
A!!0A099 252 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/S 17/1
A STATISTICAL APPROACH TO PASSIVE TARGET TRACKING. CU)

APR 81 N ~J HINICH

U NCLASSIFIED KCSC-TM311-81





-3

.1



UNCLASSIFIED ( / -
SECUlkITY CLASSIFICATION Of THIS PAGE (Wh7en Data Entr@ ~ 'r~/ vi(4~(

REPORT DOCUMENTATION PAGE RE INSTRUC"OS
RE zBEFORE COMPLETING FORMI. REPORT NU Z. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TM -311-811

4. TITLE (anfdsub" t) . . .. S. TYPE OF REPORT & PERIOD COVERED

( A Statistical Approach to Passive Target

Tracking. S. PERFORMING ORG. REPORT NUMBER

AUTHORl's) I. CONTRACT OR GRANT NUMBER(@)

Melvin J. Hinich

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELXMENT PROJECT, TASr
AREA 4 WOR*QU--BR

Naval Coastal Systems Center Task Are SF 34 371 691
Panama City, FL 32407 Task 1644:2 -

II. CONTROLLING OFFICE NAME AND ADDRESS -ALROS-X -- F

Naval Coastal Systems Center lApr~81
Panama City, FL 32407 NME OF PAGES

21

14. MONITORING AGENCY NAME.J ADORESS(I dllleerent from Controlling Office) IS. SECURITY CLASS, (of thle report)

UNCLASSIFIED
. .. DECL ASSIFIC ATION/ DOWNGRADING

SCHEDULE

____ ___ ___ ____ ___ ___ ___ ____ ___ ___ ___N/A

I. OISTRIBUTION STATEMENT (of thi& Report) 
lI

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II dillerient from Report)

-9i
1S. SUPPLEMENTARY NOTES

III. KE ' WORDS (Continue on reverse Ide II neceseay and Identliy by block number)

Coordinates
Tracking
Simulat ion

30 ABSTRACT (Continue an reverse aide O n.cessay and Iden~tify by block nmber) 'A method for passively
tracking a moving target using a sequence of bearings from a surveillance

platform is presented. The key assumption of the method is that the target is
moving at a constant speed on a fixed heading during the data acquisition
period. The procedure can be considered as a generalization of Ekelund rang-
ing since parameter estimates are computed after bearings are taken as the
tracking platforms maneuvers. No constraint is placed on the track of the plat
form. The estimators presented in this paper are approximately maximum likeli-
hood when .he tar-1t i1 din-ant from the nharform.

DD , 1473 ItION Oi I NOV 61115 OSOLETE I 'NCLASSTFIED
S N I 02-LF-014-6601 . ....

/jiZCURITY CLPUIPICATIOM OF THIS PAO (lOe D a l ard)



NCSC Th 311-81

TABLE OF CONTENTS

Page No.

INTRODUCTION. .. .............. .............. 1

DEVELOPMENT OF THE TRACKING PARAMETERS .. ... ..............

LEAST-SQUARES ESTIMATES OF TRANSFORMED PARAMETERS. ... ........ 5

TARGET RANGE AND COORDINATE ESTIM4ATES. ... ............... 9

NON-CONSTANT BEARING VARIANCE .. ................ .... 12

SIMULATION,.. .............................. 13

LIST OF TABLES

Table No. Page No.

I Results Obtained Using Weighted Estimator
of Range a. = 0.20 17

2 Results Obtained Using Ad Hoc Estimator of
Range a E = 0.20 17

3 Results Obtained Using Ad Hoc Estimator of

Range a. = 0.40 19

4 Results Obtained Using Ad Hoc Estimator of

Range a. = 0.20 and R =39.60 19

5 Results Obtained Using Weighted Estimator of

Range aF. 0.40 and H=39.60 20



NCSC TH 311-81

INTRODUCTION

This report presents a method for estimating the coordinates of a

moving target as a function of bearing direction cosines measured from

a tracking platform. The procedure can be considered as o generaliza-

tion of Ekelund ranging since parameter estimates are computed after

bearing measurements are taken during a period when the tracker maneuvers.

The key assumption for the method is that the target is moving at a con-

stant speed on a fixed heading. This is the same assumption made for

Ekelund ranging. In contrast, however, the method which is the subject

of this report does not constrain the course of the tracking platform.

DEVELOPMENT OF THE TRACKING PARAMETERS

For a fixed coordinate system, let xT(t) and xB(t) denote the x coordi-

nates of the target and tracker at time t. Let YT(t) and yB(t) denote their

y coordinates. Let B(t) denote the true target bearing at time t measured

with respect to the y axis. For example, a target on the y axis would be

at 0 or 180 degrees. Then, from Figure 1,

xT(t) - xB(t)
sin B~t) = R(t) (la)

and

YT(t) - YB(t)
cos B(t) = R(t) (lb)

where R(t) is the true target range.
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FIGURE 1. PLATFORM AND TARGET GEOMETRY
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Assume that the tracker uses a circular hydrophone array to detect

acoustic waves radiating from the target. Bearing information is usually

obtained by delay-and-sum beamforming. Remember that the direction cosines

sin B and cos B are needed to determine the delays used to steer a beam in

direction B. Suppose that the beam angle that gives maximum signal energy

during the integration time is B. This is the estimate of the target bear-

ing during the integration time. Let s(t) - sin B(t), c(t) = cos B(t),

and g(t) and Z(t) denote the direction cosines corresponding to B. They

can be obtained from the signal processor of the beamformer. Levin I and

and Hinich and Shaman 2 show that these estimators of sin B and cos B are

maximum likelihood estimators if the ambient noise is Gaussian and spatially

incoherent. If the array gain is large, moreover, these estimators are

approximately Gaussian, unbiased, and independent. For a circular array

geometry, the variances of 9(t) and &(t) are equal and are inversely pro-

portional to the energy signal-to-noise ratio (SNR). Expressions for

the bearing and direction cosine errors as a function of SNR, aperture,

and the number of hydrophones is given by McDonald and Schultheiss, 3

Clay, Hinich, and Shaman, 4 and Hinich.5

Suppose that the tracker estimates sin B(t) and cos B(t) at discrete

time points t = ni where T is the integration time of the beamformer.
n

1M. J. Levin, "Least-Squares Array Processing for Signals of Unknown Forms,"
Radio and Electronic Engineer, Vol. 29, pp. 213-222 (1965).

2 M. J. Hinich and P. Shaman, "Parameter Estimation for an R-Dimensional
Plane Wave Observed with Additive Independent Gaussian Errors," The Annals
of Mathematical Statistics, Vol. 43, pp. 153-169 (1972).

3V. H. MacDonald and P. M. Schultheiss, "Optimum Passive Bearing Estimation,"
Journal of the Acoustical Society of America, Vol. 46, pp. 37-43 (1969).

4 C. S. Clay, M. J. Hinich, and P. Shaman, "Error Analysis of Velocity and
Direction Measurements of Plane Waves Using Thick Large-Aperture Arrays,"
Journal of the Acoustical Society of America, Vol. 53, pp. 1161-i166,
(1973).

SM. J. Hinich, "On Errors in Some Papers on Array Processing," Journal of
the Acoustical Society of America, Vol 65, pp. 530-531 (1979).

3
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The statistical expressions derived in the next section are simplified

if we set the time origin in the middle of the sampling period; i.e., let

n assume integer values n = -N/2, -N/2 + 1,...,N/2 - 1, N/2 where N is

even. Thus, the sampling interval is (N + 1) T. Assume that T is selected

to ensure that the estimates are uncorrelated over time.

Several important assumptions will now be made about the target motion

and the SNR during the sampling period. First, assume that the target's

velocity vT and its heading aT are constant. Thus, for -N/2 < n < N/2

xT (t) x T (0) + vT t sin aT  (2a)

and

T n) YT (0) + vT tn cos aT  (2b)

Second, assume that vTNi << R(O) and VBNI << R(O), where vB is the average

speed of the tracker. This implies that the range R(t) is approximately

constant during the sampling period. Now let R denote the average range

in the sampling period. Finally, assume that the SNR varies sufficiently

slowly during this period so that the SNR can reasonably be approximated

by a constant. This assumption implies that the variances of the direc-

tion cosines are approximately constant. This assumption will be relaxed

in a later section.

To simplify notation, select the time unit so that I = 1 and thus

t = n. It then follows from Equations (1) and (2) and the above assump-
n

tions that

9(n) R_ xT(0) + (R- vTsin uT)n - xB(n) + &s(n) (3a)
TT TB s

and

4
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(n) =R YT(0) + (R VTCOS aT)n - R- YB(n) + ec(n) (3b)

where the errors have the following properties (for circular arrays whose

gain is large):

1. Es(n) and &c(n) are independent Gaussian random variables

with a common variance denoted a
2

2. es (n) and s(n') (and c(n) and c(n')) are uncorrelated

for all n t n'

3. The expected values of these errors are approximately zero

if R(t) R during the sampling period.

Now, i(n), Z(n), xB(n) and YB(n) are observed for n = -N/2,...,N/2.

Hence, the coordinates [xT(n0), YT(no)] of the target at time n can be

estimated.

LEAST SQUARES ESTIMATES OF TRANSFORMED PARAMETERS

The maximum likelihood estimation of these target parameters is

facilitated by the following transformations:

ax R xT(O) a R y (4)

ox =R vT sin aT y =R 1 vT cosaT

and

b = -R - 1  (5)

5 
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Thus, from Equation (3)

9(n) = aX + x n + b xB(n) + &s(n) (6a)

and

Z(n) = a + n + b(n) c(n) (6b)

for n = -N/2,...,N/2. Since the errors are Gaussian and have constant
variance, the ordinary least-squares (OLS) estimators of ax, ay , and

y are maximum likelihood.6 They also have a joint Gaussian distribution.

The maximum likelihood estimator of b is a weighted average of b and b,x y

the OLS estimators of b as computed from Equations (6a) and (6b). The maxi-

mum likelihood estimators of the target coordinates are functions of these

OLS estimators and are computed from the transforms defined in Equation (4). V
These estimators are presented in the next section, Target Range and

Coordinate Estimates. Before presenting the weights needed to compute

b, the OLS estimators ax, , x, and bx and their statistical properties

are presented.

The expressions for the OLS estimators of ax, Px9 and bx are simplified

if the origin of the coordinate system is placed at the centroid of the plat-

form's track during the sampling period. If this is done, then IxB(n) =

SYB(n) = 0. The OLS estimator of a is

a = (N + 1) 29(n) (7)

Its variance is simply

a =(N + 1) - C (8)a
x

6M. G. Kendall, The Advanced Theory of Statistics, Chapter 22, New York:

Hafner, Third Edition (1951).

6
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Now define s(n) 9(n) - s, where s = (N + 1) is(n), the mean of

s(n). The OLS estimators x and bx can be expressed in vector and matrix

fo-m as follows:

bx Inx B  Ix'(n) IXB (n) s(n)/

The sums are taken from n = - N/2,...,N/2. Thus,

x D1 [I2x(n) Ins(n) - InxB(n) IxB(n) s(n)J (10)

and

b = D -  [In 2  XB (n) s(n) - InxB(n) 2ns(n)] (11)

where

Dx =In2  x(n) - [nxB(n)]2 (12)

From the triangle inequality, D = 0 if, and only if, xB(n) is a linearxB

function of n = t . Thus, d t 0 if the tracker changes course or speedn x

during the sampling period.

The variance-covariance matrix of x and b is

'v(Inx B (n) In2

7
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^ are
Thus, the variances of Px and x

-1
02  = 0Z D 7x2(n) (14)P x x

and

o2 = o2 D-1  n2  (15)b x
x

It can be shown that a is uncorrelated with Ix and bxx xo

It should be obvious from Equations (6a) and (6b) that the OLS estimators

P , and b are similar to ,P , and b with y (n) and a(n) in place

place of xB(n) and i(n). Thus y= (N + 1)-  (n).
By

y =D 1 [y2(n) Ync(n) - Zny8 (n) (n) c(n)I, (16)

and

^2

b D [In2  (n)c(n) - 7nY(n)Ync(n)],  (17)

where c(n) = (n) - c and

D = In 2 
jy2 (n) - [YnyB(n)] 2  (18)

yBB

Again, D t 0 if the tracker makes a course or speed change.y

The estimators &x, , x, and bx are independent of ay, I , and by

since the errors [&s(n) ] are independent of 1& (n)]. It then follows

from statistical theory6 that b, the maximum likelihod estimator of b,

is the weighted average

-2 -'2-1 -2((7 +oba (oy b + 0 Cyb
x y x y

Si b i d.
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Thus

^ Db +Db
b x x Y y (19)

D +D
x y

and its variance is

o = G2 (D + D) - n2  (20)

From Equations (13) and (19), moreover, the covariance between b and

x is -o2 (Dx + D)
- InxB (n) and the covariance between b and Py is

-Y2(D x + D)
- InyB(n).

TARGET RANGE AND COORDINATE ESTIMATES

Except in some special cases, the variances of the OLS estimators

go to zero as N - . The rate at which this occurs is a function of N

and depends upon the form of [xB(n), YB(n)]; i.e., the form of the plat-

form's track. The variances also go to zero as 02, the variance of the

bearing direction cosine errors, goes to zero. As is shown in the follow-

theorem, the maximum likelihood estimate of the range is biased if Rob is

not small. Assume then that N is sufficiently large and a is sufficiently

small so that Rob is small.

Theorem I. R = -i/b is the maximum likelihood estimator of R. The

bias in R due to the nonlinear transformation of b is

^2

E(R-R) = R3o + 0 (R5o4) (21)

9
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and its approximate root mean square error is

ruse (R) = R2o + 0 (R o2 ), (22)b b'

where u2 is given by Equation (20). Thus, the bias is an order of magni-
b

tude smaller than the rmse when Rob << 1.

-1
Proof. b = b + Eb is the maximum likelihood estimator of b = -R

If f(b) is a continuously different ble function of b, then f(b) is the

maximum likelihood estimator of f(b). Consequently, R is the maximum

likelihood estimator of R.

The error e is Gaussian N(O,a2). Thus Eb =E 0, E 2  o2' and
bb b b b'

W = 3a4. Since
b b

R 1 (23)
R I - Reb

1 + Reb + R2E2 + R3E3 +

Rb b b

it follows that the expected value of R/R is

E(R/R) = 1 + R2ob + 0 [(ROb)4], (24)

and its mean square error is

mse (R/R) = R2 o2 + 0 [(Rob)41. (25)

Expressions (21) and (22) follow from Equations (24) and (25).

Given R, the maximum likelihood estimators of xT(no) and YT(no)

can easily be obtained. Accurate estimates of these target coordinates

require that Rob be small.

Theorem 2. The maximum likelihood estimators of [xT(no), YT(no)]

are

10
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xT(n ° ) = R(A + nOX)

and (26)

yT(no) = R(a + no)
T 0 y 0oy

They are independent. For large N, their distributions are approximately

Gaussian with zero means and root mean square errors

1 2 In2__
rmise ( R) Rcx[- + xn(n )

T N T D + D yx y

2nBx (n + (n2  1/2

x y x

and

1 _ n
2

rmse (T) Ro[! + y2(no)
x y

oYT 0 D + D +n --2y n YB n Dy(n

x y y

Proof: Write = a + c = Px + E , and b = b + tb"
x x

eax and e are uncorrelated Gaussian errors. The error cb is correlated

with e . Apply Equations (4) and (23) to Equation (26) to obtain the

following approximation (in the errors):

(n)R(+Re1)R -xT( 0 ) +C + n(R-1 vsin T + )
T 0 R(1x 0 T T Ox

(1 + Rb)[XT(no) + Ra + Rn0

xT(no) + R(ea + xT(no)Fb +n ) (27)
x -x

11
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Apply Equations (14), (20), and the expression for the covariance between

b and x to Equation (27) to derive the expression for rmse ( T). Derive

the expression for rmse (9'T ) in a similar manner.

NON-CONSTANT BEARING VARIANCE

Now relax the restriction that the SNR is constant during the sampling

period. There are several methods for estimating the SNR associated with

a specific bearing estimate B. One method uses output from the beamformer.

If the noise field is isotropic in the sector B - 6 < B < B + 6, then the

average of the energy in the beams spanning this 26 wide sector (excluding

B) is an estimate of the noise field energy. Let e(6) denote this esti-

mate. The energy in the B beam is an estimate of signal plus noise. Let

e(B) denote this estimate. Then

- e(B) 1 (28)

A somewhat more precise estimate uses the average of the coherence

between pairs of sensor channels. To illustrate this method, let j2

denote the average estimated square coherence between two hydrophone

channels over the bandwidth of the signal. Then the SNR is estimated

by

Y(29)
_-j2

The maximum likelihood estimators are functions of the variance of

the direction cosiges if these variances change during the sampling

period. Since the variance depends on the SNR, it must be estimated every

time a bearing is obtained if one desires to approximate the statistical

properties of maximum likelihood estimators.

12
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The adjustment for a changing error variance is easy using the linear

model approach; i.e., use weighted least squares. 7 Simply divide the inde-

pendent variables In, xB(n) , and yB(n)J and the dependent variables 1 (n)

and c(n)l by the estimated variance for each n. Since the variance is

inversely proportional to the SNR given a narrowband signal, the adjustment

is made by multiplying the variables by (n), a consistent estimator of the

SNR at time t = nT. All the expressions for the estimators and their

properties given in the previous sections hold if n, xB(n), yB(n), 9(n),

and (n) are multiplied by (n). If the true SNR for each n were known,

then the adjusted estimators would be maximum likelihood.

It is important to remember that p is an estimate of the SNR and not

the true SNR for any type of estimator. The error inherent in p increases

the error ii the parameter estimates. Consequently, it is generally better

to use the ot&-!', least squares approach rather than weighted least squares

(the multiplication adjutment) when the SNR is slowly varying during the

sampling period.

The following ad hoc compromise between ordinary least squares and

weighted least squares estimation may provide a more robust estimation

method. The compromise rejects a bearing estimate if its estimated SNR

is below some threshold value. Suppose, for example, that the SNR for

g(2) and (2) is below the threshold. Then delete s(2), c(2), x (2),

YB(2), and 2 from the sums in the expressions for x ,y , bx' and h Y

The target parameters are estimated from those bearings whose SNR exceed

the threshold, using the ordinary least squares approach.

SIMULATION

It is assumed the target is moving at a constant velocity of 90 yards/

15 seconds or 0.36 kyd/minute on a fixed heading of 90 degrees. For

7F. A. Graybill, An Introduction to Linear Statistical Models, Vol. 1,
New York: John Wiley&-Sons -Inc. (1961).

13



NCSC TM 311-81

convenience, the tracker's speed is set at the same rate. This is not

necessary for the results to hold; it merely facilitates the calculations.

Upon observing the target, the tracker beginz its tracking maneuver.

In the simulation, the track is circular (Figure 2). The radius of the

circle is such that the tracker completes two circles during the tracking

sequence at the constant velocity of 0.36 kyd/minute. This particular

track was chosen for several reasons. First, it is symmetric; that is,

one circle is completed in each half of the Lracking sequence. Thus,

the centroid of the tracking sequence is the origin of the coordinate

system. Second, the track of two circles yields two estimates of the

target's bearing and, hence, the estimated bearing sine and osine, at

each point where the tracker takes a reading. This enables the OLS

routine Lo estimate more accurately the target's heading since any differ-

ence in the two estimates of the target's bearing is due to a change in

the target's position. And finally, a circular track minimizes the expected

variance of the target's range for a smooth track when the traLker has no

prior knowledge of the target's heading. In this simulation, 45 observa-

tions of the target's estimated bearing are taken. This number is strictly

arbitrary although the routine requires that the number of observations be

an odd integer. Hence, the radius of the circular track is 45/4n or 0.322

yard. The tracker, therefore, travels 3.96 kyds after having first observed

the target taking an observation every 15 seconds or every 90 yards.

Each estimate of the target's bearing is used to calculate an estimate

of i(n) and c(n). The resulting 45 estimates are used to estimate the

parameters of Equations (6a) and (6h) by means of OLS. The estimated

parameters obtained are used to calculate estimates of the target's head-
-1

ing, range, and velocity. The estimated heading is OT = n/2 - tan l / x) "
y x

It is computed in this manner because y is close to zero, and thus small

variations in 0y produce large fluct't tions in the estimate tan ( x/0 y).

The estimated range, R, is calculated according to Equation (5). However,

early work with the simulation suggested that use of weighted estimator b

provided highly variable and unrealistic estimates of the range. This is

due to the fact that by, like , is close to zero and is often estimated

14
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Target Target Track
3.96 kyd

I,i

R(n)

II

Tracker

) Tracking Maneuver

FIGURE 2. SIMULATION GEOMETRY
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as a positive fraction. The smaller of b Xand b is selected to estimate

the range. The program consistently selected b xsince aTis 90 degrees.

The weighted estimator b is only optimal when the sample size is large.

The sample size is not large in this simulation. The results in Table 1

are derived by using the weighted estimator of range, -b 1 Table 2

presents the results obtained by using the ad hoc estimator, -b .The

estimated velocity VT, is estimated by VT (p + P2]12

These estimates are then used to compute the estimated target coordi-

nates at the end of the tracking sequence k T(N/2) and T (N/2) according to

the formula of Theorem 2. In addition, the theoretical rinse's of these

values are calculated. They are denoted rmse T (iT) and rmse TC9T) in the

tables and are presented for comparison to the actual values found in the

simulation.

The simulation is repeated 400 times. The tables present the actual

values as well as the mean, mean bias, standard deviation, and the root

mean square error (rinse) for each of the estimated variables. The estimated

variables are (1) the target's estimated coordinates at the end of the

tracking sequence, k T(N12) and 9T (N12, (2) the target's estimated average

range during tracking, R, (3) the target's estimated heading, & T; and (4) the

target's estimated velocity, 0 ' In addition, the actual maximum and mini-

mum range to the target during tracking is presented.

Compare the estimates in Table 2, which are obtained using the ad

hoc estimator of range, -b ,with those of Table 1, which were obtained

using the weighted estimator of range. It is apparent that the use of

the weighted estimator significantly increases both the bias and variance

of all the estimates obtained. The exception is the estimated heading

T* This result follows from the fact that the weighted estimator con-

sistently over esti'"nates the range which is used to ca)hujate all estimates

except that of the estimated heading & T'

16



TABLE 1

RESULTS OBTAINED USING WEIGHTED ESTIMATOR OF RANGE = 0.20

Standard

End of Track Actual Mean Mean Bias Deviation RMSE

iT(N/2) 1.9799986 3.6655350 1.6855354 0.2367992 1.7020874

'T(N/2) 19.7999878 36.7997894 16.9997864 0.1459860 17.0004120

RT(N/2) 19.8363953 36.8514709 17.0150604 2.3269196 17.1734467

oT 90.0000000 89.7862091 -0.2137576 0.5106176 0.5535945

VT 0.3600000 0.6682853 0.3082853 0.0427839 0.3112399

Maximum and minimum range during tracking: 20.181183 and 19.485062

N = 45 R = 19.80 rmseT(iT) = 0.069 rmseT(YT) = 0.667

TABLE 2

RESULTS OBTAINED USING AD HOC ESTIMATOR OF RANGE Y 0.20

Standard

End of Track Actual Mean Mean Bias Deviation RMSE

iT(N/2) 1.9799986 1.9686899 -0.0113090 0.0916492 0.0923442

iT(N/2 ) 19.7999878 19.7851410 -0.0148508 0.0908208 0.0920270

Rr(N/2) 19.8363953 19.8159637 -0.0204318 0.8945770 0.8948103

GT 90.0000000 89.8274689 -0.1725032 0.5489491 0.5754150
VT 0.3600000 0.3588170 -0.0011830 0.0168327 0.0168743

Nazism and minimum range during tracking: 20.181183 and 19.485062

N = 45 R 19.80 roseT(iT) 0.069 rmseT(9T) = 0.667

17
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Table 3 shows the results when the bearing sine and cosine errors are

doubled from 0.2 degree in Table 2 to 0.4 degree. The doubling of the

errors approximately doubles the rinse's of all the estimated variables.

The rinse approximates the asymptotic bias of the estimator.

Tables 4 and 5 present the simulation results when the range to target

is doubled but the bearing errors are 0.2 and 0.4 degree. With the excep-

tion of the estimated range, the rinse's of the estimates are approximately

equal to those obtained when the errors were doubled. Increasing either

the range to target or the errors on the bearing estimates by a multipli-

cative constant, k, increases the bias by approximately k. This empirical

relationship does not hold for the estimated range. Although the rinse of

the estimiated range does approximately double when the bearing errors are

doubled, it increases by approximately a factor of 4 when the range to

target is doubled.

The results of the simulation support the theory presented in the

paper. These results are a function o'f the particular tracking sequence

chosen as well as the target's track. The circular track as well as the

90-degree heading were chosen for the simulations because of their simplicity.

NOTE: THESE SYMBOLS ARE USED IN THE TABLES AND ARE IDENTIFIED AGAIN

FOR CLARITY.

rinse root mean square error of .......

(XT coordinates of the target

(X B) YB~ coordinates of the tracker

N sample size

R average range t~o target

a rmse of e

C error term of regression

RT range to target

a T heading to target

V Tvelocity of target

statistical estimator of a parameter
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TABLE 3

RESULTS OBTAINED USING AD HOC ESTIMATOR OF RANGE = 0.40

Standard

End of Track Actual Mean Mean Bias Deviation RMSE

XT(N/2 ) 1.9799986 1.9826841 0.0026848 0.2073205 0.2073379

yT(N/2 ) 19.7999878 19.9087372 0.1087440 0.1365973 0.1745969

RT(N/2 ) 19.8363953 19.9413757 0.1049771 2.0171242 2.0198536

aT  90.0000000 89.8330841 -0.1668751 1.0594177 1.0724792

V 0.3600000 0.3613726 0.0013726 0.0376254 0.0376504
T

Maximum and minimum range during tracking: 20.181183 and 19.485062

N = 45 R 19.80 rmseT(iT) = 0.138 rmseT( T) 1.334

TABLE 4

RESULTS OBTAINED USING AD HOC ESTIMATOR OF

RANGE Y = 0.20 AND R = 39.60

Standard

End of Track Actual Mean Mean Bias Deviation RMSE

XT(N/2) 1.9799986 1.9804792 0.0004807 0.2079040 0.2079045

yT(N/2) 39.5999756 39.7122803 0.1123022 0.1367894 0.1769834

RT(N/2) 39.6180878 39.7253571 0.1072704 3.9831715 3.9846144

oT  90.0000000 89.8725433 -0.1274239 1.1198845 1.1271105

VT  0.3600000 0.3608412 0.0008411 0.0373895 0.0373989

Maximum and minimum range during tracking: 39.951111 and 39.281448

N = 45 rmseT( T) = 0.138 rmseT(T) = 2.653
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TABLE 5

RESULTS OBTAINED USING AD HOC ESTIMATOR OF

RANGE a.= 0.40 AND R=39.60

Standard

End of Track Actual Mean Mean Bias Deviation RMSE

i T(N/2) 1.9799986 2.0484772 0.0684777 0.4705369 0.4754934

YT(N/2) 39.5999756 41.0848694 1.4848890 0.2057871 1.4990807

RT(N/2) 39.6180878 41.1012878 1.4831972 9.1944504 9.3133106

of 90.0000000 89.9536896 -0.0462814 2.1883059 2.1887951

VT 0.3600000 0.3733910 0.0133910 0.0855601 0.0866016

Maximum and minimum range during tracking: 39.951111 and 39.281448

N =45 rmse T xT) 0.276 rmse T(YT 5.306
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