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INTRODUCTION

A variety of control problems arising from
robotics applications can be restated as
optimal conirol problems of miniswum-time
state traiasier in the presence of state-space
constraints and comstraints of incomplete-
state information. The traditioual approach-
es to solving such probloms are Pontryagin's
Maximum Principle (Pontryagin at.sl., 1962),
in the case of open-loop control, amnd
Bellman's Dynaaic Programming method (Bell-
man, 1957). While s uumbar of technical
difficulties exist, approximate solutions of
such problems can generally be computed off-
lina (sae Kahn and Roth, 1971). Perturbation
methods for obtaining local feedback laws are
slsc available (Whitney, 1972, Hemami, 1980).

However, uo curreatly operstional robots are
known to be based on solutions of such optimal
control problems, nor is it likaly that this
will come about. Soms of the reasons for

this situacion can be¢ given: (a) complets
equations of motion are extremely complax, and
are often nct availabla; (b) trsjectories

msust ususlly be planned in a short tims-period
precading exacuticn-~thare is oo time for
detailed design studies or numerical analysis
for every motion being performsd; (c) relia-
bility and repeatability or accuracy of sotiom
ara often more important than minimizing
axacutioc time; (d) optimal control laws
often raquire too much storage or real-time
computation during execution of the motiom;
(e) nonlinearities are often sufficiencly
savers that local linearization gives poor
results (even if its heavy computational ce-
quirements are overlooked).

By contrast, current practice Lis often to
dstersine s feasmible open-loop position

]‘?urtiom of this research have been performed
at the MIT Laboratory for Information and Dec-
i{sion Systems wich suppurt provided by the
U.S. AMr force Office of Scientific Research
under Contract Mo. F49620-80-C-0002.

trajectory by a "teaching" procedure (e.g.,
Unimation, Inc., 1979). Tha trajectory
recorded during this procedure is then
“played-back" as a sequence of position cowm-
mands to joints which ars servo-actugted; the
rats of playback may be i..cressed in a
sequanca of preliminary trials, until the
bandwidth or power limitations of the servos
are encountered. This mechodology is relativ-
aly quick, iontuitive, and yimlds veliable
performance vhen the disturbances to the

robot and workspice are relatively small.

Al though this state-of-the-art approach to
trajectory formation is very effective, it
possesses inherent limitatisns snd is already
being supercedad in more demanaing applica-
tions such as locomotion sand sanipulation.
One limitation is that a human controller
cannot readily communicate commands to such a
robot. The robot is also unable to anticipate
or accommodats unaxpected changes in work-
space configuration; the teaching paradigm
cannot be readily extended to allow for fead-
back froz additional semsors (e.g., touch or
machine vision). The objective of the present
note is to extend and affirm the suggestion

of Young (1978) that discontinuous feedbsck
laws are naturally-suited to robotics problems,
to describe two further examples of discontin-
uwous feedback laws, and to explors further
notions for the synthesis of such systems.

Rationale for Discontimuous Feedback Laws

Accepting the fact that optimsl feedback laws
for this class of problems genarically exhibit
discontinuous behavior (Athans and Fzlb, 1966,
Xahn and Roth, 1971), one is motivated to
seak simpler methods of determining loci of
discontinuity. The theory of variable-
structure controllers, davealoped originally
by Emal'yanov (1967) and extended by his
colleaguas (see Utkin, 1978) has provided new
design mathods for certuin classes of svstams;
it is a remarkable observation that the
performance of such systems can be qualita-
tively quite robust, even though their pra-
cize trajectorias wmay depend strongly on the
initial state, disturbances, or wmodelling
errors (Young, 1978).

s be presented at 8th IFAC World Congress, Kyoto, Japan, August 1981.




The author has praviously suggested (Johnsonm,
1978) that there is a cl:ui; relationship of
this tcherry and the theery of control laws
described in linguigtic tecrms, e.g., &8 a
digital computer program (Zadeh, 1973).
Example ', in the sequel, aexhibits this rels-~
tionship. Discontinuous ccatrol in robotics
applications can thus arise from the nature
or tha tank dascription as well as frow dis-
continuities in the mschanical system and
environment, as {llustrared by Example 2. A
third reason for developing discontinuous
controls arisss froa implementation considara-
tions. Discrete sensors and actuators ara
usually cheaper and more raliable than con-
tinuc:s ones; thay arise naturally in discon-
tinuous control law synthesis. Discrete
signals are also preferred for signalling
tusk initiation, completiom, or intarrupts to
a control computer. Finally, digital comput-
ers typically perform binary operarious faster
than (apgroximations to) resl aumber opara-
tions.

The following two examples illustrate the use
discrete feedback control in two very simpli-
fied problems arising in robotics, which lie
just beyond the current state-of-the-art.
Since a gensral design theory for such cases
is not yet available, sach example 1s solived
oan its owm merits.

Exampla 1: Catching a Ball

In this example, the "hand" is idealized as

a cup-shaped veight of mass M vhich can be
acted on by vertical and horizontal forces in
order to catch & (vertically) falling ball of
aass m., First, it {s assumed that the hang is
beneath the ball and the interception dyuamics
are analyzed. Then, a simple control law to
aciileve catching from an ardbitrary initial
pesition, using remote sensing of the position
of the ball (s primitive form of vision), 1ia
given in algorithaic form.

The geomatry of thae problem is shown {n Figure
1. Suppose that x-(t;) - ﬁ'(c) = 0 to analyze

the catshing process. According to Newtcnian
sechanics, the ball's wotion is given approxi-
aately? by

v -eg z.(t:o) -y !-(:o)-o (1)
vhrere g is the acceleration due to gravity and

2.0 is the initial position of the ball at to'

the time it is dropped. The motion of the
hand is given by

Mz, = Mg + £ (0); z(t ) = 2 ; 2, (c )0
(2)

vhere fz(t) represets the control force.

2Iu air, a viscous drag force depanding oun
cross~sectional area i{s also present, and
could be used in estimating the ball's mass.
This digression is not pursuad here.

v i oot 2l — oo

Suppose that £ is the first time of contact

between ball and hand, and let r.; deanote a
tine just prior to tl while t.I deaotas a tima

just after tl' Assuming EH(:) is approximately
constant on the interval (ti.l:;'). it can be

set to zero without affecting the conclusiouns
of the following analysis; this is doue for
simplicity in the sequel. Either an elustic

or inalastic collision may occur at tl. I1f an

inelastic collision occurs, and the ball is
caught, the combined dynamics for t:>t:L are
(H-h)zu - ~(ttm)g + fz(:); :H(t) H zn(:).

ot

1
I-H(tl) "y " Iy the location of
. impace
LH(tl) -7 (3)

If an elastic collision occurs, then
wz = -ug, z_(cl) =z zn(tl) -7
May = Mg + £.(0)0 () = 2y 28
z, (t.) =1
M
Couservation of energy and mozantum can be
invokad (now taking f (t)=0) in order o

deduce which of these®situations will occur,
and to find the missing velocites at c-:l.

Conrervation of momantuw is
; - - . - - L] + L] +.
P u-(cl) + Hz'(tl) u-(:l) + Hz.H(tl)
(S)

vhile conservatioa of energy (owitting potential
energy, which i{s approximately coustant, from
both sides of the equatiorn) 1is

¢ » -2 . -2 . +.2
Ee un(:l) + Hzx(tl) - u-(tl) +

o 4.2
Hz.H(tl) (6)
Vieving these as simultanevus equatious for
i-(t;) and 'ﬁ‘(tI). bouncing is predicted when
.-+ +.3
there is s solution with zl(:l)>lﬂ(t1) .

A simultaneous solution yields the possibili-
tias

1/2)

2 () = (P{anECrm P 112} mi) ()

As & special case, suppose that ':.“(:I)-o. i.e.,

the hand is at rest at the time of impact.
Then it can be shown thsat a real-valued
s0.uilon of (7) always exists and that

3Othomu.. in an inelastic collision, energy

dissipstion will occur at t, s that the physi-
. + . +

cally realizsble solution :-(tl) - zH(tl) comes

about. This is not explored further here.

——
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Thus bouncing will occur whenever ¥>m, which
is typically the case. A fuither analysis
shiowe that if M>m, a finite negative valocity
of the hand prior to impact (’1{(‘ )‘0) will

prevant bouncing; in the limit a=d, "u (e, )=l
‘(tl). i.e., perfect tracking will be re-

quired; 1if the ball is very heavy (w>M), or
has a very large valocity at impact, then a
catch can be made even if r.“(: ) is positive,

i.e., if the hand comas to meat 1it. Typically,
one axpects u<M but not m<< M, so that a very
small movement to produce a slightly negacive
hand velocity prior to impact will ensure a
successful catch.

In a catch, the hand sust rarely intercept
the bsll's predicted trajectory bafors the
ball arrives at the poiat of intercaption,
and thap wvait to wake a small finasl maneuver
to avoid bouncing. If the ball is to be
struck, (say, in the x~direction) quite a
diffecent strategy is required: The ball's
trajectory must be intercepted precisely ut
the time the ball raaches the iaterception
point, with a velocity which is approximately
perpendicular to the trajectory.

Now suppose that the ball's position, x‘(t).
:'(t) can bs measured, that the hand position
xu(r.). r.“(t') is available from interual meas-
urement, and that forces E{(z) sad fz(t) can

be applied independently. Assums that accur-
ate velocity estimates can be obtainad from
the positiou measurements. At t=c the

initial time, suppose z.(to)-zm. :.(to)-o.
while z (€)= &tqu"ﬂ(:u) = A
simple implemantatioc of the rendezvous

strategy for catching the ball is the follow-
ing pasudo-Pascal slgorithm:

PROCEDURE CATCH

BEGIN
REPEAT
t(t)=0
o (8] = x (e)=x_(t)
f‘(t) - -Kuc‘(c)
UNTIL |-‘(:)|<zx

£, (t) = ~K;(iu(t)-;‘(t))
.‘(t) - :.H(t)-xr(t)
1 = 4 <+ A (v)
x x X
[4 is the sampling interval)
t () = -Klzi.x

IEURRU LN I, OF TN o -2 1P T o v "

UNTIL z.(t) g zx(t) + Ez

IF | zy(ei-z ()l €, AND [ (e)-x (o)< E_

THEN RETURN

ELSE [MISSED THE BALL, GO TO ERROR
RECOVERY ]

END

The first REPEAT loop uses position feedback
on the x-position arror (intended with a
“large” gain le) to bring the hand below

the ball as fast as possible. The second
REPEAT loop uses intagral control on the
xX~error’ to more accurately position the hand
below the ball, and derivative feedback on
the Z-valocity error (intended with a “'small”
gsin, K'z) 80 that the hand has s small down-

ward velocity when the ball strikes it.
Although the details of this control law are
essentially irrelevant, it is primarily 4in-
tended to iliustrate two points: (a) it is
not necessary to explicitly predict the traj-
ectory of the ball (i.e., to preplan the
trajectory) or to imow thie precise mass of
the ball; (b) The coatyol strategy is dis-
continuous ar the tims becween the two
REPEAT loops, wvhich is determined by the
wction of the ball itself. In the second
exaxple, the control law discontinuity arises
primarily from state-variable constraints
rather than from the task description.

Example 2: Converting Vertical Force to
Horizontal Locomotion

A single magsless link of length 20 terminated

at the upper end by & mass o, and at the lower

end by a4 masg m., is considored in the axample

0
(rigure 2). A vertical force, F(t), may be
applied tc the upper mass: When this force
11fts the link above a horizontal surface at
2=0, it is free to swing back and forth in

one direction (defiied as the x-direction);

vhen mags n, is in contact with the surface,

it “sticks" unless an upward vartical force
component s subsequantly applied to it. This
sssumption approximates the effect of a
friction countact batwaen % and the surface.

The intriguing fearure of this sxample is
that chere exist simple strastegies whareby
the puraly vertical force F(t) can be used to
propel the liak in a forward horizontal
motion. These vesult from a proper coambina-
tion of two motions:

F: The link falls down (like an inverted

pendulum) when =, is on the surface and

no vertical force is applied (F(t)=0).

S: The link swings back and forcth in a stable

pendulum wotion vhen v, is off the surf-

ace and a vertical force is applied to
countaract gravity (F(t):(-ohl)g).

gy ot e g
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The equations of motion are first derived

in the two cases vhere m. is not in contact
with thae surface z=0 (Cagu S), and then vhen
it is ia comnt~ct (Case F).

Case S: Lat l-'01 danote the force on '0

sxarted through the link by @, and l’10
denote the force on L exerted by By defined
in ths direction ¢f the link for sach mass.
Newton's equations for m, are

uo:'io = -my§tF, siad, »

‘oio = Py 088, (10)
And for ‘l they are

ul'z'l -F-ag- Pmlineo (11)

"1*‘1 - -choleo (12)

vhere g den.*sC the acceleration due to
gravity. The constraint of equal and oppo-
site reactions (rigid liok) is Fm"m' Tha

link imposes constraints betveen (xo.zo) and
(xl.zl) which are most readily expressed in
terms of GO:

X, = x_ + EOcOleo (13)

] 0
and

2, % %, + Aouneo (14)

1

The time-derivatives of tha constraiuts are
used because the constraiats must hold at
each instant of time. Elementary algabra
and trigonometry can be used to solva for
Fol and FlO in (9) and (10). PFurther

algebra yields the key equation for 60:

60 = Fcos ec/ul lu (15)

In this example it is natural ¢o assume that
inertial mesasuremsnts could bu made only on
wy, and thus it is of interest to have

aquations of motion directly in tevms of the
inertially asasured states (xl.zl) rather

than (xo.zo). These equations aru:

S ) § 2.
x, (lo Q/ (lohl))coleoeo

(Io/-l(noﬂll))lineoco- 901? (16)

o a2
z = '("ozo/(‘o"‘ﬂ)““eoeo -8
+[cos’8/m +31a?8 /(m m )P (17)

Purely algebraic constraints (13)-(14) can be
used to find (xo,zo) &nd to check that

z0>0; otherwise a transition to Case F aay

occur. Purthermore, note that (16), the fore-
ward acczlerstion of '.1' is driven uy the

vartical force F, providing the possibility
of locumotion.

Case F: Lat r01 and Pm be defined as ia

Case S. During Case F, it is assum:d that
(xo,zo) remain fixed at their initial values,

and that zo-O. Newton's equations for w, are
mz, = F - ag - lei.néo (18)
?x, - -chosﬁo (19)

In differentiating the constraints (13) and
(14), Xy and zg are held constant. The

equation for eo is derived in a similar
fashion to Case S:

60 - Fcoueolnllo - zcooeolio (20}

Since X, and zg are fixad, (xl.zl) could be
found directly from the algebraic constraints
once (20) war solved. However, differential
expresrions analogous to (16) and (17) are
more useful for guldance purposes:

§1 - (-10902 + glineo)cOleo - Flinaoconeolml

_,(21)
- (-20902 + 5.1;90)31;.80 - g—l’cou'eo/m1

.

51

As expected, (20)-(22) do nor depend omn =y
because u, doasn't aove in Case F.

Feedback law: Ounly the most simple form of

feedback control strategy is describad here,
and it is shown that feedback from only 90

and éo' as illustrated by the solid feadback

1ine of Plgure 3, is sufficiaent to provide
the features of useful locomotion described
above. Tha discontinuous feedback law is
most readily i{llustrated on the phase-plane
plot of 30 vs. G, of Figure 4.

The feedback law is:
Whenever (eo(t).éo(:)) in Regions A,E or F

taks F(t) = 0Q
Whenever (Go(t).éo(t)) in Regions B,C or D

take F(t) = (-0411)5

For any initial condition inside ths shaded
area axcept the point (w/2,0)%, tha wotion

of the system will eventually zéttle fnte a
periodic motion. Initial conditicnw outside
the shaded regions cannot be correc:ed by this
feedback law. Disturbances such 43 variation
in surface haignt, friction, ete¢,, result in
parturbations to the trajectory, which are
stable if the system remsins inside the shided
region. Thus, one goal of accommodating small

“Ccr:ain additional constraints and sesump-
tions, which may slightly decrease the size of
this area, have been intentionally ignored in
this simplified analysis.
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obstacles has been met. A second goal, of
varying th¢ speed of locomotion, can b2z mat
by varyiag em paramatricelly. The time per

cycle is roughly related to the araa enclosed
by the perindic tzajectorv, while the horiz-

ontal distance is approximately 9»0(9_‘-3 niu);

the ratio of distance to timze is an approx—
izmate measure of average forward velocity.
The range of achisvable velncitias with this
locomotion stritegy is rather small, even
though the corresponding range of step iizes
(between 0 aud 210) is rather large. The

margin of stability of the larger step sizes
is considerably decreased, howevar.

The continued forward motion of u, doas not

violate cunservation ¢f momentum; the inicial
forward momentum is conserved during wmotion
S, but during motion P, it i3 augmented by
momentum exchange, which occurs due to the

constraint that =y ramain fixed on the

surface. Thus, the energy expended inm 1lift-
ing during motion S can in fact be converted
into forward accelaeration during motiom F,
and the forward motion will not die out (e.g.,
due to friction «ffects). No laws of physics
are violated by chis strategy.

CONCLUSIONS

The examplas, drawn from two different areas
of robotics, illustrate that discontinuous
feedback laws are readily devised for a
variety of applications. 1In both examples,
the feeadback law could be viewad as a finits
ser. of mutually exclusive continuous-control
subtasks. In the first example, two different
linear control laws vere used, while in the
second example, two differant constant valuas
of control were used. FPurthermore, the tran-
sitions betwean tasks were closely tied to
events in the (full) state space which vere
reaadily detectable, e.g. interception and
rendezvous in the first exampls, and contact
with the surface 20 in the second. These
exanples illustrate that a generalization of
the mathods employed by Young (1978) may be
useful 1a future robotics applications. A
set of control values or continuous-countrol
feadback laws sufficiently rich to control

the motion of the system in each of its known
or desired states is chosen. The trajector-
ies of the system under thesa forms of fead-
back are computed. The switching locli betwaen
the control laws sre then taken along the loci
of intersection of these trsjectcries, or
along a physical constraint locus of the
system wotion, in such a way that tte desired
combination of movements is obtained. Thin
has the effect of assuring a vell-defined i .de
of sliding along the discontinuities of the
closed-loop system; othervise the nature of
sliding might change warkedly and uapredict-
abiy within a discontinuity surface dus to
trigonometric~type nonlinesvities of the
equations of mwotionm.

The salection of a fini{te number of candidate

Sl R it b ) ke e T DR T T

control strategies and tha choice of switch-
ing loci defined by intersections of natural
motions of the system under these candidate
control laws appear to be primary requirements
for a practical design theory of discontinu-
ous control for robotic systems. Presently,
the greutest difficultius in the development
of such & theory are the relatiounship of
linguistically-described goals to feedback
law selaction, the lack of analy-ic methods
for charactarizing controlled motions of the
sSystem, and tha inherent difficulties of
stability analysis for discontinuous systems
(Johnson, 1980).
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