goal of the research described in this thesis. A more important distinction is that the FORTRAN to
LISP translation is done almost entirely on a syntactic basis, while the COBOL to HIBOL translation is
not.

1.4 Example Programs and Their Translations

This section presents four COBOL programs and the corresponding HIBOL programs
generated by the current implementation of the SATCH system. Two of these exampies, DBINIT and
LOC-LIST, are programs taken from running software systems currently in use in the data processing
community. Although the reader is not expected to understand the programs at this point, they are
included here to give the reader a feel for the task at hand. In particular, note the large compression
that takes place, especially in the transfation of the PROCEDURE DIVISION of a COBOL program into
the COMPUTATION DIVISION of the corresponding HIBOL program. These examples will be referred
to throughout the remainder of the document. The reader is invited to turn back to these listings

wher ever it seems appropriate to do so.

Introduction 14 - Gregory G Faust

Fig. 2. COBOL Program for PAYROLL

ENVIRONMENT DIVISION.

CONt IGURATION SECTION.

INPUT-OUTPUT SECTION.

F1LE-CONTROL .
SELEC1 HOURLY-WAGE-IN ASSIGN 10 DA-2301-S-HWI.
SELECT GROSS-PAY-QUT ASSIGN TOQ DA-2301-S-GPO.
SELLCT EMPLOYFE-COUNT-OUT ASSIGN 10 DA-2301-S-ECO.
SELLCT TOTAL-GROSS-PAY-0UI ASSIGN TO DA-2301-S-T1GPO.

DATA DIVISION.
FILF SECTION.
fD hourly-wage-in
LABEL RCCORD IS OMITTED
DATA RECORD IS hourly-wage-rec.
01 hourly-wage-rec. -
02 employee-number PICTURE IS 9(9).
02 hourly-wage PICTURE IS 999v99.
fD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.
01 gross-pay-rec.
: 02 employee-aumber PICTURE IS 9(9).
! 02 gross-pay PICTURE 1S 999v99.
! FD employee-count-out
LABEL RECORD [S OMITTED
DATA RECORD IS employee-count-rec.
0! employee-count-rec.
02 employee-count PICTURE IS 9(8).
FD total-gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.
01 total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)v99.

PROCEDURE DIVISION.
initialization SECTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.
OPEN INPUT hourly-wage-in.
OPEN OUTPUT gross-pay-out.
mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-job.
MOVE employee-number OF hourly-wage-rec
T0 employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
! ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
GO 10 mainline.
] end-of-job SECTION.
CLOSE hourly-wage-in.
CLOSf gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE employee-count-rec.
CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
. CLOSE total-gross-pay-out.
STOP RUN.

— . i

Gregory G Faust 15 - Introduction

Fig. 3. RIBOL Program for PAYROLL

DATA DIVISION

KtY SICIION
KEY EMPLOYEE NUMBER
CHLD vk IS NUMBER
FIRED LENGIH IS 9

INPUT SECTION
FLEE HOURLY -WAGE
Kt IS EMILOYEL NUMBER

outPur St Cr1oN
Lt GeoSS-PAY
REY IS tMPLOYEL -NUMBER
Flit tMPLOYEE COUNT
FItt ToTAL -GROSS-PAY

COMPUIALION DIVISION
TG1AL-GROSS-PAY 1S (SUM OF (HOURLY-WAGE * 40 .})
EMPLOYEL-COUNT IS (COUNT OF HOURLY-WAGE)

GROSS PAY IS (HOURLY-WAGE * 40)

e ———— —_.‘?—"v K - - - &
R L -t e ey,

Introduction 16 Giegory G Faust

Fig. 4. COBOL Program for PAYROLL2

Ehv HONMEHT DIVISION

ConvILuPatToN SECHION

INPUT GUlPUl SHCTION

FIEE LONTROL
SEEECT HOURL Y WAGLL PN ASSIGN TO 1JA-2301 S-HWI .
SEEECT HOUES WORKED PN ASSIGN 10 DA 2301 S-WH.
Stitul GROSS PAY U ASSIGN 1O DA 2301-S-GPO.
SELECT TOTAL GROSS FAY QUT ASSEGN 10 DA 2301-S-1GPO.

DATA DIVISION
tIty SECHION
tD nourly-wage-n
PAREE RELOND TS UMITIED
HaTE RELOMD 1S nourly wage rec

L1 nourty wage rec
"2 employee-number PICTURE 1S 9(9).
32 hourly-wage PICTURE 1S 999Vv99.

0 hours-worked-in
LABEt RECORD 1S OMITTED
DAVA RECORD 1S nhours-worked-rec
01 hours-aorved-rec
02 employes number PICTURE [S 9(9).
02 hours-worked PICITURE 1S 999.
D totat-gross-pay out
tABLL RECORD IS OMITTED
DATA RECORD IS total gross-pay-rec.
01 total grnss pay rec
02 total-gross- pay PICTURE 1S 9(7)vey
U qross-pay-out
LAKEE RECORD IS OMITILD
DATA HFCOMD JS gross pay-rec
71 gross-pay-rec
02 wmpioyee-number PICTURE IS 9(9)
02 gross pay PICTURE IS 999Ve9
WORK ING STOKAG: SHCTION
77 end-of -hours-1nd PICIURL Y VALUtL ZERO
88 end-of -hours VAIUL 1
77 end-of -waq« wnd FICTURt 9 VALUEL /ERO
88 end-of -wage VALUt 1
J7 compare-1nd PICIURE 9
88 wage eq-hours VALUtL 1.
88 wage-it-hours VALUE 2.
88 wage-yl-hours VALUt 3

PROCEDURE OIVISION
1nytralizatron SECTION.
MOVE 7tRO T0 total-gross-pay
OPEN INPUT hours worked 1n
hourly wage n
OUTPUT gross pay-out
PIRIORM read-wage
PLRIORM read-hours
mainline SECTION
It end-of wage OR and-of -hours THEN GO '0 end-of-job.
PERFORM compare
It wage eq hours THEN "ERIORM wage eq-hours-proc.
1t wage 1t hours THEN PERIORM wage 1t hours-proc.
It wage gt-hours THEN PERIORM wage gt hours-proc.
GO 10 mainline
read-wage.
READ hourly-wage n AT END MOVE 1 (0 end of -wage- ind.
read-hours.

READ hours-worked 1n Al END MOVE 1 10 end of hours ind.

Gregory G. Faust 17 -

Fig. 4. COBOL Program for PAYROLL?2 (CONTINUED)

compare
If employee-number OF hourly-wage-rec
© employee number OF hours-worked-rec
THIN MOVE 3 10 compare-ind
tLSt It employee-number OF hourly-wage-rec
<« employee-number OF hours-worked-rec
IHEN MOVE 2 to compare-ind
tLSE MOVL 1 10 compare-ind.
wage-en-hours-proc
PERTIORM produce-output.
PERTORM read-wage.
PER{ORM read-hours.
wage-1t-hours-proc
PERFORM read-wage.
wage-gt hours - proc.
PERIORM read-hours.
produce -output
MOVt employee-number OF hourly-wage-rec
10 employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
end-of - job StCTION.
CLOSE hourly-wage-in.
C10St hours-worked-in.
CLCSt gross-pay-out.
OPtN OUIPUT total-gross-pay-out.
WRITL total -gross-pay-rec.
CLOSt total-gross-pay-out.
STOP RUN.

Introduction

Fig. 5. HIBOL Program for PAYROLL2

DATA DIVISION

KEY SECTION
KEY EMPLOYEE-NUMBER
tIELD TYPE IS NUMBER
fIELD LENGTH IS 9

INPUT SECTION
FILE HOURL Y-WAGE
KEY IS EMPLOYEE -NUMBER
FILE HOURS -WORKED
KiY IS EMPLOYEE -NUMBER

OUTPUT SECTION
FILE TOTAL-GROSS-PAY
FILL GROSS-PAY
KLY IS EMPLOYEE -NUMBER
COMPUTATION DIVISTON
TOTAL-GROSS-PAY [S (SUM OF (HOURIY-WAGE * HOURS-WORKED))

GROSS-PAY IS (HOURLY-WAGE ® HOURS-WORKED)

"T‘rt

Introduction 18

Fig. 6.

COBOL Program for DBINIT

[NVIRONMENT DIVISION
CONITCURAT 1ON SECITON
[NPUL-OUTPUT SECTION.
1Lt -CONTROL
SELECT CRADATE ASSIGN 10 UT S 1 CRADATE .
SELLCI CRADB ASSIGN 10 DA -1 CRADB
ACCISS 1S SLQUENTIAL
RECORD KEY IS CRADB RECORD-KEY.
DATA DIVISION.
F1LE SICIION.
fD CRADATE
LABLL RECORD 1S OMITTED
DATA RECORD 1S DATEREC.
01 DATIREC.
03 BILLING-PERIOD PICTURE X.
88 BEGINNING-NEW-PERIOD VALUE "1°.
FO CRADSB
IABEL RECORDS ARE STANDARD
RECORDING MODE 1S F
BLOCK CONTAINS 0 RICORDS
RICORD CONTAINS 44 CHARACTERS
DATA RECORD [S DBREC.
01 CRADBREC.
03 DELETE-OR-DATL-INDICATOR PICTURE X.
88 DATE-RICORD VALUE 'D".
88 RECORD-DELETED VALUE HIGH-VALUF .
03 CRADE-RECORD-KEY.
05 CRADB-DEPARTMENT PICTURE XX.
05 CRADE-EMP-CLASS PICTURE XX
95 CRADB -FMP-NG PICTURE X(5).
03 CRAGB-YID-HUUKRS PICIURE S9(4)V9.
03 CRADB-JTD-IOUKS PICIURE S9(4)V9.
03 CRADB-WLEK-HOUNS PICTURE S9(4)V9.
03 CRADB-WfEK-LABOR-COST PICTURF S9(5)V99
03 CRADB-PtRIOD-HOURS PICTURE S9(4)V9.
03 CRADB-PLRIOD-1ABOR-COST PICTURE S9(5)V9S.
WORKING-STORAGE SECTION.
77 END-OF-CRADB- INDICATOR PICTURE S9 VALUE ZERO.
88 tND-OF -CRADB VALUE 1
77 END-CRADATE-INDICATOR PICTURE S9 VALUE ZERO.
88 NO-CRADATE VALUE 1.

PROCEDURE DIVISION.
initialization SECTION.

OPEN INPUT CRADATE.

OPEN 1-0 CRADB.

READ CRADATE AT END MOVF +1 TO END-CRADATE-INDICATOR.

I[f NO-CRADATE THEN NEXT SENTFNCE

LLSE PERFORM control}-010 UNTIL END-OF-CRADB.

CLOSE CRADATE CRADB.

STOP RUN.
control-010.

PERFORM read-cradb-020.

IF END-Of -CRADB THLN NEXT SENTINCE

[LSt PERFORM initialize-030
PFRFORM rewrite-040.

read-cradb-020.

READ CRADB NEXT RECORD AT END MOVE +1 TO END-OF-CRADB-INDICATOR.

initialize-030.
MOVE ZEROES 10 CRADB-WFEK-HOURS CRADB-WEEK-1ABOR-COST.
I BEGINNING-NEW-PERIOD
THEN MOVE ZEROS 10 CRADG-PERIOD-HOURS
CRADB - PLRIOD -1 ABOR-COST.
rewrito-040.
REWRITE CRADBREC.

Greqory G Faust

—_——

-

Gregary G Faust -19. Introduction

Fig 7 HIBOL Program for DBINIT

DATA O1VISTON
REY O SEUTTUN
KNEY LBRADM EMP-NO
Patin TYype 1S STRING
FItt 1ENGIH IS 5
by CRADE-EMP-CLASS
FIEE0 TYPt 1S STRING
FLELD LENGTH IS 2
pEr CRADL - DEPARTMENT
Pletl tyet 1S SIRING
PIELD LENGIH IS 2
INPUT SECTION
FIeE Bl ING-PERIOD
Ve ettt re o BATE TNDICATOR
Rty ARE LPARE DEPARTMENT CRADB-EMP €1 ASS CRADB-EMP-NO
CTUE CRADE - YTD- HOURS
KEYS ARE CHADEG - UL PARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
PILE CRADB-JTD-HOURS
KEYS ARE CRADB OLPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
b1ttt CRADB-WEEX-HOURS
KEYS ARE CRADB-DEPARTMENT CRADG-EMP-CLASS CRADB-EMP-NO
FItt CRADB-WEER-1LABOR-COST
KEYS ARt CRADB-DULPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
FILE CRADB-PERIOD-HOURS
KEYS ARE CRADB-DIPARTMENT CRADB-EMP-CLASS CRADB-fMP-NO
FILE CRADB-PIRIOD-1 ABOR-COST
KEYS ARt CRADB-DLPARTIMENT CRADD-EMP-CLASS CRADB-EMP-NO
QUTPUT SECTION
FILE DELETE-OR-DATE - INDICATOR
KEYS ARt CRADB-DEPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
fILL LRADB-YTD-HOURS
KEYS ARE CRADB-DEPARTMENT CRADG-EMP-CLASS CRADB-EMP-NO
FILE CRADB-JTD-HOURS
KEYS ARE CRADB-UEPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
FILE CRADB-WELK-HOURS
KEYS ARE CRADB-DLPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
FILE CRADB-WEEK-LABOR-COSTY
KEYS AREL CRADL-DEPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
FILE CRADB-PERIQD-HQURS
KEYS ARE CRADB-DELPARTMINT CRADB-EMP-CLASS CRADB-EMP-NO
FILE CRADB-PERIOD-LABOR-COST
KEYS ARE CRADB-DEPARTMENT CRADB-EMP-CLASS CRADB-EMP-NO
COMPUTATION DIVISION

DELETE-OR-DATE-INDICATOR IS DELETE-OR-DATE~INDICATOR If (BILLING-PERIOD PRESENT)
CRADB-YTD-HOURS IS CRADB-YTD-HOURS IF (BILLING-PERIOD PRESENT)
CRADB-JTD-HOURS 1S CRADB-JTD-HOURS If (BILLING-PERIOD PRESENT)

CRADB-WEEK-HOURS IS O. IF ((BILLING-PERIOD PRESENT) AND o
((LAST PERION'S CRADB-WEEK-HOURS) PRESENT))

CRADB-WEEK-1ABOR-COST [S 0. If ((BILLING-PERIOD PRESENT) AND %
((LAST PERIOD'S CRACB-WEEK-LABOR-COST) PRESENT))

CRADB-PERIOD-HOURS IS
CRADB-PERTOU-HOURS T1F (NOT (BILLING-PERIOD = "1"))
ELSE 0. IF ((BITLING-PIRIOD = "1") AND
((LAST FPERIOD'S CRADB-PERIOD-HOURS) PRESENT))

CRADB PERIOD -1 ABOR-COST IS
CRADR PERIOD L ABOR-COST If (NOT (BILLING-PERIQD = "17))
FUSE G 18 ({(BILLING-PERIOD = "1°) AND
((LAST PERIOD'S CRADB-PLRIOD-1ABOR-COST) PPESENT)) *

- R) ‘
e -

Pty -
BN SR I

Introduction 20 -

Fig. 8. COBOL Program for LOC-LIST

{NVIRONMENT DIVISION.
CONY IGURATION SECTION
INPUT-QUIPUT SECTION.
ELLE-CONTROL .
SELECE L IB-TIN ASSIGN 10 LOCIN.
SEILCE L IB-TRANS ASSIGN 10 LOCIRANS.
SELLCT LIB-QUI ASSIGN TQO tOCOUT.
DATA DIVISION.
fFILY SECTION.
fD LIB-IN
LABEL RECORDS ARE OMITIED
DATA RLCORDS ARt LIBIN-REC.
01 LIBIN-REC.
02 IN-REC.
03 tOCAI10N-ONE PICIURE 99.
03 L{OCATION-TWO PICIURE 99.
03 LIB-BULLDING-NAML PICTURE X(35).
FD LIB-OUT
LABELL RECORDS ARE OMITTED
DATA RECORDS ARE LIBOUT-REC.
01 LIBOUT-REC.
02 OUT-REC.
03 LOCATION-ONE PICTURE 99.
03 LOCATION-TWO PICTURE 99.
03 BUILDING-NAME PICTURE X(35).
FO LIB-TRANS
LABLL RLCORDS ARE OMITTED
DATA RECORDS ARE LIBTRANS-REC.
01 LIBTRANS-REC.
02 DELETE-TND-IN PICIURE X.
02 TRANS-REC.
03 LOCATION-ONE PICIURE 99.
03 LOCATION-TWO PICTURE 99.
03 TRANS-BULLDING-NAME PICTURE X(35).
WORKING-STORAGE SECTION.
77 DELETE-IND PICTURE X VALUE SPACE.
88 DELETE-FLAG VALUE ‘D".
77 END-OF-LIB-IND PICTURE 9 VALUE ZERO.
88 END-OF-LIB VALUE 1.
77 END-OF-TRANS-IND PICTURE 9 VALUE ZERO.
88 END-Of -TRANS VALUE 1.
77 COMPARE-IND PICTURE 9 VALUE ZERO.
88 TRANS-EQ-LIB VALUE 1.
88 TRANS-LT-LIB VALUE 2.
88 TRANS-GT-LIB VALUE 3.
PROCEDURE DIVISION.
HOUSEKEEPING SECTION.
OPEN INPUT LIB-IN LIB-TRANS
OUTPUT LIB-OUT.
PERFORM READ-TRANSACTION.
PERFORM READ-LIBRARY.
MAINLINE .
If END-OF-TRANS THEN GO TO FINISH-LIB.
If END-QF-LIB THEN GO TO FINISH-TRANS.
PERFORM COMPARE.
IF TRANS [Q-L18 THEN PERFORM TRANS-EQ-LIB-PROC.
IF TRANS-LT-LIB THEN PERFORM TRANS-LT-LIB-PROC.
IF TRANS-GT-L18 THEN PERFORM TRANS-GT-L18-PROC.
PLIRFORM PRODUCE-QUTPUT.
GO 1O MAINLINE.
READ-LIBRARY.
READ LIB-IN AT END MOVE 1 TO END-OF-LIB-IND.
READ-TRANSACTION.

READ LIB-TRANS AT END MOVE 1 TO END-OF - TRANS-IND.

Gregory G. Faust

idee

da .

aiinmating

-~

Gregory G. Faust 221

Fig. 8. COBOL Proyram for LOC-LIST (CONTINUED)

COMPARE .
It tOCATION ONE OF TRANS-RiC
IHEN MOVE 3 10 COMPARI - IND

- 1OCATION-ONE

Introduction

0t [N-REC

t1St 1F tOCATION-ONE Ol TRANS-RIC < LOCAVTION-ONE OF IN-REC

THEN MOVE 2 10 COMPARE - INO
E1St 11 tOCAIION-TWO OF TRANS-REC
THEN MOVE 3 10 COMPARE-IND

» LOCATION-IWO OF IN-REC

£4St IF LOCATION-TWO Of TRANS-REC < LOCAIION-TWO OF IN-REC

THEN MOVE 2 10 COMPARE-IND
ELSE MOVE 1 10 COMPARE-IND.
TRANS-EQ-1 1B-PROC.
MOVE DELETE-IND-IN TO DYLETE-IND.
MOVE TRANS-RIC T0 OUI-REC.
PERFORM READ-1 IBRARY,
PERTORM RUAD-TRANSACTION.
TRANS-LT-LIB-PROC.
MOVE DOLETE-IND-IN TO OLLETE-IND.
MOVE TRANS-REC TO OUT-REC.
PERFTORM READ-TRANSACTION.
TRANS-GT-LIB-PROC.
MOVE IN-REC TO OUT-REC.
PLRFORM READ-LIBRARY.
PRODUCE -QUTPUT.
IF NOT DELETE-FLAG THEN WRITE LIBOUT-REC.
MOVE SPACE TO DELETE-IND.
FINISH-LIB.
IF END-OF-LIU THEN GO TO EQJ.
MOVE IN-REC 10 OQUT-REC.
PERFORM PRODUCE -QUTPUT.
PERFORM READ-LIBRARY.
GO TO FINISH-LIB.
FINISH-TRANS.
IF END-OF-TRANS THEN GO TO £0J.
MOVE OELETE-IND-IN TO DELETE-IND.
MOVE TRANS-RLC TO OUT-REC.
PERFORM PRCDUCE-QUTPUT.
PERFORM READ-TRANSACTION.
GO TO FINISH-TRANS.
EQJ.
CLOSE LIB-IN LIB-TRANS LIB-OUT.
STOP RUN.

Fig. 9. HIBOL Program for LOC-LIST

DATA DIVISION
KEY SECTIONM
KEY LOCATION-ONE
FIELD TYPE IS NUMBER
FILLD LENGTH IS 2
INPUT SECTION
FILE LIB-BUILDING-NAME
KEY IS LOCATION-ONE
FILE DELETE-IND-IN
KEY IS LOCATION-ONE
FILE TRANS-BUILDING-NAME
KEY IS LOCATION-ONE
QUTPUT SECTION
FILE BUILDING-NAME
KEY IS LOCATION-ONE
COMPUTATION DIVISION

BUILDING-NAME (S LIB-BUILDING-NAME IF (NOT (TRANS-BUILDING-NAME PRLSENT))

ELSE TRANS-BULLDING-NAME IF (NOT (DELLTE-IND-IN

ittt sz, A . Bt

«On))

- g

Introduction 22 - Greqgory G. Faust

1.5 Qutline of Remaining Chapters

The remainder of this document is broken inte six chapters. Chapters 2 and 3 give brief
introductions to COBOL and HIBOL. respectively. Chapter 4 provides an in-depth description of
analyzed plans. Chapter 5 discusses the current implementation of the portion of the system that
translates the analyzed plans into HIBOL. Chapter 6 discusses possible methods of improving and
expanding the translation process. Chapter 7 discusses the entire system from a more global
perspective and suggests directions for further research.

T U — — g - . ‘

Gregory G Faust

2. COBOL

Since COBOL is a very widely known language and references for COBOL abound. this
chapter wilt give the briefest possible introduction of those features of COBOL that must be
understood by the reader in order to comprehend the remainder of this document. Readers familiar
with COBOL are invited to skip all but the first section of this chapter. Readers who want further
information about COBOL are referred to {22] and [11].

COBOL (COmmon Business Oriented Language) is a high level programming language
designed by the Conterence On DAta SYstems Languages (CODASYL) for use in data processing
tasks. It now has severa! standard versions supported by the American National Standard Institute
(ANSI). The COBOL syntax used in this document does not exactly match any of the ANSI standards
or any particular vendor's syntax, all of which vary in minor ways. Instead, it follows a common

subset, and certain esoteric syntax requirements are ignored altogether.
2.1 Example Programs

A sample COBOL program is shown in Figure 10. This program, entitled "PAYROLL", will be
used for many examples throughout this document, and therefore should be understood by the
reader. To this end, a short discussion of the function performed by this program is appropriate.

PAYROLL is a relatively trivial program which might appear in a simple payroll system. It
uses a single input file called "HOURLY-WAGE-IN". HOURLY-WAGE-IN contains two fields,
"EMPLOYEE-NUMBER" and "HOURLY-WAGE". EMPLOYEE-NUMBER is the key field for this file. It
is a nine digit social security number that is used to specify which employee a given record in the file
is associated with. HOURLY-WAGE is the single data field that specifies the hourly wage earned by
the corresponding employee.

PAYROLL produces three output files. The first of these, GROSS-PAY-OUT, contains a
record for each record contained in HOURLY-WAGE-IN. GROSS-PAY-OUT has two fields:
EMPLOYEE-NUMBER and GROSS-PAY. EMPLOYEE-NUMBER is again the key field. GROSS-PAY is
a data field that contains the weekly gross pay earned by the employee. The program assumes all
employees work forty hours per week. The other two output files, EMPLOYEE-COUNT-OUT and
TOTAL-GROSS-PAY-OUT, each contain only a single record. Therefore, they have no key fields.
EMPLOYEE-COUNT-OUT has a single data field, EMPLOYEE-COUNT, which contains the number of
employee records processed by the program. TOTAL-GROSS-PAY-OUT also has a single data field,
TOTAL-GROSS-PAY, which contains the total gross pay earned by all the employees whose records

are processed by the program.

coBOL 24 - Coregory G faust

Fig. 10. COBOL Program for PAYROLL

IDENTIETCATION DIVISION.
PROGRAM-1D. PAYROLL.

AUTHOR. G. FAUST.

INSTALLATION, POP10.

DATE-WRITTEN. 2/20/80.

DATE-COMPILED. NEVER.

ENVIRONMENT DIVISION. ;

CONFIGURATION SECTION. S
i

INFUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.
SELECT EMPLOYEE-COUNT-0OUT ASSIGN TO DA-2301-S-ECO.
SELECT TOTAL-GROSS-PAY-QOUT ASSIGN TO DA-2301-S5-TGPO.

DATA DIVISION.
FILE SECTION.

FD hourly-wage-in
LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.
01 hourly-wage-rec.
02 employee-number PICTURE 1S 9(9).
02 hourly-wage PICTURE IS 999Vv99.

FD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.
01 gross-pay-rec.
02 employee-number PICTURE IS 9(9).
02 gross-pay PICTURE IS 999v39.

FD employee-count-out
LABEL RECORD IS OMITTED
DATA RECORD 1S employee-count-rec.
01 employee-count-rec.
02 employee-count PICTURE IS 9(6).

FD total-gross-pay-out
LABEL RECORD IS OMITTED '
DATA RECORD IS total-gross-pay-rec.

01 total-gross-pay-rec.

02 total-gross-pay PICTURE IS 9(7)Vv9s.

Gregory G, Faust 25 . COBOL

Fig. 10. COBOL Program for PAYROLL (CONTINUED)

FROCEDURE DIVISION.
imnittialization SCCTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERO 10 employee-count.
OPEN INPUT hourly-wage-in.
OPEN OUTPUT gross-pay-out.
mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-job.
MOVE employee-number OF hourly-wage-rec
TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay Tu total-gross-pay.
WRITE gross-pay-rec.
GO 70 mainline.
end-of-job SECTION.
CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OQUTPUT employee-count-out.
WRITE employee-count-rec.
CLOSE employee-count-out.
OPEN OQUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.
STOP RUN.

COBOL programs for the other examples used in this document (PAYROLL2, DBINIT, and
LOC-LIST) can be found in Section 1.4. The second example, PAYROLL2, is an expanded version ot
PAYROLL which eliminates the assumption that every employee works forty hours a week. Instead,
HOURS-WORKED, a data field in the HOURS-WORKED-IN file, is used in the computation of GROSS.-

PAY. PAYROLL2 is an important test case because it includes a computation that uses data fields
from two ditferent files.

The third program, DBINIT, is a simple data base initialization program which uses two input
files. The first of these files, CRADATE, has only a single record with a single data field. This
singleton piece of information, called "BILLING-PERIOD", controls the initialization of certain data
fields in the second file. The second file, CRADB, is an indexed file that is accessed sequentially.
Note that the program does nothing at all if CRADATE is initially empty; i.e. if the value of BILLING-
PERIOD is unknown. This program was included because of its use of REWRITE to perform a file
update operation.

T

CoBOL 26 - Gregory G Faust
The tourth program. LOC-LIST is an example of a file update program using a transaction
P file. The tirst input file. LIB-IN. 1s a hbrary file containmy buldding names associated with location

; code key fields. The second input file. LIB- TRANS. is the transaction file used to update the library.
The updated library i1s output into the only output file. LIB-OUT. The updated library will contain a
record for every set of key values that appears in only one of the two input files. In addition. if a set of

i key values appears in both input files. then the data values in the updated library file are taken from
the transactior file. except when the first field of the transaction file. called "DELETE IND-IN",

contains a "D" (mnemonic for delete) in which case no record will appear in the updated library file
. for that set of key values. This program is an important example becauss 1t performs a file merge

operation.

As can be seen in Figure 10. a COBOL program is broken up into four main divisions:
IDENTIFICATION. ENVIRONMENT. DATA. and PROCEDURE. The IDENTIFICATION DIVISION s
primarily for documentation of the program. and contains no information that is pertinent to the
current discussion. The only information that 1s contained in the ENVIRONMENT DIVISION that s
pertinent is the information concerning file organizations and file access methods (None of this
information is shown in Figure 10 because all files accessed by this program take the default value for
these two parameters.) The DATA DIVISION contains information about the structure of files in terms
of the data tields that comprise a record in those files. as well as information about all other variables
used within the program. The PROCEDURE DIVISION contains a procedural representation of the
algorithm used to implement the desired computation.

2.2 ENVIRONMENT DIVISION

For the purposes of this document, there are two possible organizations for a file that is used
within a COBOL program; sequential and indexed. A sequential file can either originate from a
magnetic tape, or from a random access device such as a magnetic disk. In either case, the feature of
a fite that makes it a sequential file is that the records in that file are stored (or can be viewed as being
stored) in contiguous locations on a memory device. Whether for input or output, they can only be
3 processed in that order.

An indexed file is broken into two components; the data itself, and an indexed list of pointers
into that data. How each of these components is actually stored on a memory device is not important.
The important point is that the data can be accessed sequentially, as is done with a sequential file, or
randomly using an index to point to a particular record. The method used to access records in an

indexed file is, appropriately, called the "access method".

Gregory G. Faust -27 - COBOL

The hile orgamization for each hle thatis accessed by a COBOL program is specified in the

.! ENVIRONIMENT DIVISION. with the default bemg sequential organization. tn addition, if the file is
% specified to be organized as an indexed file. the RCECORD KEY must be specified as well as the
' access method for that file. The RECORD KEY is used to specify the portion of the record structure

that contains the key fields for that file. (The record structure for a file will be discussed below). If the
access method for an indexed file is random access. the NOMINAL KEY must also be specified. The
NOMINAL KEY is a storage area used in the PROCEDURE DIVISION of the program to contain the
index which specifies the location in the file that should be accessed by the next INPUT/QUTPUT

operation.
2.3 DATA DIVISION

The DATA DIVISION of a COBOL program is broken into two sections; FILE and WOPRKING-
STORAGE. The FILE SECTION contains, for each file that will be accessed by the program,
information about the structure of an individual record within that file. The WORKING-STORAGE
SECTION contains information about all other variables and storage areas used during the execution
of the program.

Associated with each file accessed by a COBOL program is a buffer area. All
INPUT/QUTPUT operations performed on a file place information in, or take information from, that
buffer area. The buffer area for a file is given a structure, called the "buffer-structure” or “record

structure”, in the FILE SECTION which specifies the fields that are contained within a record in that
file. Delinitions of the record structures {or the files accessed by PAYROLL are shown in Figure 10. A
record structure can be an arbitrary tree structure. The level of a particular structure element is
indicated by the number that precedes the name given to that structure element. Lower numbers are
closer to the root of the tree. For example, consider the structure definition for the buffer associated
with HOURLY-WAGE-IN. HOURLY-WAGE-REC is the name given to the structure element that
corresponds to the entire buffer area. The leaves of the tree are the individual fields in the file. In this
example, they are EMPLOYEE-NUMBER and HOURLY -WAGE.

Fig. 11. PICTURE Elements

PICTURE ELEMENT “EANING
9 Decimal Digit
v Implied Decimal Point
X Any ASCII Character
(num) Repeat Count: The preceding PICTURE element

is repeated num times.

COBOL 28 Gregory G Faust

Each teaf elementin the structure s given a PICTURE clause The: PICTURE clause specifies
the data type and tength of the particular hield by giving a picture of the typical value stored in that
field Figure 11 gives a hst of common picture elements and their meaning An examination of
Figures 10 and 11 will reveal. for example. that EMPLOYEE NUMBER s a nine digit integer and
HOURLY-WAGE is a five digit number with two of the digits to the nght of the decimal point.

The WORKING-STORAGE SECTION defines all data areas used during the execution of the
program except those corresponding to file buffer areas. Data areas defined in WORKING-STORAGE
can have tree structures exactly like the structures associated with file butfers. In addition. there are
two variable types that are unique to WORKING-STORAGE: 77 variables. and 88 variables (so named
because of the numbers used to designate them). A 77 variable is a simple variable with no structure
whose type and length is specified in a PICTURE clause.

An 88 variable is used to set up a flag. It does not define an additional storage area, but
provides a named way to refer to a predicate; one that decides whether or not a given area contains a
particular value. For example. consider the portion of WORKING-STORAGE defined in Figure 12.
Initially, the COMPARE-FLAG-AREA contains a 0. so specified by the VALUE clause which can be
used anywhere within the WORKING-STORAGE SECTION to initialize storage areas. The two 88
variables. NEGATIVE and NON-NECATIVE, are used in the PROCEDURE DIVISION to test if that area
currently contains a 1 or a 2. When the area contains a 1, NEGATIVE will evaluate to TRUE.
Otherwise it will evaluate to FALSE. Similarly, NON-NEGATIVE wili evaluate to TRUE when the area
contains a 2, and to FALSE otherwise. Initially, they will both evaluate to FALSE (since the area
contains a Q) and will continue to do so until a 1 or 2 is moved into COMPARE-FLAG-AREA. In order
to make all this work, a COBOL program that inctudes the definition of COMPARE-FLAG-AREA shown
in Figure 12 may well contain a statement of the form

IF variable < 0 THEN MOVE 1 TO COMPARE-FLAG-AREA

ELSE MOVE 2 TO COMPARE-FLAG-AREA.
somewhere within the PROCEDURE DIVISION. The reader should note that the inclusion of 88
variables in COBOL makes using flags trivial, and they will, therefore, appear often in COBOL
programs. Any system that hopes to translate COBOL programs needs to be able to handle flags in a
reasonable fashion.

Fig. 12. Example Use of 88 Variables

77 COMPARE-FLAG-AREA PICTURE 9 VALUL ZERO.
88 NEGATIVE VALUE 1,
88 NON-NEGATIVE VALUE 2.

Gregory G. Faust 29 - COBOL

2.4 PROCEDURE DIVISION

The PROCEDURE DIVISION contains a procedural representation of the particular algonithm
used to implement the desired computation For the purposes of this document. it s only necessary

to understand a small subset of the possible statement forms that can appear in the PROCEDURE
DIVISION.

A variable name used in the PROCEDURE DIVISION must provide a unique retference to a
data storage area. Names thai correspond to 77 and 88 variables must always be unique Names that
refer to substructures. however. may not be unique. To eliminate this difficulty. COBOL supplies the
OF clause to be used in references to data areas in structures. For example. suppose that two
structures both contain substructure data areas associated with the same name. Then a unique
reference to the substructure area in the first structure is:

substructure-name OF structure-name-1
while a unique reference to the substructure area in the second structure is:

substructure-name OF structure-name-2

There are four main statements that affect control flow within a COBOL program; STOP RUN,
GO TO, IF-THEN-ELSE, and PERFORM. Three of them are very simple and are shown in Figure 13.
(The square brackets are used to signify an optional parameter). The STOP RUN statement
terminates execution of the program. The COBOL GO TO and IF-THEN-ELSE constructs are no

different from their counterparts used in procedural languages in general and need no further
explanation,

Fig. 13. Simple Statements that Affect Control Flow
STOP RUN
GO 70 7abel

IF predicate THEN imperative-statement-1
[ELSE imperative-statement-2)

Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Cali

PERFORM paragraph-one [THROUGH paragraph-two]

i———-———-———-’

JCOBOL 30 ceeegory (0 Faust

The PERTORM ctatement hiowesver a4 uroques 1o 00 It used o amiplement two
Aifteaant constructs o ooy construct and g weak form of Labroutine call Thee o ontas of the
PERFORM statement when used as a subroutine call s shown n Figure 14 In COBOL - ¢ paragraph

1s att the code: starting at a label. which s used as the paragraph name and continuing up to but not
including the next fabel The PERFORM stitement in Figure 14 indicates that control should be
passed to the label sigmfied by paragraph- one and that processing will continue either to the end of
that paragraph, or to the end of paragraph-two if the optional THROUGH clause is used In either
case control s returned to the statement following the PERFORM after the above stuted processing
1s completed This 1s a weak form of subroutine call because no arguments are passed. the

paragraphs that are processed use only global values and recursion is not allowed

Used as a loop construct, the PERFORM statement has three possible forms as shown in
Figure 15. These forms should be self explanatory. Note that these forms allow tor both the indexed
loop construct and the DO-WHILE construct.

COBOL has a number ol statements used to manipulate data. The data manipulation
statements used in this document are shown in Figure 16. In the MULTIPLY and DIVIDE statements
using the BY clause, if the GIVING clause is omitted the result of the operation is placed in
operand-1! If the GIVING clause is included, both operands remain as they were, and the result is
placed into result. The DIVIDE statement using the INTO clause is the same as the DIVIDE
statement using the BY clause except that the operands are reversed. In the ADD and SUBTRACT

Fig. 15. PERFORM Syntax when Used as a Loop Construct

PERFORM paragraph-one [THROUGH paragraph-two] integer TIMES
PERFORM paragraph-one [THROUGH paragraph-two] UNTIL predicate
PERFORM paragraph-one [THROUGH paragraph-two]

VARYING variable FROM integer-1 TO integer-2
BY integer-3 UNTIL predicate

Fig. 16. Data Manipulation Statements

MULTIPLY operand-1 BY operand-2 {GIVING result]
DIVIDE operand-1 BY operand-2 [GIVING result]
DIVIDE operand-1 INTO operand-2 [GIVING result]
ADD operand-1 TO operand-2 [GIVING result]
SUBTRACT operand-1 FROM operand-2 [GIVING result]
MOVE source TO destination

*"""""""""""""llIl!IllllIllllI!IlIlIlIIIIIIIIIIIIIIIIIIIIII.!

Gregony, G Faust 31 COBOL
stateme-nt b the GIVING Clause s onntted the resuttss placetinto uperdnd 2 the GIVING clause

1 15 gt both sporaiely temam as they were and the result 1s placed into result The MOVE
'
1

statement s used to move mformation from one data area into another.

Statements used to manipulate files are shown in Figure 17. The OPEN statement is used to
| prepare files to be accessed There are three possible access types. INPUT, QUTPUT. and [-O. A file
opened for INPUT 1s read only. A file opened for OUTPUT is write only. A file opened for I-O can be

read from and wntten to. The CLOSE statement 1s used to release a file when it is no longer needed.

The three different forms of the READ stutement are used to access information in different
types of tites. The first form is used to access files that have a sequential file organization. The
second form 15 used to access files that have an indexed file organization when the access method is
random access. The third form is used to access files that have an indexed file organization when the
access method is sequential access. The AT END and INVALID KEY clauses specify that the
imperative-statement should be performed when the requested record cannot be read from the
file.

The WRITE statement is used to place information into a file. It can be used on any of the file
types. When applied to a sequential file, the WRITE statement always appends records to the end of
the file. When used on an indexed file accessed randomly, it writes a record at the place in the file
designated by the NOMINAL KEY. When used on an indexed file accessed sequentially, it writes over

the record most recently read. The REWRITE statement can only be used on files opened with an
io-type of 1-O. It always writes over the record most recently accessed Note that (for esoteric
reasons not discussed here) a READ statement takes a file-name as its argument while a WRITE or
REWRITE statement takes a file-buffer-structure-name as its argument.

Fig. 17. File Manipulation Statements

OPEN io-type file-name-1 [file-name-2 . . .
[io-type file-name-3 [file-name-4 . .

]
]
Where io-type is one of: INPUT, OUTPUT, or I-

|

0 .
CLOSE file-name-1 [file-name-2 . . .] k
READ file-name AT END imperative-statement]

READ file-name INVALID KEY imperative-statement
READ file-name NEXT RECORD AT END imperative-statement

WRITE file-buffer-structure-name
REWRITE file-buffer-structure-name [INVALID KEY imperative-statement]

HIBOL Caegory Goaust

3. HIBOL

HIBOL 1s a very high level single assignment programming languag-- designed for expressing
data processing application programs in such a way that the form of the program ctos:ly resembles
functional specifications for the application. It 1s intended to be automatically transiated into a
conventional high level language such as PL/1 or COBOL wia an automatic programming system
called PROTOSYSTEM | [27]. It is a descriptive rather than a procedural lunguage: the exact
procedures used to effect the actual processing are not explicitly representzd. A HIBNOL program for
the PAYROLL example is presented in Figure 18.

The kernel idea tor PROTOSYSTEM | was initially conceved by William Martin {17} Martin
and Ruth [27,18.8.28] then developed PROTOSYSTEM | (which produces compilable PL/1 programs
and the necessary |BM JCL from HIBOL} with the help of others: most notably Baron. Burke. Kornfeld,
Morgenstern, and Thomas [3,14,21,30}.

HIBOL can be viewed as a language in which algorithms are expressed in terms of
computations performed on streams. It is important to keep this viewpoint in mind for two reasons.
First, it wili aid in the understanding of HIBOL primitives and how they interact. Second. it will be used
i) a later chapter to relate HIBOL to other programming languages.

The basic elements of description of a data processing application can be broken into two
categories: those that describe data and those that describe operations performed on that data In
HIBOL, the descriptive elements are correspondingly divided into a DATA DIVISION and a
COMPUTATION DIVISION. The next two sections of this chapter are similarly divided.

3.1 DATA DIVISION

HIBOL uses a single data type called a "flow". A flow is a set of related data items each of
which is associated with a unique multi-component index. Each index component is called a "key".
The set of all possible sets of values for the keys of a particular flow is called the “universal key
space"” of that flow. The set of sets of key values that actually appear in a given instance of a flow is
called the "actual key space" for that instance of the flow. For example, if a flow has a single key that
is a four digit integer representing a client identification number, then the cardinality of the universal
key space for that flow is 10,000, while the cardinality of the actual key space for that flow is the
number of clients that actually exist and might be as low as zero or as high as 10,000.

Each element of a flow has a set of key values and a single data value. The typical data
processing concept of a file record containing a set of key values and muitiple data values (such as a

COBOL file record) is abstracted in HIBOL as separate flow elements from different flows, all of which

et

Gregony G oFaust 33 HIBOL

B thes Same oot of vy values et cac b of whie b b onee of the data values, Thae miethod of
teucnibing thee organization of sety of data catues o oot the togical organization of the data
from the physical orgamzation of the data the semantics of HIBOLU descnte- the logical organization

while leaving the physical orgamzation unspecihed

A named flow 1s called a “"data set” Data sets are divided into three categories. input.
output and vanable Input and output data sets define the nputs to and outputs from the
computation represented by a HIBOL program The vanable data sets are used for intermediate

values formed in the computation

The DATA DIVISION at the top of the HIBOL program for PAYROLL shown in Figure 18 gives
an example of the specification of data sets The hrst part of the DATA DIVISION s the KEY
SECTION. In this section. each key that 1s going to be used in the specihication of any of the data sets
must be specified along with its field type and length In this example. EMPLOYEE NUMBER s the

sole key and 1s an integer with a field length of nine (a social security number).

The next two sections of the DATA DIVISION specify the input and output data sets that are
going to be used in the program (see Figure 18) Each data set specification is preceded by the
keyword "FILE" The HOURLY WAGE. and GROSS-PAY data sets both use the key EMPLOYEE-
NUMBER. while TOTAL GROSS-PAY and EMPLOYEE -COUNT do not have any key at all. In this
latter case, the cardinality of the unwversal key space is one, and the actual key space will contain at
most a singleton value. If the PAYROLL example used any variable data-sets. a VARIABLE SECTION,
identical in format to the INPUT and OUTPUT sections. would appear in the DATA DIVISION right
after the INPUT SECTION.

3.2 COMPUTATION DIVISION

Following the DATA DIVISION is the COMPUTATION DIVISION. The COMPUTATION
DIVISION contains a sing/e definition for each output and variable data-set. Each data-set definition
is of the form

data-set-name IS flow-expression

The flow expression on the right hand side of a data-set definition must have the same universal key
space as the data-set referred to by the name on the left hand side. The semantics of a flow
expression dictate that there is an implicit iteration over all values of the actual key space of the flow

represented by that expression.

HIBOL

Fig. 18. HIBOL Program for PAYROLL

DATA DIVISION

KEY SECTION
KEY EMPLOYELE -NUMBER
FIELD TYPE IS NUMBER
FIELD LENGTH IS 9

INPUT SECTION

FILE HOUR!Y-WAGE
KEy IS EMPLOYLE-NUMBER

ourPutT SECTION

FILE GROSS-PAY
KEY IS EMPLOYEE-NUMBER

FILE EMPLOYEE-COUNT
FILE TOTAL-GROSS-PAY

COMPUTATION DIVISION

34

TOTAL-GROSS-PAY IS (SUM OF (HOURLY-WAGE * 40.))

tEMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

GROSS-PAY IS (HOURLY-WAGE * 40.)

Gregory G Faust

Fig. 19. HIBOL Syntax for Conditional Expressions

data-set-name IS

flow-expression-1 IF predicate-1
[ELSE flow-expression-2 If predicate-2].

[ELSE flow-expression-n]

There 1s only one statement form in HIBOL that can cause conditional computation. This

statement form s shown in Figure 19. The syntax of this form resembiles an IF- THEN-ELSE, but it has

the semantics of a CASE construct. Since data-set-name can be given the value corresponding to

the flow expression of any of the clauses. those flow expressions must all express flows that have the

same uriversal key space as the data set referred to by data-set-name

The conditional form is

defined over the union of the actual key spaces of the flow expressions used in the clauses When

such a conditional form s evaluated for a particular index value in that union. the predicates are

Gregory G. Faust

evaluated in order. starting wath predicate-1 As soon as an, of them evaluates to TRUE. the
conditional form is given the value of the flow e pression corresponding to it for that set of key values,
If none of the predicates evaluates to TRUE and the optiona! final ELSE clause is included. the
conditional form is given the vaiue of the final flow expression If none of the predicates evaluates to
TRUE and the optional final ELSE clause i1s not included. the value of the conditional form is

undefined and the corresponding index is excluded from the actual key space of the resultant flow.

For example. consider the HIBOL program fragment shown in Figure 20 In this example. the
output data set PROFITABLE -DEPARTMENT containg an element for every element in the input
data-set. DEPARTMENT BALANCE. which has a balance greater than zero. The elements in the
actual key space of DEPARTMENT-BALANCE that have a balance less than or equal to zero are
excluded from the actual key space of PROFITABLE -DEPARTMENT.

Flow expressions can contain the usual arithmetic operations appearing in any programming
language. The syntax for such arithmetic operators. shown in Figure 21. is exactly what one might
expect. The semantics of such expressions. however. is quite different from thie semantics of similar

looking expressions in other languages. The two flow expressions used as operands to the arithmetic

Fig. 20. HIBOL Program Fragment with Conditional Form
DATA DIVISION
INPUT SECTION

FILE DEPARTMENT-BALANCE
KEY IS DIPARTMENT-NUMBER

OUTPUT SECTION

FILE PROFITABLE-DEPARTMENT
KEY IS DEPARTMENT-NUMBER

COMPUTATION DIVISION

PROFITABLE-DEPARTMENT IS DEPARTMENT-BALANCEL 1Ff DtPARTMENT-BALANCE > 0.

Fig. 21. HIBOL Syntax for Arithmetic Operators

flow-expression-1 * filow-expression-2
flow expression-1 / flow-expression-2
flow-expression-1 + flow-expression-2
flow-expression-1 - flow-expression-2

i

N ey % e SRR

HIBOL 36 - (ireeyory G. Faust

operators must have the same universal key space 0 the case of the maltiphcative operatars, the
actual key space of the resultant flow 1s the intersection of the actual key spaces of the two operands.
in the case of the additive operators. the actual key space of the resultant Hlow 1s the unmion of the
actual key spaces of the operands To understand this in more detail the concept of a PRESENT

predicate must be intrc Juced.

A PRESENT predicate. apphed to a tlow. evaluates to TRUE for all index values that are
elements of the actual key space of that flow. and to FALSE for all other possible index values for that

flow So. for example. the predicate
HOURLY-WAGE PRESENT

1s TRUE for all values of the key (EMPLOYEE NUMBER) which correspond to actual employees, and
FALSE for all other possible employee numbers.

Returning to the discussion of arithmetic operators. the semantics of flow expressions
involving arithmetic operators are easier to understand in the form into which they are expanded by
he automatic programming system. Examples are shown in Figure 22. It should be clear that the
expanded expressions do produce the desired intersection and union of the actual key spaces. In
either case. elements in the resultant flow are given key values that correspond to the key values of

the elements in the operand flows from which thev are produced.

Arnithmetic operators can be used with operand flows that are not simply data-sets. In a case
in which one of the operand flows is a constant, the resultant flow has the same actual key space as
the non-constant operand flow. In a case in which either of the operand flows is some flow

Fig. 22. Expanded Forms of Arithmetic Flow Expressions

data-set-name-1 1S data-set-name-2 * data-set-pame-3
is expanded into:

data-set-name-1 |S data-set-name-2 * data-set-name-3 IF data-set-name-2 PRESENT
AND data-set-name-3 PRESENT

gata-set-name-1 IS data-set-name-2 + data-set-name-3
ts expanded into.

data-set-name-1 IS data-set-name-2 + data-set-name-3 IF data-set-name-2 PRESENT
AND data-set-name-3 PRESENT

data-set-name-2 TF data-set-name-2 PRESENT

data-set-name-3 If data-set-name-3 PRESENT

Gregory G Faust 37 HIBOL

expression, the semantics a2 just as f that flow had been g data set although the PRESENT
predicates appaeanng in the 2xpanded form of the expression will be more compie s because the flow
expression does not have a name associated with it An example of the use of an arthmetic operator

in a flow expression appears in the definition for the GROSS-PAY data-set in figure 18.

In addition to arithmetic operators. HIBOL programs can include reduction operators. The
reduction operators. the syntas of which is shown in Figure 23. produce resuttant flows with indices
composed of fewer key components. The key components of the resultant fiow must be a subset of
the key componants of the flow used as the operand of the reduction operator. A data element in the
resuitant flow with a particular index derives its value from all the data elements in the operand flow
with the same values for all key components in the common subset. For example. consider the HIBOL
program fragment shown in Figure 24. The input data-set. CHECK-AMOUNTS, contains an element
for each check written by each bank customer during one accounting period. The output data-set,
CUSTOMER-TOTAL, contains an element for each customer that is the sum of the amounts of the
checks written by that customer in that accounting period.

Fig. 23. HIBOL Syntax for Reduction Operators

SUM OF flow-expression
COUNT OF flow-expression
MAX OF flow-expression
MIN OF flow-expression

Fig. 24. Sampie HIBOL Program Fragment with Reduction Operator
DATA DIVISION
INPUT SECTION

FILE CHECK-AMOUNTS
KEYS ARE CUSTOMER-NUMBER CHECK-NUMBER

OUTPUT SECTION

FILE CUSTOMER-TOTAL
KEY IS CUSTOMER-NUMBER

COMPUTAYION DIVISION

CUSTOMER-TOTAL IS SUM OF CHECK-AMOUNTS

HIBOL 38 Covqgury GoFaust

Two other examples of the: use of reduction oporators can be seenom the- definntions for
TOTAL GROSS PAY and EMPLONEE COUNT i Figure 18 Hot: that in both these cases the

resultant data sets have no key components at all and therefore contain onl, 4 single <lement.

Another feature of HIBOL 1s that the same data set can appear in both the INPUT and
OUTPUT sections of the DATA DIVISION. This is done when the HIBOL program performs an update
operation on that dataset It must be possible in the COMPUTATION DIVISION. however. to
distinguish references to the input data-set from references to the output data-set This is done

through the use of the LAST PERIOD construct. References to the mput data set use ine syntax
LAST PLRIOD'S data-set-name
while references to the output data set simply use the syntax

data-set-name

There are many other features of HIBOL, including specificaticns for time intervals at which
certain data sets should be generated. running totals. and formatted output reports. which will not be
presented here. Although the set of HIBOL statement forms described above is not exhaustive. it is
sufficient for the purposes of this document. Ali HIBOL code that has been produced by the SATCH
system to date uses only those HIBOL constructs that have already been discussed. The reader is
invited to turn now to Section 1.4 where corresponding COBOL and HIBOL programs are given for
four examples (including PAYROLL), before returning to a discussion of some of the more globai
features of the HIBOL language.

3.3 Features of HIBOL Revisited

The specifications given in the COMPUTATION DIVISION of a HIBOL program need not be
ordered in any special way by the programmer. Each can be viewed as a definition of the values that
will be produced for a certain data-set. The autoprogramming system, PROTOSYSTEM [, will
correctly order those computations for which the ordering is important. Note that this view of
computation as definition requires that any data set name can appear at most once on the left hand
side of a computation specification; i.e. HIBOL is a single assignment language. Another ramification
of this view is that potential concurrency of computation can be recognized by the system and could
be exploited if the target code were generated for a paralle! hardware configuration.

Perhaps the most far reaching effect of this programming style is that there is no explicit
notion of iteration or recursion. The only implicit iteration is that which iterates over the elements (or

subsets of the elements) of an actual key space. Since HIBOL does not have explicit iteration,

recursion, GOTOs, or a jump of any kind, it cannot be used to express certain computable functions

Gregory G Faust 39 - HIBUL

N any reasonable fashion These functions, however. rarely appear v business data processing
apphications, and theretore. this lack of expressive power should not be considered a major
drawback. The semantics of HIBOL were designed by Hammer et. al to express exactly the functions

that appear most often in busmess data processing applications.

in fact. it is in just this restriction of expression that the great utility of HIBOL lies. The beauty
of the language lies in the fact that the programmer is not required to worry about the details of the
iterations. The necessity to deal with these details is one of the things that makes the maintenance
task so difficult in other languages. In addition. the number of identifiers that the programmer has to
dedl with is substantially reduced. and the ones that do appear usually have a direct correspondence
to some quantity in the real world. These are the features of HIBOL that make it well suited for

increased programmer productivity and program clarity in the domain of data processing

applications.

Plans and PBMs 40 Gregory G Faust

4. Plans and Plan Building Methods

Now that the essential features of HIBOL have breen discussed we can take 4 closer ook at
the analyzaed plan from which the HIBOL s produced While reading this chapter it s important to
consider the key features of HIBOL as we go along in order to grasp the apphcababty of the structure
of an analyzed plan to the translution pracess This chapter 1s meant to cont.sn enough information
to make the applicability apparent and to render the following chapters comprehensible. A much
more detailed account of plans. Plan Building Methods. the process which creates a surface plan.

and the process that analyzes a planin terms of PBMs. can be found in Waters” PhD thesis [31.32].

A plan s a detailed representation of a program designed to have several useful properties.
First. the plan represents the program completely, it contains all the inlormation necessary for
execution. Second. it 1s languzye independent. Therefore. it can be used to represent a program
originally written in many different languages Third, much of the information that is implicit in the
program is made explicit In particular. the control flow and data flow between different sections of
the program are explicitly represented Finally, the plan exhibits locality: features of a component of a

plan can be discerned by examning information local to that component.
4.1 Surface Plans

The basic unit of a plan is a "segment”. Different segments of a plan are hierarchically
linked via subsegment and supersegment relations. A surface plan, an example of which is shown in
Figure 25, is a representation of a program that is logically organized in much the same way as the
original source language representation of the program. It has only the simplest hierarchical
structure: a root segment that has all other segments in the plan as immediate inferiors. Each of the
subsegments has no internal structure. They all represent primitive logical, arithmetic, or control
operations.

These primitive segments, and in fact segments in general, can be placed in one of three
categories, "simple”, "split" or "join", depending on their interaction with control flow. A simple
segment accepts control flow from exactly one place and produces control flow to exactly one other
place. Examples of primitive simple segments include primitive arithmetic functions such as PLUS or
TIMES. and primitive logical functions such as EQUAL or GREATER-THAN. Exactly which primitive
logical and arithmetic functions can occur in a plan depends upon the source language from which
the plan was built, but a standard set of primitive functions is shared by most programming
languages. The library of primitive function used when the source language is COBOL is given in
Appendix I,

Gregory G. Faust -41 Plans and PBMs

Also included among the simple segments are constants They differ from other simple
segments i that they do not have any inconung data flow. They can be viewed as functions with no

arguments that have a singleton value for their range.

A split accepts control flow from exactly one place. and produces control flow to more than
one place. There are only two difterent primitive split segments: PIF and PIFNULL. PIF takes a single
bit bootean argument and transfers control to a first segment if the boolean is TRUE and to a second
segment if the boolean is FALSE. PIFNULL is simply the converse of PIF.

A join accepts contro! flow from more than one place and produces control flow to exactly

one other place. There is only one primitive join segment. Itis called "JOIN".

The segments of a surface plan are connected via control flow links and data flow links. A
data flow link is a link between two data "ports". A port can be thought of as a place where an
incoming or outgoing data value can be stored. Each segment has associated with it a unique port
for each input and output data value. Data flow between any two subsegments of the surface plan, or
between a port of the supersegment and a port of one of its subsegments. is represented by an
explicit data flow link.

A contro! flow link is a link between two segment "cases”. Each case corresponds to a
particular control environment. Each segment has associated with it a unique case for each possible
control flow path into and out of the segment. A case for incoming control flow is called an "in-case”
and a case for outgoing control flow is called an "out-case”. For example, a split has a single in-case,
and at least two out-cases. As with data flow, control flow information is known only within the
supersegment of the two segments involved in the flow.

Consider the simplified surface plan for PAYROLL shown in Figure 25. The boxes represent
segments, solid lines represent data flow, and dotted lines represent control flow. The outermost
large box represents the segment for PAYROLL itself. (This example has been simplified in several
ways. First, the computation of EMPLOYEE-COUNT has been entirely eliminated. Second, for
brevity, the file open and file close functions have been removed. Third. the data flow for all of the file
objects except for the flow associated with the HOURLY-WAGE FILE-OBJECT (HWF) has been
removed. The HOURLY-WAGE FILE-OBJECT was left in so that the operation of the EOFP predicate
could be understood.)

Several of the features of surface plans can be seen in this example. First of all, note the
control flow throughout the plan. There is a large control flow loop that encompasses most of the
program; namely the main read/write loop. Control remains within this loop as long as control passes
through the NO case of the PIF. which in turn occurs for as long as EOFP yields a FALSE boolean.

Plans and PBMs - 42 Coegory G Faust

Fitg. 25. Partiat Surtace Plan for PAYROLL

N HWE PAYROLL
i <0>
E LGP E --------------------------------- 1'
| ! CWRITE 1
X | 1GP T
) HWF | ' 7
SRR U ST
CaSEl CASE2 '
PLUS
JOIN
. . ZAN /’:
! , |
; TGP ! GP
i TIMES
: HWF
! N
& '
EOFP <40>
T /N
; ! HW_[EN _ |HWF
N
CREAD
PIF
YES NO N
) HWF
] T T
! AR (SRS I y
]
il Skt 1 TGP
N
CWRITE 2
.
HWF —
N\
HWF => HOURLY-WAGE FILE-OBJECT TGP => TOTAL-GROSS-PAY
HW => HOURLY-WAGE GP => GROSS-PAY

EN => EMPLOYEE-NUMBER

Gregory G. Faust - 43 - Plans and PBMs

This process 1s inthated when control 1s passed to CASE 1 of the JOIN and terninates the first time

control passes to the YES case of the PIF.

i Now examine the data flow. In particular. note the flow associated with TOTAL-GROSS-PAY
(TGP) or HOURLY-WAGE-FILE (HWF). The initial value for the flow is passed through CASE1 of the
1 JOIN into the main loop. Subsequent values are passed around the loop through CASE2 of the JOIN.
This looping of the data continues. with each new value for the flow depending on its previous value,

until the loop terminates in which case the final value is received outside the loop.

Given that the plan shown in Figure 25 needed to be simplified from the actual surface plan
for PAYROLL (a relatively trivial program) in order to make it at all comprehensible to the human eye,
it should be obvious that the surface plan contains large quantities of relatively mundane and
unorganized information. it would be a very difficult and expensive task to try to match portions of the
surface plan with any patterns that might represent fairly global features of the program. What is
needed is more organization of the available information.

4.2 Analyzed Plans and Plan Building Methods

A surface plan can be analyzed in terms of plan building methods (PBMs). The PBMs are a
set of stereotyped ways in which plan segments can be aggregated into canonical groupings. An
instance of a PBM corresponds to a logical locality in the program, not necessarily a locality in the

actual code for the program. Each PBM has a unique set of "roles" associated with it. A segment
created to represent an instance of a PBM has a set of subsegments each of which fills one of the
roles of the PBM. Each subsegment can only fill one role of one PBM. Therefore, each segment in
the analyzed plan will have exactly one immediate superior except for the single most superior

segment.

The analysis process begins by searching for a set of subsegments of the surface plan that
can be grouped together according to the restrictions of one of the PBMs. A new segment is created
to represent the grouping. All of the data flow and control flow information pertaining to any of the

subsegments is included in the description of the new segment, and the description of the original
supersegment is appropriately modified. The search process is then repeated with the newly created
segment considered to be indivisible. The proc 2ss continues until a grouping subsumes the entire
plan. The result is a hierarchical structure in which each segment, except those corresponding to
primitive functions, is an instance of one of the PBMs. The leaves of this hierarchy are the same
primitive segments that comprised the surface plan for the program.

Plans and PBMs 44 - Gregory G Faust

Fig. 26. Taxonomy of Plan Building Methods

composition
STRAIGHT-LINE P3Ms predicate

conditional

PBis

augmentation
single self recursion filter
RECURSIVE PBits termination

temporal composition

Figure 26 gives a taxonomy of PBMs. As can be seen in the figure. PBMs can be broken into
two major categories: "straight-line" and "recursive”. This distinction is based upon the manner in
which the segments that instantiate the PBMs interact with control flow. The recursive PBMs are
used to express the portions of programs that involve loops of control flow while the straight-line
PBMs are used to express the portions of programs that do not invoive loops.

4.2.1 Straight-line PBMs

There are three straignt-line PBMs: "composition™, "predicate”, and "conditional”. The
PBM "composition” allows for the combination of an arbitrary number of simple segments into a
single simple segment; no splits or joins can be included. In the general case, the data flow links in a
composition will form a collection of (possibly unconnected) directed acyclic graphs. Each of the

subsegments of the composition fills an "action” role.

Gregory G. Faust 45 - Plany and PBMs

The PBM "predicate” is a gancralization of the primative spiit. 1t has a single in case. but an
arbitrary number (at least 2) of out-cases. The contiol tiow links of a predicate will form a directed
acychc graph. The subsegments can be either primitive splits or other predicates. or primitive joins,
which fill roles called "pred” and “join". respectively. A join subsegment acts to form the iogical OR
of the predicates that supply it with control flow. A predicate subsegment that receives control flow
from another predicate subsegment forms the logical AND of itself and the predicate that supplies the
control flow. By using these constiucts in combination. predicates of arbitrary complexity can be
built.

The PBM “conditional” is an embodiment of the structured programming concept of a
conditional. 1t has a single "pred" role, filled by a subsegment that is an instantiation of the PBM
predicate, that controls which of several "actions" will be executed. The action roles can be filled by
any simple segment. In addition, it contains a single “join" role, filled by a join segment, that collects
the control flow from all of the actions. An instance of the PBM conditional has a single in-case, and a
single out-case; it is a simple segment. A conditional also has the very useful property that during any
given execution of the conditional exactly one of the actions will be executed. A conditional can have
an optional “initialization" role which can be filled by any simple segment. The initialization
subsegment is executed before the predicate and therefore is executed regardless of the result of the
execution of the predicate.

4.2.2 Recursive PBMs

The recursive PBMs are designed to handle loops and other forms of single self recursion. A
program is single self recursive if it contains exactly one recursive call to itself, either directly or
indirectly. A loop is an example of single __lf recursion since it can be expressed in terms of tail
recursion. Other forms of recursion cannot currently be analyzed in terms of PBMs. However, since
COBOL does not support any type of recursion except loops, the current PBMs are sufficient for the
analysis of COBOL programs.

The most general recursive PBM is simply called "single self recursion” (SSR). An SSR has
three roles; an optional “initialization”, a "body", and a "recurrence”. The initialization is a simple
segment that is only executed once, while the body is executed repeatedly. The recurrence
represents a recursive instance of the body. Therefore, it is placed in the body at the point of the
recursive call to the body, and it will have the same ports and cases that the body has.

Since the recurrence subsegment is a recursive instance of the body, and the recursion can
potentially occur to infinite depth, inclusion within the recurrence of the entire structure of the body
would result in an infinite graph. To allow the graph to remain finite while still captuiring the notion of

a potentially infinite recurse, the recurrence is given no internal structure, but instead is linked to the

Plans and PBMs 46 Gregory G. Faust

body by a special recurrence link. Then. dunng execution of the body. f the nest segment to be
executed 1s the recurrence. the values in the mconming data tlow ports of the recurrence are
transferred to the corresponding ports of the body and control is passed to the body via the
recurrence link and the body is executed again. In this way. control and data flow is circulated
around in the execution without the existence of any explicit contrgl or data flow cycles in the plan.
This lack of control and data flow cycles is very helpful in certain types of symbolic evaluation in

which symbolic values are pushed along control and data flow links.

The drawback of the PBM SSR is that its body can be arbitrarily complex and the recurrence
buried arbitranly deep within it. It would be useful to be able to break single self recursions into
smaller, less complex pieces. This is done via the PBM "temporal composition®.

The PBM "temporal composition" is similar to the straight-line PBM composition except that
all of its subsegments are instances of the PBM SSR instead of straight-line PBMs. In addition, since
some of the subsegments may produce data values recursively that are used in other subsegments,
some of the data flows between subsegments represent a temporal sequence of values instead of a
single value.

The temporal sequences of values are called "temporal data flows". A temporal data flow
into a segmaent ic called a “temporal input”, while a temporal data flow out of a segment is called a
"temporal output”. These temporal Hlows can be viewed as streams, and the subsegments of a
tempora! composition that interact with them can be viewed as stream operators. More will be said
later about this view of temporal composition and temporal data flows.

Three restricted forms of the PBM SSR, called "augmentation”, "filter”, and "termination”,
are used tc form meaningful fragments of temporal compositions. In order for an SSR to be an
augmentation, the body of the SSR must be constrained in the following ways. First, the body of the
augmentation must have a single in-case and a single out-case. Second, the body must have only two
subsegments. One of them must be the recurrence. The other, called the "augmentation function”,
can be any simple segment.

The augmentation function is exscuted once for each recursive execution of the
augmentation. The execution of the augmentation function may use and/or produce data values that
are passed into and/or out of the augmentation. These data values are passed via tempora! data
flows. If the augmentation function only uses data values that are produced within the augmentation,
then the augmentation is called a “"generating augmentation” or simply a "generator”. If the
augmentation function uses some data values that are produced outside the augmentation, then the

augmentation is called a "consuming augmentation” or simply a "consumer".

Gregory G. Faust

Fig. 27. Generaling Augmentation in the Analyzed Plan for PAYROLL

47

GENERATING HWF
AUGMENTATION .
COPENI
HWF
BODY {
N/
CREAD ‘
.: HWF
N
REC
X
1
i HWF HWE
]
1
|
5 DFJOIN
:
t
t
N
! HWF
\/

HWF

HW

EN

g and PBMs

e

o

s

-~

T g Dt 48 ety e baust

ot e e e o e e ntetoe b o begate U [he- Lot hnes
Cepteent emperal b B Sthe Gk Bes et e e arrenc s e e agreenitabion 1
e goneerator (G the tempon g gmpe sbon o PACELE Treamtoe sation o the Gagne-nitation opens
the fife Ho gty WAGE FICE BJCCT (HIWEY for mput The aogoentation function s 4 CREAD
acting on the HWF - Temporal outputs are created tor each of the outputs of the CREAD tunction. as

well as tor the HOURLY WAGE FILE OBJECT itselt

Let us examme the data flow assocated vath the HOURLY WAGE FILE OBJECT in more
detal The HWFE s feh into the CREAD the first time from the COPENDinittahzation All subsequent
values of the HWF used by the CREAD actually come from the output of the CREAD tself through the
recurrence segment In this way the values for the HWF are fed back in a foop without any loop in the
data flow tself Note that the non temporal output for the HWF (coming out of the bottom of the
augmentation) i1s the value of the HWF that is produced the last time the augmentation is executed,
while the temporal output for the HWF 1s a temporal sequence of all the values that the HWF data flow
assumes at the input to the CREAD. The DFJOIN is not a control flow join but is merely used as a data

flow join.

Note that since there is no way for control flow to be passed to the out-case of the body,
execution of an augmentation in isolation will never terminate. In addition. a consumer cannot be
repeatedly executed in i1solation as it needs to receive temporal data flow from outside itself.
Therefore. an augmentation cannot stand alone within a plan. Itis meant to be a meaningful fragment

of a temporal composition, and can only be used as such.

A “"termination” is the second restricted form of the more general SSR. The body of a
termination is constrained in the following ways. First, as subsegments, it has a recurrence and a split
segment. The split segment fills the "pred” role and is additionally called the "termination test".
Second, one of the out-cases of the termination test must pass control to the in-case of the
recurrence, and at least one of the out-cases of the termination test must pass control to an out-case
of the body. An out-case of the body will receive control flow from both an out-case of the recurrence
and an out-case of the termination test. This calls for the inclusion of the appropriate number of joins

as subsegments of the body.

For example, consider the termination far the temporal composition in PAYROLL shown in
Figure 28. The termination function, EOFP, tests the temporal input HOURLY-WAGE FILE-OBJECT
(HWF) to determine whether to pass control to the recurrence or to the out-case cf the body.
Execution of the termination will continué as long as end of file has not yet been reached. As soon as
the EQFP predicate senses that end of file has been reached on the HWF, control is passed to the
out-case of the body, and the recursive execution of the termination stops. The DUMMY temporal

data flow will be explained later.

26 Termunation i the Analyzed Plan for PAYROLL

Fig

e FHINATTON

VH()()?YV .) - i o
T - -
wwt o tote
Hwt ﬂ~~—— -W
. ‘ ‘ —J
b |
i . [
4 l _ 1 { j ‘
PLF | :
! L, | ! ; |
1 i
N0 YES ‘ ;
! -
NO i YES o
i 1
REC :
l’[[
t
H !
e it 1)
N N
REC | PRED
JOIN
j
]
1
I
]
N
\
]
1
v/

TERMINATES LOOP

A ne) Gregory G Faust

ST SR L SV et e s Gn Gt that can ternnats by itseldt and

" NI 0ttt Lo T L g e 4% o Ahobe te termimate Therefore itis
b et gt e o ntrol How to an oot caee of the temporal composition Nonetheless,
S gt et mpat b cannot stand alone and s onty used as a fragment of a temporal

Cotnposition

SOt v the theed constraned form o of the more general SSE The bod, of a filter is
ot et folGeanyg sy Bost it mast have only onsan case and one out case. Second. it
e e U e satee gt Onee b thenomust e the recurrence: . The other two segments
v bt an b o Theeanht B thee sanee numibeer GF out cases as the join has in cases. Each

gt e o the snnt ety paso-s controb to a cortespor ingan case of the join.

The hiter has the elfect that some of the temporal inputs to the filter are broken up into
temporal outputs Each of the temporal outputs of a ilter s assowiated with one of the out-cases of
the spht A given value 10 a temporal input will be contained in a corresponding temporal output if

controd s passed to the out case of the sphtwath wineh that temporal output s associated.

For evample consider the- filteer shownom Figure 26 1t has a temporal input which is a stream
of numitears The splt segment s o peechicate that tests each of the values in the temporal input to see
it the, dre bess than zero or not . The two temporal outputs contain the negative and non-negative

values in the tlemporal mput respectively.

Note that a hlter s sirnlar to an augmentition in that t cannot terminate in 1isolation and it
reguir=s temporabinput . Therefore u filter cannot to be used in solation but only as a fragment of a

temporal composition

I man, respects the operatior of a termination 1s very siumilar to the operation of a filter. A
termination can have temporal outputs that are each associated with an out-case of the termination
test simidar 16 the temporal outputs of hilters The difference hes in the tact that a filter will select
Certair Lalues interspersed within a temporal data flow while a termination will truncate values oft of
the cnet of g temporal data How Thus difference can be seen by viewing the difference between the
DURILE taty How produc-dan the termination shown an Figure 28 and the two temporal outputs of
the flter S hownan baure 259 In addition a termination can cause the execution of the entire temporal

o ton e h o appears 1o ternunate while a tilter cannot

Althaugh at s eaaen to understand the internal structure of the fragments of a temporal
gt tior a Yerme of theae tunctoe dunng evecution its often casier 1o describe the contribution

ot et aberpment of o temiporal compoatan (o the cntire aperation of that temporal composition

tro sty thee qohie gment, s Stteam pperatarsIn this way the external properties of the

Gregory G. faust

Fig. 29. Example Filter

INPUT
STREAM

51 -

FILTER

BODY

PRED

\,

NO

N AW

CASE1] CASE2

JOIN

T
'
1

N

REC

Y

#

Plans and PBMs

NEGATIVE

NON-NEGATIVE

Plans and PBMs 52 . Cirveqory G Faust

subscgme: NS can b espressad o a much mone sucomct mannee o addition. thes function that the
temparal Comp nation eepresents can often be descnted without consicernng the values of cortam of
the nput data alues: intormatan vathout which execution 1s not possible. This allows for a

descrption of the genera function represented by a particutar temporal composition.

For example. cansider the temporal composition in the analyzed plan for PAYROLL shown in
Frgure 30. A detaled view of the analyzed plan for the first two subsegments, the generating
augmeantation and the termination. have already been given above The other augmentations have
internal structures very similar to the CREAD augmentation and therefore will not be shown in detail.
The first of these takes the HOURLY-WAGE (HW) temporal output of the CREAD augmentation as its
temporal input and multiplies 1t by the constant 40. producing a temporal output for GROSS-PAY
(GP). Thus temporal output 1S, in turn, passed to two additional augmentations. One of them is the
CWRITE augmentation that has an initialization that performs a COPENO operation on the GROSS-
PAY FILE-OBJECT (GPF). and an augmentation function that writes the values of GROSS-PAY into

that file. The other one has an nitiahzation that produces the constant ZERO and an augmentation

Fig. 3C. Temporal Composition in the Analyzed Plan for PAYROLL

HWF TEMPORAL COMPOSITION GPF
CONSUMER
CWRITE
GENERATOR [EN CONSUMER
READ TIMES(4
c " IMES(40)
GPF
HWF
' CONSUMER
HWF =23 PLUS
TERMINAT [ON CONSUMER (SUM)
EOFP [pummy & PLUS
(COUNT)
TGP
S EC
N/

gy s

Gregory G. Faust 53 Pians and PBMs

function of PLUS that computes the sum of GROSS PAS The non temporal output of this
augmentation s TOTAL GROSS PAY (TGP) and 15 pussed to an output port of the temporal

composition to be written outside of the temporal composition.

The remaining augmentation performs the computation for EMPLOYEE -COUNT (EC) and
also has an initialization that produces ZERO and an augmentation function of PLUS. The difference
is that the second argument to the PLUS is the constant ONE. Therefore. all data values that are
needed by the augmentation are internally generated. The function of the DUMMY temporal data
flow. generated in the termination and associated with the NO case of the EQFP predicate. is to
provide a control signal to the consuming augmentation which tells it how many times to execute.

The non-temporal output EC is passed out of the temporal composition.

Fig. 31. Analyzed Plan for PAYROLL

COMPOSITION PAYROLL

T6PF \—m———————
PEN WRIT L
ropg o COPENO CWRITE TGPF CCLOSE TGPF
TEMPORAL

TGP

cpp «|COMPOSITION o
GPF GPF
HWF CCLOSE HWF

HWF
EC

COPENO L—i> CWRITE CCLOSE

ECF ECF ECF

ECF

o .
m BT i

i
i
H

Pians and PBMs 54 - Gregory G Faust

4.2.3 Analyzed Plan for PAYROLL

Now that most of the components of the analyzed plan for PAYROLL have been described.
we can take a look at the entire plan shown in Figure 31. The top level segment of the analyzed plan
i5 a composition in which most of the subsegments perform primitive file operations. The only

exception is the central tempcral composition, the internal structure of which has already been given.

This example should make it clear that aithough the entire hierarchy of the analyzed plan for
a program can be quite complex. any particular level in the hierarchy 1s fairly simpie. it s the
hierarchical nature of an analyzed plan. as well as the simplcity at each level in the hierarchy. that
contribute to the fact that an analyzed plan is a much more organized source of information about a

program than either the original code for the program or the surface plan for the program.
4.3 Conclusion

By comparing the COBOL code for PAYROLL with the analyzed plan for that program, it can
be =2en that the analyzed plan is much easier to reason about. The PBMs group information that may
be contained in distant parts of the actual code into neat functional localities. This locality makes it
possible to make conclusions about certain computations without considering the entire program. In
addition, a proagramming language like COBOL has many constructs for the transfer of data values
from one place in the program to another. The analyzed plan for the same computation uses data
flow as the single construct for data value transfer. The stereotypicality of the analyzed plan further
reduces the number of distinct possibilities that need to be considered at any one step in a deductive
process. It is the reduction in the number of facts about the program which need to be considered
simultaneously that makes the PBM representation of a program particuiarly useful for abstract
processing.

A given computation can be subdivided into smaller chunks in several ways including
processes, subprograms, streams, and data abstractions. The analysis described here, via the PBM
temporal composition, uses the streams abstraction. This is critical to the translation of the COBOL
programs into HIBOL. Since HIBOL is essentially a method of expressing data processing functions
in terms of operations ¢ ~ms (data sets), the initial analysis of the COBOL programs in terms of

stream operators (augmentau. terminations, and filters) is a significant first step in the translation
of COBOL into HIBOL.

Gregory G. faust 55 - Transtation Process

5. Current Implementation of the Translation Process

The three formalisms for the description ot data processing programs discussed so far.
COBOL. HIBOL. and analyzed plans. are the result of the work of others. This and the following two

chapters describe the research effort of this thesis.
5.1 General Description

The diagram shown in Figure 32 highlights the current implementation of the SATCH system.
Starting with a COBOL program. the COBOL parser (implemented by Burke) produces two distinct
outputs First. information is extracted from the DATA DIVISION and placed in a file to be used later in
the data division query phase of the translation process. Second, the PROCEDURE DIVISION is
transformed into a lisp-like format that represents the computation in terms of the primitive functions
described in Appendix |. This representation of the PROCEDURE DIVISION is then used by the plan
extraction and analysis phase (implemented by Waters) to produce the analyzed plan as described in

the previous chapter.

The translation process is divided into three subprocesses. The first two subprocesses, the
symbolic evaluation of the analyzed plan and the data division query, can theoretically proceed in
either order. For reasons that will become clear, the symbolic evaluation of the analyzed plan is done
before the data division query. Since the third subprocess, HIBOL production, uses the results of the

first two subprocesses, it cannot proceed until they are completed.

The symbolic evaluation of the analyzed plan is by far the most time consuming of the three
subprocesses. It proceeds by making an assertion about the value of every output data port on every

segment, and an assertion about every out-case of every split segment.

A key feature of COBOL programs is that they do not return values. Therefore, the only way
they can produce results is by the side effect of writing data values into files. This means that the only
information that needs to be transferred from the symbolic evaluation of the analyzed plan for the
program to the HIBOL production phase are the values of the data flows that are used as arguments
to CWRITE and CREWRITE. After this information is gathered from the analyzed plan, the plan is no
longer needed in the translation process. The syntax and semantics of the intermediate language
that is used for assertions and to transfer information to the HIBOL production phase will be
discussed later in some detail.

Much of the information that is originally contained in the DATA DIVISION of the COBOL
program is transferred to the translation phase directly from the COBOL parser and is not passed to

the plan analysis phase at all. Unfortunately, some specific information that is needed in order to

Transiation Process - 56 - Greqgory G. Faust

Fig. 32. Current SATCH Implementation

TRANSLATION PROCESS

Intermediate

Analyzed Plan Assertion
Analyzed Symbol1? Language
Evaluation
Plan of
PROCEDURE HIBOL . > HIBOL
DIVISION Production
DATA
DIVISION DATA DIVISION
Query and Key field
Information _J
Plan Extraction
And
Analysis
DATA DIVISION
. Information
LISP-1ike
Representation
of PROCEDURE
DIVISION

COBOL Parser

COBOL program

Gregory G. Faust - 57 Transiation Process

produce the HIBOL 15 not directly contained in the the DATA DIVISION of the COBOL program nor
can it be gleaned from the analyzed plan for the PROCEDURE DIVISION In particular. 1in most
! mstances it 1s impossible to tell which fields in a data file represent key helds and which are data

fields. This information is gathered in the data division query subprocess.

| The subprocess that produces the actual HIBOL uses the information gathered in the
previous two subprocesses. In doing so. it makes certain assumptions about the form of the original
COBOL program. These assumptions will be discussed in the next section. It also uses extensive
knowledge about the semantics of HIBOL in an attempt to produce HIBOL that is a faithful translation
of the semantics of the oriyinal COBOL program without redundantly specifying restrictions that are
implicit in HIBOL. Elimination of the specification of implicit restrictions leads to the production of
HIBOL code that might be harder for a HIBOL parser to process, but that is easier for a human reader
to understand.

5.2 Range of COBOL Programs Currently Translatable

The current implementation of the translation process makes use of certain assumptions
about the type of COBOL program that is represented in the analyzed plan. Some of these
assumptions stem from the limits of the expressibility of HIBOL. Others stem from a desire to reduce
the domain to a manageable size.

The translation process is designed to work on three basic types of programs. The simplest
type of program is one which reads in a file and outputs another file. The input and output files must
have the same key fields. In addition, the output file contains exactly one record for each record in
the input file and each record in the output file has the same values for the key fields as the record in
the input file that was used to create it. In HIBOL terms, this means that the actual key space of each
output file is identical to the actual key space of the input file. The PAYROLL and DBINIT programs
shown in Section 1.4 are examples of this type of program.

The second type of program is an extension of the first in which the computation of the value
of the data fields in the output file requires information contained in the data fields of two (or more)
input files. The input files and the output file must all have the same key fields. Since the computation
for a data field in the output file requires information from a record in each of the input files, the
output file only contains a record if a record with identical key field values appears in all of the input
files. In HIBOL terms, this means that the actual key space of the output file is the intersection of the
actual key spaces of the input files. The PAYROLL2 program shown in Section 1.4 is an example of

this type of program.

Treasiation Process 58 Tregory G faust

The third ty pe of program also prodac- an autpot Ble uang mtorn shorn cont aned in two (or

more) nput bles but <o o thee output fle onty uses information contaimned m i record from
“ooob thenput fles This occurs for caampls when a program pertorms o fle mergs operation The
input hles and the output file must have the sume key fields Since a value for a data field in the
output hle can be computed from information contained n a record in any one of the input files. the
output hile contans a record for each unique set of key held values appeanng in any of the input fles.
A record in the output file 1s given the saume values fo' the key fields as the record in one of the input
files from which it was created. In HIBOL terms this means that the actual key space of the output file
1s the union of the actual key spaces of the input files. The LOC-LIST program shown in Section 1 4 is

an example of this type of program.

All of these types of programs have certain features in common. First, all top-level loops in
the COBOL program are logically driven by file reads and terminated by end of file predicates. Since
HIBOL has no explicit loop construct. loops other than these cannot in general be reasonably
expressed in HIBOL. Second. these types of programs do not contain non-local error exits from any
of the loops or from the program itself. Such non-local jumps are usually not expressible in HIBOL
and also are not well expressed within analyzed plans. Third. all inpui data files (and therefore all
output data files) are homogeneous. That is. all records in a file are assumed to have data and key
fields which contain the same type of information as the corresponding data and key fields in all the
rest of the records in that file. This means that the file cannot contain any singular header or trailer
records with a different interpretation from the rest of the records. It might be possible to produce
HIBOL from COBOL programs that do access files that contain header or trailer records, but the
translation process would have to generate data-sets for these records that were independent from
the data-sets generated for the rest of the records. Currently. a single data set is generated for each
data field in each data file.

Certain additional restrictions are also required. First, it is assumed that all input files are
read sequentially, and all output files are written sequentially. in a later chapter suggestions are made
as to how this constraint might be eliminated as long as the program still falls into one of the three
basic categories. Note that it follows from this constraint that, in programs of the second and third
type (intersection and union), the input data files used in conjunction to produce the output file must
be sorted in the same key field order.

Second, it is assumed that the COBOL program contains no nested loops. This is a rather
harsh constraint and would have to be eliminated before translation from COBOL into HIBOL could be
applicable to the real world. One group of programs eliminated by this assumption are those that

produce subtotals for centain data fields in a record as a secondary key field changes value.

-

CraemmERi. o -

Grogory G. Faust - 59 - Ttansiation Process

Third atas assunsd that no output s performead on any fils other than data iles Thatis. itis
assumed that the program produces no formatted output reports Althouyh HIBOL does have a
report yeneration feature. the generation of formatted reporis 1s an orthoyonal issue to the rest of the
semantics of HIBOL In a later chapter. some suggestions are made as to how translation of

formatted reports might proceed.

Fourth. for simplicity. it is currently assumed that. within a given program. all key field names
from different files that actually correspond to the same key are identical. This constraint is

particularly easy to elimmate. and a method for doing so will be discussed in a later chapter.

The above constraints are not as restrictive as they might seem. The three basic program
structures discussed above represent the heart of the domain of programs that can be expressed in
HIBOL. In addition, programs which incorporate other features that do not interfere with the main
read loops can still be translated. For example. a single program can produce output files from input
fites using any or all of the three basic strategies, so long as the read/write loops used to produce
those output files are completely separate from one another and therefore cannot interact. Also,
reduction operations that produce grand totals are allowed because they do not require nested loops.
It is also possible to translate programs which do not produce a record in the output file for each set
of key values that could cause a record to be produced. For example. in the LOC-LIST program, a
output record is not produced for a record in the transaction file if that record contains a "D" in the
delete-flag field. (Note that it is not permissible to add records to the output file in a similar fashion).

Unfortunately, the current implementation of the translation process does not verify that the
program that it is processing adheres to the assumptions and/or restrictions discussed above. A
more robust system would have to do significant checking to determine if the program that it is
processing fell within the domain of programs that it was designed to translate.

5.3 Brief Example

Betore delving into all of the detail of the current implementation process, let us examine its
operation on a simple example program, namely PAYROLL. For simplicity, only the processing
needed to produce the HIBOL for the output data-set GROSS-PAY will be discussed; TOTAL-GROSS-
PAY and EMPLOYEE-COUNT will not be considered. This discussion is not meant to make the
operation of the translation process crystal clear, but merely to give a flavor for the type of processing

that is taking place.

A ek e s

Transiation Process 60 - Gregory G faust

5.3.1 Symbolic Evaiuation of the Analyzed Plan

Let us consider the portion of the analyzed plan for PAYROLL shown in Figure 33. This
figure shows an abbreviated version of the analyzed plan for the main temporal composition (and 1s.
n fact., a subset of Figure 30). The subsegments are symbolically evaluated in an order that is

consistent with their control and data flow dependencies (left to right in Figure 33).

The first subsegment of the temporal composition to be symbolically evaluated is the
generating augmentation. which has CREAD as its central function. The assertion that is formed tor
the HOURLY -WAGE (HW) output port of that subsegment is:

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)

This assertion specifies that the value at this output port is the result of reading the HOURLY -WAGE
data field in the HOURLY-WAGE-IN file.

e, .

Fig. 33. Partial Analyzed Plan for PAYROLL

HWF TEMPORAL COMPOSITION GPF
CONSUMER
CWRITE
GENERATOR [EN CONSUMER |
CREAD o TIMES(40) ¢
GPF
HWF

HWF Jl
TERMINATION
EOFP

<__-<

Gregory G. Faust -61- Transiation Process

Alvo portinent to thus discussion s the assertion that s formed for the HOURL Y WAGE FILE-

OBUECT (HWF) output port of this augmentation:
(SEFO HOURLY-WAGE-IN)

This assertion specifies that the value at this output port is the file-object HOURLY -WAGE-IN that has
been side-effected by the read operation (SEFO0 is an acronym for "Side Effected File Object™).

The next subsegment to be evaluated is the termination subsegment. which has EOFP as its

central function. The assertion that is formed for the single out-case of the termination is:
(EOEP (SEFO HOURLY-WAGE-IN))

This assertion specifies that the termination subsegment (and, therefore, the tempora!l composition as
a whole) terminates when end-of-file has been reached on the HOURLY-WAGE-IN file.

The next subsegment to be evaluated is the consuming augmentation that has TIMES as its
central function. This augmentation has the effect that the value for the incoming data flow is
multiplied by forty. Accordingly. the assertion that is formed for the GROSS-PAY (GP) output port of

that subsegment is:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGF) 40.)

The last subsegment to be symbolically evaluated is the consuming augmentation that has
CWRITE as its central function. When this augmentation is evaluated, a record is made of the fact
that the output data field GROSS-PAY is associated with the assertion shown above. In addition, the
predicate which controls how often it is written (the predicate assertion taken from the out-case of the

termination) is stored.
5.3.2 DATA DIVISION Query

in the DATA DIVISION Query phase, the user of the SATCH system is asked to supply the key
fields for each of the files appearing in the COBOL program. In this example, the user specifies that
EMPLOYEE-NUMBER is the key field for both the HOURLY-WAGE-IN file and the GROSS-PAY-OUT
file.

5.3.3 HIBOL Production

In the HIBOL production phase, a new assertion for GROSS-PAY is formed by combining the
old assertion for GROSS-PAY with the predicate which specifies under what circumstances it is
written. Since GROSS-PAY is written within a temporal composition, the predicate that is used is the

negation of the predicate which terminated that temporal composition (stored during the symbolic

it edhinbal

Do Tl

Transiation Process - 62 - Gregory G Faust

evaluation phase). Theretore. the predicate that 1s used is:

(NOT (EOFP (SEFO HOURLY-WAGE-IN)))

The new assertion (the form of which is not important here) specifies that the value of
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)

is written into the output data field GROSS-PAY for every value of the input data field HOURLY -WAGE
that appears in the HOURLY WAGE-IN file.

This assertion is then translated into the corresponding HIBOL statement:

GROSS-PAY IS (HOURLY-WAGE * 40.)

5.4 Symbolic Evaluation of an Analyzed Plan

As stated above, the symbolic evaluation of an analyzed plan for the PROCEDURE DIVISION
of a COBOL program proceeds by making assertions about each output port for each segment. The
form of an assertion depends on the PBM that was used to form the segment. In some cases, more
specific patterns are used to make special case assertions. This is particularly true for augmentation

segments.

in addition to assertions for output ports, an assertion is made for each out-case of every
split segment. The assertions specify under what condition contro! will be passed to that case. These
assertions differ from the assertions for data ports in that they take the form of predicates instead of
object descriptions. That is, they are expressions that use boolean operators instead of the arithmetic
and other special form operators that are used to describe objects.

When a given segment is symbolically evaluated, first its subsegments are symbolically
evaluated in an order consistent their control flow and data flow dependencies, starting with a
subsegment which depends on none of the other subsegments for either control or data flow. Then,
after the symbolic evaluation of the subsegments is completed, an assertion is made about each of

the segment's output ports, or if it is a split segment, each of its out-cases.

Both predicate and object assertions are made in terms of primitive objects. Therefore,
primitive objects will be discussed in the next section. The two sections after that will discuss
predicate and object assertions, respectively.

s g — e
Lo -

MRS T s

Gregury G Faust 63 - Translation Procesy

5.4.1 Primitive Objects

The only exphcit inputs to a COBOL program are file objects However, there are also
implicit inputs to the program. namely the data and key fields in the files These two types of input
produce two of the three types ol primitive objects. The syntax (literals are in bo!d face and
non-terminal symbols are in italics while primitive function names are in the normal font) for file

objects is:
(SEFO file-name)

where SEF01s an acronym for Side Eftected File Object. The syntax for the primitive objects resulting

from CREAD operations is;
(CREAD-VAL file-name field-name)

Since several files may have fields that have the same name, the field-names that are used are
actually buffer-structure path names that uniquely identify a particular field.

The third type ot primitive object is a constant. These fall into two subtypes, numeric and
literal. The syntax for numeric constants is simply the numeral itself. The syntax for literal constants

is:
(STRING some-seguence-of-characters)

In addition, there is a special constant, UNDEF INED, which is the initial value given to every data area
that is not explicitly initialized in the DATA DIVISION of the COBOL program.

5.4.2 Predicate Assertions

The simplest instance of the PBM predicate will have two subsegments: an initialization that
is one of the primitive boolean functions. for example EQUAL, combined with a PIF. The assertion
that specifies the value for the output data port of the initialization is built in an obvious manner. The
primitive boolean function is simply combined in prefix order with the values for the objects that it
uses as arguments. For example, the predicate assertion that would be formed from a primitive
EQUAL function acting on two primitive CREAD-VAL objects would be:

(EQUAL (CREAD-VAL filel field-namel) (CREAD-VAL file2 field-name2))
Note that filel and file2 might be the same if the fields to be compared are both from the same

file.

The output data port of the initialization will be linked via data flow to the input port of the PIF.
(Recall that PIF is the split primitive that tests a simple boolean operand}. The PIf will have two

out-cases. An asscrtion will be made about one of the cases, called the YES case. that is the same as

MR T ot oo s 1 v R S A A ot sab LTI CC UL T L ST I AN 15
R1SEVL S ST P Lo TR | I T T TS Or S I A N LUTEIN SCOTRTA PRI L FUC I TN PRI SR G L)
Py e ol o it e gt e et s cntrol call bes paeee L the E L g5 of the: PIF

when

(bount (CREAD-VAL friel frely namel; (CREAD-VAL file2 freld namel))

St At antrol e Dee s 110 the HO cases when
chotoptouat CREAD-VAL frlel field-ramel) (CREAD-VAL filel field-name2)))
s true

It the primitive sphit were a PIFNULL instead of a PIF. then the assertions associated with the

YES and NO cases would simply be reversed.

The simple predicate described above will only have two out cases. each corresponding to
one of the out-cases of its PIF subsegment. Symbohc evaluation of the predicate is completed by
stimply making an assertion about each of the out-cases that 1s identical to the assertion that was

made about the corresponding out-case of the PIF.

As stated in Chapter 4. compound predicates are built out of simpler predicates in two ways.
One way is for a predicate. call it PRED2, to receive control flow from an out case of another
predicate. call it CASE1 of PRED1. Because of the order in which segments are symbolically
evaluated, PRED1 will always be evaluated before PRED2. PRED?2 is then evaluated as usual except
that the normal assertions that would have been made had it occurred in isolation are each ANDed
with the assertion governing CASE1 of PRED1. For example, suppose that PRED?2 is the simple
EQUAL predicate discussed above, and CASE1 of PRED1 was asserted to be active when some
arbitrary predicate, call it pred1, is true. Then assertions will be made stating that control will be
passed to one case of PRED2 when

(AND predl (EQUAL (CREAD-VAL filel field-namel)
(CREAD-VAL file2 field-name2)))

is true and to the other case when

(NOT (AND pred! (EQUAL (CREAD-VAL filel field-namel)
(CREAD-VAL file2 field-name2))))

is true.
The other way in which compound predicates are formed is when a join segment receives

control fiow from an out case of two different predicates. In this event, an assertion is made about the
single out-case of the join that is the OR of the two assertions that govern the two in-cases of the join,

ey G Faust 65 - Feanustation Process
s tare e o eernedt b the tan peedie ates that pass control o the o For o ampl: suppose
teat e oris pansed control from an out case of o predicates and that thoss cases ars asserted

oobee active when teo predicates. call them pred! and pred?. are true Then an assertion will be

M de about the out case of the jom that s of the form:

(OR predl pred2)

A compound predicate. in general. can have many joins and simpler predicates as
subsegments it can dlso have many out-cases. each of which is passed control from an out-case of
one of 1ts subsegments When a compound predicate s symbolically evaluated. first all of the
subsegments are evaluated and then an assertion is made about each of its out cases which is
ientical to the assertion that was made about the out-case of the subsegment that passes control to

it.

It should be clear that the expressions for the assertions in a compound predicate can be
very complex If the assertions for compound predicates were made according to the rules that have
bean given so far. they would be in an unreadable torm This is also true of the assertions that are
made about complex objects. To -educe this problem. several simplification techniques have been

used. These will be discussed in a iater section.
5.4.3 Object Assertions

The assertions formed for primitive objects were discussed above. The following three
sections will discuss assertions made in primitive segments, segments that are instances of straight-

line PBMs, and segments that are instances of recursive PBMs. respectively.
5.4.3.1 Primitive Function Assertions

Assertions about output purts of primitive arithmetic functions that do not fall into any special
category are formed in an obvious manner. The primitive function of the segment is combined, in
prefix order, with the assertions about the input ports to the segments. For example, suppose that
there is a primitive TIMES function that has two input ports. By tollowing data flow links to each 6! the
input ports back to the previous segment, an assertion can be found for each of the input objects.
Suppose that the asvertions found in this manner are obj1 and obj2. Then the assertion that will be

formed for the output port of the segment is:

(TIMES obj1 obj2)

4

ranslatian Process 66 gy L Faust

Speaal assertions dre tormed tor the: prieatec functions that peectoroe sangddss pe-cations on
ble: oty COPENE COPERG COPENIO o tunst and HITERPEE AN of these: functions hiave the
prop==1ty that they take a file obpect as ther only input and produce o fde obpect as thes ondy, putput. In

altcases. the assertion that s formed tor the outputs just the pomitive object:

(SEFQ file-name)

In addition. special assertions are formed ftor CREAD functions The CREAD function 1s
unigque in that it takes a stngle input a hle objzet. and produces many outputs. One of the outputs 1s
the file object. and the others are all field values The output asserhion for the file object 1s as above

An assertion is made for each of the other output ports thats of the form:
(CREAD-VAL file-name field-name)

where the field-name is one of the names in the buffer structure associated with the file in the
DATA DIVISION of the COBOL program. These field names are contained within the analyzed plan
and do not come from the DATA DIVISION information produced in the COBOL parser.

CWRITE and CREWRITE functions are also handled specially. These functions take a file
object as well as a number of other inputs that correspond to fields of that file. The single output is
the file object and is given the usual assertion. Symbolic evaluation of these functions also has the
side-effect that the assertions that correspond to the fields. along with the assoctiated field names, are
placed in a file to be used by the HIBOL production phase of the translation process. The transferal of

this information will be discussed in a later section.
5.4.3.2 Object Assertions Formed in Straight-line PBMs

More complex object assertions are formed within segments that represent straight-line
PBMs. The assertions formed within predicate segments have already been discussed. The
assertions formed in composition segments and conditional segments are discussed in this section.

In a composition, the assertions that are made about the output ports come from the
subsegments that make up the composition. After all the subsegments of the composition have been
symbolically evaluated, an assertton is made about each of the output ports that is identical to the
assertion associated with the output port cf the subsegment that produces data flow to that port. The
composttion itself lends no special form to the assertions.

A conditional, on the other hand, does cause the formation of a particular type of assertion,
Recall that a conditionat is composed of a predicate. a group of actions, and a join. The join

subsegment not only joins contral flow, but also joins data flow. Each output port of the join is

associated with as many input ports as the join has in-cases. For example, if the join has three output

i

o s

Gregon b faust 67 - Tranclation Process

ports ancbour e o et g o has Lasheeanput ports three for cach of the fournin cases

Also rec il that «ach of the inccases of the join 1s associated with an out-case of the
predicate Becuaus: the predicate has the property that exactly one of its out-cases will be active on
any giver. execution of the conditional. the join has the property that exactly one of its in-cases will be
active. This causes exactly one of the input ports associated with a particular output port of the join

to recerve a data value on any given execution.

Since the assertions about the output ports of the join are made during a o, mbohc evaluation
of the conditional they ne=d to include all the possible valuas that that output port can assume. This
is done by forming a set of pradicate-object pairs for each output port. The set tor a particular output
port is found by associating the predicate that corresponds to each in-case of the join with the data
value that the output port would receive had that predicate been true. The syiiiu~ of such an object
is:

(XCASE (predl obj1) (pred2 obj2) . . . {predn objn))

The keyword XCASE is included as an indicator oi the type of object.

Although the syntax of an XCASE construct closely resembles the syntax of a LISP COND
construct, the semantics of an XCASE and a COND differ in that the order in which the clauses appear
in a COND matters. while in an XCASE the order in whicn the predicate-object pairs appear does not

matter.
5.4.3.3 Object Assertions Forned in Recursive PBMs

The initialization of an augmentatior. 15 a simple segment. Therefore. the assertions that are
made abcut its output ports are just those that have been discussed above. The augmentation
function is also a simple segment and 1s also given assertions that are the same as those discussed
above. The exception occurs when the augmentation function is a temporal composition. This
happens as a result of the nesting of loops. The current implementation of the translation process
does not handle this case.

Alter the initialization and augmentation function have been symbolically evaluated and
assertions made about their output ports, assertions are made about the output ports of the
augmentation body. These are made by simply carrying forward the assertions made about the
output ports of the augmentation function that correspond to them. Note that this is similar to the way

in which assertions are made about the cutput ports of composition segments.

Trans'ation Process 8 - Greegory G faust

s oo necessar, 1o ke Quserhions about the temporal and son tempora! outputs of the
aagmeeatation Carsently the temporad outputs are given assorhions that are dantucal to the
asserthions given to the data ports from wiuch they get therr values. Unfortunately this means that
these assertions are ndistinguishable from assertions made about non-temporal data flows. The pros

and cons of this choice are discussed in another section.

In addition to temporal outputs. an augmentation can also have non temporal outputs. In the
analyzed plans for COBOL programs. these arise 1n two ways First. a file object can be side-effected
in an augmentation and then passed out of the augmentation to be used in another segment in the
plan. In this event. the output port that corresponds to the file object 15 given the usual file object

assertionr. ramely:

(SEFO file-name)

The second non-temporal output type results from reduction operators such as COUNT or
SUM. The reduction operators are recognized when the augmentation satisfies special criteria. For
example. a SUM operation can be recognized when an augmentation has an initialization that
produces the constant zero and an augmentation function that is a PLUS. The PLUS function will
take one argument from an input to the body that first gets its value from the nitialization and
subsequently gets its values from the output of the PLUS function. The second argument will be a
temporal input to the augmentation. The non-temporal output of the augmentation is then the SUM of
the temporal input to the augmentation. The assertion that would be formed in this event is:

(SUM obj)

where obj is the assertion found by following data flow back from the tempora!l input port to its

~ source.

Terminations and filters are handled in much the same way as augmentations. The
subsegmente nf the filters and terminations that represent straight-line PBMs are evaluated as always
and the usua! assertions formed. However, the temporal outputs of terminations and filters need to be
handled in a special way. These temporal outputs represent stream values, generated in some
augmentation, that have been changed by the action of the termination or filter.

Recall that each temporal output of a termination or filter corresponds to a temporal input
that has been associated with a certain predicate. In the case of a termination. this predicate
r indicates at which place the temporal input should be truncated. In a filter, this predicate indicates

under what circumstances a value from the temporal input is included in the temporal output.

I

— e —

Grevony G Faust 69 - Translation Process

\ Both of these situations are handled by fornang an XCASE construct vath two predicate
obyectpars . Onee of the pairs s formed by associating the predicate vath thee olipzct assertion that s
assocnted with the correspondmg temporal mput. The other predicate-object pair 15 formed by
associating the negation of the predicate with the special pnmitive object UNDEFINED Note that
XCASEs formed in thus way have the same properties as XCASEs forined in conditionals Clearly. given
any predicate and its negation. exactly one of them will be true Also note that in the case of a
temporal output of a ternunation. this assertion form assumes that the ternunation predicate 1s such
that once it is TRUE for some value in the input stream. 1t is TRUE for all remaming values in the input

stream. This assumption s met by EOFP predicates (which are assumed to terminate all loups). \

: For example, suppose there is a flilter with a temporal input that is associated vath the
assertion ob j 1. and which has a temporal output that corresponds to that temporal input and which 1s
associated with the predicate predl. Then an assertion will be made about the temporal output that
is of the form:

(XCASE (predl obj1) ((NOT predl) UNDEFINED))

In this way assertions are made about the temporal outputs of terminations and filters that
state that, when a given predicate is true. the temporal data flow has a value that is the same as it had
before it was operated on by the termination or filter. The assertions also state that when that
predicate is not true, the temporal data flow has no value. Unfortunately, like the assertions produced

for temporal output ports of augmentations, these assertions are indistinguishable from assertions
representing single values.

5.4.4 Assertion Simplification Methods

It can be seen from the above discussion that there are only three types of assertions in the
system; primitive objects. expressions composed of primitive functions (both arithmetic and boolean)
acting on other objects, and XCASEs. The XCASEs are the only complex objects. Unfortunately, the
way the assertions are built, XCASEs can appear in expressions and in predicate-object pairs of other
XCASEs. This causes unnecessary complexity in all the assertion types.

All assertions in the system are kept as simple as possible by transforming the ones that
contain XCASEs as components so that either the XCASE is eliminated or the XCASE is at the top level
only. This is done for each assertion that is made in the system. This means that when a new
assertion is formed, XCASEs can be nested at most one level deep in the assertion. This fact is used

in the simplification process.

Transiation Process 70 Gregory G Faust

The transforms are such that predicates are often built which e not o wimplest terms,
These predicates are sunplificd through the use of 4 dicjunctive normal forey predicats sunphber that
was designed by Deepak Kapur [12) This predicate simphifier lies at the heart of the assertion

simphfication process.
5.4.4.1 Simplification of Predicate Assertions

When a predicate assertion 1s first formed in the system. it may contain an XCASE as an
argument to a boolean function Since an XCASE is an object. it will never appear as an argument to
AND. OR. or NOT. but can only appear as an argument to comparative function such as EQUAL,
GREATERP. etc. What is needed is a transform that will eliminate the XCASE from the expression.

The transform that is used is given in Figure 34.

In this example. the second argument to a comparative function is an XCASE. It is assumed
that this XCASE is already simplified. This means that ob j1 through ob jn are not XCASEs. Note that
if the first argument to the comparative function had also been an XCASE. then the same transform
could have been applied to each of the clauses that were produced in the first application of the
transform, thereby eliminating all XCASEs from the expression. An inspection of Figure 34 should
reveal that the resultant predicate has the intended truth value.

Once the transform has been applied, the expression is further simplified. The disjunctive
normal form predicate simplifier does not know about the type of primitive objects that a given
predicate will be expressed in terms of. Therefore, before the predicate is passed to the simplifier, it
undergoes a prepass in which some of the subexpressions that are composed of a comparative
function operating on two constants are replaced by TRUE or FALSE. For example,

(EQUAL (STRING abc)(STRING def))

can be replaced with FALSE.

Fig. 34. Transform to Remove XCASEs in Comparative Functions

{comparative-function obj (XCASE (pred! obj1)
(pred2 obj2)
(predn objn)))

Becomes:

(OR (AND predl (comparative-function obj objl))
(AND pred2 (comparative-function obj obj2))
(AND predn (comparative-function obj objn)))

Gregory G. Faust 71 Translation Process

In addibion. any subespression that involved g comparative function in wiich one of the

| argumeants s the constant UNDEFINED s replaced wath FALSE This replacement 1s done because
objects can be undefined but predhcates cannot MNote that this replacement vath FALSE (followed by

simplification) is equivalent to first converting the XCASE to one in which af most one of the predicates

is TRUE by removing the predicate object pair in which the object 1s UNDEFINED (it any). and then

performing the transform to eliminate the XCASE from the comparative function.

The expression s then passad to the general predicate simplifier. The result is a disjunctive

normal form in which the clauses dre as simphe as possible and are in a canonical order.

As an example of the us- of ths predicate simiphfication transforms. let use consider the
predicate in the termination of the tamporat composition in PAYROLLZ (see Section 1.4). In this
example, a flag is used to store the information about whether or not end of file has been reached.
Because COBOL allows 88 vanables to be used. flags of this type are very common in COBOL
programs. Let us simplify the example by considering only the portion of the termination test that
tests whether end of file has been reached on the HOURLY-WAGE file. The actual predicate in the
analyzed plan checks for the value of the flag The initial expression for the predicate as well as the

final assertion actually formed for the predicate are shown in Figure 35.

5.4.4.2 Simplification of Object Assertions

The first transform for object assertions is used to simplify arithmetic expressions. Arithmetic
expressions. as initially formed, can contain XCASEs as arguments to arithmetic functions such as
TIMES and PLUS. What is needed is a transform that will change arithmetic expressions that contain
XCASEs into an XCASE in which the objects of the predicate-object pairs are arithmetic expressions

Fig. 35. Example Predicate Simplification from PAYROLL2

The expression before simplification is:
(EQUAL 1. (XCASE ((EOQFP (SEFO HOURLY-WAGE-Til)) 1.)
((NOT (EOFP (SEFQ HOURLY-WAGE-IN))) 0.)))

The expression after transform to eliminate the XCASE:
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) (EQUAL 1. 1.))
(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN))) (EQUAL 1. 0.)))

The expression after the prepass:
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) TRUE)
(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN))) FALSE))

The final assertion after simplification:
(EOFP (SEFO HOURLY-WAGE-IN))

A e et e

Translation Process 72 - Crigory (G Faust !
that do not contam XCASEs This heeps the XCASE forms at top level instead of netd wathin the
arithmetic expressions. The transform that s used 1s shown in Figure 36.

in this example. the second argument to a binary anthmetic function 1s an XCASE As betore.
it 1s assumed that the XCASE was already simplified and that obj! through ob jn are therefore not
XCASEs. Had the first argument also been an XCASE. then the same transform could be apphed to
each of the objects in the predicate-object pairs resulting from the first apphcation of the transform
The result is an expression that will have XCASEs nested at most one level deep. but in which none of
the arithmetic expressions contain an XCASEs. The nested XCASEs. if any. are later removed with

another transform.

The arithmetic expressions that result from the transform shown in Figure 36 can be reduced
further by replacing any subexpression that contains an arithmetic function in which the constant
UNDEF INED is used as an argument with the constart UNDEFINED. For example,

(TIMES argl UNDEFINED)
is replaced with UNDEFINED.

XCASEs that are nested one level deep can result in two ways. One is by the apphcation of
the transform discussed above. The other occurs when a conditional segment is nested within an

action of another conditional segment in the analyzed plan. In either case. it is desirable to eliminate
the nested XCASE. If this were not done, then XCASEs nested to an arbitrary depth would eventually

be formed. The transform that is used to eliminate nested XCASEs is shown in Figure 37.

In this example, one of the objects in a predicate-object pair of an XCASE is another XCASE.
It is assumed that this nested XCASE is already simplified and that, therefore, obj21 through obj2n
do not contain XCASEs. Note that the same transform can be applied to any of the predicate-object
pairs in the top level XCASE in which the object is an XCASE. The result of applying this transform is
an XCASE that contains no nested XCASEs anywhere in the objects of the predicate-object pairs. An

Fig. 36. Transform to Remove XCASEs in Arithmetic Expressions
(arithmetic-function obj (XCASE (predl obj1)
(pred2 obj2)
(predn objn)))

Becomes:

(XCASE predl (arithmetic-function obj objl))
(pred2 (arithmetic-function obj obj2))
(predn (arithmetic-function obj objn)))

.,v

Gregory G Faust -73 - Translation Process

Fig. 37. Transform to Elininate Nested XCASEs

(XCASE (predll objil)
(pred1Z2 (XCASE (pred21 obj21)
(pred22 obj2e)
(pred2n obj2n)}))
(predin objin))

Becomes:

(XCASE (pred1l objll)
(AND predl2 pred2l) obj2tl)
(AND predl2 pred22) obj22)
(AND predl2 pred2n) obj2n)

{
{
(
(
(predln objln})

examination of Figure 37 should reveal that the resultant XCASE has the same semantics as the initial
XCASE.

There is one remaining transform that can be appled to XCASEs. This transform is used
when two or more predicate-object pairs contain the same object Such an XCASE contains more
predicate-object pairs than is necessary. In this event. the number of predicate-object pairs can be
reduced by applying the transform shown in Figure 38 This transform can be used to condense all
sets of predicate-object pairs that contain the same object The resuit 1s an XCASE in which all of the
objects are distinct. In order to see that this transtorm retains the semantics of the initial XCASE, it
must be recalled that the predicates in the initial XCASE have the property that exactly one of them will
be true at a time. Therefore, the ORs that are formed have as arquments a set of predicates in which
at most one of them is true. This property ensures that the resultant XCASE 1s equivalent to the initial
one.

Fig. 38. Transform to Condense Predicate-object Pairs containing Identical Objects

(XCASE (predl objl1)
(pred2 obj1l)
(predn objn})

Becomes:

(XCASE ((OR predl pred2) objl)
(predn objn))

Fransiation Process ’4 Gregory G Faust

After alt ot the abo o oo dornes are s le-d a0 XCASE e can b of the: predicates in
the prodhicate Ghpect prurs s et thes dhopans U ot Yo predie ates Simphifesr - Some of the
predicates may beadenticaliy FALSE i thies case- the predhicate obpesct ponr contanning that predicate

1S simply removedd from the XCASE Reanoval of predicates obpect paars i thies fashnon can result in an
XCASE i which alt predicate olbyect pars except one have been removed and the single remaining
parr may contain a predicate thatisadentically TRUE Inthig event the entire XCASE 1s ehiminated and

the object of the last remamimyg pairs used as the final form of the assertion

In all cases the final result of the apphcation ot all the transformes discuss o above 1s an
assertton for an object thatis ether a primitive object. an arthmetic expression in simphest form that
contains no XCASEs or an XCASE in which all of the predicates are i canonical torm and do not

contain XCASEs. and all of the objects are in simplest form and do not contain XCASEs.

For example. consider the simplification steps taken to simplify an expression for GROSS-
PAY. taken from PAYROLLZ2 (see Secticn 1.4) shown in Figure 39. This expression s first built at the
end of the conditional that checks to see if the key fields are equal before calculating GROSS PAY.

Because this simplification is done to each assertion before it is added to the plan for the
program. all object assertions in the system are always in simplest form. This is not only a great aid in
debugging. but also ensures that the expressions that are passed on to the HIBOL production phase
are as simple as possible.

5.4.5 Communication between Symbolic Evaluation and HIBOL Production

As indicated above, when a CWRITE or CREWRITE function is evaluated in the symbolic
evaluation of the analyzed plan, the assertions that had been formed for the non-file-object arguments
to the write function are stored so they can be used in the HIBOL production phase. However, just
this information is not quite enough. it is also necessary to store the control environment in which the
write function is evaluated.

The control environment is kept in a stack that is manipulated during the symbolic
evaluation. Each time an action of a conditional is evaluated, the predicate that determines under
what conditions that action will take place is pushed on the stack. The stack is then popped after the
evaluation of that action is complete.

In addition, within a temporal composition, it is sometimes the case that certain
augmentations receive dummy temporal data flow from a termination or filter. These dummy temporal
data flows do not contain any data values, but simply cause the augmentation to only be executed
when the predicate of the termination or filter with which they are associated is true. To take this fact

Gregory G Faust 75 Transiation Process

Fig. 39. Exampic Simplification of an Object Assertion

tapresshon mmatiatty formed:

(XCASE ((tUUAL (CREAD-VAL HOURLY-WAGE-IN LMPLOYEE -NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYLE-NUMBER))
(TIMES (XCASE ((NOT (LOFP (SEFO HOURLY-WAGE-IN)))
(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE))
((LOFP (SEFO HOURLY-WAGE-IN))
UNDEFINED))
(XCASE {(MO1 (LtOfP (SEFO HOURS-WORKED-IN)))
(CREAD-VAL HOURS-WORKLD-IN HOURS-WORKED))
((LOFP (SEFO HOURS-WORKED-IN))
UNDEFINED))))
((NOT (LQUAL (CREAD-VAL HOURLY-WAGE-IN tHMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)))
UNDEFINED))

Expression after simplification of arithmetic expression:

(XCASE ((EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))
(XCASE ((AND (NOT (EOLP (SEFO HOURLY-WAGE-IN)))
(NOT (LtOtP (SEFO HOURS-WORKED-IN))))
(TIMLS (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))
((OR (LOFP (SEFO HOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN)))
UNDEFINED)))
({(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYLE-NUMBER)))
UNDEFINED))

Expression after transform to eliminate nested XCASE:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE -NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))
(AND (NOT (LOFP (SEFO HOURLY-WAGE-IN)))
(NOT (EOFP (SEFO HOURS-WORKED-IN)))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))
((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))
(OR (EOFP (SEFO HOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN))))
UNDEF INED)
((NOT (LQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)))

UNDEFINED))

Transiation Process -76 - Gregory G. Faust

Fig. 39. Example Simplification of an Object Assertion (Continued)

Expression after condensing clauses with identical objects:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE -NUMBER))
(AND (NOT (tOFP (SEFO HOURLY-WAGE-IN)))
(NOT (EOFP (SEFO HOURS-WORKED-IN)))))
(VIMES (CREAD-VAL HOURLY-WAGE-TN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))
((OR (AND (fQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYLT -NUMBERY))
(OR (LOIP (SEFO HOURLY-WAGE-IN))
(LOFP (SEFO HOURS-WORKED-IN))))
(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEL-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))))
UNDEFINED))

Final assertion after predicate simplification:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))
(NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(NOT (EOFP (SEFO HOURS-WORKED-IN))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))
((OR (EOFP (SEFO HOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN))
(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)))))
UNDEF INED)

into account, when an augmentation that has a dummy temporal input is symbolically evaiuated, the
predicate that is associated with that dummy input is pust. . :0 the control environment stack. The
stack is then popped when evaluation of that augme™ .o1 . - mplete.

Within temporal compositions, there is an additiona! implicit factor in the control
environment. Recall that an augmentation within a temporal composition is only executed if none of
the terminations in the temporal composition have caused the loop to terminate. Therefore, the
negation of the predicates that cause the loop to terminate must be considered part of the control

environment,

The control environment of write functions is saved through the following mechanisms. A list

is kept of all temporal compositions in the plan along with the predicates that cause each to terminate.

When a write function is symbolically evaluated, the control environment stack is saved as well as the

Gregory G Faust 77 Translation Process

Fig. 40. Information Transferred Between Phases in PAYROLL

Temporal Composition: TEHPCOMP-1
lermination Predicate: (tOIP (SEFO HOURLY-WAGE-IN))
Qutput Expressions:
(GROSS-PAY-REC_EMPLOYEE-NUMBER IS
(CREAD-VAL HOURL Y-WAGE - IN HOURI Y-WAGE -REC_ELMPLOYEE ~-NUMBER))
(GROSS-PAY IS (TIMES (CREAD-VAL HOURLY-WAGL-IN HOURLY-WAGE) 40.))

Temporal Composition: QUTPUT-NOT-IN-TEMPCOMP
fermination Predicate: NIL
Output Expressions:
(EMPLOYEF-COUNT IS (COUNT (NOT (EQFP (SEFO HOURLY-WAGE-IN)))))
{TOTAL-GROSS-PAY IS
(SuM (TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)))

Filename: HOURLY-WAGE-IN
Open Type: COPENI

Filename: GROSS-PAY-OUT
Opentype: COPENO

Filename: EMPLOYEE-COUNT-0UT
Opentype: COPENO

Filename: TOTAL-GROSS-PAY-0UT
Opentype: COPENO

name of the temporal composition in which it is located. Write functions not located within temporal
compositions are associated with a special dummy temporal composition called QUTPUT-NOT-IN-
TEMPCOMP.

Before the termination of the symbolic evaluation phase, the list of temporal composition
names and their associated predicates as well as the information stored during the evaluation of write
functions are stored in a file to be used in the HIBOL production phase. The only remaining
information that is transferred to the HIBOL production phase is the type of open function that was
used to open each file in the COBOL program. As an example, the information transferred from the
symbolic evaluation phase to the HIBOL production phase in the translation of PAYROLL is shown in

Figure 40.

PRSPST;

W SO i

Traasiabon Process 78 Gregory (0 Faust

5.5 DATA DIVISION Query

A Bl mput to the transtation process directhy from the COBOL parser that contams wirtually
Al of the mformabion that appears in the DATA DIVISION of the COBOL program Included 1s the
structure of the bufter area associated with each fite as well as the PICTURE clause for each atomic
variable name in these structures The only needed information that 1s not included in this file,
because it does not appear anywhere in the COBQOL program. is which of the atomic vanable names
in the buffor structure for each file are key fields. and in which order those key fields were used to sort
the il An exception occurs when a file1s specified mn the DATA DIVISION of the COBOL proyram to
be used for random access In this case. the syntax and semantics of COBOL demand that the
needed information aboutl key fields and sort order be explicitly given in the DATA DIVISION.

However, the current implementation of the translation process does not handle random access files.

This infaormation 1s gathered by simply asking the user of the SATCH system to supply it. For
each file. a hist of the atomic variable names of the corresponding buffer structure 1s displayed on the
screen along with associated numbers. The user then simply types in the list of numbers that
correspond to the key fields in the order that they were used to sort the file This information is then
added to the file of DATA DIVISION information to be used tn the HIBOL production phase.

The fact that this information needs to be gathered from the SATCH system user is not a
major drawback of the system. Anyone that s at all famitiar with the files that are used in a production
COBOL system should at least know which fields in each file are key fields even if they do not know

what the particular program in question is doing.
5.6 HIBOL Production

The information gathered in the analyzed plan symbolic evaluation and the data division
query is used to produce the actual HIBOL for the COBQOL program. This process is further
subdivided into two subprocesses; one which produces the DATA DIVISION of the HIBOL program,
and one which produces the COMPUTATION DIVISION.

The subprocess that produces the DATA DIVISION of the HIBOL program is relatively trivial.
The names of the key fields, gathered in the data division query, as well as the information about the
corresponding PICTURE clauses. received directly from the COBOL parser, are used to produce the
KEY SECTION. The information about the type of OPEN function used for each file, gathered in the
analyzed plan symbolic evaluation, and the information about the bufter-structure and corresponding
data and key fields, received directly from the COBOL parser, are used to produce the INPUT and
OUTPUT SECTIONs. Each data ficld name in the buffer-structure for every file in the COBOL
program is made into an individual data-set in either the INPUT SECTION or OUTPUT SECTION

Gregony G Faust 79 "ran Lalion Process

Fig. 41 Steps in the Production of the COMPUTATION DIVISION
1 Remove assertions tor key ficlds from further consideration,

Add to each assertion the negation of the predicates that terminate the temporal
composition in which they were formed.,

rS

3. Remove predicate object pairs with an object that is UNDEFINED from XCASEs.

4 Consolidate the assertions for a given output data field formed in separate temporal
compositions into one assertion.

5 Replace EOFP and comparative predicates with FILE-PRESENT predicates.

6. Eliminate FILE-PRESENT predicates that are redundant with the semantics of HIBOL.
7. Convert object assertions into HIBOL syntax.

8. Replace any remaining FILE-PRESENT predicates with PRESENT predicates.

9. Convert predicate assertions into HIBOL syntax.

10. QOutput final HIBOL expressions into HIBOL file.

depending on whether the OPEN function used on the file was COPENI or COPENQ. A data-set is
created in both sections it the tile was opened via COPENIO. Currently, a VARIABLE SECTION is
never used.

The subprocess that produces the COMPUTATION DIVISION of the HIBOL program is much
more complex. The largest difficulty in performing this task is the determination of the correct
predicates to be used in the conditional expressions. Therefore, this subprocess consists mainly of
the manipulation of various predicates in various ways, starting from the assertions received from the
symbolic evaluation of the analyzed plan. An overview of the steps performed in the production of the
COMPUTATION DIVISION is given in Figure 41.

The first four steps result in a single conditional assertion for every data field of every output
file. These assertions will be in one-to-one correspondence with the desired output data-set
definitions that will appear in the final HIBOL program. The next six steps convert each of the

resultant assertions into the corresponding output data-set definition.

Francation Process 80 toegory G faust

5.6.1 Remove Key Field Assertions from Further Consideration

First all assertions for key helds are diopped at tus point and not process=d further The
hey frield expressions dre dropped because the HIBOL COMPUTATION DIVISION does not contan
expressions tor key fields It 1s safe to drop them because. based on our assumptions about the type
of COBOL programs being processed. the assertions for the ke, helds are contrellzd by the same
basic predicates that control the data fields and therefore. no needed informatton 1s contamed within

them.
5.6.2 Assert Negation of Termination Predicates

Then. tor each remaming assertion that was produced in a temporal composition. it is
asserted that the assertion holds whenever the predicates that would cause the temporal composition
to terminate are FALSE. This 1s done by forming an XCASE with two predicate-object pairs. The first
pair consists of the neyation of the logical OR of th2 predicates that cause the temporal composition
to terminate and the oniginal assertion tor the pyect and the second pair consists of the logical OR of

those same predicates combined vath the oty=Ct UNDEFINED.

Consider an example from PAYROLL. The original assertion associated with the variable
GROSS-PAY is:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)
and the predicate causing the temporal composition to terminate is:
(EQFP (SEFO HOURLY-WAGE-IN))

The XCASE that would be produced is:

(XCASE ((NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.))
((EOFP (SEFO HOURLY-WAGE-IN)) UNDEFINED))

This XCASE would then be simplified using all of the simplification technigues discussed in
previous sections. Note that if the original assertion had already been an XCASE, then this process
would have the effect of ANDing the predicate in every predicate-object pair with the negation of the
predicates that terminate the temporal composition. A further effect of this trancformation is that ail

assertions formed within temporal compositions are now XCASEs.

v NN

oy

Gregoery G Faust 81 Franslation Process

5.6.3 Remove UNDEFINED from XCASEs

Next. the preaicate object pair of the XCASE. 1f any. that has an object of UNDEFINED i1s
removed from the XCASE The resultant XCASE no longer has the property that exactly one of the
predicates will be true at a time. but still has the property that at most one of the predicates will be
tru2 at a time. It is safe to remove these pairs tor two reasons. First. from this point on in the
translation. no transform will be applied to the XCASEs which requires that the predicates be all
inclusive. although transforms will be apphied that require that they be mutually exclustve Second.
the semantics of HIBOL conditional statements (into which the XCASEs will be translated) state that.
for any given element in the key space. if none of the predicates in the conditional are TRUE. the
conditional will be undefined for that element. and the element will not be included tn the actual key
space of the result. In addition. these predicate-object pairs need to be eliminated at this time so that

the next operation to be periormed on the assertions will function properly.
5.6.4 Consolidate Different Assertions for the Same Data Field into One

The last thing that is done to produce a single conditional expression for every data field of
every lile is to look for assertions for a particular data field in more than one temporal compositior.. If
more than one assertion is found for a given data field. the predicate-object pairs of one.are simply
appended to the predicate-object pairs of the other. forming a larger XCASE which is then simplified.
It is important that the resultant XCASE have the same predicate exclusivity of all other XCASEs. For
this to be the case. the predicates in the two XCASEs must be mutually exclusive. This will, in turn, be
true if the initial COBOL program adheres to the current assumptions of the system.

This transform is necessary to translate programs {(among others} which perform a file merge
operation. (See the LOC-LIST example in Section 1.4). A high level view of the typical analyzed plan
for a file merge operation is shown in Figure 42. The analyzed plan is a conditional with a temporal
composition acting as the predicate and two additional temporal compositions acting as the actions.
Note that only the termination subsegments oi the temporal compositions are shown.

A summary of the predicates that will be included in every predicate-object pair in an XCASE
in each of the three temporal compositions is shown in Figure 43. (Recall that the predicates in these
XCASEs are no longer all inclusive since the predicate-object pairs containing UNDEFINED have
already been removed). These predicates are included in the XCASEs either because they are the
nagation of the loop terminator, in which case they were inserted by a previous step in the HIBOL
production phase as described above, or because they were on the control stack when the temporal
compositioin was symbolically evaluated. in which case they already appeared in the assertions
transferred from that phase to the HIBOL production phase. By examining this figure, it should be

easy to see that these predicates are in fact mutually exclusive and that, theretore, the transform

Itansfation Process 82 Gregory G Faust

Fig. 42. Sketch of Analyzed Plan for File Merge Operation

" CONDITIONAL :
T \:4 T
1C1 N/ N
CreRw TERM
EOFP EOFP
FILE-A FILE-B ;
A4 J N
| |
I il
N N/
1C2 N/ TC3 I/
TERM TERM
EOFP EOFP
FILE-B FILE-A
T —
N N

K-
o

JOIN

K-_N

functions properly in this example,
5.6.5 Replace EOFP and Comparative Predicates with FILE-PRESENT Predicates

The next transform replaces all EOFP predicates and all comparative functions applied to
key fields by FILE-PRESENT predicates. The replacement scheme is shown in Figure 44. The

replacement for EOFP predicates should be fairly obvious.

Gregory G Faust - 83 - Transiation Process

Fig. 43. Predicates Contatned m XCASEs in a File Merge

[EMPCOMP-1: (AND (NOT (EOIP (SEFO FILE-A)))
(NOT (EOIP (SEFO FILE-B))))

TEMPCOMP-2: (AND (EOFP (SEFO FILE-A))
(NOT (LOFP (SEFO FILE-B))))

TEMPCOMP-3: (AND (NOT (EOFP (SEFO FILE-A)))
(EOFP (SEFO FILE-B)))

Fig. 44. Replacement Predicates

(EOFP (SEFO file-name))
Becomes:
(NOT (FILE-PRESENT file-name))

(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
Becomes:
{OR (AND (FILE-PRESENT file-namel)
(FILE-PRESENT file-name?2))
(AND (NOT (FILE-PRESENT file-namel))
(NOT (FILE-PRESENT file-name2))))

(LESSP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
Becomes:
(AND (FILE-PRESENT file-namel)
(NOT (FILE-PRESENT file-namel2)))

(GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))

Becomes:
(AND (NOT (FILE-PRESENT file-namel))
(FILE-PRESENT file-name2))

The replacements for the comparative functions, however, are less obvious. It should first be
noted that in order for the replacement to be performed, it must be the case that the key fields that are
acted on by the comparative tunction must be the same. Currently, two key fields from different files
are considered the same if they have the same name. Later, a suggestion is made as to how this

constraint could be relaxed.

Transtation Process 84 oo, L Faust
‘ The replacement predicatey for comparative funchione, oo et o ne, tedead, oo the
assumption that the progranu whech they are formed g onee of e threes Lo e o d that the two

files under consideration are bemy read sequentially and are sorted i ke, held order The number of
key fields. however s unmportant. Let us look more closely at these teplacement preshicates 1 the
value of the key field read from file-name-11s less than the value of the key field reud from file-
name -2, then that means that the record in file-name-2 corresponding to the ke, value read in
file-name-11smissing while it does appear in file-name-1. On the other hand. if the vilue f the
hey hield read tfrom file-name-11s greater than the value of the key field from file-name-2 then
that means that the record in file-name -1 that corresponds to the key value read wn file-name-2
15 nussing while it does appear in file-name-2. These facts are reflected In the replacement
predicates for LESSP and GREATERP respectively.

If the values of the key fields read from both files are equal. then both records appear for that
key value. This fact is reflected in the first clause of the replacement predicate for EQUAL. The
second clause of the replacement predicate for EQUAL is included so that the the replacement
predicates considered as a whole will exhibit a very useful property. Namely. they exhibit all of the
tautologies that are exhibited by GREATERP, LESSP. EQUAL and NOT-EQUAL. For example. after
simplification with the disjunctive normal form predicate simplifier, the predicate produced from

(NOT (LESSP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name)))

should be logically equivalent ta the predicate produced from

(OR (GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name)))

both before and after the replacement has been made. The replacement predicates currently used do
produces the equivalent result. Both the predicates shown above, after replacement, reduce to
{OR (NOT (FILE-PRESENT file-name-1))

(FILE-PRESENT file-name-2))
The fact that the replacement predicates exhibit this property eliminates the possibility that different
predicates could be produced after replacement simply because the programmer of the ornginal
COBOL program chose a particular form for a predicate over an equivalent form,

As an example of the use of predicate replacement, consider the expressions, taken from
PAYROLL? (see Section 1.4), for GROSS-PAY both before and after predicate replacement as shown
in Figure 45. Note that after the replacement, the resultant predicates are simplified.

Gregory G. Faust -85 - Itanslation Process

Fig. 45. Examptle of Predicate Replacement

fxpression for GROSS-PAY before replacement:
(XCASE ((AND (LQUAL (CREAD-VAL HOURL Y-WAGE-IN tMPLOYEL -NUMBER)
(CREAD-VAL HOURS-WORKED- [N tMPLOYEL-NHUMBER))
(NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(NOT (1 OfP (SEFQ HOURS-WORKED-IN))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED))))

Expression for GROSS-PAY after replacement:
(XCASE ((AND (FILE-PRESENT HOURLY-WAGE-IN)
(FILE-PRESENT HOURS-WORKED-IN))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKLD))))

5.6.6 Eliminate Redundant FILE-PRESENT Predicates

The next transform eliminates the FILE-PRESENT predicates that are redundant with the
semantics of HIBOL. The FILE-PRESENT predicates in the predicate of each predicate-object pair
that refer tn the same file as any of the remaining CREAD-VAL abjects in either the predicate or object
of that particular predicate-object pair are eliminated by replacing them with TRUE. and then
simplifying the predicate. These predicates are redurn.dant with the semantics of HIBOL because all
HIBOL expressions contain an implicit PRESENT predicate for every data-set name that appears in
the expression. All predicate-object pairs with a resultant predicate of FALSE are diopped from the
XCASE. It often happens that the resultant XCASE has only a single predicate-object pair with a
predicate of TRUE. If this occurs, the XCASE is reduced to the object of that predicate-object pair.

Continuing the example from PAYROLL2 shown in Figure 45, the expression for GROSS.
PAY at this point in the processing is simply:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED))

5.6.7 Express Objects in HIBOL Syntax

Next, the object portion of each predicate-object pair as well as those object expressions
that are not part of XCASEs are transformed into HIBOL syntax. Several things must be done. First, all
of the arithmetic operation expressions are converted from prefix to fully parenthesized infix form.
Second, certain forms are converted to match the HIBOL syntax. For example, TIMES is converted to
"*" and STRING objects are converted into character strings. Third, CREAD-VAL expressions are
converted into the appropriate data-set references. If the file referred to in the CREAD-VAL

Translation Process 86 - Gregury G faust

expression 1s opened for input then the resultant ervpresaion s simpl, the data set name that

corresponds to the data hield 1t the hile s opened tor mput cutput. then the resultant expr:ssion)s:
(LASY PERIOD'S data-set-name)

to reflect the fact that the data-set name refers to the data-set in the INPUT SECTION and not the
data-set in the OUTPUT SECTION. (See the DBINIT example in Section 1.4.)

5.6.8 Replace Remaining FILE-PRESENT Predicates with PRESENT Predicates

Next. any remaining FILE-PRESENT predicates are replaced with PRESENT predicates
acting on data-set names. If the file that the FILE-PRESENT predicate refers to has a single data
tield. then the data-set name that corresponds to that data field is used as the argument to the
PRESENT predicate. However. if the fite has more than one data field. then there is no way to
automatically determine which data-set name(s), corresponding to particular data field(s) shouid be
used in PRESENT predicate(s). From the perspective of the COBOL program, it does not matter
because if any of the data fields are present for a given index. then all of the data fields will be present
for that index. But, from the perspective of the HIBOL, all of the data fields for a given COBOL file
have each been given an individual data-set name and the information that dictates that if one is
present they all are present has been lost.

On the other hand, it is usually not desirable to demand that all of the data-sets that
correspond to the original COBOL data fields for the file be included in PRESENT predicates in the
HIBOL. Therefore, the user of the SATCH system is queried to determine which of the possible
PRESENT predicates acting on data-set names should be included. This process is simplified by the
fact that the objects of the predicate-object pairs have already been converted to HIBOL syntax, and
therefore can be shown to the user in a more readable form. The user is shown the HIBOL for the
object in the predicate-object pair as well as a list of the data fields for each of the files included in a
FILE-PRESENT predicate, and asked to supply a list of data field names for which PRESENT
predicates should be formed. These PRESENT predicates are then formed and piaced into the
predicates of the predicate-object pairs in place of the FILE-PRESENT predicates which are then
simpilified.

5.6.9 Express Predicates in HIBOL Syntax

The resultant predicates are now converted into HIBOL syntax. This is very similar to the
conversion to HIBOL of the object expressions. One difference is that the logical functions AND and
OR are n-ary operators. Therefore, when they are converted into infix notation. copies of the operator
are placed between every two operands. In addition, PRESENT predicates acting on data fields from

a file opened via COPENIO are converted into

Gregory G. Faust 87 - Translation Process

(LAST PLRIOD'S field-name PRESENT)

instead of the usual PRESENT predicate. (See the DBINIT example in Section 1.4).
5.6.10 Outpul Finat HIBOL tor COMPUTATION DIVISION !

The last step in the production of the COMPUTATION DIVISION of the HIBOL program
consists of outputting the expressions into the HIBOL file. Thus consists of outputting an expression
for every data-set defined in the OUTPUT SECTION. The name of the output data-set is followed by ;
“1S" and then followed by the HIBOL expression produced above. XCASEs are processed by running
throuygh the predicate-object pairs first outputting the expression for the object and then the one for ﬁ
the predicate, mserting IF and ELSE in the appropriate places. Currently, iittie effort has been spent
to get the indentation of conditional expressions correct, and the examples shown in Section 1.4 have
been reformatted by hand.

——T S — — G I

Transiation Process Critique 88 - Cirengory G Faust

6. Critique of the Current Imptementation of the Translation Process

In the hirst part of this chapter. several problems that anse in the current implementation of

the translation process vall be discussed. and suggestions made as to how they nught be elimmnated.
In the second part of this chapter. suygestions are made as to how the translation process could be

expanded to handle a larger domain of COBOL programs.
6.1 Problems Arising in the Current Implementation

Perhaps the most glaring problem vath the current implementation of the translation process .
1is that t does not recogmze when it has gone astray. It biindly assumes that the program vath which it ‘
1s dealing adheres to all the implicit restrictions. f the program does not adhere to the appropriate
assumptions, the program will still try to produce some HIBOL program even though it probably will
not be correct. Obviously. a more robust system needs to recognize when it 1s given a COBOL
program that it cannot translate and then act accordingly. Later in this chapter, a few minor
suggestions are made as to how this problem could be somewhat reduced although not eliminated.
in the next chapter, a suggestion is made about a second generation system that would significantly

reduce this problem, if not eliminate it.

The remainder of this section discusses four more specific problem areas in tn= ~nrrent
implementation of the transiation process. For some of the problem areas, satisfactory solut. n are
proposed. For others, no satistactory solutions have yet been determined, although pantial solutions
are proposed. The first subsection discusses issues concerning the assertions formed in the

symbolic evaluation of the analyzed plan. The second subsection discusses the issue of variable
names, and how more mnemonic HIBOL code can be produced by the renaming of variables. The
third subsection discusses the problems encountered in the production of readable HIBOL code for
count operations. The last subsection discusses the issue of the use of output data-set names on the
right hand side of data-set definitions in the COMPUTATION DIVISION of the HIBOL code.

6.1.1 Assertions Formed During the Symbolic Evaluation

One problem with the current method used to form assertions during the symbolic evaluation
of the analyzed plan is that the assertions formed for temporal data ports are indistinguishable from
those formed for non-temporal ports. The information that the temporal port contains a stream of
values instead of a single value is discarded. Therefore, the assertions formed for temporal data ports

are not semantically correct.

Gregory, G Faust 89 - Trgnuiation Process Critique

Assertions that we semantically correct could be: tormed for teriporal outputs of
augmentations b, ncludmg i the assertion the mformanon that the object wom fact a stream as well
as the nformation that indicates for which values of a predicate values in the stream are defined. ‘
Temporal outputs from augmentations obtain ther values from two different places relative to the
augmentation function. from an output of the augmentation function or from an input to the
augmentation function. (See the generating augmentation from PAYROLL shown in Figure 27.)
These two cases have similar. but shightly different. semantics Let us exanune these two cases in

more detail.

Temporal outputs that obtain their values from an output of the augmentation function
represent streams of values in which all of the values are produced the same way, via the
augmentation tunction. These streams have the additional characteristic that they are truncated at a
point that is determined by the predicates that control the termination subsegments of the temporal
composition in which they appear. Therefore. semantically correct assertions for these streams must
contain three pieces of information. First, the assertions should indicate that they do in fact referto a

stream. and not a single value. Second. they should impart the notion that all of the values in the

stream follow the same prototype. Third, they should include a predicate that indicates under what
circumstances the values in the stream are defined. This predicate is the conjunction ol the

negations of the predicates that terminate the loop.

Far example, in PAYRQLL, the temporal output that contains values for HOURLY-WAGE is
currently given the following assertion:

{(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
However, a more semantically correct assertion might be:

(FOR-ALL-TRUE-OCCURRENCES-OF (NOT (EOFP (SEFO HOURLY-WAGE iN)))
(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE))

The inclusion of the old object assertion within the FOR-ALL-TRUE-OCCURRENCES-OF clause
indicates that the object is in fact a stream, that all of the values in that stream follow the CREAD-VAL

prototype. and that it has defined values until the end of file is reached on HOURLY-WAGE - IN,

Temporal outputs that obtain their values from an input to the augmentation function have
the same semantics as temporal outputs that obtain their values from an output of the augmentation
function except that the first value in the stream is different from the rest of the values in that it takes
its value from either the initialization of the augmentation or from outside the augmentation
altogether. Therefore. a semantically correct assertion for such a temporal output might be:

((FIRST-VALUE objectl)
(FOR-ALL-TRUE-OCCURRENCES-QF predicate object2))

w.? ——

Franstation Process Crntique 90 - Gregory G faust

Such an assertion mdicate:s that the fost value of the streanoe, distinct from the ceot of thee values of
the stream. and theretore does not foltow th= same prototype For example o semantically correct
assertion for the temporal output of the augmentation that performs the SUM operation in PAYROLL'
would be:

((FIRST-VALUE 0.)

(FOR-ALL-TRUE-OCCURRENCES-OF (NOT (tOtP (SEFQ HOURLY-WAGE-TN)))
(SUM (TIMES (CREAD-VAL HOURLY-WAGE - 1N HOURLY-WAGE) 40.))))

Semantically correct assertions could be formed for the temporal outputs of terminations by
using the forms described above. For example. the temporal output of the termination in PAYROLL
(see Figure 28) would be

(FOR-ALL-TRUE-OCCURRENCES-OF (NOT (EOFP (SEFO HOURLY-WAGE-IN)))
DUMMY)

Assertions formed for the temporal outputs of filters need to incorporate the predicate
assertion that corresponds to the out-case of the filter predicate with which they are associated as
well as the predicates discussed above. This could be done by forming the logical AND of the filter
predicate and the one which already appears in the input temporal flow in the FOR-ALL-TRUE-
OCCURRENCES-OF clause. Using the filter example from a previous chapter (see Figure 29), the
temporal output for the negative values could be given the assertion
(FOR-ALL-TRUE-OCCURRENCES-OF (AND (NOT stream-truncation-predicate)

(LESSP num 0.))
aum)

it should be stated that the assertion forms for temporal outputs described above are still
based on the assumption that the termination predicates remain TRUE for all values in the input
stream used as input to the termination after they are TRUE for some initial value. EOFP predicates
have this property (and are assumed to terminate all loops).

Although the assertions for temporal data ports described above would be more semantically
correct than the ones currently formed, they would be of limited use to the translation process. Tne
main reason for this is that the augmentation functions that eventually consume the temporal flows,
and in particular the augmentation functions that correspond to write functions with which we are
especially interested, only have non-temporal inputs. The temporal flows arrive at the input temporal

data ports of the augmentation, but are then decomposed into individual values before being passed

1 Hote that simce the parhial sums farmed in this augmentation are not actually used anywhere, this temporal output does not
appear in the diagrams for PAYROLL shown in a previous chapter.

Gregory G. Faust 971 - Translation Process Cutique

on to the augmentation function Dunng this decomposition. the informabion that states that the
objectis a stream wouid have to bee stipped back off and an asserhion formed that agan represents a
single value. This 1s because the augmentation function operates on a 1, pcat value of the input

stream. Assertions that are currently formed exactly express the typical value that 1s desired.

In addition. use of the more complex assertions described above would call for the
development of additional assertion simplification technigues to handle them. The number of
simplihication technigues required goes up as the cross-product of the number of differant object
types in the system. This fact creatas a desire to linut the number of different object types as much as

possible.

Another problem with the creation of the more complex assertions described above is that.
because of the order in which subsegments of the temporal composition are symbalically evaluated,
the predicates that terminate the loop are not generally known at the time that the assertions are
formed for the temporal outputs of the generating augmentations. Further, it is not possible to
change the order in which the subsegments are symbolically evaluated because the termination
cannot be evaluated until something is known about the values of its inputs which are. in general,

produced within some generating augmentation.

In summary, it would be difficult to produce more semantically correct assertions for
temporal data ports, their inclusion would call for the development of mare simplification techniques,
and they would be of limited use'ulness to the translation process. Therefore. the current
implementation retains the loop termination information by storing the predicates that terminate each
temporal composition, and associating with every assertion passed on to the HIBOL production
phase the name of the temporal composition in which it was formed. This technique has proved
adequate for the COBOL programs examined to date.

Another shortcoming of the current assertion technique is that assertions formed for file-
objects do not contain any history of the operations that have been performed on them. This
eliminates the ability to detect non-standard read sequences on the file that could skip over records
or perform other forbidden operations. A more robust system would have to examine the sequence of
operations performed on file-objects fairly closely in order to guarantee that the HIBOL produced is a
correct translation of the initial COBOL program.

6.1.2 Variable Names

In the previous chapter, it was mentioned that currently key field names referring to the same

key field in different files must be identical, and that structure names are sometimes adced to data

field names by the COBOL parser in order to make them unique. It is desirable to eliminate this

Transiabon Process Cnhique 92 - freqory Gofaust

constramt on key field names and 1o mane the nanees used for bothe faa and »c, frelds more

mn2monic.

The DATA DIVISION ¢t a HIBOL program uses a singlz name for a particular key field no
matter tow many data-sets use that key held. This is not a feature that simply increases the
readability of the HIBOL. but 1s demanded by the semantics of the language. Currently it Is easy to
produce HIBOL that conforms to this constraint as it 1s assumed that all key helds that refer to a

particular key are given the same name in the COBOL program.

This constraint could be ehminated by the following change to the data division query
subprocess The key field query for the first file proceeds as always. Then for each subsequent file.
after the key hields and sort order have been given, a list of the currently known key fields ts presented
and the user is asked to make correspondences between the key fields in the current file and the key
fields in the accumulated list. After all input files are processed in this manner. the sets of
corresponding key fields are presented one at a time and the user asked to supply a mnemonic name
that should be used for that key field in the final HIBOL code.

This process demands information from the user of tha SATCH system that 1s no different in
kind than that demanded by the current data division query. If the user 1s able to recognize which
fietds in a qiven file are key fields, then it should also be possible to recogmze the same key field in
difterent fites.

The semantics of HIBOL demand, as one might expect, that all data-set names be unique.
The exception occurs when an input and an output data-set have the same name and the HIBOL
program performs an update operation on that data-set (see the DBINIT example in Section 1.4). The
data field names given in a COBOL program, however, might not be unique. although the data tield
name together with the name of the structure that it is contained in is always unique. Currently, to
avoid ambiguity, the COBOL parser always produces unique identifiers for data fields by adding the
structure name when it is necessary to do so. In general, the data field names produced from the
COBOL program might not be particularly mnemonic especially when the parser has to add the
structure name.

It is possible to produce a HIBOL program that is much more readable and maintainable if the
data-set names are given mnemonic names. The later is made easicr by the fact that the HIBOL
program is sufficiently abstract that each of the data-sets should correspond to some real world
parameter in the system that the program is an implementation of. Therefore, it may be desirable to
give the data-sets in the HIBOL program names that differ from the names for the data fields in the

COBOL program to which they correspond.

Gregarny G Faust -93 - Teanslation Process Crtique

These data set names must be: suppled by the SATCH gy stem user The goor shiculd not be
expeCtod to supply a data set name vathout beng shown o contesan wihnch that data set wall be used
However atis undesirable to ever show the user of the S/ TCH system any e«pressions i the syntax
of the assertions formed in the symbolic evaluation of the analyzed plan because. as s clear from the
examples given above. it s cumbersome and difficult to read. Therefore. the best time to query the
user of the SATCH system for data-set names s after the phase of the HIBOL production subprocess
in which the expressions are convertad into HIBOL syntax. but before the user is queried for the

data-set names to include in PRESENT predicates used to replace the FILE-PRESENT predicates.

The user would be shown one expression at a time. As each expression was presented. the
user would be asked to supply replacement names for each of the data helds that are referenced
which have not already been given a data-set name. Al data fields that have already been given a
name by the user would appear as that new name. The process would be continued until all data

fields had been given a data-set name.

It is not known exactly how difficult it wilt be for the user of the SATCH system to recognize
the context that is presented for a given data field. Undoubtedly. this portion of the system will require
some human engineering before the query process could proceed smoothly. It is hoped that, if

properly engineered, this query process will not be too difficult for the user.

It should be nated that the above discussion, as well as the current system implementation,
makes the implicit assumption that all the data fields in the various input and output files do in fact
contain different information even though their names (minus structure name) may not be unigue. If
this assumption is not met by a particular COBOL program, then it is still possible to produce correct
HIBOL. but the renaming process will be made more difficult and the HIBOL that is produced may be
redundant in some respects. It might be better in this case to simply drop all but one of the definitions
for the data-sets that correspond to data fields that do not contain different information. However,
recognizing when two data fields are redundant would be quite difficult.

6.1.3 The COUNT Operation

The COUNT reduction operator is a source of difficulty for the current impiementation. It is
unlike any of the other reduction operators in that it does not require any data values as input. This is
reflected in the analyzed plan by the fact that an augmentation that caiculates a count will have a
DUMMY temporal input (see. for example, Figure 30). All that controls the operation of the count

augmentation is the predicate associated with that DUMMY temporal input. Logically. the COUNT

operaton in the analyzed plan takes a predicate as an argument and not an object.

Trans ation Process Critique 94 ooy G Faust
The- semantics of FHB L also acts asaf the: COUNT operator toor apreddi e o ts argunient
The syntax of HHIBOL. however demands that the COUNT operator take- ooduta st o ity argument

The COUNT oprator works as ifit counts the number of times that the predicate:
(PRESENT data-set-name)

1s TRUE.

There are two reasons why the syntax of HIBOL demands that the COUNT operator take a
datacsetanstzad of a predicate as its argument. First it is consistent vith the syntar for the other
rzdushon operators. Second and more importantly it s very difficult. in general. to count the number
of times an arbitrary predicate 1s TRUE. For example. in order to calculate the number of times the
negation of a PRESENT predicate for a particular data-set is TRUE. the program would have to
subtract the number of data items that actually appear for that data-set from the total number of
possible data items for that daia-set. [t is not obvious how the program could calculate the total
number of possible data items for a data-set. in general. Additionally. it is fairly easy to produce

predicates that are even more difficult to handle than the negation of a PRESENT predicate.

Since a COBOL program can count up arbitrary things. it will not be possible to produce
HIBOL COUNT operators in a reasonable fashion for all possible counts appeanng in COBOL
programs. Even in the cases in which the count is expressible in HIBOL it is difficult to produce a
data-set name to use as the argument to the HIBOL COUNT operator. Currently. the symbolic
evalualion phase uses the predicate associated with the DUMMY temporal input to the count
augmentation as the argument to the COUNT operator. The HIBOL production phase then attempts
to convart that predicate into a PRESENT predicate. and then use the data-set that is the argument to
the PRIZSENT predicate as the argument to the COUNT operation. For example, in PAYROLL, the

predicate that is associated with the DUMMY temporal input to the count augmentation is
(NO7 (EOFP (SEFO HOURLY-WAGE-IN)))
This pre licate easily converts to
(PRESENT HOURLY-WAGE)
using the techniques discussed in the previous chapter, and eventually produces
(COUNT OF HOURLY-WAGE)
as the final form of the COUNT operator in HIBOL syntax.
This tectinique. however, is not very robust. In some instances. the predicate produced may
contain the conjunction or disjunction of several PRESENT predicates. In other cases the predicate

may contuin a predicate that cannot be reduced to any PRESENT tormi There are two other

processes that night be used instead of the one discussed above to deternune the dataset that

B qui e 09 et

|

AD=A099 253 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
SEMIAUTOMATIC TRANSLATION OF COBOL INTO HIBOL.({(U)
FEB 81 & G FAUSY NOOO14=75~C=0661
UNCLASSIFIED MIT/LCS/TR=-256 NL

Gregory G. Fau.~ -95 - Translation Process Critique

should be used as the argument to a COUNT operator. although neither of them are very appealing.

? First. it is possible to make an assertion for the in-case of each segment of the analyzed ptan

which indicates its control environment.2 Then, when an augmentation is located during the symbolic
evaluation which performs a count operation, the predicate that controls the count could be

compared to the control environment of all the other augmentations with the hopes that it will find one

with the same truth value. Then, if that augmentation has any output that already corresponds to a
data-set, then that data-set could be used as the argument to the HIBOL COUNT operator.

This technique has two shortcomings. First, it is difficult in general to tell when two
predicates have the same truth value unless their surface syntax happens to be identical. This is
made easier by the fact that the simplification technigues that are used tend to canonicalize the
predicate expressions, but this alone is not sufficient to insure that predicates with the same truth
value will be recognized as such. Second, even if a control environment is found that does match the ;
controlling predicate of the count, the data-set that is produced by that augmentation might have no '
conceptual connection with the count operation whatsoever. The use of that data-set name as the
argument to the COUNT operation might, therefore, be highly non-mnemonic, although at least it will
be a data-set name that already appears in the HIBOL program.

A second possible technique is to simply build a dummy data-set, defined in the VARIABLE
SECTION of the HIBOL program, that can be used as the argument to the COUNT operator. The ;
expression for this dummy data-set that would appear in the COMPUTATION DIVISION as a
conditional with a single clause in which the predicate is exactly the one that controlled the count ‘

|
|
!

augmentation in the analyzed plan, and the object is just some dummy constant.

This technique has the advantage that it will work whenever it is possible to produce a HIBOL
COUNT expression at all because it is always possible in those circumstances to produce the needed
conditionat expression in HIBOL. 1t has the disadvantage that it introduces a data-set name that is

alien to the original program for which the SATCH system user wili not be able to supply a mnemonic
name because it has no real world analogue. Aiso, the conditional expression for this newly
introduced data-set contains an arbitrary constant that also has no real world significance.
3 Alternately, the conditional expression could be used directly as the argument to the COUNT

operator. This eliminates the necessity for the extra data-set name, but does not eliminate the

arbitrary constant. Also, the resultant data-set definition for the COUNT would appear needlessly
2 complex. Either way, the HIBOL code produced using this technique may look rather stiited to a :

e e

2 This is a possible change to the current system that has certain advantages independent of the problem with COUNT
operations.

Translation Process Critique -96 - Gregory G. Faust

human reader.

In summary. there is no single technique for producing COUNT expressions that is
satisfactory in all cases. Perhaps the best approach to this problem is to use the three techniques

! described above in order, first trying the technique that is most specific but which produces the most
mnemonic HIBOL code, and going to increasingly general techniques that produce less and less
mnemonic code as the more specific techniques fail. In this way, the best possible code will always

) be produced. although the average cost of producing HIBOL code for COUNT operators will be

substantially increased.

6.1.4 Subexpression Aliasing

it is often desirable to dafine output data-sets in terms of other output data-sets. This can
simplify the definition and increase its readability. For example, the definition of TOTAL-GROSS-PAY
in the HIBOL program for the PAYROLL example (see Section 1.4), without the use of other output
data-sets is:

TOTAL-GROSS-PAY IS SUM OF (HOURLY-WAGE * 40.)
Through the use of output data-sets in this definition, it can be simplified to:

TOTAL-GROSS-PAY IS SUM OF GROSS-PAY

The second expression is both simpler and more mnemonic. Both expression are totally valid HIBOL
expressions for the same computation. The difference is strictly one of style.

Unfortunately, it is difficult to use output data-sets in the definition of other output data-sets.
The difficulty lies in the recognition of those cases where it is possible and/or desirable to do so.
Several techniques have been tried to date, none of which was found acceptable. After a few of these
have been discussed, a new but untried solution will be presented.

One possible solution to this problem is to use the output data field names corresponding to
the desired output data-set names in the assertions formed in the symbolic evaluation of the analyzed
plan whenever possible. The analyzed plan for a program contains information that indicates at
which points in the program assignment of values to data fields takes place. Therefore, every time an
assertion is made, it is possible to replace any subexpression of that assertion with a data field name if
that data field has been assigned the value of that subexpression. Then, in the HIBOL production
phase, it is simple to form definitions for output data-sets in terms of other output data-sets because
the assertions for data fields will already be expressed in terms of other output data fields.

Gregory G. Faust -97- Translation Process Critique

However. there are two problems with this technique. First, there is the trivial problem that
many data-sets will end up being defined as themselves. For example. the HIBOL expression for
GROSS-PAY in the example above will be

GROSS-PAY IS GROSS-PAY

This can be eliminated by a special check in the symbolic evaluation phase to see that this does not
occur. but the check is messy and not very elegant. A second and more difficult problem is that there
is no guarantee that after a data field is used 1o define another data field it 1s not assigned a ditterent
value before it is wintten. If such redelinition does occur, then one data-set will end up defined in
terms of some data-set name that no longer corresponds to the same subexpression that it replaced.

Elimination of this problem would be quite difficult.

Another possible technique is to keep a global association list between subexpressions and
data field names. This list would be compiled during the symbolic evaluation of the analyzed plan.
Each time an assignment point is reached in the analyzed plan. an entry is made in the table. Then, in
the HIBOL production phase. the expressions are scanned for any subexpressions for which there is
an entry in the association liz-, and if one is found. it is replaced with the corresponding data field
name.

This technique makes it easy to eliminate the problems cited for the other technique above,
but it introduces new problems of its own. First, a subexpression that could have been replaced with
a data field name while in the symbolic evaluation phase may not still be in its origina! form by the time
the expression makes it to the HIBOL production phase, because it has been modified by one of the
simplification transtorms discussed in Chapter 5. Therelfore, although it would have been desirable to
replace a given subexpression, it no longer appears verbatim and can no longer be found. Second, it
is now possible to find subexpressions that do match expressions in the association list that it is not
desirable t0 replace with the corresponding data field name because the expression in which it is
found conceptually has nothing to do with that data field name, and the resultant code would not be
mnemonic at all.

A third technique that has not as yet been tried is to simply check all data-set definitions
against one another just before the final HIBOL expressions are written into the COMPUTATION
DIVISION looking for matching expressions. As compared to the technique described above, this
technique reduces the chance that a subexpression that should be replaced by a data-set name will
be missed, but still has the problem that certain subexpressions may be replaced by data-set names
to which they do not conceptually correspond. A second problem is that the search for matching
expression is Quite expensive.

Translation Process Critique -98 - Gregory G. Faust

In summary. atthough it would be nice to be able to produce HIBOL in which some output
data-sets are defined in terms of other output data-sets. until and unless some technigue for doing so
is developed that is better than any of the techniques discussed above it is probably not worth the
trouble. The current implementation of the translation process expresses all cutput data-set
definitions in terms of input data-sets only.

6.2 Possible Extensions

This section contains a discussion of two possible extensions to the current domain of
applicability of the translation process: indexed file access and formatted output reports.

6.2.1 Indexed File Access

One construct that is often used in COBOL programs that cannot currently be translated into
HIBOL is the use of indexed data files. Indexed files can be accessed in either sequential or random
order. Both of these usages can be translated into HIBOL fuirly easily as long as the COBOL program
in which they appear still falls into one of the three basic categories of programs that the translation
process is currently designed to handle.

The most significant difference between the translation of COBOL programs that access an
indexed file and those that don't is that the predicates that are produced in the symbolic evaluation of
the analyzed plan will contain INVALID-KEYP predicates as subexpressions when the indexed file is
accessed randomly. Recall that the INVALID-KEYP predicate is TRUE if the record associated with
the NOMINAL KEY requested by the random read does not appear in the file. The INVALID-KEYP
concept in COBOL very closely corresponds to the HiBOL concept of a data value not appearing in
the actual key space for a particular data-set. Therefore, the INVALID-KEYP predicates are handled
by simply replacing them with the negation of FILE-PRESENT predicates in the HIBOL production
phase as is currently done with EOFP predicates, and the remainder of the translation process
continues as always. The accessing of indexed files in sequential order should require only the most
trivial changes (it any) to the translation process.

Translation into HIBOL of COBOL programs that include the random access of an indexed
file that does not contribute to the main read loop of the program is made trivial by the change given
above. This construct will most often arise in programs that access library files that contain certain
additional pieces of information. For example, a program that processes payroll, in addition to
calculating GROSS-PAY, may need to access the employee name that corresponds to a given
employee-number. The employee names might be kept in a library file inc.exed by employee-number.
The INVALID-KEYP predicates that result from the accessing of the library file would be handled as
described above, and the translation of such a program should proceed smoothly. This is an example

Gregory G. Faust -99 - Translation Process Critique

of a construct that can be added to a COBOL program without changing the basic structure of the
program and therefore could be incorporated into programs of any of the three basic types without
affecting the basic category into which the program falls.

There are two additional COBOL program scenarios that involve indexed files which do
appear in the main read loop of the program (and therefore do affect the basic structure of the
program) that could be translated into HIBOL if the simple change described above were
incorporated into the translation process. The first of these involves the random accessing of an
indexed file combined with sequential access of a normal sequential file. The second involves the
random accessing of an indexed file combined with sequential access of an indexed file. Both of
these constructs can only be incorporated into programs which perform intersections and have the
effect that a program into which one of them is incorporated can now be viewed as a program which
uses only a single data file to drive the computation instead of two (or more) as is usually the case in a
program which performs an intersection. Therefore, two programs which perfurm the same
computation, one of which uses only sequential files and the other of which falls into one of the above
scenarios, have a different basic structure and do not fall into the same basic program category.

In the first possible scenario, two main data base files contribute data fieid values to the same
computation as discussed in the previous chapter except that one of the files is an indexed file that is
randomly accessed. in this scenario, the program loops through the sequential file. For each record
in that file, it performs a random read on the indexed file using the key field values obtained from the
record read in the sequential file as the NOMINAL KEY for the random access read. For example,
consider the COBOL code fragment for a modified version of PAYROLL shown in Figure 46. In this
example, HOURS-WORKED:-IN is a sequential file, while HOURLY-WAGE-IN is an indexed file that is
randomly accessed. Note that the figure does not contain the components of the DATA DIVISION that
are required to specify that HOURLY-WAGE-IN is an indexed file with hourly-wage-key acting as the
NOMINAL KEY.

Fig. 46. COBOL Fragment with One Sequential and One Indexed File

mainline SECTION.
READ hours-worked-in AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
READ hourly-wage-in INVALID KEY GO TO mainline.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
MOVE employee-number OF hours-worked-rec
TO employee-number OF gross-pay-rec,
WRITE gross-pay-rec,
GO TO mainline.
end-of-job SECTION.

as .

™

Translation Process Critique - 100 - Gregory G. Faust

Fig. 47. COBOL Fragment with Two Indexed Files

mainline SECTION,
READ hours-worked-in NEXT RECORD AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
READ hourly-wage-in INVALID KEY GO TO mainliine.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
MOVE employee-number OF hours-worked-rec
T0 employee-number Of gross-pay-rec.
WRITE gross-pay-rec.
GO TO mainline.
end-of-job SECTION.

The second possible scenario is almost identical to the first scenario except that both files
are indexed files, although one of them is read sequentially. COBOL provides for the sequential
access of indexed files through the use of the NEXT RECORD clause in the READ statement (see
[22]). The other file is read in random order, using the key field values from the record read in the first
file as the NOMINAL KEY for the random read. For example, see the COBOL code fragment shown in
Figure 47. Again note that the figure does not contain the components of the DATA DIVISION that are
required to specify that HOURLY-WAGE-IN is an indexed file with hourly-wage-key acting as the
NOMINAL KEY and that HOURS-WORKED-IN is an indexed file that will be accessed sequentially.

it is important to note that in both of these two scenarios, although two input files are
contributing data values to the same computation, the two files need not be sorted in the same order.
These are probably the two cases in which the sorting constraint mentioned in the previous chapter
can be most easily elimirniated.

in summary, the important point that makes possible the translation of COBOL programs that
incorporate indexed access reads that are randomly accessed is that the INVALID-KEYP predicates
are replaced with the negation of FILE-PRESENT predicates. As long as the NOMINAL KEYs that are
used to access an indexed file are generated in a fashion that aflow the program to be classified as
one of the three allowatle types, and all of the other assumptions about the COBOL program are met,
the inclusion of indexed files in a COBOL prograr: should pose no significant problems to the
translation process.

An interesting by-product of the use of an indexed fiie in a COBOL program is that the
COBOL programmer must specily the key fields for that file in the DATA DIVISION. The translation
process can make use of this infermation to avoid the necessity of asking the SATCH system user for

the key fields or sort order for that file, reducing the length of the data division query subprocess.

Gregory G. Faust - 101 - Translation Process Critique

6.2.2 Formatted Output Reports

COBOL programs that produce formatted output reports differ from the COBOL programs
considered so far in two important ways. First, it is most often the case that the production of the
formatted report will call for CWRITE operations in several different places in the program (or
analyzed plan for the program) all acting on the same file-object. while a data file is usually produced
with one or at most a few ditferent CWRITE operations in the program (all of which are executed in
mutually exclusive control environments). Second. in addition to the usual computation to derive the
values of the data fields in the formatted report. there will also be computation used solely to control
spacing. page ejects, choice of literal strings, etc.

Because of these differences, it will no longer be sufficient to symbolically evaluate the
analyzed plan and then simply pass on the assertions for data flows used as arguments to CWRITE
operations to the HIBOL production phase. The symbolic evaluation can proceed as always, but a
second pass over the analyzed plan will have to be made in which the pattern of CWRITEs performed
on a given file-object is examined. The different portions of the pattern of CWRITEs that are found
will contribute to different components of the HIBOL formatted report feature.

In HIBOL, a formatted report is broken down into several components, such as report
headings, report footings, page headings, page footings, typical lines, etc. (See [30] or [18] for a
discussion of the HIBOL document facility.) A typical pattern of CWRITESs for a formatted report might
be broken into these components as follows. Report headings and footings would appear as a series
of CWRITEs that occur outside of the main loop of the program, with headings coming before and
footings after the temporal composition that represents that loop. The main CREAD loop that drives
the entire computation may appear nested within a second loop that counts up to fifty (or some similar
constant) in order to control page ejects. Page headings and footings would appear as a series of
CWRITEs within the temporal composition that represents the page eject loop, but not within the
nested CREAD temporal composition. The CWRITE that produces the typical line would then appear
within the nested loop.

The second pass over the analyzed plan would have to keep track of its current location in
the analyzed plan relative to the main temporal compositions. Then, when a CWRITE is located, this
information would be used to determine which component of the report the output of the CWRITE
should be relegated to. The assertions about the input data ports to the CWRITEs, formed during the
first pass, are used as always to determine the nature of the data values output by each CWRITE.
After the second pass is complete, the overall pattern of the CWRITES, and therefore of the report,

can be determined.

————————

Translation Process Critique 102 - Gregory G. Faust

This entire process should be simiphfied by the fact that there probably are not very many
different overall patterns that need to be recoynized. perhaps at most a few dozen or so. The exact
number needed is not now known, but can be empinically determined through further research.

The translation of COBOL programs that produce formatted reports also calls for a simplifier
for expressions that contain combinations of SUBSTRING and CONCATENATE operations acting on
STRING objects. These expressions will arise in the program for the control of spacing and choice of
literal strings. The simplifier would reduce such expressions into literal constants whenever possible.

As the final step in the translation of COBOL programs that produce formatted reports, the
HIBOL syntax for the DOCUMENT SECTION of the DATA DIVISION would have to be produced. This
syntax is somewhat elaborate, but should not be overly difficult to produce once the pattern of the

{ Such a simplifier should not be difficult to produce.
§

reports is known and the expressions for the string operations have been simplified.

| in summary, although the translation of COBOL programs that produce formatted output
l reports into HIBOL requires more elaborate processing of the analyzed plan, additional simplification
techniques, and a more elaborate HIBOL production phase, it is not beyond the reaches of current
technology. None of the new features of the translation process described above should be overly
difficult to produce. Thus, this increase in the domain of applicability of COBOL to HIBOL translation
could be achieved through a moderate engineering effort, i

i Al

Gregory G. Faust - 103 - SATCH System Critique

7. Critique of the SATCH System

In the previous chapter, several features of the current implementation of the translation
process were discussed. and suggestions made as to how the translation process could be modified
to improve its performance. In this chapter, the current implementation of the entire SATCH system is

| discussed. with some suggestions as to how the system performance could be improved by making
changes at this more global level.

7.1 Semiautomatic versus Automatic Translation

Although the word "semiautomatic” appears in the title of this thesis, the current
implementation of the SATCH system essentially performs the automatic translation of COBOL
programs into HIBOL. Of the three major components in the system, the COBOL parser, the plan
analyzer, and the translation process, only the transtation process utilizes any human input.

The translation process utilizes human input in two places. First, the key fields for the files
manipulated by the COBOL programs must be specified. Although the SATCH user is currently asked
to supply this information for every COBOL program that is translated, the key fields for the data files
remain constant throughout an entire data processing system. Therefore, the SATCH system could
be chahged so that the key field information for a data prqcessing system is input only once, and then
used in the translation of all the COBOL programs in that system. This would significantly reduce the
amount of human input required by the system.

The second form of human input is utilized in the HIBOL production phase of the translation
process to specify which data field(s) in a file should be used to replace FILE-PRESENT predicates
b with PRESENT predicates. This information, however, is only needed to increase the readability of
' the resultant HIBOL program, and is not required to insure the correct semantics of the HIBOL
program. Therefore, it would be possible to eliminate this input without affecting the correctness of

the translation.

Therefore, the human input required by the system to translate the current domain of COBOL
programs is minimal. The expansion of the domain, however, might call for an increase in the amount -
of human intervention as discussed below. i

7.2 Using Analyzed Plans

Given that the task at hand is to translate a process described in one language (COBOL), into
the same process described in a more ahstract language (HIBOL), the abstraction process is of the
utmost importance. Currently, most of the abstraction is performed by the component of the SATCH i
system that produces the analyzed plan. This component uses general methods to abstract away the

SATCH System Critique - 104 - Gregory G. Faust

details of implementation in the source fanguage (in this case. COBOL). The component of the
system that translates the analyzed plans into HIBOL does a certain amount of abstraction. however it
uses special case techniques that are specifically designed around the features of the target
language (H!IBOL). The breakdown of the abstraction process into these two components raises a
key question; Are the general method abstractions that are made in the analysis of plans useful for the

translation of COBOL programs into HIBOL, or would it be better to apply special case abstraction
technigues right from the beginning? g

The answer is that the abstractions contained in an analyzed plan are exactly those that are

needed for the translation of COBOL programs into HIBOL. In general, programs can be abstracted

in several different ways producing program representations containing very different types of objects 5

and operations on those objects. For example, a program can be broken down into subprograms that

each perform a specific task as is done in FORTRAN [19] and PL/1 [33]. Or it can be broken down in

terms of increasingly abstract data objects and operations defined to operate on those objects as is

done in Alphard [35], SMALLTALK [13], and CLU [15]. Or it can be broken down into independently

acting agents that wait to be activated depending on the current environment as is done in

CONNIVER [29] and PLASMA[10]. Finally, it can be broken down into data flows and operators that

act on values carried by those flows as is done in VAL [1] and HIBOL. Analyzed plans also express

programs using this last paradigm. Theretore, a program expressed as an analyzed plan is broken

down into the same abstract components as a program expressed in HIBOL. This does not mean that

any program that can be expressed as an analyzed plan can be expressed in HIBOL, but it does mean

that for those programs that can be expressed in HIBOL the analyzed plan representation of that

program more closely corresponds to the HIBOL representation than could any representation which

is based on one of the other abstraction techniques. This makes the abstraction of a COBOL

b program into an analyzed plan a very provocative first step in the translation of that program into
d HIBOL.

In spite of the fact that an analyzed plan is ideally suited to the translation of COBOL
programs into HIBOL for the reason stated above, the use of analyzed plans in this process has
certain drawbacks. First, an analyzed plan is an unwieldy representation of a program from the
standpoint of human interaction. It was designed to make it easier for a computer program to
understand another program, not to make it easier for a person to understand that program. q
Therefore, should it become necessary or desirable to involve a human in the portion of the
translation process that involves the analyzed plan, the plan itself would be a particularly poor choice
for the vehicle of discourse between the human and the program. Either the analyzed plan would
have to be temporarily translated into some form that the human can interact with, or the possibility of
human interaction in that portion of the translation process would most likely have 1o be abandoned.
Of lesser importance, the fact that the analyzed plan representation is unwieldy increases the

Gregory G. Faust - 105 - SATCH System Critique

dithculty of debugging the portion of the translation process that interacts with it.

A second shortcoming of the use of analyzed plans in the translation of COBOL programs
into HIBOL 1s that the program that produces the analyzed plan from the surface plan does not
currently incorporate enough knowledge about the interaction of input/output operations with the
data flows that represent file-objects. The original test bed for analyzed plans was the FORTRAN
Scientific Subroutine Package. These subroutines, in general, perform numerical analysis operations
on matrices and other data objects. but do not perform any input/output operations. Therefore,
sufficient knowledge about such operations was never incorporated into the analysis process. This
shortcoming has led to the production of analyzed plans, in both the DBINIT and PAYROLL2
examples. containing temporal compositions with a single generating augmentation. which contains
essentially all of the computation performed by the program, and a single termination as their only two
subsegments. Such analyzed plans are more difficult to work with than ones in which there are
several generating and/or consuming augmentations each of which performs a simpler function. The
analysis process could be modified to incorporate the necessary knowledge with a (hopefully)
moderate amount of effort.

Notwithstanding the shortcomings of analyzed plans cited above. the translation of COBOL
programs into HIBOL would be much more difficult, if not impossible, without the use of them or some
similar program representation. The current implemantation of the translation process relies upon
them implicitly and could not be reasonably modified to work should they be abandoned.

7.3 Future Direction for the Translation Process

The current implementation of the translation process was designed with the subset of
COBOL programs that it currently can translate in mind. Expansion of the translation process to
operate on a larger domain of COBOL programs, except in those cases cited in the previous chapter,
might be very difficult. The purpose of this thesis was to show the feasibilii, of the translation of
COBOL into HIBOL, not to present a final solution to the problem. The next attempt to build a COBOL
to HIBOL translator should replace the current implementation of the translation process with one
that incorporates the work currently being done by Rich and Brotsky at MIT. The remainder of this
section describes how that implementation of the translation process might work.

Charles Rich, in his PhD thesis [26], proposed a method of further abstracting analyzed plans
by recognizing standard program cliches within them. He calls such abstraction "plan recognition by
inspection”. The process proceeds as follows. First, the analyzed plan is converted into another
representation called the "plan calculus”. This process is relatively simple. The plan calculus is a
way of expressing a program in a hierarchical structure identical to analyzed plans except that the

primitive elements in the calculus are essentially propositions in first order predicate calculus. The

T R .~

SATCH System Critique - 106 - Gregory G. Faust

plan s converted into this representation to wd in the recognibion of the plan cliches and taciitate

logical reasoning about the plan.

After the plan i1s transiated into the plan calculus, the recognition process attempts to match
structures in the plan for the program with precompiled patterns taken from a plan library. The plan
library contains cliches for both common computational abstractions and common data abstractions.
A key feature of the matching process is that a given tfragment ot thie plan can simultaneously be used
to fill roles in several different library cliches. This allows the program to be examined from multiple
viewpoints. A key feature of the plan library itself is that the plan cliches are built into a taxonomy so
that certain chiches can be viewed as extensions of other cliches or as specializations of more general
cliches with added specifications. Another key feature of the plan library s that there are names
associated with all of the computation and data abstractions. Theretore. a system using this plan
recognition scheme can converse with a human using the same vocabulary that is used in everyday
conversations among expert programmers. Finally, it is intended that the plan cliches that appear in

the library could be used equally easily for program analysis or program synthesis.

As part of his PhD research. Rich designed the plan calculus and the taxonomy for library
cnches, and constructed a sample library containing a couple hundr 4 entries. Currently, a joint
effort is underway by Rich and Brotsky {o implement a program to convert analyzed plans into the
ptan calcutus. They are also putting the plan library into an on-line data base. Brotsky. as part ot his
Master’s research, intends to design and implement a program that will automatically recognize
instances of library cliches in a program represented in the plan calculus.

When the programs described above are implemented, the translation process of analyzed
plans into HIBOL can be rewritten to take advantage of them. In the simplest view of this scheme, all
that would be required is that the plan library be expanded to include the cliches that appear in
COBOL programs which closely correspond to HIBOL ccastructs. Then, once the cliches are
recognized, it would be a fairly trivial process to convert them into HIBOL syntax.

This scheme has several advantages over the current technique used in the translation
process. First, instead of having all the special case knowledge needed for the translation embedded
within LIGP code, that knowledge would be contained within the plun library. This makes the
knowledge much more accessible, and far easier to extend and modity. Second, it is hoped that this
scheme could capture more pertinent knowledge and therefore provide for the translation of a much
larger scope of COBOL programs. This was foreshadowed in the earlier discussion of a possible
extension to the current translation process that would allow programs that produce formatted output
reports to be translated. The second pass over the analyzed plan that was described in that
discussion can be viewed as an intermediate point between the current technique and the one

described in this section. A third advantage of this scheme is that the knowledge gained during its

g -

Gregory G. Faust - 107 - SATCH System Critique

implementation could be applied to the translation of other procedural languages into other higher
level languages, with the implementation of these translation systems requiring a relétively minor
amount of additional effort. For example, it might be possible to apply such techniques to the
translation of a certain subset of FORTRAN programs into APL [24]. :

Unfortunately, it is doubtful that it will be possible to translate COBOL programs into HIBOL
using just the simple scheme outlined above. First. it is doubtful that the component of the system
that is responsible for the recognition of plan cliches in the plan calculus could successfully operate
on a plan calculus representation produced from an analyzed plan in which almost all of the
computation of the program is contained within a single augmentation. Such analyzed plans were
mentioned in the previous section. The analysis process would have to be extended to produce
better analyzad plans for programs that perform input/output operations on file-objects before this
scheme would be possible. As stated before, this extension of the analysis process should not be
overly difficult.

Even if the analysis process were so extended, it is doubtful that the recognition process
would ever recognize all of a plan in terms of known c'iches for anything other than the most trivial
programs. Therefore, this system would probably cal! for human assistance for part of the recognition
process. Unfortunately, the plan calculus is no better suited as a vehicle of discourse with humans
than the analyzed plan representation. An interface would have to be built to intercede between the
recognition process and the human user. The construction of such an interface is made easier by the
fact that the cliches in the library have names associated with them that can be used in the
man/machine dialogue. A program synthesis system currently being worked on by Rich and Waters
requires a similar interface. The interface routine developed as part of that project could conceivably
be modified and transported to the COBOL to HIBOL translation process.

In summary, the possibility of applying the method of plan recognition by inspection to the
translation of COBOL programs to HIBOL is a provocative one. Although it poses some problems that
need to be overcome, it offers premise for the production of a system with much greater performance
than the current system. Such a system might well incorporate both a symbolic evaluation ot the
analyzed plan, similar to the one used in the current system, as well as the recognition of plan cliches.

7.4 Translation of HIBOL into COBOL

Although the predominant motivation for this thesis is to show the feasibility of translating
COBOL programs into HIBOL, it is necessary to mention the possibility of the translation of HIBOL

programs back into COBOL in order to impart an overall perspective.

“

SATCH System Critique - 108 - Gregory G. Faust

PROTOSYSTEM 1 [27] is an automatic programming system. developed by the Automatic
Programming Group at MIT. which can translate HIBOL programs into compilable PL/1 code and the
corresponding IBM JCL needed to run the resultant programs. In general, the only assumptions
made by the system about the target language is that it is some high level procedural language that

supports input/output operations to sequential and indexed data files. The exception is the final
component of the system which produces the actual PL/1 syntax for the computation. All that is
required to allow the system to produce COBOL programs is to replace the PL/1 syntax generator
with a COBOL syntax generator. A syntax generator for COBUL should not be overly difficult to
produce.

As stated in Chapter 1, there are some problems with the unconstrained use of
PROTOSYSTEM I to produce COBOL programs from HIBOL. To understand the problems and how
they can be circumvented, a slightly more detailed view of PROTOSYSTEM I is needed.

A primary design goal of PROTOSYSTEM | was the ability to produce highly efficient code
from a HIBOL program. To accomplish this end, PROTOSYSTEM ! is broken into two major
components. The first of these, the "design optimizer”, is responsible for determining the desired
"data aggregation” and "computation aggregation” for the application. The data aggregation
specifies which data-sets should be grouped together in the same file, and what type of files there
should be (indexed or sequential). The computation aggregation specifies which operations on the

data files should be grouped together in the same program. The second major component of the
system, the "code optimizer", uses the output of the design optimizer and determines the desired
implementation of the programs themselves.

The design optimizer represents the portion of the system that does most of what is usually
called automatic programming. The code optimizer performs a more well understood function; one
strongly resembling that of an optimizing compiler. Upon compietion of the PROTOSYSTEM |
project, there remained certain research issues with respect to the design optimizer that were not
completely resolved. The code optimizer that was developed produced PL/1 code with very good

run-time characteristics.

7 Within the context of the use of PROTOSYSTEM | as a component of the SAICH system, itis

' highly desirable to produce a single COBOL program for a single HIBOL program, and the COBOL
program should operate on the same data files that were used by the original COBOL program from
i which the HIBOL was produced. Therefore, the design optimizer component of PROTOSYSTEM 1 is
not required, since the data and computation aggregation used by the code optimizer should be
exactly those specified in the original COBOL program. This constrained use of PROTOSYSTEM |,
within the context of the SATCH system, should result in output COBOL programs that are highly

run-time efficient.

Gregory G. Faust - 109 - Plan Primitives

Appendix | - Plan Primitives for COBOL Programs

In this appendix, all of the primitive functions that can appear in a plan that is produced from
a COBOL program are explained along with the number and type of their arguments. Most of these

| primitive functions perform standard operations that commonly appear in any programming
formalism. These standard functions are included here for completeness. The remainder of the
functions perform operations that are much less standard. Particular attention will be given to the

latter.

- Each of these functions can be viewed as a black box, with a number of explicit inputs and
outputs where the outputs are related to the inputs via the function given. They should not be thcught
to return a value in the usual LISP sense, but rather to produce a value that is carried from the
function via explicit data flow. Also, some of the functions may produce more than one value as a
result of their operation. In addition, certain of the functions that perform operations on file objects
cause side effects. This will be discussed in greater detail below. For these reasons, these primitives
are not actually functions in the usuai sense.

1.1. Boolean Primitives

Each of the following functions result in the production of a single bit boolean. The input
arguments are of various types.

AND: Binary operator that performs the standard logical AND. Both arguments
are booleans.

EOFP: Takes a file object as input and produces TRUE if the next CREAD of the
file will produce an end of file condition, and FALSE otherwise. The
file object itself is unalitered by this test.

EQUAL: Binary operator that performs the standard EQUAL function. The input
arguments can be either both numbers or both strings. When the
arguments are strings, a standard collating sequence is used.

GREATERP: Binary operator that performs the standard GREATER-THAN
function. The input arguments can be either both numbers or both
strings. When the arguments are strings, a standard collating
sequence is used.

INVALID-KEYP: Takes a file object as input and produces TRUE if the next
CREAD of the file will produce an invalid key condition, and FALSE
otherwise. The file object itself is unaltered by this test. This is used
with indexed files only.

‘“

Pian Primitives - 110 - Gregory G. Faust

LESSP. Binary operator that performs the standard LESS THAN function. The
mput arguments can be either both numbers or both strings. When
the arguments are strings. a standard coliating sequence is used.

NOT: Unary operator that performs the standard logical NOT. The input argument
is a boolean.

OR: Binary operator that performs the standard logicai OR. Both arguments are

booleans.

1.2. Arithmetic Primitives

All arguments to and results from the following functions are numbers.

DIFFERENCE: Binary operator that produces the result of subtracting the second
argument from the first.

MINUS: Standard unary minus operation.

PLUS: Binary operator that produces the sum of two numbers.

REMAINDER: Binary operator that produces the remainder after dividing the first
argument by the second argument an integer number of times. In
other words, it produces the first argument MODULO the second

argument.

TIMES: Binary operator that produces the result of multiplying the two arguments.

1.3. String Operators

Each of the following functions result in the production of a string. In this system, a string is

a special object type formed by an invocation of STRING. The input arguments are of varying types.

CONCATENATE: Binary operator that produces a string formed by immediately
following the value of the first argument with the value of the second
argument. Both arguments are strings.

STRING: Unary operator that forms a string object from a sequence of characters.

SUBSTRING: Takes three arguments and produces a string. The first argument
is the string from which the substring will be taken. The second and
third arguments specify the first and last characters of the first
argument to be included in the resultant substring, respectively.

Gregery G. Faust 11T Plan Primitives

1.4. File Operators

Al of the tollowing tunctiors take a tile object as their first argument The file object should
be looked upon as a pointer into a file of data records. The pointer contains information about the
next record to be accessed (it any) as well as certain status information about the file. Some of the
following functions update the file object as a result of their operation. This is done by merely having
an output data flow produced that s different than the incoming data flow far the file object. This s

analogous to the way in which all other data values are handled within a plan.

In addition, however. the tile that 1s pointed to by the file object may be side effected by the
operation of the function For example. the CREWRITE functhion wilt destroy information stored in a
particular record of a file and replace it with new information. The lile is permanently altered by this
operation, and the old version ol the flile is no longer available. These are the only functions
produced from a COBOL program that can cause side effects. It is clearly stated in the following
tunction descriptions exactly which functions cause side effects.

CCLOSE: Takes a file object as its only argument and produces an updated file
object. In addition. the file is side eftected such that it can no longer
be accessed via any file operator except one of the following OPEN
functions.

COPENI: Takes a lile object as its only argument and produces an updated file
object. In addition, the file is side eftected such that it can now be
accessed by CREAD. That s, the file is opened for input only. The tile
object is set to point to just before the position of the first record.

COPENIO: Takes a fite object as its only argument and produces an updated file
object. In addition. the file is side effected such that it can now be
accessed by CREAD and CREWRITE. That is, the file is opened for
input/output access. The file object is set to point to just before the
first record.

COPENO: Takes a file object as its only argument and produces an updated file
object. In addition. the file is side effected such that it can now be
accessed by CWRITE. That is, the file is opened tor output only. The
file object is set to point to just before the position of the first record.

CREAD: Takes a file object as its only argument and produces an updated file
object as well as an arbitrary number of data values taken from the
record in the file that is specified by the file object. The record that the
data values are taken from depends upon several factors. If the file
specitications given in the original COBOL program specify sequential
access for the flile. then each CREAD will access the record that is
currently pointed to by the file object and then update the fie object to
point to the next cantiguous record. Since the COPEN causes the file

——

Plan Pumitives -112.- Gregory G. Faust

object to pont just before the first record n the file the first CREAD
will cause the hrst record in the file to be accessed. I the file
specthcations given in the onginal COBOL program specity random
access for the file. then each CREAD will attempt to access the record
in the hie that corresponds to a particular set of values of the key
fields. The set of values of the key helds that will be used to specity
the record to be accessed is contained within the file object. If the
particutar key set specihied does not correspond to any record that
actually exists within the file. then INVALID-KEYP will produce TRUE,
and the CREAD will not take place (assuming the onginal COBOL text
represents a vahd COBOL program). If a random access CREAD is
successfully completed then the file object produced will point to the
record n the file that was just accessed. This ensures that a
subsequent CREWRITE will access the correct record.

CREWRITE: Takes a file object and an arbitrary number of data values as
arguments and produces an updated file object. In addition, the file is
side effected by overlaying the record in the file specified by the file
object with the argument data vatlues. This 13 used with indexed files
opened via COPENIO only.

CWRITE: Takes a file object and an arbitrary number of data values as arguments
and produces an updated fite object. In addition, the file is side
eftected by placing a record in the file at the place pointed to by the
file object The record is composed from the argument data values.
This 1s used with fites apened via COPENO only.

NTERPRI Takes a file object and an integer as arguments and produces an
updated file object. In addition. the file is side effected by placing the
integer number of end-of-record marks in the file at the place pointed
to by the file object. For normal data files the second argument is
always 1 and NTERPRI 1s invoked once betore each invocation of
CWRITE. The use of CREWRITE does not require the use of NTERPRI
because the end-of-record marks should already appear in the file.

o T .

Gregory G. Faust - 113 - Running SATCH

Appendix Il - How to Run SATCH

! This appendix contains the instructions tor running the SATCH system. Included are the file
names and locations of all pertinent programs. the naming conventions of the data files used, and a

very briet description of some of the more important top-level program functions. All programs are
now on ML. Although all the programs are currently available and (hopefully) running, there is no
guarantee that things will remain in their current state.

To run the COBOL parser. type “:satch:cobpar<cr>". The only pertinent top-level function is
RUN. It takes a single argument which is the name of the file which contains the COBOL program to
parse. It produces two output files. The first of these. given a second file name of PROG, contains
the lisp-like representation of the PROCEDURE DIVISION. The second file. given a second file name
of DATA. contains the DATA DIVISION information. For example, the command "(RUN '((DSK
DIREC) EXAMPL COBOL))" will parse the COBOL program in "dsk:direc:exampl cobol” and produce
the output files "dsk:direc;exampl prog" and “dsk:direc;exampl data". For further documentation for
the COBOL parser and/or the answer to any questions about the COBOL parser, contact Glenn
Burke (GSB@ML).

To produce an analyzed plan for an output file of the COBOL parser, type ":lisp forpas;<cr>".
The pertinent top-level function is PROCESS. It takes a single argument which is the name of the file
which contains the PROCEDURE DIVISION output of the COBOL parser to be analyzed. It produces a
single output file, given a second file name of PLAN, which contains the analyzed plan. For example,
the command “(PROCESS '((DSK DIREC) EXAMPL PROG))" will analyzed the program and produce
the analyzed plan in "dsk:direc;exampl plan”. For further documentation for the analyzer and/or the

answer to any questions about the analyzer, contact Dick Waters (DICK@ Al).

To produce HIBOL for an analyzed plan and the DATA DIVISION information, start up a lisp
using the mitialization file on the FAUST directory. This is done by typing ":lisp faust;faust lisp".
Then, one of the following two top-level functions must be run to load the rest of the desired
environment: SET-UP-FOR-SATCH:| or SET-UP-FOR-SATCH-C which load the needed LISP source
tiles or LISP FASL liles, respectively (SET-UP-FOR-SATCH-C is strongly recommended). 1

Once the environment is loaded, the most important top-level function is LOAD- TRANSLATE.
It takes a single argument which is the first file name of the program to be translated. An attempt will
then be made to load the necessary files from the SATCH directory. For example, the command
“(LOAD- TRANSLATE 'EXAMPL)" will attempt to load “dsk:satchiexampl plan" and
"dsk:satch.exampl data”. It is possible to load the files from another device and/or directory by first
selting the giobal variables GLOBAL-DEVICE and/or GLOBAL -DIRECTORY to appropriate values.

SE

Running SATCH - 114 - Gregory G. Faust

LOAD TRANSLATE will produce two output files. given second file names of FAST and HIBOL. which
contain the information passed tfrom the symbolic evaluation phase to the HIBOL production phase,
and the completed HIBOL program. respectively. The same functionality can be gained by calling
LOAD-DB and TRANSLATE in succession. LOAD-DB takes the same argument as
LOAD-TRANSLATE. TRANSLATE takes no argument.

Once LOAD-TRANSLATE has been run on a particular example program, further testing ot
new versions of the DATA DIVISION Query and/or the HIBOL Production phase(s) can be
accomplished by using the top-level function FAST-LOAD-TRANSLATE. This function takes the
same argument as LOAD-TRANSLATE. Its operation only differs in that instead of loading in the
analyzed plan and performing the symbolic evaluation, it loads the information needed by the DATA
DIVISION Query and HIBOL Production phases directly from the files with the second lile names
DATA and FAST respectively. The two functions FAST-LOAD-DB and FAST-TRANSLATE have the
same relation to LOAD-DB and TRANSLATE as FAST-LOAD-TRANSLATE has to LOAD-TRANSLATE.

The entire translation process runs in three different modes which differ only in the amount
of information that is written to the terminal. The three modes are controlled by running three
top-level functions called VERBOSE-MODE, NORMAL-MODE, and QUIET-MODE. These functions
take no arguments. The default is NORMAL-MODE. QUIET-MODE should only be used for batch
jobs. VERBOSE-MODE will print out all sorts of intermediate values for variables. and is only usetul
for trying to debug very severe problems.

Regardless of which mode the program is running in, the terminal will be used to gather
information from the user. In all cases where user input is required, the user will be shown a list of
data field names and asked to input a list of the desired fields. The user should input the list using the
numbers that correspond to the data fields, and not the names themselves. It it is desirable to select
none of the fields, NIL is entered. In all cases, the user is given the opportunity to verity the input
before the program finally accepts it.

The only remaining top-level function of possibie pertinence is DB-WALK. This function is an
interactive command interpreter that affords a way to wander around and print out portions of the
analyzed plan in a reasonably simple fashion. The set of commands is too large to be discussed here.
the definition of the function can be found in "mt:satch;sutil >".

All the source fites for the COBOL parser and the translation process are in the archive file
"mi:faust;arQ satch”.

e .

Gregory G. Faust - 115 - References

10.

1.

12.

13.

14.

15.

References

. Ackerman W. B. and Dennis. J. B.. VAL - A Value-Onented Algorithmic Language: Preliminary

Reference Manual. MIT Laboratory tor Computer Science TR-218 (June, 1979).

. MetaCOBOL User Guide. Manual No. SM2G-00-10, Applied Data Research (1979).

. Baron. R. V. Structural Analysis in a Very High Level Language, S.M. Thesis. Laboratory for

Computer Science. Massachusetts institute of Technology (1977).

. Barstow. D . A Knowledge based System for Automatic Program Construction, Proceedings of

the Filth international Joint Congference on Artificial intelligence, Vol 1 pp. 382-388, M.I.T,,
Cambridge. Ma.. August 1977.

. Canning, R. G. (ed). Progress Toward Easier Programming, EDP ANALYZER 9:1 (September,

1975)

. Green, C.. A Summary of the PSI Program Synthesis System, Proceedings of the Fifth

International Joint Conglerence on Artificial intelligence, Vol. | pp. 382-388, M.L.T.,
Cambridge. Ma.. August 1977,

. Hammer. M. M., Howe. W. G.. and Wladawsky |.. An Overview of a Business Definition System,

IBM Thomas J. Watson Research Center Research Report (August, 1973).

. Hammer. M., and Ruth, G. R.. Automating the Software Development Process, in P. Wegner,

ed., Research Directions in Software Technology, MIT Press (1979).

. Hartman, J.. Restructuring COBOL Programs into Abstract Data Type Modules, University of

Texas at Austin Department of Computer Sciences, Software and Data Base Engineering
Group, Memo SDBEG-21, (August, 1980).

Hewitt, C., How to Use What You Know, Proceedings of the Fourth International Jo.nt
Conglerence on Artilicial Intelligence, Vol. 1 pp. 189-198, Thilisi, Georgia, USSR, September
1975.

1BM OS Full American National Standard COBOL, Manual No. GC28-6396-5, IBM (1973).

Kapur, Deepak, Some Results for Predicate Simplification, MIT Laboratory for Computer
Science, Automatic Programming Group Internal Memo, (September, 1976).

Kay, A., and Goldberg, A., Personal Dynamic Media, Computer IEEE v.10 3:31-41(1977).

Kornfeld, W. A., Ruth, G. R., and Baron, R. V., Proposal for HIBOL Syntax, MIT Laboratory for
Computer Science, Automatic Programming Group Internal Memo, (October, 1976).

Liskov. B.. Atkinsor. R, Bloom, T., Moss, E., Schaffert, C., Scheifler, R., and Snyder, A., CLU
Reference Manual, MIT Laboratory for Computer Science TR-225 (October, 1979).

— —

L adl ot

Reterences - 116 - Gregory G. Faust

16.

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

Long. W. J.. A Program Writer. MIT Laboratory for Computer Science. Technical Report
TR-187 (1977)

Martin, W. A, A Data Set Language and Its Translation into IBM 370 PL/I, MIT Laboratory for
Computer Science, Automatic Programming Group Internal Memo, (March, 1972).

Martin, W. A., Ruth, G. R., Alter, S., A Very High Level Language for Business Data Processing,
Personal Communication (1979).

McCracken, D. D., A Guide to FORTRAN Programming. John Wiley and Sons (1961).

Mills, H. D., Software Development, IEEE Transactions on Software Engineering SE-2.:265-273
(1976).

Morgenstern, M. L., Automated Design and Optimization of Management Information System
Software, PhD Thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology (1976).

Murach, M., Standard COBOL (2e), Science Research Associates (1975).

Pitman, K. M., A FORTRAN to LISP Translator, Proceedings of the 1979 MACSYMA Users’
Conference pp. 200-214, Washington, DC., June 1979,

Polivka, R. P., and Pakin. S., APL: The LangLage and its Usage, Prentice-Hall (1975).

Rich, C., and Shrobe, H. E., Initial Report on a LISP Programmer’s Apprentice, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Technical Report Al-TR-354
(1976).

Rich, C., Inspection Methods in Programming, Arificial Intelligence Laboratory,
Massachusetts Institute of Technology, Technical Report Al-TR-604 (1981).

Ruth G. R., Protosystem I: An Automatic Programming System Prototype, MIT Laboratory for
Computer Science TM-72 (July, 1976).

Ruth G. R., Data Driven Loops, MIT Laboratory for Computer Science TR-244 (1980).

Sussman, G. J., and McDermott, D. V., From PLANNER to CONNIVER - A Genetic Approach,
Proc. FJCC 41:1171 (1972).

Thomas, G., The Design and Implementation of a Document Facility for Protosystem |, S.B.
Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology (1976).

Waters, R. C., Automatic Analysis of the Logical Structure of Programs, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Technical Report Al-TR-492 (1978).

Amte

Gregory G. Faust - 117 - References

32. Waters. R. C.. A Method for Analyzing Loop Programs, /FEE Transactions on Software
Engineering SE-5.237-247 (1979).

? 33. Weinberg. G. M., PL/1 Programmung Primer. McGraw-Hill (1966).

34. Weinberg, G. M., Wright, S. E., Kaultman, R., and Goetz, M. A., High Level COBOL
Programming, Winthrop Publishers (1977).

35. Wulf, W. A.. London, R. L.. and Shaw. M., An Introduction to the Construction and Verification
of Alphard Programs. [EEE Transactions on Software Engineering SE-2:253-264 (1976).

o g

)

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies
800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy
Resident Representative

Massachusetts Institute of Technology

Building E19-628

Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

pefense Technical Information Center 12 copies
Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston

Building 114, Section D

666 Summer Street

Boston, Mass. 02210

