
AD-AD SMATMTCTASAIN"FCBLIT IO 253 MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR COMPUTE--ETC F/S 9/2

UNA" FEB 8I 6 B FAUST N00014-75-C 0661
UNCLASSIFIED MIT/LCS/TR-256 ML

E|hhIhIhhIhIhE
Illlllllllll
IIIIIIIIEIIEEE
IEEIIIIIIIIII

MASSACUSETT

COMUTE SCEE JtTECNOOG

MITLC/TR25

SEMIUTOATI TRASLAIO

S S OF

COBOLINTOHI4O

, 4 MT/LCS/TR-256 AJL

*Seriautanatic Translation of COBOL into HIBOL. 6 EFRIGOG EOTNME

___________________________________ '1IT/LCS/TR-256,

6 1I1N00Q14-75--C-0661 4
Gregory].,FaustN014

9 PERFORMING ORGANIZATION NAME AND ADDRESS i0. PROGRAM ELEMENT. PROJECT. TASK
MIT/Laboratory for Coputer Science AREA &WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139 /

11 CONTROLLING OFFICE NAME AND ADDRESS

ONR/Dept. of the Navy NSF/Associate Prog. Dir. Febw-8l
Information Sys.Program Office Ccap.Actvities 19, NUMBER OF PAGES
Arlington, VA 22217 Washington, D. C. 20550 119

14 MONITORING AGENCY N4AME II ADDRESS(If different from, Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
I IS5o. DECLASSIFICATION!DOWNGRAOING

16. DISTRWUTION STTEMENT (of thi Report) frpbi ees n ae

17. DISTRIBUTION STATEMENT rot the abstract entered in Block 20, it different from, Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necessry, and identify by block number)

program traslation
prograrn understanding
COBOL
HIBOL
automatic progran-riing

20 ABSTRACT (Continue n rev'erse side If necessary end identify by block number)

A severe software crisis is currently being experienced by the data processing Community4 . due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation
of existing COBOL software into HIBOL; a very high level language that is significantly easier to
maintain. HIBOL, uses a single type of data object, called a ."Ilow" which is an indexed stream of
data values. Computation is expressed as operations acting orn flows.- . .

DD I 1473 EDITION OF I NOV 65 IS OBSOLETE 'C (/s
SECURITY CL ASSIFICATION OF THIS PAGE (Ihit Del. interacd)

. , J4,t

3LCURITY CLASSIFICATION OF THIS pAGE(Vhan Date Enteed)

Tj,, t tI Iff t I .-t d [f lo IrojtOin i t)str action dct,.,'op d by R wlart
i.d V. IC w tt ; ,.;)r p1 grm 1L i s a r ltcaic I tr ucture, called an analyzed plan, in which
control and data flow is made explicit. In this formalism, loops are expressed as a composition of
stieam operators acting on stream data flow.

This paper discusses in detail how an analyzed plan for a COBOL program can be translated
into a HIBOL program. It is currently possible to translate into HIBOL analyzed plans ior a relatively
small (but well defined) subset of COBOL programs. Suggestions are made as to how that subset

could be expanded through further research.

- . .~~ ..." ' 2

. , , -. " , I

rrT

IECUmITY CLASSIFICATION OF THIS PAGE Im, Does Eutered)

Semiautomatic Translation

of

COBOL into HIBOL

by

Gregory Gerard Faust

February 1981

© Massachusetts Institute of Technology 1981

This research was supported. in part, by the Advanced Research Projects Agency of (he
Department of Defense under Office of Naval Research Contract No. N00014-75-Co0661, in part by

the Advanced Research Projects Agency of the Department of Defense under Office of Naval

Research contracts N00014-75-C-0643 and N00014-80-C-0505, and in part by National Science

Foundation grant MCS-7912179.

The views and conclusions contained in this paper are those of the author, and should not be

interpreted as necessarily representing the official policies, either exDressp"' or implied, of the
Department of Defense, the National Science Foundation, or the United States Government.

-2-

Semiautomatic Translation
of

COBOL into HIBOL

by

Gregory Gerard Faust

Submitted to the Department of Electrical Engineering and
Computer Science on January 21. 1981 in partial fulfillment
of the requirements for the Degree of Master of Science in

Computer Science

ABSTRACT

A severe software crisis is currently being experienced by the data processing community
due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation
of existing COBOL software into HIBOL; a very high level language that is significantly easier to
maintain. HIBOL, uses a single type of data object, called a "flow", which is an indexed stream of
data values. Computation is expressed as operations acting on flows.

The translation process relies on a method for program abstraction developed by Richard
Waters which expresses programs as a hierarchical structure, called an analyzed plan, in which
control and data flow is made explicit. In this formalism, loops are expressed as a composition of
stream operators acting on stream data flow.

This paper discusses in detail how an analyzed plan for a COBOL program can be translated
into a HIBOL program. It is currently possible to translate into HIBOL analyzed plans for a relatively
small (but well defined) subset of COBOL programs. Suggestions are made as to how that subset
could be expanded through further research.

Thesis Supervisor: Dr. William A. Martin
Title: Associate Professor of Electrical Engineering and Computer Science

and Associate Professor of Management

Thesis Supervisor; 0)r. Richard C. Waters
Title: Research Scientist, Artificial intelligence Laboratory

Keywords: program translation, program understanding, COBOL, HIBOL, automatic program ming

.3.

Acknowledgments

I would like to thank the following people without whose help this thesis would not have

become a reality.

* Bill Martin for the seminal idea that launched the entire project

- Dick Waters for the help he gave me in writing programs which interact with his plan formalism, and

for his constant guidance throughout this project

. Glenn Burke for the time he spent writing the COBOL parser, and helping me eliminate bugs in my

programs which no else could fathom

. Ramesh Patil and Harold Goldberger for their assistance in devising algorithms to perform various

tasks

. Dick Waters and Bill Martin, my thesis advisors, and Chuck Rich for their constructive criticism of
sewPral previous drafts of this paper

- Howard Sherman, Brij Masand, Glenn Burke, Ramesh Patil, Lowell Hawkinson, Harold Goldberger,

Irwin Asbell, Bill Long, Bill Swartout, and Ken Church for their lively discussions, both over lunch and

when my mind refused to apply itself to the problem at hand

- Ann Sexton for her companionship and understanding throughout the past year

- and especially, my parents, Alice and Vincent Faust, and the rest of my family for their constant

moral support throughout my academic career

J -- "- --- - - *- -- ... ---. . ..

Table of Contents -4. Gregory G. Faust

CONTENTS

1. Introduction .. ,......... 9

1. 1 Motivation.. 9
1.2 System Overview .. 10
1.3 Related Work... 12
1.4 Example Programs and Their Translations... 13
1.5 Outline of Remaining Chapters.. 22

2. COBOL..............................I... 23

2.1 Example Programs .. 23
2.2 ENVIRONMENT DIVISION ... I.......... 26
2.3 DATA DIVISION.............I... 27
2.4 PROCEDURE DIVISION 29

3. HIBOL 32

3.1 DATA DIVISICN .. 32
3.2 COMPUTATION DIVISION ... I............ 33
3.3 Features of HIBOL Revisited ... 38

4. Plans and Plan Building Methods ... 40

4.1 Surface Plans.. 40
4.2 Analyzed Plans and Plan Building Methods .. 43
4.3 Conclusion... 54

5. Current Implementation of the Translation Process .. 55

5.1 General Description... 55
5.2 Range of COBOL Programs Currently Translatable................................... 57
5.3 Brief Example .. 59
5.4 Symbolic Evaluation of an Analyzed Plan .. 62
5.5 DATA DIVISION Query.. 78
5.6 HIBOL Production... 78

6. Critique of the Current Implementation of the Translation Process............................. 88

6.1 Problems Arising in the Current Implementation 88
6.2 Possible Extensions... 98

L A-

Gregory G. Faust - 5- Table of Contents

7. Critique of the SATCH System.. 103

7.1 Semiautomatic versus Automatic Translation...................................... .. 103
7.2 Using Analyzed Plans ... 103
7.3 Future Direction for the Translation Process ... 105
7.4 Translation of HIBOL into COBOL.. 107

Appendix 1. Plan Primitives for COBOL Programs .. 109

.1. Boolean Primitives.. 109
1.2. Arithmetic Primitives ... 110
1.3. String Operators.. 110
1.4. File Operators ... 1i1

Appendix 11. How to Run SATCH.. 113

References .. 115

AL

Table of Figures . 6- Gregory G. Faust

FIGURES

Fig. 1. SATCH Overview .. 11
Fig. 2. COBOL Program for PAYROLL... 14
Fig. 3. HIBOL Program for PAYROLL.. 15
Fig. 4. COBOL Program for PAYROLL2 ... 16
Fig. 4. COBOL Program for PAYROLL2 (CONTINUED).......................................-....17
Fig. 5. HIBOL Program for PAYROLL2 .. 17
Fig. 6. COBOL Program for DRINIT .. 18
Fig. 7. HIBOL Program for DBINIT.. 19
Fig. 8. COBOL Program for LOG-LIST ... 20
Fig. 8. COBOL Program for LOC-LIST (CONTINUED) ... 21
Fig. 9. HIBOL Program for LOC.LIST.. 21
Fig. 10. COBOL Program for PAYROLL... 24
Fig. 10. COBOL Program for PAYROLL (CONTINUED).. 25
Fig. 11. PICTURE Elements... 27
Fig. 12. Example Use of 88 Variables.. 28
Fig. 13. Simple Statements that Affect Control Flow ... 29
Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Call 29
Fig. 15. PERFORM Syntax when Used as a Loop Construct.. 30
Fig. 16. Data Manipulation Statements .. 30
Fig. 17. File Manipulation Statements.. 31
Fig. 18. HIBOL Program for PAYROLL .. 34
Fig. 19. HIBOL Syntax for Conditional Expressions'.. 34
Fig. 20. HIBOL Program Fragment with Conditional Form .. 35
Fig. 21. HIBOL Syntax for Arithmetic Operators.. 35
Fig. 22. Expanded Forms of Arithmetic Flow Expressions... 36
Fig. 23. HIBOL Syntax for Reduction Operators.. 37
Fig. 24. Sample HIBOL Program Fragment with Reduction Operator.............................. 37
Fig. 25. Partial Surface Plan for PAYROLL ... 42
Fig. 26. Taxonomy of Plan Building Methods ... 44
Fig. 27. Generating Augmentation in the Analyzed Plan for PAYROLL........................... 47
Fig. 28. Termination in the Analyzed Plan for PAYROLL .. 49
Fig. 29. Example Filter .. 51
Fig. 30. Temporal Composition in the Analyzed Plan for PAYROLL 52
Fig. 31. Analyzed Plan for PAYROLL .. 53
Fig. 32. Current SATCH Implementation .. 56
Fig. 33. Partial Analyzed Plan for PAYROLL.. 60
Fig. 34. Transform to Remove XCASEs in Comparative Functions 70
Fig. 35. Example Predicate Simplification from PAYROLL2... 71
Fig. 36. Transform to Remove XCASEs in Arithmetic Expressions 72
Fig. 37. Transform to Eliminate Nested XCASEs .. 73
Fig. 38. Transform to Condense Predicate- object Pairs containing Identical Objects.......... 73

Gregory G. Faust 7- Table of Figures

Fig 39. Exarmple Simplification of an Object Assertion .. 75
Fig 3,-. ExamplE Siniplitication of an Object Assertion (Continued) 76
Fig 40. Information Transferred Between Phases in PAYROLL ... 77
Fig. 41. Steps in the Production of the COMPUTATION DIVISION ... 79
Fig 42. Sketch of Analyzed Plan for File Merge Operation ... 82
Fig. '43. Predicates Contained in XCASEs in a File Merge .. 83
Fig. 44. R eplacem ent Predicates ... 83
Fig. 45. Example of Predicate Replacement ... 85
Fig. 46. COBOL Fragment with One Sequential and One Indexed File 99
Fig 47. COBOL Fragment with Two Indexed Files ... 100

I

Gregoty G. Faust -9 - Introduction

1. Introduction

In the last ten years. there have been many efforts to simplify the task of producing large

error-free software systems. Although no one would argue with the merits of such efforts, they alone

are not sufficient to relieve the current software crisis that is being experienced by the data

processing community. In addition to aids in the production of new software systems. aids in the

maintenance of existing software are needed. This thesis is a step toward such an aid.

The system, SATCH. is designed to perform the SemiAutomatic Translation of COBOL into

HIBOL. HIBOL is a very high level specification language in which data processing applications are

not programmed procedurally. but simply described as a group of stereotyped operations acting on

streams [3,18.27). Since the HIBOL representation explicitly embodies the functional specifications

of the application system, it is relatively easy to understand and maintain. The HIBOL can

subsequently be translated back into COBOL [27]. The intent is that the COBOL produced by the

system will be considerably more structured, and potentially more efficient, than the input COBOL

program. More importantly, the HIBOL specification of the program can be retained so that future

changes to the functional specifications of the program can be implemented by modifying the HIBOL

program and automatically regenerating the corresponding COBOL program.

1.1 Motivation

In order to see the long term potential of a system such as SATCH, the following scenario

can be envisioned. The manager of a data processing facility recognizes that one of his systems has

reached the point where the code is so convoluted that it can no longer be maintained in a

reasonable fashion. He would like to have the system rewritten from scratch, but he realizes the

tremendous cost involved. In addition, he simply does not have the personnel to place on such a

project. Without SATCH, he is doomed to live with the current system despite its shortcomings.

However, if a production version of the SATCH system did exist, he would have another

alternative. He can input the COBOL programs into SATCH one at a time. For each program so

processed, he gets an output of another COBOL program that is easier to understand and is probably

more efficient. More importantly, he receives a HIBOL program which embodies the functional

specifications for the application. (For those COBOL programs that embody computations that

cannot easily be expressed in HIBOL, the original COBOL program is retained). The HIBOL program

can also be utilized as documentation for the system, and can therefore reduce the need for the time-

consuming production of bulky documents for the system written in some less concise form.

Introduction 10 (GregoJY G Faust

FLiUtif iuujifICLtioln to th. ture-ti' ' .pj)i tc(fcations can then iitjlii :rit.t as direct

alterations of the HIBOL. code. rue oIrt- to ruLlIitain the system via riuidrfic,.tioris .CO401- progrms

is (laro-, ', ciiminated. The LupdaIted HIBOL program can then be used to automatrcallIy produce the

newly desired COBOL program. Note that this process also updates the docurntnation for the

system with no additional effort.

Although the process of initially converting from the existing COBOL programs to the HIBOL

programs would be expensive and somewhat difficult It would riot be nearly as bad as a total system

rewrite in COBOL. In either case. it is a one time expense. The benefit of the conversron to HIBOL is

that the incremental cost of system maintenance is greatly reduced.

Admittedly, the above scenario will not be actualized in the immediate future. However, the

technology needed to produce such a system should be available within the foreseeable future, as

indicated by the level of the current technology discussed in this thesis. The component of the

system introduced in this paper represents an attempt to overcome the only evident theoretical

barrier. Now that this component has been shown feasible, it should be possible to resolve the

remaining difficulties by further research and a lot of hard work in the form of some excellent

engineering. The obvious merits of the production of such a system should make the effort

worthwhile.

1.2 System Overview

Figure 1 is a schematic representation of the entire system. First, a surface plan is extracted

from the raw COBOL code. The surface plan is then analyzed in terms of Plan Building Methods

(PBMs). The analyzed plan is then translated into a valid HIBOL program. From this HIBOL program,

a new COBOL program can be produced. The process that translates an analyzed plan into a HIBOL

program is the novel component of the system.

The first process extracts a surface plan from the raw COBOL code. A surface plan contains

all the information contained in the original code, but in a language independent form. It is a direct

abstraction of the control and data flow in the original program. Enough informa"in is explicit in the

surface plan that it is theoretically possible to execute it. The original notion of a plan was developed

by Rich and Shrobe [25]. The detailed structure of a surface plan was developed by Waters as part of

his PhD research [31,32]. Burke and Waters have written a program that produces surface plans for

COBOL programs.

The real interest in the surface plan repres,:itition of the COBOL program lies in the fact that

it can be automatically analyzed further in terms (PBMs. The PBMs, tlhe type and form of which

were developed by Waters [31,32], are a small set of w,'ll defined control and data flow structures into

Gregory G. Faust 1 t fIntroduction

Fig. 1. SATCH Overview

ANALYZED T RANSLATION GAIIIBOL

= ANALYSIS

SURFACE CODE

PLAN GENERATION

PLAN

EXTRACT ION\

COBOL COBOL

1PROGRAM FPROGRAM

which programs can be analyzed. He has implemented a program that produces an analyzed plan

from a surface plan.

The next component of the system embodies the current research. It is responsible for the

translation of the analyzed plan for the COBOL program into a HIBOL program that performs the

same data processing function. It is intended to produce HIBOL code that faithfully embodies the

original functional specification implicitly contained in the COBOL program.

Once the HIBOL is produced, it is used as input to a code generator. The target language

can be any conventional high level language such as COBOL or PL/1. Currently, PL/1 can be

produced from HIBOL by the use of an automatic programming system called PROTOSYSTEM I [27].

There are some problems with the unconstrained use of PROTOSYSTEM I to produce PL/1 from

HIBOL. Within the current scenario, however, the system can be constrained to avoid these

difficulties. It would be relatively straightforward to reimplement the portion of the PROTOSYSTEM I

which produces the target language syntax so that COBOL could be produced instead of PL/1.

It must be stressed that this thesis should be viewed as a feasibility study. The major thrust of

this thesis is to show that it is possible to produce HIBOL from COBOL with very little human

intervention using technology that is either currently available or which should become available in

the foreseeable future. It is not the intention of this thesis to present a final solution to the problem of

COBOL to HIBOL translation.

-L S

Introduction 12 ('augury a> Faust

1.3 Related Work

There have been three general approaches to the elimination of the software maintenance

crisis First, many attempts have been made to reduce the maintenance burden through the creation

of more structured and constrained programming languages [15,351 that are intended to facilitate the

writing of more correct programs. A second approach has been to design languages in which the

program is written in a form that resembles functional specifications for the program. and then have a

system automatically produce the actual code for the program. Many of these languiages fall into the

category of the so called "very high level" languages [7.8.271. A third approach has been to design

interactive systems in which the programmer and the system assist one another in the design of a

program [4,6.16,251.

The first approach, constrained programming languages, has the advantage that once a

program is written that is accepted by the compiler for the language, it has a higher probability of

executing correctly. This reduces the need for maintenance aimed at assuring that the program

operates according to the functional specifications. It does nothing to reduce the maintenance

required when the functional specifications are changed. The second approach. very high level

languages, has the advantage that the resultant programs are easier to maintain when the functional

specifications change. 'This is a result of the fact that the programs represent the functional

specifications in a more stiaightforward and therefore more perspicuous manner. The last approach,
interactive systems, reduces both types of maintenance because the interactive system used to

produce the software can be employed for its maintenance as well.

Unfortunately, though all of these approaches can be used to reduce the cost of

maintenance of software systems that are implemented using them, they cannot be used to reduce

the maintenance of preexisting software systems. The system described in this document, SATCH, is

aimed at the reduction of the cost of maintaining existing software.

The reason that these approaches cannot be used to reduce the maintenance of existing

software is that they attempt to automatically translate increasingly high level program descriptions
into some lower level description. They do not attempt to translate from lower level languages to

higher level ones. To my knowledge, the work of Rich, Waters, and the other members of the

Programmer Apprentice Group at MIT [25,31 ,32] is the only effort that has been made to date to

automatically produce any type of an abstraction from an existing program. It is this work that is the

theoretical foundation of the SATCH system.

Some work has been done at the University of Texas at Austin by John Hartman [9] in an

attempt to provide a methodology for restructuring COBOL programs into abstract data modules.

Such a methodology could be applied by programmers to restructure existing COBOL programs prior

Gregory G. Faust 13 - IntrorjUCtion

to performing maintenance on them thereby reducing maintenance costs for those cases in which the

methodology is applicable The goals of the work by Hartman differ fromn the goals of this thesis in

that Hartman's methodology is designed to be applied by a person, while we wish to abstract from an

existing program via a machine. Perhaps, through further research, his methodology could be made
precise enough to be automated. In any case, a HIBOL program is easier to maintain than a

resrutuedCOBOL program for the same Computation.

Within the data processing community, several systems have been designed to produce

COBOL from some "higher level" language based on the notion of stereotyped operations in COBOL
15.34] None of them, however, are in the form of specification languages: rather, they are essentially

macro packages or structured preprocessors. One of these, MetaCOBOL [2], can be used to

translate from a COBOL program written to be executed on one vendor's machine into a COBOL
program that can be run on another vendor's machine. This is merely a syntactic change, however,

and does not involve either abstraction or non-trivial control or data flow alterations.

Another project in language to language translation was recently completed by Kent Pitman

at MIT [231. He wrote a program to translate FORTRAN programs into LISP. The translation is done
in two steps. First, the FORTRAN is translated into a LISP form in which DO loops and other standard

FORTRAN constructs are expressed as LISP macros. In the second phase. the macros are expanded
into an interpretable and/or cornpilable form. The two step process has the advantage that the form

containing the macros is somewhat mnaintainable. while the expanded form is much less so. Still, in
Pitman's project, maintainability (and therefore readability) of the resultant code was only a
secondary goal. while the maintainability of the HIBOL produced from a COBOL program was a major
goal of the research described in this thesis. A more important distinction is that the FORTRAN to
LISP translation is done almost entirely on a syntactic basis, while the COBOL to HIBOL translation is

not.

1 .4 Example Programs and Their Translations

This section presents four COBOL programs and the corresponding HIBOL programs

generated by the current implementation of the SATCH system. Two of these examples, DBINIT and
LOC-LIST, are programs taken from running software systems currently in use in the data processing
community. Although the reader is not expected to understand the programs at this point, they are

included here to give the reader a feel for the task at hand. In particular, note the large compression

that takes place, especially in the translation of the PROCEDURE DIVISION of a COBOL program into

the COMPUTATION DIVISION of the corresponding HIBOL program. These examples will be referred

to thr'iughout the remainder of the document. The reader is invited to turn back to these listings

wher ever it seems appropriate to do so.

Introduction 14 - Gregruy G Faust

Fig. 2. COBOL Program for PAYROLL

fNVIRONMENI DIVISION.
CONFIGURATION SECTION.
INPUT-OUIPUI SECIION.
IL t-CONTROL.

SLIlCi HOURLY-WAGE-IN ASSIGN TO DA-2301-S-IIWI.
SELECI GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.
SLLCI IMI'[OYFI-COUNI-OUT ASSIGN 10 DA-2301-S-ECO.
SELLCI TOIAI-GIOSS-PAY-OUI ASSIGN TO DA-2301-S-IGPO.

DAIA DIVISION.
FILE SECTION.
ID hourly-wage-in

LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.

01 houriy-wage-rec.
02 employee-number PICTURE IS 9(9).
02 hourly-wage PICTURE IS 999V99.

ED gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.

01 gross-pay-rec.
02 employee-number PICTURE IS 9(9).
02 gross-pay PICTURE IS 999V99.

ED employee-count-out
LABEL RECORD IS OMITTED
DATA RECORD IS employee-count-rec.

01 employee-count-rec.
02 employee-count PICTURE is 9(6).

ED total-gross-pay-out
lABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.

01 total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)V99.

PROCEDURE DIVISION.
initialization SECTION.

MOVE ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.
OPEN INPUT hourly-wage-In.
OPEN OUTPUT gross-pay-out.

mainline SECTION.
READ hourly-wage-in AT END GO TO end-of-Job.
MOVE employee-number OF hourly-wage-rec

TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay TO total-gross-pay.

WRITE gross-pay-rec.
GO TO mainline.

end-of-job SECTION.
CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE employee-count-rec.

CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.
STOP RUN.

Cregjor G Faust 7 In oduc lion

Fig. 3. HI-41L Progrlam lor PAYnOLL

ILAIA IvISION

KIV SIMION
K I MP'I YI NJMII

(ilt) 111 Is NUMBII
lil [LII IN6:11 is 9

I NIUj siIl ION

IIt I HOURII Y -WAG I

K I IS I MIlOY I I NUMIII R

OUT ll) 1 Ct ION
I IL S ,S- PA Y

KI I S mIV 0YtI -N UI4IIR
I I Iil OYI I COUNI
fill VUIAL CITOSS-PAY

C014PUIAI ION DIVISION

IOIAL-GROSS-PAY IS (SUM Of (IOURIY-WAGE 40,J)

CMPIOYftI-COUNT IS (COUNT 0f IOURtY-WAGE)

GROSS PAY IS (HOURLY-WAGI 40

Intro duct ion 16 Cw (gory G Faust

S Fig. 4. COBOL Program for PAYROLL2

1N ' , t-)il PIT D) I'IS ION
LO)NI IlhA I [ON 'ILI ION
INIUI uoJIPUl SI CI ION
Ii Ht UIHOt

I cI II (1UII WALl IN A!~ILN1 1O hjA 2301 S-HWI
,) I!C I 11001'S, W0ilKI H iN ASILN 10 DA 2301 S-Wh-.
SiI I. I (1105 I'AS oil' ASIUlN 10 1)8 1301 S-GPO,
St t IC! lOIAi I'S PAY OUT ASSICN 10 [)A 2301-S-rIGPO,

DIAA [IVISION
ItI 11CION

IAT-! 1 14 LOM'I 1% S M I I ID1
IIAlt IlTI'HW IS i-'lI waige rec

I j y wage rec
twiiploype-nu'sber Itlli is 9(9).

52hourly-wage 11 1L I U Iis Y999W
10) hours-worked-in

IAH11 RICOHI) IS 01411110
[1818 MICORD IS nours-worked-rec

01 hourS-aurved-rec
032 employee number PICIURI is 9(9).
02 tiours-worked l'IC lURF IS 999.

IDT total-gross-pay out
i~tl R1 I CORD IS 01411 lD
DiATA HICOVDI IS iotal gross-pay-rec.

0f Ital gross pay rec
02 total-gross-pay PICIURI is 9(7)Vgg

IT) gross-pay-out
APii HI tORI IS O~M 11110

IA HtLI)J1, Ig~ross pay-rec
(igross-pay-rec

02 "inpioyee-number 'iclIUi is 9(9)
02 gross pay 11ICIUHI Is 999V99

WORkING1 SIOHIAG SIM LON
77 end -of - hoars-1id 11 IC I LII 9 VAl Ut It R0

881 end-f-hours VAIlUE 1
77 end-of-wan- ind 1101011 9 VAtUI IERO

A8 eid-)f -wage VAt Ut I

17 compare-ind 11ICIURE: 9
88 wage eq-hours VAtUt 1.
88 wage-It-hours VAtU(2.
88 wage-ytI-hou-s VAlUt 3

PROCIOURI I)IVISION
inilialization SECTIONi.

MOVI ZERO T0 total-gross-pay
OPEN INPUT hour% worked in

hourly wage in

OUTPUT gross pay-out
PIIIIORM read-wage
PIIIIORM read-hours

mainline SICIION
If end-of waqe OR end-ot-hours THIN GO 10 euid of-job.
IIIORM compare
11 wage eq hourus TIN "I 141ORM4 wage eq hours-proc.
11 wage It hours 1111N III RIlORt4 wage It hours -proc.

IF wage 91 -hours T~HIN P11110111 wage qt lisurs-proc.
GO 10 mainline

read -wage.
READ hour 1y-wage in AT IND) MOV I 1 0 end of-wage-ind.

read -hours.
RI AD hours-worked in At IND1 MDVI 1 10 end of hours ind.

CGregot G. Faust 17 Introduction

Fig. 4. COBOL Program for PAY ROLL2 (CONTINUED)

compare
11 eI'ployee-IIumblei Of hour ly -wage- rec

employee niumber Of hours -worked- rec
1I lN lIOVI 3 10 compare-ind

EL SI If evip Ioyet.- umber OF hourly-wage-rec
employee-iiumiber 0f hours-worked-rec

110N MOVE 2 to compare-mnd
ILSE MOVE 1 T0 compare-ind.

wage-prf-hours-proc
'I RIlOIM produce-output.
'I ml 01M read-wage-
PIRI OIM read-hours.

wage- It hours-proc
P[RI1101mM read-wage.

waqep-gt houfs proc.
PtI'E110M read-hours.

p ro duce out put.
MOVE employee-number OF hourly-wage-rec

TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.

end-of-job SECTION.
CLOSE hourly-wage-In.
ClOSE hours-worked-in.
CLOSE gross-Pay-out.
OPIN OUTPUT total-gross-pay-out.
WHITE total qross-pay-rec.
CE 051 total gross-pay-out.

SlOP RUN.

Fig. 5. HIBOL Pfogram for PAYROLL2

DATA DIVISION

KEY SECTION
KEY LMPLOYEI-NUMBER

fIELD TYPE IS NUMBER
f IELD LENGTH IS 9

INPUT SECT ION
TILE HOURIY-WAGE

KEY ES EMPLOYEE-NUMBER
FILL llOUIS-WORKFD

K!IY IS IMPIOYEE -NUMBER

OUTPUT SECTION
F ILE TOTAL -GROSS-PAY
FILL GROSS-PAY
KEY IS EMPLOYEI -NUMBER

COMPUTATION DIVISION

TOTAL-GROSS-PAY IS (SUM OF (HOURlY-WAGE *HOURS-WORKED))

GROSS-PAY IS (HOURLY-WAGE *HOURS-WORKED)

Introduction 18 ("reflory G Faust

Fig. 6. COBOL Program for DBINIT

I NVFIFOtFMF Ni 1I1J1V I SION
CONI ICUAFA ION St CI ION
If IvU -001 Put SEC F ION.
F11F -CONIROL

SEIICT CRAFFAFF ASSIGN 10 Ulf S ICRADAJE.
SF1 ICI CIFAIIF ASS IGN 10 D)A I -I CRADB
ACCISS IS StQUFNIIAL

RECOFFD KI Y IS CIFADIF FECOIFO-KEY.
DATA D)IVISION.
FILLE SECTION.
TD CIFAIATE

tAFFIL RE CORD IS OMITTED)
D)ATA RE1CORD) IS DAIEREC.

01 D)AIL REC
03 FF11I ING-PF F[10 TOFICIuREF X.

88F BEG I NNINC,-NEW-PERIOD VALUE '1'
TID CRAD8I

IAIE RECORDS ARE STANDARD
RECORDING MODE IS F
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 44 CHIARACTERS
D)ATA RECORD IS DBREC.

01 CRADEBREC.
03 DELT-OR-DATL-INDICATOR PICTURE X.

88 DAlE-RECORD VALUE 'D.
88 HE CORF)-DtI IFlED VAL UE HIIOF-VALUE.

03 CFADIj-RFCOFFD-KEY.
05 CFFADI-I)IPAFFMENT PICTURE XX.
06 CRAD~i-lMF'-CLASSC 'ICT UE XX
05 CFFAAI - MF'-NO PICTURE X(5)

03 CRAF;F-YF11IIFH' IICIUHE S9(4)Vg
03 CPIAB-JTI) IIOUIFS PICTURE Sg(4)Vg.
03 CRAL)8-WEEK-FOUS PICTURE ST(4)Vg.
03 CRAF)E-WEK-LAISOII-COSI PICfURE S9(5)Vgg
03 CRADIF-PIFFIOD-FOFRS PICTURE S9(4)V9.
03 CRAUEI-PEFIOD-IABOR-COST PICTURE Sg(5)Vgg.

WORKING-STORAGE SECTION.
77 END-OF-CFFADFI-INDICAIOR PICTURE S9 VALUE ZERO.

881 END-OT-CRADI VALUE 1
77 END-CRADATE-INUICAlOR PICTURE S9 VALUE ZERO.

88 NO-CRADATE VALUE 1.

PROCEDURE DIVISION.
initialization SECTION.

OPEN INPUT CRADATE.
OPEN 1-0 CRADEI.
READ CRADATE Al END MOVE +1 TO END-CRADATE-INDICATOR.
If NO-CIFADATE THEN NEXT SENTFUCE

ELSE PERFORM control-OlD UNTIL END-OF-CRADB.
CLOSE CRADATE CRADOI
STOP RUN.

control -010.
PERFORM read-cradb-020.
IT END-OT-CRADB THE[N NEXT SENTENCE

ELSEI PERFORM initialize-030
PFRFORM rewrite-040.

read-c radb-020.
READ CIFADBI NEXT RECORD AT END MOVE +1 TO END-OF-CRADB-INDICATOR.

initial ize-030.
MOVE ZFROES 10 CIFADI-WEEK-HOURS CRADFI-WEEK-IAIIOR-COST.

IT HEG INNING-NI W-PE lIOD
IFIEN MDVI lEROS 10 CRADEI-PfRIOIIOURS

CIFAI)-PRDI 01AIOR-COST.
rewr ito-040.

RIWRIIL CRADOREC.

Gtyr Faust 19. Introduction

Fig 7 HIBOL Program for OBINIT

K t(fI IN
I Y 1t 1AI1 I MP' NO

I I!I) TYI IS STRING
I tII 1 1 11 GII s1 1 6

K 1 L14 DW IM11-C ASS
I It 11 YPE IS STR ING

fI lI 1) IINNGTII IS 2
P ,IPA1)h 0[PAPl I ME N I

I I t P IYt IS STRING
I I I D tI NC Ii IS 2

1l NPI Si CI NIONITO

I [j P I I I IllP IA I I I IllICAI OR
k .AlRt CI'All Idl PAItit NYT C HATBIY IM11 ClIASS CTIADB-IMP-NO

I I (141111- P l1)IHOURFS
ki YS ARI CilAIlti-W PARIIMENY CRtAll-tMP-CLASS CHADB-EMP-NO

f IttI CilAI -J III-tIOURS
KIYS ARE CRAIJ UEPARIMINT CRADtI-IMP-CLASS CITADHt-EMP-NO

Ili[CQAI)B-WEIK-IIOURS
KEYS ARE CIIAIJ)iPARTMENT CRADO-fMP-CLASS CRAUB-EMP-NO

[lit CRAIIE-Witk-iAISOR-COST
KEYS ART CHADtt-IIPARTMENT CRADB-EMP-CE ASS CRADB-EMP-NO

fitI CRA)E-PERIOD-IIOURS
KEYS ARE CPiAUD-IIPARTMINT CRIADB-EMP-CLASS CRADB-fMP-NO

FI LE CRiAIDt- HPII IOD- AIIOR-COST
KEYS ARE CHlADII-DIPAIMMN CRADTI-EMP-CLASS CRADB-EMP-NO

OUTPUT SECTION
F TIE Ot fTE-OR-I)ATE -INTIICATOR

KE YS ARE CRsADt -lit PAITIMt NT CRlATB-EMP-Ci ASS CRADB-EMP-NO
lILt LRADI-Y II-l1lIURS

KEYS ARE CRA')I-LEPARIMENT CflAOI-MP-CLASS CRADO-EMP-NO
FILL CRAOBI-JTD-IIOUtlS

KEYS ARE CRAO~i-UEPARTMENT CIIADII-MP-CLASS CRADI)MP-NO
FILE CRADEI-WELK-HOURS

KEYS ARE CRADII-E)[PAITIMENT CRADB-EMP-CLASS CIADB-EMP-NO
FILE CRAIIEI-WEEK-IAEIOR-COST

KEYS ARE CRADITPARTMENT CRADEI-EMP-CLASS CRADB-EMP-NO
FILE CRADI-PERIOD-IIOURS

KEYS ARE CITAOB-OEPATMtN' CRADB-EMP-CLASS CRAOB-EMP-NO

FILE CRAOB-PERIOD-LABOR-COST
KEYS ARE CRADS-DEPARIMENT CRADII-EMP-CLASS CRADB-EMP-NO

COMPUTATION DIVISION

DELETE-OR-DATE-INDICATOR IS DELETE-OR-DATE-INDICATOR If (BILLING-PERIOD PRESENT)

CRADB-YTD-HOURS IS CRADB-YTD-IIOURS IF (BILLING-PERIOD PRESENT)

CRADO-JTD-HOURS IS CRADII-JTD-IIOURS If (BILLING-PERIOD PRESENT)

CHADB-WEEK-IIOURS IS 0. IF ((RIt ING-PERIOD PRESENT) AND
((LAST PERIOD'S CRADI3-WEEK-IIOURS) PRESENT))

CRADB-WEEK-LABOR-COST ISO0. IF ((BiIILING-PERIOD PRESENT) AND
((LAST PERIOD'S CRADB-WEEK-LABOR-COST) PRESENT))

CRAI)B-PIRIOD-HOURS IS
CHAIIt-lIIOII-IOURS IF (NOT (HILLING-PERIOD z 'I))

ElS[0. If ((11111 ING-I'ERIOD =1 -I) AND
((LAST PERIOD'S CRADI3-1PRIOD-HOURS) PRESENT))

ClIADHl P1 11101-I AEOR-COST IS
CIIAI II 11101 IAIIOR-COSI If (NOT (1111 ING-PIRIOD=-I)

IISF 0 T (TIll I INC-II =01 -I-) AND
((LAST P111100'S CTII-PERIOI)-IAIIOA-COSt) PPESENT))

mad

Int roduction 20 Gregory G, Faust

Fig. 8. COBOL Program for LOG-LIST

I IVI IWNMI N I D)IVISION
CONI IGURAtI ION StIlT ION
INPUT -OUl PUT SIC[ION.
I IIA-CONIROL.

SELECT I IH-IN ASSIGN 10 10dMN.

SELECT IlII-IRlAIJS ASSIGN TO [OCIRANS.
SELECT 1113-OUT ASSIGN TO tOCOU].

DATA DIVISION.
FILI SECTION.
ED I 18-IN

LALIFI RECORDUS ARE OMITTED
DATA RTECORDUS AREL LITIIN-REC.

01 1 113N-REC.
02 IN-REC.
03 lOCAl TON-ONE PICTURE 99.
03 lOCATION-TWO PICTURE 99.

03 LIB-IIUILDING-NAMI. PICTURE X(35).
I'D LIB-OUT

LABEL RECORDS ARE OMITTED
DATA RECORDS ARE LII3OUT-REC.

01 LIBOUT-REC.
02 OUT-REC.
03 LOCATION-ONE PICTURE 99.
03 LOCATION-IWO PICTURE 99.
03 BUILDING-NAME PICTURE X(35).

E'D LIB-TRANS

LABEL RECORDS ARE OMITTED
DATA RECORDS ARE LIBIRANS-REC.

01 LIBTRANS-REC.
02 DELETE-IND-IN PICTURE X.
02 IRANS-REC.
03 LOCATION-ONE PICTURE 99.
03 LOCAION-TWO PICTURE 99.
03 TRANS-BULUING-NAME, PICTURt X(36).

WORKING-STORAGE SECTION.
77 DELETE-IND PICTURE X VALUE SPACE.

88 DELETE-ELAG VALUE 'D'.
77 ELD-OF-LIB-IND PICTURE 9 VALUE ZERO.

88 END-OF-LIB VALUE 1.
77 END-DE-TRANS-IND PICTURE 9 VALUE ZERO.

88 END-OF-TRANS VALUE 1.
77 COMPARE-IND PICTURE 9 VALUE ZERO.

L88 T RANS-EQ-LIB6 VALUE 1.
88 TRANS-LI-LID VALUE 2.
88 TRANS-GI-LIB VALUE 3.

PROCEDURE DIVISION.
HOUSEKEEPING SECTION.

OPEN INPUT LIB-IN LIB-TRANS
OUTPUT LIB-OUT.

PEREORM READ-TRANSACI ION.
PEREORM READ-LIBRARY.

MAINLINE.
If END-OF-TRANS TH4EN GO TO FINISH-LI.8

If END-OE-LID THEN GO TO EIMISH-TRANS.
PERFORM COMPARE.
IF TRANS EQ-LIlT THIEN PEREORM TRANS-EQ-LIB-PROC.
IF TRANS-ET-LIB THEN PERFORM fRANS-LT-LIB-PROC.
IF TRANS-GT-[TB THEN PERFORM TRANS-GT-L Il-PROC.

PERFORM PRODUCE-OUTPUT.
GO TO MAINLINE.

READ-LIBRARY.
READ LIB-IN At END MOVE 1 TO END-OF-LJI-IND.

READ-TRANSACTION.
READ LID-IRANS AT END MOVE 1 T 10 -OF-TRANS-INO.

Greoq, G FdSt 21Intrtoduc tion

Fig. 8. COBOL Program for LOG-LIST (CONTINUED)

COMPARL,
It LOCATIONf ON[Of ITANS-RIC . OCATION-ONE Of EN-REC

I IllN MOWI 3 10 COPTAI- I ND
1151.I 1 IO1-)ONE 01 IRANS-REC IOCAIION-ONE 0f IN-REC
111N MOWE 2 10 COMPARE-END
[IS[1 I OCAIION-IWO Of IRANS-REC L OCATION-IWO Of IN-NEC
TIEN MOWI 3 10 COMPARF-IND
ELSE If lOCAIION-IWO 0f IRANS-REC LOCATION-IWO Of IN-REC
TIEN MOVE 2 10 COMPAITE-IND
ELSE MOVE I TO COMPARE-IND.

IRANS-tQ-EIDB-PROC.
MOVE 011l (I- IN-INI T0 ILETE-END.
MOWE IANS-RI C TO OUl-REC.
PITTIOTM ITTAU-I IBRARY.
P1ITT OHM IQtAl)-1IRAIJSACl ION.

TITANS-L C-f 1-PROC.
MOVE DELEfF-INO-IN 10 OLLETE-INO.
MOVE TITANS-HEC TO OUT -IEC.
PERIORM READ-TRANSACTION.

TRANS-GT-L 18-PROC.
MOVE IN-RIC TO OUT-REC.
PERFORM READ-LIBRARY.

PRODUCE-OUTPUT.

IF NOT DELETfE-FLAG THEN WRITE LIBOUT-REC.
MOVE SPACE fO DELETE-IND.

FINISH-LIB -

If END-OF-LIT THEN GO TO EOJ.
MOVE IIJ-REC 1O OUT -REC.
PERIORM PRODUCE-OUTPUT.

GO TO fINISHI-IB.

FINISH-TRANS.
IF END-OF-TITANS THEN GO TO FOJ.
MOVE DELETE-END-IN TO DELETE-END.
MOVE TRANS-NEC TO OUT-REC.
PERFORM PRODUCE-OUTPUT.
PERfORM READ-TRANSACTION.
GO TO FINISII-TRANS.

EOJ.
CLOSE LIB-IN LIB-TRANS LIB-OUT.
STOP RUN.

Fig. 9. HIBOL Program for LOC-LIST

DATA DIVISION
KEY SECTION

KEY LOCATION-ONE
FIELD TYPE IS NUMBER
FIELD LENGTH IS 2

INPUT SECTION
FILE LI8-OUILDING-NAME

KEY IS LOCATION-ONE
FILE DELETE-IND-IN

KEY IS LOCATION-ONE
FILE TRANS-BUILDING-NAME

KEY IS LOCATION-ONE
OUTPUT SECTION

FILE BUILDING-NAME
KEY IS LOCATION-ONE

COMPUTATION DIVISION
DUILETING-NAME IS LIEI-EIULDING-NAME If (NOT (TRAiNS-EIUILDItIG-NAME PRESENT))

ELSE TRANS-BUILDING-NAME If (NOT (DEILTE-IND-IN=-0)

-~ - -~---- ~ A"- -

Introduction 22 Giejory G Faust

1.5 Outline of Remaining Chapters

The remainder of this document is broken into six chapters. Chapters 2 and 3 give brief

introductions to COBOL and HIBOL, respectively. Chapter 4 provides an in depth description of

analyzed plans. Chapter 5 discusses the current implementation of the portion of the system that

translates the analyzed plans into HIBOL, Chapter 6 discusses possible methods of improving and

expanding the translation process. Chapter 7 discusses the entire system from a more global

perspective and suggests directions for further research.

I

(regury G Faust -23 COBOL

2. COBOL

Since COBOL is a very widely known language and references for COBOL abound, this

chapter will give the briefest possible introduction of those features of COBOL that must be

understood by the reader in order to comprehend the remainder of this document. Readers familiar

with COBOL are invited to skip all but the first section of this chapter. Readers who want further

information about COBOL are referred to [22] and [11].

COBOL (COmmon Business Oriented Language) is a high level programming language

designed by the Conference On DAta SYstems Languages (CODASYL) for use in data processing

tasks It now has several standard versions supported by the American National Standard Institute

(ANSI). The COBOL syntax used in this document does not exactly match any of the ANSI standards

or any particular vendor's syntax, all of which vary in minor ways. Instead, it follows a common

subset, and certain esoteric syntax requirements are ignored altogether.

2.1 Example Programs

A sample COBOL program is shown in Figure 10. This program, entitled "PAYROLL", will be

used for many examples throughout this document, and therefore should be understood by the

reader. To this end, a short discussion of the function performed by this program is appropriate.

PAYROLL is a relatively trivial program which might appear in a simple payroll system. It

uses a single input file called "HOURLY-WAGE.IN". HOURLY-WAGE-IN contains two fields,

"EMPLOYEE-NUMBER" and "HOURLY-WAGE". EMPLOYEE-NUMBER is the key field for this file. It

is a nine digit social security number that is used to specify which employee a given record in the file

is associated with. HOURLY-WAGE is the single data field that specifies the hourly wage earned by

the corresponding employee.

PAYROLL produces three output files. The first of these, GROSS-PAY-OUT, contains a

record for each record contained in HOURLY-WAGE-IN. GROSS-PAY-OUT has two fields:

EMPLOYEE-NUMBER and GROSS-PAY. EMPLOYEE-NUMBER is again the key field. GROSS-PAY is

a data field that contains the weekly gross pay earned by the employee. The program assumes all

employees work forty hours per week. The other two output files, EMPLOYEE-COUNT-OUT and

TOTAL-GROSS-PAY-OUT, each contain only a single record. Therefore, they have no key fields.

EMPLOYEE-COUNT-OUT has a single data field, EMPLOYEE-COUNT, which contains the number of

employee records processed by the program. TOTAL-GROSS-PAY-OUT also has a single data field,

TOTAL-GROSS-PAY, which contains the total gross pay earned by all the employees whose records

are processed by the program.

COBOL 24 (,.ff-yoryG(faust

Fig. 10. COBOL Program for PAYROLL

I!)NIIfICAIION DIVISION.

PROGRAM-ID. PAYROLL.
iWUIIIOR. G. FAUST.
INSTALLATION. PDPIO.
DAIE-WRITTEN. 2/20/80.

DAIE-COMPILED. NEVER.

ENVIRONMENT DIVISION.
CONFIGURA[ION SECTION.
INPUI-OUIPUT SECTION.
FILE-CONTROL.

SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.
SELECT EMPLOYEE-COUNT-OUT ASSIGN TO DA-2301-S-ECO.

SELECT TOTAL-GROSS-PAY-OUT ASSIGN TO DA-2301-S-TGPO.

DATA DIVISION.
FILE SECTION.

FD hourly-wage-in

LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.

01 hourly-wage-rec.
02 employee-number PICTURE IS 9(9).

02 hourly-wage PICTURE IS 999V99.

FD gross-pay-out
LABEL RECORD IS OMITTED

DATA RECORD IS gross-pay-rec.

01 gross-pay-rec.

02 employee-number PICTURE IS 9(9).

02 gross-pay PICTURE IS 999V99.

FD employee-count-out
LABEL RECORD IS OMITTED
DATA RECORD IS employee-count-rec.

01 employee-count-rec.

02 employee-count PICTURE IS 9(6).

FD total-gross-pay-out

LABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.

01 total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)V99.

(reyur G Faust 25 COIROL

Fig. 10 COBOL Program for PAYROLL (CONTINUED)

IROCI UIlE DIVISION.
in it i l izat ion SECT ION.

MOVE ZERO TO total-gross-pay.
MOVE ZERO 10 employee-count.
OPEN INPUT hourly-wage-in.
OPEN OUTPUT gross-pay-out.

main] ine SECTION.
READ hourly-wage-in AT END GO r0 end-of-job.
MOVE employee-nIUmber OF hourly-wage-rec

TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay To total-gross-pay.
WRITE gross-pay-rec.
GO TO mainline.

end-of-job SECTION.
CLOSE hourly-wage-in.
CLOSE gross-pay-out.
OPEN OUTPUT employee-count-out.
WRITE empl oyee-count-rec.
CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE toLal-gross-pay-out.
STOP RUN.

COBOL programs for the other examples used in this document (PAYROLL2, DBINIT, and

LOC-LIST) can be found in Section 1.4. The second example, PAYROLL2, is an expanded version of

PAYROLL which eliminates the assumption that every employee works forty hours a week. Instead,

HOURS-WORKED, a data field in the HOURS-WORKED-IN file, is used in the computation of GROSS.

PAY. PAYROLL2 is an important test case because it includes a computation that uses data fields

from two different files.

The third program, DBINIT, is a simple data base initialization program which uses two input

files. The first of these files, CRADATE, has only a single record with a single data field. This

singleton piece of information, called "BILLING-PERIOD", controls the initialization of certain data

fields in the second file, The second file, CRADB, is an indexed file that is accessed sequentially.

Note that the program does nothing at all if CRADATE is initially empty; i.e. if the value of BILLING-

PERIOD is unknown. This program was included because of its use of REWRITE to perform a file

update operation.

COBOL 26 . (;gory C Faust

The fourth prograni. LOC LIST is an example of A file upldate prograll uS ng a transaction

file. The first input file. LIR-IN. is a library file containing building nains,- associated with location

code key fields The second input file. LIB TRANS. is the transaction file used to update the library.

The updated library is output into the only output file. LIB.OUT The updated librar, will contain a

record for every set of key values that appears in only one of the two input files. In addition, if a set of

key values appears in both input files. then the data values in the updated library file are taken from

the transaction file. except when the first field of the transaction file, called "DELETE.IND-IN",

contains a "D" (mnemonic for delete) in which case no record will appear in the updated library file

for that set of key values. This program is an important eixample because it performs a file merge

operation.

As can be seen in Figure 10. a COBOL program is broken up into tour main divisions:

IDENTIFICATION. ENVIRONMENT. DATA, and PROCEDURE The IDENTIFICATION DIVISION is

primarily for documentation of the program. and contains no information that is pertinent to the

current discussion. The only information that is contained in the ENVIRONMENT DIVISION that is

pertinent is the information concerning file organizations and file access methods (None of this

information is shown in Figure 10 because all files accessed by this program take the default value for

these two parameters.) The DATA DIVISION contains information about the structure of files in terms

of the data fields that comprise a record in those files, as well as Information about all other variables

used within the program. The PROCEDURE DIVISION contains a procedural representation of the

algorithm used to implement the desired computation.

2.2 ENVIRONMENT DIVISION

For the purposes of this document, there are two possible organizations for a file that is used

within a COBOL program; sequential and indexed. A sequential file can either originate from a

magnetic tape, or from a random access device such as a magnetic disk. In either case, the feature of

a file that makes it a sequential file is that the records in that file are stored (or can be viewed as being

stored) in contiguous locations on a memory device. Whether for input or output, they can only be

processed in that order.

An indexed file is broken into two components; the data itself, and an indexed list of pointers

into that data. How each of these components is actually stored on a memory device is not important.

The important point is that the data can be accessed sequentially, as is done with a sequential file, or

randomly using an index to point to a particular record. The method used to access records in an

indexed file is, appropriately, called the "access method".

d~'4

Cirtuyory G. Faust _27- COBOL

The file organization for eoch file that is accessed by a COBOL program is specified in the

ENVIRONMENT DIVISION. with the default being sequential organization. In addition. if tihe file is

specified to be organized as an indexed file. the RECORD KEY must be specified as well as the

access method for that file. The RECORD KEY is used to specify the portion of the record structure

that contains the key fields for that file. (The record structure for a file will be discussed below). If the

access method for an indexed file is random access. the NOMINAL KEY must also be specified. The

NOMINAL KEY is a storage area useo in the PROCEDURE DIVISION of the program to contain the

index which specifies the location in the file that should be accessed by the next INPUT/OUTPUT

operation.

2.3 DATA DIVISION

The DATA DIVISION of a COBOL program is broken into two sections; FILE and WORKING-

STORAGE. The FILE SECTION contains, for each file that will be accessed by the program,

information about the structure of an individual record within that file. The WORKING-STORAGE

SECTION contains information about all other variables and storage areas used during the execution

of the program.

Associated with each file accessed by a COBOL program is a buffer area. All

INPUT/OUTPUT operations performed on a file place information in, or take information from, that

buffer area. The buffer area for a file is given a structure, called the "buffer-structure" or "record

structure", in the FILE SECTION which specifies the fields that are contained within a record in that

file. Definitions of the record structures for the files accessed by PAYROLL are shown in Figure 10. A

record structure can be an arbitrary tree structure. The level of a particular structure element is

indicated by the number that precedes the name given to that structure element. Lower numbers are

closer to the root of the tree. For example, consider the structure definition for the buffer associated

with HOURLY-WAGE-IN. HOURLY-WAGE-REC is the name given to the structure element that

corresponds to the entire buffer area. The leaves of the tree are the individual fields in the file. In this

example, they are EMPLOYEE-NUMBER and HOURLY-WAGE.

Fig. 11. PICTURE Elements

PICTURE ELEMENT "EAN I NG

9 Decimal Digit

V Implied Decimal Point
X Any ASCII Character

(num) Repeat Count: The preceding PICTURE element
is repeated num times.

I

COBOL 28 Cr-,jory(3 faust

Each leaf element in the structure is given a PICTURE clausv Th,- PICTRJFE clause specifies

the data t,pe and length of the particUlar field by giving a picture of th t,,pical value stored in that

field Figure 11 gives a list of common picture elements and their meaning An examination of

Figures 10 and 11 wilf reveal. for example, that EMPLOYEE NUMBER is a nine digit integer and

HOURLY-WAGE is a five digit number with two of the digits to the right of the decimal point.

The WORKING. STORAGE SECTION defines all data areas used during the execution of the

program except those corresponding to file buffer areas. Data areas defined in WORKING.STORAGE

can have tree structures exactly like the structures associated with file buffers. In addition, there are

two variable types that are unique to WORKING STORAGE: 77 variables, and 88 variables (so named

because of the numbers used to designate them). A 77 variable is a simple variable with no structure

whose type and length is specified in a PICTURE clause.

An 88 variable is used to set up a flag. It does not define an additional storage area, but

provides a named way to refer to a predicate: one that decides whether or not a given area contains a

particular value. For example, consider the portion of WORKING-STORAGE defined in Figure 12.

Initially, the COMPARE-FLAG-AREA contains a 0. so specified by the VALUE clause which can be

used anywhere within the WORKING-STORAGE SECTION to initialize storage areas. The two 88

variables, NEGATIVE and NONNECATIVE, are used in the PROCEDURE DIVISION to test if that area

currently contains a 1 or a 2. When the area contains a 1, NEGATIVE will evaluate to TRUE.

Otherwise it will evaluate to FALSE. Similarly, NON-NEGATIVE will evaluate to TRUE when the area

contains a 2, and to FALSE otherwise. Initially, they will both evaluate to FALSE (since the area

contains a 0) and will continue to do so until a 1 or 2 is moved into COMPARE-FLAG-AREA. In order

to make all this work, a COBOL program that includes the definition of COMPARE-FLAG-AREA shown

in Figure 12 may well contain a statement of the form

IF variable < 0 THEN MOVE 1 TO COMPARE-FLAG-AREA
ELSE MOVE 2 TO COMPARE-FLAG-AREA.

somewhere within the PROCEDURE DIVISION. The reader should note that the inclusion of 88

variables in COBOL makes using flags trivial, and they will, therefore, appear often in COBOL

programs. Any system that hopes to translate COBOL programs needs to be able to handle flags in a

reasonable fashion.

Fig. 12. Example Use of 88 Variables

77 COMPARE-FLAG-AREA PICTURE 9 VALUE ZERO.
88 NEGATIVE VALUE 1.
88 NON-NEGATIVE VALUE 2.

,. - .,

Gregory C Faust 29- Cf30L

2.4 PROCEDURE DIVISION

The PROCEDURE DIVISION contains a procedural representation of lhe particular algorithm

used to imolement the desired computation For the purposes of this document it is only necessary

to understand a small subset of the possible statement forms that can appear in the PROCEDURE

DIVISION.

A variable name used in the PROCEDURE DIVISION must provide a unique reference to a

data storage area. Names that correspond to 77 ard 88 variables must always be unique Names that

refer to substructures. however, may not be unique To eliminate this difficulty. COBOL supplies the

OF clause to be used in references to data areas in structures. For example. suppose that two

structures both contain substructure data areas associated with the same name. Then a unique

reference to the substructure area in the first structure is:

substructure-name OF structure-name-I

while a unique reference to the substructure area in the second structure is:

substructure-name OF structure-name-2

There are four main statements that affect control flow within a COBOL program; STOP RUN,

GO TO, IF.THEN.ELSE, and PERFORM. Three of them are very simple and are shown in Figure 13.

(The square brackets are used to signify an optional parameter). The STOP RUN statement

terminates execution of the program. The COBOL GO TO and IF-THEN-ELSE constructs are no

different from their counterparts used in procedural languages in general and need no further

explanation.

Fig. 13. Simple Statements that Affect Control Flow

STOP RUN

GO TO 7abel

IF predicate THEN imperative-statement-I
[ELSE imperative-statement-2]

Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Call

PERFORM paragraph-one [THROUGH paragraph-two]

COBOL 30 1it cl(.iust

tiI Cot wI~i;trucl .I loo; cui rUlr t arid J V.":Jk form (A ALrshfLIHI -III Th.- ,'rrta' of thle

PERV-0RMv Statenlentl when used as d Suibrotine call is sho'-vor iII F iyutir 14 In COB([-1 paragraph

is al) the code stairting at a label w.hich is used as tI e paragraph nanic anid continuirng up to but not

inCluding the next label rThe PERFORM statenment in Figure 14 indicates that control should be

passed to the label signified by paragr-aph one and that processinig will continue either to the end of

that parayraph, or to the end of paraoiraph - t wo if the optional I HROLIGH clause is used In either

case control is returned to thre statemernt following tht! PERFO)RM after the above sttd processing

is completed This is a vweak formp Of Subroutine call because no arguments Lire passed. the

paragraphs that are proceSSe(1 LIe Only global values and Irecursion is not allowed

Used as a toop construct, the PERFORM statement has three possible forms as shown in

Figure IS. These forms should be self explanatory. Note that these forms allow for both the indexed

loop construct and the DO WHILE construct.

COBOL has a number of statements used to manipulate data. The data manipulation

statements used in this document are shown in Figure 16. In the MULTIPLY and DIVIDE statements

using the BY clause, if the GIVING clause is omitted the result of the operation is placed in

operand- I If the GIVING cause is included, both operands remain as they were, and the result is

placed into resu It. The DIVIDE statement using the INTO clause is thle same as the DIVIDE
statement using the BY clause except that the operands are reversed, In the ADD and SUBTRACT

Fig. 15. PERFORM Syntax when Used as a Loop Construct

PERFORM paragraph-one [THROUGH paragraph-two] integer TIMES

PERFORM paragraph-one [THROUGH paragraph-two] UNTIL predicate

PERFORM paragraph-one [THROUGH paragraph-two]
VARYING variable FROM integer-i TO integer-2
BY integer-3 UNTIL pred icate

Fig. 16. Data Manipulation Statements

MULTIPLY operand-i BY operand-2 [GIVING result]
DIVIDE operand-i BY operand-2 [GIVING result]
DIVIDE operand-I INTO operand-2 [GIVING result]
ADD operand-i TO operand-2 [GIVING result]
SUBTRACT operand-I FROM operand-2 [GIVING result]
MOVE source TO destination

Cirey)r G -aust 31 COBOL

it t.k, (l'ING 0I.w 1 , ttt,-d rtmiflt II ,ILc,- into 2)e l,., Z If th, GIV'IJG clause

1 Ii,_ I.i"! hutl 7pjid'i, m am'fl', a,, the) vwere and the rt! nitt 1, placed Into vest It The MOVE

statenll- nt Is used to mov, Information from one data area into another.

Statements used to manipulate files are shown in Figure 17. The OPEN statement is used to

prepare files to be accessed There are three possible access types, INPUT. OUTPUT, and 1-0. A file

opened foi INPUT is read onl. A file opened for OUTPUT is write only. A file opened for 1-0 can be

read from and rittei; to. The CLOSE statement is used to release a file when it is no longer needed.

The three different forms of the READ stLtemnent are used to access information in different

types of files. The first form is used to access files that have a sequential file organization. The

second form is used to access files that have an indexed file organization when the access method is

random access. The third form is used to access files that have an indexed file organization when the

access method is sequential access The AT END and INVALID KEY clauses specify that the

impera t ive-s tatement should be performed when the requested record cannot be read from the

file.

The WRITE statement is used to place information into a file. It can be used on any of the file

types. When applied to a sequential file, the WRITE statement always appends records to the end of

the file. When used on an indexed file accessed randomly, it writes a record at the place in the file

designated by the NOMINAL KEY. When used on an indexed file accessed sequentially, it writes over

the record most recently read. The REWRITE statement can only be used on files opened with an

io-type of 1-0. It always writes over the record most recently accessed Note that (for esoteric

reasons not discussed here) a READ statement takes a file-name as its argument while a WRITE or

REWRITE statement takes a file-buffer-structure-name as its argument.

Fig. 17. File Manipulation Statements

OPEN io-type file-name-I [file-name-Z . .

[io-type file-name-3 [file-name-4.. ,..
Where io-type is one of: INPUT, OUTPUT, or 1-0

CLOSE file-name-I [file-name-2 . .]

READ file-name AT END imperative-statement
READ file-name INVALID KEY imperative-statement
READ file-name NEXT RECORD AT END imperative-statement

WRITE file-buffer-structure-name
REWRITE ffle-buffer-structure-name [INVALID KEY imperative-statement]

-A&.*~.

ftlBOL 32 '.,,.l ,t (; ! ,iost

3. HIBOL

HIBOL is a verj high level single assignrint progranrri m g la guaj, dt sigried for expressing

data processing application progranms in such a way that tht form of the program cto,,-ly resembles

functional specifications for the application It is intended to be autoniaticall translated into a

conventional high level language such as PL/1 or COBOL via an automatic programming system

called PROTOSYSTEM I 1271. It is a descriptive rather than a procedural langu0age: the exact

procedures used to effect the actual processing are not explicitly represented A HIBOL program for

the PAYROLL example is presented in Figure 18.

The kernel idea for PROTOSYSTEM I was initially conceived by William Martin [171 Martin

and Ruth [27,18,8,28] then developed PROTOSYSTEM I (which produces compilable PL/1 programs

and the necessary IBM JCL from HIBOL) with the help of others: most notably Baron Burke. Kornfeld.

Morgenstern, and Thomas [3,14,21,30].

HIBOL can be viewed as a language in which algorithms are expressed in terms of

computations performed on streams. It is important to keep this viewpoint in mind for two reasons

First, it will aid in the understanding of HIBOL primitives and how they interact. Second. it will be used

ioi a later chapter to relate HIBOL to other programming languages.

The basic elements of description of a data processing application can be broken into two

categories: those that describe data and those that describe operations performed on that data In

HIBOL, the descriptive elements are correspondingly divided into a DATA DIVISION and a

COMPUTATION DIVISION. The next two sections of this chapter are similarly divided.

3.1 DATA DIVISION

HIBOL uses a single data type called a "flow". A flow is a set of related data items each of

which is associated with a unique multi-component index. Each index component is called a "key".

The set of all possible sets of values for the keys of a particular flow is called the "universal key

space" of that flow. The set of sets of key values that actually appear in a given instance of a flow is

called the "actual key space" for that instance of the flow. For example, if a flow has a single key that

is a four digit integer representing a client identification number, then the cardinality of the universal

key space for that flow is 10,000, while the cardinality of the actual key space for that flow is the

number of clients that actually exist and might be as low as zero or as high as 10,000.

Each element of a flow has a set of key values and a single data value. The typical data

processing concept of a file record containing a set of key values and multiple data values (such as a

COBOL file record) is abstracted in HIBOL as separate flow elements from different flows, all of which

i = b' I

c>~'t~tL, G faust 33 ttlBOL

ll.- " >lf . 't Of . ,, .lLl' t X V< 11)f %,111' 11 , tl- Of . th I l" dt 11,1, 1101Ut'!, 1110. rill-th t~i(Of

r iio, th-Ir< h
o

)r,_;,i Alrl1<l(l Oft ',lt Oft ,1AiA< -Jil1.,
,

Ih, l,:'(til.t r o l 11J~ ,i O((j,0111. itl(i of tht: data

fr(ti t' ph, Ic 'il o)ft;i liz (tr of l. dati, l ti O' tl i . of fi.3()L (l.A.r it- ti I i oyi(a (organization

Whilte leaving the physiCAl oryatni/.atioln unspecified

A named flow is called a "data set' Data sets are divided into three categories, input.

output and variable Input an(d Oltlt data sets define the inputs to and outputs from the

COMLtition represenled by a H1iHOL program The variable data sets are used f intermediate

values formed in the computation

The DATA DIVISION at 1W tlop of the HIlHC)t program for PA YROLL shown in Figure 18 gives

an example of the specification of data sets The first part of the DATA DIVISION is the KEY

SECTION In this section. each key that is going to be used in the specification of any of the data sets

must be specified along with its field type and length In this example, EMPLOYEE NUMBER is the

3Die key and is an integer with a field length of nine (a social security number).

The next two sections of the DATA DIVISION specify the input and output data sets that are

going to be used in the program (see Figure 18) Each data set specification is preceded by the

keyword "FILE" The HOURLY WAGE. and GROSS PAY data sets both use the key EMPLOYEE.

NUMBER, while TOTAL GROSS-PAY and EMPLOYEE-COUNT do not have any key at all. In this

latter case, the cardinality of the universal key space is one, and the actual key space will contain at

most a singleton value. If the PAYROLL example used any variable data-sets. a VARIABLE SECTION,

identical in format to the INPUT and OUTPUT sections. would appear in the DATA DIVISION right

after the INPUT SECTION.

3.2 COMPUTATION DIVISION

Following the DATA DIVISION is the COMPUTATION DIVISION. The COMPUTATION

DIVISION contains a single definition for each output and variable data-set. Each data-set definition

is of the form

data-set-name IS flow-expression

The flow expression on the right hand side of a data-set definition must have the same universal key

space as the data-set referred to by the name on the left hand side. The semantics of a flow

expression dictate that there is an implicit iteration over all values of the actual key space of the flow

represented by that expression.

Am 7!

HIBOL 34 GregoryG Faust

Fig. 18. HIBOL Program for PAYROLL

DAIA DIVISION

KEY SECTION

KEY EMPLOYEE -NUMBER
FIELD TYPE IS NUMBER
FIELD LENGTH IS 9

INPUT SECTION

FItE IOURI Y-WAGE
KEY IS EMPLO'[E NUMBER

OUIPUT SECTION

FILE GROSS-PAY
KEY IS EMPLOYEE-NUMBER

FILE EMPLOYEE-COUNT

FILE TOTAL-GROSS-PAY

COMPUTATION DIVISION

TOTAL-GROSS-PAY IS (SUM OF (HOURLY-WAGE 40.))

EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

GROSS-PAY IS (HOURLY-WAGE - 40.)

Fig, 19. HIBOL Syntax for Conditional Expressions

data-set-name IS flow-expression-I IF predicate-I
[ELSE flow-expression-2 IF predicate-2].
[ELSE flow-expression-n]

There is only one statement form in HIBOL that can cause conditional computation. This

statement form is shown in Figure 19 The syntax of this form resembles an IF THEN ELSE, but it has

the semantics of a CASE construct. Since data-s e t- name can be given the value corresponding to

the flow expres:,ion of any of the clauses, those flow expressions must all express flows that have the

*samp universal key space as the data set referred to by data-set-name The conditional form is

definped ov-r the union of the actual key spaces of the flow expressions used in the clauses When

sitich a COa c itional form is evaloated for a particular index value in that union, the predicates are

-- - - --

" -".... l
- - - -" : " i l -- ,, .. ,., - - - - 'A &-

Gregory G Faust 35- HIBOL

evaluated in order, starting vith pred ia te -I As soon as an, of th.,m evaluates to TRUE. the

conditional form is given the value of the flow , p(esS1on corresponding to it for that set of key values

If none of the predicates evaluates to TRUE and the optional final ELSE clause is included, the

conditional form is given the value of the final flow expression If none of the predicates evaluates to

TRUE and the optional final ELSE clause is not included, the value of the conditional form is

undefined and the corresponding index is excluded from the actual key space of the resultant flow.

For example. consider the HIBOL program fragment shown in Figure 20 In this example, the

output data set PROFITABLE.DEPARTMENT contains an element for every element in the input

data set. DEPARTMENT BALANCE. which has a balance greater than zero The elt-ments in the

actual key space of DEPARTMENT BALANCE that have a balance less than or equal to zero are

excluded from the actual key space of PROFITABLE.DEPARTMENT.

Flow expressions can contain the usual arithmetic operations appearing in any programming

language. The syntax for such arithmetic operators, shown in Figure 21. is exactly what one might

expect. The semantics of such expressions, however, is quite different from the semantics of similar

looking expressions in other languages. The two flow expressions used as operands to the arithmetic

Fig. 20. HIBOL Program Fragment with Conditional Form

DATA DIVISION

INPUT SECTION

FILE DEPARTMENT-BALANCE

KEY IS DEPARTMENT-NUMBER

OUTPUT SECTION

FILE PROFITABLE-DEPARTMENT

KEY IS DEPARTM[NT-NUMBER

COMPUrATION DIVISION

PROFIITABLL-DfPARTMENT IS DEPARTMENT-BALANCL IF DiPARTMENI-BALANCE > 0.

Fig. 21. HIBOL Syntax for Arithmetic Operators

flow-expression-I * flow-expression-2

flow expression-I / flow-expression-2
flow-expression-I + flow-expression-2

flow-expression-I - flow-expression-2

.........

HIBOL 36 - (regory G. Faust

operators Must have the s3111 Lfiliv,_rSal ke> 4pact Il ohw cias,, of thu iiiollicathve opterators. the

aCtual key space of the resuIlanlt flo.v is the iiittriset tion of th" .c toil k :y ices of the_ two operands

In the case of the additive operators. the actoal key spa t of tt, tUltdrit flow IS tile Unlon of the

actual key spaces of the operands To understand this in niofr detail thu concept of a PRESENT

predicate must be intrcduced.

A PRESENT predicate. applied to a flow evalualus to TRUE for all index values that are

elements of the actual key space of that flow. and to FALSE for all other possible index, values for that

flow So. for example, the predicate

tlOURL.Y-WAG[PRESENT

is TRUE for all values of the key (EMPLOYEE NUMBER) which correspond to actual employees, and

FALSE for all other possible employee numbers.

Returning to the discussion of arithmetic operators, the semantics of flow expressions

involving arithmetic operators are easier to understand in the form into which they are expanded by

he automatic programming system. Examples are shown in Figure 22. It should be clear that the

expanded expressions do produce the desired intersection and union of the actual key spaces. In

either case. elements in the resultant flow are given key values that correspond to the key values of

the elements in the operand flows from which they are produced.

Arithmetic operators can be used with operand flows that are not simply data-sets. In a case

in which one of the operand flows is a constant, the resultant flow has the same actual key space as

the non-constant operand flow. In a case in which either of the operand flows is some flow

Fig. 22. Expanded Forms of Arithmetic Flow Expressions

data-set-name-I IS data-set-name-2 0 data-set-name-3

is expanded into:

data-set-name-I IS data-set-name-2 * data-set-name-3 IF data-set-name-2 PRESENT
AND data-set-name-3 PRESENT

data-set-name-I IS data-set-name-2 + data-set-name-3

is expanded Into.

data-set-name-1 IS data-set-name-2 + data-set-name-3 IF data-set-name-2 PRESENT
AND data-set-name-3 PRESENT

data-set-name-2 IF data-set-name-2 PRESENT

data-set-name-3 IF data-set-name-3 PRESENT

A-A

Gtegor , F aust 37 HIl3OL

', pr S i Jl thl s-ma ntics X-2 JLISt au if that flov, [Kid been a data .st lthougjh tli, PRESLHT

predicat-, app,-armi in th,! .exp-lIieJ form of th e),prussion will b more corupl', bocatise the flow

eA pression does not ha, e a name associated with it An example of the LuSe of an arithmetic operator

in a flow e,<pression appears in the definition for the GROSS PAY data-set in Figure 18.

In addition to arithmetic operators. HIBOL programs can include reduction operators. The

reduction operators, the syntax of which is shown in Figure 23 produce resultant flows with indices

composed of fewer key components. The key components of the resultant flow must be a subset of

the key compomnts of the flow used as the operand of the reduction operator. A data elerment in the

resLItant flow wrth a particular index derives its .value from all the data elements in the operand flow

with the same values for all key components in the common subset. For example. consider the HIBOL

program fragment shown in Figure 24. The input data-set. CHECK-AMOUNTS, contains an element

for each check written by each bank customer during one accounting period. The output data-set,

CUSTOMER-TOTAL, contains an element for each customer that is the sum of the amounts of the

checks written by that customer in that accounting period.

Fig. 23. HIBOL Syntax for Reduction Operators

SUM OF flow-expression

COUNT OF flow-expression
MAX OF flow-expression
MIN OF flow-expression

Fig. 24. Sample HIBOL Program Fragment with Reduction Operator

DATA DIVISION

INPUT SECTION

FILE CHECK-AMOUNTS

KEYS ARE CUSTOMER-NUMBER CIIECK-NIJMRFR

OUTPUT SECTION

FILE CUSTOMER-TOTAL

KEY IS CUSTOMER-NUMBER

COrIPUTAIION DIVISION

CUSTOMER-TOTAL IS SUM OF CHECK-AMOUNTS

d1106 ,-

tt10OL 38 fguy laust

Tv.() f tl er t I..b Uf tI .: tj ,, of r -(. iw .io1 up-er . lor CIt i - A ," 1 IIl 1I- 5 Ir I itr onis for

TOJTAL GR OSS PA'i vid EIJ'L .0) LE C.UTI III Frguru 18 fdu5 , thaiit m both th,e cases the

resU ltiif (J.t,. sets havi no ke :omnponeits ,at all and therefore contain onl, a single &lement.

Another feature of HIBOL is that the same data set can appear in both the INPUT and

OUTPUT sections of te DAT-A DIVISION. This is (tone when the HIBOL program performs an update

operation on that data set It must be possible in the COMPUTATION DIVISIOH. however, to

distinguish references to the input (Lita set from references to the output data-set This is done

through the use of the LAST PERIOD construct. References to the Input data set use tie syntax

LAST I'LFIOD'S data-set-name

while references to the output data set simply use the syntax

data-set-name

There are many other features of HIBOL, including specifications for time intervals at which

certain data sets should be generated, running totals. and formatted output reports. which will not be

presented here. Although the set of HIBOL statement forms described above is not exhaustive. it is

sufficient for the purposes of this document. All HIBOL code that has been produced by the SATCH

system to date uses only those HIBOL constructs that have already been discussed. The reader is

invited to turn now to Section 1,4 where corresponding COBOL and HIBOL programs are given for

four examples (including PAYROLL), before returning to a discussion of some of the more global

features of the HIBOL language.

3.3 Features of HIBOL Revisited

The specifications given in the COMPUTATION DIVISION of a HIBOL program need not be

ordered in any special way by the programmer. Each can be viewed as a definition of the values that

will be produced for a certain data-set. The autoprogramming system. PROTOSYSTEM I, will

correctly order those computations for which the ordering is important. Note that this view of

computation as definition requires that any data set name can appear at most once on the left hand

side of a computation specification; i.e. HIBOL is a single assignment language. Another ramification

of this view is that potential concurrency of computation can be recognized by the system and could

be exploited if the target code were generated for a parallel hardware configuration.

Perhaps the most far reaching effect of this programming style is that there is no explicit

notion of iteration or recursion. The only implicit iteration is that which iterates over the elements (or

subsets of the elements) of an actual key space. Since HIBOL does not have explicit iteration,

recursion, GOTOs, or a jump of any kind, it cannot be used to express certain computable functions

. -Z' - -

Gregor, G Faust 39- IlBUL

ill a rl ieasorl lle fashioln lhest. functioIS howevter. rarl, aZpp ear Ill tLiS~nilSS dati processing

appl)I atiOnS. aid therefore this lick of evpressive powler shonLi not be cons d rud a major

drawback. The semantics of 1IBL vere designed by Hammer et. at to express exactly the functions

that appear most often in business data processing applications,

In fact. it is in just this restriction of expression that the great utility of HIBOL lies. The beauty

of the language lies in the fact that the programmer is not required to worry about the details of the

iterations. The necessity to deal with these details is one of the things that makes the maintenance

task so difficult in other languages. In addition, the number of identifiers that the programmer has to

deal ,ifh is substantially reduced. and the ones that do appear usually have a direct correspondence

to some quantity in the real world. These are the features of HIBOL that make it well suited for

increased programmer productivity and program clarity in the domain of data processing

applications.

Plans and PB3Ms 40 ,eg(qory 6 f aust

4. Plans and Plan Building Methods

Now that the essential features of tI J(-3L have bit disCujsed ,..v (an take a closer look at

the analyzed plan from which the tI-BOL is produced Whi rua tiny this chapter it is important to

consider the key features of HIBOL as we go along in order to gra-,p ti apphcablity of the structure

of an analzed plan to the translation process Ths chapter is meant to comn.tin en(ough information
to make the applicabilit apparent and to render the following chapters comprehensible, A much

more detailed account of plans Plan Fluliirg Methods. the process which creates a surface plan.

and the process that analyzes a plan in terms of PBMs can be found in Waters PhD thesis [31.32].

A plan is a detailed r ,preseritation of a program designed to have several useful properties.

First. the plan represents the program completely; it contains all the information necessary for

execution. Second, it is language independent Therefore. it can be used to represent a program

originally written in many different languages Third, much of the information that is implicit in the

program is made explicit In particular, the control flow and data flow between different sections of

the program are explicitly represented Finally, the plan exhibits locality: features of a component of a

plan can be discerned by examining information local to that component.

4.1 Surface Plans

The basic unit of a plan is a "segment". Different segments of a plan are hierarchically

linked via subsegment and supersegment relations. A surface plan, an example of which is shown in

Figure 25, is a representation of a program that is logically organized in much the same way as the

original source language representation of the program. It has only the simplest hierarchical

structure: a root segment that has all other segments in the plan as immediate inferiors. Each of the

subsegments has no internal structure. They all represent primitive logical, arithmetic, or control

operations.

These primitive segments, and in fact segments in general, can be placed in one of three

categories, "simple", "split" or "join", depending on their interaction with control flow. A simple

segment accepts control flow from exactly one place and produces control flow to exactly one other

place. Examples of primitive simple segments include primitive arithmetic functions such as PLUS or

TIMES, and primitive logical functions such as EQUAL or GREATER-THAN. Exactly which primitive

logical and arithmetic functions can occur in a plan depends upon the source language from which
the plan was built, but a standard set of primitive functions is shared by most programming

languages. The library of primitive function used when the source language is COBOL is given in

Appendix I.

Gregory G. Faust 4 1 PIar anid PBMs

Also included amlOng thw simple ceiJmtritf. corictnts Ih-y ddfer from other simple

segments in that they do not have an) incol-in. data flow The Call tJ vieWd AS. 1 functiOniS with no

arguments that have a singleton value for their range.

A split accepts control flow from exactly one place, and produce0 control flow to more than

one place. There are only two different primitive split segments: PIF and PIFNULL PIF takes a single

bit boolean argument and transfers control to a first segment if the boolean is TRUE and to a second

segment if the boolean is FALSE. PIFNULL is simply the converse of PIF.

A join accepts control flow from more than one place and produces control flow to exactly

one other place. There is only one primitive join segment. It is called "JOIN".

The segments of a surface plan are connected via control flow links and data flow links. A

data flow link is a link between two data "ports". A port can be thought of as a place where an

incoming or outgoing data value can be stored. Each segment has associated with it a unique port

for each input and output data value. Data flow between any two subsegments of the surface plan, or

between a port of the supersegment and a port of one of its subsegments. is represented by an

explicit data flow link.

A control flow link is a link between two segment "cases". Each case corresponds to a

particular control environment. Each segment has associated with it a unique case for each possible

control flow path into and out of the segment. A case for incoming control flow is called an "in-case"

and a case for outgoing control flow is called an "out-case". For example, a split has a single in-case,

and at least two out-cases. As with data flow, control flow information is known only within the

supersegment of the two segments involved in the flow.

Consider the simplified surface plan for PAYROLL shown in Figure 25. The boxes represent

segments, solid lines represent data flow, and dotted lines represent control flow. The outermost

large box represents the segment for PAYROLL itself. (This example has been simplified in several

ways. First, the computation of EMPLOYEE-COUNT has been entirely eliminated. Second, for

brevity, the file open and file close functions have been removed. Third, the data flow for all of the file

objects except for the flow associated with the HOURLY-WAGE FILE-OBJECT (HWF) has been

removed. The HOURLY-WAGE FILE-OBJECT was left in so that the operation of the EOFP predicate

could be understood.)

Several of the features of surface plans can be seen in this example. First of all, note the

control flow throughout the plan. There is a large control flow loop that encompasses most of the

program; namely the main read/write loop. Control remains within this loop as long as control passes

through the NO case of the PIF, which in turn occurs for as long as EOFP yields a FALSE boolean.

Plans and PBMs .42 G(gory G Faust

Fig. 25. Partial Surface~ Plan for PAYROLL

I 'WI PA YRO0L L

<0>

(i\V-I Ii I

EOFPP

PPLU

ITGPTGP

CW'IT 2ME

HWWF

HW~~~~~H IE HORYWGEGW>GRS-A

EN =) MPLOYE-NUMBE

Gregory G. Faust -43- Plans and PBMs

This piocss is initiated when control is passed to CASE1 of the JOIN and terminates the first time

control passes to the YES case of the PIF.

Now examine the data flow. In particular. note the flow associated with TOTAL-GROSS-PAY

(TGP) or HOURLY-WAGE- FILE (HWF). The initial value for the flow is passed through CASE1 of the

JOIN into the main loop. Subsequent values are passed around the loop through CASE2 of the JOIN.

This looping of the data continues, with each new value for the flow depending on its previous value.

until the loop terminates in which case the final value is received outside the loop.

Given that the plan shown in Figure 25 needed to be simplified from the actual surface plan

for PAYROLL (a relatively trivial program) in order to make it at all comprehensible to the human eye,

it should be obvious that the surface plan contains large quantities of relatively mundane and

unorganized information. It would be a very difficult and expensive task to try to match portions of the

surface plan with any patterns that might represent fairly global features of the program. What is

needed is more organization of the available information.

4.2 Analyzed Plans and Plan Building Methods

A surface plan can be analyzed in terms of plan building methods (PBMs). The PBMs are a

set of stereotyped ways in which plan segments can be aggregated into canonical groupings. An

instance of a PBM corresponds to a logical locality in the program, not necessarily a locality in the

actual code for the program. Each PBM has a unique set of "roles" associated with it. A segment

created to represent an instance of a PBM has a set of subsegments each of which fills one of the

roles of the PBM. Each subsegment can only fill one role of one PBM. Therefore, each segment in

the analyzed plan will have exactly one immediate superior except for the single most superior

segment.

The analysis process begins by searching for a set of subsegments of the surface plan that

can be grouped together according to the restrictions of one of the PBMs. A new segment is created

to represent the grouping. All of the data flow and control flow information pertaining to any of the

subsegments is included in the description of the new segment, and the description of the original

supersegment is appropriately modified. The search process is then repeated with the newly created

segment considered to be indivisible. The proc .ss continues until a grouping subsumes the entire

plan. The result is a hierarchical structure in which each segment, except those corresponding to

primitive functions, is an instance of one of the PBMs. The leaves of this hierarchy are the same

primitive segments that comprised the surface plan for the program.

Plans and PBMs 44 - Greguy , Faust

Fig. 26. Taxonomy of Plan Building Methods

"X compos i t ion

StRAIGHT-LINE P3Ms predicate

X \ conditional

PBts

augmentation

single self recursion ffilter

RECURSIVE PBis termination

<-temporal composition

Figure 26 gives a taxonomy of PBMs. As can be seen in the figure, PBMs can be broken into

two major categories: "straight-line" and "recursive". This distinction is based upon the manner in

which the segments that instantiate the PBMs interact with control flow. The recursive PBMs are

used to express the portions of programs that involve loops of control flow while the straight.line

PBMs are used to express the portions of programs that do not involve loops.

4.2.1 Straight-line PBMs

There are three straight-line PBMs: "composition", "predicate", and "conditional". The

PBM "composition" allows for the combination of an arbitrary number of simple segments into a

single simple segment; no splits or joins can be included. In the general case, the data flow links in a

composition will form a collection of (possibly unconnected) directed acyclic graphs. Each of the

subsegments of the composition fills an "action" role.

- - -1 --- ~

Gregory G. Faust 45 Plan- ard PBMs

The PBM "predicate" is a g,?ncialization of tht- prinlitivt. split It has a sirg l? in case. but an

arbitrary number (at least 2) of out-cases. The conltiol flow links of a pte(ticate will form a directed

acyclic graph The subsegments can be either primitive splits or other predicates, or primitive joins,

which fill roles called "pred" and "join", respectively. A join subsegment acts to form the logical OR

of the predicates that supply it with control flow. A predicate subsegment that receives control flow

from another predicate subsegment forms the logical AND of itself and the predicate that supplieF the

control flow, By using these constructs in combination, predicates of arbitrary complexity can be

built.

The PBM "conditional" is an embodiment of the structured programming concept of a

conditional. It has a single "pred" role, filled by a subsegment that is an instantiation of the PBM

predicate, that controls which of several "actions" will be executed. The action roles can be filled by

any simple segment. In addition, it contains a single "join" role, filled by a join segment, that collects

the control flow from all of the actions. An instance of the PBM conditional has a single in-case, and a

single out-case; it is a simple segment. A conditional also has the very useful property that during any

given execution of the conditional exactly one of the actions will be executed. A conditional can have

an optional "initialization" role which can be filled by any simple segment. The initialization

subsegment is executed before the predicate and therefore is executed regardless of the result of the

execution of the predicate.

4.2.2 Recursive PBMs

The recursive PBMs are designed to handle loops and other forms of single self recursion. A

program is single self recursive if it contains exactly one recursive call to itself, either directly or

indirectly. A loop is an example of single .Jf recursion since it can be expressed in terms of tail

recursion. Other forms of recursion cannot currently be analyzed in terms of PBMs. However, since

COBOL does not support any type of recursion except loops, the current PBMs are sufficient for the

analysis of COBOL programs.

The most general recursive PBM is simply called "single self recursion" (SSR). An SSR has

three roles; an optional "initialization", a "body", and a "recurrence". The initialization is a simple

segment that is only executed once, while the body is executed repeatedly. The recurrence

represents a recursive instance of the body. Therefore, it is placed in the body at the point of the

recursive call to the body, anc' it will have the same ports and cases that the body has.

Since the recurrence subsegment is a recursive instance of the body, and the recursion can

potentially occur to infinite depth, inclusion within the recurrence of the entire structure of the body

would result in an infinite graph. To allow the graph to remain finite while still capturing the notion of

a potentially infinite recurse, the recurrence is given no internal structure, but instead is linked to the

41 . .-.- *----

Plans and PBMs 46 Gregory G. Faust

body by a special recurrence link. Then. during (2>ecutIon of tfh2 body. if the neft s(gment to be

executed is the recuirence. the vales in te incoming data flow ports of the recurrence are

transferred to the corresponding ports of the body and control is passed to the body via the

recurrence link and the body is executed again. In this way. control and data flow is circulated

around in the execution without the existence of any explicit control or data flow cycles in the plan.

This lack of control and data flow cycles is very helpful in certain types of symbolic evaluation in

which symbolic values are pushed along control and data flow links.

The drawback of the PBM SSR is that its body can be arbitrarily complex and the recurrence

buried arbitrarily deep within it. It would be useful to be able to break single self recursions into

smaller, less complex pieces. This is done via the PBM "temporal composition".

The PBM "temporal composition" is similar to the straight-line PBM composition except that

all of its subsegments are instances of the PBM SSR instead of straight-line PBMs. In addition, since

some of the subsegments may produce data values recursively that are used in other subsegments,

some of the data flows between subsegments represent a temporal sequence of values instead of a

single value.

The temporal sequences of values are called "temporal data flows". A temporal data flow

into a segmcnt is called a "temporal input", while a temporal data flow out of a segment is called a

"temporal output". These temporal flows can be viewed as streams, and the subsegments of a

temporal composition that interact with them can be viewed as stream operators. More will be said

later about this view of temporal composition and temporal data flows.

Three restricted forms of the PBM SSR, called "augmentation", "filter", and "termination",

are used to form meaningful fragments of temporal compositions. In order for an SSR to be an

augmentation, the body of the SSR must be constrained in the following ways. First, the body of the

augmentation must have a single in-case and a single out-case. Second, the body must have only two

subsegments. One of them must be the recurrence. The other, called the "augmentation function",

can be any simple segment.

The augmentation function is executed once for each recursive execution of the

augmentation. The execution of the augmentation function may use and/or produce data values that

are passed into and/or out of the augmentation. These data values are passed via temporal data

flows. If the augmentation function only uses data values that are produced within the augmentation,

then the augmentation is called a "generating augmentation" or simply a "generator". If the

augmentation function uses some data values that are produced outside the augmentation, then the

augmentation is called a "consuming augmentation" or simply a "consumer".

CGegory C Faust 47 w'',ad If3PAS

Fig. 27. Gen~erating Augmntnation it) the Analyzued Plat) lot PAYR101-1

GENER~ATING IIWf
AUGMENTATION - \L

COPENI

HW F

BODY_______ HW

C READ

HW

HWF EN

I DFJOIN

HWF

4H,

m ;) >1 : " I ! " 11 in 1 . . . i t; , ' if r~ , ;I', ' r f 11 : 11, , . 11i~ f '~ :' 1 T1 , -ti ,i ti h r is

.I J I o r f(,r t i, L .1 1 I -it ,Lti;)tI i if i , I-; L L I it., fi l i,,i i (ji 1 1, I '- I II t OI /i (giI iS

ilt' fli- I I lt i VVA ui[FIL E - J I t 1 I /) tIV) t mj t Tt, tJIll , ti l (, n tiii(A1ji I (a GREAD

a(tinii on lht HWF Tomiiil)oral ouLput,1 are crt led for ta,.l (if th,: outI)Lts of the -RE AD tunction as

well , tor tlit I 1LJFiL ' WAGE FILE OBJECT itself

Lot us -xxarmi lh- dita lolv. as§)t ialZU ,with Ill HOURLY WAGE FILE OBJECT in more

detail The HVvF is hfltto lht ,- !READ th: first titm from the (I)PENIIltialization All Subsequent

',flUS of the tWF us Ul tlytI CRFAD actuill) COfi frol) thl output of thc IJREAD its.lf through the

recurrence segment In this wa, the values tot the HWF are fed back in a loop without any loop in the

data flow itself Note that the non temporal output for the HWF (coming out of the bottom of the

augmentation) is the value of the HWF that is produced the last time the augmentation is executed,

while the temporal output for the HWF is a temporal sequence of all the values that the HWF data flow

assumes at the input to the CREAD. The DFJOIN is not a control flow join but is merely used as a data

flow join.

Note that since there is no way for control flow to be passed to the out-case of the body,

execution of an augmentation in isolation will never terminate. In addition, a consumer cannot be

repeatedly executed in isolation as it needs to receive temporal data flow from outside itself.

Therefore, an augmentation cannot stand alone within a plan. It is meant to be a meaningful fragment

of a temporal composition, and can only be used as such.

A "termination" is the second restricted form of the more general SSR. The body of a

termination is constrained in the following ways. First, as subsegments, it has a recurrence and a split

segment. The split segment fills the "pred" role and is additionally called the "termination test".

Second, one of the out-cases of the termination test must pass control to the in-case of the

recurrence, and at least one of the out-cases of the termination test must pass control to an out-case

of the body. An out-case of the body will receive control flow from both an out-case of the recurrence

and an out-case of the termination test. This calls for the inclusion of the appropriate number of joins

as subsegments of the body.

For example, consider the termination for the temporal composition in PAYROLL shown in

Figure 28. The termination function, EOFP, tests the temporal input HOURLY-WAGE FILE OBJECT

(HWF) to determine whether to pass control to the recurrence or to the out-case of the body.

Execution of the termination will continue as long as end of file has not yet been reached. As soon as

the EOFP predicate senses that end of file has been reached on the HWF, control is passed to the

out-case of the body, and the recursive execution of the termination stops. The DUMMY temporal

data flow will be explained later.

-~ - ~-4~Aik

Fiq ,o T. rr tmn.. ,n wi . r ,.t -'td F j l.t for)A 'v'F L t

I I l NA I I)N

IP f I (

II ** * rI i j

NO Yt S

, q, DU MM Y

REC

REC PRED

JOIN

TERMINATES LOOP

0 ~ ci(;regory G Faust

1'H''l-, F I ('i xii A. t-filnait, by isl.anid

I I' r, f IIFfI, I t _- Te ef r i i

i .r t ii ~* il mlF o it I iIi it ,jr iil Ziluiiir ili l Wil Jut) (xi;*r it fraymiuo of a tenhporal

.' flt.r 1i-, Ill.. Ilfir crrstraiiitri form of lhn mof, gent:ral SS rhe body of a filter is

iA if! I ,L c it Frost ha'r-, oril,, Orln [1 in an.- one out case Second. it

TIr.p)- I 'cc ticrn MLiAt hi i- ,,?- Llilr,r 1he otti.ur two segments

ii-.' i c . f T I. ';)ht1 irtO. !fl i- r1 iiril1-r t cULt S s 8 join has In cases Each

.It Ili.- ...i..ectpa,'-. (oiitrot tc, a (orrospij ting iri case of the join.

The- filler has) the elt-ut that somne of the temporal inputs to the titter are broken up into

tenqwuntI outputs E acth of the ten porat (ilitputs of at filter is associated with one of the out -cases of

the split A givten VaJlW.- In a temporal inpUt bjl ie- contained in a corresponding temporal output if

COntrJ,' fS paJSSef to ~tc-out CASt, oft ftc -plit .itiv.hiuct ttiat temporal Outtpuit is associated.

F or amnple answi,4r thc- till.-n stis.o InI F 'gone 29 It has a temporal input which is a stream

d) fcIomtw-.n,, Tot_ split III~r-1 IL, I lirdicat that tSt eachr of the valuies In the temporal input to see

it tt! ir- arI -,s thin zero or riot Tte tWo temp~roral Out~pWIt contain the negative and non -negative

VaIU II th Frtf temrporal in potI respectively.

Nt~ tht a fitter is sirrita to Lin ao~jment.ition in that it cannot terminate in isotation and it

rtqire, t--rriporAl input Ifierefore- j titter canrnot to be used in isolation but only as a fragment of a

tI ipoal i position

Itr, many respects ttie operation of a termnination is very similar to the operation of a fitter A

te rrm~njtioni can have temporal OLtpLts that are each associated with an out-case of the termination

twest simitar tOtft irl eporal out puts Of filters Thie difference lies in the tact that a filter wilt select

Sertiir ~iow, %rt-r~~s i..thirn a temiporal data ftow white a termination will troncate values oft of
t fie-~(of 1uliporial 1tta fla)w I tics itiferenice c.an be seern by viewing ttie difference between the

d Ltad flicV. pnO'ii(-(I iii tt terri7cnat Ion Shown InI FI(yre 283 anid the two temporal outputs of

to-- till,- III.*4 in1.j 2('4 In iii~litionrita torminatioh can cause tfre execution of ttie entire temporal

ficj)III[,, cii II i FF ipi-r tii terniinatep while a fitter cannot

Alttheuqh if I,, sr to Ljiiritrad Ili.- inriat strLuC~tt ofu the fragments of a temporal

I t: fl 1-riw' If ft-i' hire I' toirrrl *-,. r ctieri it t, ottr'rr talioer tio describe the contribution

I if A -'ri ntof SI tonfiF ii! npc ' to, tti'' .ictcrr op'ratiiiri of that temporal composition

tF . 'st-,Lit", p ri- lt ,v ,fir, wle (p),rifois ri ttcc(wAI Ifi tr'ttrrl,,t properties of the

(itewtOv G. Faust 51 Plans and PBMs

Fig. 29. Example Filter

F ILTER

BODY

PRED

INPUT [ESSP
STREAM

7 PIF

NO YES

NEGATIVE

NON-NEGATIVE

CASE 1 CASE21

JOIN

REC

Pacns and P[3NS 52 (,r,(;uq G Faust

ii i b ~- a-~-, I II J 11i.0 I i V, VLi (c t nw iu_,r In a. titiori. ii- kIm tiuri that the

turnlxn I I; C.up Itin -llit An oitteli uI) - V~ip witliniit CjOIISi1' 2I1I1 thu(- V'ZIIU ie of Certain of

thue input data . al es Ini nation vIthout v.1 ich e e~cution is not possible This allows for a

cIeSCi iption of the 's 'function represented by a particular ttemporal composition.

For example, consider the temporal composition in the analyzed plan for PAYROLL shown in

Figure 30 A detailed view of the analyzed plan for the first two subse-gments the generating

augmentation and the termination, have already been given above The other aUgmientations have

interi al Stfi ucturtes very similar to the CREAD augmeiitation and therefore will not be showin in detail.

The first of these takes tine HOURLY -WAGE (HVV) temporal outpuLt Of the CREAD augmentation as its

temporal input and multiplies it by the constant 40. producing a temporal Output for GROSS-PAY

(GP) This temporal Ouitput IS, in turn, passed to two additional augmentations. One of them is the

CWRITE augmentation that has an initialization that performs a COPENO operation on the GROSS-

PAY FILE OBJECT (GPF). and an augmentation function that writes the values of GROSS-PAY into

that file. The other one has an initialization that produces the constant ZERO and an augmentation

Fig. 30. Temporal Comnposition in the Analyzed Plan for PAYROLL

ECO

CONSUMER

-~~

P'----

Gregory G. Faust 53 Plai and PBMs

function of PLUS that conipLitts the >,li (J F '.. PA I The nir, t,riipor:il output of this

ugmentation is TO AL GROSS PAY IGP) and i3 passed to an oLt;)ut port of tih.- to1iporal

composition to be written outside of the temporal composition.

The remaining augmentation performs the computation for EMPLOYEE-COUNT (EC) and

also has an initialization that produces ZERO and an augmentation function of PLUS The difference

is that the second argument to the PLUS is the constant ONE. Therefore. all data values that are

needed by the augmentation are internally generated. The function of the DUMMY temporal data

flow. generated in the termination and associated with the NO case of the EOFP predicate. is to

provide a control signal to the consuming augmentation which tells it how many times to execute.

The non-temporal output EC is passed out of the temporal composition.

Fig. 31. Analyzed Plan for PAYROLL

COMPOSIT ION PAYROLL

TEMPORAL :G
COMPOSITIONTG

ECC

ECF

f.in and PBMS 54 - (" JYry C taust

4.2.3 Analyzed Plan for PAYROLL

Nuw tiat most of the comporierts of the analyzed plan for PAYROLL have been described,

we can take a look at the entire plan shown in Figure 31, The top level segment of the analyzed plan

is a composition in which most of the subsegments perform primitive file operations. The only

exception is the central temporal composition, the internal structure of which has already been given.

This example should make it clear that although the entire hierarchy of the analyzed plan for

a program can be quite complex. any part,cular level in the hierarchy is fairly simple. It is the

hierarchical nature of an analyzed plan. as well is the simplicity at each level in the hierarchy that

contribute to the fact that an analyzed plan is a much more organized source of information about a

program than either the original code for the program or the surface plan for the program.

4.3 Conclusion

By comparing the COBOL code for PAYROLL with the analyzed plan for that program, it can

be F- en that the analyzed plan is much easier to reason about. The PBMs group information that may

be contained in distant parts of the actual code into neat functional localities. This locality makes it

possible to make conclusions about certain computations without considering the entire program. In

addition, a programming language like COBOL has many constructs for the transfer of data values

from one place in the program to another. The analyzed plan for the same computation uses data

flow as the single construct for data value transfer. The stereotypicality of the analyzed plan further

reduces the number of distinct possibilities that need to be considered at any one step in a deductive

process. It is the reduction in the number of facts about the program which need to be considered

simultaneously that makes the PBM representation of a program particularly useful for abstract

processing.

A given computation can be subdivided into smaller chunks in several ways including

processes, subprograms, streams, and data abstractions. The analysis described here, via the PBM

temporal composition, uses the streams abstraction. This is critical to the translation of the COBOL

programs into HIBOL. Since HIBOL is essentially a method of expressing data processing functions

in terms of operations o 'ms (data sets), the initial analysis of the COBOL programs in terms of

stream operators (augmentai,. terminations, and filters) is a significant first step in the translation

of COBOL into HIBOL.

Gregory G. Faust 55 - Translation Process

5. Current Implementation of the Translation Process

The three formalisms for the description of data processing piograms discussed so far.

COBOL. HIBOL, and analyzed plans, are the result of the work of others. This and the following two

chapters describe the research effort of this thesis.

5.1 General Description

The diagram shown in Figure 32 highlights the current implementation of the SATCH system.

Starting with a COBOL program the COBOL parser (implemented by Burke) produces two distinct

outputs First, information is extracted from the DATA DIVISION and placed in a file to be used later in

the data division query phase of the translation process. Second, the PROCEDURE DIVISION is

transformed into a isp-like format that represents the computation in terms of the primitive functions

described in Appendix I. This representation of the PROCEDURE DIVISION is then used by the plan

extraction and analysis phase (implemented by Waters) to produce the analyzed plan as described in

the previous chapter.

The translation process is divided into three subprocesses. The first two subprocesses, the

symbolic evaluation of the analyzed plan and the data division query, can theoretically proceed in

either order. For reasons that will become clear, the symbolic evaluation of the analyzed plan is done

before the data division query. Since the third subprocess, HIBOL production, uses the results of the

first two subprocesses, it cannot proceed until they are completed.

The symbolic evaluation of the analyzed plan is by far the most time consuming of the three

subprocesses. It proceeds by making an assertion about the value of every output data port on every

segment, and an assertion about every out-case of every split segment.

A key feature of COBOL programs is that they do not return values. Therefore, the only way

they can produce results is by the side effect of writing data values into files. This means that the only

information that needs to be transferred from the symbolic evaluation of the analyzed plan for the

program to the HIBOL production phase are the values of the data flows that are used as arguments

to CWRITE and CREWRITE. After this information is gathered from the analyzed plan, the plan is no

longer needed in the translation process. The syntax and semantics of the intermediate language

that is used for assertions and to transfer information to the HIBOL production phase will be

discussed later in some detail.

Much of the information that is originally contained in the DATA DIVISION of the COBOL

program is transferred to the translation phase directly from the COBOL parser and is not passed to

the plan analysis phase at all. Unfortunately, some specific information that is needed in order to

Translation Process - 56 - Gregory G. Faust

Fig. 32. Current SATCH Implenmentation

TRANSLATION PROCESS

Intermediate

Analyzed Plan] Assertion

Symbolic Language

Analyzed Evaluation

Plan of

PROCEDURE HIBOL

DIVISIONDATAductionuction

DATA

DIVISION DATA DIVISION

Query and Key Field
Information

Plan Extraction

And
Analysis

DATA DIVISION
Information

LISP-i ike

Representation

of PROCEDURE

DIVISION

COBOL Parser

COBOL program

Gregory G. Faust 57- Translaton Process

produce the HIROL is not (irectly contained iti the the DATA DIVISION of the (OBOL program nor

can it he gleaned from tile analyzed plan for the PROCEDURE DIVISION In particular. in most

instances it is impossible to tell which fields in a data file represent key fields and which are data

fields. This information is gathered in the data division query subprocess.

The subprocess that produces the actual HIBOL uses the information gathered in the

previous two subprocesses. In doing so, it makes certain assumptions about the form of the original

COBOL program. These assumptions will be discussed in the next section. It also uses extensive

knowledge about the semantics of HIBOL in an attempt to produce HIBOL that is a faithful translation

of the semantics of the original COBOL program without redundantly specifying restrictions that are

implicit in IBOL. Elimination of the specification of implicit restrictions leads to the production of

HIBOL code that might be harder for a HIBOL parser to process, but that is easier for a human reader

to understand.

5.2 Range of COBOL Programs Currently Translatable

The current implementation of the translation process makes use of certain assumptions

about the type of COBOL program that is represented in the analyzed plan. Some of these

assumptions stem from the limits of the expressibility of HIBOL. Others stem from a desire to reduce

the domain to a manageable size.

The translation process is designed to work on three basic types of programs. The simplest

type of program is one which reads in a file and outputs another file. The input and output files must

have the same key fields. In addition, the output file contains exactly one record for each record in

the input file and each record in the output file has the same values for the key fields as the record in

the input file that was used to create it. In HIBOL terms, this means that the actual key space of each

output file is identical to the actual key space of the input file. The PAYROLL and DBINIT programs

shown in Section 1.4 are examples of this type of program.

The second type of program is an extension of the first in which the computation of the value

of the data fields in the output file requires information contained in the data fields of two (or more)
input files. The input files and the output file must all have the same key fields. Since the computation

for a data field in the output file requires information from a record in each of the input files, the

output file only contains a record if a record with identical key field values appears in all of the input
files. In HIBOL terms, this means that the actual key space of the output file is the intersection of the

actual key spaces of the input files. The PAYROLL2 program shown in Section 1.4 is an example of

this type of program.

- ---

I ru ° i .'tIl'rr Process 58 0,'Y o rJ y G f atist

Th.. thir,! t p re r f ircirair :t i ;riiIL .i)tiJt it fd- J',i~n j irfd i r i tior. , (i , d In lvI a (or

11or,-) inpLut file5 but I I. I t1k.- outLput tl Wily Wtr , inrrftrrit'ii a -t - i in a record from

Of thU iiiput files This, icC Lsu , for d inrpk yrai pr griri-frfur ri, i fYt mery.~ operation The
input files and the output fil, must have the same key fields Since a valuej for a data field in the

output file can be compLIted froM Information contained a record inI any one of the input files. the

output tile contains a record for tach unique set of key field values appearing in any of the input files.

A record In the output file is given the siame vIlues to' the key fields as the record in one of the input

files from which it was created In HIBOL terms this means that the actual key space of the output file

is the union of the actual key spaces of the input files The LOC LIST program shown in Section 1 4 is

an example of this type of program.

All of these types of programs have certain features in common. First, all top-level loops in

the COBOL program are logically driven by file reads and terminated by end of file predicates. Since

HIBOL has no explicit loop construct. loops other than these cannot in general be reasonably

expressed in HIBOL. Second, these types of programs do not contain non-local error exits from any

of the loops or from the program itself. Such non-local lumps are usually not expressible in HIBOL

and also are not well expressed within analyzed plans. Third, all inpuQ, data files (and therefore all

output data files) are homogeneous. That is. all records in a file are assumed to have data and key

fields which contain the same type of information as the corresponding data and key fields in all the

rest of the records in that tile. This means that the file cannot contain any singular header or trailer

records with a different interpretation from the rest of the records. It might be possible to produce

HIBOL from COBOL programs that do access files that contain header or trailer records, but the

translation process would have to generate data-sets for these records that were independent from

the data-sets generated for the rest of the records. Currently. a single data-set is generated for each

data field in each data file.

Certain additional restrictions are also required. First, it is assumed that all input files are

read sequentially, and all output files are written sequentially. In a later chapter suggestions are made

as to how this constraint might be eliminated as long as the program still falls into one of the three

basic categories. Note that it follows from this constraint that, in programs of the second and third

type (intersection and union), the input data files used in conjunction to produce the output file must

be sorted in the same key field order.

Second, it is assumed that the COBOL program contains no nested loops. This is a rather

harsh constraint and would have to be eliminated before translation from COBOL into HIBOL could be

applicable to the real world. One group of programs eliminated b,. this assumption are those that

produce subtotals for certain data fields in a record as a secondary key field changes value.

Gretvy G. Faust -59- Irarluaton Process

Third it 1b aS Ai,, , tiat no oHIpUt , .jrformed on aiy, flla oth-i thmi data file, That is. it is

ttSSuInIIt! that .h progra.tm piod uCeS no formatted output reports Alth OuJIh IlBOL dous have a

report generation feature, the g,,neratlion of formatted reports is an orthogonal issue to the rest of the

semantics of HIBOL In a later chapter. some suggestions are made as to how translation of

formatted reports might proceed.

Fourth. for simplicity. it is currently assumed that. within a given program. all key field names

from different files that actually correspond to the same key are identical. This constraint is

particularly eas to eliminate, and a method for doing so will be discussed in a later chapter.

The above constraints are not as restrictive as they might seem The three basic program

structures discussed above represent the heart of the domain of programs that can be expressed in
HIBOL. In addition, programs which incorporate other features that do not interfere with the main

read loops can still be translated. For example, a single program can produce output files from input

files using any or all of the three basic strategies, so long as the read/write loops used to produce

those output files are completely separate from one another and therefore cannot interact. Also,

reduction operations that produce grand totals are allowed because they do not require nested loops.

It is also possible to translate programs which do not produce a record in the output file for each set

of key values that could cause a record to be produced. For example. in the LOC-LIST program, a

output record is not produced for a record in the transaction file if that record contains a "D" in the

delete-flag field. (Note that it is not permissible to add records to the output file in a similar fashion).

Unfortunately, the current implementation of the translation process does not verify that the
program that it is processing adheres to the assumptions and/or restrictions discussed above. A

more robust system would have to do significant checking to determine if the program that it is

processing fell within the domain of programs that it was designed to translate.

5.3 Brief Example

Before delving into all of the detail of the current implementation process, let us examine its

operation on a simple example program, namely PAYROLL. For simplicity, only the processing

needed to produce the HIBOL for the output data-set GROSS-PAY will be discussed; TOTAL.GROSS.

PAY and EMPLOYEE-COUNT will not be considered. This discussion is not meant to make the

operation of the translation process crystal clear, but merely to give a flavor for the type of processing

that is taking place.

Iranslation Process 60- Cregory G Faust

5.3.1 Symbolic Evaluation of the Analyzed Plan

Let us consider the portion of the analyzed plan for PAYROLL shown in Figure 33. This

figure shows an abbreviated version of the analyzed plan for the main temporal composition (and is.

in fact, a subset of Figure 30). The subsegments are symbolically evaluated in an order that is

consistent with their control and data flow dependencies (left to right in Figure 33).

The first subsegment of the temporal composition to be symbolically evaluated is the

generating augmentation, which has CREAD as its central function. The assertion that is formed for

the HOURLY WAGE (HW) output port of that subsegment is:

(CREAD-VAL IIOURLY-WAGE-IN HOURLY-WAGE)

This assertion specifies that the value at this output port is the result of reading the HOURLY-WAGE

data field in the HOURLY.WAGE-IN file.

Fig. 33. Partial Analyzed Plan for PAYROLL

HWF TEMPORAL COMPOSITION GPF

CONSUMER
CWRITE

GENERATOR EN CONSUMER C'P
CREAD tlW T TIM E S(4 0

GPF

HWF

HWF

TERMINATIONr

EOFP

\/ \,/ \/

Gregory G Faust - 61 ranfafmo Process

ALo p.r t~nint to t is d f ;CtISsion i the assertion that is formed for thu HJURL WAGE FILE.

OBJECT (H.VF) output port of this auynentation:

(SEFO HOURIY-WAGE-IN)

This assertion specifies that the value at this output port is the file object HOURLY WAGE IN that has

been side-effected by the read operation (SEFO is an acronym for "Side Effected File Object").

The next subsegment to be evaluated is the termination subsegment. which has EOFP as its

central function. The assertion that is formed for the single out-case of the termination is:

([of[, (SEFO IIOURLY-WAGE-IN))

This assertion specifies that the termination subsegment (and, therefore, the temporal composition as

a whole) terminates when end-of-file has been reached on the HOURLY-WAGE-IN file.

The next subsegment to be evaluated is the consuming augmentation that has TIMES as its

central function. This augmentation has the effect that the value for the incoming data flow is

multiplied by forty. Accordingly. the assertion that is formed for the GROSS.PAY (GP) output port of

that subsegment is:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)

The last subsegment to be symbolically evaluated is the consuming augmentation that has

CWRITE as its central function. When this augmentation is evaluated, a record is made of the fact

that the output data field GROSS-PAY is associated with the assertion shown above. In addition, the

predicate which controls how often it is written (the predicate assertion taken from the out-case of the

termination) is stored.

5.3.2 DATA DIVISION Query

In the DATA DIVISION Query phase, the user of the SATCH system is asked to supply the key

fields for each of the files appearing in the COBOL program. In this example, the user specifies that

EMPLOYEE-NUMBER is the key field for both the HOURLY-WAGE-IN file and the GROSS-PAY-OUT

file.

5.3.3 HIBOL Production

In the HIBOL production phase, a new assertion for GROSS-PAY is formed by combining the

old assertion for GROSS-PAY with the predicate which specifies under what circumstances it is

written. Since GROSS-PAY is written within a temporal composition, the predicate that is used is the

negation of the predicate which terminated that temporal composition (stored during the symbolic

Trans ation Process -62 Groyory G Faust

evaluationi phase) Theefore. the prt e(icate that 1sLised is:

(NOT (EOFP (SEFO IOUlLY-WAG[-IN)))

The new assertion (the form of which is not important here) specifies that the value of

(TIMES (CREAD-VAL HOURLY-WAGE-IN IIOURLY-WAGE) 40.)

is written into the output data field GROSS-PAY for every value of the input data field HOURLY-WAGE

that appears in the HOURLY-WAGE-IN file-

This assertion is then translated into the corresponding HIBOL statement:

GROSS-PAY IS (IIOURLY-WAGE - 40.)

5.4 Symbolic Evaluation of an Analyzed Plan

As stated above, the symbolic evaluation of an analyzed plan for the PROCEDURE DIVISION

of a COBOL program proceeds by making assertions about each output port for each segment. The

form of an assertion depends on the PBM that was used to form the segment. In some cases, more

specific patterns are used to make special case assertions. This is particularly true for augmentation

segments.

In addition to assertions for output ports, an assertion is made for each out-case of every

split segment. The assertions specify under what condition control will be passed to that case. These

assertions differ from the assertions for data ports in that they take the form of predicates instead of

object descriptions. That is, they are expressions that use boolean operators instead of the arithmetic

and other special form operators that are used to describe objects.

When a given segment is symbolically evaluated, first its subsegments are symbolically

evaluated in an order consistent their control flow and data flow dependencies, starting with a

subsegment which depends on none of the other subsegments for either control or data flow. Then,

after the symbolic evaluation of the subsegments is completed, an assertion is made about each of

the segment's output ports, or if it is a split segment, each of its out-cases.

Both predicate and object assertions are made in terms of primitive objects. Therefore,

primitive objects will be discussed in the next section. The two sections after that will discuss

predicate and object assertions, respectively.

-- _ ____ ____- .-- -1-- t

GtugUfy G Faust 63 - / "I '.IIt I /Pro e.S,

5.4.1 Primitive Objects

The only explicit inputs to a COBOL program are file objects However there are also

implcit inputs to the program, namely the data and key fields in the files These two types of input

produce two of the three types of primitive objects. The syntax (literals are in bo!d face and

non terminal symbols are in italics while primitive function names are in the normal font) for file

objects is:

(SEFO file-name)

where SEFO is an acronym for Side Effected File Object. The syntax for the pnmitive objects resulting

from -READ operations is:

(CREAD-VAL fi7e-name field-name)

Since several files may have fields that have the same name, the field-names that are used are

actually buffer-structure path names that uniquely identify a particular field.

The third type of primitive object is a constant. These fall into two subtypes, numeric and

literal. The syntax for numeric constants is simply the numeral itself. The syntax for literal constants

is:

(STRING some-sequence-of-characters)

In addition, there is a special constant, UNDEFINED, which is the initial value given to every data area

that is not explicitly initialized in the DATA DIVISION of the COBOL program.

5.4.2 Predicate Assertions

The simplest instance of the PBM predicate will have two subsegments: an initialization that

is one of the primitive boolean functions, for example EQUAL, combined with a PIF, The assertion

that specifies the value for the output data port of the initialization is built in an obvious manner. The

primitive boolean function is simply combined in prefix order with the values for the objects that it

uses as arguments. For example, the predicate assertion that would be formed from a primitive

EQUAL function acting on two primitive CREAD-VAL objects would be:

(EQUAL (CREAD-VAL fMlel field-namel) (CREAD-VAL file2 field-name2))

Note that fi lel and fi 7e2 might be the same if the fields to be compared are both from the same

file.

The output data port of the initialization will be linked via data flow to the input port of the PIF.

(Recall that PIF is the split primitive that tests a simple boolean operand). The PIF will have two

out-cases. An assertion will be made about one of the cases, called the YES case, that is the same as

f!

h' len

I ijA I CREAD-VAL fil I f lelI [ame (CREAD-VAL ft 1e2 field naine2)

I:.~~~~ :Ltic Ij]v.0. th t~o J(0 casl % when

T 1 '11 CREAD-VAL tli l f L 'tj rX el (CREAD-VAL fi I&, f ie I-rame2)))

;s true

If the primitlvt split were a PIFNULL instead of a PIF then the assertions associated with the

YES and NO cases would simply be reversed.

The simple predicate described above will only have two out cases. each corresponding to

one of the out cases of its PIF subsegment Symbolic evaluation of the predicate is completed by

simply making an assertion about each of the out-cases that is identical to the assertion that was

made about the corresponding out-case of the PIF.

As stated in Chapter 4. compound predicates are built out of simpler predicates in two ways.

One way is for a predicate, call it PRED2, to receive control flow from an out case of another

predicate. call it CASE1 of PREDt. Because of the order in which segments are symbolically

evaluated, PRED1 will always be evaluated before PRED2. PRED2 is then evaluated as usual except

that the normal assertions that would have been made had it occurred in isolation are each ANDed

with the assertion governing CASE1 of PREDi. For example, suppose that PRED2 is the simple

EQUAL predicate discussed above, and CASE1 of PRED1 was asserted to be active when some

arbitrary predicate, call it predl, is true. Then assertions will be made stating that control will be

passed to one case of PRED2 when

(AND predi (EQUAL (CREAD-VAL filel field-namel)
(CREAD-VAL file2 field-name2)))

is true and to the other case when

(NOT (AND predl (EQUAL (CREAD-VAL fMel field-namel)
(CREAD-VAL file2 field-name2))))

is true.

The other way in which compound predicates are formed is when a join segment receives

control flow from an out case of two different predicates, In this event, an assertion is made about the

single out case of the join that is the OR of the two assertions that govern the two in-cases of the join,

(I dtu)st 65 /'riuw/.Ixir? Proc ess

it. ,, , I" .'., ir..li t1(theit a'., (ntrol to fI' I (- ,l For 1(,iol;s ppo e

ti:,rt j,w '" ;;-:. "'> ortr(i fror n oJUt C .VU ' Of t - pi.:0c; ats a1n thill those cases aire asserted

t_ t 1i. .'.. v rlr v t,l rt-dicdtH s Iail then) pred I and pr'ed2, are true Then an assertion will be

HIJ rtLt thl, 0 .c of the loin that is of the form:

(OR. pr'ed I pred2)

A corirpornd predicate. in general. can have many joins and simpler predicates as

sLiJse(;ments It can also have many out-cases, each of which is passed control fron an out-case of

one of Its ULhSeyments When a compound predicate is symbolically evaluated. first all of the

subsegurents are eva:,lua_-ted and then an assertion is made about each of its out cases which is

identical to tht assertion that was made about the out-case of the subsegment that passes control to

it.

It should be clear that the expressions for the assertions in a compound predicate can be

very complex If the assertions for compound predicates were made according to the rules that have

been given so far. they would be in an unreadable form This is also true of the assertions that are

made about complex objects To -educe this problem. several simplification techniques have been

used. These will be discussed in a rater section.

5.4.3 Object Assertions

The assertions formed for primitive objects were discussed above. The following three

sections will discuss assertions made in primitive segments, segments that are instances of straight-

line PBMs, and segments that are instances of recursive PBMs. respectively.

5.4.3.1 Primitive Function Assertions

Assertions about output ports of primitive arithmetic functions that do not fall into any special

category are formed in an obvious manner. The primitive function of the segment is combined, in

prefix order, with the assertions about the input ports to the segments. For example, suppose that

there is a primitive TIMES function that has two input ports. By following data flow links to each of the

input ports back to the previous segment, an assertion can be found for each of the input objects.

Suppose that the aszertions found in this manner are objI and obj2. Then the assertion that will be

formed for the output port of the segment is:

(TIMES objl obj2)

,.to' Jtuce'ss 66 f'"', / dO ,t

,', or a') j, _ t r Ir- Srifii O , th .- r iii.' o l t , lHl Iit p. [rf(;r , , , . tr o v, on

ir ol et., iJ)iLNI u.lf'lrt j , . IPP41 tI fJ(: d ' hi -IL I All Of 1 lL JW.s iOW,troj fijvt the

jirop-it t)i.tt thhe1 t a" ih i .*.t tlimit oril, Iliput a1nd ;)rOrtutCt" ai fl Oi rjout a-ll , thtrr ul l, Output In

,ill caises the asso, rt u that v uu r.flnte I(}r itJIt IS ILIst tht priimiitive object:

(SEFO file-name)

In addition special assertions Lire fornied for CRE AD functions The CREAD function is

unique Ill that It anJes a single input a file obljct. arid r)ro(J I ueS many outputs One of the outputs is

the file object. and thu others ar. all flrld VaILIes T re output assertion for the file object is as above

An assertion is made for each of the other output ports that is of the form:

(CREAD-VAL file-name field-name)

where the field-name is one of the names in the buffer structure associated with the file in the

DATA DIVISION of the COBOL program. These field names are contained within the analyzed plan

and do not come from the DATA DIVISION information produced in the COBOL parser.

CWRITE and CREWRITE functions are also handled specially. These functions take a file

object as well as a number of other inputs that correspond to fields of that file. The single output is

the file object and is given the usual assertion. Symbolic evaluation of these functions also has the

side effect thit the assertions that correspond to the fields, along with the associated field names, are

placed in a file to be used by the HIBOL production phase of the translation process. The transferal of

this information will be discussed in a later section.

5.4.3.2 Object Assertions Formed in Straight-line PBMs

More complex object assertions are formed within segments that represent straight-line

PBMs. The assertions formed within predicate segments have already been discussed. The

assertions formed in composition segments and conditional segments are discussed in this section.

In a composition, the assertions that are made about the output ports come from the

subsegments that make up the composition. After all the subsegments of the composition have been

symbolically evaluated, an assertion is made about each of the output ports that is identical to the

assertion associated with the output port of the subsegment that produces data flow to that port. The

composition itself lends no special form to the assertions.

A conditional, on the other hand, does cause the formation of a particular type of assertion.

Recall that a conditional is composed of a predicate, a group of actions, and a join. The join

subsegment not only joins control flow, but also joins data flow. Each output port of the join is

associated with as many input ports as the join has in-cases. For example, if the join has three output

;'

(3 , ~is! 67 iaon 1,aiori Process

;)Or, : a . ' .. a i,, '.'' f.." iIiJ)LJI ; t, t, ii for i(,< I f 1),: four ill cases

ANso r,. t ht ,.., ti of tIh II1 CaiStS of thu loi IS i associLted with all out -case of the

predicate Becai-AWs tht, pVt ,!..ait has thu property that exactly one of its out cases will be active on

an gVer, executiOn of the oli iditional. the join has the property that exactly one of its in cases will be

active This causus exactly one of the input ports associated with a particular output port of the join

to receive a data value on any given execution.

Since the assertions about the output ports of the join are made during a s,, mhuhc evaluation

of the conditional they need to include all the possible values that that output port canl assume. This

is done b, fornng a set of predicate-object pairs for each output port The set for a particular output

port is found by associating the predicate that corresponds to each in case of the join with the data

value that the output port would receive had that predicate been true. The syii ^ of such an object

is:

(XCASE (predi obji) (pred2 obj2) (predn objn))

The keyword XCASE is included as an indicator oi the type of object.

Although the syntax of an XCASE construct closely resembles the syntax of a LISP COND

construct, the semantics of an XCASE and a COND differ in that the order in which the clauses appear

in a COND matters, while in an XCASE the order in wh.icn the predicate-object pairs appear does not

matter.

5.4.3.3 Object Assertions Fo,-ned in Recursive PBMs

The initialization of an augmentatiur, 1s a simple segment. Therefore, the assertions that are

made about its output ports are just those that have been discussed above. The augmentation

function is also a simple segment and is also given assertions that are the same as those discussed

above. The exception occurs when the augmentation function is a temporal composition. This

happens as a result of the nesting of loops. The current implementation of the translation process

does not handle this case.

After the initialization and augmentation function have been symbolically evaluated and

assertions made about their output ports, assertions are made about the output ports of the

augmentation body. These are made by simply carrying forward the assertions made about the

output ports of the augmentation function that correspond to them, Note that this is similar to the way

in which assertions are made about the Output ports of composition segments.

!1J";: ',itl'rl /I'o ss 68 - (auoy

It I,, j..ii tl I.) 1 ,,, ; rkto1015 aIOtLJI L_' t,1ipuIjor a k J fon tefli;)Oril o1 tu)Ljts of the

t Int I -natktI to I Cut I-IIItl, tfo t a)aI. oitputs Y11)(gi , S,1 rtr(:. that are id ntical to the

assertions given to thi, datat ports from which the, get thezir values, Unfortunately this means that

these assertions are indlistifICJishable frona assertions rnadt about non temporal data flows. The pros

and cons of this choice are discussed iii another section.

In addition to temporal outpUts an augmentation can also have non temporal outputs In the

analyzed plans for COBOL programs these anise in two ways First. a file object can be side-effected

in an augmentation and then passed out of the augnientation to be used in another segment in the

plan In this event, the output port that correspornds to the file object Is Yiven the usual file object

assertion. namely:

(SEFO file-name)

The second non-temporal output type results from reduction operators such as COUNT or

SUM. The reduction operators are recognized when the augmentation satisfies special criteria. For

example, a SUM operation can be recognized when an augmentation has an initialization that

produces the constant zero and an augmentation function that is a PLUS. The PLUS function will

take one argument from an input to the body that first gets its value from the initialization and

subsequently gets its values from the output of the PLUS function. The second argument will be a

temporal input to the augmentation. The non-temporal output of the augmentation is then the SUM of

the temporal input to the augmentation. The assertion that would be formed in this event is:

(SUM obj)

where obj is the assertion found by following data flow back from the temporal input port to its

source.

Terminations and filters are handled in much the same way as augmentations. The

subsegment- onf the filters and terminations that represent straight-line PBMs are evaluated as always

and the usual assertions formed. However, the temporal outputs of terminations and filters need to be

handled in a special way. These temporal outputs represent stream values, generated in some

augmentation, that have been changed by the action of the termination or filter.

Recall that each temporal output of a termination or filter corresponds to a temporal input

that has been associated with a certain predicate. In the case of a termination, this predicate

indicates at which place the temporal input should be truncated. In a filter, this predicate indicates

under what circumstances a value from the temporal input is included in the temporal output.

f aust 69 Tirulabun Process

13oth O f th2se: ,t;itLItl1)r1 ; Lift! ht (Jl-:t! by;, forrwljil !i XCASE corlStFUC.I V.01th' ;twprdicate

" iirs r. of tht pirs js foimed b asodtlalrig thLI pr ica ti w lth th otjl¢Ct ,iS', tiOl that IS

-it, SO i:ted .(,Iith the corresp~onding temporal In/put. Tihe other predicate obl t pbair is form ed by

asso:ilhg tli, negation of the predicate with the special primitive object UNDEFINED Note that

XCASEs formed in this way have the samne properties as XCASEs formed in conditionals Clearly. given

arm . predicate and its negation exactly one of them will be true Also note that in the case of a

temporal Output of a termination, this assertion form assumes that the termmintion predicate is such

that once it is TRUE for some value in the input stream. it is TRUE for all remaining vajhj(,, in the input

stream This assumnption is met by EOFP predicates (whicl are assumed to termmatt all loops),

For example, suppose there is a filter with a temporal input that is associated with the

assertion obj 1. and which has a temporal output that corresponds to that temporal input and which is

associated with the predicate predi, Then an assertion will be made about the temporal output that

is of the form:

(XCASE (predi objl) ((NOT predl) UNDEFINED))

In this way assertions are made about the temporal outputs of terminations and filters that

state that, when a given predicate is true, the temporal data flow has a value that is the same as it had

before it was operated on by the termination or filter. The assertions also state that when that

predicate is not true, the temporal data flow has no value. Unfortunately, like the assertions produced

for temporal output ports of augmentations, these assertions are indistinguishable from assertions

representing single values.

5.4.4 Assertion Simplification Methods

It can be seen from the above discussion that there are only three types of assertions in the

system; primitive objects, expressions composed of primitive functions (both arithmetic and boolean)

acting on other objects, and XCASEs. The XCASEs are the only complex objects. Unfortunately, the

way the assertions are built. XCASEs can appear in expressions and in predicate-object pairs of other

XCASEs. This causes unnecessary complexity in all the assertion types.

All assertions in the system are kept as simple as possible by transforming the ones that

contain XCASEs as components so that either the XCASE is eliminated or the XCASE is at the top level

only. This is done for each assertion that is made in the system. This means that when a new

assertion is formed, XCASEs can be nested at most one level deep in the assertion. This fact is used

in the simplification process.

I rtfnr th on Process 70 C('gory G Faust

Th tt Ia)nsfor Iw a It- i i 1 thit pi , (Ii.t. ', LirI of t r i built .vIich 10n (t I, IrIIl)lE t torms'

These predilatec Lire sniplhlt,:d througjh tht ut of I tti~iuiichv* noiriial orrn , rtdcjlv ,ihlifi r that

was designed b, Deepak Kapur [12] This piedicate simplifier lies at the huart of the assertion

simplification process.

5.4.4.1 Simplification of Predicate Assertions

When a predicate assertion is first formed in the system. it may contain an XCASE as an

argument to a boolean function Since an XCASE is an object. it will never appear as an argument to

AND. OR. or NOT. but can only appear as an argument to comparative function Such as EQUAL,

GREATERP. etc What is needed is a transform that will eliminate the XCASE from the expression.

The transform that is used is given in Figure 34.

In this example, the second argument to a comparative function is an XCASE. It is assumed

that this XCASE is already simplified. This means that objl through objn are not XCASEs. Note that

if the first argument to the comparative function had also been an XCASE, then the same transform

could have been applied to each of the clauses that were produced in the first application of the

transform, thereby eliminating all XCASEs from the expression. An inspection of Figure 34 should

reveal that the resultant predicate has the intended truth value.

Once the transform has been applied, the expression is further simplified. The disjunctive

normal form predicate simplifier does not know about the type of primitive objects that a given

predicate will be expressed in terms of. Therefore, before the predicate is passed to the simplifier, it

undergoes a prepass in which some of the subexpressions that are composed of a comparative

function operating on two constants are replaced by TRUE or FALSE. For example,

(EQUAL (STRING abc)(STRING def))

can be replaced with FALSE.

Fig. 34. Transform to Remove XCASEs in Comparative Functions

(comparative-function obj (XCASE (predl obji)
(pred2 obj2)
(predn objn)))

Becomes:

(OR (ANJD predi (comparative-function obj objl))
(AND pred2 (comparative-function obj obj2))
(AND predn (comparative-function obj objn)))

Gregory G raust 71 r Translation Process

In Jtdition arl, ub piesion fit i C.cOiiiaJdrhativ. fLifiCtlOr In which one of the

arguments i the coistlmt UNDEFINED is veptactjd with FALSE This rt,,placeinent is done because

objects can be undefined but predicates cannot Jote that this replacement with FALSE (followed by

simplification) is equivalent to first converting the XCASE to one in which at most one of the predicates

is TRUE by removing the predicate oblect pair in which the object is UNDEFINED (if any), and then

performing the transform to eliminate the XCASE from the comparative function.

The expression is. then passed to the general predicate simplifier. The result is a disjunctive

normal form in which the C lause are , snniplt as possible and are in a canonical order.

As an example of the t' ,i Of CL- ptiticate simplification transforms, let use consider the

predicate in the termination of the terriporal composition in PAYROLL2 (see Section 1.4). In this

example, a flag is used to store the information about whether or not end of file has been reached.

Because COBOL allows 88 variables to be used. flags of this type are very common in COBOL

programs. Let us simplify the example by considering only the portion of the termination test that

tests whether end of file has been reached on the HOURLY-WAGE file. The actual predicate in the

analyzed plan checks for the value of the flag The initial expression for the predicate as well as the

final assertion actually formed for the predicate are shown in Figure 35.

5.4.4.2 Simplification of Object Assertions

The first transform for object assertions is used to simplify arithmetic expressions. Arithmetic

expressions, as initially formed, can contain XCASEs as arguments to arithmetic functions such as

TIMES and PLUS. What is needed is a transform that will change arithmetic expressions that contain

XCASEs into an XCASE in which the objects of the predicate-object pairs are arithmetic expressions

Fig. 35. Example Predicate Simplification from PAYROLL2

The expression before simplification is:
(EQUAL 1. (XCASE ((EOFP (SEFO IIOURLY-WAGE-Ilt)) 1.)

((NOT (EOFP (SEFO IIOURLY-WAGE-IN))) 0.)))

The expression after transform to eliminate the XCASE:
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) (EQUAL 1. 1.))

(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN))) (EQUAL 1. 0.)))

The expression after the prepass:
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) TRUE)

(AND (NOT (EOFP (SEFO IIOURLY-WAGE-IN))) FALSE))

The final assertion after simplification:
(EOFP (SEFO IOURLY-WAGE-IN))

Tri1hltion Process 72 - (,'jory c i just

that do not contain XCASEs Thira ktn-ps th XCASE forms aLt top Iu tve m -t- ad (f r1,Lt,:tJ .',ithllr the

trithinetic expressions The tranziorm that Is Used is shown in Figure 36.

In this example, the second argument to a binary arithmetic function is an XCASE As before.

it is assumed that the XCASE was already simplified and that ob jl through objn are therefore not

XCASEs. Had the first argument also been an XCASE. then the same transform could be applied to

each of the objects in the predicate object pairs resulting from the first application of the transform

The result is an expression that will have XCASEs nested at most one level deep. but in which nont of

the arithmetic expressions contain an XCASEs. The nested XCASEs, if any. are later re-moved with

another transform.

The arithmetic expressions that result from the transform shown in Figure 36 can be reduced

further by replacing any subexpression that contains an arithmetic function in which the constant

UNDEFINED is used as an argument with the constant UNDEFINED. For example,

(TIMES argi UNDEFINED)

is replaced with UNDEFINED.

XCASEs that are nested one level deep can result in two ways. One is by the application of

the transform discussed above. The other occurs when a conditional segment is nested within an

action of another conditional segment in the analyzed plan. In either case, it is desirable to eliminate

the nested XCASE. If this were not done, then XCASEs nested to an arbitrary depth would eventually

be formed. The transform that is used to eliminate nested XCASEs is shown in Figure 37.

In this example, one of the objects in a predicate-object pair of an XCASE is another XCASE.

It is assumed that this nested XCASE is already simplified and that, therefore, obj2 1 through obj2n

do not contain XCASEs. Note that the same transform can be applied to any of the predicate-object

pairs in the top level XCASE in which the object is an XCASE. The result of applying this transform is

an XCASE that contains no nested XCASEs anywhere in the objects of the predicate-object pairs. An

Fig. 36. Transform to Remove XCASEs in Arithmetic Expressions

(arithmetic-function obj (XCASE (predl obji)
(pred2 obj2)
(predn objn)))

Becomes:

(XCASE tpredl (arithmetic-function obj obji))
(pred2 (arithmetic-function obj obj2))
(predn (arithmetic-function obj objn)))

Ore gorj n Faust 73 - Tranwlaton Process

Fig. 37. Transform to Eliminate Nested XCASEs

(XCASE (preJ11 obj 11)
(pred12 (XCASE (pred2l obj2l)

(pred22 obj22)
(pred2n obj2n)))

(predln objin))

Becomes:

(XCASE (predll obj11)
((AND predi2 pred2l) obj21)
((AND predl2 pred22) obj22)
((AND predi2 pred2n) obj2n)
(predin objin))

examination of Figure 37 should reveal that the resultant XCASE has the same semantics as the initial

XCASE.

There is one remaining transform that can be applied to XCASEs. This transform is used

when two or more predicate object pairs contain the same object S!ich an XCASE contains more

predicate-object pairs than is necessary In this event, the number of predicate-object pairs can be

reduced by applying the transform shown in Figure 38 This transform can be used to condense all

sets of predicate-object pairs that contain the same object The result is an XCASE in which all of the

objects are distinct. In order to see that this transtorm retains th, semantics of the initial XCASE, it

must be recalled that the predicates in the initial XCASE have the popert that exactly one of them will

be true at a time. Therefore, the ORs that are formed have as arguments a set of predicates in which

at most one of them is true. This property ensures that the resultant XCASE is equivalent to the initial

one.

Fig. 38. Transform to Condense Predicate-object Pairs containing Identical Objects

(XCASE (predl objl)
(pred2 obji)
(predn objn))

Becomes:

(XCASE ((OR predi pred2) obji)
(predn objn))

- '.

Tf on,,',iti,)r Irocess 74 g Ur r, faust

A fl- r III ,If II t 0 tr if.I~ , J ,, ,!I, I., t if; .. ' XC AS E !h,.,, o~f II. .: duicates in

)Ie 'd I C It t,? ' t I)t ,' t I / '. r , .I :., . ,- ! hI , . I] I-. r,, i fi .i' fo>rr it I,.,I I , , f , I I p.lI I :-f S O ll e o f ',h e

t ts: 111., I),, ItJf-ltI(atll, At[hlti A , IIIfil)I.- ilt- J, , o:(hl -(I ;) w~ (o+rit,ti ing that predicate

is siinpl , r-,,mov,,d frow tlh,, XCASE [f,,mo~val o:f p~r-di](.it-+ (hl-l, C If ur s III lw fLv.hIion (-,an result in an

XCASE in which all pfedi(:ite ohlect purs except one havt bw-n rem(nvvd and the single remaining
pair may conItain a predicatt, 11h11t is Idf - ticaLI[ll R E hII thI., ,, t hu llt- iltt XCASE is Oihninlated and

the object of the Li:st ifmamny~ ',)1r I Ll:,t'd v, Ili., final form of the assertion

In all cast.s thi final r ,;Lult uf the applIcationi of all the transforrn. (n'scuLJY..d above is an

assertion for aii object thal is oitlith r a prinitive obleCt, an arithinw:tic t;xpre,'iort IIir i;,l; form that

contains no XCASEs or an XCASE in which all of the predicates are in canonical form and do not

contain XCASEs and all of the objects are in simplest form and do not contain XCASEs.

For example, consider the simplification steps taken to simplify an expression for GROSS-

PAY. taken from PAYROLL2 (see Section 1.4) shown in Figure 39. This expression is first built at the

end of the conditional that checks to see if the key fields are equal before calculating GROSS PAY

Because this simplification is done to each assertion before it is added to the plan for the

program, all object assertions in the system are always in simplest form. This is riot only a great aid in

debugging, but also ensures that the expressions that are passed on to the HIBOL production phase

are as simple as possible.

5.4.5 Communication between Symbolic Evaluation and HIBOL Production

As indicated above, when a CWRITE or CREWRITE function is evaluated in the symbolic

evaluation of the analyzed plan, the assertions that had been formed for the non-file-object arguments

to the write function are stored so they can be used in the HIBOL production phase. However, just

this information is not quite enough. It is also necessary to store the control environment in which the

write function is evaluated.

The control environment is kept in a stack that is manipulated during the symbolic

evaluation. Each time an action of a conditional is evaluated, the predicate that determines under

what conditions that action will take place is pushed on the stack. The stack is then popped after the

evaluation of that action is complete.

In addition, within a temporal composition, it is sometimes the case that certain

augmentations receive dummy temporal data flow from a termination or filter. These dummy temporal

data flows do not contain any data values, but simply cause the augmentation to only be executed

when the predicate of the termination or filter with which they are associated is true. To take this fact

6. 13 ;ust 75 Tr,/to rocess

Fig. 39. Exariipli: Simiplification of an Object Assertion

I oii in i t al Iy formied:

(XCASE I ()HAI (CREAD-VAL HURI. Y-WAGI - IN IEMI'LOYE E -NUMBE 1?)
(CREAD-VAL IIURS-WORKID-IN [MPIOYEE-NUMBER))

(T IMI S (XCASE ((NOT (EGEP (SEFO HIOURY-WAG-IN)))
(CREAD-VAL HOURLY-WAGE-IN HbURtY-WAGE))
((111 (SEFO IfOURLY-WAGE-IN))
UNDEFINED))

(XCASE ((NO I (10 F P (SEFO LIOUPS-WORKEU- IN)))
CREAD-VAL IIOURS-WOIK[[- IN IIOURS-WORKED))

(I Of I' (SEFO IIOURS-WORK D- IN))
UNDEFINED))))

(NOT LQLIAt (CREAD-VAL HOURLY-WAGE- IN I MPIOYIEE-NUMB[R)
(CREAD-VAL IUuRS-WOFIKED-IrJ EMPLOYEE-NUMBER)))

UNDEFINED))

Express ion after simpl if ication of arithmetic express ion:

(XCASE ((EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL IOURS-WORKED-IN EMPLOYEE-NUMBER))

(XCASE (AND (NOT (E111 (SEFO HOURLY-WAGE-IN)))
(NOT (LOIP (SEFO HOURS-WORKED-IN))))

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))

((OR (LOEP (SEFO HIOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN)))

UNDEFINED)))
((NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)

(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)))
UNDEFINED))

Expression after transform to eliminate nested XCASE:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))

(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(NOT (EOFP (SEFO HIOURS-WORKED-IN)))))

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))

((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE -NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))

(OR (EOFP (SEFO HOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN))))

UNDEFINED)
((NOT (EQUAL (CREAD-VAL HIOURL-Y-WAGE-IN FMPLOYEE-NUMBER)

(CREAD-VAL FOURS-WORKED-IN EMPLOYEE-NUMBER)))
UNDEFINED))

Translation Process 76 Gre'goy G. Faust

Fig. 39. Example Simplification of an Object Assertion (Continued)

Ixpression after condens ing clauses with identical objects:

(XCASE ((AND (EQUAL (CREAD-VAL IIOUR[Y-WAGE-IN MPL.OYIE-NIJMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))

(AND (NOI (E1fP (SEFO IIOURLY-WAGE-IN)))

(NOI (EOIP (SEFO HOURS-WORKED-IN)))))
(IMES (CREAD-VAL IIh)URtY-WAGE-IN HOURLY-WAGE)

(CREAD-VAL HhULRiS-WORKED- IN HOURS-WORKED)))
((OR (AND ([QJAI (CREAD-VAL IhOURLY-WAGE-IN EMPLOYEE-NUMBER)

(CREAD-VAL HOURS-WORKED-IN EMPLOYE[-NUMBER))
(OR (LOl1 (SEFO IIOURLY-WAGE-IN))

(10F1P (SEFO HOURS-WORKED-IN))))
(NOT (EQUAL (CREAD-VAL IIOURLY-WAGE-IN EMPLOYEE-NUMBER)

(CREAD-VAL IlOURS-WORKED-IN EMPLOYEE-NUMBER))))
UNDEFINED))

Final assertion after predicate simplification:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL !!OURS-WORKED-IN EMPLOYEE-NUMBER))

(NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(NOT (EOFP (SEFO HOURS-WORKED-IN))))

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))

((OR (EOFP (SEFO HOURLY-WAGE-IN))
(EOFP (SEFO HOURS-WORKED-IN))
(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)

(CREAD-VAL IOURS-WORKED-IN EMPLOYEE-NUMBER)))))
UNDEFINED)

into account, when an augmentation that has a dummy temporal input is symbolically evaluated, the

predicate that is associated with that dummy input is push. .. -o the control environment stack. The

stack is then popped when evaluation of that augme .,1 . ', mplete.

Within temporal compositions, there is an additiona! implicit factor in the control

environment. Recall that an augmentation within a temporal composition is only executed if none of

the terminations in the temporal composition have caused the loop to terminate. Therefore, the

negation of the predicates that cause the loop to terminate must be considered part of the control

environment.

The control environment of write functions is saved through the following mechanisms. A list

is kept of all temporal compositions in the plan along with the predicates that cause each to terminate.

When a write function is symbolically evaluated, the control environment stack is saved as well as the

G-rt'guiy G Faust 77 Translation Process

Fig. 40. Information Transferred Between Phases in PAYROLL

I empo ra I Compus i t io : I[MfPCOMP- I
Ierini nat ion Predicate: (i Of (SEFO IUIOFRI Y-WAGE - IN))
Output Expressions:
(GROSS-PAY-RECEMPLOYEE-NUMBER IS

(CREAD-VAL HOURlY-WAGE-IN IIOURI Y-WAG[-RECEMPLOYE[-NUMBER))
(GROSS-PAY IS (TIMES (CREAD-VAL IOURLY-WAGE-IN HOURLY-WAGE) 40.))

remporal Composition: OUITPUI-NOT-IN-TIMPCOMP
lermination Predicate: NIL
Output Expressions:
(I r.l OYEF -COUNT IS (COUNT (NOT ([OFP (SEFO IOURLY-WAGE-IN)))))
(TOTAL-GROSS-PAY IS

(SUM (TIMES (CREAD-VAL HOURLY-WAGE-IN FOURLY-WAGE) 40.)))

Filename: HOURLY-WAGE-IN
Open Type: COPENI

Filename: GROSS-PAY-OUT
Opentype: COPENO

Filename: EMPLOYEE-COUNT-OUT
Opentype: COPENO

Filename: TOTAL-GROSS-PAY-OUT
Opentype: COPENO

name of the temporal composition in which it is located. Write functions not located within temporal

compositions are associated with a special dummy temporal composition called OUTPUT-NOT-IN,

TEMPCOMP.

Before the termination of the symbolic evaluation phase, the list of temporal composition

names and their associated predicates as well as the information stored during the evaluation of write

functions are stored in a file to be used in the HIBOL production phase. The only remaining

information that is transferred to the HIBOL production phase is the type of open function that was

used to open each file in the COBOL program. As an example, the information transferred from the

symbolic evaluation phase to the HIBOL production phase in the translation of PAYROLL is shown in

Figure 40.

ra !, t, I if . 't cess 78)'-g ry a ustr

5.5 DATA DIVISION Query

A il. i,; iput to tI.t , ttraw;iIti i ri (trto , dlt,/(tl, from th- C() OL l),irn, r thit W itail 'i ,,rtually

arll of the Information that appears in the DATA DIVISION of the COBOL program Icluded is the

StrCtiure of tht- buffer area associattd with eadh file as well as the PICTURE clause for each atomic

variable name in these structures The only needed information that Is not included in this file,

because it does not appear anywhere in the COBOL program, is which of the atomic variable names

In the bUffer SbtuCtufe for each flht art- key fields and in which order those ke) fields were used to sort

the file An exception occurs whVn a file is specified in the DATA DIVISIOD of the COBOL program to

be used for random access In this case. the syntax and semantics of COBOL demand that the

needed information about key fields and sort order be explicitly given in the DATA DIVISION.

However, the current implementation of the translation process does not handle random access files.

This information is gathered by simply asking the user of the SATCH system to supply it. For

each file. a list of the atomic variable names of the corresponding buffer structure is displayed on the

screen along with associated numbers. The user then simply types in the list of numbers that

correspond to the key fields in the order that they were used to sort the file This information is then

added to the file of DATA DIVISION information to be used in the HIBOL production phase.

The fact that this information needs to be gathered from the SATCH system user is not a

major drawback of the system. Anyone that is at all familiar with the files that are used in a production

COBOL system should at least know which fields in each file are key fields even if they do not know

what the particular program in question is doing.

5.6 HIBOL Production

The information gathered in the analyzed plan symbolic evaluation and the data division

query is used to produce the actual HIBOL for the COBOL program. This process is further

subdivided into two subprocesses; one which produces the DATA DIVISION of the HIBOL program,

and one which produces the COMPUTATION DIVISION.

The subprocess that produces the DATA DIVISION of the HIBOL program is relatively trivial.

The names of the key fields, gathered in the data division query, as well as the information about the

corresponding PICTuRE clauses, received directly from the COBOL parser, are used to produce the

KEY SECTION. The information about the type of OPEN function used for each file, gathered in the

analyzed plan symbolic evaluation, and the information about the bufter-structure and corresponding

data and key fields, received directly from the COBOL parser, are used to produce the INPUT and

OUTPUT SECTIONs. Each data field name in the buffer-structure for every file in the COBOL

program is made into an individual data-set in either the INPUT SECTION or OUTPUT SECTION

G'c r C; Facist 79 r,' ',Ih cess

Fig. 41 Steps In the Production of the COMPUTATION DIVISION

1 Remove asserthans for ktc fields from further consideration.

2. Add to each assertion the negation of the predicates that terminate the temporal
composition in which they were formed.

3 Remove predicate object pairs with an object that is UNDEF INED tron XCASEs.

4 Consolidate the assertions for a given output data field formed in separate temporal
ompositions into one assertion.

5 Replace EOFP and comparative predicates with FI LE-PRESENT predicates.

6 Eliminate FI LE-PRESENT predicates that are redundant with the semantics of HIBOL.

7 Convert object assertions into HIBOL syntax.

8. Replace any remaining FILE-PRESENT predicates with PRESENT predicates.

9 Convert predicate assertions into HIBOL syntax.

10. Output final HIBOL expressions into HIBOL file.

depending on whether the OPEN function used on the file was COPENI or COPENO. A data-set is

created in both sections if the file was opened via COPENIO. Currently, a VARIABLE SECTION is

never used.

The subprocess that produces the COMPUTATION DIVISION of the HIBOL program is much

more complex. The largest difficulty in performing this task is the determination of the correct

predicates to be used in the conditional expressions. Therefore, this subprocess consists mainly of

the manipulation of various predicates in various ways, starting from the assertions received from the

symbolic evaluation of the analyzed plan. An overview of the steps performed in the production of the

COMPUTATION DIVISION is given in Figure 41.

The first four steps result in a single conditional assertion for every data field of every output

file. These assertions will be in one-to-one correspondence with the desired output data-set

definitions that will appear in the final HIBOL program. The next six steps convert each of the

resultant assertions into the corresponding output data set definition.

5.6.1 Remove Key Field Assertions from Furthur Consideration

First ill ,:1stertioiis for key fieids art! di upped at this Jillt and inot process,'d further 'The

ke) field expressions are dropped because the HIBE(JL C&)t.U1 O11 4 DIvI'SION does not contain

expressions for key fields It is sate to drop them because. based on our ass'iumptions about the type

of COBOL progrcams being processed, the assertions for the kR, fields are controlled by the same

bLsic predicates that control the data fields and therefore no needed information is contained within

them.

5.6.2 4ssert Negation of Termination Predicates

Then. for each remaining assertion that was produced in a temporal composition. it is

asserted that the assertion holds whenever the predicates that would cause the temporal composition

to terminate are FALSE This is done by forming an XCASE with two predicate-object pairs. The first

pair consists of the negation of the logical OR of the predicates that cause the temporal composition

to terminate and the original assertion for the obltct and the second pair consists of the logical OR of

those same predicates combined ws'th the Ohlrct UNDEFINED,

Consider an example l-0m PAYROLL The original assertion associated with the variable

GROSS-PAY is:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)

and the predicate causing the temporal composition to terminate is:

(EOFP (SEFO HOURLY-WAGE-IN))

The XCASE that would be produced is:

(XCASE ((NOT (EOFP (SEFO HOURLY-WAGE-IN)))

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.))

((EOFP (SEFO HOURLY-WAGE-IN)) UNDEFINED))

This XCASE would then be simplified using all of the simplification techniques discussed in

previous sections. Note that it the original assertion had already been an XCASE. then this process

would have the effect of ANDing the predicate in every predicate-object pair with the negation of the

predicates that terminate the temporal composition, A further effect of this transformation is that all

assertions formed within temporal compositions are now XCASEs.

t G I aust 81 r ,laticn Process

5.6.3 Remove UNDEFINED from XCASEs

Next the pre(lcate oblect pair of the XCASE. if any that has an object of UNDEFINED iS

removed from the XCASE The resultant XCASE no longer has the property that exactIl one of the

predicates will be true at a time. but still har the property that at fmou;t orm- of the predicates will be

true at a time It is safe to remove these pairs for two reasons First. from this point on in the

translation, no transform will be applied to the XCASEs which requirec that the predicates be all

inclusive. although transforms will be applied that require that they be mutually exclusive Second.

the semantics of -IBOL conditional statements (into which the XCASEs will be translated) state that.

for an, given element in the key space. if none of the predicates in the conditional are TRUE. the

conditional will be undefined for that element, and the element will not be included in the actual key

space of the result. In addition, these predicate-object pairs need to be eliminated at this time so that

the next operation to be per.ormned on the assertions will function properly.

5.6.4 Consolidate Different Assertions for the Same Data Field into One

The last thing that is done to produce a single conditional expression for every data field of

every file is to look !or assertions for a particular data field in more than one temporal compositior.. If

more than one assertion is found for a given data field, the predicate-object pairs of one-are simply

appended to the predicate-object pairs of the other, forming a larger XCASE which is then simplified.

It is important that the resultant XCASE have the same predicate exclusivity of all other XCASEs. For

this to be the case, the predicates in the two XCASEs must be mutually exclusive. This will, in turn, be

true if the initial COBOL program adheres to the current assumptions of the system.

This transform is necessary to translate programs (among others) which perform a file merge

operation. (See the LOC-LIST example in Section 1.4). A high level view of the typical analyzed plan

for a file merge operation is shown in Figure 42. The analyzed plan is a conditional with a temporal

composition acting as the predicate and two additional temporal compositions acting as the actions.

Note tnat only the termination subsegments oi the temporal compositions are shown.

A summary of the predicates that will be included in every predicate-object pair in an XCASE

in each of the three temporal compositions is shown in Figure 43. (Recall that the predicates in these

XCASEs are no longer all inclusive since the predicate-object pairs containing UNDEFINED have

already been removed). These predicates are included in the XCASEs either because they are the

negation of the loop terminator, in which case they were inserted by a previous step in the HIBOL

production phase as described above, or because they were on the control stack when the temporal

composition was symbolically evaluated, in which case they already appeared in the assertions

transferred from that phase to the FIIBOL production phase. By examining this figure, it should be

easy to see that these predicates are in fact mutually exclusive and that, therefore, the transform

IC 1': " : i " 1t-

I,mlsfat'mf Process 82 ('(gory ; G Iust

Fig. 42. Sketch of Analyzed Plan for File Merge Operation

CONDI I IONAL

'C1

TERM TERM

LOEP EOFP

FILE-A FILE-B

TC2 T C3
TERM TERM
EOFP EOFP
FILE-B FILE-A

W

JOIN

functions properly in this example.

5.6.5 Replace EOFP and Comparative Predicates with FILE-PRESENT Predicates

The next transform replaces all EOFP predicates and all comparative functions applied to

key fields by FILE-PRESENT predicates. The replacement scheme is shown in Figure 44. The

replacement for EOFP predicates should be fairly obvious.

A".A

(;zeyory G Faust -83 -[~n/t~ rcs

Fig.43. Predicates Contained in XCASEs in a File Merge

I i PCOMP-I: (AND (NOI ([DIP (SEFO FI 11 -A)))
(NOI ' Ol SEFO ILE-B))))

IMPCONP-2: (AND (OFP (SEFO FILE-A))
(NOT (LOFP (SEFO FIIE-B))))

IMPCOMP-3: (AND (NOT (FOFP (SEFO FILE-A)))
(EOIP (SEFO FILE-B)))

Fig. 44. Replacement Predicates

(EOFP (SEFO file-name))
Becomes:
(NOT (FILE-PRESENT file-name))

(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))

Becomes:
(OR (AND (FILE-PRESENT file-namel)

(FILE-PRESENT file-name2))
(AND (NOT (FILE-PRESENT file-namel))

(NOT (FILE-PRESENT file-name2))))

(LESSP (CREAD-VAL file-namel key-field-name)

(CREAD-VAL file-name2 key-field-name))
Becomes:
(AND (FILE-PRESENT file-namel)

(NOT (FILE-PRESENT file-name2)))

(GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))

Becomes:
(AND (NOT (FILE-PRESENT file-namel))

(FILE-PRESENT file-name2))

The replacements for the comparative functions, however, are less obvious. It should first be

noted that in order for the replacement to be performed, it must be the case that the key fields that are

acted on by the comparative function must be the same. Currently, two key fields from different files

are considered the same if they have the same name. Later, a suggestion is made as to how this

constraint could be relaxed.

ta,?laItoo Process 84 ', , , ! ,sf

The- pioLdtc n*-ii,L -t , for (ol) ii ,i - li tfoJrII o ;fo ,o .I , , f ,-.ij- , d . ,Ii ttht
J~stm~ l~o/ that 11t progtam I i .n ' h the+P , ft ollit'-dt ' oil': of th'.t 1t:. , 1+, 1,;,.' ' J ill'i! ft . 1'...'O

t nei jmli(consideration art, bteing r'td Se(lleltlally and art t mi , h-, iold t o it'<i ,+ ti'. r1JI11bt.l r of

key fields, however, is UillnI)Ortain t. Let us look morte closely at tie-se etlc.f i)I ',t1(,t' It the

value of the key field read from f ile -name- I is less than the value, of th,- key field r ,:i, from f i le-

name -2, then that means that the record in f ir le-natne-2 corrusporidiig to the k, vaIlLie read in

file -nane - I is missing while it does appear in file -navie- 1. On the other hand. i the value f the

ke held read from f i le -name - I is greater than the value of the key field from fi Ie -hane -2. then

that means that the record in f i le -name - I that corresponds to the key value read it) f iI & -naime-2

is missing while it does appear in f ile-name-2. These facts are reflected in thee replacement

predicates for LESSP and GREATERP respectively.

If the values of the key fields read from both files are equal, then both records appear for that

key value. This fact is reflected in the first clause of the replacement predicate for EQUAL. The

second clause of the replacement predicate for EQUAL is included so that the the replacement

predicates considered as a whole will exhibit a very useful property. Namely. they exhibit all of the

tautologies that are exhibited by GREATERP, LESSP. EQUAL and NOT-EQUAL. For example. after

simplification with the disjunctive normal form predicate simplifier, the predicate produced from

(NOT (LESSP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name)))

should be logically equivalent to the predicate produced from

(OR (GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))

(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name)))

both before and after the replacement has been made. The replacement predicates currently used do

produces the equivalent result. Both the predicates shown above, after replacement, reduce to

(OR (NOT (FILE-PRESENT file-name-l))
(FILE-PRESENT file-name-2))

The fact that the replacement predicates exhibit this property eliminates the possibility that different

predicates could be produced after replacement simply because the programmer of the original

COBOL program chose a particular form for a predicate over an equivalent form.

As an example of the use of predicate replacement, consider the expressions, taken from

PAYROLL2 (see Section 1.4), for GROSS-PAY both before and after predicate replacement as shown

in Figure 45. Note that after the replacement, the resultant predicates are simplified.

t . : •d

Gryo ry 0. Faust -85 - franslation Process

Fig. 45. Example of Predicate Replacement

Ixpress ion for GROSS-PAY hef ore rep I acerien t
XCASE ((AND I QLJA (CREAD-VAL lIOtU Y-WAG! - IN f (11t OYI I -NUMBER)

(CREAD-VAL IIORIS-WORK[I- [N t 4PLOYE -IUMB[R))
(NOT (1Of1P (SEFO 1l(JRLY-WAGE-IN)))
(NOT ([1OfP (SEFO IlOURS-WORKED-IN))))

(I If-S (CREAD-VAL IHOt1 Y-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN IOURS-WORKED))))

fxpression for GROSS-PAY after replacement:
(XCASE ((ANI (FILE-PRESENT IIOURI Y-WAGE -IN)

(FILE-PRESENT IIOURS-WORKED-IN))
TI It-E S (CREAD-VAL HOURLY-WAGE - IN HOURLY-WAGE)

(CREAD-VAL HOURS-WORKED-IN flOURS-WORKED))))

5.6.6 Eliminate Redundant FILE-PRESENT Predicates

The next transform eliminates the FILE-PRESENT predicates that are redundant with the

semantics of HIBOL. The FILE-PRESENT predicates in the predicate of each predicate-object pair

that refer to the same file as any of the remaining CREAD-VAL objects in either the predicate or object

of that particular predicate-object pair are eliminated by replacing them with TRUE, and then

simplifying the predicate. These predicates are redutdant with the semantics of HIBOL because all

HIBOL expressions contain an implicit PRESENT predicate for every data-set name that appears in

the expression. All predicate-object pairs with a resultant predicate of FALSE are dropped from the

XCASE. It often happens that the resultant XCASE has only a single predicate-object pair with a

predicate of TRUE. If this occurs, the XCASE is reduced to the object of that predicate-object pair.

Continuing the example from PAYROLL2 shown in Figure 45, the expression for GROSS-

PAY at this point in the processing is simply:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED))

5.6.7 Express Objects in HIBOL Syntax

Next, the object portion of each predicate-object pair as well as those object expressions

that are not part of XCASEs are transformed into HIBOL syntax. Several things must be done. First, all

of the arithmetic operation expressions are converted from prefix to fully parenthesized infix form.

Second, certain forms are converted to match the HIB3OL syntax. For example, TIMES is converted to

and STRING objects are converted into character strings. Third, CREAD-VAL expressions are

converted into the appropriate data-set references. If the file referred to in the CREAD-VAL

- -. -- ~ , d,6-

Transldtion Process 86 Grer),;ry G Faust

expression IS opened for i-put tt01 the t.n!SLJltdrt 3Jl)!rSSioii IS Silpl, th (Jita . t niame that

correSpon(ds to thie datl field It tile f sli o1IS O ,A)?d fo 11 iput outp;Ut thln the r,:5ultaii eqprssion is:

(LASI PERIOD'S data-set-name)

to rellect the fact that the data-set name refers to the data-set in the INPUT SECTION and not the

data-set in the OUTPUT SECTION. (See the DBINIT example in Section 1.4.)

5.6.8 Replace Remaining FILE-PRESENT Predicates with PRESENT Predicates

Next. any remaining FILE-PRESENT predicates are replaced with PRESENT predicates

acting on data set names. If the file that the FILE-PRESENT predicate refers to has a single data

field, then the data-set name that corresponds to that data field is used as the argument to the

PRESENT predicate. However. if the file has more than one data field, then there is no way to

automatically determine which data-set name(s), corresponding to particular data field(s) should be

used in PRESENT predicate(s). From the perspective of the COBOL program, it does not matter

because if any of the data fields are present for a given index, then all of the data fields will be present

for that index. But, from the perspective of the HIBOL, all of the data fields for a given COBOL file

have each been given an individual data-set name and the information that dictates that if one is

present they all are present has been lost.

On the other hand, it is usually not desirable to demand that all of the data-sets that

correspond to the original COBOL data fields for the file be included in PRESENT predicates in the

HIBOL. Therefore, the user of the SATCH system is queried to determine which of the possible

PRESENT predicates acting on data-set names should be included. This process is simplified by the

fact that the objects of the predicate-object pairs have already been converted to HIBOL syntax, and

therefore can be shown to the user in a more readable form. The user is shown the HIBOL for the

object in the predicate-object pair as well as a list of the data fields for each of the files included in a

FILE-PRESENT predicate, and asked to supply a list of data field names for which PRESENT

predicates should be formed. These PRESENT predicates are then formed and placed into the

predicates of the predicate-object pairs in place of the FILE-PRESENT predicates which are then

simplified.

5.6.9 Express Predicates in HIBOL Syntax

The resultant predicates are now converted into HIBOL syntax. This is very similar to the

conversion to HIBOL of the object expressions. One difference is that the logical functions AND and

OR are n ary operators. Therefore, when they are converted into infix notation, copies of the operator

are placed between every two operands. In addition, PRESENT predicates acting on data fields from

a file opened via COPENIO are converted into

.. -I:- " -
- .---.-

Oreyor G Faust 87- Tran5/ahon Process

(t \." I) lzIow'S f jeld-nmfl e PRI SINT)

ilsteW of the LuSUal PRESENT pfedicatt. (See thv DBINIT example it Section 1.4).

5.6.10 Output Final HIBOL for COMPUTATION DIVISION

The last step in the production of the COMPUTATION DIVISION of the HIBOL program

cossists of outputting the expressions into the HIBOL file. This consists of outputting an expression

for every data set defined in the OUTPUT SECTION. The name of the output data-set is followed by

"IS" ind then followed by the HIBOL expression produced above. XCASEs are processed by running

through the predicate-object pairs first outputting the expression for the object and then the one for

the predicate, inserting IF and ELSE in tie appropriate places. Currently, little effort has been spent

to get the indentation of conditional expressions correct, and the examples shown in Section 1.4 have

been reformatted by hand.

.~- ,- , . , .-

Tra/nslatior Prucess Craque 88 (,r G f Icust

6. Critique of the Current Implementation of the Translation Process

In the first part of thris chapter. several problk-rms that arise iii th e curr"rit mpl.eit-rtitation of

the translation process will be discussed. and suggestions made as to how they might be eliminated.

In the second part of this chapter. suggestions are made as to how the translation process could be

expanded to handle a larger domain ot COBOL programs.

6.1 Problems Arising in the Current Implementation

Perhaps the most glaring problem with the current implementation of the translation process

is that it does not recognize when it has gone astray. It blindly assumes that the program with which it

is dealing adheres to all the implicit restrictions. If the program does not adhere to the appropriate

assumptions, the program will still try to produce some HIBOL program even though it probably will

not be correct. Obviously, a more robust system needs to recognize when it is given a COBOL

program that it cannot translate and then act accordingly. Later in this chapter, a few minor

suggestions are made as to how this problem could be somewhat reduced although not eliminated.

In the next chapter, a suggestion is made about a second generation system that would significantly

reduce this problem, it not eliminate it.

The remainder of this section discusses four more specific problem areas in ti,. . irrent

implementation of the translation process. For some of the problem areas, satisfactory solut,, :,s are

proposed. For others, no satisfactory solutions have yet been determined, although partial solutions

are proposed. The first subsection discusses issues concerning the assertions formed in the

symbolic evaluation of the analyzed plan. The second subsection discusses the issue of variable

names, and how more mnemonic HIBOL code can be produced by the renaming of variables. The

third subsection discusses the problems encountered in the production of readable HIBOL code for

count operations. The last subsection discusses the issue of the use of output data-set names on the

right hand side of data-set definitions in the COMPUTATION DIVISION of the HIBOL code.

6.1.1 Assertions Formed During the Symbolic Evaluation

One problem with the current method used to form assertions during the symbolic evaluation

of the analyzed plan is that the assertions formed for temporal data ports are indistinguishable from

those formed for non-temporal ports. The information that the temporal port contains a stream of

values instead of a single value is discarded. Therefore, the assertions formed for temporal data ports

are not semantically correct.

(c,,(, G Faust 89 f,.a,;,.,,; -, . Critique

As uitions that ii -mini tically COrri t CtUm 0': b ni', t' 1,,r Ir rl OLJiitplts of

au0Y111fltatiOnis b), IfICliduij in ti astr-tiOrl th- infarmiatiori tht th,- ih it a, m fac.t a ',trt:aim as well

as the informatiur that indicates for which ValcLJa Of a predicate vjtl LOS in the stream are defined.

I empoial outputs front aud nifitations obtain their values from two difftrint place, relative to the

augmentation function. from an output of the augnitation function or from an input to the

augmentation function. (See the generating augmentation from PAYROLL shown in Figure 27.)

These two cases have similar. but slightly different. semantics Let us exanline these two cases in

more detail.

Temporal outputs that obtain their values from an Output of the augmentation function

represent streams of values in which all of the values are produced the same way, via the

augmentation function. These streams have the additional characteristic that they are truncated at a

point that is determined by the predicates that control the termination subsegments of the temporal

composition in which they appear. Therefore. semantically correct assertions for these streams must

contain three pieces of information. First, the assertions should indicate that they do in fact refer to a

stream, and not a single value. Second. they should impart the notion that all of the values in the

stream follow the same prototype. Third, they should include a predicate that indicates under what

circumstances the values in the stream are defined. This predicate is the conjunction of the

negations of the predicates that terminate the loop.

For example, in PAYROLL, the temporal output that contains values for HOURLY-WAGE is

currently given the following assertion:

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)

However, a more semantically correct assertion might be:

(FOR-ALL-TRUE-OCCURRENCES-OF (NOT (EOFP (SEFO HOURLY-WAGE iN)))
(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE))

The inclusion of the old object assertion within the FOR-ALL-TRUE-OCCURRENCES-OF clause

indicates that the object is in fact a stream, that all of the values in that stream follow the CREAD-VAL

prototype, and that it has defined values until the end of file is reached on HOURLY-WAGE -IN.

Temporal outputs that obtain their values from an input to the augmentation function have

the same semantics as temporal outputs that obtain their values from an output of the augmentation

function except that the first value in the stream is different from the rest of the values in that it takes

its value from either the initialization of the augmentation or from outside the augmentation

altogether. Therefore. a semantically correct assertion for such a temporal output might be:

((FIRST-VALUE objectl)
(FOR-ALL-TRUE-OCCURRENCES-OF predicate object2))

AM_

'~jr],!t r o ibucess Critique 90 (f .ork (; falust

SL.Ch an I;:;r t1Hl Ink1ii c :t< , thait lii- firi't v,,il ! (I tf rc1,t 111 ,, (1fl'it ct fhoil l li ', of tfI, . valui , of

tht stfearii ld thir foif- L!U'L rlit fl tllov., t ,:m. , protot,, p For rt,&iiipIu a s,,f.imantcaill) correct

assertion for the tempoial output of the augi ent-ition that pvrforms the SULR. operation in PAYROLL'

would be:

((FIRST-VALUE 0.)
(FOR-ALL-TRUE-OCCURRENCES-OF (NOI ([Of P (SEFO H0[11Y-WAG[-IN)))

(SUrI (Il I[E S (CREAD-VAL IHOiLIt Y-WA(l - IN HIOURI Y-WAGE) 40.))))

Stimantically correct assertions could be formed for the temporal outputs of terminations by

using the forms described above. For example, the temporal outplt of the termination in PAYROLL

(see Figure 28) would be

(FOR-ALL-TRUE-OCCURRENCES-OF (NOT ([OFP (SEFO HLOURLY-WAGE-IN)))
DUMMY)

Assertions formed for the temporal outputs of filters need to incorporate the predicate

assertion that corresponds to the out-case of the filter predicate with which they are associated as

well as the predicates discussed above. This could be done by forming the logical AND of the filter

predicate and the one which already appears in the input temporal flow in the FOR-ALL-TRUE-

OCCURRENCES-OF clause. Using the filter example from a previous chapter (see Figure 29), the

temporal output for the negative values could be given the assertion

(FOR-ALL-TRUE-OCCURRENCES-OF (AND (NOT stream-truncatfon-predicate)il

(LESSP num 0.))
num)

It should be stated that the assertion forms for temporal outputs described above are still

based on the assumption that the termination predicates remain TRUE for all values in the input

stream used as input to the termination after they are TRUE for some initial value. EOFP predicates

have this property (and are assumed to terminate all loops).

Although the assertions for temporal data ports described above would be more semantically

correct than the ones currently formed, they would be of limited use to the translation process. Tne

main reason for this is that the augmentation functions that eventually consume the temporal flows,

and in particular the augmentation functions that correspond to write functions with which we are

especially interested, only have non-temporal inputs. The temporal flows arrive at the input temporal

data ports of the augmentation, but are then decomposed into individual values before being passed

1 Noi thai sn on th- partial sums formed in this augmentation are noi actually used anywhere, this temporal output does not

r near i the dagrIms lot PAYROLL shown in a previous chapter.

Gregory G Faust 9 1 TraoI,,itor Proc ecs Critique

on to the, augmentation tunct:on During this dec oinpositi th<. informton that st'es that the

object i5 strtam vou;d h,t' to I,-, stri);)ti d t.mc'C off .ird an auu;r huh fomrndJ that again relpresents a

single value This is because thef a u(JmentaItIon functiOn operates on a i, ; ' value of the input

stream Assertions that are currently formed exactly express the typical value that is desired.

In addition, use of the more complex assertions described above would call for the

development of additional assertion simplification techniques to handle them The number of

simplification techniques required goes up as the cross-product of the number of different object

t pes in the system This fact creates a desire to limit the number of different object types as much as

possible.

Another problem with the creation of the more complex assertions described above is that.

because of the order in which subsegments of the temporal composition are symbolically evaluated,

the predicates that terminate the loop are not generally known at the time that the assertions are

formed for the temporal outputs of the generating augmentations. Further, it is not possible to

change the order in which the subsegments are symbolically evaluated because the termination

cannot be evaluated until something is known about the values of its inputs which are. in general,

produced within some generating augmentation.

In summary, it would be difficult to produce more semantically correct assertions for

temporal data ports, their inclusion would call for the development of more simplification techniques,

and they would be of limited useulness to the translation process. Therefore, the current

implementation retains the loop termination information by storing the predicates that terminate each

temporal composition, and associating with every assertion passed on to the HIBOL production

phase the name of the temporal composition in which it was formed. This technique has proved

adequate for the COBOL programs examined to date.

Another shortcoming of the current assertion technique is that assertions formed for file-

objects do not contain any history of the operations that have been performed on them. This

eliminates the ability to detect non-standard read sequences on the file that could skip over records

or perform other forbidden operations. A more robust system would have to examine the sequence of

operations performed on file-objects fairly closely in order to guarantee that the HIBOL produced is a

correct translation of the initial COBOL program.

6.1.2 Variable Names

In the previous chapter, it was mentioned that currently key field names referring to the same

key field in different files must be identical, and that structure names are sometimes added to data

field names by the COBOL parser in order to make them unique. It is desirable to eliminate this

f d'v cr ! rocess Crintque 92 - G-(Jt C / dust

i)rl ,tint onI k-
)

flltd I i11 i)l iS l t u r II ' tih: ri JiI' cI : l f! r b tfl U JIA tI I-I/I . frlI h , fri ort

irnemonic.

The DATA DIVISION of a I13OL. program uses a single name for a particular key field no

matter Io, many data sets use that key field This is not a feature that sinmpl, increases the

readability of the HIBOL. but is demanded by the semantics of the language. Currently it is easy to

produce HIBOL that conforms to this constraint as it is assumed that all Key fields that reter to a

particular key are given the same nanie in the COBOL program.

This constraint could be eliminated by the following chlange to the datLi division query

subprocess The key field query for the first file proceeds as alwa s Then for each subsequent file.

after the key fields and sort order have been given, a list of the currently known key fields is presented

and the user is asked to make correspondences between the key fields in the current file and the key

fields in the accumulated list. After all input files are processed in this manner, tle sets of

corresponding key fields are presented one at a time and the user asked to supply a mnemonic name

that should be used for that key field in the final HIBOL code.

This process demands information from the user of the SATCH system that is no ddferent in

lkind than that demanded by the current data division query If the user is able to recognize which

fields in a given file are key fields, then it should also be possible to recognize the same key field in

different files.

The semantics of HIBOL demand, as one might expect, that all data-set names be unique.

The exception occurs when an input and an output data-set have the same name and the HIBOL

program performs an update operation on that data-set (see the DBINIT example in Section 1.4) The

data field names given in a COBOL program, however, might not be unique. although the data field

name together with the name of the structure that it is contained in is always unique Currently, to

avoid ambiguity, the COBOL parser always produces unique identifiers for data fields by adding the

structure name when it is necessary to do so. In general, the data field names produced from the

COBOL program might not be particularly mnemonic especially when the parser has to add the

structure name.

It is possible to produce a HIBOL program that is much more readable and maintainable if the

data-set names are given mnemonic names. The later is made easier by the fact that the HIBOL

program is sufficiently abstract that each of the data-sets should correspond to some real world

parameter in the system that the program is an implementation of. Therefore, it may be desirable to

give the data-sets in the HIBOL program names that differ from the names for the data fields in the

COBOL program to which they correspond,

AL

('rc.'i, C Faust 93 'i.larw Proc es Crrhque

Tli .xp ,ltj .d:t Li M W-AL inu:lt [I: t)blhi': H, th: H i Htt ii 1'1%-r Tl: w,-r, - ,ItlUld 110t be

-.cb,:, to SLIl)i)lI a d(ita sJl t n . ithout bhiig sull wv A L u(Arlt'_2 t III which tiadt It l .'.II b used

I o,. ,r It IS LlIdtsirablv to ever stioV tile user of the St TCH syst,;m any t/piessions in th syntax

of the assertions formed in the symbolic evaluation of the analyzed plan because. as is clear fron the

examples given above. It Is cumbersome and difficult to read. Therefore. the best time to query the

user of the SATCH system for data set nanes is after the phase of the HIBOL production subprocess

in which the expressions are converted into HIBOL syntax. but before the user is queried for the

data-set names to include ii PRESENT predicates used to replace the FILE-PRESENT predicates.

The user would be shown one expression it a tinre. As each expression was presented. the

user would be asKed to Supply replLcement names for each of the data fields that are referenced

which have not already been given a data-set name. All data fields that have already been given a

name by the user would appear as that new name. The process would be continued until all data

fields had been given a data-set name.

It is not known exactly how difficult it will be for the user of the SATCH system to recognize

the context that is presented for a given data field. Undoubtedly. this portion of the system will require

some human engineering before the query process could proceed smoothly. It is hoped that, if

properly engineered, this query process will not be too difficult for the user.

It should be noted that the above discussion, as well as the current system implementation,

makes the implicit assumption that all the data fields in the various input and output files do in fact

contain different information even though their names (minus structure name) may not be unique. If

this assumption is not met by a particular COBOL program, then it is still possible to produce correct

HIBOL. but the renaming process will be made more difficult and the HIBOL that is produced may be

redundant in some respects. It might be better in this case to simply drop all but one of the definitions

for the data-sets that correspond to data fields that do not contain different information. However,

recognizing when two data fields are redundant would be qui., difficult.

6.1.3 The COUNT Operation

The COUNT reduction operator is a source of difficulty for the current implementation. It is

unlike any of the other reduction operators in that it does not require any data values as input. This is

reflected in the analyzed plan by the fact that an augmentation that calculates a count will have a

DUMMY temporal input (see, for example, Figure 30). All that controls the operation of the count

augmentation is the predicate associated with that DUMMY temporal input. Logically, the COUNT

operation in the analyzed plan takes a predicate as an argument and not an object.

7r.'i.,,0 gr r, rit(Ique 94 (1 Faust

Ti .- , .. u iti l (. flI[3 I[:.ii ac t,, i, ti h+:)lJrT ioo-rrlt'.' toe'- V~ ' :i , I, t VJr ,nierIt

Th, s% ntai of IiI130L I ()vt~wr dn trm ds thait th- t)IUNt up,_rator tai. - ! iota ;:.: it, arguLjnent

The (O)UNT oprator works as if It courts th, nuI1hll 'r of timens that the predicate:

(P R1 St NT data-set-name)

is TRUE.

There are two reasons vdhy the syntax of HIiBOL demands that the COUNT operator take a

laa Set inst.'! of a predicate as its argument. First. it is conistent with the syntal for the other

re.(Li' tiorn operators SecodoI and more importantly it is very difficult, in general, to count the number

of times an arbitrLr,, predicate is TRUE. For example. in order to calculate the number of times the

negation of a PRESENT predicate for a particular data-set is TRUE. the program would have to

subtract the number of data items that actually appear for that data-set from the total number of

possible data items for that data set It is not obvious how the program could calculate the total

number of possible data items for a data-set, in general Additionally. it is fairly easy to produce

predicates that are even more difficult to handle than the negation of a PRESENT predicate.

Since a COBOL program can count up arbitrary things. it will not be possible to produce

HIBOL COUNT operators in a reasonable fashion for all possible counts appearing in COBOL

programs. Even in the cases in which the count is expressible in HIBOL it is difficult to produce a

data-set name to use as the argument to the HIBOL COUNT operator. Currently the symbolic

evalualion phase uses the predicate associated with the DUMMY temporal input to the court

augmentation as the argument to the COUNT operator. The HIBOL production phase then attempts

to convart that predicate into a PRESENT predicate, and then use the dataset that is the argument to

the PRI-SENT predicate as the argument to the COUNT operation. For example, in PAYROLL, the

predicate that is associated with the DUMMY temporal input to the count augmentation is

(NO- (EOFP (SEFO HOURLY-WAGE-IN)))

This prf ficate easily converts to

(PRESENT HOURLY-WAGE)

using the techniques discussed in the previous chapter, and eventually produces

(COUNT OF HOURLY-WAGE)

as the final form of the COUNT operator in HIBOL syntax.

This technique, however, is not very robust. In some instances. th, predicate prodcCed may

contain the conjunction or disjunction of several PRESENT predicates In other cau.os tht= predicale

may contain a predicate that cannot be reduced to any PRESENT fern, There arr two other

processes that might be used instead of the one discussed above to dt.himi(r the' dala set that

099 253 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/6 9/2
SEMIAUTOMATIC TRANSLATION OF COBOL INTO HIBOL.(U)
FEB 81 6 6 FAUST N00014-75-C-0661

UCLASSIFIED MIT/LCS/TR-256 NL2llllllllll

Gregory G. Fa!, - 95- Translation Process Critique

should be used as the argument to a COUNT operator, although neither of them are very appealing.

First. it is possible to make an assertion for the in-case of each segment of the analyzed plan

which indicates its control environment. 2 Then, when an augmentation is located during the symbolic

evaluation which performs a count operation, the predicate that controls the count could be

compared to the control environment of all the other augmentations with the hopes that it will find one

with the same truth value. Then, if that augmentation has any output that already corresponds to a

data-set, then that data-set could be used as the argument to the HIBOL COUNT operator.

This technique has two shortcomings. First, it is difficult in general to tell when two

predicates have the same truth value unless their surface syntax happens to be identical. This is

made easier by the fact that the simplification techniques that are used tend to canonicalize the

predicate expressions, but this alone is not sufficient to insure that predicates with the same truth

value will be recognized as such. Second, even if a control environment is found that does match the

controlling predicate of the count, the data-set that is produced by that augmentation might have no

conceptual connection with the count operation whatsoever. The use of that data-set name as the

argument to the COUNT operation might, therefore, be highly non-mnemonic, although at least it will

be a data-set name that already appears in the HIBOL program.

A second possible technique is to simply build a dummy data-set, defined in the VARIABLE

SECTION of the HIBOL program, that can be used as the argument to the COUNT operator. The

expression for this dummy data-set that would appear in the COMPUTATION DIVISION as a

conditional with a single clause in which the predicate is exactly the one that controlled the count

augmentation in the analyzed plan, and the object is just some dummy constant.

This technique has the advantage that it will work whenever it is possible to produce a HIBOL

COUNT expression at all because it is always possible in those circumstances to produce the needed

conditional expression in HIBOL. It has the disadvantage that it introduces a data-set name that is

alien to the original program for which the SATCH system user will not be able to supply a mnemonic

name because it has no real world analogue. Also, the conditional expression for this newly

introduced data-set contains an arbitrary constant that also has no real world significance.

Alternately, the conditional expression could be used directly as the argument to the COUNT

operator. This eliminates the necessity for the extra data-set name, but does not eliminate the

arbitrary constant. Also, the resultant data-set definition for the COUNT would appear needlessly

complex. Either way, the HIBOL code produced using this technique may look rather stilted to a

2 This is a possible change to the current sysiem that has certain advantages independent of the problem with COUNT
operations.

dd' AAW. -

Translation Process Critique -96 - Gregory G. Faust

human reader.

In summary, there is no single technique for producing COUNT expressions that is

satisfactory in all cases. Perhaps the best approach to this problem is to use the three techniques

described above in order, first trying the technique that is most specific but which produces the most

mnemonic HIBOL code, and going to increasingly general techniques that produce less and less

mnemonic code as the more specific techniques fail. In this way, the best possible code will always

be produced, although the average cost of producing HIBOL code for COUNT operators will be

substantially increased.

6.1.4 Subexpression Aliasing

It is often desirable to dafine output data-sets in terms of other output data-sets. This can

simplify the definition and increase its readability. For example, the definition of TOTAL-GROSS-PAY

in the HIBOL program for the PAYROLL example (see Section 1.4), without the use of other output

data-sets is:

TOTAL-GROSS-PAY IS SUM OF (HOURLY-WAGE * 40.)

Through the use of output data-sets in this definition, it can be simplified to:

TOTAL-GROSS-PAY IS SUM OF GROSS-PAY

The second expression is both simpler and more mnemonic. Both expression are totally valid HIBOL

expressions for the same computation. The difference is strictly one of style.

Unfortunately, it is difficult to use output data-sets in the definition of other output data-sets.

The difficulty lies in the recognition of those cases where it is possible and/or desirable to do so.

Several techniques have been tried to date, none of which was found acceptable. After a few of these

have been discussed, a new but untried solution will be presented.

One possible solution to this problem is to use the output data field names corresponding to

the desired output data-set names in the assertions formed in the symbolic evaluation of the analyzed

plan whenever possible. The analyzed plan for a program contains information that indicates at

which points in the program assignment of values to data fields takes place. Therefore, every time an

assertion is made, it is possible to replace any subexpression of that assertion with a data field name if

that data field has been assigned the value of that subexpression. Then, in the HIBOL production

phase, it is simple to form definitions for output data-sets in terms of other output data-sets because

the assertions for data fields will already be expressed in terms of other output data fields.

AA ZA

Gregory G. Faust - 97. Translation Process Critique

However. there are two problems with this technique. First, there is the trivial problem that

many data-sets will end up being defined as themselves. For example. the HIBOL expression for

GROSS-PAY in the example above will be

GROSS-PAY IS GROSS-PAY

This can be eliminated by a special check in the symbolic evaluation phase to see that this does not

occur, bit the check is messy and not very elegant. A second and more difficult problem is that there

is no guarantee that after a data field is used to define another data field it is not assigned a different

value before it is written. If such redefinition does occur, then one data-set will end up defined in

terms of some data-set name that no longer corresponds to the same subexpression that it replaced.

Elimination of this problem would be quite difficult.

Another possible technique is to keep a global association list between subexpressions and

data field names. This list would be compiled during the symbolic evaluation of the analyzed plan.

Each time an assignment point is reached in the analyzed plan, an entry is made in the table. Then, in

the HIBOL production phase, the expressions are scanned for any subexpressions for which there is

an eotry in the association li ., and if one is found. it is replaced with the corresponding data field

name.

This technique makes it easy to eliminate the problems cited for the other technique above,

but it introduces new problems of its own. First, a subexpression that could have been replaced with

a data field name while in the symbolic evaluation phase may not still be in its original form by the time

the expression makes it to the HIBOL production phase, because it has been modified by one of the

simplification transforms discussed in Chapter 5. Therefore, although it would have been desirable to

replace a given subexpression, it no longer appears verbatim and can no longer be found. Second, it

is now possible to find subexpressions that do match expressions in the association list that it is not

desirable to replace with the corresponding data field name because the expression in which it is

found conceptually has nothing to do with that data field name, and the resultant code would not be

mnemonic at all.

A third technique that has not as yet been tried is to simply check all data-set definitions

against one another just before the final HIBOL expressions are written into the COMPUTATION

DIVISION looking for matching expressions. As compared to the technique described above, this

technique reduces the chance that a subexpression that should be replaced by a data-set name will

be missed, but still has the problem that certain subexpressions may be replaced by data-set names

to which they do not conceptually correspond. A second problem is that the search for matching

expression is quite expensive.

Translation Process Critique -98- Gregory G. Faust

In summary. although it would be nice to be able to produce HIBOL in which some output

data-sets are defined in terms of other output data-sets. until and unless some technique for doing so

is developed that is better than any of the techniques discussed above it is probably not worth the

trouble. The current implementation of the translation process expresses all Output data-set

definitions in terms of input data-sets only.

6.2 Possible Extensions

This section contains a discussion of two possible extensions to the current domain of

applicability of the translation process: indexed file access and formatted output reports.

6.2.1 Indexed File Access

One construct that is often used in COBOL programs that cannot currently be translated into

HIBOL is the use of indexed data files. Indexed files can be accessed in either sequential or random

order. Both of these usages can be translated into HIBOL fairly easily as long as the COBOL program

in which they appear still falls into one of the three basic categories of programs that the translation

process is currently designed to handle.

The most significant difference between the translation of COBOL programs that access an

indexed file and those that don't is that the predicates that are produced in the symbolic evaluation of

the analyzed plan will contain INVALID-KEYP predicates as subexpressions when the indexed file is

accessed randomly. Recall that the INVALID-KEYP predicate is TRUE if the record associated with

the NOMINAL KEY requested by the random read does not appear in the file. The INVALID-KEYP

concept in COBOL very closely corresponds to the HiBOL concept of a data value not appearing in

the actual key space for a particular data-set. Therefore, the INVALID-KEYP predicates are handled

by simply replacing them with the negation of FILE-PRESENT predicates in the HIBOL production

phase as is currently done with EOFP predicates, and the remainder of the translation process

continues as always. The accessing of indexed files in sequential order should require only the most

trivial changes (if any) to the translation process.

Translation into HIBOL of COBOL programs that include the random access of an indexed

file that does not contribute to the main read loop of the program is made trivial by the change given

above. This construct will most often arise in programs that access library files that contain certain

additional pieces of information. For example, a program that processes payroll, in addition to

calculating GROSS-PAY, may need to access the employee name that corresponds to a given

employee-number. The employee names might be kept in a library file irrdxed by employee-number.

The INVALID-KEYP predicates that result from the accessing of the library file would be handled as

described above, and the translation of such a program should proceed smoothly. This is an example

Gregory G. Faust - 99- Translation Process Critique

of a construct that can be added to a COBOL program without changing the basic structure of the

program and therefore could be incorporated into programs of any of the three basic types without

affecting the basic category into which the program falls.

There are two additional COBOL program scenarios that involve indexed files which do

appear in the main read loop of the program (and therefore do affect the basic structure of the

program) that could be translated into HIBOL if the simple change described above were

incorporated into the translation process. The first of these involves the random accessing of an

indexed file combined with sequential access of a normal sequential file. The second involves the

random accessing of an indexed file combined with sequential access of a: indexed file. Both of

these constructs can only be incorporated into programs which perform intersections and have the

effect that a program into which one of them is incorporated can now be viewed as a program which

uses only a single data file to drive the computation instead of two (or more) as is usually the case in a

program which performs an intersection. Therefore, two programs which perfurm the same

computation, one of which uses only sequential files and the other of which falls into one of the above

scenarios, have adifferent basic structure and do not fall into the same basic program category.

In the first possible scenario, two main data base files contribute data field values to the same

computation as discussed in the previous chapter except that one of the files is an indexed file that is

randomly accessed. In this scenario, the program loops through the sequential file. For each record

in that file, it performs a random read on the indexed file using the key field values obtained from the

record read in the sequential file as the NOMINAL KEY for the random access read. For example,

consider the COBOL code fragment for a modified version of PAYROLL shown in Figure 46. In this

example, HOURS-WORKED-IN is a sequential file, while HOURLY-WAGE.IN is an indexed file that is

randomly accessed. Note that the figure does not contain the components of the DATA DIVISION that

are required to specify that HOURLY-WAGE-IN is an indexed file with hourly-wage-key acting as the

NOMINAL KEY.

Fig. 46. COBOL Fragment with One Sequential and One Indexed File

mainline SECTION.
READ hours-worked-in AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
READ hourly-wage-in INVALID KEY GO TO mainline.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
MOVE employee-number OF hours-worked-rec

TO employee-number OF gross-pay-rec.

WRITE gross-pay-rec.

GO TO mainline.
end-of-job SECTION.

. , -

Translation Process Critique - 100- Gregory G. Faust

Fig. 47. COBOL Fragment with Two Indexed Files

mainline SECTION.
READ hours-worked-in NEXT RECORD AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
READ hourly-wage-in INVALID KEY GO TO mainline.
MULTIPLY hourly-wage BY hours-worked GIVING gross-pay.
MOVE employee-number OF hours-worked-rec

TO employee-number Of gross-pay-rec.
WRITE gross-pay-rec.
GO TO mainline.

end-of-job SECTION.

The second possible scenario is almost identical to the first scenario except that both files

are indexed files, although one of them is read sequentially. COBOL provides for the sequential

access of indexed files through the use of the NEXT RECORD clause in the READ statement (see

[22)). The other file is read in random order, using the key field values from the record read in the first

file as the NOMINAL KEY for the random read. For example, see the COBOL code fragment shown in

Figure 47. Again note that the figure does not contain the components of the DATA DIVISION that are

required to specify that HOURLY-WAGE-IN is an indexed file with hourly-wage-key acting as the

NOMINAL KEY and that HOURS-WORKED-IN is an indexed file that will be accessed sequentially.

it is important to note that in both of these two scenarios, although two input files are

contributing data values to the same computation, the two files need not be sorted in the same order.

These are probably the two cases in which the sorting constraint mentioned in the previous chapter

can be most easily eliminled.

In summary, the important point that makes possible the translation of COBOL programs that

incorporate indexed access reads that are randomly accessed is that the INVALID-KEYP predicates

are replaced with the negation of FILE-PRESENT predicates. As long as the NOMINAL KEYs that are

used to access an indexed file are generated in a fashion that allow the program to be classified as

one of the three allowable types, and all of the other assumptions about the COBOL program are met,

the inclusion of indexed files in a COBOL prograrm should pose no significant problems to the

translation process.

An interesting by-product of the use of an indexed file in a COBOL program is that the

COBOL programmer must specify the key fields for that file in the DATA DIVISION. The translation

process cqn make use of this information to avoid the necessity of asking the SATCH system user for

the key fields or sort order for that file, reducing the length of the data division query subprocess.

Gregory G. Faust - 101- Translation Process Critique

6.2.2 Formatted Output Reports

COBOL programs that produce formatted output reports differ from the COBOL programs

considered so far in two important ways. First, it is most often the case that the production of the

formatted report will call for CWRITE operations in several different places in the program (or

analyzed plan for the program) all acting on the same file-object. while a data file is usually produced

with one or at most a few different CWRITE operations in the program (all of which are executed in

mutually exclusive control environments). Second, in addition to the usual computation to derive the

values of the data fields in the formatted report, there will also be computation used solely to control

spacing. page ejects, choice of literal strings, etc.

Because of these differences, it will no longer be sufficient to symbolically evaluate the

analyzed plan and then simply pass on the assertions for data flows used as arguments to CWRITE

operations to the HIBOL production phase. The symbolic evaluation can proceed as always, but a

second pass over the analyzed plan will have to be made in which the pattern of CWRITEs performed

on a given file-object is examined. The different portions of the pattern of CWRITEs that are found

will contribute to different components of the HIBOL formatted report feature.

In HIBOL, a formatted report is broken down into several components, such as report

headings, report footings, page headings, page footings, typical lines, etc. (See [30] or [18] for a

discussion of the HIBOL document facility.) A typical pattern of CWRITEs for a formatted report might

be broken into these components as follows. Report headings and footings would appear as a series

of CWRITEs that occur outside of the main loop of the program, with headings coming before and

footings after the temporal composition that represents that loop. The main CREAD loop that drives

the entire computation may appear nested within a second loop that counts up to fifty (or some similar

constant) in order to control page ejects. Page headings and footings would appear as a series of

CWRITEs within the temporal composition that represents the page eject loop, but not within the

nested CREAD temporal composition. The CWRITE that produces the typical line would then appear

within the nested loop.

The second pass over the analyzed plan would have to keep track of its current location in

the analyzed plan relative to the main temporal compositions. Then, when a CWRITE is located, this

information would be used to determine which component of the report the output of the CWRITE

should be relegated to. The assertions about the input data ports to the CWRITEs, formed during the

first pass, are used as always to determine the nature of the data values output by each CWRITE.

After the second pass is complete, the overall pattern of the CWRITEs, and therefore of the report,

can be determined,

4 -

Translation Process Critique 10?- Gregory G. Faust

This entire process should be sim~plified by thet fact that there probably are not very many

different overall patterns that need to be recognized. perhaps at most a few dozen or so. The exact

number needed is not now known, but can be empirically determined through further research.

The translation of COBOL programs that produce formatted reports also calls for a simplifier

for expressions that contain combinations of SUBSTRING and CONCATENATE operations acting on
STRING objects. These expressions will arise in the program for the control of spacing and choice of

literal strings. The simplifier Would reduce such expressions into literal constants whenever possible.

Such a simplifier should not be difficult to produce.

As the final step in the translation of COBOL programs that produce formatted reports, the
HIBOL syntax for the DOCUMENT SECTION of the DATA DIVISION would have to be produced. This

syntax is somewhat elaborate, but should not be overly difficult to produce once the pattern of the

reports is known and the expressions for the string operations have been simplified.

In summary, although the translation of COBOL programs that produce formatted output
reports into HIBOL requires more elaborate processing of the analyzed plan, additional simplification

techniques, and a more elaborate HIBOL production phase, it is not beyond the reaches of current

technology. None of the new features of the translation process described above should be overly

difficult to produce. Thus, this increase in the domain of applicability of COBOL to HIBOL translation

could be achieved through a moderate engineering effort.

Gregory G. Faust -103 - SA TCH System Critique

7. Critique of the SATCH System

In the previous chapter, several features of the current implementation of the translation

process were discussed. and suggestions made as to how the translation process could be modified

to improve its performance. In this chapter, the current implementation of the entire SATCH system is

discussed. with some suggestions as to how the system performance could be improved by making

changes at this more global level.

7.1 Semiautomatic versus Automatic Translation

Although the word "semiautomatic' appears in the title of this thiesis, the current

implementation of the SATCH system essentially performs the automatic translation of COBOL

programs into HIBOL. Of the three major components in the system, the COBOL parser, the plan

analyzer, and the translation process, only the translation process utilizes any human input.

The translation process utilizes human input in two places. First, the key fields for the files

manipulated by the COBOL programs must be specified. Although the SATCH user is currently asked

to supply this information for every COBOL program that is translated, the key fields for the data files

remain constant throughout an entire data processing system. Therefore, the SATCH system could

be changed so that the key field information for a data processing system is input only once, and then

used in the translation of all the COBOL programs in that system. This woul significantly reduce the

amount of human input required by the system.

The second form of human input is utilized in the HIBOL production phase of the translation

process to specify which data field(s) in a file should be used to replace FILE-PRESENT predicates

with PRESENT predicates. This information, however, is only needed to increase the readability of

the resultant HIBOL program, and is not required to insure the correct semantics of the HIBOL

program. Therefore, it would be possible to eliminate this input without affecting the correctness of

the translation.

Therefore, the human input required by the system to translate the current domain of COBOL

programs is minimal. The expansion of the domain, however, might call for an increase in the amount

of human intervention as discussed below.

7.2 Using Analyzed Plans

Given that the task at hand is to translate a process described in one language (COBOL), into
the same process described in a more ahstract language (HIBOL), the abstraction process is of the

utmost importance. Currently, most of the abstraction is performed by the component of the SATCH
system that produces the analyzed plan. This component uses general methods to abstract away the

SATCH Systemn Critique 104 - Gregory G. Faust

details of implementation in the Source language (in this case. COBOL). The component of the

systemn that translates the analyzed] plans into HIBOL does a certain amnount of abstraction. however it

uses special case techniques that are specifically designed around the features of the target

language (HIBOL). The breakdown of the abstraction process into these two components raises a

key question: Are the general method abstractions that are made in the analysis of plans useful for the

translation of COBOL programs into HIBOL, or would it be better to apply special case abstraction

techniques right from the beginning?

The answer is that the abstractions contained in an analyzed plan are exactly those that are

needed for the translation of COBOL programs into HIBOL. In general, programs can be abstracted

in several different ways producing program representations containing very different types of objects
and operations on those objects. For example, a program can be broken down into subprograms that
each perform a specific task as is done in FORTRAN [191 and PL/1 [33]. Or it can be broken down in

terms of increasingly abstract data objects and operations defined to operate on those objects as is

done in Alphard [35], SMALLTALK [13], and CLU [15]. Or it can be broken down into independently

acting agents that wait to be activated depending on the current environment as is done in

CONNIVER [29] and PLASMA[1O]. Finally, it can be broken down into data flows and operators that

act on values carried by those flows as is done in VAL [1] and HIBOL. Analyzed plans also express

programs using this last paradigm. Therefore, a program expressed as an analyzed plan is broken

down into the same abstract components as a program expressed in HIBOL. This does not mean that

any program that can be expressed as an analyzed plan can be expressed in HIBOL, but it does mean

that for those programs that can be expressed in HIBOL the analyzed plan representation of that
program more closely corresponds to the HIBOL representation than could any representation which

is based on one of the other abstraction techniques. This makes the abstraction of a COBOL
II program into an analyzed plan a very provocative first step in the translation of that program into

HIBOL.

In spite of the fact that an analyzed plan is ideally suited to the translation of COBOL

programs into HIBOL for the reason stated above, the use of analyzed plans in this process has

certain drawbacks. First, an analyzed plan is an unwieldy representation of a program from the

standpoint of human interaction. It was designed to make it easier for a computer program to

understand another program, not to make it easier for a person to understand that program.

Therefore, should it become necessary or desirable to involve a human in the portion of the

translation process that involves the analyzed plan, the plan itself would be a particularly poor choice

for the vehicle of discourse between the human and the program. Either the analyzed plan would

have to be temporarily translated into some form that the human can interact with, or the possibility of

human interaction in that portion of the translation process would most likely have to be abandoned.

Of lesser importance, the fact that the analyzed plan representation is unwieldy increases the

Gregory G. Faust 105 - SATCH System Critique

difficulty of debugging the poition of the translation process that interacts with it.

A second shortcoming of the use of analyzed plans in the translation of COBOL programs

into HIBOL is that the program that produces the analyzed plan from the surface plan does not

currently incorporate enough knowledge about the interaction of input/output operations with the

data flows that represent file-objects. The original test bed for analyzed plans was the FORTRAN

Scientific Subroutine Package. These subroutines, in general, perform numerical analysis operations

on matrices and other data objects. but do not perform any input/output operations. Therefore,

sufficient knowledge about such operations was never incorporated into the analysis process. This

shortcoming has led to the production of analyzed plans, in both the DBINIT and PAYROLL2

examples. containing temporal compositions with a single generating augmentation, which contains

essentially all of the computation performed by the program, and a single termination as their only two

subsegments. Such analyzed plans are more difficult to work with than ones in which there are

several generating and/or consuming augmentations each of which performs a simpler function. The

analysis process could be modified to incorporate the necessary knowledge with a (hopefully)

moderate amount of effort.

Notwithstanding the shortcomings of analyzed plans cited above, the translation of COBOL

programs into HIBOL would be much more difficult, if not impossible, without the use of them or some

similar program representation. The current implementation of the translation process relies upon

them implicitly and could not be reasonably modified to work should they be abandoned.

7.3 Future Direction for the Translation Process

The current implementation of the translation process was designed with the subset of

COBOL programs that it currently can translate in mind. Expansion of the translation process to

operate on a larger domain of COBOL programs, except in those cases cited in the previous chapter,

might be very difficult. The purpose of this thesis was to show the feasibilih, uf the translation of

COBOL into HIBOL, not to present a final solution to the problem. The next attempt to build a COBOL

to HIBOL translator should replace the current implementation of the translation process with one

that incorporates the work currently being done by Rich and Brotsky at MIT. The remainder of this

section describes how that implementation of the translation process might work.

Charles Rich, in his PhD thesis [26], proposed a method of further abstracting analyzed plans

by recognizing standard program cliches within them. He calls such abstraction "plan recognition by

inspection". The process proceeds as follows. First, the analyzed plan is converted into another

representation called the "plan calculus". This process is relatively simple. The plan calculus is a

way of expressing a program in a hierarchical structure identical to analyzed plans except that the

primitive elements in the calculus are essentially propositions in first order predicate calculus. The

FA"

SATCH Systemy Critique 106 - Gregory G Faust

plan is conver ted into this representation to aid in) the recognition of the plain clicht,, and facilitate

logical reasoning about the plan.

After the plan is translated into the plan calculus, the recognition process attempts to match

structures in the plan for the program with precompiled patterns taken f~om a plan library. The plan

library contains cliches for both common computational abstractions and common data abstractions.

A ke feature of 'he matching process is that a given fragment of tie plan can simultaneously be used

to fill roles in several different library cliches. This atlows the program to be examined from multiple

viewpoints. A key feature of the plan library itself is that the plan cliches are built into a taxonomy so

that certain cliches can be viewed as extensions of other cliches or as specializations of more general

cliches with added specifications. Another key feature of the plan library is that there are names

associated with all of the computation and data abstractions. Therefore. a system using this plan

recognition scheme can converse with a human using the same vocabulary that is used in everyday

conversations among expert programmers. Finally, it is intended that the plan cliches that appear in

the library could be used equally easily for program analysis or program synthesis.

As part of his PhD research. Rich designed the plan calculus and the taxonomy for library

ciiches, and constructed a sample library containing a couple hundr; J entries. Currently, a joint

effort is underw~ay by Rich and Brotsky to implement a program to convert analyzed plans into the

plan calculus. They are also putting the plan library into an on-line data base. Brotsky. as part of his

Master's research, intends to design and implement a program that will automatically recognize

instances of library cliches in a program represented in the plan calculus.

When the programs described above are implemented, the translation process of analyzed

plans into HIBOL can be rewritten to take advantage of them. In the simplest view of this scheme, all

that would be required is that the plan library be expanded to include the cliches that appear in

COBOL programs which closely correspond to HIBOL cc"lstructs. Then, once the cliches are

recognized, it would be a fairly trivial process to convert them into HIBOL syntax.

This scheme has several advantages over the current technique used in the translation

process. First, instead of having all the special case knowledge needed for the translation embedded

within LISP code, that knowledge would be contained within the pl-n library. This makes the

knowledge much more accessible, and far easier to extend and modify. Second, it is hoped that this

scheme could capture more pertinent knowledge and therefore provide for the translation of a much

larger scope of COBOL programs. This was foreshadowed in the earlier discussion of a possible

extension to the current translation process that would allow programs that produce formatted output

reports to be translated. The second pass over the analyzed plan that was described in that

discussion can be viewed as an intermediate point between the Current technique and the one

described in this section. A third advantage of this scheme is that the knowledge gained during its

Gregory G. Faust 107- SA TCH System Critique

implementation could be applied to the translation of other procedural languages into other higher
level languages, with the implementation of these translation systems requiring a relatively minor
amount of additional effort. For example, it might be possible to apply such techniques to the
translation of a certain subset of FORTRAN programs into APL [24].

Unfortunately, it is doubtful that it will be possible to translate COBOL programs into HIBOL
using just the simple scheme outlined above. First. it is doubtful that the component of the system
that is responsible for the recognition of plan cliches in the plan calculus could successfully operate
on a plan calculus representation produced from an analyzed plan in which almost all of the
computation of the program is contained within a single augmentation. Such analyzed plans were
mentioned in the previous section. The analysis process would have to be extended to produce
better analyzed plans for programs that perform input/output operations on file-objects before this
scheme would be possible. As stated before, this extension of the analysis process should not be
overly difficult.

Even if the analysis process were so extended, it is doubtful that the recognition process
would ever recognize all of a plan in terms of known cliches for anything other than the most trivial
programs. Therefore, this system would probably call for human assistance for part of the recognition
process. Unfortunately, the plan calculus is no better suited as a vehicle of discourse with humans
than the analyzed plan representation. An interface would have to be built to intercede between the
recognition process and the human user. The construction of such an interface is made easier by the
fact that the cliches in the library have names associated with them that can be used in the
man/machine dialogue. A program synthesis system currently being worked on by Rich and Waters
requires a similar interface. The interface routine developed as part of that project could conceivably
be modified and transported to the COBOL to HIBOL translation process.

In summary, the possibility of applying the method of plan recognition by inspection to the
translation of COBOL programs to HIBOL is a provocative one. Although it poses some problems that
need to be overcome, it offers promise for the production of a system with much greater performance
than the current system. Such a system might well incorporate both a symbolic evaluation of the
analyzed plan, similar to the one used in the current system, as well as the recognition of plan cliches.

7.4 Translation of Hf BOL into COBOL

Although the predominant motivation for this thesis is to show the feasibility of translating

COBOL programs into HIBOL, it is necessary to mention the possibility of the translation of HIBOL
programs back into COBOL in order to impart an overall perspective.

SATCH System Critique - 108- Gregory G. Faust

PROTOSYSTEM 1 [27] is an automatic programming system, developed by the Automatic

Programming Group at MIT. which can translate HIBOL programs into compilable PL/1 code and the

corresponding IBM JCL needed to run the resultant programs. In general, the only assumptions

made by the system about the target language is that it is some high level procedural language that

supports input/output operations to sequential and indexed data files. The exception is the final

component of the system which produces the actual PL/1 syntax for the computation. All that is

required to allow the system to produce COBOL programs is to replace the PL/1 syntax generator

with a COBOL syntax generator. A syntax generator for COBOL should not be overly difficult to

produce.

As stated in Chapter 1, there are some problems with the unconstrained use of

PROTOSYSTEM I to produce COBOL programs from HIBOL. To understand the problems and how

they can be circumvented, a slightly more detailed view of PROTOSYSTEM I is needed.

A primary design goal of PROTOSYSTEM I was the ability to produce highly efficient code

from a HIBOL program. To accomplish this end, PROTOSYSTEM I is broken into two major

components. The first of these, the "design optimizer", is responsible for determining the desired

"data aggregation" and "computation aggregation" for the application. The data aggregation

specifies which data-sets should be grouped together in the same file, and what type of files there

should be (indexed or sequential). The computation aggregation specifies which operations on the

data files should be grouped together in the same program. The second major component of the

system, the "code optimizer", uses the output of the design optimizer and determines the desired

implementation of the programs themselves.

The design optimizer represents the portion of the system that does most of what is usually

called automatic programming. The code optimizer performs a more well understood function; one

strongly resembling that of an optimizing compiler. Upon completion of the PROTOSYSTEM I

project, there remained certain research issues with respect to the design optimizer that were not

completely resolved. The code optimizer that was developed produced PL/1 code with very good

run-time characteristics.

Within the context of the use of PROTOSYSTEM I as a component of the SA I CH system, it is

highly desirable to produce a single COBOL program for a single HIBOL program, and the COBOL

program should operate on the same data files that were used by the original COBOL program from

which the HIBOL was produced. Therefore, the design optimizer component of PROTOSYSTEM I is

not required, since the data and computation aggregation used by the code optimizer should be

exactly those specified in the original COBOL program. This constrained use of PROTOSYSTEM I,

within the context of the SATCH system, should result in output COBOL programs that are highly

run-time efficient.

- - - . .. ,; I "_. _ . L . .. II Im ... ri I~llll l -... .

Gregory G. Faust 109- Plan Primiitives

Appendix I - Plan Primitives for COBOL Programs

In this appendix, all of the primitive functions that can appear in a plan that is produced from

a COBOL program are explained along with the number and type of their arguments. Most of these

primitive functions perform standard operations that commonly appear in any programming

formalism. These standard functions are included here for completeness, The remainder of the

functions perform operations that are much less standard. Particular attention will be given to the

latter.

Each of these functions can be viewed as a black box, with a number of explicit inputs and

outputs where the outputs are related to the inputs via the function given. They should not be thcught

to return a value in the usual LISP sense, but rather to produce a value that is carried from the

function via explicit data flow. Also, some of the functions may produce more than one value as a

result of their operation. In addition, certain of the functions that perform operations on file objects

cause side effects. This will be discussed in greater detail below. For these reasons, these primitives

are not actually functions in the usual sense.

1.1. Boolean Primitives

Each of the following functions result in the production of a single bit boolean. The input

arguments are of various types.

AND: Binary operator that performs the standard logical AND. Both arguments
are booleans.

EOFP: Takes a file object as input and produces TRUE if the next CREAD of the
file will produce an end of file condition, and FALSE otherwise. The
file object itself is unaltered by this test.

EQUAL: Binary operator that performs the standard EQUAL function. The input
arguments can be either both numbers or both strings. When the
arguments are strings, a standard collating sequence is used.

GREATERP: Binary operator that performs the standard GREATER-THAN
function. The input arguments can be either both numbers or both
strings. When the arguments are strings, a standard collating
sequence is used.

INVALID-KEYP: Takes a file object as input and produces TRUE if the next
CREAD of the file will produce an invalid key condition, and FALSE
otherwise. The file object itself is unaltered by this test. This is used
with indexed files only.

Plan Primitives 110 - Gregory G. Faust

LESSP. Binary operator that performs the standard LESSTHAN function The
input arguments can be either both numbers or both strings. When
the arguments are strings, a standard collating sequence is used

NOT: Unary operator that performs the standard logical NOT. The input argument
is a boolean.

OR: Binary operator that performs the standard logical OR. Both arguments are

booleans.

1.2. Arithmetic Primitives

All arguments to and results from the following functions are numbers.

DIFFERENCE: Binary operator that produces the result of subtracting the second
argument from the first.

MINUS: Standard unary minus operation.

PLUS: Binary operator that produces the sum of two numbers.

REMAINDER: Binary operator that produces the remainder after dividing the first
argument by the second argument an integer number of times. In
other words, it produces the first argument MODULO the second
argument.

TIMES: Binary operator that produces the result of multiplying the two arguments.

1.3. String Operators

Each of the following functions result in the production of a string. In this system, a string is

a special object type formed by an invocation of STRING. The input arguments are of varying types.

CONCATENATE: Binary operator that produces a string formed by immediately
following the value of the first argument with the value of the second
argument. Both arguments are strings.

STRING: Unary operator that forms a string object from a sequence of characters.

SUBSTRING: Takes three arguments and produces a string. The first argument

is the string from which the substring will be taken. The second and
third arguments specify the first and last characters of the first
argument to be included in the resultant substring, respectively.

L USRN:Tkstreagmnsad
rdcsasrn.Tefrtagmn

Gregory G. Faust 11l Plan Primitives

1.4. File Operators

All of the foflowing functiorls take a tile object as their first argument The file object should'1 be looked upon as a pointer into a file of data records. The pointer contains information about the
next record to be accessed (if any) as well as certain status information about the file. Some of the

following functions update the file object as a result of their operation. This is done by merely having

an Output data flow produced that i~i different than the incoming data flow for the file object. This is

analogous to the way in which all other data values are handled within a plan.

In addition, however, the fife that is pointed to by the file object may be side effected by the

operation of the function For example. the CREWRITE function will destroy information stored in a

particular record of a file and replace it with new information The file is permanently altered by this

operation, and the old version of the file is no longer available. These are the only functions
produced from a COBOL program that can cause side effects. It is clearly stated in the following

function descriptions exactly which functions cause side effects.

CCLOSE; Takes a file object as its only argument and produces an updated file
object. In addition, the file is side effected such that it can no longer
be accessed via any file operator except one of the following OPEN
functions.

COPENI: Takes a file object as its only argument and produces an updated file
object. In addition, the file is side effected such that it can now be
accessed by CREAD. That is, the file is opened for input only. The file
object is set to point to just before the position of the first record.

COPENIO: Takes a file object as its only argument and produces an updated file
object. In addition, the file is side effected such that it can now be
accessed by CREAD and CREWRITE. That is, the file is opened for
input/output access. The file object is set to point to just before the
first record.

COPENO: Takes a file object as its only argument and produces an updated file
object. In addition. the file is side effected such that it can now be
accessed by CWRITE, That is, the file is opened for output only. The
file object is set to point to just before the position of the first record.

CREAD: Takes a file object as its only argument and produces an updated file
object as well as an arbitrary number of data values taken from the
record in tfie file that is specified by the file object. The record that the
data values are taken from depends upon several factors. If the file
specifications given in the original COBOL program specify sequential
access for the file. then each CREAD will access the record that is
currently pointed to by the file object and then update the file object to
point to the next contiguous record. Since the COPEN causes the file

I7-~ . _ _ _ _ _

Plan Primitives 712 - Gregory G. Faust

object to point lust before tht first record in the file the first CREAD
will cause the first record in the file to be accessed If the file

specifications given in the original COBOL program specify random
access for the file, then each CREAD will attempt to access the record
in the file that corresponds to a particular %et of values of the key
fields. The set of values of the key fields that will be used to specify

the record to be accessed is contained within the file object. If the
particular key set specified does not correspond to any record that
actually exists within the file then INVALID KEYP will produce TRUE,
and the CREAD will not take place (assuming the original COBOL text
represents a valid COBOL program) If a random access CREAD is
successfully completed then the file object produced will point to the
record in the file that was just accessed. This ensures that a

subsequent CREWRITE will access the correct record.

CREWRITE: Takes a file object and an arbitrary number of data values as
arguments and produces an updated file object. In addition, the file is
side effected by overlaying the record in the file specified by the file

oblect with the argument data values. This is used with indexed files
opened via COPENIO only.

CWRITE: Takes a file object and an arbitrary number of data values as arguments
and produces an updated file object. In addition, the file is side
effected by placing a record in the file at the place pointed to by the
file object The record is composed from the argument data values.
This is used with tiles opened via COPENO only.

NTERPRI Takes a file object and an integer as arguments and produces an
updated file object. In addition. the file is side effected by placing the
integer number of end-ofsrecord marks in the file at the place pointed
to by the file object. For normal data files the second argument is
always 1 and NTERPRI is invoked once before each invocation of
CWRITE. The use of CREWRITE does not require the use of NTERPRI
because the end-of-record marks should already appear in the file.

........ A

Gregory G Faust 113 - Running SATCH

Appendix II - How to Run SATCH

This appendix contains the instructions for running the SATCH system. Included are the file

names and locations of all pertinent programs. the naming conventions of the data files used, and a

v;?ry brief description of some of the more important top-level program functions. All programs are

now on ML. Although all the programs are currently available and (hopefully) running, there is no

guarantee that things will remain in their current state.

To run the COBOL parser, type ":satch:cobpar<cr>'. The only pertinent top level function is

RUN. It takes a single argument which is the name of the file which contains the COBOL program to

parse. It produces two output files. The first of these, given a second file name of PROG, contains

the lisp-like representation of the PROCEDURE DIVISION. The second file, given a second file name

of DATA. contains the DATA DIVISION information. For example, the command "(RUN '((DSK

DIREC) EXAMPL COBOL))" will parse the COBOL program in "dsk:direc:exampl cobol" and produce

the output files "dsk:direc;exampl prog" and "dsk:direc;exampl data". For further documentation for

the COBOL parser and/or the answer to any questions about the COBOL parser, contact Glenn

Burke (GSB@ML).

To produce an analyzed plan for an output file of the COBOL parser, type ":lisp forpas;(cr>".

The pertinent top-level function is PROCESS. It takes a single argument which is the name of the file

which contains the PROCEDURE DIVISION output of the COBOL parser to be analyzed. It produces a

single output file, given a second file name of PLAN, which contains the analyzed plan. For example,

the command "(PROCESS '((DSK DIREC) EXAMPL PROG))" will analyzed the program and produce

the analyzed plan in "dsk:direc;exampl plan". For further documentation for the analyzer and/or the

answer to any questions about the analyzer, contact Dick Waters (DICK@AI).

To produce HIBOL for an analyzed plan and the DATA DIVISION information, start up a lisp

using the initialization file on the FAUST directory. This is done by typing ":lisp faust;faust lisp".

Then, one of the following two top-level functions must be run to load the rest of the desired

environment: SET-UP-FOR-SATCH-I or SET-UP-FOR-SATCH-C which load the needed LISP source

files or LISP FASL files, respectively (SET- UP- FOR-SA TCH-C is strongly recommended).

Once the environment is loaded, the most important top-level function is LOAD-TRANSLATE.

It takes a single argument which is the first file name of the program to be translated. An attempt will

then be made to load the necessary files from the SATCH directory. For example, the command

"(LOAD-TRANSLATE 'EXAMPL)" will attempt to load "dsk:satch;exampl plan" and

"dsk:satch;exampl data". It is possible to load the files from another device and/or directory by first

setting the global variables GLOBAL-DEVICE and/or GLOBAL-DIRECTORY to appropriate values.

A

Running SATCH 114- Gregory G. Faust

LOAD TRANSLATE will produce two output files, given second file names of FAST arid HIBOL. which
contain the information passed from the symbolic evaluation phase to the HIBOL production phase,

and the completed HIBOL program. respectively. The same functionality can be gained by calling

LOAD-DB and TRANSLATE in succession. LOAD-DB takes the same argument as

LOAD-TRANSLATE. TRANSLATE takes no argument.

Once LOAD-TRANSLATE has been run on a particular example program, further testing of

new versions of the DATA DIVISION Query and/or the HIBOL Production phase(s) can be

accomplished by using the top-level function FAST-LOAD- TRANSLATE. This function takes the

same argument as LOAD.TRANSLATE. Its operation only differs in that instead of loading in the

analyzed plan and performing the symbolic evaluation, it loads the information needed by the DATA

DIVISION Query and HIBOL Production phases directly from the files with the second file names

DATA and FAST respectively. The two functions FAST-LOAD-DB and FAST-TRANSLATE have the

same relation to LOAD-DB and TRANSLATE as FAST-LOAD-TRANSLATE has to LOAD-TRANSLATE.

The entire translation process runs in three different modes which differ only in the amount

of information that is written to the terminal. The three modes are controlled by running three

top-level functions called VERBOSE-MODE, NORMAL-MODE, and QUIET-MODE. These functions

take no arguments. The default is NORMAL-MODE. QUIET-MODE should only be used for batch

jobs. VERBOSE-MODE will print out all sorts of intermediate values for variables, and is only useful

for trying to debug very severe problems.

Regardless of which mode the program is running in, the terminal will be used to gather

information from the user. In all cases where user input is required, the user will be shown a list of

data field names and asked to input a list of the desired fields. The user should input the list using the

numbers that correspond to the data fields, and not the names themselves. If it is desirable to select

none of the fields, NIL is entered. In all cases, the user is given the opportunity to verify the input

before the program finally accepts it.

The only remaining top-level function of possible pertinence is DB-WALK. This function is an

interactive command interpreter that affords a way to wander around and print out portions of the

analyzed plan in a reasonably simple fashion. The set of commands is too large to be discussed here.

the definition of the function can be found in "ml:satch;sutil)".

All the source files for the COBOL parser and the translation process are in the archive file

"ml:faust;arO satch".

-7I

Gregory G. Faust 115 - References

References

1. AcKerman W B and Dennis. J B.. VAL A Value.Onented Algorithmic Language: Preliminary
Reference Manual, MIT Laboratory for Computer Science TR-218 (June, 1979).

2. MetaCOBOL User Guide. Manual No. SM2G-00-10, Applied Data Research (1979).

3. Baron. R V. Structural Analysis in a Very High Level Language, S.M. Thesis. Laboratory for
Computer Science, Massachusetts Institute of Technology (1977).

4. Barstow. D A Knowledge based System for Automatic Program Construction, Proceedings of
the Fifth International Joint Congference on Artificial Intelligence, Vol. 1 pp. 382-388, M.I.T,
Cambridge. Ma.. August 1977.

5. Canning, R. G. (ed). Progress Toward Easier Programming, EDP ANALYZER 9:1 (September,
1975)

6. Green, C.. A Summary of the PSI Program Synthesis System, Proceedings of the Fifth
International Joint Congference on Artificial Intelligence, Vol. I pp. 382-388, M.I.T.,
Cambridge. Ma.. August 1977.

7. Hammer, M M., Howe. W. G.. and Wladawsky I., An Overview of a Business Definition System,
IBM Thomas J. Watson Research Center Research Report (August, 1973).

8. Hammer. M., and Ruth, G. R., Automating the Software Development Process, in P. Wegner,
ed., Research Directions in Software Technology, MIT Press (1979).

9. Hartman, J.. Restructuring COBOL Programs into Abstract Data Type Modules, University of
Texas at Austin Department of Computer Sciences, Software and Data Base Engineering
Group, Memo SDBEG-21, (August, 1980).

10. Hewitt, C., How to Use What You Know, Proceedings of the Fourth International Jo,nt
Congference on Artificial Intelligence. Vol. 1 pp. 189-198, Tbilisi, Georgia, USSR, September
1975.

11. IBM OS Full American National Standard COBOL, Manual No. GC28.6396-5, IBM (1973).

12. Kapur, Deepak, Some Results for Predicate Simplification, MIT Laboratory for Computer

Science, Automatic Programming Group Internal Memo, (September, 1976).

13, Kay, A., and Goldberg, A., Personal Dynamic Media, Computer IEEE v. 10 3:31.41 (1977).

14. Kornfeld, W. A., Ruth, G R., and Baron, R. V., Proposal for HIBOL Syntax, MIT Laboratory for

Computer Science, Automatic Programming Group Internal Memo, (October, 1976).

15. Liskov. B., Atkinsor,. R, Oloom, T., Moss, E., Schaffert, C., Scheifler, R., and Snyder, A., CLU
Reference Manual, MIT Laboratory for Computer Science TR-225 (October, 1979).

L • .

References -116- Gregory G. Faust

16. Long, W. J.. A Program Writer MIT Laboratory for Computer Science. Technical Report
TR-187 (1977)

17. Martin, W. A., A Data Set Language and Its Translation into IBM 370 PL/I, MIT Laboratory for
Computer Science, Automatic Programming Group Internal Memo, (March, 1972).

18. Martin, W. A., Ruth, G. R., Alter, S., A Very High Level Language for Business Data Processing,
Personal Communication (1979).

19. McCracken, D. D., A Guide to FORTRAN Programming. John Wiley and Sons (1961).

20. Mills, H. D.. Software Development, IEEE Transactions on Software Engineering SE-2:265-273
(1976).

21. Morgenstern, M. L., Automated Design and Optimization of Management Information System
Software, PhD Thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology (1976).

22. Murach, M., Standard COBOL (2e), Science Research Associates (1975).

23. Pitman, K. M., A FORTRAN to LISP Translator, Proceedings of the 1979 MACSYMA Users'
Conference pp. 200-214, Washington, DC., June 1979.

24. Polivka, R. P., and PaKin. S., APL: The LangLage and its Usage, Prentice-Hall (1975).

25. Rich, C., and Shrobe, H. E., Initial Report on a LISP Programmer's Apprentice, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Technical Report AI-TR-354
(1976).

26. Rich, C., Inspection Methods in Programming, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Technical Report AI-TR-604 (1981).

27. Ruth G. R., Protosystem I: An Automatic Programming System Prototype, MIT Laboratory for
Computer Science TM.72 (July, 1976).

28. Ruth G. R., Data Driven Loops, MIT Laboratory for Computer Science TR-244 (1980).

29. Sussman, G. J., and McDermott, D. V., From PLANNER to CONNIVER - A Genetic Approach,
Proc. FJCC 41:1171 (1972).

30. Thomas, G., The Design and Implementation of a Document Facility for Protosystem I, S.B.
Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology (1976).

31. Waters, R. C., Automatic Analysis of the Logical Structure of Programs, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Technical Report AI-TR-492 (1978).

Gregory G. Faust - 117- References

32. Waters. R C.. A Method for Analyzing Loop Programs, IEEE Transaction, on Software
Engineeing SE-5.237.247 (1979).

33. Weinberg, G. M., PL/7 Proglanimng Pfrimer, McGraw-Hill (1966).

34. Weinberg, G. M.. Wright, S. E., Kauffman, R., and Goetz, M. A., High Level COBOL
Programming, Winthrop Publishers (1977).

35. Wulf, W. A., London, R. L.. and Shaw, M., An Introduction to the Construction and Verification
of Alphard Programs. IEEE Transactions on Software Engineering SE-2:253-264 (1976).

.......

OFFICIAL DISTRIBUTION LIST

Director 2 copies

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies

800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy

Resident Representative
Massachusetts Institute of Technology
Building E19-628
Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies

Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies

Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

