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) ESTRACT

The notion of a discrete-time coder as a device
which converts real vector-valued sequences into
sequences over a finite alphabet is formaiized. A
hierarchical classification of all coders, in terms
of their input-output mappings, is sought. This
classification is based on a canonical structure
theory being developed for coders. An algebraic
approach is used to define three classes of coders
which have simple canonical realizations, i.e., ones
for w-ich known syrthesi; rrocedures may be used.
It is proposed that coders be viewed as acceptors of
real laI&.uages, and the hierarchy of the real Ian-
guage be used in conjunction "with the hierarchy
suggested by these three coders to achieve a com-
plete classification.
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NMMLCLATUZE into sequences of symbols over some finite alphabet
and vice-versa. They form the interconnection be-

C coder mapping Rp  - W tween systems whose variables evolve on the continuum
L(u) the length of a sequence u, I(A) * 0 and systems, such as digital computers, which have a
q a memoryless quantization mapping, q: R? N discrete state and input set. Coders and decoders

are therefore inherent subsystems in hybrid control
RP  p-dimensional real Euclidean space systems (1), where the plant state variables and out-
N finite set of coder output symbols puts take values in the reals, and the controller is
E set membership symbol modelled as an automaton.
6 next-state mapping of a finite state system
B readout mapping of a finite state system in the development of any general compensation
r right shift transformation icheme involving an automaton as controller, the choice
* left shift transformation of the coder and decoder should be included in the
A the empty string Overall design process; the design of the coder and de-
P the empty set coder is in fact central in the compensator synthesis.
m an equivalence relation While various hierarchies of automata structures exist
X, the set whose elements are the equvalence elas- (finite-state, linear-bounded, pushdown, etc.) pro-ses of X modulo

Sdenotes function composition viding the necessary design constraints, no such
o dots f classifications exist for coders and decoders. A con-

straint on the coder may be that its "continuous-

SUPERSCRIPTS state part" must be in the same class as the plant
(for example finite-dimensional) and its "discrete-

X the free monoid generated by the set X state part" in the same class as the automaton. Thus
it becomes necessary to develop a canonical structure

X* the free semigroup generated by the set X theory for these systems.
fP the causal extension of the function f

Some examples of coders commonly found in prac-

INTRODUCTION tice are meroryless quanti:ers. quantizers with
hystersis (2), differential quantizers (3) and re-

Coders and decoders here are devices (such as settable integrators. A quanti:er with hystersis
AID and 0/' converters) which transform real-valued is shown in Figure 1 below and may be realized as a
sequencesl quantizer (different from q) followed by a finite

automaton. " will call coders which can be decom-
[Any sapltin In time is assumed to have taken place posed this way finitary coders. A coder which is
prior to conversion, not finitary is given in Figure 2.

We will view a coder as a map

C: Rp  . W

where RP* is the set of all finite length sequeacos

of vectors In Rp , and W is the finite set of output

I



s -_bols of the coder. A decoder performs the inverse Definition

opration. It has already been shown (4) that any Let C be a coder and consider the associated set
coder may be realized, for n > 1. as a composition of conjugate transform-aio.s C 4:ueRP*}. If
of an n-dimensional discrete-tire system followed by is finite we say C is finit. , and if C iCi e ,ay
a memoryless quantizer (Figure 3), i.e., as a com- C is unitary.

position of maps CI: RP  - Rn and q: Rn - W. While This definition is just aney's (3) definition

this decomposition is completely general it is not
the most useful one in terms of coder synthesis. modified to handle sequences over R

P . Note that this
This is since any part of the coder that would nor- notion of a unitary coder is only useful if the domain
mally be synthesized using digital logic circuitry of C is RP*- A minor modification in the definition
is treated as part of the discrete-time system with is necessary if one wishes to define unitary codegf

input output map C1 , with states taking values in Rn. on RP *. We will clarify this later on.

Our aim will be to develop conditions on the mapping
C for the coder to be synthesized using standard Exaple

circuit synthesis techniques. It is thus desirable R A quantizer is a memoryless coder with domain

that these conditions result in realizations of C in Rp given by
which the inherently analog and inherently discrete
parts are identifiable. The results that are pre- C(Yl...yk) q(yk)
sented here are preliminary and pertain to certain
"simple but practically useful" coders; in general where q: Rp  Wf. C is clearly :nitary.
the problem concerns the realization of nonlinear
discontinuous mappings and is difficult. The results Example
for decoders are similar and are not given. C: R* W is defined as

NOTATION AND DEFINITIONS C(A) - I

Definition C(Y1 ...yk) -D if yk > 0 and the number of non-
A coder is any function I negative terms in y .. k-1 is

C: RP * - W either even or zero

where W is a finite set consisting of the coder out- I otherwise
put symbols., Sometimes the domain of C will be the

semigroup Rp  - RP*-{A} where A is the empty string. Then C = (C1,C2 ,C3 }, Ci: R' * (0,1} where
In the sequel the domain of C is always assumed to C = U, uEUi4R* for i - 1,2,3, and
be Rp * unless otherwise indicated. i a

U1 = (utR*: the number of nonnegative terms in
To view a coder as a mapping from strings to u is odd, and the last term is negative}

strings we define the causal extension of C to be the
mapping U2 = (ucR*: the number of nonnegative terms in

C0: R~ * -Wu 
is odd, and the last term is nonnegative}

o U3 = (uaR*: the number of nonnegative teivs in
obtained by extending C as follows: u is even or zero}j(Al

and thus C is finitary.
C'(A) a C(A)

Example
C*(Yl...yk) a C(A)C(yl)...C(yI...y k ) The quantizer with hystersis of Figure 1 is

defined as
Definition

Let X be any set, C(A) = w0

(a) The left shift transformation a: X - X" is C(y) = q(y * ad(wo)) yeR
defined as follows: 0

ax . Y *' Yk) ' q (Yk *ad(C (Y l " '.. k-1
)  '

)  
k -2 3 ....

x(2) .... x(k) if x a x(l)x(2) .. x(k) for
x(i)eX. k > I where aeR, w0 W are given and d is an injection of W

A if xCXU(A} into R. Suppose W - (fa,. d(2) - -2. d(s) - 1,
a 1, w° . a and q: R-(a,.) is the mapping

We extend this to multiple shifts by defining a to q(y) - a  if y >_ 0

be the identity map, aI ,o and an l . on a. B otherwise. Then it is easy to see
that the finite state system of Figure 4 is a realiza-

(b) The right shift transformation T: Xa - X* is tion of C. We will see that this implies C is finitary.
defined as Note that a decomposition u,7 :hi coder .n the f-rm

of Figure 3 appears unn.i:ural.
*Ux * UX U, xcx*

Alternate descriptins f unitary and fint, .r,
coders may be obtained v,n t'; ie:hanin o .ero .e
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equivalence. W u :he finite output set, W w,...w}

Definition 6: QxaY-w is the next-state function given by

Let uY be sequences .Ln R
P  and define the 6(q .y) - q3 if YcA\% C Y

(Nerode) equivaLence relation (6) = on RP* as 8: QW is the readout func:ion

U 2 v 4 C(ux) 0 C(vx) Y xe 
p  A finite automaton (6) is defined similarly except

Chat Y is a finite set and the notation M is used
It is immediate that x is a right-congruence on instead of .

Rp *. The following proposition is also evident, and Note that the specification of S defines the sets
the proof is left to the reader. Aii, and that for fixed i, the sets Aij. j a I.....r

Proposition form a partition of Y.
Cisinitary iff = has finite index.

Far a particular initial state qIcQ, the re-
A coder which is not finitary is the shift- sponse function of X. is the map

unitary coder defined below.

Definition 
K , N.1 : RP* - W

For each uCPR* and some fixed 8eRP define the

shift-conjugate functions Cu RP * - N of C as follows: given by

CU . Cra(A) HT,q I (Y .... k) = 0(S'(q'Y ..... yk)) k - 1,2,...

Cu(Y;..yk -CTe(yI...yk) Ic -i,2 .... ,. (B)-l_ "q A

CU(Yl-.-Yk) ' C T l...yk) k - MTq(A) a (qL)

Definition

rher we say C.is shift-unitary if (C : uRP1 - (Cl C has memory span N if N is the smallest non-

for some SCR
p . negative integer such that

Example C(Y1.'yk) = C(Yk-N .... Yk) k - N+IN#2.....

Consider the coder C given by
If no such N exists, then we say that C has infinite

C(A) .0 smeory span.

C(y) sgn(y2 -1) yel CODER REALIZATION, SYNTHESIS

2.2 1)  e; k 2,3.... A unitary coder is the simplest of all coders;
I ... * g(Yk Yk 1it is memoryless. This is the statement of the fol-

where sgn: R-(O,1 is the mapping lowing Theorem.

Theorem *

C P W is unitary ilf there exists a map

0 otherwise q: RV - W such that for all Y .... Yk E RP

Then C is shift-unitary with S - (e,1) for any C(Y .yk) * q(Ok-ly .... yk] - 1,2,...

I Proof. Necessity.

The definition of a shift-unitary coder for the First define the sets A for each w CW as follows:
case where 1(8) a I is precisely the definition of a I i

unitary coder with dorain RP ' . The ftkct that a A1  a (ycRP: C(y) - w }

shift-unitary coder is noL finitary (except for when
it is unitary) will become evident in the next section. Then

The foltowing definition will be useful in char- C(yl...yk) * (Cr - )
acterizinZ finitary coders.

Definition = C(yk) since C is unitary

tupleA threshold finite automaton (TFA) is the 5- w if

MT  - (QY,W,8,B) Now define t.e function q: RP W V as

where qVy) , wi  if ycA.ki

Q - the finite set of states, Q . [q . q Then

Y - the input set. YC f
p  C(y ..))'k q(c k 'Y 1 .

S



AI
Sufficiency, We take q" CTA " where .1 . k. and

Su pos.

C(y...yk)  - q(7 k-l MTql(yl'"yk).1~,. 4 Y".."Yk

fo. some map q: Rp  *W. Then for teRP *, - 8(C-" A )

'CrU)cl...yk) a q(oZ(u)4k-ly...yk) aq(yk) C(yl...yk)

k -1,2 a.n. ,d K,q(A) = 5(5-q ,) = CC.).

and hence C is unitary. Q.E.D. The proof of the converse is left to the reader. Q.E.D.

The synthesis of a unitary coder therefore in- The coder of Figures I and 4 is therefore fin-
volves the synthesis of the map q: RP . W. Note itary. The following result separates out the
that this may not always be practical; consider for threshold-type operations that occur in the TFA real-
exal-rle the map ization of a finitary coder from the dynamic part,

and hence cells us how to go about synthesizing the
q(y) a 1 if y is rational coder. This decomposition should be compared with

that of Figure 3.D othe-ise

Theorem
We will not attemtpt to define a "well-behaved" quan- C is finitary iff C may b,. -ealized as the com-
tier here. position of maps

Finitary coders are more interesting; they are C a C oC'
dynamic and in ge-eril have infinite memory span.
The finitary coders are precisely those coders which
are finite-state realizable. This is stated in the where C 2: Rp* - V is unitary, V is a finite set, and
following theorem; the equivalent result in automata C V* - W is finite-state realizable.
theory is standard C6.,(_. 1

Proof. Suppose that C is finitary. Then by the
T.eorem previous Ieorem, C is the response function of a re-

C is finitary iff C is the response function of
some (minimal) TFA. duced TFA H. - (Q, RP,6,, "). Define the functions

Proof. Suppose C is finitary. Define the sets qi as follows:

A.. - {yeRP: uyU. vu £ U i: p  (e ..... r i * I.
Avia

where the U.C RP _ are the congruence classes of the via
L. -right congruence-t. For fixed i, the sets A i(y) a j if )CAiJ

a 1..r clearly form a rartition of Rp. We now
where the A jC Rp were defined in the proof of the

construct the (minimal) TFA AT - (Q,RP,w,6,8) as
follows: previous theorem. r is the cardinality of Q. Now do-

. q - fine q: p  {l.... ,,r a V asq = C. i.e.,.q * C1  a Cru for ucUi

i: QXRP-.Q via q(y) " ( l(y).....r(Y))

-( i Y)  - CITY and take C2: Rp  V to be the map

3: Q-W via C2 (A) *

3(.) i' .(A) C2(yl...Yk) - q(yk) k a 1,2 ....

Then where 7 Is any vector in V with 1 a i.
a, C~y for Clearly C is unitary. Define the finite automaton

r a , , as follows:

a if YCij (a) i: "x V.. via

and
":(A) 6(Civ) CP(V vcV

Sc-U(,) for ucU. where pi: V -l.r} is the projection mapping

C(u). Pi(v) - ith component of v



(b) " : -Nvi - ()-q
N 4 Wv-tCC(A) q q(a) -

80!i (where Rp  is the sequence (of length N > 1) appear-ing in the definition oi a shift-unitary coder.

Lot C1 be the responis function N1 : V* where P For any sequence y1 '"ykcRP

q C _ 1 (suppose ,'1&U). Then we hVe that, for 1 ±, j < k define

= P qw C c)) Also define the sets Yi,A for each wiEW as follows:

q.(y Y ~ iY~)*:Ly) zN and CCB(y; 1,N)) - w. I

-. y A1  ((y; l.N) : yeY}
* i Now define the map q: RPxR 4 -W as

q(y) - wi if ycA i.Now,
Then, for yrRp  with 1(y) - N.

(C1°OC2 )( .Yl"" ) " C (C 2 C(AC y i C2 (yy "... a cicy)Cl) - Cqy1 ...yL) 1wNqC~y ; l,,)) - w

~ZC ... Yk)) and for yeRP, with Z(y) = k - N~m for some integer
C 16 i(y ,) ... ;CY k)) 3y0 ,

[ (yl). Yk)) 0?C(y)() - CCy...yk) - CT a'oyi...yk)

.6( (q1 , (yi).. i(Yk))) since . C (y1*..yk  since .CamYl..yk) >Z 0(3)

'(qVV ) - qV a NCCa y)(I) by defn. of C"
S 6(8*(qly 1...Yk)) - q(B Cam Y; IN) since I(a'my) = N

= C(yl...yk). - q(B(y; k-N#1,k))

The proof of the converse is left to the reader. For X(y) " k, I < k < N,

Q.E.D. CCy) - Cu(y)

Application of these results to the coder of - Cr (.)
Figure 4 results in the realization shown in FigureS. . CT " 'k(akT8Y= (ar Oy)

Not all coders with inherently discrete dynamics " Ccokry) 8n kTy) > LB)
are finitary; the coder of Figure 2 has a countable since )
state set. Extensions of the above decomposition
result, where the isolated automaton is a determin- - q(B (akTy; 1,N))
istic pushdown automaton C6) are currently being k
investigated. Note that iG this case a feedback- - q(o By)
free decomposition cannot be obtained in general.

The shift-unitary coders are perhaps the sim- Finally, for y - A
plest class of coders with realizations that have
inherently analog dynamics and are finite-dimension- CCA) - Cu(A) Cr CA)
al. These coders have finite memory-span (i.e. nil-
potent) and may be implemented with a single (real * C(8)
number) storage register and a quantier. This is
the result of the following theorem.

Theoren " qC8). Q.E.D.
TFc is shift-unitary then there exists a map It should be clear that the memory span of a

q: RPxR, -W such that shift-unitary coder is finite, and is equal to z(j)-I.
(Note that although 9 -av not be unique, e(e) is.)

C(yl'"Vk) q N( Nl .... Y) k > N For these coders, u-v is equivalent to the state.ent

qCOk., .... OY ... yk) I < k < N o(U)e u - ot(v)e V



2.-. nence is isoorphic to R2 Y1 The exten- 3. Limb, J.O., and Mounts. F.W., "Digital Dif-
s to : z:-r:--in~tiry coders is zurrently under in- ferential Quantizer for Television," SSTJ, Vol. 43,
•;esatation. 1969, pp. 2585-2599.

The exa=ple of -he shift-unitary coder given 4. Kaliski, M.E., and Lemone, K.. "Discrete
asove aa! oe realized as .wrn in Figure 6. Codings of Continuous-Valued Signals," Proc. l4th

Annual Conference on Infornation Sciences and Systes,
C=NCLUSIONS AND DISCUSSION Johns Hopkins University, Dept. of Electrical Enii-

neering, March 1980.
4e have foroalized the notion of a discrete-

time coder and have exhibited canonical structures S. Raney, G., "Sequential Functions." Assoc.
for three classes of coders, the unitary, finitary for Comp. Mach. Journal, No. 5, 1958, pp. 177-18-.
and shift-unitary coders. We have indicated that,
from the point of view of synthesis, coders and de- 6. Arbib, M.A., Theories of Abstract Automata,
coders should be viewed as hybrid-state systems; the Prentice-Hall, Englewood Cliffs, N.J., 1969.
major task is to define classes of coders and de-
coders which have identifiable discrete-state and 1. Kellerman, L., Duda, W.L., and Winograd, S.,
continuous-state parts. A finitary coder realized "Continuity and Realizability of Sequence Transfor-
in the general form shown in Figure 3 may still be mations," IEEE Trans. Elec. Cono., Vol. EC-15, No. 4,
easily synthesi:2ble (the coder of Figure 7 is an 1966, pp. 560-569.
example). However, this is not always the case and
is the reason for the algebraic approach we have 8. Lemone, K., "Languages Over the Real Numbers",
adopted. Ph.D. Thesis, Dept. of Math., Northeastern Univ.,

We have also shown that a definite hierarchical Boston, Mass., 1979.
classification of coders exists. To aid in this
classification, a coder may be viewed as an acceptor 9. Wimpey, D.G., "Towards a Structure Theory
(6) of real languages. A hierarchy of these lan- for Coders of Real-Valued Signals," LIDS-TM-0SZ,
guages exists similar to the hierarchy of languages Oct. 1980, Mass. Inst. of Tech., Laboratory for Inf.
studied in the computer science literature (regular, and Decision Systems, Cambridge, Mass.

context-free, context-sensitive, etc.). Real con-
text-free languages and their generating grammars
have been studied by Lemone (8). The language ac-
cepted by the coder of Figure 72 can be shown to be
context-free, while no language accepted by a shift-
unitary coder is context-iree unless the coder is
unitary. The real regular languages form a proper
subclass of the real context-free languages, and are
precisely the languages accepted by the finitary
coders (!).

Coders form one subclass of the nonlinear dis-
continuous mappings for which a realization theory
can be developed. It is the fact that the domain of
a coder mapping is a finite set that has enabled us
to draw on many of the ideas and :esul:s in the field
of computer science.
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d Figure S Decomposition of coder of Figure 4

j. R -fa,b,c) via
Figure I Quantizer q with hysteresis. q: R - W and

d: W -R =(Y a if yc(--l-)
b if yc[-1,2)
c if YE(Z.-)

q ~ Z_ YkR , k2

k

Figure 2 Differential quantizer k2
q: R W and d: W Rbf

YkERP ------
k F W 4W /02)\

flh- Figure 6 -Example of shift-unitary coder

I Z (1) Coder decomposition
1 (2) q: R3  (O,11

L-----------J
C, l'O

FiEure 3 Ceneral coder decomposition0

C: ftp- Rfn, q: ft *W

( o ,) (-2,oo) 01  +-0, 1 q2  wk1

(2)Oc 2

(-l)-I Spk fcto as a qF

Figure(2 4Riie-ttealization in the formie ofFgue+

ql:R-.4-l,I) via q.,: R-(O,11 via
q (Y) I1 if yl,) q(y) s sgn(y-

L therwise I12
x I(- .;
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