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and diagnosis?

Along with the feature extraction problem, given an
electrical network of known topology, what are the conditions
for testability?

To attack the long standing fault isclation problem in
analog electronic circuits, we have focused on two of the
major problems. One is the presence of uncertainties such
as indeterminacy, vagueness, randomness, and so on that
naturally arise during the solution procedure of analog
fault isolation. The other is the presence of topological rest-
rictions inherent in specific circuit configurations. -

Our main attention was focused on dealing with the fault
isolation problem involving various kinds of uncertainties such
as indeterminacy or vagueness. We show that such problems lend
themselves very well to and in fact can be solved by adoptinc
fuzzy set concepts. In particular this line of research has
produced a modified fuzzy set technique applicable to automatic
fault isolation. Topological aspects utilizing graph theory may
be used effectively to assist in preanalysis of faulty analog
electronic circuits. As a spin off of a consideration of these
problems, we developed some new theorems for element value
solvability. It should be made clear however that effective
fault isolation can be accomplished with or without this pre-
analysis to assist in resolving the more fundumental problem
incurred by uncertainty. |

As a consequence, this research yields the following
spzcific results:

1. A base line automatic isolation system which can be
used to deal with various kinds of uncertainties. A fuzzy auto-
mation model served as a point of departure for the base line
system. Various fuzzy relations are used to select and update
the parameters and structures of Lhe system.

2. Set of algorithms and new decision criteria which can
be implemented easily and used for effective fauvlt isolation. A
fuzzy distance measure and a fuzzy entropy measure are used for
decision making in the fault isclation algorithms. The results
are shown to be generally more effective than existing techniques.

3. 2Ample illustrative examples and simulation studies are
included *o back up these new methods. Several examples such
as low pass filter, band pass filter, and communcation I/0 cir-~
cuits are used to illustrate the simulation studies. The results
of simulation studies demonstrate the applicability of a fuzzy
set technique.
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fuzzy set concepts and provide methods to achieve

ABSTRACT
FAULT ANALYSIS OF ANALOG ELECTRONIC SYSTEMS:
Algorithms based on Fuzzy Sets
Jonghee Lee
Samuel D. Bedrosian

There are  g@ssentially three fundamental problems

involved in achieving effective automatic generation of

fault isolation tests for analog electronic systems

feature extraction, fault classification and diagnosis.
For practical electronic circuits having component

drifts and measurement noise, how are we able to introduce

fault

classification and diagnosis?
Along with the feature extraction problem, given an

eiectrical network of known topology, what are the

conditions for tes .. "ty?
To attack the‘long standing fault isolation problem in
analog electronic circuits, we have focused on two of the

major pxoblems, Ong is the presence of uncertainties such

as indeterminac,, vagueness, randomness, and 30 on that
naturally arise during the solution procedurc of analog

fault isolation. The other is the presencu of topological
restrictions inherent i1 specific circuit- configurations.
Our main attention was focused on dealing with the

fault isolation problem involving various kinds of
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uncertainties such as indetecrminacy or vaguencss. We show
that such problems lend themselves very well to and in fact
can be solved by adopting fuzzy set concepts. In particular 5

this line of research has produced a modified fuzzy set

technique applicable to automatic fault isolation.
5: Topological aspects utilizing graph theory may be used
‘ﬁ effectively to assist in preanalysis of faulty analog f

elqctronic circuits. As a spin off of a consideration of

g these problems, we developed some new theorems for element

% value solvability. It should be made clear however that

f effective fault isolation can be accomplished with or

;; without this preanalysis to assist in resolving the more )
i , fundamental problem incurred by uncertainty. %
i
fg As a consequence, this research yiclds the following l%
i . specific results: j
g l. A base linc automatic isolation system which

§ can be used fo deal with various rinds of

uncertainties. A fuzzy automaton model served

as a point of departure for the base line system.

Various fuzzy relations arc used to sclect and
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update the parameters and structures of the system.
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-

in the fault isolation algorithms. The results
are shown to be generally more effective than
existing techniques.

Ample illustrative examples and simulation studies

are included to back up these new methods. Several

N

examples such as low pass filter, band pass filter,
and communication I/O circuits are used to
illustrate the simulation studies. The results of
simulation studies demonstrate the applicability of

a fuzzy set technique.

v trlous

N e FAY a

hH




FAULT ANALYSIS OF ANALOG ELECTRONIC SYSTEMS:

Algorithms based on Fuzzy Sets

Jong!.ce Lee
A DISSERTATION
in

SYSTEMS ENGINEERING

Presented to the Graduate Faculties of the University of
Pennsylvania in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy.
1980

)/) o .
ﬂf/ W WL s W

$hperv130r of Dissertation

Graduate Group Chairpe

TR TR,

THR

TR

A

RS TR
G,

Rt

SR G

&@‘W’ e E

(Z¢[/gy_v» 4_54%7

&
g
3
¥
%
i
¥
%
%
¢
¥
g
1
M
Y
3
%
£
2
3
:
¢
4
.
4
4
H
!
X
A
¥
h
b
%
i
5
Ed
’
k4
H
>
-
<
2
E
H

BRI RS TR BN W AR i o DO ol e LI K&*ﬁﬂ}.ﬁﬁ@!_@bﬂmm RN Wy e B LY A 5

ML B bS8 S M g Aae o

e AN




L T T e ST N T DG A BIRRTAS 0 4 T AT St RN ST ST WE B AT M o S T S s 5 S 9T PTG T L RRR T £ S0 S T LR ST T WRLT ORI Y 3s T (T A s A8 ORISR ns S R gﬁﬁwﬁm%#
‘ 7

e

4
i
= 3
oo’ [
©
4 Q o >
m ) o
£ o
[0 &0 -
(o] =1
(] O
o)
’ - » -
S O U DU . - . . . PR

f?i
it ity R, sl s % PRI 2 3R P v

re




b - e S = = o . e " N
g R ' L Rl MDA

:j: T D e - - 4 s e,

e e e T

iii

ACKNOWLEDGEMENTS

e S L AR v sbat T

; f- I wish to express my sincere thanks to Dr. S. D. §
Bedrosian, my dissertation supervisor (and along the way %
English teacher) for his interest, encouragement and advice. ?
I am also deeply indebted to Dr. D. W. C. Shen for his warm %
interest and encouragement over the whole spectrum of ;

graduate studies at the Moore School.

P

Without the support of the Office of Naval Research on

Contract N00014-75-C-076¥8, this research would not have
been done.
Mcst of all I want to thank my wife, Iljoo, for her

belief, hope, and love.

BN A S e R Y IR S S A S e A SR

k6
S

e e b




ST TR A T R AT AR IS TR T TR TR T T TR g e iy e

3
;1
3
%
g
b
)
"s
i
%

iv

1 bt

LIS1 OF FIGURES

Fig. 3.1 Learning Curves with Reliable Teacher 40

Fig. 3.2 Learning Curves with Unreliable Teacher 41
(Max-min Relations)

Fig. 3.3 Learning Curves with Unreliable Teacher 42
(Max-Product Relations)

Fig. 3.4 Learning Curves with Unreliable Teacher 43
(Linear-Product Relations)

Fig. 3.5 Block Diagram of a Learning Fault 47
Diagnostic Scheme

i Fig. 3.6 Flow Diagram for a Learning Diagnostaic 59
§ Scheme in Fault Testing
Fig. 3.7 Circuit Diagram of Active Low Pass Filter 68
Fig. 3.8 Amplifier Characteristic 69
i Fig. 3.9 Bode Plot 71
e .
o Fig. 3.10 Learning Curves for Sets of Discriminant 72
Functions
z' Fig. 3.11 Learning Curves for Refined Sets of 73
,éw Discriminant Functions

Fig. 3.12 Learning Curves for Sets of Discriminant 74
Functions with Resolution

Fig. 3.13 Learning Curves for Refined Sets of 74
Discriminant Function with Resolution

Fig. 3.14 Membership Functions vs. Number of 75
Learning Iterations using Distance Measure

(3% component drift, 3% measurement noise)

. P ; N - . » s o, - .
e S SRSy S OSRU  paen  N A A SRR R ot s i A R AT At 1 A T e 10 ¢ et b ARSI e s s b s

Fig. 3.15 pMmembership Functions vs. Number of 76
Learning Iterations using Distance Measure

%&Wﬁrm@w .

M@éﬁ%&%@i@ﬁ%md Ity vt

L. S B AL R s SR
e saTwaS-




)
«

N A ey BN e 83 e S "
e i . e e .
N S0 o S T G P i T S

%

e

5,
%
B
&5
2

&

.
A
7

SRR

HT S Wiy

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

3.16

3.17

3.18

3.19
3.20
3.21
4.1
4.2

4.3

4.4
4.5

4.7

and refined Reference Vectors

(3% component drift and 3% measurement noise)

Membership Functions vs. Number of
Learning Iterations using Distance Measure

(10% component drift, 10% measurement noise)

Membership Functions vs. Number of
Learning Iterations using Distance Measure
and Refined Reference Vectors (]0%

component drift, 10% measurement noise)

A Design Procedure for Automatic Fault
Isolation Tests

Overlapped Response Regions

Diagram of the Communication I/O Circuit

A Partial Listing of the Input to the NOPAL
Fault Isolation using a Fuzzy Measure

Simplified Diagram of Fault Tsolation
Method using Fuzzy Distance

Partial Miagram of the Communication I/O
Circuit

A Network Fault Membership Function

A Component Fault Membership Function

The Network Fault Membership Function
due to the ith Component Fault

Fuzzy Algorithm introduced for Isolation

of Single Faults in Analog Networks

79

80

82

125

132

132

132

135

—

NI L g an it featint X e o N .
A BN o e & o g SRR TOIRY  ug il o Ao S SN e A R b s

4
%
5
N

Al D v Rt g 2 o5 DR S RO I WS T B S BOG TY 2 e N e



PPN

A3

T ATRRSETE TS

A0 e 2 i Ao B L i ) i T

s S-S
é

Table

Table

Table

Table

Table

Table

Table

Table

Table

3.1

3.2
3.3

3.4

3.5

4.1
4.2

4.3
4.4

vi
LIST OF TABLES

Nominal Values and Analytical Exvressions

for the Linear Circuit
Comparisons of Different Criteria

Fuzzy Membership f wi for the Overlapping

Region k™1

Maximum Fuzzy Membership for ,w

ki
A Partial Overlapped Responsc with Fuzzy
Membership

List of Selected Faults

The Number of Correct Diagnoses from
total of 42 Measurements (3 samples each)

Effectiveness of Test G2

Comparisons of Different Criteria

69

o
(=]

93

95

125
126

126
137



]

vii
LIST OF SYMBOLS

uA(.) ¢+ A fuzzy membership function of a fuzzy set A. 14
uA(x) : The grade of membership of x in a fuzzy set A. 14
A, B, C,..., Al, AZ"" : Fuzzy sets 13

A rule of combination 16

Q
.o

A : Operator choosing the membership value close to %. 16

vV, (ext) : Operator choosing the membership value 16
far from %.

med : Operator choosing the median value of membership 17

values and .

a, B, Y, n : Constants between 0 and 1. 18
rf(.) : State transition performance function. 24
rg(.) : output performance function. 25
w; ¢ ith fault pattern 50,52
X ¢ Training matrix formed by X. 54
x! : Generalized inverse of . 54
H : Hyperplane 56
dk(. , +) ¢ kth discriminant function. 57
Eg : Threshold for ith measurement in reference vector.59Y
Th; : ith threshold for quantization. 67
R, ith fault pattern vector. 61
Cl’ C2 ¢ Nominal values of capacitors. 63
Ul’ U2 ¢ Operational amplifiers. 63
Gl'Gé : Ga.ns of operational amplifiers for Ul’ U2- 63

Zi(s) : Transfer function of feed forward components. g4

.g,

5

JEI UL TDQUERT TIPS s oL~ R 4

PR TR WL LA TS

DB e A S A Pk o 2R S Ly

L R e

VA K

LA T o AT ol L

R

TSR S PR T

b Ry S o Pl wte a fae

S M it rhecovens

at

kG Aty

&




TR AT TR T TR TTLTNT U ORRATALLE T UTAR RN WS e o T =

R A PR T

viii
Zf(s) : Transfer function of feedback components.
ez/el + Transfer function of subcircuits.
wz,..., w14 : 14 fault patterns
R.. : The quantized value {1, 0, -1} of ith fault
patterns and jth frequency measurements.

X = (xl,...,x.,...,xzs) ¢ The quantized vector of

selected threshold.
xj : The quantized value {1, 0, -1} of jth test
frequency measurements.

. P : Power measurements.

P, Po' P min

max
x(.) : Fuzzy measure

FEV : Fuzzy expected value
H : Fuzzy entropy

Sj : Separability measure

yj ¢ Ordered measurement of jth response.

J..(.) ¢+ Decision function.

ij

e e -

i e ————

64
64
64
65

66

66

89
106
106
106
121
121
136

o SRR Al F

i

+

1
$

H
ﬁy.-’.«;’»xs.mmmqw St ATAY o




ix
Table of Contents

List of Figures v
List of Tables Vi
List of Symbols vii
Glossary of Terms xii
CHAPTER 1 Introduction 1
1.1 Motivation 1
1.2 Statement of the Problem 2
1.3 Scope 2
1.4 Summary 3
CHAPTER 2 Analog System Failure in the Context of uzzy
Set 6
2.1 Introduction 6
2.2 Literature Survey, and Theoretical Background 8
2.3 Fuzziness in Analog Electronic Networks 11
2.4 Theory of Fuzzy Sets 13

2.5 Classes of Failures in Analog Electronic Systems 17

CHAPTER 3 Fuzzy Automaton Model (FAM) as a Basis for Fault

Isolation 20
3.1 Introduction 20
3.2 A Formulation of Fuzzy Automata 21
3.3 Various Fuzzy Relations in Fuzzy Automata 28
3.3.1 Max~-min Composite Relations 30
3.3.2 Max-product Composite Relations 31
3.3.3 Linear Product Composite Relations 32
3.3.4 Max-topology Composite Relations 33
3.4 Properties of Fuzzy Relations in Fuzzy Automata 33
3.4.1 Simplicity 33
3.4.2 Convergence in Linear Reinforcement Scheme 36
3.4.3 Monotonicity Proverty 39
3.5 Learning Techniques applied to Active Linear
Networks using Frequency Domain Analysis 48
3.5.1 Introduction 48
3.5.2 Fuzzy Sets and Fault Classification 52
3.5.3 Fuzzy Automaton as a Model of Analog Fault
Isolation 58
3.5.4 A systematic Learning Procedure 63
3.5.5 An Illustrative Example using an Active Lincar
Circuit 68
3.5.6 Discussions 82
3.6 Fault Isolation Method using the Fuzzy Logic 84
3.6.1 Introduction 84
3.6.2 Fault Response Simulation 87
3.6.3 Response Sensitivity with respect to Tolerances 88
3.6.4 Fault Isclation using the Fuzzy Logic 89
3.6.5 Fanlt Isolation Procedure 96
3.6.6 An Illustrative Example 97
3.6.7 Discussions 99




e PP, - [ USTU - —

Qi
i

O

X
3.7 Chapter Summary 100
‘ CHAPTER 4 Fuzzy Distance Measure and Fuzzy Entropy Measure
in Fault Isclation 101
4.1 Introduction 101
4.2 Fuzzy Distance Measure (FDM) 102
4.2.1 Definition 102
4.2.2 FDM as Fault Isolation Criterion 103
4.3 Fuzzy Entropy Measure {(FEM) 104
4.3.1 Definition 105
4.3.2 Measuralbility of Faults in Analog Networks 107
4.3.3 Fault Properties, Fault Averages, and Fuzzy
Expected Values 110
4.3.4 An Algorithm of Fuz.y Measure to analog Fault
Isolation 111
4,4 A Fault Isolatinn Method in Nonlinear Analog
Networks using the Fuzzy Distance Measure 115
4.4.1 Introduction 115
4.4.2 Reference PFeature Generation of Faulty Networks1l6
4.4.3 Fuzzy Distance Measure in Fault Isolation 120
4.4.4 A Fault Isolating Algorithm Using the Fuzzy
Distance Measure 120
4.4.5 An Example using Communication I/0 circuits 127
4.4.6 Discussions 128
4.5 A Fault Isolation Method using the Fuzzy
Entropy Measure 129
4.5.1 Introduction 129
: 4.5.2 A model of Fault Membership Function of the
Response 131
4.5.3 A fault Isolation Algorithm using Fuzzy
Entropy criterion 134
4.5.4 Examples 136
A 4.5.5 Discussions 138
g 4.6 Chapter Summary 139
%3 CHAPTER 5 Conclusions 140
s 5.1 Summary and Conclusion 140
2 5.2 Suggestions for Future Investigations 141
APPENDIX A Graph Theoretic Aspects of Analog Fault
Isolation 143
A.l Introduction 143
A.2 Existing Graph Theoretic Aspects of Analog Fault
Isolation 144
A.3 Element Value Solvability 145
A.3.1 New Theorems 145
A.3.2 Algorithm for Checking Network Solvability of
, the Key Subgraph K 153
A.3.3 Solvability for two element kind network 154
A.4 Summary 155

P ST

i he s Ao v aRy WA o T L R e TN Wt g S

o | . __, 0 _

A R ——— T

e

PP RAS N S Y

sl

T P A P S W R

AR AN, BRI s .




SRR B TR AR ELRI P B TR s VR T RN VTN A «
f * b 2 L RS N R T PR . . .
b Fones T g Y A T U T

20 TR e LT AT TS R TN R SN S 4T R
= S

1)
O oo (o2} r~
Ve R To M TaNNTe] uwn O
——~ e~ i —
w0
Q
Lo
-
< Y
4

B.3 Model of a Transistor and Two bio

: >
5 o N
. [o 3N 1
N R
4 H$ .0
2 Q-
1 m 33 (77}
; o [}
» Ot (4]
H O =
Ady Q
= - 13
=X Q O
. [ U4 e
¢ By =4 O3 (] =
' < o o -
;mm
%

B et e s e e s
Con

P o "
. P e e el P B Mgy WP - o gee




xii

%
oy
N
2

& ]
-

GLOSSARY OF TERMS

e

A. Definitions

Analog Circuit: Electronic subsystem, component, or printed

circuit board.

Analog System: Set of analog circuits (boards) processing

S R T R NS

analog signals.
Fault: Physical defect causing a failure.
Failure: Effect of fault.
Fault Feature Extraction: Process that simplifies the fault

isolation problem sufficiently to render it tracable for the

R Ry

R Dot

ey

fault feature selection.

Fault Feature Selection: Selection of effective fault
features from a given set of feature measurensents.

Fault Diagnosjis: Determination of the cause of a fault
(e.g., the exact value of off-tolerance parameters).

Test points: Connections or nodes of a circuit to which it
is possible to connect a measuring equipnent.

Test program: Definition of the test procedure.
Testability: Capability to find out if the unit under test
is operational or not as well as the ability to find out
which component or group of components have failed.

Stimuli: Signals applied to the system's inputs.
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B. Faults

Deviation Fault: The value of a paramete: deviates in a
continuous manner with time or with environmental conditions
up to an unacceptable value.

Catasgtrophic Faylts Those faults caused by a sudden and

large variation of a parameter (e.q., short, open,

break-down) .
Single Faults: Those faults concerning only one parameter
or a component at a time.

Multiple Faults: Those fault concerning simultaneously

several parameters or components.

C. Types of Tests

Functional Tegt: Verification of the function of modules
for nominal characteristics and conditions.

Parametric Test: Verification of analog characteristics
within specified tolerance (voltages, currents, impedances,
load conditions, etc.).

Static Test: Verification of stable states of unit under
test.

Dynamic Test: Verification of dynamic characteristics of
the unit under test, for normal use conditions (in
particular [or transient analysis).

Exhaustive Test: Verification of all modes of operation for




xiv
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all types of faults.

Partial Test: Verification 1is limited to certain
characteristics or to a limited number of faults.

Cff-line Test: Test of which operation of the system under
test is interrupted.

on-line Tegt: Test of which operation of the system under

test is not interrupted.

v
-
.
*’ .
s .
el ¢
R I
§g
B
z |
' .
=3
L
éé
‘. .
g
§ #
.
s 5 .
% 7
5
g1
£
Ny x
Bl S st 8 R B s B o BN GBS TR RS e 87 . . -

3
i

i
et

SEE IRt AR e ek

30 A 28 ek

A N e S B

s A

T B 5 e St e A 5 S R EBIIT P bbbt b b By o Y ST D oD A A

it g

sl

R




CHAPTER 1 Introduction and Summary

1.1 Motivation

The development of automatic test generation (ATG) for
analog systems (AS) lags far behind that for digital systems
partly because even under ideal conditions the complex
interaction of the many components affects the response
signals. Herein we confine our attention to analog
electronic systems even though the general approach is not
necessarily that limited. Due to the imprecision and
indeterminacy of the complex structure of faulty networks,
it is usually difficult to obtain exact solutions. It
should be stressed that for fault isolation it is
unnecessary to seek the exact solutions. Nevertheless, in
the realistic situations component 1‘rifts and measurement
noise must somehow also be taken into consideration. We can
for convenience interpret such a system as a fuzzy system so
that the fuzzy set concept of 2adeh becomes the basis for a
fault isolation method.

It is well known that the topology of an electrical
network with only a limited number of accessible terminals
limits the testability of the wunit under test (UUT).
Testability refers to the capability to find out if the UUT
is operational or not as well as the ability to find out

which component or group of components have failed. To

accomplish this effect, access to suitable test terminals is

‘ t
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necessary. Berkowitz (74) introduced the concept of element
value solvability as necessary conditions for solving the
values of lumped network elements given limited access.
Using graph theoretical aspects of this element value
solvability, we can determine the sufficiency of the access

terminals, or the solvability of the network.

1.2 Statement of the Problem

There are essentially three' fundamental problems
involved in achieving effective automatic generation of
fault isolation tests for analog electronic systems :
feature extraction, fault classificatiqn and diagnosis.

For practical electronic circuits having component
drifts and measurement noise, how are we able to introduce
fuzzy set concepts and provide methods to achieve fault
classification and diagnosis?

Along with the feature extraction  problem, given an
electrical network of known  topology, what are the

conditions for testability?

1.3 Scope
For practical analog electronic circuits having
component drifts and measurement noise, we adopt a fuzzy
systenn model of faulty analog. electronic circuits.
Considering fuzzy system models éf faulty analog circuits,

the followiung specific objectives are sought: (1) To develop

criteria for fault diagnosis and to optimize the 1level of
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diagnosability via iearning algorithms in order to reduce
the computational —effort. (2) To develop efficient
computational algorithm for  assessing the power of
discrimination in the test signals among fault conditions
via information theoretical point of view.. (3) To verify
and assess the efficiency of the proposed test method by
carrying out computer simulations on typical circuits. This
approach lends itself to treatment of integrated circuits.

Introduction to the state of the art in network element
value solvability and effort toward its solution are to be
found in papers by Berkowitz (74), Bedrosian (78), Gayer
(11) ,and Navid and Willson (14). In this dissertation we
extend their work by providing a method to determine the
necessary and sufficient conditions for the solvability of
the network for single and two-element-kind networks. This
includes an algorithm to determine the netwofk solvability

and the necessary theorems.

1.4 Summary
In Chapter 2 the state of the art is reviewed. A
summary of Zadeh's fuzzy set theory is introduced. Some
clarification is given of its suitability and rélationship
to faulty analog circuits.
In Chapter 3 a fuzzy automaton model (FAM) is
formulated as a basis for a fault isolation method. Various

properties of three fuzzy relations in fuzzy automata are

examined. Especially learning properties of fuzzy automata
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are studied and applied to analog fault isolation problem.
Section 3.5 deals with the problem of selecting the best set
of parameters for fault tests using the fuzzy automaton
model. An example of this learning technique is applied to
gimulated faults on a simple active circuit. Section 3.6
deals with the application of fuzzy relations to the highly
overlapped fault patterns. Fault pattexn classes are first
separated intc non-fuzzy and fuzzy parts corresponding to
non-overlapping and overlapping rcgions obtained Dby
gensitivity analysis. The grade of membership of the fuzzy
parts are then modified according to simulation results and
the decision based on fuzzy relations.

In Chapter 4 two classes of information measures are
defined as measures of information content in the fuzzy
system, namely fuzzy distance measure (FDM) and fuzzy
entropy measure (FEM). Their properties are discussed and
their applications to fault diagnosis with FAM have been
made. Section 4.4 utilizes a special form of Tellegen's
theorem to get the necessary values of port currents and
voltages for diagnostic purposes. A fault 'isolation
algorithm using fuzzy distance measure is developed. A
simulation of part of a communication I/0 circuit is used as
an example. Section 4.5 discusses a fuzzy measure to
facilitate analog fault diagnosis having nonlinearity,
component Crift and noise. The algorithm presented herein

makes use of the available measured data on port responses
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to isolate the faulty component based on fuzzy set corzepts.

Chapter 5 includes a summary and conclusions for the

present study followed by some suggestions for futher work.

In Appendices necessary and sufficient conditions for

solvability of single and two element kind network are

given. An algorithm to determine the network solvability

is developed. Detailed examples are included. Summary of

NAP2 Nonlinear Analysis Program is introduced.
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CHAPTER 2 Analog System Failure in the Context of Fuzzy
Sets

2.1 Introduction

In view of the declining availability of skilled
manpower, it becomes important to develop and adopt
systematic m2ans for analyzing faulty analog electronic
systems., <The development of fault isolation techniques for
analog systems lags behind that for digital systems partly
because the complex interaction of many components affects
the response signals. Practical analog systems are exposed
to noisy environments. Under fault condit}ons such systems
in general become nonlinear. The behavior of faulty systems
can conveniently be considered in the context of fuzzy
systems (12,35,37).

Fuzzy system denotes a system with vaque inputs, vague
states, and vague outputs for a given system structure
interacting with the fuzzy enviroament. We call those
variables such as vague inputs, vague outputs, and vague
states as "informal" variables (43).

The rationale for the development of fuzéy system can be
described as follows, Informal variables suffer from
vagueness or indeterminacy, so that a deterministic system
i8 hopelessly inadequate to represent them. The traditional
response c¢an be interpreted to mean that the informal
variables must be constrained , so that the deterministic

system will apply. The fuzzy system approach proposes,
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instead, to loosen up, or "fuzzify" the deterministic system
to obtain a new system which is directly applicable to
constrained informal variables.

Fuzzy set theory itself has been developed since 1965
(35). The theory has been applied to the various fields
such as pattern recognition, formal 1languages, medical
diagnosis, automata theory, and so on. The primary part of
this study focuses on formulation and solution of some of
the specific real problems in the area of analog fault
analysis by applying fuzzy set theory in conjunction with
other related theories. For convenience éhe subjects of the
study are grouped into three parts: li Analog system failure
in the context of fuzzy set theory, 2) A fuzzy automaton
model and its application to fault analysis, 3) Fuzzy
measures and their applications to fault analysis,

Since some of the pattern recognition aspects play
major roles in the area of fault analysis, fuzzy measures,
such as fuzzy entropy and fuzzy distance, are defined.
Above measures are used as effective measures of fuzziness.
And based on the measure, we develop the criteria for fault
feature selection as well as fault feature classification
and diagnosis. Fuzziness is a type of imprecision which
stems from a grouping of objects into classes which do not
lend themselves to sharply defined boundaries. A basic
difference between a fuzzy algorithm and a heuristic program

is that the instructions in a fuzzy algorithm are themselves
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fuzzy whereas in a heuristic program they are not.

The secondary part of this study focuses on a review
and extension of some of the graph theoretical aspects,
especially initiated Dby Berkowitz's element value

solvability. .,
2.2 Literature Survey and Theoretical Background

Until now, efforts at producing effective algorithms
for automatically generating test programs have been
confined mainly to digital circuits for which more or less
satisfactory solutions have been reached. Today, industry
uses computer programs for developing and analyzing test
sequences for printed circuit boards built with MSI and LSI
circuits. Analog circuits, on the other hand, have received
much less attention and effort.

The main difference of development between digital and
analog systems might be due to several of the following
reasons.

1) PFault categories as well as their —statistical
distributions and correlations are not known with precision.

2) Even though theorectically measurable, conventional
automatic test equipment has its own limitation of
measurement range,

3) Relations among input and output signals in analog
circuits are heavily depending on the network structure.

4) Particularly under fault conditions, analog systems are
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frequently nonlinear, and involves measurement noise and

component drifts.

Therefore the rest of this section is devoted to a review
of existing methods with answers to the following questions.
Characterization of method. What kind of theoretical
background does it have? To which analog system can it be
applied? The following classification methods are from
Duhamel and Rault (15). For convenience we consider only
thfee categories.

Estimation Methods: Two general classes of methods belong
to this category; deterministic methods and probabilistic
methods. The first ones consist in determining, £from
measurements, the actual values of the parameters of the
UUT; determination may be purely analytic (based on analytic
relations between input stimuli and responses) or based on
estimation criteria (here both physical and mathematical
conditions are taken into account). The following detailed
methods belong to this first class; the least squares
criterion method (16,17), the minimal deviation vector
method (18), the quadratic programming method (19), the
voting method (3,5), and the minimal &istribution functions
method (20). The second ones are probabilistic methods. 1In
probabilistic methods, the distribution laws of measured
responses are determined from the tolerances on the
parameter values and their associated statistical

distributions. The inverse probability method is one of the
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typical probabilistic methods. Theoretically, estimation
methods have as main advantages the fact that test-points
are the input and output connections of the UUT, fewer
measurements are needed than  parameters, no need for
omission of particular faults (unlike taxonomical methods);
furthermore, they allow savings in computer memory due to
the use of analytic relations. Nevertheless, these
advantages are obtained at the expense of the computations
to be done at the moment of actual test.

Thus introducing the fuzzy set concept in this
estimation method and application to fault isolation is
essential to the satisfactory integration of various fault
isolation methods.

Topological Methods: The basic data to be handled are
the syt. m's structure and, possibly, analytic relations
between input variables and measured responses., The
information path analysis method (21,22), thé maximal
current method (23), the inverse simulation method (24), and
the graph analysis method (25) are in this category. The
nmain advantage of these approaches is allowing to test a
single system or large portions of a single system in a few
steps. Moreover, they may be used as a preanalysis to probe
technique. In our study, certain graph theoretical aspects
are intensively examined. It could be used to enhance

preanalysis to applications for fuzzy system.

Taxonomical Methods: They are based on a fault
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dictionary in which are stored the system's reference
responses corresponding to each potential fault condition.
During actual testing, measurement results are compared to
the responses recorded in the dictionary; the detected fault
is the one for which the set of measurements differs the
least, according to a predetermined criterion, from its
corresponding response vector in the fault dictionary.
Obviously, the accuracy of such methods is directly
dependent on how comprehensive one is able to make the fault
dictionary. Main advantages of taxonomical methods are
several levels of description (components, functions,
boards) and diagnosis capability, independence with respect
to technology (several types of measurements), test signals
correspond to normal operation, capability for trend
analysis, off-line or on-line testing, no assumption on the
type of systems (linear or nonlinear). Theix main drawback
lies in the large volume of data to be processed, fuzziness
in the definition of fault signatures, and the risk of

overlooking faults not included in the fault dictionary.

2.3 Fuzziness in Analog Electronic Networks
Recall that the main problem is isolating fqult_patt;rn
classes whose analog functions are degraded by the f;ulty
components under additional constraints. In particulaf the
main cona.tion is that all the nonfaulty components are
subject to drift within prescribed tolerances and the

measurements are assumed to be corrupted by noise. Our main
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thesis is that such a system can be modelled by adopting the
fuzzy set theory; in particular the fuzzy membership
function.

On examining this concept, some researchers simply
assumed that, since the membership function takes values in
the closed interval (0,1), the theory of fuzzy subsets is a
variant of probability theory. In fact, this is not the
case. Probability theory is often viewed as a part of a
general theory of measure. By contrast, fuzzy set theory
falls within the theory of ‘"valuation" ( in this sense,
"fuzzy measure" should be distingushed from usual use of the
term ) (49). A basic property of measure is its additivity.
A valuation, on the other hand, exhibits a weaker property
of monotonicity with respect to inclusion and thus is a more
general notion than that of measure (51).

Many of the electronic and feedback control systems of
interest are designed to perform certain specific analog
functions. These are  continuous functions and the
deviations of a system function from its . nominal value may
range between an upper and lower bound established by the
physical nature of the gystem, For such systems a slight
out of tolerance condition yields a partial failure whereas
large deviations usually result in a complete failure. The
difficult problem is to diagnose the fault when a component
exceeds the nominal value to an extent that the performance

of the system is just outside the specification while all
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nonfaulty components are subject to drift within tolerances.
The difficulties are compounded by measurements corrupted by
noise, Since this case represents the "real world"
situation, it is recognized as the diagnostic test case,
Two classes of well known analog fault diagnostic methods,
namely, the parameter estimation methods (70, 71) and the
bilinear %“ransformation methods (1, 2) are very sensitive to
the noise and the nonlinearity of the components.

Thus we can identify the problem of fault analysie as
involving two highly interactive stages; one is establishing
the set of test measurements to characterize a fault patcern
and the other is the construction of an optimum design
procedure to classify a fault pattern based on these

measurements.

2.4 Fuzzy Set Theory

The fuzzy set concept was originated by Zadeh (35).
Instead of taking on only two values 0 or 1 dependiﬁg on
"included in" or "not included in" the set, tﬁe basic idea
involves taking on values in the range (0,1) dependiﬁg on
the degree of belonging to the set. For clarity, some of
the definitions are repeated in the following discussions

(37, 39).

Definition 2.1: Let E be a set, denumerable or not, and let
X be an element of E. Then a fuzzy subset A of E ig - uet

of ordered pairs
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{x, uA(x)} , X € E

where 1, (x) is the grade of membership of x in A. Thus, if
up (x) takes its values in a set M, called the membership
set, one may say that x takes its values in M through the

function pA(x). Let us write

X ——— M . (204.1)
Ha

This function will 1likewise be called the membership
function., Three major operations are defined as follows.
Definition 2,2: Let E be a set and M=(0,1) its associated

membership set and let A and B two fuzzy subsets of E;

V xXe E : uB(x) = 1 - “A(X) : A and B are complementary

denoted by B=A, (2.4.2)
V xcE ‘“AnéX) = min (uA(x), “B(X)) : The intersection of A
and B denoted by ANB, (2.4.3)

V x<E :uAUB(x) = max (pA(x). uB(x)) : The union of A and B
denoted by AUB. (2.4.4)
Since (0,1) is a complete lattice (39), we can define in

M(x), unions and intersections of arbitrary families:

Hai (x) = inpri(x) ’ (2.4.5)
i€l iel
HA i (x) = supgni(x) (2.4.6)
1el iel

However the lattice M(x) is not a Boolean algebra because

ANA #p, AVA # E

$ stanas for empty subset of E.

Definition 2.3: Fuzzy implication (Fuzzy conditional
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' statement) is defined as follows. 9
If A then B, ;
where ACX, and B<CY, which has a membership function §
defined by g
Mg ly, %) = min Gy (x), uy(y). (2.4.7)
"3
We are mapping an input A to an output in a fuzzy way. f
That is, input is big then output is medium, given ACX, BCY., %
Let's procede two description of a system in fuzzy g
implication. If input is big then output is medium, or if E
§< input is medium then output is small. 1i.e.,
? If Al then Bl, or if A2 then B2, which has a membership
i . function defined by (2.4.8)
3 hglys X) = max(min (i) () gy (v))y minu,, (%) g, (9))) 5
?‘ These of course can be extended to more than two fuzzy
f implications. An example of an implication extension is as

v

iy
RN S

3 follows. 2
73 If A then ( if B then (), whose membership is defined by %
;% hg(x, ¥, 2) = min (4, (x) ; min (.uB(y) : uc(z))) %
E =min (o, (x) 5 ougly) 5 oui(2)). (2.4.9) :
'j Definition 2,4: Fuzzy Inference; To calculate the inferred é
? fuzzy subset, given a certain implicand fuzzy subset. l;
We know the rule : If the input is big, then output is i

medium. The question is : If the input is very big, what é

will be the output knowing that the preceding statement. g

The compositional rule of inference is as follows. %

R s | P TIR I WPy S

e ——— '




reaa

16

it
o

Given a fuzzy implication § : If A then B, the fuzzy
subset B', inferred from a given fuzzy input set A' { A,A'cX

and B,B'CY ), has a membership function defined by

2 152 TR M A e )

i

uB,(y) = max min (uA.(x), us(y, X)). (2.4.10)

Silvert developed some more fuzzy operators based on
symmetry under complementation(84). Let A1°A2 represent the
combination of two fuzzy sets Al and A2 under some rule, and
let A be the complement of A. If iy is the membership
function for A, then the membership function for A is
g = l-pA. The requirement that the rule of

combination be independent of whether we deal with a se%t or

its complement is equivalent to the condition ‘

e w———

(Alo A,) ='A'1 ° A, . (2.4.11)

If the membership function Mo for the set A oA, is given
by an equation of the form My = C(nl,uz), then eq.
(2.4.11) is equivalent to

l L, “2) = C(l"ul,l-llz) . (2.4012)

A symmetric sum will be considered stable if and only if
WAy < Cly b)) gV . (2.4.13)

Now we define two operators A and 7/ , Operator \ is
defined as choosing the membership value close to 1/2,
operator YV 1s defined as choosing the membership value far

from 1/2, If we confine ourselves to add the associativity
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and stability of the symmetric sum, above operators

satisfies the symmetry under complementation.

Theorem 2.1: & and V are operators satisfying the symmetry

under complementation with the associativity and stability.

4 We call the V operator as the extremum (ext) operator.

We can also denote the median of two fuzzy membership values
and 1/2 by med (uy, 1y, 1/2). 1Instead of using ! relations

we can also use ext~-med relations.

2.5 Classes of Failures in Analog Electronic Systems

We can categorize the potential failures according to
the degree of system failure into "soft" failures (deviation
- failures) and "hard" failures (catastrophic failures). A
2 "soft" failure indicates that some components exceed their

nominal values to an extent that the performance of the

?i system falls outside the specification. A "hard" failure on
%?f the other hand indicates a large deviation in the system
i? performance due to the catastrophic change of components
?} such as open or short.

% There is a finite set of nominal measurements X =(%)

9 X3y eesy X{s eseqs X)) in the system with a tolerance | X
. for each x;, where Xx; stands for the ith port measurement.
A; is the fuzzy set of all possible measurements at the ith

port with fuzzy membership values. ‘The membership value for

LS e 5
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a specific measurement means the degree of fault assigned to
that specific port measurement. A fuzzy membership value of
"l" indicates a definite hard fault while a fuzzy membership
value of "0" indicates no fault. Hence an intermediate
fuzzy membership value represents the degree of soft fault

indicated by the measurement. We associate fuzzy membership

)

l 4

values corresponding to the test measurements X = (x

0 o 0
X X. cees X b
9 ! i’ ¢ X, ) Y

X1

If the maximum fuzzy membership value of the
measurements exceeds & , then we savy the system under
is at least in .~failure.

Another important distinction 1is between the single
component failure case and the multiple component failure
case. If only one component in any circuit is outside the
tolerance 1limit to such an extent taat the response
measurements are out of specification, then we denote the
faulty circuit as a single fault case. Similarly if more
than two components in any circuit are sufficiently outside
their tolerance limits so that the response measurements are
out of specification, then we denote it as a multiple fault
case. Throughout this dissertation, the single fault case
will be the focus of study. Until now the multiple fault

case has not been studied extensively, mainly because of its
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additional complexity. Whenever multiple fault cases are

known a priori, we can extend our methods to 1isolate

multiple fault cases.
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CHAPTER 3 Fuzzy Automaton Model (FAM) as a Basis for Fault

Isolation

3.1 Introduction

The concept of fuzzy automaton has been introduced by
Wee and Fu (61) based on Zadeh's composition of binary fuzzy
relations. Their main interest was the application to
pattern classification as a model of learning systems in
connection with the nonsupervised learning problems in
automatic control and pattern recognition systems. Until
now fuzzy automata are largely used as models of learning
control systems (6l), lingquistics (45,46) and medical
diagnosis (50).

The fuzzy automaton developed in (0l) is basically an
algebraic system, that merely replaces a deterministic
input~output relation or a transition of states by a fuzzy
relation. To impact on actual operational systems, we
propose a baseline system whose paramaters and structures
may be updated by learning models. Specifically inputs,
states, and outputs are first subjectively assiyned using
fuzzy membership functions and then the automaton model is
updated through the use of operators on the fuzzy sets.

Fault isolation techniques for analog electrcaic
systems are by nature imprecise, Hence 1t is quite natural
to consider a fuzzy automaton as a model of fault isolation
or automatic fault testing in analog networks. In this way,

methods of handling fault isolation based on the fuzzy
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automaton become much broader and more general than by use
of the conventional method reviewed in chapter 2. We ‘
frequently encounter situat .ons in fault isolation in which
the procedure is not precisely specified. Therefore, it is
of interest to investigate algorithms that show how to

achieve from imprecise procedures for reasonable fault

diagnosis results under the framework of fuzzy automata.

Our detailed study includes the following topics :

1. Development of simple learning methods using various

fuzzy relations based on the fuzzy automaton model.

2. The conditions for convergence, monotonicity in the
above approach,

3. The learning behavior of the algorithms using fuzzy

distance measure and fuzzy entropy measure assuming little

- ' statistical information is available.
4. Applicability of the automatic fault testing and fault

isolation methods.

3.2 A Formulation of Fuzzy Automata

: When a fuzzy automaton is used as a model of a learning

R A
.
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v

system, the elements of a fuzzy state transition matrix and

a fuzzy cutput matrix are varied via a linear reinforcement

scheme or fuzzy relations. In this manner, the fuzzy
i
e automaton exhibits a variable structure. Wong and Shen (62)
7 have modified the membership functions of the state directly
- to learn the parameter values that maximize the expected
2 '
E value of a noisy multi-model response function. The ;
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advantages are computational economy and analytical
convenience,

When we consider the system whose structure and states e
are imprecise, a finite fuzzy automaton can be described by |
a sextuple (X,S,Y, h,f,q) where

X : a set of inputs (xl, Xor ever Xoo eony xq)

§ : a set of states (8,, Sy, ...y S;y «vo, S)

Y : a set of outputs (yl, y2,'..., Yio eees yr)

h membership function that maps (X,S) into closed

interval (0,1) (initial fuzzy state membership) ;
f : membership function that maps (X, S, S) into closed i
interval (0,1l) (state transition membership)
g : membership function that maps (S,Y¥) into closed c
interval (0,1) (fuzzy output membership).

The above is a formulation close to the Moore type fuzzy
automaton. The fuzzy membership function h is the state

membership function. h assigns to each pair (xe, s. ) e Xx

i
S a certain fuzzy membership value. It is a fuzzy mapping

from X x S into (0, 1) such that for ( x s, ). Xx S, e=

e! Ti

1,2,...,9, i= 1,2,...,n, and is abreviated as h(xe, si) =

hei : 0 < hei € 1. The fuzzy membership function g is the

v e e W&

output membership function. The output may be the decision
to classify an object as belonging to the jth fault class in
a fault classification problem. It should be noted that g
is a fuzzy mapping from the state s; to yj represented by

9(3i' yj). The fuzzy membership function f is the state
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transition membership function. f defines the transition
operator characterizing a learning automaton, The
assumption here is as follows. 1) The degree of fuzziness
in the input affects the change in the degree of fuzziness
in the state through the state transition function by fuzzy
relations such as max-min, nax-product, linear-product, and
extremum-median (ext-med) fuzzy relations. 2) The degree of
fuzzinegs in the output is affected by the change of the
degree of fuzziness in the state through the output fuzzy
function by fuzzy relations. 3) The state choosing scheme
is refined by the reinforcement scheme us nq the penalty and
reward information.

Usually the membership functions f and g are represented
by transition matrices Qn (xe) and Gn respectively. When
the input at the time instant n is x , the elements of fuzzy
state transition matrix Qn (xe) is given by

f(n ; x

et Sy

ir S = £(x(n) = x,, s(n) =5, s(n+tl) =8 ).
vhere i,k = 1,2,...,m,

Similarly, the element of the output fuzzy matrix Gn at
time t is given by

g(n i s, yy) = glsn) = g, yln) =y,

where j = 1,2,...,r.

To be strictly correct, variables denoting the particular
fuzzy sets should be attached to f and g explicitly but they
may be onitted if they are self-evident. The main

implication of the fuzzy state membership 1is as an index of
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&
. vagueness in the state at a given input. The main ]
¥ implication of the fuzzy transition membership and the fuzzy ;
k1 output membership is as an index of vagueness in the H
| i
A procedure due to the degree of interaction between the input :
o !
ﬁ and the state, and between the state and output respectively i
i Y
?‘ constrained by the fuzzy operators. Fuzzy membership close %
3
i
to one indicates the certainty of the element being included §§
in the class while an element value close to zero indicates ;
\i'
the certainty of the element being excluded from the class. g

At the time instant n, suppose that the fuzzy automaton is
in a state s; with the grade membership }
hin ; x5, s;) = h(x(n) = x,, s(n) = s; ) and that the ;
3
input to the automaton is x,. Then, the choice of the next ?
state given that the previous state is represented as a é
state transition performance function rf, is given by %
¢
rf(n H xel sk) = VA(h(n H xel si)l f(n-1 ; xe' si' sk)) ;
. (3.2.1) :
k]
23 . . , . 1
2 where A is aa inter operator and V is an intra operator. ;
%i Inter operator A is defined as an operator between the g
{% corresponding fuzzy set elements, while intra operator V is 3
g defined as an operator among the chosen set of elements %
E; using inter operator. We often select the state 8y which g
e 3
i satisfies i
rf(n; x,,8, ) 2 rf(n; x,,8 ) (3.2,2) j
max {é
’ 3
Z
- - - pi
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where k;.. * K. The state Sy indicates the most
max

possible choice.

The next state transition membership function can be

updated using a linear reinforcement scheme.

£(n+l; %, 85, )= af(n; Xs 18418 )+ (1~a)¢(sk) (3.2.3)
if correctly classified m(sk) =1
otherwise ¢ (s, ) # 0,

where 0< u <1.

Simlarly, the choice of the output renresented as a output

performance function rg

rg(n i %, y5) = Y/\( gln i s.y), hin s x., 8)).
(3.2.4)

The next output membership function is updated using linear

reinforcement scheme,

gn+l; § ,y5) =agng g, y) + (1=u)y () (3.2.5)
{if correctly classified ¢(gj) = 1
otherwise w(% ) = 0,
where 0 < .« 1,
In order to simplify the problem, when the set of

states directly exhibits the set of outputs, we can choose
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g(n; s ,y )=J1 k=j

0 k#j. §

Therefore the modification of h or f or g gives the fuzzy §

automaton a2 variable structure, This feature of variable

AEOAEAE B T rrnt

structure results in the learning behavior of the automaton. 3

v gesnsa,

Depending on the choice of intra-inter operators,
namely fuzzy relations, a fuzzy automaton exhibits a :
different variable structure. The method of direct
modification of the state membership functions provosed by
Wong and Shen (62) can be included as a special case of the
modification of the state transition membership function

when the fuzzy transition membership is an identity matrix.

s dan. s BRI A Te e R 1 Wradon SR s ¢

It is interesting to note that according to the definition
of membership function, "h" does not reveal too nmuch about
the nature of the function. Thus h 1is a '"grade of
membership" function keeping the order of state, called the

ordinal information that 1is defined for each xeX and

P St AR G b b et M Y it

he(0,1). A special class of fuzzy automata would have the

3

T

row sum of all transition matrices equal to wunity. This

P

type of automata can be called the normalized fuzzy automata
! which may retain the cardinal information during

transformation and have the same structure as the stochastic

sa
e e A Tt SN e A SRR s

automata.
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The learning model (12) applied to fault classification

o

NSRRI R RO AT Rl SR ARG e SRR AP TR e s F I R B PR

3
H
]
*
3
g
&
;‘xf
vy
%
3
2
Y
S




s
i

27
is formulated as follows: Let the fault classifier consist
ﬁ of several sets of preselected discriminant functions.
These are characterized by sets of parameters, for instance,
values of the threshold Eo's and values of the tolerance on
performance useua to detect a fault mode. Depending upon
whether or not external supervision (a teacher) is required,

the process of 1learning is classified as being off-line or

on-line learning respectivelv. Initial assignments of fuzzy
membership values are "subjective" and "local" (43). By

calling the values subjective, it simply means assigning

arbitrarily which values of the ‘"degree of fault" (base
logic) belong to "degree of truth values to the above
statements" (which linguistic truth-values to what degree). )

By local values we mean that the assignments to the primary

af texrm are defined only for a specified set of propositions.
In the learning process with external supervision, the
1 correct fault condition corresponding to a measurement is
usually considered to be known exactly. Then the teacher
directly varies the fuzzy automaton structure such that the

decision is based on the maximum membership grade i.e.

2T

decide jth class if g(n ; s, yj) = max g(n ; Sie ¥)) :
) ;

- Either with supervision or with a proper specification

of the performance evaluation, the model adapts itself to

the best solution. Here the best solution means the set of
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the discriminant functions that gives the minimum number cf
misrecognized faults among the given sets of discriminant
functions within the set of learning samples. On every
arrival of input x a transition may be executed from a state
S5 to another gstate s, or the same state s, via the state
transition performance function, and then an output may be
sent out according to the branch in which the transition has
been executed.

In this section, the formulation of a fuzzy automaton
is described and basic learning diagnostic scheme 1is
presented. In the subsequent section it is shown how fuzzy

relations a2nd linear reinforcement schemes contribute to the

learning of the best solution,

3.3 Various Fuzzy Relations in Fuzzy Autonata

To model a fuzzy system, we can choose the fazzy
automaton as a baseline model. We consider inputs, states,
and outputs as fuzzy variables, and updating the structure
by using fuzzy relations and a linear reinforcement scheme.

There are many ways in which one could modify a given
concept, including the concept of automata to make it fuzzy.
One of the most popular way 1is to use the maximum and
minimum operators as a fuzzy relation. The model of fuzzy
automata obtained in this manner often turns out to be
e«iailar to the extensions of existing deterministic ones
(63). For these reasons, we .nvestigate various fuzzy

automata depending on the corresponding fuzzy relations

AR A N e S o R e TR T e

-

0 SR

T o T S N P T R L e T T

o

g
g
!
§
2
i
g
E:
3
%
%
%
3
2




utilized.

The membership function for a path in which a higher
order transition may be executed from a state s, to another
state sj or the same state via serial branches is calculated
by one of several fuzzy relations.

Santos (63,64) discussed classes of automata obtained
from the pseudo automaton by a rule of extension and a set
of constraints. 1In his discussicn, the pseudo automaton is
defined as a single 1length input with a state transition
function. Rules of extensions such as max-min operators,
max-product operators, linear product operators are used to
generate an atomaton which has a multiple length input. We
can make the interpretation that each new fault condition in
fault isolation corresponds to a single length input.
Therefore our F2 model will be restricted to a set of single
length inputs as possible inputs.

The problem of fault isolation using various response
deviation measurements is basically a problem of vector
optimization. For example

Q(c) = {Ql (c).Q2 (C),...,Qi (c),...,Qm(c)}-> min,
where Qi(c) (i=1,2,...,m) are the elements of vector loss
function which represents the loss incurred hv the decision
as ith single fault, and c¢ is unknown parameter vector.

We are interested in determininag some of the possible

combinatio.s of operators as fuzzy composite relations that

may yield better fault isolation for the application of
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fault analysis. They are max-min operators, max-product

operators, linear product operators , and ext-med operators.

3.3.1 Max-min Composite Relations

Following a general formulation of FA given in section
3.2, we now show how effective max-min relations are when
used to direct the learning of the fuzzy automaton. We
generally denote the composition of the two fuzzy set as

AOB, Max min fuzzy relations are defited as follows.

UAOB(x,y)= m:x min (“A(x,z), UB(z,y)), b (3.3.1)
where A and B are both fuzzy sets.

When we apply the above equation in the composition of a

fuzzy set A0A, we get

uAOA(x,y)= mjx min (uA(x,z), uA(z,y)). (3.3.2)
This fuzzy relation is explained as follows (61). ( The
pessimistic case is being considered when the minimum
function is selected hetween uA(x,z) and uA(z,y) and the
maximal grade of this minimum is being searched through z.)
It is easy to prove that the result of using max min
relations is equivalent to the use of min max relations
having a m™onotonicity property in the fuzzy set A through
variable z,

Since the state transition function £, the initial

R S A0 Pt ¢ it ent e i e e P B

N .
e wae © x " —— ry Y. N Ml
Nk iy s ste. e N A A A AT . M el . s w =

TRt S D o

2 O e s

FRd

RSB el b vt s s T 6 B O D B OROAL FAY i e 5l A ST S i o BN SR A0 4 e o o T R Sl

4
a
&




e

A e T Dt B R T8
iy

ot

%

© ot b T

S

2NN
AT ’"?‘....‘.

R g T® : Cam SRR Y O R

31

state membership function h, and the output membership
function g may be interpreted as the grade of membership
functions of fuzzy sets, we can define the state transition
performance function of the automaton as follows.

(3.3.3)

rf(n: xe,sk) = mix min (h{n; xe,si),f(n; xe,si,sk))

Likewise, the output performance function of the automaton

is defined as follows.

rg(n; xe'yj) = max min (h(n; xe,si), g(n; si,yj)). (3.3.4)
1

3.3.2 Max-product Composite Relations
The idea of max-product fuzzy relation is to choose the
transition path which yields the maximum of the product of
the fuzzy membershiys between the two fuzzy sets,
Max-product fuzzy welations of the state transition

performance function 7% and the output performance function

rg can be defined as follows.

ra(n; X, »S,) = max {h(n; xe,si)*f(n; xe,si,sk)) (3.3.5)
N )
and
rg{n; x,,y:;) = max (h(n; X, ¢S; ) *g (n; si,yj)) (3.3.6)
7 i
Theorem 3.1) Max-product operator is not
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log-interchangal.le.

Proof.

i

log h(n+l ; x) log max (h(n ; x)*£(n ; x, 3., sk))

1

max log (h(n ; x)*f(n ; x, s., s5.))
i

i

max(log h(n ;x)+log £(n ; x, s., §.))
i

# max log h(n ; x)*log f£(n ; x, S;1 Sy
i

Using above relations we are able to choose the maximum
of the two product fuzzy membership sets. The important
point 1is that the set can be ordercd under the above
structure. It is easily noticed that the value of fuzzy
membership for rh(n; xe,sk) conveys the information of the

average (central tendency) in the sense of geometry.

3.3.3 Linear Product Composite Relations
As another possible fuzzy relation we can choose the
transition path which yielcs the average of the product of
the fuzzy memberships between the two fuzzy sets. Linear
product fuzzy relations of the state transition performance
function rh and the output performance function rg can be

defined as follows:

~
fl

. 3y . N
rh(n; x _,s i(h(n, xe,si) * f(n; xe,si,sk)) (3.3.7)

1

and

rg(n; x,.y;) < (hi{n; x_,s,) * g(n; Sie¥y)). (3.3.8)

1
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where /. is used as an average operator. This relation is

very similar to that of stochastic automata.

3.3.4 Max-topology Composite Relations
One other interesting class of fuzzy composite
relations is defined as max-topology composite relations,
when we have restrictions between the two fuzzy set given by
some topological relations. We can choose the transition
path which yields the maximum while satisfying the

topological restrictions. Max-topology fuzzy relations for

rh and rg are defined as follows.

rh(n; xe,sk) = F{h{n; xe,si), fin; xe,si,sk)) (3.3.9)
and
rg(n; xele) = G(h(n; xe'si)' g(nf Siij) (3.3.10)

where fuzzy function F and G are induced by the

restrictions of the topology of the two fuzzy sets.

3.4 Properties of Fuzzy Relations in Fuzzy Automata

3.4.1 Simplicity

Applications of fuzzy relations can he evaluated by the

required time or space to solve a given problem, We would

like to formulate the problem as seeking the lower bound of

complexity given by the fuzzy relation
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- fAOB(x'Y) = vp fA(xlz)r fB(ZIy)) (3.4.1)

where the numbecr of elements of the set A is mxn, and while
that of set B is nx2. The criterion used is the time needed
by an algorithm expressed as a function of the size of the
problem. We assume that operands are real numbers and the
basic operations are +, x, max, min, ! , & , 7 , where 4,
and V are defined in the previous chapter. For the brevity

of comparisops we further assume that m = g = 1,
(i) max min fuzzy relations

| £,,5007) = nax min ( £, (x,2), £5(z,¥)) (3.4.2)
The above fuzzy relational equation has n comparisons
between the two values to get the minimum values and one
comparison among the n values to get the maximum value. In
the worst case, one comparison among the n values is
equivalent to (n-1l) comparisons between the two values. 1In
sum, max-min fuzzy relational equation has less than or

equal co (2n-1l) comparisons.

(ii) max product fuzzy relations

7

G PR T IR e g, e

g&?ﬁ
¢
L

£,.p(x,y) = max ( f,(x,2) * £.(z,y)) (3.4.3)

2

A

We need n products and one comparison among the n values to

get the maximum value. In sum max product €fuzzy relational

N L3 .
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. equation has less than or equal to n products and (n-1)

comparisons.

-
zfé
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(iii) linear product fuzzy relations

o e

e

= 3.4.4
onB(x,y) Z fA(x,z) * fB(z,y) ( )

We need n products and (n-1) additions.

PR e A

(iv) YA fuzzy relations

£,,p(%:¥) = v (£, (x,2), £5(z,¥)) (3.4.5)

Recall that V operator is the operator which picks the

value far from 1/2 and operator ) is the operator which picks

s RS D A BATRL bt P i S 0 7 IR

the value close to 1/2. To perform the 5 omneration, we need

one addition and two comparisons. First we add two values
fa(x,2) and fo (2,y). Comparison of the two values,
comparison of the sum of the two values, and one additior
will perform the operator. Therefore, in total, we need 2n

comparisons and n additions to perform operators. To

perform the ' operation, we need (n-l) comparison to pick

the maximum and minimum values. We need one addition and

i two comparisons to pick one of the above values. In total

D FO P TSRt S SR UL LRGSR e

we need (n+l) comparisons and one addition to finish ¢

operations. . fuzzy relational equation requires (3n+l)

comparisons and (n+l) additions. Notice that in the

microprocessor, addition and compar:son take two cycles
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while multiplication has to have few more cycles. We can

condense the above results into the following table.

Number of Number of i
Additions |{Multiplications :
!
i 2n - %
ii n n g
; iii n §
=4 i
o iv 4n - :
, " §
¥

} Roughly speaking, we can order the fuzzy relations on the

basis of needed calculation time. Thus we have the above

T

table entries ordered as follows:

»

l

space. This implies that any desired solution which needs

the knowledge of the function to be approximated is reached

i

. (1) < (iv) ¢ (ii), (iii). %

4

¥

g

3

. 3.4.2 Convergence in Linear Reinforcement Scheme 3

’ §
.,. i
f% We are dealing with the problem of "learning" in an )
%9 jg
k! unknown environment, i.e., where the function to be 5
0 3

2; "learned" is known only by its form over the observation %
4 #

;

3

gradually by methods relying on experimentation and
observations. 1f on the other hand we can assume that the
form of the function to be approximated is known precisely,

then we can approach the problem with stochastic

approximation technique. There are cases when no assumption

ot
T Sl Bains

4 can be made or the possible form of the functicn to be
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"learned". For the solution to be found by stochastic
approximation technique, the existence of the estimated or
approximated unknown quantities must be assumed.

When the unknown environment is dominated by the
vagueness rather than randomness, we have to make use of
obgerved information mainly to unveil the vagueness. In
some cases, fuzzy relations with linear reinforcement scheme
can be used to remove some of the vagueness in the unknown
environment. Based on the fuzzy automaton described in the
section 3.2 and 3.3, we can compare the convergence property
of various fuzzy relations. We have defined the state
transition perfcrmance function rf as the result of the set
operated on the state membership functions and the state
transition membership functions.

From eq. 3.2.1,

rf(n;x,,s;) = VA (h(n; x,,8;), £(n-1; x.,8;,8))
1

where 1 = 1,2,...,m
= Y (A(h(n;x,,s;), £(n-1; x,,8;,8;)),
(h(n;xs,s;), £(n-1; x,,8;,8;)))
where i = 1,2,...,m, 1 # k.

In order to have learning behavior in the fuzzy
transition function £, the fuzzy transition matrix must

exhibit nonstationary behavior (61). As an example, let

3
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£(n; xe,si,sk) = ¢c(n; xe,sk) for all i = k
and f(n; xe,sk,sk) = akf(n~l; xe,sk,sk) + (1-ak)xk

with f£(n; xe,si,sk) = c(n; xe,sk) =10 if n is odd

if n

f(n-1; xe,sk,sk)

ig even,

Where 0( lk‘l( 0(/\k<l' kal,z,...,m.

Furthermore, let

h(n+l; xe,sk) = rf(n; xe,sk) if

. - . *
f(n; xe,sk,sk) rf(n; xe,sk) bn

f(n; xe,sk,sk) + an, otherwise.

where |an| < |bn], and bn is bounded sequence such that

bn * 0 as n > w»,

Therefore an > 0 as n > *, With this assumptions, h(n+l;
xe,sk) is always between 0 and 1. When we have a perfect
teacher, fuzzy state membership function h(n+l, xe,sk) with

max-min relations, max-product relations, and linear product

relations converges to A k=1,2,...,m.

kl
As an example for the comparison of various fuzzy

relations, when

a = —me—-, b = -,
n 4n n 2n
-~ . s
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The learning curves for three fuzzy relations are showed in
Fig.3.1. After 13 steps all the learning curves converges
to A with an error within 1l%.

Above convergence property can be varied, as
h(n+l; xe,sk), depends on f£(n; xe,sk,sk) and c(n: xo,sk).
The typical learning curves with an unreliable teacher are
shown in Figqg, 3.2, 3.3, 3.4. In this example, the
asumptions made are the same as in the perfect teacher case

except Ak is estimated and updated by the success or failure

O L L RSV Y Ay e

of the decision.
We showed in this section that the state membership
function together with various fuzzy relations will converge i

using the linear reinforcement scheme. p
3.4.3 Monotonicity property

One of the important aspect of using fuzzy membership

function is the monotonicity property. Usually the absolute

[TTRP 2y

values of fuzzy membership themselves have relatively little
meaning, while the order of the values is rather
significant. Most of the decision is based on the

cummulative aspects of the ordering of the fuzzy membership

values. New fuzzy set is generated by the composition of
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two fuzzy sets using a fuzzy relation.

DRV R SWER WIS S &

Lk

£f: AxB » C

AP B

with fAOf“ *> fC,

PR

i.e., a fuzzy relation £ maps two-tupnles of elements in the
fuzzy set A and two-tuples of elements in the fuzzy set B

into two-tiiples of elements in the fuzzy set C. Several

T ST B NBRDA e DR A FER L

types of fuzzy relations are discussed in the earlier
sections, such as max-min, max-product, and linear-product
relations. We can extend these binary fuzzy relations to
n-ary relavions by successively applying the binary fuzzy
relations. When  the fuzzy membership is drastically ‘

restricted to only one and zero, this problem reduces to a

A G2 AGEE & s hoin SRR IR RIS S AN B A e 28

certain type of the switching theory problem (87).
For ma: -min composite relations

fMB(x,y) = mgx min (fA(x.z), fB(z,y)),

R R b o 8 A B s e R S

onB(x,y) is a nondecreasing function of fA(x,z) and

fB(z,y) for all fA, £ ¢ (0,1).

B
Proof. If f (x,2) 2 £ ,(z,y) then

onB(x'y‘ - fA*oB(x'y)

= ] ( - :
mgx min \fA(x,z), fB(z,y)) mgx min (fhi(x,z), fB(z,y))
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= max ( min (f,(x,2), £,(z,y)) - min (£, (x,2), £ (2,¥)))

For all z g
1) if £, (x,2) < £, (z,y) :
then T(z) = £, (x,2) - £, (x,2) 2 O, ;
2) if £, (x,2) 2 £,(z,y)

then min (fA (x,2), fB (z,y)) = fB(z,y), 3
a) if fA, (x,2) 2 fn(z,y), ;g
then min (f,, (x,y), £, (z,y)) = £, (z,y)
and T(z) = £, (z,y) - £, (z,y) = 0, 3
b) if £, (x,2) < £ (z.y), 3
then T(2) = £, (z,y) - £, (x,2) » . :
Therefore fAOB(x,z) 2 fA*OB(x,z). j
Similarly if fa (z,y) 2 £5.12,y) S

then onB(z.y) 2 onB* (z,y) ged.

For max-product composite relations

onB (x'Y) = mzax fA (xpz) w fB (ZIY)o

f,p (x,y) is a nondecreasing function of fA (x,2) and

fs (z,y) for all f,, £ ¢ (0,1).

Proof If f, (x,z) 2 f,. (x,2) then

onB (x,y) - fA*oB (x,y)

» ey -
S O o T P T R G g T a Ty

= max £, (x,z) * f;(z,y) - max fA,, (x,2) * fB (z,y)
2 2

fiey L AT

= max ((f, (x,2) - £, (x,2)) * £ (2,y))
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Since O =< fB(z,y) s 1, for any z,
(£, (x,2) - £,.(x,2)) * £,(z,y) 2 0.
Therefore if f (z,y) 2 fB,(z,y) then
£08(xy) - £, (x,¥) 2 0. qed,

For linear product relatjions

£.05 (X,Y) = If, (x,2) * £, (2,y),
where L is used as an averaging operator, onB(x.y) is a
nondecreasing function of £f,(x,2) and fr(z,y) for all
£,, £5, ¢ (0.1).

Proof is similar to the max-product case.
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3.5 Learning Techniques Applied to Active Linear Networks

using Frequency Domain Analysis

3.5.1 Introduction

This section addresses the problem of applying learning
techniques to fault diagnosis in realistic situations where
component drifts and measurement noise must also taken into
consideration. In particular, the fuzzy concent of Zadeh is
used as a framework for faul! classification. Further,
fuzzy automata are used as learning models to select the
best set of parameters for fault tests, because they have
the advantage of simplicity and straightforward computation.
An example of this 1learning technique is applied to
simulated faults on a simple active circuit.

There are essentially three fundamentgl problems
involved in achieving effective automatic generation of
fault isolation tests for analog systems: feature

extraction, fault classification and diagnosis.
(1) The feature extraction problen.

Given a faulty pattern, say a set of input-output
signals, we must be able to extract from these signals the
information called signal attributes, X] reve Xy which not

only prope:ly characterize the fault, but also are amenable

to automatic processing and computation. In fact, the
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development of an automatic test generation system is
greatly influenced by the type of features or fault
signature selected for use. A well known signature
describing the state of the system in time domain testing is
the input-output cross correlation function (3,26,27,28).
Pseudo random binary sequences are shewn to have
approximately the required impulse autocorrelation. They
have an important advantage over white noise perturbation
methods (30) in that such sequences are not subject to
statistical variation and can be easily realized by using
feedback shift registers. 1In frequency domain testing, the
use of gain and phase measurements at selected frequencies
is widespread (5,29,30,31,32). It has been suggested that
the transfer functio..  arameters can also be used as a fault
signature but it has the lisadvantage of requiring complex

computations to convert input-output samples to transfer

function parameters (33).
(2) The fault classification problen.

A set of r test features, which characterize a number
of identifiable failure modes, is chosen to form the
coordinates of e feature space. Assume each faulty pattern
i+ represented by a binary vector whose components are
depending on whether each feature is present or missing in

that pattera. The vertices of a sct of a tvpical feature

space are labeled and a set of hyperplanes is used to
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partition the feature space so that no region contains

vertices corresponding two or more different fault types.

Unknown fault patterns are then classified as belonging to

the type corresponding to the prearranged pattern in the

region in which they fall. The correlation method starts

from the same presentation in that a set of typical patterns
represented by binary vectors in the feature space are taken

as references. The unknown patterns are then correlated

with these references and classified as belonging to a

particular reference pattern according to the highest degree

of correlation.

(3) The diagnesis problem.
The ability of the fault classifier to determine

correctly the type of new patterns of unknown classification
is most appropriately stated in tecrms of probability of
correct diagnosis. Put another way, we wish to determine

p(s;|X) = probability that the given test data or feature X

belongs to fault type w;. The measurements are assumed to

have certain distributions p(X]| wy)e i=1l,...m. Furthermore,

there is a certain probability of occurrence of type u;

patterns, Pl{;). The key information required to make a

diagnosis for a pattern is clearly contained in the function

ple; [X) which is de%ermined by the application of Bayes'

rule:
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{
P (o) p\Xlwi)

LI LAY

. plug[X) = (3.5.1)
o m i
%' .ZP(wj)p(lej) |
}3 J=l :
. In the simple case of w; and w, , the likelihood ratio test

B

iy
Y

which is optimal under various assumptions on the cost of

-
o ¥

misclassification is given by .

LR AP R 5

ety

p(wllx) > n classify u;
(3.5.2)

ploy[X) < n classify u,

ke where is some suitably chosen constant. The crucial step

is the determination of p(w; |X) since it directly determines

the chance and cost of future correct diagnosis. The main

25420

difficulty is that the computation and information required E
for equation (3.5.1) in a practical situation involving

component drift and measurement noise are  extremely

DA

difficult to acquire. If the probability densities are not

analytically expressible, their values at each point in the

Lk,

3 feature space must be stored and tabulated. However this ;

E process requires excessive storage space,

P T L ARV

The so called “"template matching technique" for fault
diagnosis has a lack of flexibility since it rarely
tolerates noise and distortion due to drift of components, 3
A fault diagnostic scheme incorporating learning will be

more effective and more flexible. In this section we

discuss the fuzzy set concept of Zadeh and its application
to  fault classification with the help of learning

algorithms. Further we propose that the fuzzy automaton
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will serve as a convenient learning model for fault

diagnosis.
3.5.2 Fuzzy Sets and Fault Classification

The essential function of a fault classifier is to
rezcognize the membership of samples which belong to one
fault type and to distinguish among them the different fault
types even though the boundaries between alternatives is not
sharply defined. Hence the task of classifying samples into
a finite number of fault types can be conveniently
established around the notion of "belonging" in the case of
fuzzy sets (48). 2 fuzzy set (class) Wy in the space 2y is
represented by a characteristic function f“i(X) which
associates each point in a value in the interval [0,1], with
the value of QD}X) at X representing the "grade membership"
of X in Wy e lIn order to generate a set of discriminant
functions for fault types, it is convenient to introduce a
single level, or two levels which lead to two-valued logic
or three-valued 1logic. Fo simplicity, consider two fault
types Wy and Wo e At this point, we introduce two levels o
and 3 ( 0  a < 1, 0< B <1, a>R). At level o, the two
types may be disjoint or separable and at level 8 (<u). they

may be joint or not separable in the sense of ordinary sets.

We then decide that (a) X e wy if fwi(x) > a and fw (X) < a
2
and (b) X ¢ wy if £ (X) <a and £ (X) 2 a .
(01 w2

Notice that when the 1level falls below B , X has an
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indeterminate status relative to w;  and w, . This fuzzy
intersection when wy and w, are not separable must be
identified and the grade of membership estimated for each X
in this section. This task <can be accomplished by adopting

learning procedures to generate the discriminant functions.
(1) Generation of discriminant function by learning.

If we use small p( w; | X) as a discriminant function

and identify it with fw_(x), the problem is one of
i

reconstructing a function from a knowledge of its wvalues
cver a collection of samples or observations. To do so, one
must have a priori information about a type of functions tc

which fw_(X) belongs. Then this information in combination
i

with the learning samples would be sufficient to enable one

to construct a good estimate of fw_(K) (48). Let us assume
i

that £ (X) can be represented by
i

+1
£ (x) ="Fw..x. = x"w. 3.5.3
01 j=143%3 T W (3.5.3)

where X, is one andx:i is the j-th element of sample X.
Again consider two types w, and w

1 2°
determine a solution with vector W such that the cross

The problem is to

product of vector X and W,XTW>O for all patterns of type by
and X'w<0 for all patterns of W . Let N be the total number
of augmentei samples. Also let the matrix whose e¢lements

are generated by test samples:
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T
[x]
2 (3.5.4)
3 .
2 T
3 XX
7
s
i% and assume that all X's belonging to w have been multiplied
b
% by -1. The problem then reduces to determining W such that

G

E:

XW>0.

According to Ho and Kashyap (34), a minimum mean square %

error hypernlane can be generated even if the samples are g

4 not linearly separable by minimizing the criterion function %
3=2lxw - bll? (3.5.5)
s 3
E ! with respect to both W and b, where b is an N-vector whose 3
3 components are all positive where || || stands for a distance 4
23 #
; criterion. Setting to 2zero the cradient of J with respect §
, . . - . i
E/ to W yields w =(xTx) 1be = X+b where x¥ is the generalized ﬁ
i inverse of . The positivity constraint on b is fulfilled i
: by the following iteration of b. i
; b(k+l) = b(k) + 8b(k) (3.5.6) ,f
? ; where 4
1 i 3
a3
e | ;?
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2c(XW(k)-b(k)] . iflXW(k)-b(k)].> 0
1 1
¢ §b. (k) = (3.5.7)
1
0 LE[XW(k)-b(K)] ;< O

the index i refers i-th component of the vector, and c is a

constant such that 0 < ¢ < 1.

In vector form, equation (3.5.7) becomes

sbilk) = c[XW(k)-b+|XW(k)-b}1 (3.5.8)

e A B b BB IO I Ba b v Zrhae B 1T e T I o BYR Y RS e 1-Lvﬂl&mvkys(&n:fx,m‘-fhau&mf..ﬂ'-i‘;{ji

The iterative learning algorithm is given by

A T v

7

W(k+l) = W(k) + cX¥ob(k) (3.5.9)

iRt b

E: and

v L 2 SR S TN A R s SR St e e s

k| b(k+l) = b(k) + céb(k) (3.5.10)
= .D.

b W(1)=X"b(1), b(1)>0,

2 otherwise arbitrary.

rar,
"

it
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(2) Separation of the fuzzy section.

AR

Once the minimum mean square error hyperplane H has
been determined, separating boundaries are generated to

contain only the learning samples belonging to the complete

fuzzy section. This 1is accomplished by a search among the
misclassificd samples for the minimum and the maximum

4 . distances from H. Let the hyperplane H be represented by
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ax) & xT - )
(X) = X7 +w (W) =0 (3.5.11)

and the two separating boundaries by

T
XTW o+ Wy (Hy)

!
o

(3.5.12)

I
[=]

T
X'W + Wn+l(H2)

the distances from the origin to H; and H, are given by

Vet (Bp) 0 _ WL (H)
W max
Wl ; Wl (3.5.13)
and féili_%l = Ehiliﬁi -d
,wl lwl min
it follows that the two equations of H, and H, are
Hit XOW + w (H) - |w]ad
1’ n+l | max
(3.5.14)

7,
Hyt X'W + w ) (H) - lwldmin

Now the samples belonging to w; and the samples belonging to
w, are separated from those whose status are indeterminate

relative to w; and w,. In other words, the nonfuzzy section

is describei by

P

X'W + w__,(H)> ledm X € w

n+l ax’
.5.
T (3 15)

XW o+ oW (H)< lwldmin, X € wp
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%

and the fuzzy section contains samples given by i
i

T b/

lwldmin CXW A w L (H) < lwldmax (3.5.16) g
These fuzzy samples are then mapped into a feature space {y §
3

by the following transformation E
T . . a

%W+ w L () ;

fwl
Y. = P
i T (3.5.17)
W ¢ g 08)
. [wi
and the process 1is continued to separate the fuzzy section

from the nonfuzzy section from the Qy space until the whole

i, 8pace is partitioned into two regions.
(3) Multiclass generalization.

For rmulticlass wj;: i=l,...m, the classification
procedure is to decide Xcw;, if 4 (X) greater than dj(X)+M
for all 1i=3j, M>3, This is equivalent to decide Xew, if

1
a4, (X) > d,(x) + 1, or simply d;(X) - % >0 and 4 (X) +
0'

<

N =

- Clearly, from multiclass discriminant functions the
learning process can be used pairwise by using Ho and

Kashyap's procedure. Ho and Kashyap's algorithm has been

!
1
%
{—
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generalized to multiclass discriminant functions by Wee

ity T 2

R

oy
T,

;ﬂ‘f“y"‘*‘?’-
e

(61). The generalized algorithm has the advantage of

requiring less computation than pairwise learning.

%
Py

3.5.3 Fuzzy Automaton as a model of Analog Fault Isolation

Typically, available information at the early stage of
FA, which can be represented using the fuzzy set idea, is
given by the form of fuzzy membership function. The values
of the fuzzy membership function might be subjective and
local. Assuaming those initial values are the best educated
guess, we proceed to update fuzzy membership values through
the fuzzy relations and/or various reinforcement schemes.
The fuzzy relations and/or various reinforcement schemes act ‘
as training operators.

It is known that most of the existing diagnostic

;ﬂ methods are sensitive to the presence of even minor drift in

the nonfaulty components. A diagnostic scheme can learn to

k-

%ﬁi improve classification accuracy of observed input samples,
:%' if the weights in a set of discriminant functions can be
3 adjusted according to the preselected criteria. For
% example, a criterion based on sample averages and the
é average deviations, when a set of test samples is available.

These sets of weights which we call the reference vectors

depend on the choice of the thresholds.

AR K
.

v

A basic learning model for fault diagnosis is shown in

S

T
T

Fig. 3.5. During each time interval, the fault diagnoser
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Dr%ft and Information
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Fig.3.6 Flow diagram for a learning diagnostic scheme in fault testing.
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receives a new quantized sample X from the faulty system

R SRt

with drift and noise. Quantized X is fed to both fault

ot

diagnoser for «c¢lassification and performance evaluator or
teacher for performance evaluation. Teacher then directs
the learning of the diagnoser using a linear reinforcement
scheme. The learned information is considered as an
experience of the fault pattern classifier and experience
will be used to improved the quality of the diagnosis
whenever similar situations recur. The new information

extracted from recurring pattern is used to update the

b e B e AT

estimation or the experience associated with that fault

Ty

pattern.

Fig. 3.6 shows a flow diagram for a proposed learning
diagnosis scheme (12). 1In this scheme it is assumed that
the classifier has at its dispoéal a set of discriminant
functions characterized by a set of parameters such as the
threshold levels, When there are m differnt fault classes,
each class has §{ learning samples, the Jjth sample of jith
class can be represented by vector X in the signal space

]
of n dimensions providing that signal has n components. The

samples may represent gain and phase deviations or impulse
deviations, When the sets of discrimination functions
characterized by sets of parameters such as thresholds of
quantizations, selected frequencies or time delays are
presented to a fuzzy automaton, the system adapts itself to

the best solution. The best solution denotes the set of

E}Wfé‘ﬂm T i e s N R e

i

|
l
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digcriminant furctions that gives the maximum recognition
among the sets of discriminant functions within the set of
test samples, Clearly the best set of discriminant
functions contains the best set of parameter values for the

generation of test programs.

Quantization of test samples, deviation measurements
are as follows: If each ccomponent 1is to be quantized into
three 1levels, say, zero, one, minus one according to a

preassignec¢ threshold, then xij is represented by

T
Xij = (xl' x2,..., %)ij (3.5018)

which is a row vector of n random variables which assume the
value of zero or one or minus one. A set of fault reference

vectors is obtained by the sample averages of the training

set, i.e.
11\
R = (Rl, 122,000' !‘,\) (305.19)
1 m
. = ¥ X..
and g) = - LR (3.5.20)

The correlatior coefficient between xij and each of the

fault references are determined to form a correlation vector

& - s A

= (Fyovgreeer ¥p) iy

The rules for deciding in which fault type in an unknown

t
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pattern should be classified are

T T

1f X'Ry > X'R all k # j

K

and IX-leidj, where dj = a positive number, then the jth
fault type is selected.

The diagnosis phase begins by applying a pattern of unknown
fault type to the correlator so as to determine its
correlation coefficient with respect to all references.
Once decision is made, its corresponding type mean is
modified so that the reference is updated. This operation
has the advantage that, on the average, the diagnostic
performance is also improved during the recoqgnition phase.
Consider the flcw chart shown in figure 3.5 wherein sets of
discriminant functions characterized hy sets of parameters,

In particular the threshold of quantization, and
selected frequencies or time delays are presented to a fuzzy
automata for learning the best sct. This implies the
minimum misrecognition within the set of test samples.
These sets of discriminant functions can well be the sample
mean of fault references associated with the correlation
process for decision making. Instead »f sample mean
references, one nay employ Towill's voting techniques (3,5)
which are heuristic rules and have been shown by actual
problem sirulatisn to be superior to the template-matching
method. It s1ould be clear that the best set of

discriminant functions selected by the automaton contains
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the best set of parameter values necessary for the

generation of a test program.

3.5.4 A Systematic Learning Procedure

This discussion is based on section 3.5.5. This

procedure isolates the faulty components and obtains the
optimum threshold by our learning method.

l. We start with a given active circuit description having
one input port and one output port. The input is one

Volt AC at different frequencies.

2, We are given the 14 following postulated fault
conditions:

}S. i 2(Rl' R2 hd ZXRZ' R3 id 2\'R3’ R4 hid 2Al‘4'

R » R/2, Ry -~ R/2, Ry » Ry/2, R, » R, /2,

Cl » 24Cl, C2 A ZKCZ, c, - Cl/2, C2 > C2/2,

Gl - Gl/].o' G

1

y 62/10.

3. We assume that each nonfaulty component 1s varied
under 3% normal distribution to simulate component
drift. Also the output measurement noise with 1%

normal distrib.tion added.

4. Freguaency cemain analysis is based on 16 specified
frequencies at which 14 gain deviation measurements
anda 11 phase measurements. In sum, we are usiry 25

frequcacy measurements.,

5. We ussume that the amplifier of the active circuit
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. has one pole lowpass filter characteristics with g
gain cf 5><105 and role off frequency at 10 Hz. g

Pl

The slope is -20dB/decade, and modeled by the

g
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following transfer function.

(‘.l G

A, €= e A e e — (3.5.21)
1 o 2 o

1 +52.8 L+5973

6. The transfer function ez/el is given by

"2 Zf(S) : (3.5.22)
oz 1 Z¢(s) o
1 i l+-A'( 1+ -Z—;m—“)
Zf ‘
i 7. | A
el e2

7. We denote the two stages of the circuit as Ai' A2

and substitute into Eq. 3.5.22. This yields two

transfar functions ea/el, end 03/e2 obtained similarly.

e i
A R

When we multiply these two functions together, we will
get the overall transfer function. This transfer
function is a function of component values and

frequencies.,

8. We defined the 14 fault patterns according to the 14

fault ~onditions (given in the step 2) with component

drifts and measurement noise. (wl, Wn g eeey ui4)
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: represents 14 fault types.

9, For computational efficiency as well as convenience
we use the quantized values {1, 0, -1} of deviation
measurements to form a fault recognition matrix
( Rjj ). An element Rij of ith column and jth row
of recognition matrix is the quantized value
{1, 0, -1} of ith fault type and jth frequency

measurement where i =1, 2,..., 14, 3 = 1, 2,..., 25.

10. We arbitrarily assume one of 7 thresholds to quantize

the total range of deviation measurements.

11. For each specific threshold, there corresponds

one fault recognition matrix.

12. The choice of a specific threshold is made based
on the fuzzy automaton model. For our illustrative
example the input to the fuzzy automaton is either
{1, 0} depending on the success or failure of the
diagnosis. 1In general, we can use the fuzzy
relations studied in section 3.3 to select the

other threshold.

13. The computer model of the system is used to
generate the simulated faults as follows:
a) One fault condition is picked from among the
14 fault conditions randomly, and then all the

other component values are picked ramdomly

2
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within the prescribed tolerance limit.

b) Generate output responses at the selected
frequercies using the computer simulations
(25 measurements). Add random noise to the
measurements (given in step 3).

c) Calculate the deviation measurements.

d) Calculate the quantization deviation vector,

X = ( Kpreoes Xj,..., X ) corresponding to

25
the threshold selected in step 12. Where Xj
represents the quantized value of incoming jth

deviation frequency measurencnt.

14, Fault Recognition Matrix
Once a specific threshold is chosen, we produce the

corresponding recognition matrix (Rij )

15. A classification rule for fault isolation is a
minimum distance criterion. Thus the ith pattern
yielding

min
i

IR, . - x.| 1is chosen.

25
? i
j ] J

16, Above choice is compared with the choice of teacher,
and the decision as to the correctness of the
classification for updating the membership values

of given thresholds in the step 18,

17. We assign an initial fuzzy membership value to

Cas &

1 3y U e T s

. 2 P
Pid 5P B IAE GRS e o s
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19,

20.
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ea. .1 ¢ given thresholds. This value indicates the

degree of correctness or the percentage of the

diagnosis based on the selected threshold. The
thresholds and the corresponding membership values

are represented as

oot R A

{(Thl, fl)' (Tth fz)' ey (Th7, f7)}.

The membership value to be assigned for a

threshold is learned from the information as to the
correctness of the fault isolation decision of an
incoming set of measurements in step 16.
The learning scheme used is known as the linear
reinforcement scheme.
fi(n+l) =ufi (n) + (l-a)o (X, u)i)

(3.5.23)
fj(n+l) =afj(n) + (1-a) (1-0(X, wi))

where 0 < o < 1, ¢>(X,wi) =il if X ¢ w s
0 if X ¢ w,
i

These learned fuzzy membership values will affect

the choice of the next threshold in step 12.

If the maximum fuzzy membershin value achieved
based on the seven thresholds meets the design
requirements, then stop the learnhing process and Es:

use tiis particular threshold.

If not, we select another set of thresholds close %
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, to the one which achieved the maximum membership
b value. Then repeat the procedure starting at step

10.

21. Implementation of this fault isolation procedure
is relatively simple and straightforward since

in the field we only use the selected optimum

threshold.

3.5.5 Illustrative example using an Active Linear Network

£

We start with a given active circuit in Figure 3.7
having one input port and one output port. The input is 1l

Volt AC at different frequencies. Frequency domain analysis

) based on 16 specified frequencies ranging from 10 rad/sec to

i; 107 rad/sec at which 14 gain deviation measurements and 11

'3! '

TE phase measurements. In sum, we are using 25 frequency

E §

-f‘ measurements.
A ’a
1 g
i . Cl v:é
| e "4
4 Ry l , : §
3 e | "[::>"‘”4r **AVVV ' {E?>"""'”°e3 %
10:: C2 R3 Z° 3
b 3 ’%

Fig., 3.7 Circuit Diagram
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Figure 3.7 represents the functional model of a simple
analog circuit consisting of four resistors, two capacitors
and two operational amplifiers which are  treated as

functional models. Postulated fault conditions are at step

2 of section 3.5.4.

Fig., 3.8 Amplifier Characteristic

Figure 3.8 shows the characteristics of the two
identical op. amps. The functional model of these op.
amps. can be approximated as

G G

Al ‘= -_..M.:}'..._..._.‘ AZ €= —"M—&’S
1+ S L+ 5573

Table 3.1 Nomiaal Values and Analytical Expressions

fir Linear Circuit

R, = 1,000 R, = 10,000

R, = 10,700 R, = 10,000

¢, = 1.6 10 ° ¢, = 1.6 x 107/
= 9 - 5

G, =2 « 10 G, =2 10
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fl = 10 f2 = 10
ey COS .
w——— 2
S | (aos2 +a;s + a,) (b s™ + bys + b,)
' ¢. (R, + R,)
C1RR, p = .23 4
a = - ° 2nf
21rf1 2
Rt R C.R.G.R ‘
{
1 ¢ b. = G, + 1
1 4+ C,R,+C. R, +C.R.G 2 2
b L —
1 2nf2 273 7274 727372 Co = leszcZR4

Table 3.1 1lists the nominal values of the elements
together with the analytic expression of the transfer
function. This circuit has previously been studied for
fault diagnosis based on the choice of transfer function
parameters as a fault signature (33). Herein we use gain
and phase deviations between faulty and nominal response at
a set of select:d frequencies to isolate a single fault in
the system under test. The nonfaulty components are assumed
to have 3% tolerance while the measurements are contaminated
by 1% noise. Tha2 Bode plot of the nominal gain response as
shown in figure 3.9 has break away frequencies at 625
rad/sec, 5.95x10" rad/sec, 6.28x10° rad/sec and 1.319x10

rad/sec.
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Fig. 3.9 Bode Plot

According to Sriyananda, Towill, and Williams (5)
experience suggests that the number of selected measurements
should be approximately three times the number of fault
cases if all gain and phase data are wuseful. They also
pointed out that the threshold for quantization of the
deviations is a major influencing factor for the generation
of the best set of features in analog testing. 16
frequencies, ranging from 10 rad/sec to 107 rad/sec, are
selected. Six frequencies have both gain and phase
meagsurements. Altogether there are 14 phase measurements
and 1l gain measurements. Seven quantization thresholds are

chosen to generate seven sets of fault reference vectors.
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Number of learning iterations

Fig. 3.10 Learning Curves for Sets of Discriminant

Functions

Figure 3.10 siows the learning curves of the membership
functions versus the number of training samples for the 14
types of faults in a computer simulation study using Eq.
3.5.23. Evan though the number of training samples is not
large the trend is already evident. The value 0.05 is the
best among the set chosen, and fuzzy membership function

approaches ).85.
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Thresholds -
Refined solution level
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N— 0.04

— 2 0.02

0.08

o

p function

membershi
P
1
1

~0.0

.

0 100 200 300 400 Sdb
Number of learning iterations

Fig. 3.1l Learning Curves for Refined Sets of

Discriminant Functions

Figure 3.11 illustrates several thresholds in the
neighborhood of 0.05, 0.06 has the highest grade of
membership which is 0.9. When the selected frequencies are
chosen from 10 rad/sec to 10’ rad/sec and a single fault is
isolated to a yroup of components such as Rl'RZ and
Cl,U],U2, the learning curves are shown in figure 3.12 and
figure 3.13. note that the set of reference vectors with

0.1 threshold attains the grade of membership of 0.94.

The nc+t simulation studies involve comparisons betwezn

learning with fuzzy automaton model and learning with fuzzy
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g Solution level
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Fig. 3.12 Learning Curves for Sets of Discriminant Functions
with Resolution
£ . .
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Fig. 3.13 Learning Curves for Refined Sets of Discriminant
Function with Resolution
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automaton model using sample mean references while changing
component drift and measurement noise. Assumputions are the
same as in the previous example, except that 17 frequencies
are selected in the same ranges. Eight frequencies have
both gain and phase measurements. Seven gquantization
thresholds are chosen to generate 7 sets of fault references
vectors. Figure 2.14 shows the learning curves of
memkership functions against the number of training samples
for the B8 types of single faults in a computer simulation
study. In this figure we assume that the conponent drift is
3% while the measurement noise is 3%. The reference vectors
used in this case are from the deviations when the nonfaulty
components are at their nominal values and the measurcments
are noise free. Although the number of training samples is
not large the trand is again evident. The quantizing level
0.25 is the best among those chosen, 2nd fuzzy membership
approaches 0.9. Figure 3.15 shows the learning curves of
the membership functions against the number of training
samples with mean reference vectors. During learning, the
mean reference vector is updated. This has the advantage
that on the average, diagnostic performance is also improved
even during the recognition phase. It turns out that a
quantization level of 0.25 is again the best among the given
set. Here the fuzzy membership function increases from 0.9
to (.94, *igure 3.16 shows the case when component drift

and measurement noise both increase to 10%. The reference
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vectors used in this simulation are the same ones used in
Figure 3.13. 1In this case 0.15 1level turned to be the best
and the highest membership function is only 0.67. Level
0.25 is in third place.

Instead of using the given reference vectors, we can

also use the mean reference vectors. The adjusting rule is:

o -l 1
Rij(n+l) - Rij(n) + = Xj(n)*w(n)

where y(n) =ﬂ% if X is correctly classified

-1 if X is not correctly classified.

6Qg of the advantages of this is to increase the
percentage of correct fault diagnosis. A significant
Jrawback is that one must revert to making analog
measurements insteadof the simple 1, 0, and -1 indicated in
the procedure of sec. 3.5.4. Figure 3.17 has the same
condition as Figure 3.16 axcept that we used the mean
reference vectors., The best gquantization threshold turns
out to be the same as for figure 3.16 but the membership
value at that threshold increases to 0,725, This is about
5% higher than in the previous case. Instead of the sample
mean reference, one may use Towill's voting techniques.
These are heuristic rules that have been shown by actual
problem simulation to be superior to all existing template
‘natchiny nethods. Table 3.2 shows a compariscn of the

distance criteria and voting tecniques. We specifically use
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the seven thresholds (0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30)

dB. The four cases of tolerance and measurement noise are
3%, 5%, 8%, and 10% within the normal distributions. We
compared voting technique, voting technique with mean
reference vector adjustment, distance criterion, and
distance criterion with mean reference vector. For small
tolerances of nonfaulty components and measurement noise
such as the 3% case, they perform equally well. As
tolerance and measurement noise increase to 10% the distance
criteria appears to be somewhat more effective. Although we
have only used a preselected set of frequencies, we can also
“learn" the best set from a given set of frequency

measurements.

3.5.6 Discussion

Our objective is to select a specific threshold so as
to permit simple implementation of ATE for easy field use.
For analog electronic systems with drift and noise, the
measured set of responses for different fault types often
exhibits highly overlapping patterns. Depending on the
choice of a specific threshold from among the seven
thresholds, we can discriminate the best among the fault
patterns. Since the assumed test frequencies are fix~d the
method of choosing the specific threshold is the most
important factor determining the optimum achievable

discrimination. The concept of fuzziness is involved
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because one tries to determine how effective a discriminant
function is obtained by use of a specific threshold. The
application of learning techniques to reduce the degree of
fuzziness has been presented. We 2mphasize the importance

of selection of features to be measured in analog testing to

achieve effective fault diagnosis.

Herein we have demonstrated that a fuzzy autonaton

learning model can be applied to select an optimal set of

such features.
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3.6 Fault Isolation Method using the Fuzzy Logic

For nonlinsar analog circuits subject to drift and
noise, the resulting measurement patterns of fauits are in
general fuzzy so that ad hoc specification of fault
isolation tests is inadequate. Considered in the context of
fuzzy systems, fault pattern types are first separated into
non-fuzzy and fuzzy parts corresponding to non-overlapping
and overlapping regions obtained by sensitivity analysis.
The grade of membership of the fuzzy parts are then modified
according to simulation results and the decision based on
fuzzy relations (35). Thus, a sequence of input-access
point responses with highest membership value is selected as

the basis for generation of automatic fault isolation tests.
3.6.1 Introduction

The design of functional and fault isolation tests is
now recognized as an essential task needed at the design and
quality-assurance stages of analog circuits in electronic
systems. Practical analog systems are subject to drift and
are exposed to noise. Furthermore under fault conditions
such systems in general become nonlinear. It is not
suprising therefore that the design of an automatic fault
isolation test based on a deterministic approach fails to
give satisfactory results. Therefore the measurement
responses yield highly overlapped and scattered fault

patterns {4,12). The statistical approach alsc fails
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wnenever it is impossible to represent highly overlapped and

“r e

ol ye
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scattered fault patterns by known distribution functions.

P

The statistical approach will also fail when there 1is no a
priori information available. Then one can not expect the
distribution of fault patterns to correspond precisely to an

assumed distribution. Furthermore, it is often unreasonable

to make the convenient statistical independence assumption

for the components of fault pattern vectors. For systems
with realistic component tolerances and noisy environment,
therefore, we consider fault isolation is essentially fuzazy.
Our approach uses the fuzzy concept to develop a systematic
way of generating automatic fault isolation tests for
practical circuits (49). The procedure for the design of ‘

automatic fault isolation tests is shown in Fig. 3.18. The

esgsential steps are

(1) Simulation of responses at available access

;‘ points of a unit under test (UUT) by means

‘gi of computer aided network analysis program
gf for a set of prespecified fault cenditions.

:Q (2) Estimation of the upper and lower bounds of

§ fault pattern types by means of sensitivity

; analysis.

fl, (3) Modification of the grade membership of the

%; . fanlt pattern belonaing to certain fault

? type using fuzzy relations on a set of

% . ’ training samples assuming a specified distri-
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4

SYSTEM MODEL
(NAP2: SENSITIVITY ANALYSIS)

SYSTEM MODEL
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Y v

test output

4
SIMULATED RESPONSE with
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Non-Fuzzy Section

FAULT ISOLATION
SELECTION LOGIC

<//f§0LAT10. No

CCEPYABL

GENERATION OF
ATE INPUT

Fig. 3.18 A Design Procedure for Automatic Fault Isolation

Tests
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bution of the nonfaulty component tolerances.
(4) Selection of tests yielding the highest grade
of membership functions for the discrimination

among fault pattern types.

3.6.2 Fault Response Simulation

Instead of physically changing a component or module to
introduce a specific faul% in hardware, it is much more
convenient to use a computer aided network analysis (CANA)
program. For example, a library containing transistors and
diodes may be found in a model library on the extended
SCEPTRE (89) program tape. A CANA program uses the
tovological description and the component values of a
circuit to formulate network equations which are then solved
by numerical methods. To perform a fault isolation test
simulation, the required information includes (1) the
topological description, the nominal values of the
components and their tolerances, (2) the description of the
input and accessible test points, (3) the definition of the
failure modes. In a nonlinear network analysis program for
lumped circuits, the reaponse calculation is based on the
formulation of network equations and sparse matrix
technique. For nonlinear circuits the Newton- Raphson
method is used. From the standpoint of cost effectiveness
it is advisable to model each integrated circuit type as a

functional element because many internal failures of the




] ) o A W TR N RN R
oA PN PR S b e R e A R S B Or e
T - RS  RR T T S o S G R g

et st VAU AR RS

TR

88

e

integrated circuit package are indistinguishable at the

external terminals. In a computer aided test design system ;
it is desirable to reduce the amount of calculations for %
setting up a test program which 1leads to an acceptable %
degree of fault diagnosis. A simple fault isolation %
technique using binary logical conjunction of failure %;
responge regions has the advantage of reducing the amount of é,
calculation but often fails to achieve an acceptable %
diagnostic level (7). Fuzzy set theory seems able to §

ovarcome some of these difficulties.

3.6.3 Response Sensitivity With Respect To Tolerances

To determine the upper and lower bounds of the response
at an accessible point for a specified failure mode while
nonfaulty components have reasonable tolerances would
require a large amount of simulation work. To reduce the

effort, one can use a sensitivity analysis to estimate the

approximate bounds as follows. Let Aci be the maximum per

unit tolerance of non-faulty component C. The response

sensitivities with respect to n non-faulty component at an

access point are bg , 1= ),....
3

i
response and the C;, is the nominal value of -

, n, where P is the

As a first
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approximation we may compute the upper and 1lower bound

according to the sign of 3P . If 3P
. 3C:o 33{;
l,+-+, m and 9P _ is negative for j = m+l,.-.-, n, then

1
B—C-LO :

is positive for i =

A rer et Bt ndiy Ab Nl
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op P
P =P + I 6,C, o4 ~— §.C, ——— (3.6.1)
max 0 ..ot 108Ci° jem+l j jo cjo
and
m n oP
P §.C. ——
P =P + I G-Ca — 2 J JOBC. (30602)
min © i-0 i 1oaCio jem+l jo

where P is the fault response when the non-faulty
components have their nominal values. To take into account
a nonlinear effect, one normally would have to compute
second and hicgher order sensitivities and calculation
becomes laborious. A simple way to include nonlinear
effects is to use the deviations éicio and jSjo from Eq's
(3.6.1) and (3.6.2) as the worst case to compute directly
the response by means of CANA program (69). In practical
cases this simple method gives the uppa2r and 1lower bounds
quite close to results obtained by extensive simulation. In
some cases where the domminant variation of the response
with respect to some components is quadratic, the simple
method is not satisfactory. However, this can be remedied
by using Max (Pmax' 2P, - Pmin) and Min (Pmin, 2p - Po)

max
as the upper and lower bound, respectively.

3.6.4 Fault Isolation Using the Fuzzy Logic

The essential task of fault isolation in a fuzzy

environment is to recognize the membership of responses

which belongs to a designated fault class and to distinguish
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among memberships which belong to different fault classes.
This can be conveniently established around the notion of
the "belonging" in the case of fuzzy sets if the boundaries
between fault pattern classes are not sharply defined. Let
wl, wz, coe, WF fuzzy fault pattern classes in the fault
response space P, and p be the generating element of P. We
define fwi(p) at p to be the grade of membership p in wi and
fwi(p) associates each point p with a real number in the
interval (0,1). When mi is a set in the ordinary sense of

the term, then its membership function can take only one and

zero according as p does or does not belong to wh,

Suppose the upper and lower bounds of the responses at
available access points for a set of specified fault condi-
tions have been estimated by the sensitivity analysis. The
regions between these bounds may or may not overlap. The
non-overlapping regions, wherein fault isolation becomes
very simple, are easily distinguished from the fuzzy
regions. Using binary logic some fault can also be isolated

from the overlapping ragions.

The grade of fuzzy membership for a particular fault
condition when a response lies in a certain region may be
assessed according to some a priori information. As an

example Fig. 3.19 shows the response regions of 5 single

faults measured at access points k, k=1,2,3. Let kw; be the

responge due to the ith fault measured at access point k
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that falls in the region Rj, j=1,2,..., 5, and k=1,2,3,
Initially we assi¢n the membership wvalue of kw§ as one only
if i=j, Notice that because of overlapping regions, the
response of a fault other than the ith one may also fall in
the region Ri' To estimate the grade of membership for the
case that only the response of ith fault falls in the region
R; and no other response can appear in the same region. To
do this we use a set of aaditional samples for estimating
the membership functions of the related faults in the
overlapping regions together with fuzzy relations. The
membership of the overlapping regions are shown in Table
3.3, in which fkw% represents the grade membership of ith
fault response at kth access point in jth overlapping region

or 8simply jth region.
(1) Fuzzy Relations

The commonly usad modes of composition of two fuzzy
relations are (a) conjunctive, involving the connective
"and", (b), disjunctive, involving the connective "or". The
membership function of the union of two fuzzy sets with

respective membership functions £ (), ﬁB(p) is
fayp(P) = Max ( £,(p), £4(P)), p c P (3.6.3)

The icmbership function of the intersection of the

above two fuzzy sets is given by

can s o
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fang = min ( £,(p), £5(p)), p e P (3.6.4)

In the case of binary fuzzy relations the composition
of two fuzzy relations A and B is denoted by BoA, and is
defined as a fuzzy relation in P whose membership function

is related to those of A and B by

£o0a (P} = Ssp min ( £, (p,v}, £.(v,q)). (3.6.5)

(2) Membership Function of Refined Sets

Let yw;, be the response of the ith fault measured at
access point k that falls in the region Ri undexr the
condition that no other fault response app.ars in Ri. We
call ,w; a refined set of kw% . To estimate the membership
function £ ~, it is convenient to use the composition of

k*1
fuzzy relations similar to Eq. (3.6.5) as follows:

f =Supmin (£ i, £ ,v ) (3.6.6)
K W1 P KWy " TRw'y
v
where "'" denotes the complement, It may be noted that

"conjunctive" and ‘"disjunctive" modes in Eq. (3.6.6) also

appears in Zadeh's possibility theory. Table 3.4 shows the

values of % ». Calculated by Eq. (3.6.6) using the values
{1

given in Table 3.3. From Table 3.4, the overlipped regions

can be eliminated by a pairwise comparison among the values
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Fig. J.19 Overlapped Response Regions

(1) Access Point 1

NI 2 3 4 5
1.00] 0.00} 0.060] 0.00/{ 0.15
0.00] ..00] 0.40} 0.00{ 0.01
0.00f 0.20f 1.00{ 0.20( 0.00
0.00| 0.00( 0.25} 1.00| 0.00
0.20] 0.02] 0.00] 0.00} 1.00

MNidmjwinge

(2) Access Point 2
1 2 3 4 5

1.001 0.00} 0.00| 0,20/ 0.00
0.00] 2.00| 0.00} 0.301 0.02
0.00} 0.00| 1.00] 0.00} 0.20
0.141 0.35{ 0.00| 1.00 0.00
0.00] 0.01{ 0.26{ 0,00 1.00

r‘c
NidjWwingr
.

(3) Access pPoint 3
BGT 2 3 4 5

1,001 0.004{ 0.304{ 0.00! 0,00
0.00¢ .00 06.00] 0.001{ 0.02
0.351 0.00J .00} 0.051{ 0.00
0.00) 0.004 0.10! 1,001} 0.20
0.0010.00]0,0010,2511.0

WS W [N

Table 3.3 Fuzzy Membership fwi for the
kj
Overlapping Region
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k
b 1 2
1 0.85! 1.2! 0.80 8,91 0.70 1.2
2 0,60 51 0.7 5,61 0.0 R
3 0.30 6'7,8 008(. 1]2 0.65 3
' 4 fo0.75] 9] 0.6 7] 0.8d4,5,¢
' ) 0.80] 3,4] 0.74 3,4} 0.749 7
Table 3.4 Maximum Fuzzy Membership for K%i
K Y e LIM1TY Ue LINMIT F(l)
1 1 =5.571E 00 -5.285¢ 70 0.00C
1 2 8.368E-05 8e394E-05 0,999
1 ? =5¢571€E 0C =-5.285€ 00 0.000
1 9 =5.501¢ 09 5216 00 0.Co0
1 12 ~4.005€-01 34427e-01 0.0u"
2 1 5.077¢ 00 5.339¢ 00 0.002
2 2 S.156€ 0C 54428 CO0 D.92¢
2 4 3.077¢ 0GC 5.339e CC 0.00C
.2 9 5.077¢e 00 5.33%9e 00 O0.COC
F4 12 S.431€E 0C 5.732¢ 00 0,992
Table 3.5 A Partial Oveérlapped Response with
Fuzzy Membership
i
P A
7 oy = - :
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. of f 0. The modified non-overlapped regions are also
ki
shown. Further, the value of k that yields the highest

value of £ 0. ! k=1,2,3 is chosen as the input for ATPG.
ki

3.6.5 Fault Isolation Procedure

1., We start with a given circuit description having 10

input ports, 10 output ports, and 72 components.

2. DC measurements at selected ports are used.

3. We genrrate upper and lower bound of the responses
for each fault pattern using senitivity analysis
of NAP2 Nonlinear Analysis Program.

4. Fuzzy membership for each interval is given as

The length of ith nonoverlapping interval .
The length of total interval .

The implication is that if entire region is

nonoverlapped then membership equals to one and if

3!

k- entire region is overlapped then membership equals
;? to zero.

;;: 5. Whenever there is a simulated test sample, we assign
e

;? the fuzzy membership values according to the step 4.
? 6. We use the fuzzy selection logic to diagnose the

e

- fault using Eq. 3.6.6.

gja 7. If the fuzzy membership value of the selected fault

is above certain value a (0 < o < 1), then use

the selected measurements. If the fuzzy membership

LY g TR
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value of the selected fault is below certain value ¢,
we need additional access points to generate response

measurements.

8. If fault isolation is acceptable, then use the set of
fuzzy membership values for future fault isolation.
Otherwise add the access points and increase the
number of measurements.

3.6.6 An Illustrative Example

Figure 3.20 is a diagram of a communication I/O circuit
board having 40 resistors, 10 diodes, 3 capacitors, 18
trnsistors, one operational amplifier, and 3 DC power
sources, We assume 38 single fault cases including 33
catastrophic or "hard" failures and 5 "soft" fault cases in
which failure component has twice its nominal value. The
circuits can be subdivided into 3 line .river subcircuits, 4
buffer circuits, 1line receiver, and control circuits. In
each subcircuit, one input point and one output access point
are used. DC voltage inputs of 0 and 5 volts are used and
the output voltages are measured at all access points. One
output current is measured in each line driver subcircuit.
The tolerances are 5% for the resistors and 1% for the

forward current of the modeled transistors.

The worst case analysis of NAPZ (85,86) program
provides us the approximate upper and lower bounds on the

given simulated responses. These upper and lower bound are
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changed by using Max (Pmax’ 2Po - Pmin)' Min (Pmin' 2Pmax -
Po) when necessary. Starting with 38 fault cases, 27 fault
cases are isolated wusing binary logic. Using fuzzy logic,

we can distinguish four more failure cases for about 10%

improvement.,

Table 3.5 is a partial 1list of the overlapped response
regions of ith fault at access point k and the membership
functions computed from test samples with the method
discussed in section 3.6.4. From fuzzy membership
calculations with a preselected threshold 0.7, four more
test regions with the highest fuzzy memberships are added
into the test data. A partial listing of the input to the
NOPAL is given in Fig. 3.6.4. This program is implemented
in FORTRAN on the Moore School UNIVAC 90/70., Most of the
cpu time was consumed to simulate the fault cases.
Generation of the worst case analysis took about 600 sec.

cpu time and a test sample simulation took about 1000 sec.

cpu time.

3.6.7 Discussions

It has been shown that the application of the fuzzy
concept together with the worst case analysis and test
samples can reduce the number of simulations required for
the design of fault isolation tests. Only single faults
using DC signals were considered. The method presented

herein should be refined in order to extend it for handling

S
5
]
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multiple faults of frequency or transient data.

3.7 Chapter Summary

The situation often encountered is that the system under
consideration has very little information available, and the
formulation of an optimal control or recognition policy
needs accumulation of this information. Learning system is
defined 2as a system which accumulates the information for
certain improvements of the system. FA model we described
is a good candidate for a learning system under fuzzy
environments. Fuzzy environment refers to the unknown
environment which tries to give the system having maximum
vaguenes¢ cr indeterminacy. As we discussesd in the earlier
chapter, we can categorize the uncertainties into two
different engineering discipline. One is randomness which
can be handled by probability theory and the other is
indeterminacy or vagueness which can be handled by fuzzy set
theory. We arc mainly concerned the case when indeterminacy
and vaguenss are the major portion of the uncertainties. We
established the fuzzy automaton model for learning systems.
Properties of various fuzzy relations were explored.

Two analog fault isolation algorithms are studied. An
active lowpass filter and a communication I1/0 circuit are

used as exanples.
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CHAPTER 4 Fuzzy Distance Measure and Fuzzy Entropy Measure

in Fault Isolation

4.1 Introduction

Mathematical modelling is typically based on the system
which is developed by a set of axioms. An important
observation is that the logical structure of a fuzzy set is
essentially Boolean, except for the violation of the law of
excluded middle and the violation of the law of
contradiction where fuzziness remains (41). Care must be
taken if one departs from an axiomatic system or tries to
use several axiomatic systems which may be muatually
inconsistent. The best hope one can have is that each
axiomatic system approximates the other under specified
conditions. Then we might be able to use these several
axionatic systems as an approximation to the real system.

Aspects of fuzzy set theory are close to but distinct
from that of probability theory. Conseguently the concept
of a valuation differs an important ways from that of an
ordinary measure. Valuations ot a fuzzy set may be
restricted to subsets of reference space, as it is done in
measure theory wusing the notions of Borel £fields. In
effect, valuations are defined on a reference space which
form a convenient structure for use with the given
operation. Such an approach to the theory of fuzzy subsets
has recently been described in a highly significant work by
Sugeno (51).




PR A ATV ST 4~ N BRI A Gt e

102

4.2 Fuzzy Distance Measure (FDM)

4.2.1 Definition

It has been pointed out recently (43) that the
important terms in fuzzy set theory, "equivalence",
"implication" can be expressed through the definition of
metric terms., First the lattice Li, j = 1,...,m is defined
on each measurement space with "“2" fived pointe which are
given by the preset conditions. The binary operations on
the fuzzy set are defined as the maximum and mirimum of the
two operands. A metric on the lattice giving a measure of
the "distance" apart of two propositions under a valuation

is defined as follows: (4.2.1)

Vx L., d{x
j (

15° x2j € 15 xzj)= logQ( rank order(xzjlxlj)L

Thus the distance of the two measurements are defined by
the logarithmic value of the rank order of xp; from X314

bDistance d satisfies a quasimetric on Lj such that

d(xlj'xzj) =0

(4.2.2)
s .
0 d(xlj,xzj) 1 (4.2.3)
d . .
(le,xzj) + d(xzj,x3j) 2 d(xlj,x3j), (4.2.4)

Proofs of eq. (4.2.2) and (4.2.3) are an immediate
extension of the definition. Equation (4.2.4) can he proved

as follows:
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where n, m, k is the associated rank order.

n<l, m<l, k<nims
d(x,y)+d(y,z)-d(x,2) = logzn + logtm - 1og£k 2 logznm - logz(nﬂn)'

= -(loqz-f‘: + log[‘l; ) 20, qed.

It is also reasonable to define a measure of equivalence as
v yj' xij € Lj' D(Yj ] xij) = l - d(yj‘ xiJ) . (4.255)
4.2.2 FDM as a Fault Isolation Criterion

For our purposes this distance criterion assumes that
ingserted faults lie within a predetermined deviation of the
"typical” single faults. With this in mind we turn to
definition of a fuzzy distance for fault measurements.

We define a measure of the "distance" or apartness of

two output measurements xlj and xzj as follows,

V x L

1 %258 Y
d(xl_j, xzj) = log, (rank orcer (x2j | xlj)) (4.2.6)

where "p" is the number of fault classes.
Then the problem of fault isolation can be interpreted
as the need to find the minimum distance bhetween the

measurement yj of UUT Y and preset values xij's, where the

2 -
R it i

-
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xij's are elements of a typical fault pattern vector X;, and
where subscript i stands for different fault tgpes and

subscript j stands for number of measurements to be made.
4.3 Fuzzy Entropy Measure

Kolmogorov argued that the basic information theory
concept must and can be found without recourse to
probability theory and in such a manner that "entropy" and
"mutual information" concepts are applicable to individual
values. Furthermore he pointed out that by using
probability theory, we might need to resort to considerably
rougher generalization. In their arguments, studies of
Kolmogorov (54) and Lof (53) in randomness, probability, and
information connected with the concept of calculation
complexity provided for a new insight into the concept of
information. Cerny and Brunovsky (57) have taken
information as a basic concept, defining it axiomatically.
Their definition, however, requires a special operator
instead of wusing probability and independence as primitive
concepts. Along with the development of fuzzy set theory,
De Luca and Termini (55) as well as Okuda, Tanaka, and Asai
(58) have studied information measures in connection with
the fuzzy set theory. Although they have defined fuzzy
entropy measures, it is hard to be convinced that any one of

them has a sound basis.
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4.3.1 Definition

The usual definition of entropy is based on probability
concej.ts, and does aot pertain to individual values, but
rather to random values, i.e., to probability distributions
within a given group of values. We find it advantageous to
treat the total information in the system ( input, network
topology, output ) as being comprised of two parts; namely
that due to the randomness and vagueness. Thus in addition
to the information due to the randomness described by
probability theory we recognize the fuzzy information
contained in the imprecision of the system described by
fuzzy set theory. Consider a functional defined on the
class of generalized characteristic functions (fuzzy sets).
We denote this as "fuzzy entropy". Thus we obtain a global
measure of the "uncertainty" related to the situations
described by the fuzzy sets. This "fuzzy entropy" may be
regarded as a measure of a quantity which is related to the
randomness of the experiments and the impreciseness in the
system,

Classical probability theory is based on properties
such as P(Q)=1 (exhaustivity) and countable additivity. It
would be wuseful to have a new measure and calculus which
might eliminate the inherent need to be exhaustive, while
restricting every sample point of the structure to a

well-defined set (51).
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Definition 4.1: Let B be a Borel field (o-algebra) of

subsets of the real line Q. A set function yx(.) defined

on 8 is called a fuzzy measure if it hass the following

properties:
1) x(¢) = 0 (¢ is the empty set of Q) (4.3.1)
2) x(R) =1 (4.3.2)
3) If a, Re B with acB , then x(a) < x(B). (4.3.3)
4) 1f {a|lgi<=) is a monotone sequence, then (4.3.4)

lim (x(oy)) = x( lim(a,)).
j-voo J j... ]

Definition 4.2: Let u : 2 -~[0,1] and y : {y| yzx}=(0,1)].

The fuzzy expected value (FEV) of u over a set A, with
respect to the measure x(.) is defined as .

FEV(p ) = s> { min { u, X(Ex)}}c (4.3.5)

where &£x = {y|y2x}ca.

Definition 4.3: The fuzzy entropy H(u ) of u over a set A
with respect to the measure x(.) is defined as

H(k ) = -FEV(i )1log,FEV(k ). (4.3.6)

We may also use the logarithmic fuzzy entropy defined by
DeLuca (55,56).

Definition 4.4: The fuzzy entropy (H(u| %)) of , over a
set A with respect to the measure x(.) given x is defined
as

H(ux) = ~iu(x) log, u(x) - (-2 ) x(, ) log, x( &x)

(x) -x (£x) j
bod
|
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Theorem 4.1 ) For any x in a set A, H( 1 ) is larger than

or equal to H(u | x).
Proof: Suppose supremum of H( i ) occurs at x* in A, then

pi{x*) = x( & x*).

H(W) = -plx*) log,,(x*)

H(w) - H(u[x) = -u(x*)1og,u(x*) +iu(x)log,u(x)
+(1-X)x(€x)logzx(£x)

px*)-x (£x)
p(x) =-x(&x)

p(x*) is in between u(x) and x( £x) and -t logb t is a

where A = ' plx*) = Ap(x) + (1-2)x(&x).
concave function and u(x*) is a linear combination of u(x)
and X( &x). Therefore, H( u )=-H(u | x)>0. Equality holds

when » = 0 or 1.

Definition 4.5: The fuzzy mutual information H(n , u|x) is

defined by H( & )-H(u | x).

Corollary 4.l1: The fuzzy mutual information H( u , u | x) is
a positive number.

Proof: It is a direct consequence of Theorem 4.1,
4.3.2 Measurability of Faults in Analog Networks

The nature of symptoms in a faulty analog system is

usually not as clearcut as is the case for a faulty digital

wabawan v,
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system. Rather, the output responses are given 1in

functional form and the set of deviations of the output

S cmran e ANS P KU w7

responses are potentially the symptoms of the several
component faults. We are restricting our interest only to
such deviations as the possible fault symptoms.

The response deviation function Cij(‘) of the 1ith

faulty component and the jth port together with fuzzy
membership  function fC..(') will form a fuzzy set
representing the degree ;% fault response due to the jth
port response deviation and the ith component. The set of
response deviations can be represented by a semi-closed

interval, whose lower and upper bound (ai., bij] may be

]
appro:.imated by using a worst case analysis (69). It is
assumed that the response deviation interval Xj due to the
C; can be predetermined and denoted by a fuzzy set xij whose

characteristic function is as follows.

3 (4.3.8)

by (%) ={l. xe (a; 4 by ]
0, otherwise,

It is also assumed that the fuzzy membership function

£ (.) is continuous and that the values of ¢ {.) are

Cy

assigned so that if the reponse deviation increasesl%hen *he
corresponding fuzzy membership values are nondecreasing.
Therefore the membership function fx..(') of the response
deviations in Xij(') with respect to Ci% can be represented by

fX. .(X) = pij(x)/\. fc. .(X)o (40309)
ij 1]
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We denote a fuzzy set {x,fy >0} as gij' Next we defined
i

the fuzzy measure xij(.) for the response deviation Xi‘ as a

normed weighted length denoted by

Sb fX ‘(t) dt

) - 2
X.:(x) = (4.3.10)
1) Sb £, (t) dat

a ij

where Xij = {t| a<t<bl,

We can subjectively interpret xij(x) as the degree of belief
in the existence of a fault when the measurements are larger

than x. When fuzzy membership function fx (.) is constant,
ij
Xij(’) behaves similar to a uniform distribution function in

probability theory.

Fuzzy expected value for the responses deviation X,

]
can be expressed as follows.

FEV(f, (x)) = sup{ min £, (X)’Xi* (x) ! (4.3.11)
ij ij J

We can easily show that for any nondecreasing continuous

fuzzy membership fX (x) over a fuzzy set xij' there exists
ij

a unique fuzzy expected value of fx (x) with respect to the

ij

fuzzy measure Xij(x)‘

In our case, FEV's are used as mecasures of central

tendency for the response deviation sets Xij's.
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4.3.3 Fault Properties, Fault Averages, and Fuzzy Expected
Values
Even though the set of membership functions fxij(.)'s
for each ith component and jth response are obtained, the
problem of formulating a fault isolation criterion still
remains. The main reason is that the set of membership
functions fxij(.)'s have two properties; the occurence of
the ith component fault and the subjective observation at
the jth response. On the one hand, when we focus our
attention on the occurence of a faulty component, we seek
some averaging method to determine a typical fault. On the
other hand, we may focus our attention on the subjective
interpretation of the faults at the jth response to seek the
one which exhibits maximum deviation properties. Therefore
the weights of individual properties and collective behavior
seem to have essential roles in determining the 1likely
faults. The cuncepts of property set were introduced by
A. D. Allen (88). It seems reasonable to use FEV's as a set
of values considering both properties and collective
tendencies. It's interpretation is such that the FEV as a
typical value of corresponding fuzz\ component membership
function and the measurement whese fuzzy membership is equal
to the FEV as the corresponding typical measurement. The
criterion we are proposing for fault isolation is to select
the minimum of the sum of the difference between the

observed values and the FEV's at each point.
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The FEVij(x) for the ith faulty component at jth port

are given as follows:

FEV(fX“(x)). X € X.

FEV, , (x) = ij 13, (4.3.12)
c > 1 y X ¢ Xij'
where ¢ is a constant determined by the designer. %%
The proposed criterion can be written as %%
miin § [FEV, (%) = x; (%)
4
Application of this criterion mainly depends on the g
accuracy in determination of the fuzzy membership functions. gi
Therefore it is vital to develop a strategy to upgrade the i
i accuracy of the response deviation membership function. é.
:1‘ 4.3.4 An Algorithm of Fuzzy Measure to Analog Fault %
i; Isolation é
- L
.; ’ Our objective now is to minimize errors in fault %é
;ﬁ isolation as well as to construct a structure for an 2
f; effective fault isolation scheme. We start by being aware '%
%u, of the possibly overlapped response regions. Recall our f
gﬁ subjective interpretation of a response deviation fuzzy é
é membership value for a particular response deviation. It i
E indicates the degree of fault due to the component deviation i
é“ while all other components are subject to drift within é
% tolerances and under noisy mesurements. We assume only a §
E . single component fault occurs at each set of observations. %«
g
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The proposed algorithm is a follows:
l. Set up the set of fuzzy membership functions fy . for
1]
each ith component and jth port.

2. According to the fuzzy membership functions £y , set
1

]
of fuzzy measure xij's are calculated,

3. Fuzzy expected values (FEV's) are calculated using eq.
4.3.11,

4. Observed values are compared and ordered according to

the criterion.

min & |FEV;;(X) = X;3(x)]
i3 i3 ij

The ith component having the minimum indicates
the most likely fault.

5. Confirmation of correct isolation directs the update

of £y ‘'s. Suppose x, is the observed set of values.
1)

£y, (%) « afy (x)+ (l-a)d(x), O < « < Y
1) 1j

Ix(x-xo) 1 if x 2 X
¢ (x) = 0 otherwise
tfx (x)

ij
where x, Xt X .

When X, is corre-tly classified this information

reinforces the correct decision for the next similar fault.

When x  is incorrectly classified we do not use it to update
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the fx..'

6. ;ﬂen we have new observations for a different unit
under test go to step 2.

A macro flow diagram of this algorithm is shown in Fig.

4.1. In this way we may able to start faul: isolation even

though there exist overlapped responses and the probability

distribution of the fault response deviation are not

precisely specified.
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. 4.4 A Fault Isolation Method in Nonlinear Analog Networks

Using Fuzzy Distance Measure

As a possible means of representing fault patterns, we
can use power measurements. We utilize a special form of
Tellegen's theorem to get the necessary values of port
currents and voltages for diagnostic purposes. Furthermore,

we present an algorithm that makes use of the available

measured data on port responses to isolate the faulty
components using fuzzy distance measure detailed in section
4.2, An illustrative example using the NAP2 Network

Analysis Program is included. The results are compared with

i other criteria.

4.4.1 Introduction

Iin analog electronic networks which are designed to
o perform certain analog functions, probability distributions
R/ for the value of each component are often available. It is,
3 however, still difficult to calculate the port responses
from such network component data. Moreover, the nominal
port response which is the subset of all the possible port
5 responses could be rather imprecise because it is only given
by the actual designer's experiences or by calculated values
assuming some specific preset normal conditions., Whenever
actual measurements fall in the predetermined fault
conditions, due to the port responses, impreciseness in the

5 . criteria of the predetermined fault conditions, and the
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inadequacy of available ports, the faulty nonlinear analog

network can be interpreted as a fuzzy system.

Herein we present an algorithm to make use of ail the
available data, namely data on port responses to isolate the
faulty components using fuzzy set concepts. Also, a
possible way of selecting a set of features leading toward

better fault isolation is briefly studied.

Using a network analysis computer program, we can get
the port responses for both nominal and faulty conditions.
A special form of Tellegen's theorem is applied tc get the
necegsary values of port currents and voltages for

diagnostic purposes.

4.4.2 Reference Feaﬁure Generation of Faulty HNetworks

using Tellegen's Th=zorem

Throughout this section, we assume that only a single
component fault occurs., This assumption is mainly for
notational convenience. Recall that a "soft failure"
entails a change of component value to such a degree that
the network resporise is just outside the specification while
all the non-faulty components are subject to drift within
their tolerance ranges. It has been discussed (12) that
such failures are more troublesome to isolate than "hard
failures" such as an open or short circuit of the component.

We restrict our discussion only to ‘"soft" failures. If
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desired, a "hard" failure can be approximated by the extreme

case of "soft" failure.

One of the most powerful tools available to solve the

network is Tellegen's theorem. One general statement of

Tellegen's theorem is stated as follows:

| Y " = | "
TA'Y A vD TA 1QA va

p P P g4 (4.4.1)

where ip, vp are port currents and voltages; and i o v, are

branch currents and voltages. A' and A" are any Kirchhoff

operators, The above theorem can be applied to netwolks

including non-~linear elements as long as the network

topology is not changed. We proceed to apportion the
currents anc ‘oltages at the ports and branches respectively
to be consistent with their nominel values and their faulty

values as follows:

iqey =1 (O ey oy (1),

P P p (4.4.2)
v (t) = v (0)(t) + v (l)'t)
P P (4.4.3)
. (0) . (1)
i (k) =i (£) + 1 (t)
¢ “ @ (4.4.4)
- . (0) (1)
Va (t) = 7o (t) + Va (t) (4.4.5)
where (0. stands for nominal portion and (1) stands for

faulty port:on, Then we find that Tellegen's theorem is

expressible as four separate expressions:
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ni (O)V (0) = 51 (O)V( (0) (4.4.6)
pP P y t

;i (0, (1) _ “a(O)V (1) (4.4.7)
pP P o S

(1), (0) gy (), (0) (4.4.8)
;lp vp 0210‘ Vi

co(1)y (1) _ .. (1) (1) (4.4.9)
D v = I1 v s ¥

p P P o [} o

In contrast with the power equation (4.4.6), we can
call eqs. (4.4.7), (4.4.8), (4.4.9) pseudo-power equations,
Port responses under the nominal faulty conditions can be
calculated easily using a network analysis program. We
assume that the port currents and voltages of the nominal

network which have n components and m ports are represented

as 3 (0) i(O), v(0) . Vo)

pl *** ipm pl * Vom (nominal case)

and klpl coe klpm' kvpl “es kvpm (k component faulty case).

The corresponding faulty network port currents and

voltages are represented by

. (1) (1) (1) (1)
(klpl PG Y klpm [ kvpl 1~ % * kvpm ) (4.4‘10)
. (0) i . (0) : .(0) v (0)

= (klpl—lpl reser g pm-lpm ' klpl -Vpl peeer g pm-vpm ).

We then have three possibly independent equations for

each k:

. Lo koa (4.4.11)

2 o [ v o
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.. (1) (0) _ . (1) (0)
éklp vp = ikla v, (4.4.12)
(1) (1) _ . (1) (1)
zklp kvp = Zkla kva (4.4.13)

Thus it is clear that we have the port measurements for
the nominal and typical single fault cases. The problem,
however, is how to isolate the faulty component from given
measurements., We can select port voltages and currents
independent of each other by forming the appropriate
spanning trece of the network. From eq. (4.4.10), we can

enerate the 2" possible equations by choosing ports. Then,
g

we have

«(0) (1) _ _ . (0) (1) . (0) (1)
lpg kVpC = yfe'lpf' kvpﬁ' + i KV (4.4.14)

where L = 1.,..m,

From eq. (4.4.14), we get m independent equations
where the lefthand sides are known and the corresponding
righthand sides are unknown. These equations show that the
pseudo-power disturbance due to the one faulty component is
revealed by the port responses. We will use the lefthand
side quantity to isoclate the faulty component. Likewise eq.
(4.4.12) and (4.4.13) yield 2m more possibly independent
equations. By suitable extension of this approach, multiple

component fault cases can be handled.
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é 4.4.3 Fuzzy Distance Measure in Fault Isolation

We assume that the system has n single fault cases. We
further assume that every fault that occurs is near the

typical single fault calculated by the present conditions.

Herein we are only interested in isolating faulty units

RN RS

under test to the given fault cases.

Then the prcblem of fault isolation  reduces to

TR

determining the maximum equivalence between mcasurement Yj
of unit under test Y and preset values xij's of typical
rault xi' where j stands for number of measurements made and
i stands for different fault cases. Since independency of

the measurement data are not given precisely, we use fault'

S SR T R PR AT

equivalence u(YExi) as a simple averaging of the port fault !

equivalencex(yisxij).

4.4.4 A Fault Isolating Algorithm Using the Fuzzy Set

Concept
A Jdescription of a proposed algorithm is as follows:

1. Calculate port voltages and currents under nominal and

faulty conditions using a network analysis program.

2. Calculate pseudo-powers

@ W, 5 W, 5 Dy (0 5 (), (1

' kp k'p

for all k's and p's. It is assumed that the m(<n)

independent ports are available, and we have { faulty cases
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and n components.

3. Form a pseudo-power matrix X' which has columns and m'

(¢3m) rows as follows:

X =E’igl lvpl : ipl Vpl f = s Xypeer Xyps
é i;m(O)lvpm(l). LG -
igl(l)lvpl(o)"' ipl(1)£vpl(0)1 Xam1e*  Xamp »
;m(l)lvpmw) gy M O
ipl(l)lvpl(l)"' lpl(l)lvpl(l)
\ ;m(l)lvpm(l)"' ipm(l)tvpm‘“
X' = IXypee X0 i X' is formed by reducing X.
!x If jth row of X is all zeroes,

. then jth row is deleted.

4. A measure of separability Sj is formed cto assess the
diagnostic worth of jth set of measurements. When we order
X5 § for every i given j( =1,...,m'), we get new matrix Y,

where its element yij is ordered. We set the measure Sj' as

e-1v =Y Y =Y
s, = ¢ gl qud joqa*l) d.j

=Y . , - R
I g=1%¢,57V1,3 Ye,57%1,5
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If the measurements are evenly spaced, then

= ~-n*= - = - - =
Sj n n logn lOC_}n log n.

If the measurements are spaced unevenly, then

Sj < log n. Therefore Sj indicates the diagnostic worth of
jth set of measurements.

5. Measure the output port voltages and currents of unit

under test simultaneously. The voltages and currents

representing faults are indicated by

. i ' ' , Vp.l..l V

6. Calculate the rank order for each jth row.
a. If there are i' equal values at {i,...(i+i'-1l)ith
order then the rank would be

1/i!

i x ... x (i+i'-1)]
b. Remember the zero crossing rank order.

If zero crossing occurs between {i", i"+l}th order, then the
zero crossing rank is ((1“ x (i“+1))%.
7. An attribute to the rth fuzzy membership is given by

Prj =1 - loge (rank order of rth component)

wherz ¢ < P_. < 1.
rj

< e -
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A Fig 4.2 simplified Diagram of Fault Isolation Method
Using Fuzzy Distance

T :EST
NPUT | -
—— 3 L |
| ADDITIONAL TEST INPUT]!
§

- v (INCREASE SEPARABILITY) |

T [ SYSTEM MODEL 1

isg ,vp.k] NETHORK ANALYSIS PRUGRAM

Y
SYSTEM RESPONSE I

(STEADY STATE)
|

Y
CALCULATION OF
PSEUDPO-POWER MATRIX

L0 L) e () ()

. p kp_ "x'p Yp ' k'p ¥x'p

MEASURE
OF SEPARABILITY S
ACCEPTABLE

NO

9'//

YES

{
CLASSIFICATION ALGORITHM: l
FIND FUZZY MEMBERSHIP '

USING FUZZY DISTANCE l i
i

IS THE -
\\ !

TEST G) o

“EFFECTIVE -~

YES

© DECISION (FAULT ISOLATION): |
I MAXIMUM FUZZY HE!BERSHIP ;
’ | M MAx ‘ by




NN o S S S P S xR R e R e

124

8. The fuzzy membership is given by the average of Prj

1

u T .L-
r m'

e 3

P .
ol

9, Order the fuzzy membership function. The maximum of the
fuzzy membership function indicates the most 1likely fault.
The relative valus of fuzzy membership function will also

have some meaning.

10. validity of the Test: Noting that fuzzy membership

0< u<l, we define test criteria as:

a. Hpo.— 1 indicates high confidecnce in the decision.

Hmax M nom

b, Let GL = — . A larqge Gl indicates an effective
logl2

test.

c. Let G2 = "max ~"

logzZ
an effective test.

sec max , A large G2 also indicates

11. If the resulting decision is not satisfactory, return
to step 4 and select new port measurements with good local

separability near troublesome components.

%U

- . Y -Y .
Yq+2r-3,3 Yq.J log g+2r-3,3 gq,j
~Y. . Y, .-Y, .
YﬂJ YLJ £,5 71,3

2
s . = -1
q] r=1

where q is the component, Jj is the new port measurement,

Simplified ‘lcw diagram is shown in Fig. 4.2,
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Table 4.1 List of Selected Faults

FAULTS INSERTED FAULT DESCRIPTION

1, Open -12V source R3 and R5 open
2. Open 5V source Base of Ql open
3. Opeu X Rl open
4. Open 12V source R2, R6 and emitter of (2 open
5. Ql short emitter to collector Replace 0.1 to emitter to
collector
6. Open R2 R2+1099
7. Short R2 R2+0.10
8. R3 increase R3+2 x R3
9 CR1 shurt CR1+0.10
10. RS increase R5¢2 x RS
11. 04 short cmitter to collec.or Replace 0,10 to emitter to
collector
12. Q3 short base to emitter Replace 0,12 to basc to emitter
‘ 13. R6 open R6+10%0 ‘
14. Short CR3 CR3+0,1Q
~12v- !
g 03 )
vy - 2N2907A 70

| Q4
2N2222A

& 12v
2 +

5

Fig. 4.3 pPartial Diagram of the Communication I/O Circuit
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4.4.5 An Illustative Example

We use the Line Receiver Circuit of the communicatiosn
I/0 circuit card shown in Fig. 4.3 which has 4 transistors,
3 diodes, 6 resistors, 1 capacitor, 3 power sources, 1 input
port, and 1 output port. For convenience we ascsume the 14
fault cases shown in table 4.1. The NAP2 Nonlinear Analysis
Program is used to simulate the circuit and calculate the
port measurements. We measure the output port voltages,
currents and the input port currents with 0 and 5.5V at the
inprt port, oOut of 12 sets of pseudo-power measurements, 5
sets of pseudo-power measurements are retained. We have 3
samples for each fault type. Each fault type is recognized
by a specific fault condition with all the other components
subject to drift with normal distribution within 5 percent
of their nominal values. Table 4.2 shows the number of
correct diagnoses for each fault type based on a fuzzy
distance criterion and the nearest neighbor rule. Using the
algorithm with a fuzzy ‘istance criterion, we find that 36
out of 42 samples are correctly classified. Under the same
conditions, the nearest neighbor rule classifies only 28
samplas correctly. Table 4.3 illustrates the effectiveness
of test G2, defined in tle previous section, for 14 samles.
In this table, fault type 2 is classified incorrectly. This

is not suprising since this fault yields a very low

effectivene ;s value.
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4.4.6 Discussion and Futher Remarks

A key point in this approach is that such favlt
isolation is in fact converted to a simplified form of
patiern recognition. We feel that because of availabil.ty
for very limited number of samples of fault measurements,
the nearest neighbor rule might be inadequate as a decision
criterion. At the same time, the voting technique is
avoided, because it requires an optimum threshold level
which is not easy to obtain. Although the number of samples
is wvery limited, results appear to show rather easy and
effective diagnosis possible based on a fuzzy distance

measure.
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4.5 An Application of Fuzzy Entropy Measure for Analog

Fault Isolation
4.5.1 Introduction

The deviation from the normal responses in analog
networks can be viewed as functions of the variability of
the faulty components. However 5i:veral ambiguities arise:
due to nonlinearity, component drift, and noise. These
along with changing ambiguity in different stages are
interpreted in the context of a fuzzy system. A fuzzy
measure is introduced to facilitate analog fault diagnosis
under these circumstances.

For problems of automatic analog fault isolation, one
can as already indicated adopt the viewpoint of pattern
classification. In the pattern classification, many of the
theoretical problems have been resolved by using statistical
methods. However, in practical analog fault dignosis,
almost all of the available statistical methods encounter
rather unrelistic assumptions such as the availability of
very large sample sizes and knuwn probability distribution
of the systems. On the one hand for the specific case of
analog fault isolation, we usually have avaialable a large
amount of information in the form of a circuit description.
On the other hand we often have only limited sample sizes
for characterizing the type of faults. The probability

density is unknown or at best only partially known. Also
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under the framework of existing statistical distance
measures, it 1is very difficult to take the contextual
information of the fault pattern into consideration.
Furthermore the increased computational efforts required for
effectiveness of certain existing statistical analog fault
isolation methods must be traded off against the
classification error reduction obtained. Therefore we must
balance the need for computational simplicity and the level
of exactness. It seems both appealing and uceful to adopt
the fuzzy set idea. 1In this way we enhance fault isolation
and maintain the level of ambiguities in the fault isolation
procedure while achieving the necessary output requirements.
Because of the ambiguities in the procedure not only the
most likely fault, but also the ordering of the possible
faults retains some significance.

With this in mind, we formulate the fault isolation
problem utilizing the fuzzy set concept which will enhance
the ATPG effort. A fuzzy entropy measure was developed in
section 4.3 utilizing vague measurements for isolating
faulty components in analog systems. An applicable fault

isolation algorithm is given next based on the fuzzy entropy

measure.,
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4.5.2 A mydel of Fault Membership Function of the Response

When there is a fault in an analog electronic network,
it usually means the observed response is out of the
tolerance 1limit for that particular nominal response.
Therefore, the fault is a function of the deviation from its
nominal response, It is often true that the deviation from
its nominal response tends to 1increase when the component
deviation from its nominal value increases. We shall
distinguish three cases of faults. One can logically assume
that when the response deviation departs from its tolerance
limit the network is considered faulty. Initially, fuzzy
membership 0 is arbitrarily assigned. By the decision
maker's choice, when the deviation reaches a certain point
£  the network is definitely faulty. Fuzzy membership 1 is
assigned at this particular point. Beyond this point, no
matter what the observations or the network, the assignment
of the fuzzy membership values for the deviation remains 1.
There is a gradual transition region between the fuzzy
membership assignment of 0 and 1. For simplicity, in this
region we assume that the degree of fault increases linearly
due to the increment of the deviations. Fig. 4.4 shows the
simple model of the network fault membership function  at
jth response deviation as a fuzzy membership functionJ of
response deviations described above.

Now let us turn our attention to the network fault due

to a sgpecific faulty component. We are restricting our

o Sar
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: intrest to isolating the single fault case only. By a
similar reasoning as network fault, for each component
deviation, we consider three response deviation points Yqe

Y., and Y

2 3
is on the verge of its tolerance limit, when the component

as the response deviations when the component

is its usual fault state chosen by the decision maker, and

when the ccmponent is at its extreme value such as an open

or short. Fig. 4.5 shows this model of the component fault g
membership function Hp . as a function of ith response
deviation due to a speci;ic fault component.

A network fault membership function due to the jth

faulty component He is defined to be the minimum of the

1)
‘ network fault membership function and ith component fault
membership function. Fig. 4.6 shows the network fault
membership function due to the ith faulty component.

The initial measure 1 ( &x ) is calculated as
ij

S:uc__(t) dt
i)

wle, ) o= = (4.5.1)
X35 jouc (t) dt
ij
The FEV of c,lj is calculated as
FEV(cij) = sup (min (uc '(x), u(E,x )). (4.5.2)

XEeR, i 19
j ] 1]

. We may also update the initial fuzzy measure u{ ¢ ) by
. ‘ . ©i3
adding new information from "correct data". A set of
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"correct data" is obtained by the success of actual faulty
component replacement as determined by the criterion
discussed in the previous chapter. One method using linear

reinforcement scheme is as follows.
3:11(: (t) +aé(t-t*) dt
i

nlbe ) = s, (O aE (4.5.3)
0 "ij
where d&(t) is & unit impulse function, 0 < w<1l, and t*

denotes a correct observation.

4.5.3 A fault 1Isolation Algorithm using Fuzzy Entropy

Criterion

It is again assumed thit we have n single fault cases
(i = 1,...,n) and m different response setups (j = 1,...,m)
available. From the fuzzy membership function u(cij(x))
and the fuzzy measure y( gxij ) described in the previous
section, we can calculate FEV(cij) for such jth response and
ith component fault. When there is a set of observations
(xl....,xn) for the response deviations at the response
setup (Rl,...,Rm) from UUT, the observations are adjusted by

an amount of the difference between the response deviation

at the FEV and the response deviation of Yy For new

adjusted observations (xl,....xn), u(ci4(x )) and
4
- ) for each 3jth response and ith component is
ij
calculated.

Our objective is to determine i while minimizing the
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UUT Model Unit

Under Test:
Observed Dat4 Test Signal

r= Generation
(X]  ...Xp)

TALCULATE network
fault membership.
functionM. . .»

i
(i=1....m)
(3=1,...n)
1 ]
CALCULATE
Fuzzy measuge
“(Exii ’ Eq. 4.5.1
(i=1,..m), (i=1,..n
CALCULATE
fuzzy expected
value Eq. 4.5.2
FEV (cii)
1
CALCULATE
Decision function Eq. 4.5.5
J, (%)
i}
3 Eq. 4.5.4 Eq. 4.5.3
Pecision Criterion Updating
fuzzy measurc
min % Jjj(x) H(&Xij)
Is?lation Save
rror No Yes SO Ve
Check Error [ observed
data
Level
: Add New Test for
Ingaginn No Signal
cceptab o Generativn
Y8
Save FEV
and Mo Fig, 4.7 Fuzzy Algorithm introduced for

u(éxii) Isolation of Single Faults in Analog Networks
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possible number of incorrect decisions. As a possible
criterion, we are proposing that we find i such that

(4.5.4)
min ¥ J..(x)

i3

where

Jij(x) = H(FEV(cij))-)\H(u(cij(x))-(l-«\)H(u(E',xij)), (4.5.5)
FEV(cij)—u(&X_ R

H(t) = -t logz(t) and X = 1)
u(cij(X))-u(Ele)

After gathering some correct data, we can update the
fuzzy measure u(gx). A flow diagram of the described

algorithms is given in Fig. 4.7.
4.5.4 An Illustrative Example

To facilitate comparisons we use the same circuit and
the same 14 faults as that given in section 4.4. We measure
the output voltages, currents and the input port currents
with 0- and 5.5-V excitation at the input port. We obtained
three samples for each fault type using the NAP2 Nonlinear
Analysis Program. Each fault type 1is recognized by a
specific fault condition with all other components in this
circuit subject to drift within 5% normal distribution. For
simplicity, we assume that the network starts being assigned

faulty memlLcrship at 5% response deviations and the network

is definitely classified as faulty after 10% response
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riterion| "Fuzzy "Fuzzy "Nearest
Fault Distance" Entropy" Neighbor
Type Rule"
| 3 3 3
2 2 0 3
3 3 3 0
4 3 3 0
5 3 2 3
6 2 1 1
7 0 3 0
8 3 0 2
o 3 3 3
10 3 3 2
11 3 3 3
1. 3 3 3
1 2 2 3
14 3 3 2 _
Total 36 32 28

Table 4.4 Camparisons of Different Criteria
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» deviations. As an 1initial guess, we also assume that
Y1¢YpsY3 as the 80, 100, and 110 percent of the typical

response deviations of the given faulty component. Table

4.4 shows ‘-he number of correct diagnoses obtained for each
fault type based on the fuzzy entropy criterion with the

results obtained in section 4.4. We find that 32 out of 42

samples are correctly classified using <the fuzzy entropy
criterion vhile the nearest neighbor rule classified only 28

samples correctly.
4.5.5 Discussion and further remarks

A fault isolation method for analog circuits is

. discussed using fuzzy set concepts. Even though the
information derived from the circuit under test is usaually

inadequate to apply statistical methods, application of our

fuzzy measure can provide adequate fault isolation

capability. The reason seems to be that the proposed

algorithm includes an experienced designer's notion of

“fault" which tends to enhance decision making. Also the

upper and lower bounds of the response deviations contribute

to improve the decision through the proposed simulation

model.
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4.6 Chapter Summary

An evaluation of analog fault isolation techniques is
attempted through a fuzzy distance measure and a fuzzy
entropy measure. A metric on the lattice giving a measure
of the "distance" apart of two propositions under a
valuation is defined as the logarithmic value of the rank
order of the two propositions. And its quasimetric
properties are discussed.

The "fuzzy entropy" is introduced as a measure of a
quantity which is related to the randomness of the
experiments and the impreciseness in the system. The fuzzy
sntropy is defined as the information contained in the fuzzy
expected value.

Fault properties in connection with the fuzzy measure
are discussed. These fuzzy measures are the bases for fault
isolation algorithms. The results of simulation study based

on these decision criteria yield improved fault isolation.
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CHAPTFR 5 CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 Summary and Conclusion

To attack the long standing fault isolation problem in

analog electronic circuits, we have focused on two of the

major problems. One is the presence of uncertainties sucn

as indeterminacy, vagueness, randomness, and so on that

naturally arise during the solution procedure of analog

[,
2 o bt B e fR TN 68 roaddin P PREBPPREENS T2 s pag R
At e ot e ants >

fault isolation. The other is the presence of topological

4 restrictions inherent in specific circuit configurations.

3

% Our main attention was focused on dealing with the

é fault isolation problem involving various kinds of

B ‘ uncertaintics such as indeterminacy or vagueness. We show '
%

% . that such problems lend themselves very well to and in fact

can be solved by adopting fuzzy set concepts. In particular

this line of research has produced a modified fuzzy set

technique applicable to automatic fault isolation.

PR o R AL IPUTPBRRETRRT S 7 o e D e e

Topological aspects utilizing graph theory may be used

effectively to assist in preanalysis of faulty analog

electronic circuits., As a spin off of a consideration of

these problems, we developecd some new theorems for element
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value solvability. It should be made clear however that

effective feult isolation can be accomplished with or

PRSP Y7Y L SNT RES S i e Tt T

without thi¢ preanalysis to assist in resolving the more

R

fundamental problem incurred by uncertainty.

, As a consequence, this research yields the following
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specific results:

e FESE SR

1. A base line automatic isolation system wlich

S p R

can be used to deal with various kinds of

uncertainties. A fuzzy automaton model served

as a point of departure for the base line system.

Various fuzzy relations are used to select and

update the parameters and structures of the system.

Set of algorithms and new decision criteria which

can be implemented easily and used for effective

fault isolation. A fuzzy distance measure and a

fuzzy entropy measure are used for decision making

in the fault isolation algorithms. The results

are shown to be generally more effective than '
existing techniques.

Ample illustrative examples and simulation studies

are included to back up these new methods. Several
examples such as low pass filter, band pass filter,
and communication I/0 circuits are used to
illustrate the simulation studies. The results of
simulation studies demonstrate the applicability of

a fuzzy set technique.
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5.2 Suggestions for Future Studies

The following topics are suggested for future

3 investigation:
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‘ 1. Future investigation on the properties of fuzzy
sets is needed to adapt and facilitate its N
applicability to multiple fault cases.

2. Further investigation on refining the proposed

single fault techniques tn achieve potential

improvements in the order of 50%.

3. Based on extension of the analog fault diagnosis
algorithm, fault diagnosis of hybrid electronic
systems needs consideration and further intensive

efforts.
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Appendix A

Graph Theoretic Aspects of Analog Fault Isolation

The state of art in fault analysis of analog networks using
graph theory is reviewed  Dbriefly and some possible
extensions are explored. In particular, the topological
interpretation including network solvability and the key
subgraph concept are reviewed and extended. A new algorithm
to determine solvability based on network topology is given.
This graph theoretical approach is useful to determine the
suffiency of the available access points. Therefore this
graph theoretical approach can be used as a preanalysis for

the application of fuzzy set technique.
A.l Introduction

In the body of the dissertation, we have been applying the
fuzzy set concepts to alleviate some of the difficulties of
handling the fault isolation of analog networks in the
single fault case. Graph theory 1is used to investigate a
specific network structures. Furthermore enumeration of the
possible number of measurements on linear networks with
N-accessible terminals, we gain insight into the behavior of
faulty analog networks.

Conventional graph theoretical aspects previously applied
for analog fault dignosis will be briefly discussed.
Especially the network solvability and key subgraph concepts

will be reviewed and extended. The connection of graph

H
¥
g f«a;e?.«zwﬁm%m‘@mwmﬁﬁ

joct 3 BN LN A5

A S o N P

AR

e B SR et o N B ot ST Sy b B B R i A R e e




Nt s m—— . wh e oy e ———— L _

144

theory with fuzzy sets for application to analog fault

diagnosis is also indicated.

A.2 Existing Graph Theoretic Aspects of Analog Fault

Isolation

A graph representation for network dates back to
Kirchhoff (1847). Hence the applications of graph theory to
the analysis and design of electrical network is not new.
But applications of graph theory to network analysis did not
prove to be advantageous until the advent of the high speed
digital computer. More recently applications of graph
theory for the fault analysis of combinatorial networks or
digital networks have been made quite successful (8l). Yet,
applications of graph theory to analeg fault analysis have
been relatively infrequent. Berkowitz (74) developed the
concept of element value solvability for passive linear
lumped network. Bedrosian introduced the key subgraph
concept to provide some insight into solutions of active as
well as passive lumped networks. Identification of the key
subgraph leads directly to a set of equations which in the
case of a single element kind network is an homogeneous
multilinear algebraic form. Very recently Navid and Willson
(14) presented some sufficient conditions for the element
value solvability for linear elements. Here we present a
method of Adetermining necessary conditions to the network

solvability which is tighter than that given by Berkowitz.
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A.3 Element Value Solvability”
A.3.1 New Theor=ms
We start with a few definitions:

Definition A.l) Available nodes (A) : External network

nodes at which voltages and currents can be applied and/or

measured. In other words, available node can be opened or

shorted.
Definition A,2) Partly available nodes (P) : External

network ncdes at which voltages can be applied and/or
measured but currents can not be applied or measured. 1In
other words, a partly available node can be shorted but can

not be opened.

Definition_#4,3) Nonavailable nodes (I) : Nodes internal to
network at which neither voltages nor currents can be

measured.,

Definition A.4) Key subgraph (K) : The subgraph of network

N which consigsts o0f the subset Bk of all branches incident

on all the nonavailable nodes.

Defii itiorn A,5) Core graph (C) : The subgraph of network N

which consists of the subset Bc of all (concealed) branches

incident only on all the nonavailable ncdes.

Theorem A.l) For any star graph whose core node is only one

[s—

e AHRATAA R L TR DXy A et B T A R A I T R R pr P e

£

5
£
(1
Y
il
e,

LR,
i ] -
M 55 o LR B b e R




o r—— 3 T T E AT NS JRECTRATSTY N R

[
i i
146
* nonavailable node and at least two of the outside nodes are
4
A , then the network is solvable.
Proof. Consider Fig. A.l as a model of step 4.

VloIl---R--— ?
| i 3

v ? P
0 I ' ;

| '
Rx— L. _RY. -=d

L cR2
Fig. A.1 A Model for the Step 4
§
' We set two available nodes as Al and Az. We also set C )
the rest of the nodes connected to nonavailable node T as Pl'
PZ' ooy Pr‘ Node voltages and currents to the I node are
;
represented as VAl’ VAZ’ VPl' sz, ""vPr and I.., I..,
Al A2 i
‘ IPl' IPZ' ""IPr' The node voltage of I is represented as i
Voe The unknown admittance of each branch is represented as :
43 Ya1’ Yaz’ Yr1t¥par v ¥pye
=V =V = = = = i
q Step 1) Set vAl \1, VA2 \Pl vpz Vpr ). %
£ !:
% Set Y = YPl + sz + ... +YPr' f
i ;
% Measure IAl = Il’ then
i :
P \Y Y :
% . 1 + 1 - Al _ 1 _ N (A.1)
: Yar Ya2 tY  In 4 :
5
3 3
g 3
| :
B 3 .%*e
%‘" Ei s e 3
£ - I Tl £

e
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” Step 2) Set VAl = V2, VAZ: open, IA2 = 0,
VP1=VP2='°‘= VPr:O'
Measure IAk = 12, then
1 1 Va1 Vo
T “{ T -"F C B (A.2)
Ak Al 2
Step 3) Set VAl open, VA2 V3, IAl = 0,
VP1=Vp2—...=VPr=O.
Measure IA2 —I3, then
RIS RY SO RO
Yooy I, I (A.3)
\ From Egq's (A.l), (A.2), and (A.3), YAl' YAZ' Y is
solvable,
Step 4) As is in Fig. A.l choose Vpk =0, anb VAZ = Vpl =
T Vpk-1) T Vp(ke) T vrc Vpr T Ve Vap < V-
ke
X y (A.4)
where R 1s the tctal impedance of branches, Rx is the
impedance of Pk branch, and Ry is the total impedance ;
4 excluding Px branch. From Eq. (A.4) and Fig. A.l :
|
4 ‘a
e 1 1 1 1
1 V. N . (A.5)
% R2 R RX CR2
>
Y
g where ¢ is a constant.
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Vi - BRIy = (I + 1) Ry (A.6)
V:L - RlIl = V2 - CR212 (A.7)
From Eq. (A.6),
V, = R,I
I B b (a.8)
Ik + 12
vV, -~ R, I, =V, =~ 1 I (A.9)
1 171 2 1 1 1 2 :
— = e -
o R RX
From Eq. (A.9)
- - 1,1 _ 1
12 = (V; Vl + RlIl)( R2 + R R ) (A.10)
X
Substitute Lg. (A.10) for Eq. (A.8), then
R, = — b B (A.11)
X Rx(R + RZ) - RR2 A
I + Wy =V + R 37w
2 X
Solving Egq. (A.1ll), we get
R e RR2V2
X
IlI-R2 + (V2 - Vl + Rl 1)(R +R2)
Likewise, we can determine all the YPl' e ey YPr'
qed.
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Consider a given network N partitioned into two

subnets Nl and N, along with some common nodes N,. We

2 3
assume all the branches among N3 are included in the subnet
Nl. We denote N2' as N2 with replacing N3 to all available
nodes.

Theorem A.2) 1If Ny and NZ' are solvable, then N 1is also

solvable.

Proof. Since N1 is solvable, we can get the element
values of subnet N, . Therefore we can get te voltages and
currents of N, always. That is we can consider Ny as
available nodes. Now we can divide the network N into two
subnets along with the available nodes. We know N; and N,'
are solvable. Therefore the network N is solvable.

ged.

Example A.,1l

LN ' N
N: 1 2 pg5 2:
S ' .
R 1 —3‘\0»->.J6 : N3"' {2{ 31 4}
oA T
2 2
Nl: l°"‘> 3 : solvable
\ 4
N is solvable.
2' &= < §
N2:3! o-—f 6 : solvable J
' s 7

Consider the network N which meets the following
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conditions.

1) All the nodes in the network N are tied to one
nonavailable node.

2) The network N has at least three separate subnets when
we eliminate all the branches to the nonavailable node.

3) Each newly generated subnet is solvable.

4) The network N has at least one isolated available node

when we eliminate all the branches to the nonavailable node.
Theorem_A,3) The above network N is element value solvable.

Proof. Suppose the network N is divided into subnets
Nl, and Nz' and N3. N consists of only one available node.
Number of nodes for N, and N; are n, and n,. That means we
have n = l+n2+n3 available or partly available nodes. When
we apply star-mesh transformation, the network will be a
complete graph L We can measure all the branch voltages
and currents. And also the transformed portion from star
network of the mesh network should satisfy Shen's (79)
condition. We can generate all the element values only
using the measurements between the N1 and Nz' Nl and N3, ard
N2 and N3.

Suppose we want to calculate for any element values

between ng and n3j in N3. We measure the element value of

i

the branch nln3j, n2k"3j' and n n2k is an available

1Mok
node of N,. Therefore we can get all the values in Kn. The

difference between theoretical measurement and actual




151
measurement represented as an admittance value 1is the

element value before star-mesh transformation. Therefore we
can 8solve the element values of the original network by
mesh-star transformation. v

ged.

Example A.2
1
Q
6 2 2!
rl |
4
Y te N
Y., =Y - 16 j
23 243! ;
LRI :
Y L
v =y _ 1'6'
34 34
Yll4|Y3|6l
Y ] L}
v -y _ 1'2
56 5'6"
Yllle2l6|

Theorem A,4) If a key subgraph is tree graph and the core
nodes of tree graph satisfy following conditions then the
key subgraph is also solvable.

1) Each core node which incidents only one other core node
is connected with at least 1 A and 1 A or P,

2) Core nodes which incident with more than two other cocre

F 31 N
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nodes are connected with at least 1 A.

Proof. It sufficies to show that the condition given
in this theorem agrees with the condition given in the
Theorem A.3. We can eliminate the core node by star-mesh
transformation until only one nonavailable node is left.
And the conditions given in Theorem A.4 guarantees the
unigue solvability.

qed.

Theorem A,5) If for any nonavailable node I, at least two
nodes are connected to free A and all others are connected
to A or P and only one other nonavailable node is connected,
then you can reduced the network for

network-solvable-purpose.

Example A.3

0
l__ < solvable

e h
Original graph Reduced grap

If the reduced network is solvable, then the original

network is also solvable.




T T T T T T T S S ot

153
v Col A.l1) A network N 1is solvable if following conditions
are all satisfied.
1. 1Its key subgraph is solvable.
2, The network remaining after all branches adjacent to
the core graph C of key subgraph K are deleted is solvable.
3. The subgraph, which is comprised of key subgraph K

enlarged by including all the branches both ends of which

are on the key subgraph K is also solvable.
We note in passing that our Theorem A.3 appears to be |

related to the theorem given recently by Mayeda (82). l

A.3.2 Algorithm for Checking Network Solvability of the

Key Subgraph K

1, Find the longest length of core graph (tree).

o e —————— ———————————-

2. Disrupt connectivity ( To leave the most favorable {

branch set ).

3. The reduced graph K of K generated by following rule
i is solvable.

g a) Every node of branch connectivity one in the core

O YU

graph can be changed to the available terminal A if the node

R,

has at least two branch connectivity with available nodes.

b) Every node of branch connectivity cne in the core

VI
S S

graph can bhe changed to the partly available nodes if the
node has at least two partly available nodes.
2 4. If the reduced graph K of K is solvable graph then the

key subgraph K is solvable, otherwise go to 5.

4
- i~

A3
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5. If we can reduce further go to step 3 and repeat,

otherwise stop and K is not solvable.

A.3.3 Two Element Kind Network

Theorem A.6) For a two element kind network 1if the
following reduced subgraphs are solvable then the network
itself is solvable.

1, Exclude all the Y elements, then we have the graph Gxo
composed of X element only. Find the subgraph of Gxo which
is solvable.

2. Short circuit all the Y elements, we have the graph Gxs
composed of X element only. New subgraph will have m nodes
less than the original graph. Find the subgraph of Gxs
which is solvable.

3. If the union of the branches of the solvable subgraph
in the step 1 and 2 1is X, then the elements of X are
solvable.

4. Exclude all the X elements, then we have the graph Gyo
composed of Y elements only. Find the subgraph of Gyo which
is solvable.

5. Short circuit all the X elements, we have the graph Gys
composed of Y elements only. New subgraph will have n nodes
less than the original graph. Find the subgraph of Gys
which is solvable.

6. If the union of the branches of the solvable subgraph

in the step 4 and 5 1is Y, then the elements of Y are

208, .
D" B AR s




155

solvable.
7. X and Y elements are all solvable, then the network is

solvable.

A.4 Summary

The main results of this chapter are :

1. Introduction of the core graph as an important key to
the solvability of the networks.

2. A refined method of determining the element value
solvability of the system.

--=-=- Necessary and sufficient conditions for single and
two element kind network solvability.

3. Algorithm of red::ing the system for solvability
purpose.

---= A gsystematic procedure has been developed for
determining the network solvability given three
kinds of terminals.

4. Illusrative examples including previous results of

Bedrosian (78).
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Appendix B

NAP2 Nonlinear Analysis Program (85,86)

R S e R 3L

B.l, Introduction .

For convenience we summarize the main features of the
computer program utilized to simulate the electronic
circuits used to develop and illustrate the analog fault
isolation techniques.

NAP2 1is a Nonlinear Analysis Program for lumped
electronic circuit simulations. The program covers DC,
transient, and frequency domain analysis. The input
language is format free and allows the user to build his own
models that can be stored in a library for later use. The
solution is based upon a hybrid formulation of network
equations and sparce matrix  technique. For nonlinear
circuits the Hewton-Raphson method is followed and in
transient analysis a implicit, variable-order, variable-step

integration scheme is used. Sensitivities are computed from

ST R, TR TSWIE TN

the adjoint network in the DC analysis, while the time %
dependent sensitivities are calculated directly from the

difference equations produced by the integration formula.

[ A Y

NAP2 has the following features. The program is coded
in FORTRAN IV for an IBM 370/165 system. The storage
requirenents of the present version are 104 X bytes. With

e this regiou size the program limitations are:

Nodes
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IN

+number of primary current variables 50

Circuit description statements

+number of diodes

+6 * number of bipolar transistors

+6 * number of field effect transistors

+number of output options < 195

Subparameters

+2 * number of functional values

+4 * number of nonlinear couplings

+4 * number of bipolar transistors

+8 * number of field effect transistors

+2 * number of diodes 276

L S

B.2, Model Library

NAP2 provides an arbitrary collection of statements to
be stored in a library for later use. Six libraries are
available under the names: LIBl, LIB2,..., LIB6. Although
the program offers diodes, transistors, and field effect
transistors as built-in models, we might enrich the program
by using the libraries.

During the modeling of the circuit, we have generated

and used several transistor and diode models.
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B.3. Model of a Transistor and two diodes

*LIB3 NEW

*L,IB3 IN649+

QEXP/EXP/ A -0.251E-9 B 0.251E-9 D 3.831E-2 L -0.5 U 2. :
QCJ1/ABS/ B 0.108E-10 C 0.864 D -0.577 !
RB 3 2 0.532 ;
RS 1 3 0.123E12 ;
CJ 1 3 1*QCJ(VID) :
ID 1 3 1*QEXP1l(VID) ;

4
T e BN ARG T -«euv.*-.;k:.ww:..‘w»t5’:»-’«;«1-.5',”5

*LIB3 IN752¢

QEXP2/EXP/ A -1.25E-11 B 1.25E-11 D 3.247E-2 E 1. L -.5 U 2,
Qcp2// B 3.1E-6 C 1.25E-11

QCJ2/ABS/ B 3.31E-10 C .75 D =-.5

RB 3 211

RS 1 3 1.E6

CD 1 3 1*QCD2(IID)

CJ 1 3 1*QCJ2(VID)

ID 1 3 1*QEXP2(VID)

Goe Faiw> A AL LR

*LIB3 N2222A+
QJE4/EXP/ A -3.02E-11 B 3.02E-11 D 40. L -0.5 U 2.

QJC4/EXP/ A -1,19E-10 B 1.19E-10 D 38. L -0.5 U 2, '
OCE4/ABS/ B 2.2E-11 C 0.9 D 0.4

QCC4/ABS/ B 1.3E-11 C 0.9 D 0.35

RB 9 1 0.05 .
RC 2.8E-3 :
CE 1*QCE4 (VCE)

ce 1*QCC4 (vCe)

IE 1*QJE4 (VCE)

IC 1*0JC4 (VCC)

IN 0.9927*QJE4 (VCE)
11 0.697*QJC4 (VZC)

>
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