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and diagnosis?
Along with the feature extraction problem, given an

electrical network of known topology, what are the conditions
for testability?

To attack the long standing fault isolation problem in
analog electronic circuits, we have focused on two of the
major problems. One is the presence of uncertainties such
as indeterminacy, vagueness, randomness, and so on that
naturally arise during the solution procedure of analog
fault isolation. The other is the presence of topological rest-
rictions inherent in specific circuit configurations. -

Our main attention was focused on dealing with the fault
isolation problem involving various kinds of uncertainties such
as indeterminacy or vagueness. We show that such problems lend
themselves very well to and in fact can be solved by adoptinc
fuzzy set concepts. In particular this line of research has
produced a modified fuzzy set technique applicable to automatic
fault isolation. Topological aspects utilizing graph theory may
be used effectively to assist in preanalysis of faulty analog
electronic circuits. As a spin off of a consideration of these
problems, we developed some new theorems for element value
solvability. It should be made clear however that effective
fault isolation can be accomplished with or without this pre-
analysis to assist in resolving the more fundamental problem
incurred by uncertainty.

As a consequence, this research yields the following
specific results:

1. A base line automatic isolation system which can be
used to lea. with various kinds of uncertainties. A fuzzy auto-
mation model served as a point of departure for the base line
system. Various fuzzy relations are used to select and update
the parameters and structures of Lhn system.

2. Set of algorithms and new decision criteria which can
be implemented easily and used for effective fault isolation. A
fuzzy distance measure and a fuzzy entropy measure are used for
decision making in the fault isolation algorithms. The results
are shown to be generally more effective than existing techniques

3. Ample illustrative examples and simulation studies are
included to back up these new methods. Several examples such
as low pass filter, band pass filter, and communcation I/0 cir-
cuits are used to illustrate the simulation studies. The results
of simulation studies demonstrate the applicability of a fuzzy
set technique.
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ABSTRACT

FAULT ANALYSIS OF ANALOG ELECTRONIC SYSTEMS:

Algorithms based on Fuzzy Sets

Jonghee Lee

Samuel D. Berosian

There are ossentially three fundamental problems

involved in achieving effective automatic generation of

fault isolation tests for analog electronic systems

feature extraction, fault classification and diagnosis.tFor practical electronic circuits having component

drifts and measurement noise, how are we able to introduce

fuzzy set concepts and provide method- to achieve fault

classification and diagnosis?

Along with the feature extraction problem, given an

electrical network of known topology, what are the

conditions for tes 'ty?

1 To attack the long standing fault isolation problem in

analog electronic circuits, we have focused on two of the

major pxoblems. One is the presence of uncertlinties such

as indeterminacy, vagueness, randomness, and so on that

natuially arise during the solution procedure of analog

fault isolation. The other is the presencr- of topological

restrictions inherent ii. specific circuit- configurations.

Our main attention was focused on dealing with the

fault isolation problem involving various kinds of

* I

A m m m m . m m m . . . ..



uncertainties such as indeterminacy or vagueness. We show

that such problems lend themselves very well to and in fact

can be solved by adopting fuzzy set concepts. In particular

this line of research has produced a modified fuzzy set

technique applicable to automatic fault isolation.

Topological aspects utilizing graph theory may be used

effectively to assist in preanalysis of faulty analog

electronic circuits. As a spin off of a consideration of
these problems, we developed some new theorems for element

value solvability. It should be made clear however that

effective f.iult isolation can be accomplished with or

without this preanalysis to assist in resolving the more

fundamental problem incurred by uncertainty.

As a consequence, this research yields the following

specific results:

1. A base linc automatic isolation system which

can be used to deal with various kinds of

uncertainties. A fu'zzy automaton model served

as a point of departure for the base line system.

Various fuzzy relations are used to select and

update the parameters and structures of the system.

2. Set of algorithms and new decision criteria which

can be implemented easily and used for effective

fault isolation. A fuzzy distance measure and a

fuzzy entropy measure are used for d, "
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in the fault isolation algorithms. The results

are shown to be generally more effective than

existing techniques.-

3. Ample illustrative examples and simuJation studies

are included to back up these new methods. Several

examples such as low pass filter, band pass filter,

and communication I/O circuits are used to

illustrate the simulation studies. The results of

simulation studies demonstrate the applicability of

a fuzzy set technique. V
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GLOSSARY OF TERMS

A. Definitions

Analog Circuit: Electronic subsystem, component, or printed

circuit board.

Analog System: Set of analog circuits (boards) processing

analog signals.

Fault: Physical defect causing a failure.

Sfal : Effect of fault.

Fault Feature Zjct,!ctj.o: Process that simplifies the fault

isolation problem sufficiently to render it tracable for the

fault feature selection.

Fa etj =ian: Selection of effective fault

features from a given set of feature measurenents.

Fault piagnosis: Determination of the cause of a fault

(e.g., the exact value of off-tolerance parameters).

Test Roints: Connections or nodes of a circuit to which it

is possible to connect a measuring equipment.

Tppggwr: Definition of the test procedure.

Testability: Capability to find out if the unit under test

is operational or not as well as the ability to find out

which component or group of components have failed.

Stimuli: Signals applied to the system's inputs.

_I
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B. Faults

Deviation Fault: The value of a paramete:: deviates in a

continuous manner with time or with environmental conditions

up to an unacceptable value.

Catastrophic Faults: Those faults caused by a sudden and

large variation of a parameter (e.g., short, open,

break-down).

Single Faults: Those faults concerning only one parameter

or a component at a time.

Multiple Faults: Those fault concerning simultaneously

several parameters or components.

C. Types of Tests

Functional Test: Verification of the function of modules

for nominal characteristics and conditions.

Paramgn tric 2at: Verification of analog characteristics

within specified tolerance (voltages, currents, impedances,

A load conditions, etc.).

Static Test: Verification of stable states of unit under

test.

Dynamic Test: Verification of dynamic characteristics of

the unit under test, for normal use conditions (in

particular Zor transient analysis).

Exhaustive Test: Verification of all modes of operation for
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all types of faults.

Partial TeSt: Verification is limited to certain

characteristics or to a limited number of faults.

Off-line Test: Test of which operation of the system under

test is interrupted.

On-line Test: Test of which operation of the system under

test is not interrupted.
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2HAPTER 1 Introduction and Sunary

1.1 Motivation

The development of automatic test generation (ATG) for

analog systems (AS) lags far behind that for digital systems

partly because even under ideal conditions the complex

interaction of the jany c mponent affects the response

signals. Herein we confine our attention to analog

electronic systems even though the general approach is not

necessarily that limited. Due to the imprecision and

indeterminacy of the complex structure of faulty networks,

it is usually difficult to obtain exact solutions. It

should be stressed that for fault isolation it is

unnecessary to seek the exact solutions. Nevertheless, in

the realistic situations component "rifts and measurement

noise must somehow also be taken into consideration. We can

for convenience interpret such a system as a fuzzy system so

that the fuzzy set concept of Zadeh becomes the basis for a

fault isolation method.

It is well known that the topology of an electrical

network with only a limited number of accessible terminals'limits the testability of the unit under test (UUT).

Testability refers to the capability to find out if the UUT

is operational or not as well as the ability to find out

which component or group of components have failed. To

accomplish this effect, access to suitable test terminals is
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necessary. Berkowitz (74) introduced the concept of element

value solvability as necessary conditions for solving the

values of lumped network elements given limited access.

Using graph theoretical aspects of this element value
solvability, we can determine the sufficiency of the access

terminals, or the solvability of the network.

1.2 Statement of the Problem

There are essentially three, fundamental problems

involved in achieving effective automatic generation of

fault isolation tests for analog electronic systems

feature extraction, fault classification and diagnosis.

For practical electronic circuits having component

drifts and measurement noise, how are we able to introduce

fuzzy set concepts and provide methods to achieve fault

classification and diagnosis?

Along with the feature extraction problem, given an

electrical network of known topology, what are the

s1 conditions for testability?

1.3 Scope

For practical analog electronic circuits having

component drifts and measurement noise, we adopt a fuzzy

system model of faulty analog electronic circuits.

Considering fuzzy system models of faulty analog circuits,

the followitg specific objectives are sought: (1) To develop

criteria for fault diagnosis and to optimize the level of



diagnosability via learning algorithms in order to reduce

the computational effort. (2) To develop efficient

computational algorithm for assessing the power of

discrimination in the test signals among fault conditions

via information theoretical point of view. (3) To verify

and assess the efficiency of the proposed test method by

carrying out computer simulations on typical circuits. This

approach lends itself to treatment of integrated circuits.

Introduction to the state of the art in network element

value solvability and effort toward its solution are to be

found in papers by Berkowitz (74), Bedrosian (78), Gayer

(ll),and Navid and Willson (14). In this dissertation we

extend their work by providing a method to determine the

necessary and sufficient conditions for the solvability of

the network for single and two-element-kind networks. This

includes an algorithm to determine the network solvability

and the necessary theorems.

1.4 Summary

In Chapter 2 the state of the art is reviewed. A

summary of Zadeh's fuzzy set theory is introduced. Some

clarification is given of its suitability and relationship

to faulty analog circuits.

In Chapter 3 a fuzzy autonaton model (FAM) is

formulate as a basis for a fault isolation method. Various

properties of three fuzzy relations in fuzzy automata are

examined. Especially learning properties of fuzzy automata
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are studied and applied to analog fault isolation problem.

Section 3.5 deals with the problem of selecting the best set

of parameters for fault tests using the fuzzy automaton

model. An example of this learning technique is applied to

simulated faults on a simple active circuit. Section 3.6

deals with the application of fuzzy relations to the highly

overlapped fault patterns. Fault pattern classes are first

p m~sparate 44nt **".* -ul z~ u... z n fi n'mri$. corresnondina to

non-overlapping and overlapping regions obtained by

sensitivity analysis. The grade of membership of the fuzzy

parts are then modified according to simulation results and

the decision based on fuzzy relations.

In Chapter 4 two classes of information measures are

defined as measures of information content in the fuzzy

system, namely fuzzy distance measure (FDM) and fuzzy

entropy measure (FEM). Their properties are discussed and

their applications to fault diagnosis with FM4 have been

made. Section 4.4 utilizes a special form of Tellegen's

theorem to get the necessary values of port currents and

voltages for diagnostic purposes. A fault isolation

algorithm using fuzzy distance measure is developed. A

simulation of part of a communication I/O circuit is used as

an example. Section 4.5 discusses a fuzzy measure to

facilitate analog fault diagnosis having nonlinearity,

component drift and noise. The algorithm presented herein

makes use of the available measured data on port responses
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to isolate the faulty component based on fuzzy set cor-zepts.

Chapter 5 includes a summary and conclusions for the

present study followed by some suggestions for futher work.

In Appendices necessary and sufficient conditions for

solvability of single and two element kind network are

given. An algorithm to determine the network solvability

is developed. Detailed examples are included. Summary of

NAP2 Nonlinear Analysis Program is introduced.

11
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CHAPTER 2 Analog System Failure in the Context of Fuzzy

Sets

2.1 Introduction

In view of the declining availability of skilled

manpower, it becomes important to develop and adopt

systematic means for analyzing faulty analog electronic

Syvtems. The development of fault isolation techniques for

analog systems lags behind that for digital systems partly

becamse the complex interaction of many components affects

the response signals. Practical analog systems are exposed

to noisy environments. Under fault conditions such systems

in general become nonlinear. The behavior of faulty systems

can conveniently be considered in the context of fuzzy

systems (12,35,37).

Fuzzy system denotes a system with vague inputs, vague

states, and vague outputs for a given system structure

interacting with the fuzzy enviroment. We call those

variables such as vague inputs, vague outputs, and vague

states as "informal" variables (43).

The rationale for the development of fuzzy system can be

described as follows. Informal variables suffer from

vagueness or indeterminacy, so that a deterministic system

is hopelessly inadequate to represent them. The traditional

response cin be interpreted to mean that the informal

variables must be constrained , so that the deterministic

system wil2 apply. The fuzzy system approach proposes,
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instead, to loosen up, or "fuzzify" the deterministic system

to obtain a new system which is directly applicable to

constrained informal variables.

Fuzzy set theory itself has been developed since 1965

(35). The theory has been applied to the various fields

such as pattern recognition, formal languages, medical

diagnosis, automata theory, and so on. The primary part of

this study focuses on formulation and solution of some of

the specific real problems in the area of analog fault

analysis by applying fuzzy set theory in conjunction with

other related theories. For convenience the Rubjects of the

study are grouped into three parts: 1) Analog system failure

in the context of fuzzy set theory, 2) A fuzzy automaton

model and its application to fault analysis, 3) Fuzzy

measures and their applications to fault analysis.

Since some of the pattern recognition aspects play

major roles in the area of fault analysis, fuzzy measures,

such as fuzzy entropy and fuzzy distance, are defined.

Above measures are used as effective measures of fuzziness.

And based on the measure, we develop the criteria for fault

feature selection as well as fault feature classification

and diagnosis. Fuzziness is a type of imprecision which

stems from a grouping of objects into classes which do not

lend themselves to sharply defined boundaries. A basic

difference between a fuzzy algorithm and a heuristic program

is that the instructions in a fuzzy algorithm are themselves

7

- 4
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fuzzy whereas in a heuristic program they are not.

The secondary part of this study focuses on a review

and extension of some of the graph theoretical aspects,

especially initiated by Berkowitz's element value

solvability.

2.2 Literature Survey and Theoretical Background

Until now, efforts at producing effective algorithms

for automatically generating test programs have been

confined mainly to digital circuits for which more or less

satisfactory solutions have been reached. Today, industry

uses computer programs for developing and analyzing test

sequences for printed circuit boards built with MSI and LSI

. ,circuits. Analog circuits, on the other hand, have received

much less attention and effort.
The main difference of development between digital and

analog systems might be due to several of the following

reasons.

1) Fault categories as well as their statistical

distributions and correlations are not known with precision.

2) Even though theorectically measurable, conventional

automatic test equipment has its own limitation of

measurement range.

3) Relations among input and output signals in analog

circuits are heavily depending on the network structure.

4) Particularly under fault conditions, analog systems are
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frequently nonlinear, and involves measurement noise and

co mponent drifts.

Therefore the rest of this section is devoted to a review

of existing methods with answers to the following questions.

Characterization of method. What kind of theoretical

background does it have? To which analog system can it be

applied? The following classification methods are from

Duhamel and Rault (15). For convenience we consider only

three categories.

Etigtioethods: Two general classes of methods belong

to this category; deterministic methods and probabilistic

methods. The first ones consist in determining, from

measurements, the actual values of the parameters of the

UUT; determination may be purely analytic (based on analytic

relations between input stimuli and responses) or based on

estimation criteria (here both physical and mathematical

conditions are taken into account). The following detailed

methods belong to this first class; the least squares

criterion method (16,17), the minimal deviation vector

method (18), the quadratic programming method (19), the

voting method (3,5), and the minimal distribution functions

method (20). The second ones are probabilistic methods. In

probabilistic methods, the distribution laws of measured

responses are determined from the tolerances on the

parameter values and their associated statistical

distributions. The inverse probability method is oxie of the
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typical probabilistic methods. Theoretically, estimation

methods have as main advantages the fact that test-points

are the input and output connections of the UUT, fewer

measurements are needed than parameters, no need for

omission of particular faults (unlike taxonomical methods);

furthermore, they allow savings in computer memory due to

the use of analytic relations. Nevertheless, these

advantages are obtained at the expense of the computations

to be done at the moment of actual test.

Thus introducing the fuzzy set concept in this

estimation method and application to fault isolation is

essential to the satisfactory integration of various fault

isolation methods.

.p2 icl-Mg-thoda: The basic data to be handled are

the syL. m's structure and, possibly, analytic relations

between input variables and measured responses. The

information path analysis method (21,22), the maximal

current method (23), the inverse simulation method (24), and

the graph analysis method (25) are in this category. The

main advantage of these approaches is allowing to test a

single system or large portions of a single system in a few

steps. Moreover, they may be used as a preanalysis to probe

technique. In our study, certain graph theoretical aspects

are intensively examined. It could be used to enhance

preanalysis to applications for fuzzy system.

TXonica Methods: They are based on a fault



dictionary in which are stored the system's reference

responses corresponding to each potential fault condition.

During actual testing, measurement results are compared to

the responses recorded in the dictionary; the detected fault

is the one for which the set of measurements differs the

least, according to a predetermined criterion, from its

corresponding response vector in the fault dictionary.

Obviously, the accuracy of such methods is directly

dependent on how comprehensive one is able to make the fault

dictionary. Main advantages of taxonomical methods are

several levels of description (components, functions,

boards) and diagnosis capability, independence with respect

to technology (several types of measurements), test signals

correspond to normal operation, capability for trend

analysis, off-line or on-line testing, no assumption on the

type of systems (linear or nonlinear). Their main drawback

lies in the large volume of data to be processed, fuzziness

in the definition of fault signatures, and the risk of

overlooking faults not included in the fault dictionary.

2.3 Fuzziness in Analog Electronic Networks

Recall that the main problem is isolating fault pattern

classes whose analog functions are degraded by the faulty

components under additional constraints. In particular the

main cona.ition is that all the nonfaulty components are

subject to drift within prescribed tolerances and the

measurements are assumed to be corrupted by noise. Our main
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thesis is that such a system can be modelled by adopting the

fuzzy set theory; in particular the fuzzy membership

function.

On examining this concept, some researchers simply

assumed that, since the membership function takes values in

the closed interval (0,1), the theory of fuzzy subsets is a

variant of probability theory. In fact, this is not the

case. Probability theory is often viewed as a part of a

general theory of measure. By contrast, fuzzy set theory

falls within the theory of "valuation" ( in this sense,

"fuzzy measure" should be distingushed from usual use of the

term ) (49). A basic property of measure is its additivity.

A valuation, on the other hand, exhibits a weaker property

of monotonicity with respect to inclusion and thus is a more

general notion than that of measure (51).

Many of the electronic and feedback control systems of

interest are designed to perform certain specific analog

functions. These are continuous functions and the

deviations of a system function from its nominal value may

range between an upper and lower bound established by the

physical nature of the system. For such systems a slight

out of tolerance condition yields a partial failure whereas

large deviations usually result in a complete failure. The

difficult problem is to diagnose the fault when a component

exceeds the nominal value to an extent that the performance

of the system is just outside the specification while all
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nonfaulty components are subject to drift within tolerances.

The difficulties are compounded by measurements corrupted by

noise. Since this case represents the "real world"

situation, it is recognized as the diagnostic test case.

Two classes of well known analog fault diagnostic methods,

namely, the parameter estimation methods (70, 71) and the

bilinear transformation methods (1, 2) are very sensitive to

the noise and the nonlinearity of the components.

Thus we can identify the problem of fault analysis as

involving two highly interactive stages; one is establishing

the set of test measurements to characterize a fault patzern

and the other is the construction of an optimum design

procedure to classify a fault pattern based on these

measurements. X

2.4 Fuzzy Set Theory

IThe fuzzy set concept was originated by Zadeh (35).

Instead of taking on only two values 0 or 1 depending on

"included in" or "not included in" the set, the basic idea

involves taking on values in the range (0,1) depending on

the degree of belonging to the set. For clarity, some of

the definitions are repeated in the following discussions

(37, 39).

Definition 2.1: Let E be a set, denumerable or not, and let

x be an element of E. Then a fuzzy subset A of E is " et

of ordered pairs
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{x, PA(X)} , x C E

where WA(x) is the grade of membership of x in A. Thus, if

OA(X) takes its values in a set M, called the membership

set, one may say that x takes its values in M through the

function PA(x). Let us write

x -P M. (2.4.1)
PA

This function will likewise be called the membership

function. Three major operations are defined as follows.

Definition 2.2: Let E be a set and M-(0,1) its associated

membership set and let A and B two fuzzy subsets of E;

V (x) 1 E(x) A and B are complementary

denoted by B-A, (2.4.2)

V xcE :JAngx) = min ("A(X) B (x)) : The intersection of A

and B denoted by AnB, (2.4.3)

V XEE :pAUB(X) - max (pA(X), IB(X)) : The union of A and B

denoted by AUB. (2.4.4)

Since (0,1) is a complete lattice (39), we can define in

M(x), unions and intersections of arbitrary families:
WA x) , infA(x (2.4.5) I

iEI icl

4 Ix) = sup ! ilx) (2.4.6)

icl iCl

However the lattice M(x) is not a Boolean algebra because

AnA OT, AUA * E

stanas for empty subset of E.

Definition 2.3: Fuzzy implication (Fuzzy conditional

L ,
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statement) is defined as follows.

If A then B,

where AC X, and BCY, which has a membership function

defined by

Ps(y, x) min (iiA(X), ' 1 (y))- (2.4.7)

We are mapping an input A to an output in a fuzzy way.

That is, input is big then output is medium, given ACX, BCY.

Let's procede two description of a system in fuzzy

implication. If input is big then output is medium, or if

input is medium then output is small. i.e.,

If Al then B1, or if A2 then B2, which has a membership

function defined by
(2.4.8)

Pl( y , x) - maxa(min ( IA (xlpBI (y)), min(pA2lxI'B2 (y))).

These of course can be extended to more than two fuzzy

implications. An example of an implication extension is as 4

follows.

If A then ( if B then C), whose membership is defined by

4s (x, y, z) min ( A(x) ; min (.1B(Y) ; c(Z)))

= B ( x) ; B c(Z). (2.4.9)

Definition 2.4: Fuzzy Inference; To calculate the inferred

fuzzy subset, given a certain implicand fuzzy subset.

We know the rule If the input is big, then output is

medium. The question is : If the input is very big, what

will be the output knowing that the preceding statement.

The compositional rule of inference is as follows.



Given a fuzzy implication S If A then B, the fuzzy

subset B', inferred from a given fuzzy input set A' ( A,A'CX

and B,B'CY ), has a membership function defined by

[1B, (y) = max min A' (x), 's(y, x)). (2.4.10)

Silvert developed some more fuzzy operators based on

symmetry under complementation(84). Let Al-A 2 represent the

combination of two fuzzy sets A, and A2 under some rule, and

let T be the complement of A, If 1 A is the membership

function for A, then the membership function for K is

The requirement that the rule of

=combination be independent of whether we deal with a set or

its complement is equivalent to the condition

(Ao A''= (2.4.11)

If the membership function o12 for the set A] oA, is given

by an equation of the form 111 2 = C (1 ' 2 then eq.

(2.4.11) is equivalent to

1 , t,) = C(U ,-I1 2 )  (2.4.12)

A symmetric sum will be considered stable if and only if

1 A '-2 - 1 ' 2 )  1 i V 12  (2.4.13)

Now we define two operators A and V Operator \ is

defined as choosing the membership value close to 1/2,

operator i is defined as choosing the membership value far

from 1/2. If we confine ourselves to add the associativity

4.
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and stability of the symmetric sum, above operators

satisfies the symmetry under complementation.

Theorem 2.1: A and V are operators satisfying the symmetry

under complementation with the associativity and stability.

We call the V operator as the extremum (ext) operator.

We can also denote the median of two fuzzy membership values

i and 1/2 by med ( ', 21 1/2). Instead of using ' relations

we can also use ext-med relations.

2.5 Classes of Failures in Analog Electronic Systems
We can categorize the potential failures according to

the degree of system failure into "soft" failures (deviation

failures) and "hard" failures (catastrophic failures). A
*1

'soft" failure indicates that some components exceed their

nominal values to an extent that the performance of the

system falls outside the specification. A "hard" failure on

the other hand indicates a large deviation in the system

performance due to the catastrophic change of components

such as open or short.

There is a finite set of nominal measurements X =(xi,

x2 , ... , xj , ..., Xn ) in the system with a tolerance %.xi

for each xj, where xi stands for the ith port measurement.

Ai is the fuzzy set of all possible measurements at the ith

port with fuzzy membership values. The membership value for
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a specific measurement means the degree of fault assigned to

that specific port measurement. A fuzzy membership value of

"l" indicates a definite hard fault while a fuzzy membership

value of "0" indicates no fault. Hence an intermediate

fuzzy membership value represents the degree of soft faultvalues orrespondigato the utet, meueen interediat

indicated by the measurement. We associate fuzzy membership

values corresponding to the test measurements X'' (x',
0 o o

x ... , xi , ... , x ) by
n

1XU = (1 0 a o 0 ;1 . ) ).
1• , 

If the maximum fuzzy membership value of the test

measurements exceeds , , then we say the system under test

is at least in t-failure.

Another important distinction is between the single

component failure case and the multiple component failure

case. If only one component in any circuit is outside the

tolerance limit to such an extent that the response

measurements are out of specification, then we denote the

faulty circuit as a single fault case. Similarly if more

than two components in any circuit are sufficiently outside

their tolerance limits so that the response measurements are

out of specification, then we denote it as a multiple fault

case. Throughout this dissertation, the single fault case

will be the focus of study. Until now the multiple fault

case has not been studied extensively, mainly because of its

tQ



additional complexity. Whenever multiple fault cases are

known a priori, we can extend our methods to isolate

multiple fault cases.

I,

2 ,

gU
- 7
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CHAPTER 3 Fuzzy Automaton Model (FAM) as a Basis for Fault

Isolation

3.1 Introduction

The concept of fuzzy automaton has been introduced by

Wee and Fu (61) based on Zadeh's composition of binary fuzzy

relations. Their main interest was the application to

pattern classification as a model of learning systems in

connection with the nonsupervised learning problems in

automatic control and pattern recognition systems. Until

now fuzzy automata are largely used as models of learning

control systems (61), linguistics (45,46) and medical

diagnosis (50).

The fuzzy automaton developed in (61) is basically an

algebraic system, that merely replaces a deterministic

ainput-output relation or a transition of states by a fuzzy

relation. To impact on actual operational systems, we

propose a baseline system whose parameters and structures

may be updated by learning models. Specifically inputs,

states, and outputs are first subjectively assigned using

fuzzy membership functions and then the automaton model is

updated through the use of operators on the fuzzy sets.

Fault isolation techniques for analog electrcnic

systems are by nature imprecise. Henc' Lt is quite natural

to consider a fuzzy automaton as a model of fault isolation

or automatic fault testing in analog networks. In this way,

methods of handling fault isolation based on the fuzzy

4 . - -
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automaton become much broader and more general than by use

of the conventional method reviewed in chapter 2. We

frequently encounter situat.ins in fault isolation in which

the procedure is not precisely specified. Therefore, it is

of interest to investigate algorithms that show how to

achieve from imprecise procedures for reasonable fault

diagnosis results under the framework of fuzzy automata.

Our detailed study includes the following topics

1. Development of simple learning methods using various

fuz7y relations based on the fuzzy automaton model.

2. The conditions for convergence, monotonicity in the

above approach.

3. The learning behavior of the algorithms using fuzzy

distance measure and fuzzy entropy measure assuming little

statistical information is available.

4. Applicability of the automatic fault testing and fault

isolation methods.

3.2 A Formulation of Fuzzy Automata

When a fuzzy automaton is used as a model of a learning

system, the elements of a fuzzy state transition matrix and

a fuzzy output matrix are varied via a linear reinforcement

scheme or fuzzy relations. In this manner, the fuzzy

automaton exhibits a variable structure. Wong and Shen (62)

have modified the membership functions of the state directly

to learn the parameter values that maximize the expected

value of a noisy multi-model response function. The

_ K
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advantages are computational economy and analytical

convenience.

When we consider the system whose structure and states

are imprecise, a finite fuzzy automaton can be described by

a sextuple (X,S,Y, h,f,g) where

X : a set of inputs (x I , x2 , * Xe, ... xq)

S : a set of states (s I , s20 .... s i , ... , s M )

Y : a set of outputs (yI' Y2, g., yj' ... , Yd

j h membership function that maps (X,S) into closed

interval (0,1) (initial fuzzy state membership)

f : membership function that maps (X, S, S) into closed

interval (0,1) (state transition membership)

g : membership function that maps (S,Y) into closed

interval (0,1) (fuzzy output membership).

The above is a formulation close to the Moore type fuzzy

automaton. The fuzzy membership function h is the state

membership function. h assigns to each pair (xe, si ) C X x
Ii
S a certain fuzzy membership value. It is a fuzzy mapping

from X x S into (0, 1) such that for ( x, S. )t X x S, e=

1 1,2,...,q, i= 1,2,...,n, and is abreviated as h(xe, si) =

hei 0 hei 1. The fuzzy membership function g is the

output membership function. The output may be the decision

to classify an object as belonging to the jth fault class in

a fault classification problem. It should be noted that g

is a fuzzy mapping from the state si to yj represented by

g(si, yj). The fuzzy membership function f is the state



transition membership function. f defines the transition

operator characterizing a learning automaton. The

assumption here is as follows. 1) The degree of fuzziness

in the input affects the change in the degree of fuzziness

in the state through the state transition function by fuzzy

relations such as max-min, max-product, linear-product, and

extremum-median (ext-med) fuzzy relations. 2) The degree of

fuzzinesq in the output is affected by the change of the

degree of fuzziness in the state through the output fuzzy

function by fuzzy relations. 3) The state choosing scheme

is refined by the reinforcement scheme us n' the penalty and

reward information.

Usually the membership functions f and g are represented

by transition matrices Qn (xe) and Gn respectively. When

the input at the time instant it is x , the elements of fuzzy

state transition matrix Qn (xe) is given by

f(n ; Xe , si , sk ) = f( x(n) = xe, s(n) = si , s(n+l)=sk).

where i,k = 1,2,...,m.

Similarly, the element of the output fuzzy matrix Gn at

time t is given by

g(n ; sk  yj) g(s(n) = Sk, y(n) = yj),

where j = 1,2,...,r.

To be strictly correct, variables denoting the particular

fuzzy sets should be attached to f and g explicitly but they

may be omitted if they are self-evident. The main

implication of the fuzzy state membership is as an index of
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vagueness in the state at a given input. The main

implication of the fuzzy transition membership and the fuzzy

output membership is as an index of vagueness in the

procedure due to the degree of interaction between the input

and the state, and between the state and output respectively

constrained by the fuzzy operators. Fuzzy membership close

to one indicates the certainty of the element being included

in the class while an element value close to zero indicates
the certainty of the element being excluded from the class.

At the time instant n, suppose that the fuzzy automaton is

in a state si with the grade membership

h(n ; xe, s ) = h(x(n) = xe , s(n) = si ) and that the

input to the automaton is xe. Then, the choice of the next
eA

state given that the previous state is represented as a

state transition performance function rf, is given by

rf(n x V A (h(n e  f(n-i x

(3.2.1)

where A is a.n inter operator and V is an, intra operator.

Inter operator A is defined as an operator between the

corresponding fuzzy set elements, while intra operator V is

d efined as an operator among the chosen set of elements

using inter operator. We often select the state sk  which

satisfies
rf(n; XeSk ) £ rf(n; XeSk ) (3.2.2)

max
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where kmax ?I k. The state sk indicates the most
max

possible choice.

The next state transition membership function can be

updated using a linear reinforcement scheme. X

f(n+1; xe , 
s i Sk)= f(n; Xe I Sik) (-s) (s k )  (3.2.3)

if correctly classified =J s k )  1

iotherwise (sk) 0 0,

where 0< < <1.

Simlarly, the choice of the output represented as a output

performance function rg

rgi(n yj v A g1(n siYj h(n x

(3.2.4)

The next output membership function is updated using linear

reinforcement scheme,

g(n+l; sk ,yj ) = cg(n; s , yj) + (1-, (yj) (3.2.5) V

if correctly classified , (yj) = 1

otherwise 4 (yj) F 0,

where 0 < A 1.

In order to simplify the problem, when the set of

states directly exhibits the set of outputs, we can choose
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g(n; s ,y ) k=j

Therefore the modification of h or f or g gives the fuzzy

automaton a variable structure. This feature of variable

structure results in the learning behavior of the automaton.

Depending on the choice of intra-inter operators,

namely fuzzy relations, a fuzzy automaton exhibits a

different variable structure. The method of direct

modification of the state membership functions proposed by

Wong and Shen (62) can be included as a special case of the

modification of the state transition membership function

when the fuzzy transition membership is an identity matrix.

It is interesting to note that according to the definition

of membership function, "h" does not reveal too much about

the nature of the function. Thus h is a "grade of

membership" function keeping the order of state, called the

ordinal information that is defined for each xEX and

hE(0,1). A special class of fuzzy automata would have the

row sum of all transition matrices equal to unity. This

type of automata can be called the normalized fuzzy automata

which may retain the cardinal information during

transformation and have the same structure as the stochastic

automata.

The learning model (12) applied to fault classification

RA

.. .
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is formulated as follows: Let the fault classifier consist

of several sets of preselected discriminant functions.

These are characterized by sets of parameters, for instance,

values of the threshold E 's and values of the tolerance on

performance useci to detect a fault mode. Depending upon

whether or not external supervision (a teacher) is required,

the process of learning is classified as being off-line or

on-line learning respectively. Initial assignments of fuzzy

membership values are "subjective" and "local" (43). By

callinq the values subjective, it simply means assigning

arbitrarily which values of the "degree of fault" (base

logic) belong to "degree of truth values to the above

statements" (which linguistic truth-values to what degree).

By local values we mean that the assignments to the primary

term are defined only for a specified set of propositions.

In the learning process with external supervision, the

correct fault condition corresponding to a measurement is

usually considered to be known exactly. Then the teacher

directly varies the fuzzy automaton structure such that the

decision is based on the maximum membership grade i.e.

decide jth class if g(n ; s, y,) = max g(n ; si' Y

i

Either with supervision or with a proper specification

of the performance evaluation, the model adapts itself to

the best solution. Here the best solution means the set of

A
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the discriminant functions that gives the minimum number of

misrecognized faults among the given sets of discriminant

functions within the set of learning samples. On every

arrival of input x a transition may be executed from a state

s. to another state sk or the same state s. via the state
k

transition performance function, and then an output may be

sent out according to the branch in which the transition has

been executed.

In this section, the formulation of a fuzzy automaton

is described and basic learning diagnostic scheme is

presented. In the subsequent section it is shown how fuzzy

relations and linear reinforcement schemes contribute to the

learning of the best solution.

• 3.3 Various Fuzzy Relations in Fuzzy Automata

To model a fuzzy system, we can choose the tizzy

automaton as a baseline model. We consider inputs, states,

and outputs as fuzzy variables, and updating the structure

by using fuzzy relations and a linear reinforcement scheme.

There are many ways in which one could modify a given

concept, including the concept of automata to make it fuzzy.

One of the most popular way is to use the maximum and
minimum operators as a fuzzy relation. The model of fuzzy

automata obtained in this manner often turns out to be

"i qilar to the extensions of existing deterministic ones

(63). For these reasons, we Lnvestigate various fuzzy

automata depending on the corresponding fuzzy relations

•___ _ __ _i
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utilized.

The membership function for a path in which a higher

order transition may be executed from a state s. to another1

state s. or the same state via serial branches is calculatedJ

by one of several fuzzy relations.

Santos (63,64) discussed classes of automata obtained

from the pseudo automaton by a rule of extension and a set

of constraints. In his discussion, the pseudo automaton is

defined as a single length input with a state transition

function. Rules of extensions such as max-min operators,

max-product operatora, linear product operators are used to

generate an atomaton which has a multiple length input. We

can make the interpretation that each new fault condition in

fault isolation corresponds to a single length input.

Therefore our FA model will be restricted to a set of single

length inputs af, possible inputs.

The problem of fault isolation using various response

deviation measurements is basically a problem of vector

optimization. lor example

Q(c) = fQ (c),Q (c),...,Q. (c),...,Q (c)- m-in,
1 2 1m

where Qi (c) (i=l,2,...,m) are the elements of vector loss

function which represents the loss incurred !y the decision

as ith single fault, and c is unknown parameter vector.

We are interested in determining some of the possible

combinations of operators as fuzzy composite relations that

may yield better fault isolation for the application of

• o~
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fault analysis. They are max-min operators, max-product

operators, linear product operators , and ext-med operators.

3.3.1 Max-min Composite Relations

Following Ft general formulation of FA given in section

3.2, we now show how effective max-min relations are when

used to direct the learning of the fuzzy automaton. We

generally denote the composition of the two fuzzy set as

AOB. Max min fuzzy relations are defiied as follows.

44

AoB(x,y) ma; min (A(x,Z) , 11B(z,y)), (3.3.1)

where A and B are both fuzzy sets.

When we apply the above equation in the composition of a

fuzzy set AoA, we get

41

IAoA (x,y)= max min G A(xz), A(zY)). (3.3.2)

This fuzzy relation is explained as follows (61). ( The

pessimistic case is being considered when the minimum

function is selected between WA(xz) and iA(zy) and the

maximal grade of this minimum is being searched through z.)

It is easy to prove that the result of usinq max min

relations is equivalent to the use of min max relations

having a nonotonicity property in the fuzzy set A through

variable z.

Since the state transition function f, the initial

P 75'
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state membership function h, and the output membership

function g may be interpreted as the grade of membership

functions of fuzzy sets, we can define the state transition

performance function of the automaton as follows.

(3.3.3)

rf(n: XeSk) -max min (h(n; x ,si),f(n; xesiSk

Likewise, the output performance function of the automaton

is defined as follows.

rgtv; xe,Y j ) = max min (h(n; XeSi), g(n; siYj)). (3.3.4)

3.3.2 Max-product Composite Relations

The idea of max-product fuzzy relation is to choose the

transition path which yields the maximum of the product of

the fuzzy membershi ;,s between the two fuzzy sets.

max-product fuzzy eolations of the state transition

performance function ,' and the output performance function

rg can be defined as Iv'ollows.

rh(n; xeSk )  max (h(n; XeSi)*f(n; xe,, ) (3.3.5)

and

rg(n; xe,y j ) = max (h(n; x ,si)*g(n; siYj)) (3.3.6)

Theorem 3.1) Max-product operator is not

. N



32

log- interchanga) le.

Proof.

log h(n+l ; x) = log max (h(n ; x)*f(n ; x, i' sk))
i

= max log (h(n ; x)*f(n ; x, s., Sk))

i

max(log h(n ;x)+log f(n ; x, s i , sk))

A max log h(n ; x)*log f(n ; x, si, s
i 

k

Using above relations we are able to choose the maximum

of the two product fuzzy membership sets. The important

point is that the set can be ordered under the above

structure. It is easily noticed that the value of fuzzy

membership for rh(n; XeSk) conveys the information of the

average (central tendency) in the sense of geometry.

3.3.3 Linear Product Composite Relations

As another possible fuzzy relation we can choose the

transition path which yielc the average of the product of

the fuzzy memberships between the two fuzzy sets. Linear

product fuzzy relations of the state transition performance

function rh and the output performance function rg can be

defined as follows:

rh(n; x esk) = (h(n; x es) * f(n; x e(SiSk (3.3.7)

and

rg(n; x ,Y j ) = (h(n; xeS 1 ) * g(n; si,Y (3.3.8)
J e

M
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where ', is used as an average operator. This relation is

very similar to that of stochastic automata.

3.3.4 Max-topology Composite Relations

One other interesting class of fuzzy composite 5

relations is defined as max-topology composite relations,

when we have restrictions between the two fuzzy set given by

some topological relations. We can choose the transition

path which yields the maximum while satisfying the

topological restrictions. Max-topology fuzzy relations for

rh and rg are defined as follows.

rh(n; xes k ) = F(h(n; x ,s i ), f(n; XeSiSk)) (3.3.9)

e k e i ls.

and

rg(n; x,,Yj ) G(h(n; xOs 1 ), g(n; si,y j ) (3.3.10)

where fuzzy function F and G are induced by the

restrictions of the topology of the two fuzzy sets.

3.4 Properties of Fuzzy Relations in Fuzzy Automata

3.4.1 Simplicity

Applications of fuzzy relations can be evaluated by the

required time or space to solve a given problem. We would

like to formulate the problem as seeking the lower bound of

complexity given by the fuzzy relation

i II,__
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f AoB(X,y) VA ( f (XZ), f (Zy)) (341)

where the numbr of elements of the set A is mxn, and while

that of set B is nxj. The criterion used is the time needed

by an algorithm expressed as a function of the size of the

problem. We assume that operands are real numbers and the

basic operations are +, x, max, min, , V where A,

and V are defined in the previous chapter. For the brevity

of comparisons we further assume that m = 1.

(i) max min fuzzy relations

fAoB (x,y) = max min ( fA(x'z), f B(zY)) (3.4.2)
z

The above fuzzy relational equation has n comparisons

between the two values to get the minimum values and one

comparison among the n values to get the maximum value. In

the worst case, one comparison among the n values is

equivalent to (n-l) comparisons between the two values. In

sum, max-min fuzzy relational equation has less than or

equal to (2n-l) comparisons.

(ii) max product fuzzy relations

f oB(x,y) = max ( f (x,z) * f(z,y) (3.4.3)

c, B A B(34 )

We need n products and one comparison among the n values to

get the maximum value. In sum max product fuzzy relational

&T

g
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equation has less than or equal to n products and (n-l)

comparisons.

(iii) linear product fuzzy relations

f (x,y) F f (x,z) • f (zy) (3.4.4)
AoB A B

z

f£o (x'y) ("A (x ,f ZB ) 345

A Z

Recall that V operator is the operator which picks the

value far from 1/2 and operator. %is the operator which picks

the value close to 1/2. To perform the A oneration, we need

one addition and two comparisons. First we add two values

fA(x,z) and f,(z,y). ComparJion of the two values,

comparison of the sum of the two values, and one addition

will perform the operator. Therefore, in total, we need 2n

comparisons and n additions to perform operators. To

perform the ' ooeration, we need (n-i) comparison to pick

the maximum and minimum values. We need one addition and

two comparisons to pick one of the above values. In total

we need (n+l) zomparisons and one addition to finish v

operations. fuzzy relational equation requires (3n+l)

comparisonq and (n+l) additions. Notice that in the

microprocessor, addition and comparison take two cycles
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while multiplication has to have few more cycl.es. We can

condense the above results into the following table.

Number of Number of
Additions Multiplications

i 2n

ii n n

iii n n

iv 4n

Roughly speaking, we can order the fuzzy relations on the

basis of needed calculation time. Thus we have the above

table entries ordered as follows:

(i) -" ( v) ," (ii), (iii).

A3.4.2 Convergence in Linear Reinforcement Scheme

We are dealing with the problem of "learning" in an

unknown environment, i.e., where the function to be

"learned" is known only by its form over the observation
space. This implies that any desired solution which needs

the knowledge of the function to be approximated is reached

gradually by methods relying on experimentation and

observations. If on the other hand we can assume that the

form of the function to be approximated is known precisely,

then we can approach the problem with stochastic

approximation technique. There are cases when no assumption

can be made or the possible form of the functicn to be
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"learned". For the solution to be found by stochastic

approximation technique, the existence of the estimated or

approximated unknown quantities must be assumed.

When the unknown environment is dominated by the

vagueness rather than randomness, we have to make use of

observed information mainly to unveil the vagueness. In

some cases, fuzzy relations with linear reinforcement scheme

can be used to remove some of the vagueness in the unknown

environment. Based on the fuzzy automaton described in the

section 3.2 and 3.3, we can compare the converqence property

of various fuzzy relations. We have defined the state

transition perfcrmance function rf as the result of the set

operated on the state membership functions and the state 4
transition membership functions.

From eq. 3.2.1,

rf(n;xe,Sk) VA (h(n; xe,si), f(n-l; XeSiSk)

where i =1,2,...m

V (A(h(n;xe,si), f(n-l; xe,si,si)),

(h(n;xe,si), f(n-l; Xe,Si,Sk)

where i = 1,2,...,m, i t k.

In order to have learning behavior in the fuzzy

transition function f, the fuzzy transition matrix must

exhibit nonstationary behavior (61). As an example, let
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f(n; XeSiSk) = c(n; Xsk) for all i 0 k

and f(n; Xe,Sk,Sk) = akf(n-l; x e'sk'Sk) + (1-ak) k

with f(n; X esi 'Sk = c(n; X e,Sk) 0 if n is odd

. f(n-1; xsk,Sk) if n

is even,

where O< 1k i, <X < 1, k - 1,2,...,m.
k k

Furthermore, let

h(n+l; Xesk) rf(n; X,S) if

f(n; x,Sk k)-rf(n; xsk)*bn

f(n; x ,sk,sk) + an, otherwise.

where lani < IbnI, and bn is bounded sequence such that

bn ' 0 as n

Therefore an 0 as n - . With this assumptions, h(n+l;

Xe, S k ) is always between 0 and 1. When we have a perfect

teacher, fuzzy state membership function h(n+l, x esk) with

max-min relations, max-product relations, and linear product

relations converges to Xk, k=l,2,...,m.

As an example for the comparison of various fuzzy

relations, when

n 4n' n 2n

W

____ ___ ,__--____ ___ _,__,___ ____ ___,__,
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[ .5 f 0.5 0 0 X= 0.9

0700.5 0 0.8

0.8o 0 0.5 0.6

The learning curves for three fuzzy relations are showed in

Fig.3.1. After 13 steps all the learning curves converges

to X with an error within 1%.

Above convergence property can be varied, as

h(n+l; XeSk), depends on f(n; Xe ,sk'S k ) and c(n; x 1 Sk).

The typical learning curves with an unreliable teacher are

shown in Fig. 3.2, 3.3, 3.4. In this example, the

asumptions made are the same as in the perfect teacher case

except Xk is estimated and updated by the success or failure

of the decision.

We showed in this section that the state membership

jI function together with various fuzzy relations will converge

using the linear reinforcement scheme.

3.4.3 Monotonicity property

One of the important aspect of using fuzzy membership

function is the monotonicity property. Usually the absolute

values of fuzzy membership themselves have relatively little

meaning, while the order of the values is rather

significant. Most of the decision is based on the

cummulativt aspects of the ordering of the fuzzy membership

values. New fuzzy set is generated by the composition of
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two fuzzy 'iets using a fuzzy relation.

f: AB C C

with f of f'
A B C

i.e., a fuzzy relation f maps two-tuples of elements in the

fuzzy set A and two-tuples of elements in the fuzzy set B

into two-tliples of elements in the fuzzy set C. Several

types of fuzzy relations are discussed in the earlier

sections, ;uch as max-min, max-product, and linear-product

relations. We can extend these binary fuzzy relations to

n-ary rela,.ions by successively applyinq the binary fuzzy

relations. When the fuzzy membership is drastically

restricted to only one and zero, this problem reduces to a

certain type of the switching theory problem (87).

For ma)-min composite relations

4A1

fAoB(X,y) max min (fA(xz), fB(z,y)),

f AoB (x,y) is a nondecreasing function of fA (x,z) and

fB (z,y) for all fA' fB € (0,1).

Proof. If fA (xz) _ f,(zy) then

fA o B (X,y - fA*oB(X,y)

- max min (f(X,Z), fB (z,y)) -max min (f (x,z), fB(z,y))
z Az A*(X--,- fB

IS
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manx mi (f~ (x,z), fB(z,y)) -min (f (x,z), f (Zy)))

For all z

1) if fA(X'Z) <~ fB (ZY)
then T(z) - fA(x~z) - fA*(xz) 0,

2) if fA (xz) z fB (Z'Y)

then min f~~) ~ -~ z)

a) if fA*(X'z) Z f (z'Y),

then min~*(~y,~ z~) B(y

and T(z) f B(z,Y) -f 8 (Z y) -0,

b) if fA*,(x, z) < B(zy) ,

then T(z) -B f zy - f x )>0.

Therefore f X (z) z f (x,Z).fAOB AMoB

Similarly if f (Z -y) Z fB 'y)

then f ZY z f (~)qdfA 0B AoB*(z)qd
.Er max-.prod-ct composite relations

EAOB (X,Y) =max fA (x, z) * B(,y,

fAoB (X,Y) is a nondecreasing function of fA(xz) and

fB(z~y) for all fA, fB c (0,1l).

Proof If fA (x,z) fA* (xz) then

fAOB (Xly) - 1MB (Xly)

-max fA(xz) *f,(z,y) -max fA*(x,z) *f~ (zy)

fB By)
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Since 0 5 fB(Zly) S 1, for any z,

(fA(X'Z) - fA*'.(X'Z)) * fB(Zly) 1 0.
Therefore if fB(z'y) _ f~ z,)te

1 AoB (x,y) - fAOB* (xy) z 0. qed.

For linear Rroduct relations

fAoB(x'y) - EzfA(X'Z) * fB(z y),

where E is used as an averaging operator, f (x ,y) is az AoB

nondecreasing function of fA(x,z) and fB(z'y) for allIAIf .0 )
Proof is similar to the max-product case.

tt

I,2
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3.5 Learning Techniques Applied to Active Linear Networks

using Frequency Domain Analysis

3.5.1 Introduction

This section addresses the problem of applying learning

techniques to fault diagnosis in realistic situations where

component irifts and measurement noise must also taken into

consideration. In particular, the fuzzy conceot of Zadeh is

used as a framework for fault classification. Further,

fuzzy automata are used as learning models to select the

best set of parameters for fault tests, because they have

the advantage of simplicity and straightforward computation.

An example of this learning technique is applied to

simulated faults on a simple active circuit.

There are essentially three fundamental problems

involved in achieving effective automatic generation of

fault isolation tests for analog systems: feature

extraction, fault classification and diagnosis.

(1) The feature extraction problem.

Given a faulty pattern, say a set of input-output

signals, we must be able to extract from these signals the

information called signal attributes, Xl,...,Xn, which not

only propeLly characterize the fault, but also are amenable

to automatic processing and computation. In fact, the
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development of an automatic test generation system is

greatly influe:nced by the type of features or fault

signature selected for use. A well known signature

describing the state of the system in time domain testing is

the input-output cross correlation function (3,26,27,28).

Pseudo random binary sequences are sbcwn to have
approximately the required impulse autocorrelation. They

have an important advantage over white noise perturbation

methods (30) in that such sequences are not subject to

statistical variation and can be easily realized by using

feedback shift registers. In frequency domain testing, the

use of gain and phase measurements at selected frequenciesV

is widespread (5,29,30,31,32). It has been suggested that

the transfer functio.. arameters can also be used as a fault

signature but it has the lisadvantage of requiring complex

computations to convert input-output samples to transfer

function parameters (33).
'.

(2) The fault classification problem.

A set of r test features, which characterize a number

of identifiable failure modes, is chosen to form the

coordinates of a feature space. Assume each faulty pattern

represented by a binary vector whose components are

depending on whether each feature is present or missing in

that patteLn. The vertices of a set of a typical feature

space are labeled and a set of hyperplanes is used to

L_
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partition the feature space so that no region contains

vertices corresponding two or more different fault types.

Unknown fault patterns are then classified as belonging to

the type corresponding to the prearranged pattern in the

region in which they fall. The correlation method starts

from the same presentation in that a set of typical patterns

represented by binary vectors in the feature space are taken

as references. The unknown patterns are then correlated

with these references and classified as belonging to a

particular reference pattern according to the highest degree

of correlation.

(3) The diagnosis problem.

The ability of the fault classifier to determine

correctly the type of new patterns of unknown classification

is most appropriately stated in terms of probability of

correct diagnosis. Put another way, we wish to determine

p(,iIX) = probability that the given test data or feature X

belongs to fault type wi. The measurements are assumed to

have certain distributions p(XI wi ) , i=l,...m. Furthermore,

there is a certain probability of occurrence of type i

patterns, .1i ). The key information required to make a

diagnosis for a pattern is clearly contained in thu function

Pui IX) which is determined by the application of Bayes'

rule:

A M
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P(Wi P1'1V i )

P(Wi.X) = (3.5.1)

j p( )p(X:i),)

In the simple case of wi and 2 I the likelihood ratio test

which is optimal under various assumptions on the cost of

misclassification is given by

p(W1IX) > n classify wlIp
P( 2 1X) < n classify w2  (3.5.2)

where is some suitably chosen constant. The crucial step

is the determination of p(w IX) since it directly determines

the chance and cost of future correct diagnosis. The main

difficulty is that the computation and information required

for equation (3.5.1) in a practical situation involving

component drift and measurement noise are extremely

difficult to acquire. If the probability densities are not

analytically expressible, their values at each point in the

j feature space must be stored and tabulated. However this

process requires excessive storage space.

The so called "template matching technique" for fault

diagnosis has a lack of flexibility since it rarely

tolerates noise and distortion due to drift of components.

A fault diagnostic scheme incorporating learning will be

more effective and more flexible. In this section we

discuss the fuzzy set concept of Zadeh and its application

to fault classification with the help of learning

algorithms. Further we propose that the fuzzy automaton

4"14
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will serve as a convenient learning model for fault

diagnosis.

3.5.2 Fuzzy Sets and Fault Classification

The essential function of a fault classifier is to

reJognize the membership of samples which belong to one

fault type and to distinguish among them the different fault

types even though the boundaries between alternatives is not

sharply defined. Hence the task of classifying samples into

a finite number of fault types can be conveniently

established around the notion of "belonqing" in the case of

fuzzy sets (48). A, fuzzy set (class) u) in the space Q is

represented by a characteristic function f (X) which
1

associates each point in a value in the interval [0,11, with

the value of f (X) at X representing the "grade membership"
1

of X in . In order to generate a set of discriminant
" 1

functions for fault types, it is convenient to introduce a

single level, or two levels which lead to two-valued logic

or three-valued logic. Fo simplicity, consider two fault

types wi and w At this point, we introduce two levels a

and 3 ( 0 < 1, 0 < < 1, x > $). At level a , the two

types may be disjoint or separable and at level 8 (c), they

may be joint or not separable in the sense of ordinary sets.

We then decide that (a) X c w, if f (x) a a and f (X) < a
1 CU2

and (b) X 2 if f (x) < a and f (X) a a
"2

Notice that when the level falls below , X has an

4
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indeterminate status relative to wi and w2 This fuzzy

intersection when w, and w2  are not separable must be

identified and the grade of membership estimated for each X

in this section. This task can be accomplished by adopting

learning procedures to generate the discriminant functions.

(1) Generation of discriminant function by learning.

If we use small p( wi I X) as a discriminant function

and identify it with f (X), the problem is one of

reconstructing a function from a knowledge of its values

cver a collection of samples or observations. To do so, one

must have a priori information about a type of functions to

which f (X) belongs. Then this information in combination

with the learning samples would be sufficient to enable one

to construct a good estimate of f (X) (48). Let us assumeWi

that fi (X) can be represented by

n+1

f WX E~l *W X XT W.(35)Wi j=l 1  J 1

wiere Xn+ is one and X. is the j-th element of sample X.J
Again consider two types w and w The problem is to

determine a solution with vector W such that the cross

product of vector X and W,X W>O for all patterns of type

and xTw<o for all patterns of . Let N be the total number

of augmentel samples. Also let the matrix whose elements

are generated by test samples:
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and assume that all X's belonging to w have been multiplied

by -. The problem then reduces to determining W such that

x TO

error ingto Hio and Kashyap (34), a minimum mean square

errhypernlane can be generated even if the samples are

not linearly separable by minimizing the criterion function

j = 2 - b 2 (3.5.4)

with respect to both W and b, where b is an N-vector whose

components are all positive where II II stands for a distance

criterion. Setting to zero the gradient of J with respect

toW yields W =(xT)-I lTb rdXb where Xrin the generalized

inverse of . The positivity constraint on b is fulfilled

by the following iteration of b.

b(k+l) = b(k) + b(k) (3.5.6)

where

crtrin Setin tozr-h rdet fJwt epc
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2c[XW(k)-b(k)] I if[XW(k)-b(k)] •> 0
• b.(k) =(3.5.7)

6b. (k)

0 f[XW(k)-b(k)] i 0

the index i refers i-th component of the vector, and c is a

constant such that 0 < c <_ 1.

In vector form, equation (3.5.7) becomes

bk) c(XW(k)-b+IXW(k)-b] (3.5.8)

The iterative learning algorithm is given by

W(k+l) = W(k) + cX 6b(k)

and

b(k+l) = b(k) + c6b(k) (3.3.10)

W(1)=X+b(1), b(1)>0,

otherwise arbitrary.

(2) Separation of the fuzzy section.

nS
Once the minimum mean square error hyperplane H has

been determiined, separating boundaries are generated to

contain only the learning samples belonging to the complete

fuzzy section. This is accomplished by a search among the

misclassified samples for the minimum and the maximum

distances from H. Let the hyperplane H be represented by

iA

V4
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d(X) X T + n+l (H) =0 (3.5.11)

and the two separating boundaries by

XTW + Wn+ (H1 ) = 0

XTW + Wn+ 1 (H2 ) = 0(3.5.12)

the distances from the origin to H, and H2 are given by

Wn+1 (Hi Wn+ (H)

__W__ __W_ Imax
w! w! max(3.5.13)

and n+ l (H2 ) = Wd 1 (H)

jwf 1w! min

it follows that the two equations of Hi and 12 are

T ''H: XW + Wn (H)- IWdmax
1.n+1 a

H2 : X W + w 1 (H) - IWldmin

Now the samples belonging to wi and the samples belonging to

2 are separated from those whose status are indeterminate

relative to wi and w2 - In other words, the nonfuzzy section

is describel by

x W + Wn+l (H ) > IWIdmax ' X C W,

(3.5.15)
Tw + Wn+I (H)< IWld X C 2  3 5
XW~n+1 'min'

kjN. W7.
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and the fuzzy section contains samples given by

T
IWidmin < x W + Wn4 l(H) < IWld (3.5.36)

These fuzzy samples are then mapped into a feature space

by the following transformation

r iXTW + w n1 (i11)1

i TW + (H2) 1 (3.5.17)

Iwi

and the process is continued to separate the fuzzy section

from the nonfuzzy section from the Qy space until the whole

S space is partitioned into two regions.

(3) MulticLass generalization.

For multiclass wi: i=l,...m, the classification
procedure is to decide Xcw i , if d (X) greater than dj(X)+M

for all i=j, Ms'). This is equivalent to decide Xcw. if1

d (X) > d. (X) + 1, or simply d (X) - M >0 and d (X) + <

0.

Clearly, from multiclass discriminant functions the

learning proces3 can be used pairwise by using Ho and

Kashyap's procedire. Ho and Kashyap's algorithm has been

..................... ... ...... .. ... ... 14
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generalized to multiclass discriminant functions by Wee

(61). The generalized algorithm has the advantage of

requiring less computation than pairwise learning.

3.5.3 Fuzzy Automaton as a model of Analog Fault Isolation

Typically, available information at the early stage of

FA, which can be represented using the fuzzy set idea, is

given by the form of fuzzy membership function. The values

of the fuzzy membership function might be subjective and

local. Ass'aming those initial values are the best educated

guess, we proceed to update fuzzy membership values through

the fuzzy relations and/or various reinforcement schemes.

The fuzzy relations and/or various reinforcement schemes act

as training operators.

It is known that most of the existing diagnostic

methods are sensitive to the presence of even minor drift in 7

4 the nonfaulty components. A diagnostic scheme can learn to

improve classification accuracy of observed input samples,

if the weights in a set of discriminant functions can be
adjusted according to the preselected criteria. For

example, a criterion based on sample averages and the

average devLations, when a set of test samples is available.

These sets of weights which we call the reference vectors

depend on the choice of the thresholds.

A basic learning model for fault diagnosis is shown in

Fig. 3.5. During each time interval, the fault diagnoser

-~~~~~7 - -. 44 -Si
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receives a new quantized sample X from the faulty system

with drift and noise. Quantized X is fed to both fault

diagnoser for classification and performance evaluator or

teacher for performance evaluation. Teacher then directs

the learning of the diagnoser using a linear reinforcement

scheme. The ]earned information is considered as an

experience of the fault pattern classifier and experience

will be used to improved the quality of the diagnosis

whenever similar situations recur. The new information

extracted from recurring pattern is used to update the

estimation or the experience associated with that fault

pattern.

Fig. 3.6 shows a flow diagram for a proposed learning

diagnosis scheme (12). In this scheme it is assumed that

the classifier has at its disposal a set of discriminant

Vfunctions characterized by a set of parameters such as the

threshold levels. When there are m differnt fault classes,

Leach class has A learning samples, the jth sample of ith
class can be represented by vector X. in the signal space

of n dimensions providing that signal has n components. The

samples may represent gain and phase deviations or impulse

deviations. When the sets of discrimination functions

characterized by sets of parameters such as thresholds of

quantizations, selected frequencies or time delays are

presented to a fuzzy automaton, the system adapts itself to

the best solution. The best solution denotes the set of

It
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discriminant furctions that gives the maximum recognition

among the sets of discriminant functions within the set of

test samples. Clearly the best set of discriminant

functions contains the best set of parameter values for the

generation of test programs.

Quantization of test samples, deviation measurements

are as follows: If each component is to be quantized into

three levels, say, zero, one, minus one according to a

preassigned threshold, then Xij is represented by

X T (x I , x 2 ... , (3.5.18)

which is a row vector of n random variables which assume the
value of zero oz one or minus one. A set of fault reference

4 vectors is obtained by the sample averages of the training

set, i.e.

R (R1 , R . 1) (3..19)

1 m
and - F X.. (3.5.20)Si=l

The correlatior coefficient between Xij and each of the

fault references are determined to form a correlation vector

T
ij ' 21.. 1 m)i

The rules for deciding in which fault type in an unknown

-~ L
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pattern should be classified are

if xTRj > XT RK all k 6 j

and IX-Rji Jd j , where d. = a positive number, then the jth

fault type is selected.

The diagnosis phase begins by applying a pattern of unknown

fault type to the correlator so as to determine its

correlation coefficient with respect to all references.

Once decision is made, its corresponding type mean is

modified so that the reference is updated. This operation

has the advantage that, on the average, the diagnostic

performance is also improved during the recognition phase.

Consider the flcw chart shown in figure 3.5 wherein sets of

discriminant functions characterized by sets of parameters.

In particular the threshold of quantization, and

selected frequencies or time delays are presented to a fuzzy

automata for learning the best set. This implies the

minimum misrecognition within the set of test samples.

These sets of discriminant functions can well be the sample

mean of fault references associated with the correlation

process for decision making. Instead of sample mean

references, one nay employ Towill's voting techniques (3,5)

which are heurigtic rules and have been shown by actual

problem si'lati:n to be superior to the template-matching

method. it siould be clear that the best set uf

discriminant functions selected by the automaton contains
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the best set of parameter values necessary for the

generation of a test program.

3.5.4 A Systematic Learning Procedure

This discussion is based on section 3.5.5. This

procedure isolates the faulty components and obtains the

optimum threshold by our learning method.

1. We start with a given active circuit description having

one input port and one output port. The input is one

Volt AC at different frequencies.

2. We are given the 14 following postulated fault

conditions:

R- IRl -> 2xR2  R3 - 2xR 3 R - 2xR4

Ill R1 /2, R22 2, R3 ' 3'', 4 --R4'2

C' 2,C 2 2xC2 , C1  C,/2, C2  C2 /2,

G-, G /10, G2 -* G2 /10.1
3. We assume that each nonfaulty component is varied

under 3% normal distribution to simulate component

drift. Also the output measurement noise with 1%

normal distrib.tion added.

4. Freqiency domain analysis is based on 16 specified

frequencies at which 14 gain deviation measurements

ana 11 phase measurements. In sum, we are usirl 25

frequtacy measurements.

5. We assume that the amplifier of the active circuit
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has one pole lowpass filter characteristics with

gain cf 5x105 and role off frequency at 10 Hz.

The slope is -20dB/decade, and modeled by the

following transfer function.

A1  - , A, - (3.5.21)

62.8 62.8

6. The transfer function e 2 /e I is given by

e 2  Zf(s)
-_ , (3.5.22)

S Z(s) 1 1 4 f
11 A Z.i(S)

I z
Z. A

7. We denote the two stages of the circuit as A,, A

and substitute into Eq. 3.5.22. This yields two

transf2r functions e2/el , and e 3 /e 2 obtained similarly.

When we multiply these two functions together, we will

4get the overall transfer function. This transfer

function is a function of component values and

frequencies.

8. We defined the 14 fault patterns according to the 14

fault onditions (given in the step 2) with component

drifts and measurement noise. (u,, ' 2 , "''' w1 4 )2 'l I
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represents 14 fault types.

9. For computational efficiency as well as convenience

we use the quantized values {1, 0, -1) of deviation

measurements to form a fault recognition matrix

( Rj ). An element R.. of ith column and jth row

of recognition matrix is the quantized value

{, 0, -11 of ith fault type and jth frequency

measurement where i = 1, 2,..., 14, j = 1, 2,..., 25.

10. We arbitrarily assume one of 7 thresholds to quantize

the total range of deviation measurements.

11. For each specific threshold, there corresponds

one fault recognition matrix.

12. The choice of a specific threshold is made based

on the fuzzy automaton model. For our illustrative

example the input to the fuzzy automaton is either

i1, 0) depending on the success or failure of the

diagnosis. In general, we can use the fuzzy

relations studied in section 3.3 to select the

other threshold.

13. The computer model of the system is used to

generate the simulated faults as follows:

a) One fault condition is picked from among the

14 fault conditions randomly, and then all the

other component values are picked ramdomly

?_
ai
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within the prescribed tolerance limit.

b) Generate output responses at the selected

frequercies using the computer simulations

(25 measurements). Add random noise to the

measurements (given in step 3).

c) Calculate the deviation measurements.

d) Calculate the quantization deviation vector,

X = ( i' ,. 25 ) corresponding to

the threshold selected in step 12. Where X.J

represents the quantized value of incoming jth

deviation frequency measurement.

14. Fault Recognition Matrix

Once a specific threshold is chosen, we produce the

corresponding recognition matrix (Rij).

15. A classification rule for fault isolation is a

minimum distance criterion. Thus the ith pattern

yielding

25
min I x j is chosen.

16. Above choice is compared with the choice of teacher,

and the decision as to the correctness of the

classification for updating the membership values

of given thresholds in the step 18.

17. We assign an initial fuzzy membership value to
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ea a c given thresholds. This value indicates the

degree of correctness or the percentage of the

diagnosis based on the selected threshold. The

thresholds and the corresponding membership values

are represented as

{(Th f )(Th2 f ) ' "'(Th7 f)}
1 1 2 2 7 7

18. The membership value to be assigned for a

threshold is learned from the information as to the

correctness of the fault isolation decision of an

incoming set of measurements in step 16.

The learning scheme used is known as the linear

reinforcement scheme.

f. (n+l) =uf. (n) + (I-a) (X, ) (3.5.23)

f.(n+l) =af (n) + (l-o) (l-€(X, 2i)) 3)

whe.e 0 < ct < 1, 1(X, i) 1 if X e W.

if X Y

These learned fuzzy membership values will affect

the choice of the next threshold in step 12.

19. If the maximum fuzzy membership value achieved

based on the seven thresholds meets the design

requirements, then stop the learning process and

use tC:As particular threshold.

20. If not, we select another set of thresholds close t
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to the one which achieved the maximum membership

value. Then repeat the procedure starting at step

10.

21. Implementation of this fault isolation procedure

is relatively simple and straightforward since

in the field we only use the selected optimum

threshold.

3.5.5 Illustrative example using an Active Linear Network

We start uith a given active circuit in Figure 3.7

having one input port and one output port. The input is 1

Volt AC at different frequencies. Frequency domain analysis
based on 16 specified frequencies ranging from 10 rad/sec to

710 rad/sec at which 14 gain deviation measurements and 11

phase measurements. In sum, we are using 25 frequency

measurements.

R4

R1 R

e 3
g . ur

Fig. 3.7 Circuit Diagram
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Figure 3.7 represents the functional model of a simple

analog circuit consisting of four resistors, two capacitors

and two operational amplifiers which are treated as

functional models. Postulated fault conditions are at step

2 of section 3.5.4.

o i
G

IA
* Fig. 3.8 Amplifier Characteristic

Figure 3.8 shows the characteristics of the two

identical op. amps. The functional model of these op.

amps. can be approximated as

S 1+2-
1 + 62.8 62.8

Table 3.1 Nomiial Values and Analytical Expressions

f~r Linear Circuit

R = 1,000 R3 - 10,000
13

R = 10,900 R = 10,000
542 4C I  1. 6 x 10 9  -

C= C2 = 1.6 x 10 -

G = 2 / 10 G2 = 2 A 105
12



70

f l 10 f 2 0

CoS

el (a0s2 + als + a2) (b 0s+ bS+b2i f

C1R(R2 R + R4)

aO  b1 2 b-0 21r 2%f 2

R1 + R2 C +
af + RICR 2 + C1R2G1R1 a G R1 +R +R2

b b 2 =G 2 + 1
2Trf2  C 1G1C 2

~~1

b I  1 . + C2 R3+ 2R+C2R3G21 27rf2 R24232  Co0 G R 2 G2 C2 R4

Table 3.1 lists the nominal values of the elements

together with the analytic expression of the transfer

function. This circuit has previously been studied for

fault diagnosis based on the choice of transfer function

parameters as a fault signature (33). Herain we use gain

and phase deviations between faulty and nominal response at

a set of selected frequencies to isolate a single fault in

the system under test. The nonfaulty components are assumed

to have 3% tolerance while the measurements are contaminated

by 1% noise. The Bode plot of the nominal gain response as

shown in figure 3.9 has break away frequencies at 625

rad/sec, 5.95x104 rad/sec, 6.28xi0 6  rad/sec and i.319x10 7

rad/sec.
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Fig. 3.9 Bode Plot

According to Sriyananda, Towill, and Williams (5)

experience suggests that the number of selected measurements

* should be approximately three times the number of fault

cases if all gain and phase data are useful They also

I pointed out that the threshold for quantization of the

deviations is a major influencing factor for the generation

of the best set of features in analog testing. 16

* 7frequencies, ranging from 10 rad/sec to 10 rad/sec, are

selected. Six frequencies have both gain and phase

measurements. Altogether there are 14 phase measurements

and 11 gain measurements. Seven quantization thresholds are

chosen to generate seven sets of fault reference vectors.



72 W

f Thresholds
IS Solution level

r. 0.05
o 0.15

0.1
0.30

0.0

0 60 120 180 240 300
Number of learning iterations

Fig. 3.10 Learning Curves for Sets of Discriminant

Functions

Figure 3.i0 siows the learning curves of the membership

functions versus the number of training samples for the 14

types of faults in a computer simulation study using Eq.

3.5.23. Even though the number of training samples is not

large the trend is already evident. The value 0.05 is the

best among the set chosen, and fuzzy membership function

approaches ).85.CI
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f
c Thresholds

1.0 Refined solution level

U Ij 0.06
S0.04

44 0.02
00.08

a)

0.0

0 100 200 300 400 500
Nurnber of learning iterations

Fig. 3.11 Learning Curves for Refined Sets of

Discriminant Functions

Figure 3.11 illustrates several thresholds in the

neighborhood of 0.05, 0.06 has the highest grade of

membership which is 0.9. When the selected frequencies are
chosen from 10 red/sec to 107 rad/sec and a single fault is

isolated to a group of components such as R ,R2 and

CI,U 1 ,U2, the learnirng curves are shown in figure 3.12 and

figure 3.13. Note that the set of reference vectors with

0.1 threshold attains the grade of membership of 0.94.

The x.t simulation studies involve comparisons between

learning with fuzzy automaton model and learning with fuzzy
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ro Solution level
1.0q Thresholds

40.1

.0.0.

,Q0.

0.0

0 40N s~of 12 6 0

00.02
41 L 0.00

0.025
0.05

0.0

0 30 60 90 120 150 180 210 240 270 300
Number of learning iterations

Fig. 3. 13 Learning Curves for Refined Sets of DiscriminanL
Function with Resolution
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automaton model using sample mean references while changing

component drift and measurement noise. Assumputions are the

sare as in the previous example, except that 17 frequencies

are selected in the same ranges. Eight frequencies have

both gain and phase measurements. Seven quantization

thresholds are chosen to generate 7 sets of fault references

vectors. Figure ?.14 shows the learning curves of

membership functiona against the number of training samples

for the 8 types of single faults in a computer simulation

study. In this figure we assume that the com:ponent drift is

3% while the measurement noise is 3%. The reference vectors

used in this case are from the deviations when the nonfaulty

components are at their nominal values and the measurements

are noise free. Although the number of training samples is

not large the trend is again evident. The quantizing level

0.25 is the beat among those chosen, and fuzzy membership

approaches 0.9. Figure 3.15 shows the learning curves of

the membership functions against the number of training

samples with mean reference vectors. During learning, the

mean reference vector is updated. This has the advantage

that on the averaige, diagnostic performance is also improved

even durinq the recognition phase. It turns out that a

quantization levil of 0.25 is again the best among the given

set. Here the fuzzy membership function increases from 0.9

to 0.94. igure 3.16 shows the case when component drift

and measurement noise both increase to 10%. The reference

L-4-
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vectors used in this simulation are the same ones used in

Figure 3.13. In this case 0.15 level turned to be the best

and the highest membership function is only 0.67. Level

0.25 is in third place.

Instead of using the given reference vectors, we can

also use the mean reference vectors. The adjusting rule is:

R..(n+l) n-- R (n) + - X.(n)*f(n)
n ij n 3

where n) if X is correctly classified

=\l-l if X is not correctly classified.

One of the advantages of this is to increase the

percentage of correct fault diagnosis. A significant

drawback is that one must revert to making analog

measurements instead of the simple 1, 0, and -1 indicated in

the procedure of sec. 3.5.4. Figure 3.17 has the same

condition as Figure 3.16 except that we used the mean

reference vectoxs. The best quantization threshold turns

out to be the same as for figure 3.16 but the membership

value at that threshold increases to 0.725. This is about

5% higher than in the previous case. Instead of the sample

mean reference, one may use Towill's voting techniques.

These are heuristic rules that have been shown by actual

problem simulation to be superior to all existing template

matchinq mothods. Table 3.2 shows a comparison of the

distance criteria and voting tecniques. We specifically use
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the seven thresholds (0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30)

dB. The four cases of tolerance and measurement noise are

3%, 5%, 8%, and 10% within the normal distributions. We

compared voting technique, voting technique with mean

reference vector adjustment, distance criterion, and

distance criterion with mean reference vector. For small

tolerances of nonfaulty components and measurement noise

such as the 3% case, they perform equally well. As

tolerance and measurement noise increase to 10% the distance

criteria appears to be somewhat more effective. Although we

have only used a preselected set of frequencies, we can also

":learn" the best set from a given set of frequency

mebsurements.

3.5.6 Discussion

Our objective is to select a specific threshold so as

to permit simple implementation of ATE for easy field use.

For analog electronic systems with drift and noise, the

measured set of responses for different fault types often

exhibits highly overlapping patterns. Depending on the

choice of a specific threshold from among the seven

thresholds, we can discriminate the best among the fault

patterns. Since the assumed test frequencies are fixA. the

method of choosing the specific threshold is the most

important factor determining the optimum achievable

discrimination. The concept of fuzziness is involved
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because one tries to determine how effective a discriminant

function is obtained by use of a specific threshold. Trhe

application of learning techniques to reduce the degree of

fuzziness has been presented. We imphasize the importance

of selection of features to be measured in analog testing to

achieve effective fault diagnosis.

Herein we have demonstrated that a fuzzy autortaton

learning model can be applied to select an optimal set of[ such features.

g

4
1

-I

1

K
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3.6 Fault Isolation Method using the Fuzzy Logic

For nonlinear analog circuits subject to drift and

noise, the resulting measurement patterns of faults are in

general fuzzy so that ad hoc specification of fault

isolation tests is inadequate. Considered in the context of

fuzzy systems, fault pattern types are first separated into

I non-fuzzy and fuzzy parts corresponding to non-overlapping

Sand overlapping regions obtained by sensitivity analysis.

The grade of membership of the fuzzy parts are then modified

according to simulation results and the decision based on

fuzzy relations (35). Thus, a sequence of input-access

point responses with highest membership value is selected as

the basis for generation of automatic fault isolation tests.

3.6.1 Introduction

The design of functional and fault isolation tests is

now recognized as an essential task needed at the design and

quality-assuranc3 stages of analog circuits in electronic

systems. Practical analog systems are subject to drift and

are exposed to noise. Furthermore under fault conditions

such systems in general become nonlinear. It is not

suprising therefore that the design of an automatic fault

isolation test based on a deterministic approach fails to

give satisfactory results. Therefore the measurement

responses yield highly overlapped and scattered fault

patterns (4,12). The statistical approach also fails

L_
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whenever it is impossible to represent highly overlapped and

scattered fault patterns by known distribution functions.

The statistical approach will also fail when there is no a

priori information available. Then one can not expect the

distribution of fault patterns to correspond precisely to an

assumed distribution. Furthermore, it is often unreasonable

to make the convenient statistical independence assumption

for the components of fault pattern vectors. For systems

with realistic component tolerances and noisy environment,

therefore, we consider fault isolation is essentially fuzzy.

Our approach uses the fuzzy concept to develop a systematic

way of generating automatic fault isolation tests for

practical circuits (49). The procedure for the design of

automatic fault isolation tests is shown in Fig. 3.18. The

essential steps are

(1) Simulation of responses at available access

points o' a unit under test (UUT) by means

of computer aided network analysis program

for a set of prespecifled fault conditions.

(2) Estimation of the upper and lower bounds of

fault pattern types by means of sensitivity

analysis.

(3) Modification of the grade membership of the

fault pattern beloncing to certain fault

type using fuzzy relations on a set of

training samples assuming a specified distri-
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TEST INPUT A1DITIONAL TEST INPUT]

SYSTEM MODEL SYSTEM MODEL
(NAP2: SENSITIVITY ANALYSIS) (NAP2: TEST SAMPLE

tet 
output

[SIMULATED RESPONSE with
FUZZY MEMBERSHIP
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A UZ
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rig. 3.18 A Design Procedure for Automatic Fault Isolation Tests
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bution of the nonfaulty component tolerances.

(4) Selection of tests yielding the highest grade

of membership functions for the discrimination

among fault pattern types.

3.6.2 Fault Response Simulation

Instead of physically changing a component or module to

introduce a specific fault in hardware, it is much more

convenient to use a computer aided network analysis (CANA)

program. For example, a library containing transistors and

diodes may be found in a model library on the extended

SCEPTRE (89) program tape. A CANA program uses the

topological description and the component values of a

circuit to formulate network equations which are then solved

by numerical methods. To perform a fault isolation test

simulation, the required information includes (1) the

topological description, the nominal values of the

components and their tolerances, (2) the description of the

input and accessible test points, (3) the definition of the

failure modes. In a nonlinear network analysis program for

lumped circuits, the response calculation is based on the

formulation of network equations and sparse matrix

technique. For nonlinear circuits the Newton- Raphson

method is used. From the standpoint of cost effectiveness

it is advisable to model each integrated circuit type as a

functional element because many internal failures of the
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integrated circuit package are indistinguishable at the

external terminals. In a computer aided test design system

it is desirable to reduce the amount of calculations for

setting up a test program which leads to an acceptable

degree of fault diagnosis. A simple fault isolation

technique using binary logical conjunction of failure

response regions has the advantage of reducing the amount of

calculation but often fails to achieve an acceptable

diagnostic level (7). Fuzzy set theory seems able to

I overcome some of these difficulties.

3.6.3 Response Sensitivity With Respect To Tolerances

To determine the upper and lower bounds of the response

at an accessible point for a specified failure mode while

nonfaulty components have reasonable tolerances would

require a large amount of simulation work. To reduce the

effort, one can use a sensitivity analysis to estimate the

approximate bounds as follows. Let AC. be the maximum per

unit tolerance of non-faulty component Ci . The response

sensitivities with respect to n non-faulty component at an

access point are 3P , i 1 ,.... , n, where P is the

response and the Cio is the nominal value of Ci. As a first

approximation we may compute the upper and lower bound

according to the sign of P If aP is positive for i

1,m...., m atkd P is negative for j m+l, ...., n, then

1 LO
Ux

4
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m a p n a p
a P i + E 6 C. - E 6 Cos (3.6.1)
max 0Po 0 i=O io j=m+l jo

and

M a n a
n P0 - E 6 C - + E jjoaC (3.6.2)

min o=0 -ioc j=m+l

where P is the fault response when the non-faulty

components have their nominal values. To take into account

a nonlinear effect, one normally would have to compute

second and higher order sensitivities and calculation

becomes laborious. A simple way to include nonlinear

effects is to use the deviations 6iCio and 6 Cjo from Eq's

(3.6.1) and (3.6.2) as the worst case to compute directly

the response by means of CANA program (69). In practical

cases this simple method gives the upper and lower bounds

quite close to results obtained by extensive simulation. In

some cases where the domminant variation of the response

with respect to some components is quadratic, the simple

method is not satisfactory. However, this can be remedied

by using Max (P , 2P - P ) and Min (P. 2P - P )max 0 min (min max 0

as the upper and lower bound, respectively.

3.6.4 Fault Isolation Using the Fuzzy Logic

The essential task of fault isolation in a fuzzy

environment is to recognize the membership of responses

which belongs to a designated fault class and to distinguish

% -
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among memberships which belong to different fault cl&sses.

This can be conveniently established around the notion of

the "belonging" in the case of fuzzy sets if the boundaries

between fault pattern classes are not sharply defined. Let
1 i 2 rfuzzy fault pattern classes in the fault

response space P, and p be the generating element of P. We
i

define f1i(p) at p to be the grade of membership p in w and

f i(p) associates each point p with a real number in the

interval (0,1). When w is a set in the ordinary sense of
ii; I the term, then its membership function can take only one and

zero according as p does or does not belong to w

Suppose the upper and lower bounds of the responses at

available access points for a set of specified fault condi-

tions have been estimated by the sensitivity analysis. The

regions between these bounds may or may not overlap. The

non-overlapping regions, wherein fault isolation becomes

very simple, are easily distinguished from the fuzzy

regions. Using binary logic some fault can also be isolated

from the overlapping regions.

The grade of fuzzy membership for a particular fault

condition when a response lies in a certain region may be

assessed according to some a priori information. As an

example Fig. 3.19 shows the response regions of 5 single

faults measured at access points k, k=1,2,3. Let k be thek

response due to the ith fault measured at access point k

L
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that falls in the region Rj, j=l,2,..., 5, and k=1,2,3.
i

Initially we assicn the membership value of 1Uj as one onlyk

if i-j. Notice that because of overlapping regions, the

response of a fault other than the ith one may also fall in

the region R.. To estimate the grade of membership for the

case that only the response of ith fault falls in the region

Ri and no other response can appear in the same region. To

do this we use a set of aaditional samples for estimating

the membership functions of the related faults in the

1 overlapping regions together with fuzzy relations. The

membership of the overlapping regions are shown in Table

3.3, in which f kw represents the grade membership of ith
k J

fault response at kth access point in jth overlapping region

or simply jth region.

(1) Fuzzy Relations

The commonly ubad modes of composition of two fuzzy

relations are (a) Qonjunctive, involving the connective

"and", (b), disjunctive, involving the connective "or". The

membership function of the union of two fuzzy sets with

respective membership functions fA(P~' fB(P) is

f (p) = Max (f (P), f lP)), p P (3.6.3)AUB B

The i,,cmbership function of the intersection of the

above two fuzzy sets is given by
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fAnB = min (fA(p) fB (p) p £ p (3.6.4)

In the case of binary fuzzy relations the composition

of two fuzzy relations A and B is denoted by BoA, and is

defined as a fuzzy relation in P whose membership function

is related to those of A and B by

f BoA(p,q) - Sup min ( fA(PV), f B(v,q)). (3.6.5)
V

(2) Membership Function of Refined Sets

Let kwi be the response of the ith fault measured at

access point k that falls in the region R. under the

condition that no other tault response appears in Ri. We
° i

call ki a refined set of kwj . To estimate the membership

function fk,) , it is convenient to use the composition of

fuzzy relations similar to Eq. (3.6.5) as follows:

f Sup min ( f i, f ,v) (3.6.6)
kwi k v k i

V

where "'" denotes the complement. It may be noted that

"conjunctive" and "disjunctive" modes in Eq. (3.6.6) also

appears in Zadeh's possibility theory. Table 3.4 shows the

values of f ki calculated by Eq. (3.6.6) using the values

given in Table 3.3. From Table 3.4, the overlibpped regions

can b- eiminated by a pairwise comparison among the values
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R 5 R3 R4
•1 , ,:: , Access Point1

J.5,R2  R R
31_U ' " Access Point 2

R 7

r2  R4 R 2
Access Point 3

Fig. 3.19 Overlapped Response Regions

(1) Access Point 1

1 1.00 0.00 0.00 0.00 0.15
2 0.00 -. 00 0.40 0.00 0.01
3 0.00 0.20 1.00 0.20 0.00
4 0.00 0.00 0.25 1.00 0.00
5 0.20 0.02 0.00 0.00 1.00

(2) Access Point 2

I 2 3 4 5
1 1.00 0.00 0.00 0.20 0.00
2 0.00 1.00 0.00 0.30 0.02

3 0-00 0.00 1.00. 0.00 0.20,
4 0.14 0.35 0.00 1.00 0.00
5 0.00 0.01 0.26 0.00 1.00

(3) Access Point 3

1 2 3 4 5
1 1.00 0.00 0.30 0.00 o.0
2 0.00 1.00 0.00 0.00 0.02
3 0.35 0.00 1.00 0.05 0.00
4 0.001 0.00 0.10 1.00 0.20
5 0.001 001 0.00 0.251 02i

Table 3.3 Fuzzy Membership f i for the
k "  f

Overlapping Region
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42

1 0 ,85RS 2 0 ,8( 8 ,9 0 7( 1 ,
2 0.60 5 0.7 5.6 Q.

3 0.30 6,7,8 0.8( 1,2 0.6E 3
4 0.75 9 0.6 7 0.8 4,5,6

5 0.80 3,4 0.74 3,4 0.7 7

Table 3.4 Maximum Fuzzy Membership for kwi

K " L* LIMIT U. LIMIT F(I)
1 1 -5*571E 00 -5.285E 00 0.00C"
1 2 8,368E-05 6.394E-05 0.999
1 7 -5.571E 00 -5.2CSE 00 0.0001 9 -SS-01E 00 5.216E 00 0.COC
1 12 -4.005E-01 3.427E-01 O.Oun
2 1 5.077E 00 5.339E 00 0.003
2 2 5.156E 00 5.442E 00 0.926
2 7 5.0?7E 00 5.339E 00 0.00C

. 2 9 5.077E 00 5.339E 00 0,00
2 12 5.431E 00 5.732E 00 0.99F

Table 3.5 A Partial Overlapped Response with
Fuzzy Membership

4 .

I
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of f . The modified non-overlapped regions are alsok~i
shown. Further, the value of k that yields the highest

value of f , k=1,2,3 is chosen as the input for ATPG.

3.6.5 Fault Isolation Procedure

1. We start with a given circuit description having 10

input ports, 10 output ports, and 72 components.

2. DC measurements at selected ports are used.

3. We generate upper and lower bound of the responses

for each fault pattern using senitivity analysis

of NAP2 Nonlinear Analysis Program.

4. Fuzzy membership for each interval is given as

The length of ith nonoverlapping interval
The length of total interval

The implication is that if entire region is

nonoverlapped then membership equals to one and if

entire region is overlapped then membership equals

to zero.

5. Whenever there is a simulated test sample, we assign

the fuzzy membership values according to the step 4.

6. We use the fuzzy selection logic to diagnose the

fault using Eq. 3.6.6.

7. If the fuzzy membership value of the selected fault

is above certain value a (0 < a < 1), then use

the selected measurements. If the fuzzy membership
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value of the selected fault is below certain value a,

we need additional access points to generate response

measurements.

8. If fault isolation is acceptable, then use the set of

fuzzy membership values for future fault isolation.

Otherwise add the access points and increase the

numbr at. Omeasurementsu

3.6.6 An Illustrative Example

~Figure 3.20 is a diagram of a communication 1/0 circuit

board having 40 resistors, 10 diodes, 3 capacitors, 18

trnsistors, one operational amplifier, and 3 DC power

sources. We assume 38 single fault cases including 33

catastrophic or "hard" failures and 5 "soft" fault cases in

which failure component has twice its nominal value. The

circuits can be subdivided into 3 line .river subcircuits, 4

buffer circuits, line receiver, and control circuits. In

each subcircuit, one input point and one output access point

are used. DC voltage inputs of 0 and 5 volts are used and

the output voltages are measured at all access points. One

output current is measured in each line driver subcircuit.

The tolerances are 5% for the resistors and 1% for the

forward current of the modeled transistors.

The worst case analysis of NAP2 (85,86) program

provides us the approximate upper and lower bounds on the

given simulated responses. These upper and lower bound are



98

99

*~ 0)4

*V 0 0

9 91

0- IA I W 9

up k Wn 9

- XJ 'F

a. 0-- 0

9 % %% 0 0-- '

0 0 0 too 9
> 0 91Ior

9l UU Uj 0

q- 4 0 0 9

A UI A 9 41

9 0 i* 0 0 4

0 in 0

* -r -u 0 0 0 9

* ~ ~ . > J st 0'-

I.-1

9 ~ W Z~* 4AO. *.V) IA 0
C* Z 0 D 0 in ) 4

V* 4c 41B*K

60* -. A



m 77__ *2EW

99

changed by using Max (P max, 2P - P m in  Min (P min, 2Pmax -

P ) when necessary. Starting with 38 fault cases, 27 fault0

cases are isolated using binary logic. Using fuzzy logic,

we can distinguish four more failure cases for about 10%

improvement.

Table 3.5 is a partial list of the overlapped response

regions of ith fault at access point k and the membership

functions computed from test samples with the method

discussed in section 3.6.4. From fuzzy membership

calculations with a preselected threshold 0.7, four more

test regions with the highest fuzzy memberships are added

into the test data. A partial listing of the input to the

NOPAL is given in Fig. 3.6.4. This program is implemonted

in FORTRAN on the Moore School UNIVAC 90/70. Most of the

cpu time was consumed to simulate the fault cases.

Generation of the worst case analysis took about 600 sec.

cpu time and a test sample simulation took about 1000 sec.

cpu time.

3.6.7 Discussions

It has been shown that the application of the fuzzy

concept together with the worst case analysis and test

samples can reduce the number of simulations required for

the design of fault isolation tests. Only single faults

using DC signals were considered. The method presented

herein should be refined in order to extend it for handling
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multiple faults of frequency or transient data.

3.7 Chapter Summary

The situation often encountered is that the system under

consideration has very little information available, and the

formulation of an optimal control or recognition policy

needs accumulation of this information. Learning system is

defined as a system which accumulates the information for

certain improvements of the system. FA model we described

is a good candidate for a learning system under fuzzy

environments. Fuzzy environment refers to the unknown

environment which tries to give the system having maximum

vagdaeness or indeterminacy. As we discussesd in the earlier

chapter, we can categorize the uncertainties into two

different engineering discipline. One is randomness which

can be handled by probability theory and the other is

indeterminacy or vagueness which can be handled by fuzzy set

theory. We are mainly concerned the case when indeterminacy

and vaguenss are the major portion of the uncertainties. We

established the fuzzy automaton model for learning systems.

Properties of various fuzzy relations were explored.

Two analog fault isolation algorithms are studied. An

active lowpass filter and a communication I/O circuit are

used as exaaples.
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CHAPTER 4 Fuzzy Distance Measure and Fuzzy Entropy Measure

in Fault Isolation

4.1 Introduction

Mathematical modelling is typically based on the system

which is developed by a set of axioms. An important

observation is that the logical structure of a fuzzy set is

essentially Boolean, except for the violation of the law of

excluded middle and the violation of the law of

contradiction where fuzziness remains (41). Care must be

taken if one departs from an axiomatic system or tries to

use several axiomatic systems which may be muatually

inconsistent. The best hope one can have is that each

axiomatic system approximates the other under specified

conditions. Then we might be able to use these several

axiom atic systems as an approximation to the real system.

Aspects of fuzzy set theory are close to but distinct

from that of probability theory. Consequently the concept

of a valuation differs an important ways from that of an

ordinary measure. Valuations ot a fuzzy set may be

restricted to subsets of reference space, as it is done in

measure theory using the notions of Borel fields. In

effect, valuations are defined on a reference space which

form a convenient structure for use with the given

has recently been described in a highly significant work by

operation. Such an approach to the theory of fuzzy subsets

~Sugeno (51).
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4.2 Fuzzy Distance Measure (FDM)

4.2.1 Definition

It has been pointed out recently (43) that the

important terms in fuzzy set theory, "equivalence",

"implication" can be expressed through the definition of

metric terms. First the lattice Lj, j - 1,...,m is defined

on Ae-ch me4-i rement space with "I" fvsaA n ts-a which are

given by the preset conditions. The binary operations on

the fuzzy set are defined as the maximum and minimum of the

two operands. A metric on the lattice giving a measure of

the "distance" apart of two propositions under a valuation

is defined as follows: (4.2.1)

V xlj, X2j c L, d(xlj, x2j)= log ( rank order(x2j Ix )).

Thus the distance of the two measurements are defined by

the logarithmic value of the rank order of x2j  from xlj.

Distance d satisfies a quasimetric on Lj such that

d(xl.,X2.) = 0
S0(4.2.2)

0 ! d(x1 jx 2.) < 1
j 2j -(4.2.3)

d(x ljx 2 ) + d(x2j,x 3 j) > d(x I.X 3 . (4.2.4)

Proofs of eq. (4.2.2) and (4.2.3) are an immediate

extension of the definition. Equation (4.2.4) can be proved

as follows:

------- ---



103

where n, a,, k is the associated rank order.

nit, m ~t, ki~n+mst

d(x,y)+d(y,z)-d(x,x) =logen + logem - log~k ? 1ogenm logi(n+m)

11

* (logI + log 1 qed.

It is also reasonable to define a measure of equivalence as

V y, x £ Lit 1Y = ~x 1d(y., x..)(4..5

4.2.2 FDM as a Fault Isolation Criterion

For our purposes this distance criterion assumes that

+xl

dtypical sing=loe (ankts Writr thi in mind we4.2.6)t

dwhere is theb of ful fautlt as esr.

s ne so define a measure of distance baene t

mesuen x j lofTan o pre t vue x swher e hj 4.2.)

The the. prob alm o alatisolarteion cnb nepee

asr the needosesn the inu distance bro setwe thet

tweauemet yeas ureets Y and rese als olo s, whrte

Llj :7- L
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xij's are elements of a typical fault pattern vector X1 , and

where subscript i stands for different fault types and

subscript j stands for number of measurements to be made.

4.3 Fuzzy Entropy Measure

Kolmogorov argued that the basic information theory

concept must and can be found without recourse to

probability theory and in such a manner that "entropy" and

"mutual information" concepts are applicable to individual

values. Furthermore he pointed out that by usingE probability theory, we might need to resort to considerably

rougher generalization. In their arguments, studies of

Kolmogorov (54) and Lof (53) in randomness, probability, and

information connected with the concept of calculation

complexity provided for a new insight into the concept of

information. Cerny and Brunovsky (57) have taken

I information as a basic concept, defining it axiomatically.

Their definition, however, requires a special operator

instead of using probability and independence as primitive

concepts. Along with the development of fuzzy set theory,

De Luca and Termini (55) as well as Okuda, Tanaka, and Asai

(58) have studied information measures in connection with

the fuzzy set theory. Although they have defined fuzzy

.7 entropy measures, it is hard to be convinced that any one -f

them has a sound basis.

I- ... .
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4.3.1 Definition

The usual definition of entropy is based on probability

concel.ts, and does not pertain to individual values, but

rather to random values, i.e., to probability distributions

within a given group of values. We find it advantageous to

treat the total information in the system ( input, network

topology, output ) as being comprised of two parts; namely

that due to the randomness and vagueness. Thus in addition

to the information due to the randomness described by

probability theory we recognize the fuzzy information

contained in the imprecision of the system described by

fuzzy set theory. Consider a functional defined on the

class of generalized characteristic functions (fuzzy sets).

We denote this as "fuzzy entropy". Thus we obtain a global

measure of the "uncertainty" related to the situations

described by the fuzzy sets. This "fuzzy entropy" may be

regarded as a measure of a quantity which is related to the

randomness of the experiments and the impreciseness in the

system.

Classical probability theory is based on properties

such as P(Q)=l (exhaustivity) and countable additivity. It

would be useful to have a new measure and calculus which

might eliminate the inherent need to be exhaustive, while

restricting every sample point of the structure to a

well-defined set (51).
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Definition 4.1: Let B be a Borel field (a-algebra) of

subsets of the real line 2. A set function X(.) defined

on b is called a fuzzy measure if it hass the following

properties:

1) X(l) = 0 (P is the empty set of Q) (4.3.1)

2) X() = 1 (4.3.2)

3) If ci, E B with a , then X(a) <_ X(a). (4.3.3)

4) If {cll.<j<o is a monotone sequence, then (4.3.4)

lim (X(j)) = X( lim(O.)).

Definition 4.2: Let p : Q-.[0,i] and X : {yI yx1*[O,lj.

The fuzzy expected value (FEV) of p over a set A, with

respect to the measure (.) is defined as

FEV(P ) - s-N{ min ( , X( x)}}1 , (4.3.5)

where Ex = {yjy2x}CA.

Definition 4.3: The fuzzy entropy H(v ) of p over a set A

with respect to the measure x(.) is defined as

H( ) -FEV(p )log2FEV(1i ). (4.3.6)

We may also use the logarithmic fuzzy entropy defined by

DeLuca (55,56).

DefinitiojgA44: The fuzzy entropy (H(ji x)) of 1 over a

set A with respect to the measure X(.) given x is defined

as

H(Plx) -X (x) log2  (x) - (1- X ) X(1 ) log2  X( X)

where FEV(p)-X(&x) 
(4.3.7)

VP(x)-×(Cx)
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Theorem 4.1 ) For any x in a set A, H( i ) is larger than

or equal to H(P I x).

Proof: Suppose supremum of H( P ) occurs at x* in A, then

- x( x*).

H(P) = -(x*) log2p(x*)

H() - H(Pix) = -p(x*)1og 2 11(x*) +Xw(x)log 2p(x)
II ~+ (l-X) (X(x) log2X (Y

where x = , p(x*) = XW(x) + (1-x)X(Rx).O(x) -x (Cx)

I(x*) is in between v(x) and x( Cx) and -t log2  t is a

concave function and P(x*) is a linear combination of P(x)

and X( x). Therefore, H( P )-H(l' I x)>O. Equality holds

when A 0 or 1.

Definition : The fuzzy mutual information 10' , PIx) is

defined by H( P )-11( P I x).

Qp1Xy 8i_4 1: The fuzzy mutual information H( p , p x) is

a positive number.

Proof: It is a direct consequence of Theorem 4.1.

4.3.2 Measurability of Faults in Analog Networks

The nature of symptoms in a faulty analog system is

usually not as clearcut as is the case for a faulty digital
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system. Rather, the output responses are given in

functional form and the set of deviations of the output

responses are potentially the symptoms of the several

component faults. We are restricting our interest only to

such deviations as the possible fault symptoms.

The response deviation function C ij(.) of the ith

faulty component and the jth port together with fuzzy

membership function fc.(.) will form a fuzzy set
3j

representing the degree of fault response due to the jth

port response deviation and the ith component. The set of

response deviations can be represented by a semi-closed

interval, whose lower and upper bound (aij, b ij may be

appro:..imated by using a worst case analysis (69). It is

assumed that the response deviation interval X. due to the)

Ci can be predetermined and denoted by a fuzzy set X.. whose
t~ii
characteristic function is as follows.

Pij(x) 1, XE(aij, bij] (4.3.8)

0, otherwise.

It is also assumed that the fuzzy membership function

fc (.) is continuous and that the values of f (.) are

assigned so that if the reponse deviation increases then the

corresponding fuzzy membership values are nondecreasing.

Therefore the membership function f .) of the response

deviations in x ij (.) with respect to C.. can be represented by

f .. (x) = ij(x) A fr..(x)". (4.3.9)

x3 3

:1A....
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We denote a fuzzy set {x,fx >0) as Xij. Next we defined

the fuzzy measure xij(.) for the response deviation Xij as a

normed weighted length denoted by

5b
x (t) dt

x. .(x) (4.3.10)

a fx(t) dtI
where Xij {tj a< t< b}.

We man subjectively interpret Xij (x) as the degree of belief

in the existence of a fault when the measurements are larger

than x. When fuzzy membership function fx.(.) is constant,
ij

Xij(.) behaves similar to a uniform distribution function in

probability theory.

Fuzzy expected value for the responses deviation Xij

can be expressed as follows.

FEV(fx (x) = supf min fx.(x),xi (x) 1 (4.3.11)
1] 1)

We can easily show that for any nondecreasing continuous

fuzzy membership fx .(x) over a fuzzy set Xij , there exists

a unique fuzzy expected value of f (x) with respect to the

fuzzy measure Xij(x).

In our case, FEV's are used as measures of central

tendency for the response deviation sets X ij'S.
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4.3.3 Fault Properties, Fault Averages, and Fuzzy Expected

Values

Even though the set of membership functions fxi(.)Is

for each ith component and jth response are obtained, the

problem of formulating a fault isolation criterion still

remains. The main reason is that the set of membership

functions fx .(.)'s have two properties; the occurence of

the ith component fault and the subjective observation at

the jth response. On the one hand, when we focus our

attention on the occurence of a faulty component, we seek

some averaging method to determine a typical fault. On the

other hand, we may focus our attention on the subjective

interpretation of the faults at the jth response to seek the

one which exhibits maximum deviation properties. Therefore

the weights of individual properties and collective behavior

seem to have essential roles in determining the likely

faults. The concepts of property set were introduced by

A. D. Allen (88). It seems reasonable to use FEV's as a set

of value3 Qonsidering both properties and collective

tendencies. It's interpretation is such that the FEV as a

typical value of corresponding fuzzi -omponent membership

function and the measurement whese fuzzy membership is equal

to the FEV as the corresponding typical measurement. The

criterion we are proposing for fault isolation is to select

the minimum of the sum of the difference between the

observed values and the FEV's at each point.



The FEVij x) for the ith faulty component at jth port

are given as follows:

FEV(f x  (x)), x C X
FEV.,(x) ijXi (4.3.12)

C c> , x V xij.

where c is a constant determined by the designer.

The proposed criterion can be written as

min E IFEV ..(x) - x. .(x)I.
i j - 1J

H Application of this criterion mainly depends on the

accuracy in determination of the fuzzy membership functions.

Therefore it is vital to develop a strategy to upgrade the

accuracy of the response deviation membership function.

4.3.4 An Algorithm of Fuzzy Measure to Analog Fault

Isolation

Our objective now is to minimize errors in fault

*isolation as well as to construct a structure for an

effective fault isolation scheme. We start by being aware

of the possibly overlapped response regions. Recall our

subjective interpretation of a response deviation fuzzy

membership value for a particular response deviation. It

indicates the degree of fault due to the component deviation

while all other components are subject to drift within

Etolerances and under noisy mesurements. We assume only a

single component fault occurs at each set of observations.
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The proposed algorithm is a follows:

1. Set up the set of fuzzy membership functions fx.. for

each ith component and jth port.

2. According to the fuzzy membership functions fXi j, set

of fuzzy measure xjj's are calculated.

3. Fuzzy expected values (FEV's) are calculated using eq.

4.3.11.

4. Observed values are compared and ordered according to

the criterion.

min X FEVij(x) - xij(x)I

ii

The ith component having the minimum indicates

the most likely fault.

5. Confirmation of correct isolation directs the update

of fXi 's. Suppose xo is the observed set of values.

fxij(x) (fx.x)+ (1-a)o(x), 0 < "

x(X-X )  1i if X a XO

S(X) fxx,,~ 0 otherwise

fx (x)

where x, x X

When xo  is correitly classified this information

reinforces the correct decision for the next similar fault.

When x is incorrectly classified we do not use it to update

I -
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Test nputA priori Information

Fuzzy Membership Function
for Fault Response

Deviation

Fuzzy Measure [Updating[Algori thin

. Fuzzy Expected Value

I Performance
Criterion for I Evaluator

SFault Isolation

Fig. 4.1 Fault Isolation Using A Fuzzy Measure
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the f J
6. When we have new observations for a different unit

under test go to step 2.

A macro flow diagram of this algorithm is shown in Fig.

4.1. In this way we may able to start fault isolation even

though there exist overlapped responses and the probability
distribution of the fault response deviation are not

precisely specified.
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4.4 A Fault Isolation Method in Nonlinear Analog Networks

Using Fuzzy Distance Measure

As a possible meansof representing fault patterns, we

can use power measurements. We utilize a special form of

Tellegen's theorem to get the necessary values of port

currents and voltages for diagnostic purposes. Furthermore,

we present an algorithm that makes use of the available

measured data on port responses to isolate the faulty

components using fuzzy distance measure detailed in section

4.2. An illustrative example using the NAP2 Network

Analysis Program is included. The results are compared with

other criteria.

4.4.1 Introduction

In analog electronic networks which are designed to

perform certain analog functions, probability distributions

for the value of each component are often available. It is,

however, still difficult to calculate the port responses

from such network component data. Moreover, the nominal

port response which is the subset of all the possible port

responses could be rather imprecise because it is only given

by the actual designer's experiences or by calculated values

assuming some specific preset normal conditions. Whenever

actual measurements fall in the predetermined fault

conditions, due to the port responses, impreciseness in the

criteria of the predetermined fault conditions, and the

$4
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inadequacy of available ports, the faulty nonlinear analog

network can be interpreted as a fuzzy system.

Herein we present an algorithm to make use of all the

available data, namely data on port responses to isolate the

faulty components using fuzzy set concepts. Also, a

possible way of selecting a set of features leading toward

better fault isolation is briefly studied.

Using a network analysis computer program, we can get

the port responses for both nominal and faulty conditions.

A special form of Tellegen's theorem is applied to get the

necessary values of port currents and voltages for

diagnostic purposes.

4.4.2 Reference Feature Generation of Faulty Networks

using Tellegen's Theorem

Throughout this section, we assume that only a single

component fault occurs. This assumption is mainly for

notational convenience. Recall that a "soft failure"

entails a change of component value to such a degree that

the network response is just outside the specification while

all the non-faulty components are subject to drift within

their tolerance ranges. It has been discussed (12) that

such failures are more troublesome to isolate than "hard

failures" such as an open or short circuit of the component.

We restrict our discussion only to "soft" failures. If



117
desired, a "hard" failure can be approximated by the extreme

case of "soft" failure.

One of the most powerful tools available to solve the

network is Tellegen's theorem. One general statement of

Tellegen's theorem is stated as follows:

EAij A"v Ai "V (4.4.)
p ci a Ct 4 4 1

p C

where ip, v p are port currents and voltages; and i(,, V, are

I branch currents and voltages. A' and A" are any Kirchhoff

operators. The above theorem can be applied to netwouks

including non-linear elements as long as the network

topology is not changed. We proceed to apportion the

currents an oltages at the ports and branches respectively

to be consistent with their nominal values and their faulty

values as follows:

(t) = i (0) (1)

p p (t p (t) (4.4.2)

(0) (1)
v (t) =v (t) + v (t)
p p P (4.4,3)

S(0) (t)+ 1()(t
aaa(4.4.4)

v t)= /(0)(t (1)(t

V I(t (0)(t) + ( t) (4.4.5)

where (0. stands for nominal portion and (1) stands for

faulty port:on. Then we find that Tellegen's theorem is

expressible as four separate expressions:



118

(O)v (0) = i ()v (0) (4.4.6)
p p

zi (0)v (1) = r:i (0)v (1) (4.4.7)
pp p a f

Ei (1) V (0) = i a(1)v (0) (4.4.8)
p p C,

• 1 v (1)(4 .9

In contrast with the power equation (4.4.6), we can

call eqs. (4.4.7,, (4.4.8), (4.4.9) pseudo-power equations.

Port responsas under the nominal faulty conditions can be

calculated easily using a network analysis program. We

assume that the port currents and voltages of the nominal

network which have n components and m ports are represented

an ispl ... i p m ' vpl ... VPM  (nominal case)

and ki ... kipm' kVl ... kVpm (k component faulty case).

The corresponding faulty network port currents and

voltages are represented by

(i k.. V pmk (4.4,10)
kpl 'k pm kp '" pm )

A O .( ) . (O) . (0) (0))
= kpl- lpl k' Dm pm kl -pl k Vpm-V pm

We then have three possibly independent equations for

each k:

0) (i) (0) kv (i)

i = zi Vn k a k (4.4.11)

p. CA
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Xki (1) (0) k i  (1) (0) (4.4.12)
P Ct

)ti p(1) kV (i k ki CX(1) kV a (i)13
p kp kc k4 4.a

Thus it is clear that we have the port measurements for

the nominal and typical single fault cases. The problem,

however, is how to isolate the faulty component from given

measurements. We can select port voltages and currents

independent of each other by forming the appropriate

spanning tree of the network. From eq. (4.4.10), we can

generate the 2m possible equations by choosing ports. Then,

we have

i(0) (1) - i(O) (1) + (1) (4.4.14)
pt k p e :e, pt. kVpZ ' + Ot k ct

where L - 1 ...m.

From eq. (4.4.14), we get m independent equations

where the tefthand sides are kno, n and the corresponding

righthand sides are unknown. These equations show that the

pseudo-power disturbance due to the one faulty component is

revealed by the port responses. We will use the lefthand

side quantity to isolate the faulty component. Likewise eq.

(4.4.12) and (4.4.13) yield 2m more possibly independent

equations. By suitable extension of this approach, multiple

component fault cases can be handled.



I

120

4.4.3 Fuzzy Distance Measure in Fault Isolation

We assume that the system has n single fault cases. We

further assume that every fault that occurs is near the

typical single fault calculated by the present conditions.

Hferein we are only interested in isolating faulty units

under test to the given fault cases.

Then the problem of fault isolation reduces to

determining the maximum equivalence between measurement yj

of unit under test Y and preset values xi. 's of typical

lault X,, where j stands for number of measurements made and

i stands for different fault cases. Since independency of

the measurement data are not given precisely, we use fault'

equivalence p(Y=X i} as a simple averaging of the port fault

equivalence iyioxij).

4.4.4 A Fault Isolating Algorithm Using the Fuzzy Set

Concept

A description of a proposed algorithm is as follows:

1. Calculate port voltages and currents under nominal and

faulty conditions using a network analysis program.

2. Calculate pseudo-powers

(0)k (1) 1i ( ) ki (i)v  (0) , (1) (1)ip kp ' k p 'k'p ' klp k~p

for all k's and p's. It is assumed that the mr(n)

independent ports are available, and we have £ faulty cases
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and n components.

3. Form a pseudo-power matrix X' which has columns and m'

(3m) rows as follows:

(0) (1) (0) (1)X = pl lVpl " i e"p tp ,Xll. Xl

(0) (1) (0)/V (1)ipm 1pm pm PM

(i) ()() V l(0) X m .. X~m
i pl 1Vl(".pl I V J'pl* me

(1) (0) (1) (0)

V 0) V
pm 1p m pm pm

(1) (1)) (1)
p1 iVpl .. p1 V pl
"(1)() (1) /Vp(1)

\ 1 pm IVpm ( .. pm pm

, x1 x X' is formed by reducing X.

If jth row of X is all zeroes,

then jth row is deleted.

4. A measure of separability Si is formed to assess the

diagnostic worth of jth set of measurements. When we order

xij for every i given j( = l,...,m), we get new matrix Y,

where its element yij is ordered. We set the measure Si, as

e-IY .-Y y -,
= . g+l~ 'J 1_ q+l,j gq,j

q=lY ,jY 1, j g ,j -Y I,j

qI
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If the measurements are evenly spaced, then

S. =-n*i log! = -log' logn.

) n n n

If the measurements are spaced unevenly, then

S. < log n. Therefore S. indicates the diagnostic worth of

jth set of measurements.

5. Measure the output port voltages and currents of unit

under test simultaneously. The voltages and currents

representing faults are indicated by

pl pm' , Vp,... pm

6. Calculate the rank order for each jth row.

a. If there are i' equal values at (i,...(i+i'-l)lth

order then the rank would be

[i x ... x (i+i'-l)]I i'

b. Remember the zero crossing rank order.

If zero crossing occurs between {i", i"+llth order, then the

zero crossing rank is ((i" x (i"+l))

7. An attribute to the rth fuzzy membership is given by

Pj= - log, (rank order of rth component)

where 0 <_ P. _ 1.rj

------- A .----- I
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Fig .4.2 Simplified Diagram of Fault Isolation Method

Using Fuzzy Distance

UUT TESTr
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UUT SYSTEM MODEL-
MEASUREMENTS NAP2
ipk , Vp k NETWORK ANALYSIS PROGRAM

SYSTEM RESPONSE
(STEADY STATE)

CALCULATION OF

PSEUPO-POWER MATRIX
A M (1) i(1) (0) i() (1)
Pkp ' kp p ' kip k vp
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ACCEPTABLE

__ _ _._ I YES
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USING FUZZY DISTANCE

I-S THE -,

< TEST G2  O

YES

'DECISION (FAULT ISOLATION):

MAXIMUM FUZZY IE.IBERSHIP
M MAX ,

r t'17-.,
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8. The fuzzy membership is given by the average of Prj

-- m !1 M

r M rj"

9. Order the fuzzy membership function. The maximum of the

fuzzy membership function indicates the most likely fault.

The relative valus of fuzzy membership function will also

have some meaning.

10. Validity of the Test: Noting that fuzzy membership

0 il, we define test criteria as:

a. Pmax-4 I indicates high confidence in the decision.

P' 1-inom
b. Let GL - . A large Gl indicates an effective

test.

c. Let G2 = imax -1sec max . A large G2 also indicates

an effective 
test.

11. If the resulting decision is not satisfactory, return

to step 4 ind select new port measurements with good local

separability Sqj near troublesome components.

i Y q+2r3,- q,j log q+2r3,j q,j
q3 r=l Y 'j -Y1j Y j-Y',j

where q is the component, j is the new port measurement.
Simplified -low diagram is shown in Fig. 4.2.

.. ... . .. -. . . .. . .. - ...- • .. . . _? "i- ll.l -9
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Table 4.1 List of Selected Faults

FAULTS INSERTED FAULT DESCRIPTION

1. Open -12V source R3 and R5 open

2. Open 5V source Base of Q1 open

3. Open X1  R1 open

4. Open 12V source R2, R6 and emitter of 02 open

5. Q1 short emitter to collector Replace 0.1 to emitter to
collector

6. Open R2 R2'] 09P

7. Short R2 R2 0. l

8. R3 increase R34-2 x R3

9 CRI sh.rt CRl 0.1Q

10. R5 increase R5+2 x R5

11. Q4 short emitter to collec,or Replace 0.1n to emitter to
collector

12. Q3 short base to emitter Replace 0.1Q to base to emitter

13. R6 open R6+109rl

14. Short CR3 CR3+O.lR

+R3- 2N2907A 7

027

+270

F+12v

Fig. 4.3 Partial Diagram of the Communication 1/0 Circuit
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4.4.5 An Illustative Example

We use the Line Receiver Circuit of the communicatian

I/O circuit card shown in Fig. 4.3 which has 4 transistors,

3 diodes, 6 resistors, 1 capacitor, 3 power sources, 1 input

port, and 1 output port. For convenience we assume the 14
fault cases shown in table 4.1. The NAP2 Nonlinear Analysis

Program is used to simulate the circuit and calculate the

port measurements. We measure the output port voltages,

currentyi and the input port currents with 0 and 5.5V at the

inprt ;ort. Out of 12 sets of pseudo-power measurements, 5
sets of pseudo-power measurements are retained. We have 3

samples for each fault type. Each fault type is recognized

by a specific fault condition with all the other components

subject to drift with normal distribution within 5 percent

of their nominal values. Table 4.2 shows the number of

correct diagnoses for each fault type based on a fuzzy
distance criterion and the nearest neighbor rule. Using the

algorithm with a fuzzy <istance criterion, we find that 36

out of 42 samples are cosrectly classified. Under the same

conditions, the nearest neighbor rule classifies only 28

samples correctly. Table 4.3 illustrates the effectiveness

of test G2, defined in tl'.e previous section, for 14 samles.

In this table, fault type 2 is classified incorrectly. This

is not suprising since this fault yields a very low

effectivenes value.

-. ,j**j.. - - -- - -- • .. .
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4.4.6 Discussion and Futher Remarks

A key point in this approach is that such fault

isolation is in fact converted to a simplified form of

pattern recognition. We feel that because of availabiltty

for very limited number of samples of fault measurements,

the nearest neighbor rule might be inadequate as a decision

criterion. At the same time, the voting technique is

avoided, because it requires an optimum threshold level

which is not easy to obtain. Although the number of samples

is very limited, results appear to show rather easy and

effective diagnosis possible based on a fuzzy distance

measure.

i

I'

Ig
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4.5 An Application of Fuzzy Entropy Measure for Analog

Fault Isolation

4.5.1 Introduction

The deviation from the normal responses in analog

networks can be viewed as functions of the variability of

the faulty components. However wiveral ambiguities arise:

due to nonlinearity, component drift, and noise. These

along with changing ambiguity in different stages are

interpreted in the context of a fuzzy system. A fuzzy

measure is introduced to facilitate analog fault diagnosis

under these circumstances.

For problems of automatic analog fault isolation, one

can as already indicated adopt the viewpoint of pattern
j

classification. In the pattern classification, many of the

theoretical problems have been resolved by using statistical

methods. However, in practical analog fault dignosis,

almost all of the available statistical methods encounter

rather unrelistic assumptions such as the availability of

very large sample sizes and known probability distribution

of the systems. On the one hand for the specific case of

analog fault isolation, we usually have avaialable a large

amount of information in the form of a circuit description.

On the other hand we often have only limited sample sizes

for characterizing the type of faults. The probability

density is unknown or at best only partially known. Also

__ _ _ _ _ __ __ - --!
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under the framework of existing statistical distance

measures, it is very difficult to take the contextual

information of the fault pattern into consideration.

Furthermore the increased computational efforts required for

effectiveness of certain existing statistical analog fault

isolation methods must be traded off against the

classification error reduction obtained. Therefore we must

balance the need for computational simplicity and the level

of exactness. It seems both appealing and useful to adopt

the fuzzy set idea. In this way we enhance fault isolation

and maintain the level of ambiguities in the fault isolation

procedure while achieving the necessary output requirements.

Because of the ambiguities in the procedure not only the

4 most likely fault, but also the ordering of the possible

faults retains some significance.

With this in mind, we formulate the fault isolation

problem utilizing the fuzzy set concept which will enhance

the ATPG effort. A fuzzy entropy measure was developed in

section 4.3 utilizing vague measurements for isolating

faulty components in analog systems. An applicable fault

isolation algorithm is given next based on the fuzzy entropy

measure.

ijt

'I7;
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4.5.2 A mdel of Fault Membership Function of the Response

When there is a fault in an analog electronic network,

it usually means the observed response is out of the

tolerance limit for that particular nominal response.

Therefore, the fault is a function of the deviation from its

nominal response. It is often true that the deviation from

its nominal response tends to increase when the component

deviation from its nominal value increases. We shall

distinguish three cases of faults. One can logically assume

that when the response deviation departs from its tolerance

limit the network is considered faulty. Initially, fuzzy

membership 0 is arbitrarily assigned. By the decision

maker's choice, when the deviation reaches a certain point

6 the network is definitely faulty. Fuzzy membership 1 is

assigned at this particular point. Beyond this point, no

matter what the observations on the network, the assignment

of the fuzzy membership values for the deviation remains 1.

There is a gradual transition region between the fuzzy

membership assignment of 0 and 1. For simplicity, in this

region we assume that the degree of fault increases linearly

due to the increment of the deviations. Fig. 4.4 shows the

simple model of the network fault membership function R at
)

jth response deviation as a fuzzy membership function of

response deviations described above.

Now let us turn our attention to the network fault due

to a specific faulty component. We are restricting our
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ii 7IIR
jth response deviations

Fig. 4.4 A Network fault membership function

In'
Rij

Y1 Y2 Y3 R

/,
/,

jth response deviations
due to ith faulty component

Fig. 4.5 A Component fault membership function

1C
ij

I
7

0
t YI Y2 Y3 R

jth response deviations

Fig. 4.6 lie network fault membership function
due to ith component fault

Iw- "
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intrest to isolating the single fault case only. By a

similar reasoning as network fault, for each component

deviation, we consider three response deviation points y1 ,

y2, and y3 as the response deviations when the component

is on the verge of its tolerance limit, when the component

is its usual fault state chosen by the decision maker, and

when the component is at its extreme value such as an open

or short. Fig. 4.5 shows this model of the component fault

membership function PR. as a function of ith response
1)

deviation due to a specific fault component.

A network fault membership function due to the jth

faulty component p. is defined to be the minimum of the

network fault membership function and ith component fault

membership function. Fig. 4.6 shows the network fault

membership function due to the ith faulty component.

The initial measure w~( C ) i is calculated as

(t) dt

( 3 ) = '-- - -(4.5.1I)
1)•i ' Pci j Wt dt(451

The FEV of c, . is calculated as
13

FEV(c ij) = sup (min (Pc..(x), 1.(, )). (4.5.2)
xER. 13 3

We may albo update the initial fuzzy measure V ( c ) by

1cadding new information from "correct data". A set of

t -
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"correct data" is obtained by the success of actual faulty

component replacement as determined by the criterion

discussed in the previous chapter. One method using linear

reinforcement scheme is as follows.
lli(t) +a6(t-t*) dt

=(c i, 0 (t) dt + a (4.5.3)

where 6(t) is a unit impulse function, 0 < a _ 1, and t*

denotes a correct observation.

4.5.3 A fault Isolation Algorithm using Fuzzy Entropy

Criterion

It is again assumed thi t we have n single fault cases

(i - l,...,n) and m different response setups (j

available. From the fuzzy membership function (cij (x))

and the fuzzy measure p( Fx, ) described in the previous
l3

section, we can calculate FEV(cij) for such jth response and

ith component fault. When there is a set of observations

(X,...,x n )  for the response deviations at the response

setup (RI,...,Rm ) from UUT, the observations are adjustejd by

an amount of the difference between the response deviation

at the FEV and the response deviation of y2 " For new

adjusted observations (xI , ... ,xn ) , 1p(ci (x ) and pC

t x i) for each Jth response and ith component isixi
calculated.

Our objective is to determine i while minimizing the

,- I= 2
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UUT Model Unit
Under Test:

Observed Dat Trest Signal

)r . . )G(eneration

fault me~mbership.
functionJc1.,
0i=1 ....M)

C:ALCUJLATE
fuzzy expected

valIue Eq. 4.5.2
FEV(cj

CALCULATE
Decision function Eq. 4.5.5

Eq. .5.4Eq. 4.5.3

Deciion riteionUpdat ing

IslaiooolSngeiautsi A av etok

0 -C,1 1

Ad Ne 'res for
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possible number of incorrect decisions. As a possible

criterion, we are proposing that we find i such that

(4.5.4)
min ?. J. (x)
i j1

where

Ji (x) II(FEV(c ij))-XH(p(cij (x))-(-X)H(( x )), (4.5.5)

11(t) -t log 2 (t) and A '--
W(cij (x))-Ij(Fx )i

1)

After gathering some correct data, we can update the

fuzzy measure ( x). A flow diagram of the described

algorithms is given in Fig. 4.7.

4.5.4 An Illustrative Example

1' To facilitate comparisons we use the same circuit and

the same 14 faults as that given in section 4.4. We measure

the output voltages, currents and the input port currents

with 0- and 5.5-V excitation at the input port. We obtained

three samples for each fault type using the NAP2 Nonlinear

Analysis Program. Each fault type is recognized by a

specific fault condition with all other components in this

circuit subject to drift within 5% normal distribution. For

simplicity, we assume that the network starts being assigned

faulty memLcrship at 5% response deviations and the network

is definitely classified as faulty after 10% response

F
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r.Qiterion "Fuzzy "Fuzzy "Nearest
Fault Distance" Entropy" Neighbor
Type Rule"

I3 3 3

2 0 3

33 3 0

4 3 3 0
3 2 3

62 1 1?

7 0 3 0
83 0 2

C'3 3 3

103 32

113 3 3

1 ~ 3 3 3

1 2 2 3

1P. 3 32

Tal 36 - 32 L 28

Table 4.4 Ccrparisons of Different Criteria
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deviations. As an initial guess, we also assume that

as the 80, 100, and 110 percent of the typical

response deviations of the given faulty component. Table

4.4 shows :he number of correct diagnoses obtained for each

fault type based on the fuzzy entropy criterion with the

results obtained in section 4.4. We find that 32 out of 42

samples are correctly classified using the fuzzy entropy

criterion while the nearest neighbor rule classified only 28

samples correctly.

4.5.5 Discussion and further remarks

A fault isolation method for analog circuits is

discussed using fuzzy set concepts. Even though the

information derived from the circuit under test is usaually
inadequate to apply statistical methods, application of our

fuzzy measure can provide adequate fault isolation

capability. The reason seems to be that the proposed

algorithm includes an experienced designer's notion of

"fault" which tends to enhance decision making. Also the

upper and lower bounds of the response deviations contribute

to improve the decision through the proposed simulation

model.

'MA
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4.6 Chapter Summary

An evaluation of analog fault isolation techniques is

attempted through a fuzzy distance measure and a fuzzy

entropy measure. A metric on the lattice giving a measure

of the "distance" apart of two propositions under a

valuation is defined as the logarithmic value of the rank

order of the two propositions. And its quasimetric

properties are discussed.

The "fuzzy entropy" is introduced as a measure of a

quantity which is related to the randomness of the

experiments and the impreciseness in the system. The fuzzy

entropy is defined as the information contained in the fuzzy

expected value.

Fault properties in connection with the fuzzy measure

are discussed. These fuzzy measures are the bases for fault

isolation algorithms. The results of simulation study based

on these decision criteria yield improved fault isolation.

I'¢

J-



140

CHAPTER 5 CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 Summary and Conclusion

To attack the long standing fault isolation problem in

analog electronic circuits, we have focused on two of the

major problems. One is the presence of uncertainties sucn

as indeterminacy, vagueness, randomness, and so on that

naturally arise during the solution procedure of analog

fault isolation. The other is the presence of topological

restrictions inherent in specific circuit configurations.

Our main attention was focused on dealing with the

fault isolation problem involving various kinds of

uncertainties such as indeterminacy or vagueness. We show'

that such problems lend themselves very well to and in fact

can be solved by adopting fuzzy set concepts. In particular

this line of research has produced a modified fuzzy set

technique applicable to automatic fault isolation.

Topological aspects utilizing graph theory may be used

effectively to assist in preanalysis of faulty analog

electronic circuits. As a spin off of a consideration of

these problems, we developed some new theorems for element

value solvability. It should be made clear however that

effective ftult isolation can be accomplished with or

without this preanalysis to assist in resolving the more

fundamental problem incurred by uncertainty.

As a consequence, this research yields the following
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specific results:

1. A base line automatic isolation system w',ich

can be used to deal with various kinds of

uncertainties. A fuzzy automaton model served

as a point of departure for the base line system.

Various fuzzy relations are used to select and

update the parameters and structures of the system.

2. Set of algorithms and new decision criteria which

can be implemented easily and used for effective

fault isolation. A fuzzy distance measure and a
fuzzy entropy measure are used for decision making

re

in the fault isolation algorithms. The results

are shown to be generally more effective than

existing techniques.

3. Ample illustrative examples and simulation studies

are included to back up these new methods. Several

examples such as low pass filter, band pass filter,

and communication I/O circuits are used to 4

illustrate the simulation studies. The results of

simulation studies demonstrate the applicability of

a fuzzy set technique.

5.2 Suggestions for Future Studies

The following topics are suggested for future

investigation:
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1. Future investigation on the properties of fuzzy

sets is needed to adapt and facilitate its

applicability to multiple fault cases.

2. Further investigation on refining the proposed

single fault techniques tn achieve potential

improvements in the order of 50%.

3. Based on extension of the analog fault diaqnosis

algorithm, fault diagnosis, of hybrid electronic

systems needs consideration and further intensive

efforts.

LA

214

t - -



143

Appendix A

Graph Theoretic Aspects of Analog Fault Isolation

The state of art in fault analysis of analog networks using

graph theory is reviewed briefly and some possible

extensions are explored. In particular, the topological

interpretation including network solvability and the key

subgraph concept are reviewed and extended. A new algorithmi

to determine solvability based on network topology is given.

This graph theoretical approach is useful to determine the

suffiency of the available access points. Therefore this

graph theoretical approach can be used as a preanalysis for

the application of fuzzy set technique.

A.1 Introduction

In the body of the dissertation, we have been applying the

fuzzy set concepts to alleviate some of the difficulties of

handling the fault isolation of analog networks in the

single fault case. Graph theory is used to investigate a

specific network structures. Furthermore enumeration of the

£ possible number of measurements on linear networks with

N-accessible terminals, we gain insight into the behavior of

faulty analog networks.

Conventional graph theoretical aspects previously applied

for analog fault dignosis will be briefly discussed.

Especially the network solvability and key subgraph concepts

will be reviewed and extended. The connection of graph
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theory with fuzzy sets for application to analog fault

diagnosis is also indicated.

A.2 Existing Graph Theoretic Aspects of Analog Fault

Isolation

A graph representation for network dates back to

Kirchhoff (1847). Hence the applications of graph theory to

the analysis and design of electrical network is not new.

But applications of graph theory to network analysis did not

prove to be advantageous until the ad4 vent of the high speed

digital computer. More recently applications of graph %

theory for the fault analysis of combinatorial networks or

digital networks have been made quite successful (81). Yet,

applications of graph theory to analog fault analysis have

been relativqly infrequent. Berkowitz (74) developed the

concept of element value solvability for passive linear

lumped network. Bedrosian introduced the key subgraph

i concept to provide some insight into solutions of active as

4 well as passive lumped networks. Identification of the key

subgraph leads directly to a set of equations which in the

case of a single element kind network is an homogeneous

multilinear algebraic form. Very recently Navid and Willson

(14) presented some sufficient conditions for the element

value solvability for linear elements. Here we present a

method of determining necessary conditions to the network

solvability which is tighter than that given by Berkowitz.
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A.3 Element Value Solvability"

A.3.l New Theorems

We start with a few definitions:

Definition A.1) Available nodes (A) : External network

nodes at which voltages and currents can be applied and/or

measured. In other words, available node can be opened or

shorted.

Definition A.) Partly available nodes (P) External

network nodes at which voltages can be applied and/or

measured but currents can not be applied or measured. In

other words, a partly available node can be slorted but can

not be opened.

2eini.ig. ) Nonavailable nodes (I) Nodes internal to

network at which neither voltages nor currents can be

measured.

Q atkigQD_ ) Key subgraph (K) : The subgraph of network

N which consists of the subset Bk of all branches incident

on all the nonavailable nodes.

DefiiitioA_) Core graph (C) : The subgraph of network N

which consists of the subset Bc of all (corncealed) branches

incident only on all the nonavailz!ble ncdes.

Theorem A.1) For any star graph whose core node is only one

M' -~v ZA
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nonavailable node and at least two of the outside nodes are

A, then the network is solvable.

Proof. Consider Fig. A.1 as a model of step 4.

V 0

R
SVO V V2

eR2

Fig. A.1 A Model for the Step 4

We set two available nodes as A1 and A2. We also set

the rest of the nodes connected to nonavailable node I as Pit

P2, .. '' P Node voltages and currents to the I node are

represented as VAlt VA2 1 VPl, VP2 , ***'VPr and IAI, IA2

Ipl, Ip2, ..., Ir. The node voltage of I is represented as

Vo. The unknown admittance of each branch is represented as
0

Y Alt Y A2V Y 'YP2' .. 'YPr":

Step I) Set V = VI , V = V = V = V =Al 1 A2 P1 P2 " Pr

Set Y = Y + Y + ... +Y
P1 P2 " Pr*

Measure I =Il then
Al ~ te

V V
1 + I 1A _ 1

iAl + YA2 +  Y  I A 1 1

Id
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Step 2) Set V Al = V2  VA2: open, IA2 0,

VI = VP2 =..=VPr 0.

Measure I I then
Ak '2'he

VAl V21 1 =. Al = 2 (A.2)
YAk Y Al 12

Step 3) Set VA: open, VA2 = V3, IAl =

VP1 =VP2 = . VPr = 0.

Measure IA2 =13, then

1 1 A2 V 3w+ = - = IY A, Y IA2 13 (A.3)

From Eq's (A.1), (A.2), and (A.3), YAl' YA2' Y is

solvable.

Step 4) As is in Fig. A.1 choose V Pk 0, anb VA 2 = VPI

I = V = =V
P(k-l) P(k+l) P Vpr V 2 , VAl

1 1 1
R:x y (A.4)

where R is the total impedance of branches, R is the~x

impedance of Pk branch, and R is the total impedance
ky

excluding P branch. From Eq. (A.4) and Fig. A.1

1 -- + 1(A.5)
R 2  R R x  cR

where c is a constant.



148

V1 -R 1 1 = (Ii + 12) Rx (A.6)

V - R I V - cR2I (A.7)
1 11 2 2 2

From Eq. (A.6),
V1 - RI 1

R 1 11 (A.8)

1~1k +12

V -RI =V - 2 (A.9)1 3 2 1 ~1 1 2

k2  R R X

From Eq. (A.9)

12 = (V; -V 1 +RI 1 + 1 1R R.x

Substitute Iq. (A.10) for Eq. (A.8), then

* V- RII
S1 11 2(A.)

RX R (R + R - RR2

I + (V2 - V 1 +R 1 ) RR2Rx

Solving Eq. (A.11), we get

RR2 V2
R 22 =__- -

1 I 2 + (V2 - V1 + R1 1 ) (R +R2 )

Likewise, we can determine all the YPI ' YPr"

qed.

'i
1:7
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Consider a given network N partitioned into two

subnets N1 and N2 along with some common nodes N3. We

assume all the branches among N3 are included in the subnet

NI . We denote N2' as N2 with replacing N3 to all available

nodes.

ThgogM).A) If N1 and N2' are solvable, then N is also

solvable.

Proof. Since N1 is solvable, we can get the element

values of subnet NI . Therefore we can get te voltages and

currents of N3 always. That is we can consider N3 as

available nodes. Now we can divide the network N into two

subnets along with the available nodes. We know N1 and N2 '

are solvable. Therefore the network N is solvable.

qed.

Example A.1

N NN :1

1 - " N 3  { 2 3 , 4 }
4 7 3

~~N1 :  0- 3 : solvable

N is solvable.
- 2' f'" - 5I

5 N2:3' 6 solvable J
~4' e__ 7

Consider the network N which meets the following

- ~ -'
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conditions.

1) All the nodes in the network N are tied to one

nonavaliable node.

2) The network N has at least three separate subnets when

we eliminate all the branches to the nonavailable node.

3) Each newly generated subnet is solvable.

4) The network N has at least one isolated available node

when we eliminate all the branches to the nonavailable node.

Tb&ei.MA.3j The above network N is element value solvable.

Proof. Suppose the network N is divided into subnets

N1 , and N2 , and N3. N consists of only one available node.

Number of nodes for N2 and N3 are n2 and n3. That means we

have n - l+n2+n3 available or partly available nodes. When

we apply star-mesh transformation, the network will be a

complete graph K n o We can measure all the branch voltages

and currents. And also the transformed portion from star

network of the mesh network should satisfy Shen's (79)

condition. We can generate all the element values only

using the measurements between the N1 and N2 , N1 and N3 , arvd

N2 and N3.

Suppose we want to calculate for any element values

between n3i and n3j in N3. We measure the element value of

the branch n1n3j' n2 kn 3 j' and nln 2k, n2k is an available

node of N2. Therefore we can get all the values in K n  The

difference between theoretical measurement and actual
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measurement represented as an admittance value is the

element value before star-mesh transformation. Therefore we

can solve the element values of the original network by

mesh-star transformation.

qed.

Example A.2

1 1'

4 4'

'~23 Y2'3' Y Y
1'3' 2'61~L. -y Yl'6'

Y34 341 Y 116

1'4' 3'6'

YI '2'

Y56 Y 5'6' Y,, '2

126'

TheorgM A,4) If a key subgraph is tree graph and the core

nodes of tree graph satisfy following conditions then the

key subgraph is also solvable.

1) Each core node which incidents only one other core node

is connected with at least 1 A and 1 A or P.

2) Core nodes which incident with more than two other core

I

_7
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nodes are connected with at least 1 A.

Proof. It sufficies to show that the condition given

in this theorem agrees with the condition given in the

Theorem A.3. We can eliminate the core node by star-mesh

transformation until only one nonavailable node is left.

And the conditions given in Theorem A.4 guarantees the

unique solvability.

qed.

Theorem A.5) If for any nonavailable node I, at least two

nodes are connected to free A and all others are connected

to A or P and only one other nonavailable node is connected,

then you can reduced the network for

network-solvable-purpose.

Example A.3

0n
. -o solvable

OriginaL graph 
Reduced qraph

If the reduced network is solvable, then the original

network is also solvable.

zz)
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Col A.l) A network N is solvable if following conditions

are all satisfied.

1. Its key subgraph is solvable.

2. The network remaining after all branches adjacent to

the core graph C of key subgraph K are deleted is solvable.

3. The subgraph, which is comprised of key subgraph K

enlarged by including all the branches both ends of which

are on the key subgraph K is also solvable.

We note in passing that our Theorem A.3 appears to be

related to the theorem given recently by Mayeda (82).

A.3.2 Algorithm for Checking Network Solvability of the

Key Subgraph K

1. Find the longest length of core graph (tree).

2. Disrupt connectivity ( To leave the most favorable

branch set ).

3. The reduced graph K of K generated by following rule

is solvable.

,a) Every node of branch connectivity one in the core

graph can be changed to the available terminal A if the node

has at least two branch connectivity with available nodes.

b) Every node of branch connectivity one in the core

graph can be changed to the partly available nodes if the

node has at least two partly available nodes.

4. If the reduced graph K of K is solvable graph then the

key subgraph K is solvable, otherwise go to 5.

--. L, , __ __ **4~ .
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5. If we can reduce further go to step 3 and repeat,

otherwise stop and K is not solvable.

A.3.3 Two Element Kind Network

Theorem A.6) For a two element kind network if the

following reduced subgraphs are solvable then the network

itself is solvable.

1. Exclude all the Y elements, then we have the graph Gxo

composed of X element only. Find the subgraph of Gxo which

is solvable.

2. Short circuit all the Y elements, we have the graph Gxs

composed of X element only. New subgraph will have m nodes

less than the original graph. Find the subgraph of Gxs

which is solvable.

3. If the union of the branches of the solvable subgraph

in the step 1 and 2 is X, then the elements of X are

solvable.

4. Exclude all the X elements, then we have the graph Gyo

composed of Y elements only. Find the subgraph of Gyo which

is solvable.

5. Short circuit all the X elements, we have the graph Gys

composed of Y elements only. New subgraph will have n nodes

less than the original graph. Find the subgraph of Gys

which is solvable.

6. If the union of the branches of the solvable subgraph

in the step 4 and 5 is Y, then the elements of Y are
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solvable.

7. X and Y elements are all solvable, then the network is

solvable.

A.4 Summary

The main results of this chapter are

1. Introduction of the core graph as an important key to

the solvability of the networks.

2. A refined method of determining the element value

solvability of the system,

---- Necessary and sufficient conditions for single and

two element kinad network solvdbility.

3. Algorithm of red.,;:ing the system for solvability

purpose.

A systematic procedure has been developed for

determining the network solvability given three

kinds of terminals.

4. Illusrative examples including previous results of

Bedrosian (78).

t ,

Ii. ..
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Appendix B

NAP2 Nonlinear Analysis Program (85,86)

B.1. Introduction

For convenience we summarize the main features of the

computer program utilized to simulate the electronic

circuits used to develop and illustrate the analog fault

isolation techniques.

NAP2 is a Nonlinear Analysis Program for lumped

electronic circuit simulations. The program covers DC,

transient, and frequency domain analysis. The input

language is format free and allows the user to build his own

models that can be stored in a library for later use. The

solution is based upon a hybrid formulation of network

equations and sparce matrix technique. For nonlinear

circuits the Newton-Raphson method is followed and in

transient analysis a implicit, variable-order, variable-step

integration scheme is used. Sensitivities are computed from

the adjoint network in the DC analysis, while the time

dependent sensitivities are calculated directly from the

difference equations produced by the integration formula.

NAP2 has the following features. The program is coded

in FORTRAN IV for an IBM 370/165 system. The storage

requirements of the present version are 104 K bytes. With

this regioi, size the program limitations are:

Nodes
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+number of primary current variables < 50

Circuit description statements

+number of diodes

+6 * number of bipolar transistors

+6 * number of field effect transistors

+number of output options 195

Subparameters

+2 * number of functional values

+4 * number of nonlinear couplings

+4 * number of bipolar transistors

+8 * number of field effect transistors

+2 * number of diodes 276

B.2. 4odel Library

NAP2 provides an arbitrary collection of statements to

be stored in a library for later use. Six libraries are

available under the names: LIB1, LIB2,..., LIB6. Although

the program offers diodes, transistors, and field effect

transistors as built-in models, we might enrich the program

by using the libraries.

During the modeling of the circuit, we have generated

and used several transistor and diode models.
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B.3. Model of a Transistor and two diodes

*LIB3 NEW
*LIB3 IN6494-
QEXP/EXP/ A -0.251E-9 B 0.251E-9 D 3.831E-2 L -0.5 U 2.
QCJ1/ABS/ B 0.108E-10 C 0.864 D -0.577
RB 3 2 0.532
RS 1 3 0.123E12
CJ 1 3 1*QC3(VID)
ID 1 3 l*QEXPl(VID)

*LIB3 IN752 -IQEXP2/EXP/ A -1.25E-1.1 B 1.25E-11 D 3.247E-2 E 1. L -.5 U 2.
QCD2// B 3.1E-6 C 1.25E-11
QCJ2ABS/B 3.31E-10 C .75 D -.5

RS 1 3 1.E6
CD 1 3 1*QCD2(IID)
CJ 1 3 1*QCJ2(VID)
ID 1 3 1*QFEXP2 (VID)

*LIB3 N2222A+
QJE4/EXP/ A -3.02E-11 B 3.02E-11 D 40. L -0.5 U 2.
QJC4/EXP/ A -1.19E-10 B 1.19E-1.0 D 38. L -0.5 U 2.
QCE4/ABS/ B 2.2E-11 C 0.9 D 0.4
QCC4/ABS/ B 1.3E-l11 C 0.9 D 0.35

*RB 9 1 0.05
RC 7 2 2.8E-3
CE 9 8 1*QCE4(VCE)
CC 1 2 1*QCC4(VCC)
IE 1 8 1*QJE4(VCE)
IC 1 2 1*QJC4(VCC)
IN 2 1 0. 9 92 7*QJE4 (VCE)
11 8 1 0.697*QJC4(VCC)
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