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ABSTRACT.

Pulse mode radar operation is analyzed under the assumption that

the scattering object r lies in the far field of both the transmitter

and the receiver. It is shown that, in this approximation, the radar

signal is a plane wave s(x" 80 - t,60) near r, where 80 is a unit vector

eirected from the transmitter toward r, and similarly the echo is a

plane wave e(x. 8 - t,6,60 ) near the receiver, where 8 is a unit vector

directed from r toward the receiver. Moreover, it is shown that

e(T,8,60) Re {JG e iTW T(W6,W80) SwBdW

where a(w,80) is the Fourier transform of s(T,8 0) and T(we,,, 0 ) is the

scattering amplitude in the direction e due to the scattering by r of a

CW mode plane wave with frequency w and propagation direction 80.

Finally the singularity expansion method is used to show that

iTW
e(T,%,8 0) ~ e n (ee S(Wn,%0), Im Wn < 0.
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1. INTRODUCTION - RADAR ECHO PREDICTION.

This paper presents an application of C. E. Baum's singularity

expansion method (SEM)J2] and the author's method of asymptotic wave

functions [.,.42,-13] to the prediction of pulse mode radar echoes from

bounded scatterers. The results presented here are generalizations of

C
corresponding results for sonar echoes;fa'51. Only a summary of the

principal concepts and results is presented here. A complete exposition

of the theory is planned for a separate publication.

1.1 Physical Assumptions. Radar echo structure is analyzedlbel0 under

the following assumptions:a

The radar system (transmitter and receiver) operates in a

stationary homogeneous isotropic unlimited medium)

The system is stationary with respect to the medium,,

• The scatterers are bounded perfectly conducting objects,

* The scatterers are stationary with respect to the medium. -

The transmitter and receiver are in the far field ot the

scattering objects.

In addition it is assumed that secondary echoes due to the radar system

components are negligible. I

1.2 Mathematical Formulation. A fixed Cartesian coordinate system is

used throughout the paper. x - (x1,x2,x3) e R
3 denotes a coordinate

triple of this system and t E R denotes a time coordinate. r denotec a

closed bounded subset of R3 that represents the scatterers and S - R3 - r

denotes the domain exterior to r. The common frontier of r and S1, which
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21
represents the surface of the scatterers, is denoted by aQ. The medium

filling 0 is characterized by a dielectric constant C and a magnetic

permeability p. It will be assumed that e - 1 and p - 1 since this can

be achieved by a suitable choice of units.

The electric and magnetic fields will be described by their

components, (E1,E2,E3) and (H1,H2 ,H3) respectively, relative to the

fixed Cartesian system. It will be convenient to use the notation and

conventions of matrix algebra and to characterize the electromagnetic

field by the 6 x 1 column matrix

(1.1) u - u(t,x) = (E1 E2 E3 H1  H T

where MT denotes the transpose of matrix M. Similarly, if the electric

and magnetic current densities that generate the field are described by
their components, (J,J2,J3) and (J',J2',J) respectively, then

(1.2) f - f(t,x) - (J1 J J jl J j,)T
1 2 12 3

characterizes the field sources. With these conventions Maxwell's

field equations can be written

3
(1.3) Dtu + 1 Ai Diu + f 0 for t e R, x E

where Dt M 3/3t, D- i(/x j - 1,2,3) and A,, A2, A, are the three

symmetric 6 x 6 matrices defined by

3 0 M(p)) P2

(1.4) A Pj - [ M(p) - ps 0 1

J-1- -M(p) p 0
P2 -Pi
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The field equations (1.3) will be supplemented by the boundary condition

for a perfect electrical conductor. It can be written

(1.5) M(n) E - 0 on M

where n - (n1 ,n2,n3) is a unit vector on a and E - (E E2 E3)T is the

electric part of u.

A theory of solutions with finite energy of (1.3), (1.5) was

given in [10]. The total field energy at time t is given by

(1.6) E u(tx)T u(tx) dx

where dz dx, dx2 dxl. The theory of [10] makes use of the energy norm

(1.7) uI fU(X)T u(x) dx)

and correspcnding Hilbert space X. The pulse mode radar echoes

constructed below are in X.



2. PULSE MODE RADAR SIGNAL STRUCTURE.

The transmitter will be assumed to be localized in the ball

B(x,6) :x- {x - x 1 and to act during an interval 0 < t < to .

Thus the source distribution f in (1.3) will have support

(2.1) supp f C {(t,x) : 0 < t < to and ix - x01 so)

The corresponding pulse mode radar signal is the electromagnetic field

uo(t,x) that is generated by f when no scatterers are present. Thus u

is characterized by the conditions

3
(2.2) DtuO + I Aj Dju 0 + f - 0 for t E R, x E R3

(2.3) u0 (t,x) - 0 for c < 0, x E R 3.

The field u0 can be constructed by Fourier analysis or by the method of

* retarded potentials (11, 13, 151 but these constructions will not be

recorded here.

2.1 Asymptotic Wave Fields. For definiteness the scatterers are
I

assumed to be localized in the ball B(0,6) centered on the origin:

r C B(0,6). With this convention the assumption that the transmitter

lies in the far field of r can be formulated as Ixl >> 1. The signal,

propagating at the speed c - (el) - 112 - 1, will arrive at r at a time t

of the same magnitude as Ix01, whence t >> 1.

It was shown in [13] that each signal u0 with finite energy has

an asymptotic wave field u of the form0

5
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(2.4) uo(t,x) I x -o - s(lx x0ol -t,e), e (x -o)/Ix - 1

such that

(2.5) lir Iu 0 (t,') - Uo(t,') 3 = 0
t-" +-R

The wave profile s(T,O) is defined for all (T,8) E R x S2 where S2 is

the unit sphere in R3. Moreover, by specializing the results of [13] it

can be shown that s(T,@) has the properties

(2.6) s(T,e) T s(T,e) d8 dT <
JR J S

2

where d6 is the element of area on S2 (solid angle), and

(2.7) P(6) s(T,e) -s (T,O)

where

I - ee M(e) )
(2.8) P(0) for all 8 E S2 .2 -M(e) l-eel

In (2.8), e denotes the dyadic, or tensor, product of e with itself

with components e8ek. Property (2.7), (2.8) characterizes the polariza-

tion properties of the asymptotic wave fields u0 .

The function s(T,e) will be called the pulse mode transmitter

radiation pattern. It can be constructed from the source function f;

see [15). However, it will be assumed here that s, rather than f, is

given since s is the important function in pulse mode transmitter

design. The construction of a transmitter with a prescribed radiation

pattern is the task of the transmitter design engineer.
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2.2 The Plane Wave Approximation. Define 00 E S2 by x -jx4 60.

Then 00 is directed from the transmitter toward the scatterers and for

x near r' one has

(2.9) Ix - xoI - Jx0 l + 60 x + O(1x01-') for Ixol >> 1.

Hence, by (2.4),

(2.10) u OD(t) - Jx 0 j'1 s(60 .X - t + Ix01,0) + O(jxoI'2)

near r. If the error term is dropped one has a pulse mode plane wave

signal. This approximation is made in the remainder of the paper.

#
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3. PULSE MODE PLANE WAVE SCATTERING.

A plane wave signal

(3.1) uo(t,x) = s(x -e0 - t,60), supp s(-,6 0 ) C [a,b],

is assumed where the wave profile S(T,eo) satisfies

(3.2) P(60) s(T,eo) = s(T,e 0).

Such a field is a solution of Maxwell's equations (2.2) with f = 0. The

total field u(t,x) resulting from the interaction of uo(t,x) with the

scatterers is characterized by the properties

(3.3) Dtu + A D u = 0 for t E R, x E P,

(3.4) M(n) E = 0 for t E R, x E

(3.5) u(t,x) = u0 (t,x) for t + b + 6 < 0, x E 2

where E - (ul u2 u3)
T is the electric part of u. The scattered field,

or echo, is defined by

(3.6) Ue (t,x) - u(t,x) - u0 (t,x) for t E R, x e Q.

The author has shown, by the method of [11, 15], that ue has an

asymptotic wave field

(3.7) uC(t,x) - Ixi' e(Ixj - t,e, 0o), x- Nx1 e

9
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that converges to Ue(t,x) in energy when t :

(3.8) lim Ue (t,.) - Ue(t,-)g 0.

The proof follows that for the scalar case of (15].

Points x in the far field of r satisfy jxj >> 1. The echo u

will arrive at a receiver at such a point when t >> i. Hence the echo

may be approximated in the far field by the asymptotic field (3.7). For

this reason e(T,e,e0 ) will be called the echo waveform. It depends on

the direction of incidence of the plane wave (3.1) and the direction of

observation e. In this approximation, the echo prediction problem is

the problem of constructing e(T,Q,e 0) when the transmitter radiation

pattern s(T,6 0) and the scatterers F are given. The solution to this

problem given below is based on the theory of CW mode radar echoes

outlined in the next two sections.

1:1



4. CW MODE SIGNAL STRUCTURE.

The CW mode electromagnetic fields are solutions of the field

equations (1.3) of the form

(4.1) u(t,x) = e - i t v(x), f(t,x) = e- iWt P(x)

whence

3
(4.2) . A. D.v - iWv = p.

j=l * J

CW mode signals i- R 3 are generated by the Green's matrix [7]

(4.3) G(x,x',w.) = e 16

iLAM(V) ?V + LA
2 13 47TwIx-x'I

where 1 denotes the n x n unit matrix. G is the outgoing solution ofn

the equation

~~3

(4.4) A. D- i G(x,x',w) = 6 (x - x t ) 1

The outgoing solution in R3 of (4.2) is

(4.5) v(x) = G(x,x',w) p(x') dx'

Asymptotic evaluation of v(x) for large Ixi using (4.3) and (4.5) gives

the far field form

11
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(4.6) v(x) = (2) 1/2 we P(8) D(-We) + 00x1-2)

IxI

where x-- IxlO, P(O) is defined by (2.8) and

ip~
(4.7) k(p) Tr 3/y e ei P(x) dx

is the Fourier transform of p(x). In particular, noting that

P(-6) P(O) = 0, it is seen that the Silver-MUller radiation condition

for v(x) can be written

(4.8) P(-O) v(lxl) = 0(xi-2), lxi .

4.1 CW Mode Plane Waves. G(x,x',w) represents a CW spherical wave from

a point source at the point x'. On putting x' = -lx'ln in (4.3) and

making Ix'l with x fixed one finds after a short calculation

(4.9) G(x,x',W) = (2TIx'l)- 1 w e iW1 x '1 eiwflx P(I) + 0(Ix'1 2 ).

Dropping the error term gives a matrix CW mode plane wave electromagnetic

field. The general CW mode plane wave field is obtained by applying

(4.9) to a constant vector and dropping the error term. It has the form

(4.10) v(x) = eip 'x P(N)c, p = Ipmn

where c is an arbitrary 6-component vector. This may also be derived

from (3.1), (3.2) by taking S(T,n) = eiWT P(fl)c. (4.10) is equivalent

to the familiar formulas
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(4.11) E(x) eip' x a, H(x) - eip'x(n x 0), a • -0

where v (ER and p - pin.



5. CW MODE ECHO STRUCTURE.

The columns of the 6 x 6 matrix-valued function

(5.1) 'Y°(x,p) - (21T) - 112 eipox P(n), p - pIn,

are CW mode plane waves of the form (4.10). The scattering of the CW

mode matrix plane wave (5.1) by r produces a CW mode matrix-valued field

(5.2) '(x,p) - T°(x,p) + TSC(x,p), x E Q, p E R 3 - {0)

that is characterized by the properties

(3
(5.3) 1j-l A. DJ - i'pl T(xP) 0, x r= £,

(5.4) M(n) T'E(x,p) - 0, x ail

(5.5) P(-e) 'Sc(xle,P) o(Ixl-2), lxi *

where TE is the electric part of T (a 3 x 6 matrix). The author has

shown the existence and uniqueness of T(x,p) for a large class of domains

£, including the "cone domains" of N. Weck (9] and domains having

S. Agmon's "restricted cone property" [1]. The proofs, which generalize

the results of (11] to Maxwell's equations, are based on compactness

results of N. Week [9] and C. Weber [8], respectively. In the special

case that aQ is a smooth surface '(x,p) can be constructed by the

integral equation method described below.

5.1 Far Field Form of CW Mode Echoes. T sc (x,p) is the CW mode echo

produced by the scattering of T°(x,p) by r. An integral representation

15
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of 'ic by the Green's matrix (4.3) can be used to derive the far field

form

eiIpIIXI
(5.6) TIsc(x~P) _= T(jpfe,p) + O(jx1_2 ), x = IxJO,

where T(p,p') is a 6 x 6 matrix-valued scattering amplitude. The

polarization of the echo in the far field is characterized by the

property

(5.7) P(rl) T(jprIlpln') = 0.

5.2 Construction of T(p,p'). Define

(5.8) J(x,p) -n(x) x Tl H(X,p), Xe 3S

weeTH ithe magnetic part of TI. J(x,p) is the matrix electric current

density on M2 induced by the plane wave To. The divergence theorem and

the jump relations of potential theory can be used to show that

(5.9) J(x,p) -2(n x '(x,p)) + J K~x,x',IpI) J(x',p) dS'

where K is the 3 x 3 matrix-valued kernel

(5.10) K(x,x',w) - 1 1.t e'1 , 1 F n(x) - jxx'

If Mi is smooth then (5.9) is a Fredholm equation and can be used to

construct J(x,p) and 'Y(x,p); cf. L. Marin and R. W. Latham (4] and
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L. Marin (5]. The scattering amplitude can be calculated from J(x,p)

and the relation

(5.11) T (p, p') (21r)) 1/2 2ijpj J uO(X,P)* [J ds' J)IdS -p Ip'I.I0



6. PULSE MODE RADAR ECHO STRUCTURE.

The solution of the pulse mode radar echo prediction problem

formulated in §3 is given by the relation

(6.1) e(T,0,00) - Re { e eiTW T(wO,w80 ) a(w,B0 ) dw}

where

(6.2) ;(W, 0 ) - 1 Lz _e - iWT s(T, 0) dT

is the Fourier transform of s(T, 0,). Thus under the far field

assumptions of §1 the echo waveform is determined by the transmitter

waveformand the matrix scattering amplitude T(we,Ae0). The latter can

be calculated by solving the integral equation (5.9) and using

relation (5.11).

Equation (6.1) is the generalization to electromagnetic fields

of the analogous result for acoustic scattering that was derived in [151.

A proof of (6.1) may be given by the method of [15]. The key item in

the proof is the theorem that the CW mode fields Y(x,p) are a complete

family of generalized eigenfunctions for the Maxwell system. A proof

along the lines of (11] may be based on the results of Weck (9] or

Weber [8].

19
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7. SEX EXPANSION OF PULSE MODE RADAR ECHOES.

If the scatterers r are bounded by smooth surfaces the integral

equation (5.9) can be solved for J(x,we) by the Fredholm determinant

method [141. Note that '°(x,wO) and K(x,x',w) are entire functio.s of

w. It follows from the Fredholm theory that

(7.1) J(xW) M (Xwe)
D (w)

and hence

(7.2) T(wew ) = N(wew%)
D(w)

where D(w), M(x,we) and N(we,we0 ) are entire functions of w. Moreover,

the poles of T(we,w60 ) can be shown to lie in the lower half-plane.

These facts can be used to develop an SEM expansion of the echo

waveform (6.1).

The reality of s(T,e0) and symmetry properties of T(p,p') imply

that (6.1) can be rewritten

(7.3) e(TB,eo) - 1 e i T(we,w6o) S(w, 0)dw.

It is natural to regard this integral as a contour integral in the

w-plane and to shift the contour to a line Im wAJ -b < 0. Assume that

the poles w. of T(we,weO) satisfy

(7.4) D'(W ) 0, n - 1, 2, 3,---

21
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(7.5) {n -b < Im w < 0} is finite
-- n

(7.6) IN(we,we0)i < Cwjm for -b < Im w < 0

where C and m are constants. Then (7.3) implies

(7.7) e(T,O, eo) e n Tn(ele0) s(Wn,00) + 0(ebT

Im w >bn-

where

(7.8) Tn(e,,) - -,ri ]es T(we,weo).
n

Hypothesis (7.4) is inessential. If T(we,w60) has a higher order pole
i twn

then in (7.7) e will be multiplied by a polynomial in T. Hypotheses

(7.5) and (7.6) are closely connected with the geometry of r and the

associated question of the exponential decay on bounded sets of the

scattered fields. For acoustic scattering there is a considerable

literature on these questions: see [3] and [6] and the literature cited

there. The electromagnetic case awaits further analysis.

q
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