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ABSTRACT

The notion of a discrete-time coder as a device
which converts real vector-valued sequences into
sequences over 2 finite alphabet is formalized. A
hierarchical classification of all coders, in terms
of their input-output mappings, is sought. This
classification is based on a canonical structure
theory being develcped for coders. An algebraic
approach is used to define three classes of coders
which have simole canonical realizations, i.e., ones
for wirich known syn:thesis procedures may be used.
It is proposed thar coders be viewed as acceptors of
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NOMENCLATURE

c coder mapping Rp' - W
2(u) the length of a sequence u, 1(A) = 0
a memoryless quantization mapping, q: Rp - N

9

P p-dimensional real Euclidean space

N finite set of coder output symbols

€ set membership symbol

s next-state mapping of a finite state system
B readout mapping of a finite state system
T right shift transformation

c left shift transformation

A the empty string

] the empty set

= an’' equivalence relation

X/4= the set whose elements are the equivalence clas-
ses of X modulo =

° denotes function composition

v for all

SUPERSCRIPTS

X* the free monoid generated by the set X

x*  the free semigroup generated by the set X
£* the causal extension of the function f

INTRODUCTION

Coders and decoders here are devices (such as
A/0 and D/A converters) which transform real-valued
sequences

r;;y sampling in time is assumed to have taken place

prior to coaversion.

into sequences of symbols over some finite alphabet
and vice-versa. They form the interconnection be-
tween systems whose variables evolve on the continuun
and systems, such as digital computers, which have a
discrete state and input set. Coders and decoders
are therefore inherent subsystems in hybrid control
systems (1), where the plant state variables and out-
puts take values in the reals, and the controller is
modelled as an automaton.

] In the development of any general compensation
scheme involving an automaton as controller, the choice
of the coder and decoder should be included in the
overall design process; the design of the coder and de-
coder is in fact central in the compensator synthesis.
Nhile various hierarchies of automata structures exist
(finite-state, linear-bounded, pushdown, etc.) pro-
viding the necessary design constraints, no such
classifications exist for coders and decoders. A con-
straint on the coder may be that its "continuous-
state part” must be in the same class as the plant
(for example finite-dimensional) and its "discrete-
state part" in the same class as the automaton. Thus
it becomes necessary to develop a canonical structure
theory for these systems.

Some examples of coders commonly found in prac-
tice are memoryless quanti:zers, quantizers with
hystersis (2), differential quantizers (3) and re-
settable integrators. A quanticer with hystersis
is shown in Figure 1 below and may be realized as a
quanctizer (different from q) followed by a finite
automaton. < will call coders which can be decon-
posed this way finitary coders. A coder which is
not finitary is given in Figure 2.

We will view a coder as a map
c: RP” -
where RP* is the set of all finite lengeh sequeaces
of vectors in RP, and W is the finite set of outfut




symbols of the coder. A decoder performs the inverse Definition

1

§' operation. It has already been shown (4) that any Let C be a coder and consider the associated ses

; coder may be realized, for n > 1, as a composition of conjugate transformatiors C = {cr“:uaap'}. If T
of an n-dimensional discrete-tire system followed by is finite we say C is finitar:, and if C = () we say
a memoryless quantizer (Figurs 3), i.e., as a com- C is unitary. Ia—

position of maps C,: R?" - R™ and q: R® = W. ihile . L . o
L. .. 1, . This definition is just Raney's (5) definition
this decomposition is completely general it is not -

the most useful one in terms of coder synthesis. mod:x‘:'ied to handle sequences over RP. Note that this

b This is since any part of the coder that would nor- notion of a unitary coder is only useful if the dozain
mally be synthesized using digital logic circuitry of C is RP . A minor modification in the definition
is treated as part of the discrete-time system with is necessary if one wishes to define unitary coders

L
input output map Cl, with states taking values in R". on RP". We will clarify this later on.
Our aim will be to develop conditions on the mapping

: N Example
C for the coder to be synthesized using standard =Xample . . . .
circuit synthesis techniques. It is thus desirable + A quantizer is a memoryless coder with domain
that these conditions result in realizations of C in rP given by I
which the inherently analog and inherently discrete
parts are identifiable. The results that are pre- C(yl...yk) = q(yk)
sented here are preliminary and pertain to certain
"simple but practically useful” coders; in general where q: RP = W, Cis clearly unitary. -

the problem concerns the realization of nonlinear
discontinucus mappings and is difficult. The results Example

for decoders are similar and are not given. C: R* = W is defined as

NOTATION AND DEFINITIONS C(A) = 1 "

Definition Cly;.--y) =[O0 1if y >0 and the number of non- ) {
A coder is any Sunction Ce e S 1

negative teras in YooYl is
t 4
c: RP - w either even or zero

where W is a finite set consisting of the coder out- 1 otherwise
put symbols. Sometizes the domain of C will be the

semigroup RP = RP.-{A} where A is the empty string. Then C = {CI'CZ'Cs}’ Ci: R* + {0,1} where

In the sequel the domain of C is always assumed to ci - Ctu, ueUicR' for i = 1,2,3, and

*
be RP unless otherwise indicated.
Ul = {ueR*: the number of nonnegative terms in

A o A TR T 7P

To view a coder 2s a mapping from strings to u is odd, and the last term is negative}
strings we define the causal extension of C to be the
mapping ) U2 = {ugR*: the number of nonnegative terms in
- u is odd, and the last term is nonnegative}
c: ’P ~ '
- US = {ugR*: the number of nonnegative temns in
obtained by extending C as follows: u is even or zerojy{A}

and thus C is finitary.
c*(a) = c)

. : Example
C*(y,.--¥,) = CAC(y,)..-Cly,...7,) The quantizer with hystersis of Figure 1 is
1 k 1 1 k .
defined as

; Definition
f Let X be any set, ClA) = Yo
Al

(a) The left shift transformation g: X* » X* is Cly) = q(y « ad(wo)) yeR

defined as follows:

Cly,...y,) = qly, + ad{C(y ...y, )} k =2,3....
ox = | x(2)....x(X) if x = x(1)x(2)...x(k) for 1"k koL kL

x(i)eX, k > 1 where acR, woeN are given and d is an injection of W
) into R. Suppose W = {qg,3}, d(2} = -2, d(8) =1,
A if xexU (A} s=l,w *a and q: R~{a,i} is the mapping
' We extend this to multiple shifts by defining a® to q(y) = {a if y>o0
be the identity map, ol =g and 0"‘1 = a"g. 8 otherwise. Then it is easy to see
that the finite state systea of Figure 4 is a realiza-

(b) The right shift transformation t: X* - X* is tion of C. We will see that this impliesx C is finitary.
defined as Note that a decomposition cf <his coder in the form

“ of Figure 3 appcars unaatural.
Tx = ux Yu, xcX*
Alternate descriptions of unitary and fimitavy
coders may be obhtained via thr me:haniea of Nevodle

' .




equivalsnce.

Definition .
Let u,v be sequences .in eP" and defins the

(Nerode) equivalence relation (6) = on Rp. as
umv &= Clux) = C(vx) ¥ xeap.

It is immediate that = is a right-congruence on

RP.. The following proposition is also evident, and
the proof is left to the reader.

Proposition
C is finitary iff = has finite index.

A coder which is not finitary is the shift-
unitary coder defined below.

Definition - *

For each ueR? and some fixed 8eRP define the

L ]
shift-conjugate functions Cu: RP '+ W of C as follows:
C)
C (A = cT @)
9

Clry-or) = CTU.y)  kaL2,..., 18-
C -7 = €Oy k= KO, UYL,

fher. we say C,is shift-unitary if ,: uetP} = (C}
for some 3€RP .

Example

Consider the coder C given by
c(py =0
Cy) = sgly-1) yer

Clrpery) 0 SOy ) yieRi ko= 2,35,
where sgn: R+{0,1} is the mapping
sen(y) = {1 i€y >0
0 otherwise
Then C is shift-unitary with 9 = (el,x) for any
91>l.

The definition of a shift-unitary coder for the
case where 2(8) = 1 is procisely the definition of a

»
unitary coder with domain RP". The fact that a
shift-unitary coder is noi finitary (except for when

it is unitary) will become cvident in the next section.

The following definition will be useful in char-
acterizing finitary coders.

Definition
A threshold finite automaton (TFA) is the S-

tuple
Mot (QY,K,8,8)

where

Q =+ the flnite set of scates, Q = [q',...,q")

Y = the input sct, YC RP

¥ = :he finite output set, ¥ = {wl,...u%

é: QxY~Q is the next-state function given by
stqt,y) = o if yr.\ij'c Y

8: QW is the readout function

A finite automaton (§) is dsfined similarly except

that Y is a finite set and the notation M is used

instead of ‘lr

Note that the specification of § defines the sets
Aij' and that for fixed i, the sets A.U.. j=1,...,r

form a partition of Y.

FOr a particular initial state qlsQ. the re-
sponse function of M.l. is the dap

. RP"
M.r.ql. R =W

given by

ur'ql(yl""yk) = 5(5'(q1n)'1r---,)’k)) k = 1.2,...

Mr.qltl\) = B(qp)

Definition
as memory span N if N is the smallest non-
negative integer such that

C(yl...yk)_ = c(be”"yk) K = Nel Ne2,....

If no such N exists, then we say that C has infinitce
menory span.

CODER REALIZATION, SYNTHESIS

A unitary coder is the simplest of all coders;
it is memoryless. This is the statement of the foi-
lowing Theorsa.

Theorem _+
C: P swis unitary iff there oxizts a map

‘qt RP + W such that for all Yi-o-Yy € /P R

Clpeyy) @ q(dk-lyl....yk) k=1,2,...

Proof. .\'ecessit;'.
First define the sets A, for each w‘EN as follows:

i
A {yer?: c(y) = w )
Then
¥, ..7 ’
1 k-1
C(yl...yk) = (Ct )(Yk)
= C[yk) since C is unitary
= v if ykeAi ’

Now define the function q: RP = ¥ as
aly} = v Lf yeA,
Then

Clyyeeory) » q(ck-lyr -v)

A = WP g

VL v CARA W W < Ty




Sufficiency.
Supposs

. k-1
Ciyye-ory) a@" Ty )

‘.
~

»
fnr some mad q: RP <%, Then for «& RP ,

P 2 k-1

€Yryey) » ale () yieeer) *oaln)
k=1,2,...

and hence C is unitary. Q.E.D.

The synthesis of s unitary coder thersfore in-

volves the synthesis of the map q: R? = W. Note
that this may not always be practical; consider for
example the map

q{y) = (1 if y is rational
0 otherwise

Ne will not atiemp: to define a '"well-behaved" quan-
tizer here.

Finitary coders are more interesting; they are
dvnanic and in general have infinite memory span.
The finitary coders are precisely those coders which
are finite-state realizable. This is stated in the
following theoren; the equivalent result in automata
theory is standard (6),(7).

Theoren
C is finitary iff C is the response function of
sone (minimal) TFA.

Proof. Suppose C is finitary. Define the sets

P.
Aij = {yeR*: uye uj Yu e Ui}

where the UiC Rp' ars the congruence classes of the
Tight congruence =. For fixed i, the sets Aij'
j=1,...,v clearly form a partition of Rp. We now

construct the (minimal) TFA ¥ - (Q.RP,W,8,8) as
follows:

Q = C, 1.0.,qi = El = ¢t for uel;
§: QxRP-Q via

§C.n = TY
3: QW via

S(Ci) = Ci (A)
Then
g.v = ¢t for uel;

« € if yeA,

i J

3 L] E£ (A7)
. C'.u(.‘.) for m:U.l

s C(u).

'S

Ne take q * CIA . E.‘ where L2 , and

W.ql(YI'--Yk) = 3(5.{‘\.1';’.1-.-?-‘))

b4

Yooy
. gt UK

)
= C(yl...y.‘)
and MT'ql(A) = 8(6'(Q1..'=)) = C().

The proof of the converse is lef:t to the reader. Q.E.D.

The coder of Figures 1 and 4 is therefore fin-
itary. The following result separates out the
threshold-type operations that occur in the TFA real-
ization of a finitary coder from the dymamic part,
and hence tells us how to go about synthesizing the
coder. This decomposition should be compared with
that of Figure 3.

Theorem
C is finitary iff C nay b~ -ealized ss the com-
position of maps

- -
C C1°c2

*
where Cz: RP -y is unitary, V is a finite set, and

CI: V* <~ W is finite-state realizable.

Proof. Suppose that C is finitary. Then by the
previous theorem, C is the vesponse function of a re-
duced TFA "T - (Q,RP,W,S,E.}. Define the functions

;i. as follows:

;’_: RP =+ (1,....7} i=s1,....r
via

q(r) = § if A

where the Aijc RP vere defined in the proof of the
previous theorem, r is the cardinality of Q. Now de-

fine q: RP» {1,...,07 8y as

) = @Q).....q. N

»
and take C,: RP + v to be the map

c,d)y = ¥

Cz(yx""k’ . q(yk)

k=1,2,...

where v is any vector in V with Vp o= L.
Clearly C, is unitary. Define thefinite automaton
M= (C'V.a.?.ﬁ) as follows:

(a) §: CxV.Cvia

G(CS'V) Cpi(\-‘) vev
where p.: V =+ {1,...,r} is the projection mapping

P; (v) = ith corponcnt of v




> W via

o 3 C
B, = 8@

Let Cl bes the responss function M : V* L N whers
q‘ » El (suppose AcUL). Then we hivg that, for
yex?,
3E AN S, @)

"G m

- C} if YﬁAij

= &(€..y)

Now,

(€0C, ) rpeeyy) = € (C,AIC,0,)C, (ryyy) -
b ’cz(yl' . -Yk))

A ARICA)

BE*(qy ¥ ). qlr)

8(*(q,.aly))..-q(r))) since
§a. V) = q

= B (qyy---y,))

= C(yl...yk).

The proof of the converse is left to the reader.
Q.E.D.

Application of these results to the coder of
Figure 3 results in the realization shown in Figure
S.

Not all coders with inherently discrete dynamics
are finitary; the coder of Figure 2 has a countable
state set. Extensions of the above decomposition
result, where the isolated automaton is a determin-
istic pushdown automaton (6) are currencly being
investizated. Note that in this case a feedback-
free decomposition cannot be obtained in general.

The shift-unitary coders are perhaps the sim-
plest class of coders with realizations that have
inherently analog Jdynamics and are finite-dimension-
al. These coders have finite memory-span (i.e. nil-
potent) and may be implemented with a single (real
number) storage register and a quantizer. This is
the result of the following theorenm.

Theoren
C is shift-unitary then there exists a map
q: lpxRN « W such that

C(yl...yk) q(yk-N’l""yk) k >N

Q(ek‘l""eNyl"'yk) I <k <N

€ = q)

*
yhere RP is the sequence (af length N > 1) appear-
ing in the definition of a shift-unitary coder.

L 3

Proof. For any seguence yl...ykeap and

1 i, j <k define
. -

'(Ya i,J) Yi-.-yj
Also define the sets Yi,Ai for each uiew as follows:
Y, & ve
A8 BOs L

> Nand C(B(y; 1,N)) = wi}
: eri).
Now define the map q: RpxRN~w as
a(y) = w. if yeA..
it M

Then, for yeRP with i(y) = N,
N
agc* 1} = C(y,... < ;1,0 =

3) = Cly-eery ¥ & UBLY; 1L,N) = w,
and gor yeRP , with 2(y) = k = Nem for some integer
m >0,

k Yi---r,
T = Sy = Cr Ry Ly

- Cop(yl---Yk) since z(cmrl---yk) > 2(8)
a'cr (%) (1) by defn. of Co

= q(B (d"y; 1.N)) since 2(a"y) = N
q(B(y; k-Ne1,k))
For a(y) =k, 1 <k <N,

Cr) = Gy
= i’
8,...8
= Cr 1 ktokfey)
= C(ak?ay) since l(aktey) > 2(8)

= a8 ("<%; 1.

- q(okey)
Ffinaily, for y = &
Culh) =
= C(8)

c = et

= q(B(2:1,N))

= q(a). Q.E.D.

It should be clear that the memory span of a
shift-unitary coder is finite, and is equal to :(3)-1.
(Note that although 3 mav not be unique, 2(9) ts.)

For these coders, uxv is equivalent to the statement

cl("’e u = oz(v)e v




i s 1 R . pxN
233 aeace R¥ /z i3 isomorphic to R, The exten-
5101 =0 shifs-finitary coders is currently under in-
vestization,

The example of the shift-uaitary coder given
azove mas oe reililed as shown in Figure 6.

CONCLUSICNS AND JISCUSSION

We have formalized the notion of a discrete-
tine coder and have exhibited canonical structures
for three classes of coders, the unitary, finitary
and shift-unizary coders, We have indicated that,
from the point of view of synthesis, coders and de-
coders should be viewed as hybrid-state systems; the
zajor task is to define classes of coders and de-
coders which have identifiable discrete-state and
continuous-state parts. A finitary coder realized
in the general form shown in Figure 3 may still be
easily synthesizable (the coder of Figure 7 is an
exaaple). However, this is not always the case and
is the reason for the algebraic approach we have
adopted.

We have also shown that a definite hierarchical
classification of coders exists. To aid in this
classification, a coder may be viewed as an acceptor
(8) of real languages. A hierarchy of these lan-
guages exists similar to the hierarchy of languages
studied in the computar science literature (regular,
context-frese, context-sensitive, etc.). Real con-
taxt-fres languages and their gererarting grammars
have been studied by Lemone (8). The language ac-
ceoted by the coder of Figure 2 can be shown to be
context-free, while no language accepted by a shift-
unitary coder is context-free unless the coder is
unitary. The real regular languages form a proper
subclass of the rezl context-free languages, and are
precisely the languages accepted by the finitary
coders (9).

Coders form one subclass of the nonlinear dis-
continuous mappings for which a realization theory
can be developed. It is the fact that the domain of
2 coder mapping is a finite set that has enabled us
to draw on many of the ideas and -esul.s in the field
of computer science.
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Figure 1 Quantizer q with hysteresis.q: R + ¥ and
d: W-R

ykeR + W €W
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+*

+ +

Q -‘d

Figure 2 Differential quantizer
q: R+ Wand d: W+ R

YkeRp == 1'
T F , q wkew

| A7
n n,
: 27! !
] ]
b e e e e J

Cy

Figure 3 General coder decomposition

¢ RPY a g, g R W

(~00,2)
. [2,00)
ol o=l

(-00,-1)

Figurc 4 Finite-state realization of the quantizer
with hystefsis

| a,b
% — (Y -

¢
;@ q z" -w W  — g a—@. -y
)

b,

Figure 5 Decomposition of coder of Figure 4
q: R +{a,b,c} via

b if ye[-1,2)

qUy) = 33 if ye(-=,-1)
c if ye([2,=)

8, 8
yeR Ay . b2y
k[ k-1 S TLk-2
q ---vvk
1
@)

“Figure 6 Example of shift-unitary coder

(1) Coder decomposition
(2) q: R® +(0,1}

Figure 7 A finitary coder

(1) Specification as a TFA
(2} Realization in the form of Figure 3:
q;: R+{-1,1} via q,: r+{0,1} via

q(r) =} 1 if ye(1,®) q,(y) = senly - %)
-1 otherwise 1 l)

x&l- 5 &







