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ABSTRACT. !

Pulse mode radar operation is analyzed under the assumption that !
the scattering object T lies in the far field of both the tramsmitter i
and the receiver. It is shown that, in this approximation, the radar '

signal is a plane wave s(x°* 6 - :,eo) near ', where 8, 1s a unit vector

0
¢irected from the transmitter toward I', and similarly the echo 1is a
plane wave e{(x* 6 - t,e,eo) near the receiver, where 8 is a unit vector

directed from I' toward the receiver. Moreover, it is shown that

[ -]
e(T7,6,6,) = Re {I el T(wl,wb,) §(w,6°)dw}
0
where 8(w,0,) is the Fourier transform of s(t,8,) and T(wB,wd,) is the
scattering amplitude in the direction 6 due to the scattering by I of a
CW mode plane wave with frequency w and propagation direction 8,.
Finally the singularity expansion method is used to show that

itw
e(1,6,0,) ~ L e " T (8,8,) 8(w,8,), Imuw, < O.
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1. INTRODUCTION - RADAR ECHO PREDICTION.

> This paper presents an application of C. E. Baum's singularity
expansion method (SEM)/LZ] and the author's method of asymptotic wave
functions [l1, 12, 13] to the prediction of pulse mode radar echoes from
bounded scatterers. The results presented here are generalizations of
corresponding results for sonar echoes/Lk&]f Only a summary of the
principal concepts and results is presented here. A complete exposition

of the theory is planned for a separate publication.

S—
1.1 Physical Assumptions. \Radar echo structure is analyzed,be&ow/under

the following assumptionéi R

~ The radar system (transmitter and receiver) operates in a
stationary homogeneous isotropic unlimited medium)
The system is stationary with respect to the mediun? .
" The scatterers are bounded perfectly conducting objects,
* The scatterers are stationary with respect to the medium. »\,')
* The transmitter and receiver are in the far field of the
scattering objects.
In addition it is assumed that secondary echoes due to the radar system

components are negligible. £
i

1.2 Mathematical Formulation. A fixed Cartesian coordinate system is

used throughout the paper. x = (xl,xz,xs) € R? denotes a coordinate
triple of this system and t € R denotes a time coordinate. T denotec a
closed bounded subset of R} that represents the scatterers and Q = R®-T

denotes the domain exterior to I'. The common frontier of I' and 2, which
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represents the surface of the scatterers, is denoted by 9. The medium
filling £ is characterized by a dielectric comstant € and a magnetic
permeability py. It will be assumed that € =1 and 4 = 1 since this can
be achieved by a suitable choice of units.

The electric and magnetic fields will be described by their
components, (E,,E,,E;) and (H,,H,,H;) respectively, relative to the
fixed Cartesian system. It will be convenient to use the notation and
conventions of matrix algebra and to characterize the electromagnetic

field by the 6 X 1 column matrix
.1 u=u(t,x) = (€ E, E, H H )T

vhere M' denotes the transpose of matrix M. Similarly, if the electric
and magnetic current densities that generate the field are described by

their components, (Jl’Jz’Js) and(J;,J;,J;) respectively, then
(1.2) £=£(t,x) = (3, 3, 3, 3131 3T

characterizes the field sources. With these conventions Maxwell's
field equations can be written

3
(1.3) Dtu+ZADu+f-0fortER,xEQ

4 710

where D, = 3/9t, Dj - B/ij (J = 1,2,3) and A, A,, A, are the three

symmetric 6 X 6 matrices defined by

Y Py =P,
:Z! 0 M(p) o
(1.4) A, p, = » M(p) = {-p 0 P, |-
=13 w0 . : '
p, -p, O
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The field equations (1.3) will be supplemented by the boundary condition

for a perfect electrical conductor. It can be written
(1.5) M(n) E = 0 on 3Q

where n = (nl,nz,na) is a unit vector on 3Q and E = (E,; E, Es)T is the
electric part of u.
A theory of solutions with finite energy of (1.3), (1.5) was

given in [10). The total field energy at time t is given by
1 T
(1.6) Ea= E-J u(t,x)  u(t,x) dx
f

where dx = dx, dx, dx,. The theory of [10]) makes use of the energy norm

o[

)1/2

a.7) hulg = { IQ u(x)T u(x) dx

and correspcrnding Hilbert space H. The pulse mode radar echoes

constructed below are in .
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2. PULSE MODE RADAR SIGNAL STRUCTURE.

The transmitter will be assumed to be localized in the ball
B(xy,6,) = {x : |x - x| < 8,} and to act during an interval 0 < t < t,.

Thus the source distribution f in (1.3) will have support
(2.1) supp £ C {(¢,x) : 0 <t <t, and |x - xol < 8} .

The corresponding pulse mode radar signal is the electromagnetic field
u,(t,x) that is generated by f when no scatterers are present. Thus u,

is characterized by the conditions

3

(2.2) Dug + |} Ay Dyug + £ = 0 for t € R, x € R,
=1

(2.3) ug(t,x) = G for ¢ < 0, x € R®.

The field u, can be constructed by Fourier analysis or by the method of
retarded potentials {11, 13, 15] but these constructions will not be

recorded here.

2.1 Asymptotic Wave Fields. For definiteness the scatterers are

assumed to be localized in the ball B(0,8) centered on the origin:
I € B(0,5). With this convention the assumption that the transmitter
lies in the far field of I can be formulated as lxol >> 1. The signal,
propagating at the speed ¢ = (ew)™Y2 = 1, will arrive at I' at a time t
of the same magnitude as [x,|, whence t >> 1.

It was shown in [13] that each signal u, with finite energy has
an asymptotic wave field u: of the form

5
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(2.4) u:(t,x) a |x - xol-1 s(Ix - xol - t,8), 8 = (x - xo)/|x - X,
such that
(2.5) lim lu,(t,*) - u?(t,')ﬂRa =0.

L

The wave profile s(T,8) is defined for all (t,8) € R X S? where S? is
the unit sphere in R®. Moreover, by specializing the results of [13] it

can be shown that s(T,8) has the properties
(2.6) J J s(t,0)T s(1,8) db dr < ® ,
R ‘s?

where df is the element of area on S? (solid angle), and

2.7 P(6) s(t,8) = s(1,6)
where
L (1 -9 m®
(2.8) P(O) -3 for all 6 € S2.

-M(6) 1 - 698

In (2.8), 96 denotes the dyadic, or temsor, product of 6 with itself
with components ejek. Property (2.7), (2.8) characterizes the polariza-
tion properties of the asymptotic wave fields u:.

The function s(1,9) will be called the puls; mode transmitter
radiation pattern. It can be constructed from the source function f;
see [15]. However, it will be assumed here that s, rather than f, is
given since s is the important function in pulse mode transmitter
design. The construction of a transmitter with a prescribed radiation

pattern is the task of the transmitter design engineer.

’
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2.2 The Plane Wave Approximation. Define 6, € s? by Xo = -Ixol 8¢ -

Then 8, is directed from the transmitter toward the scatterers and for

x near ' one has
(2.9)  |x - x| = [x,] + 8, * x + 0(|x,|"}) for [x,] >> 1.
Hence, by (2.4),
(2.10)  uj(e) = |xo| 7" 88, ¢ x = t + |x,],80) + O(|xo| %)

near I'. If the error term is dropped one has a pulse mode plane wave

signal. This approximation is made in the remainder of the paper.
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3. PULSE MODE PLANE WAVE SCATTERING.

A plane wave signal

(3.1) uy(t,x) = s(x * 8 - t,8,), supp s(*,8,) < {a,b],

is assumed where the wave profile s(T,0,) satisfies

(3.2) P(8,) s(1,68,) = s(1,8;).

Such a field is a solution of Maxwell's equations (2.2) with f = 0. The
total field u(t,x) resulting from the interaction of ugy(t,x) with the

scatterers 1is characterized by the properties

(3.3) D.u+ % A, Dbu=0 for t € R, x€ €,
S H T
(3.4) M(n) E=0 for t € R, x € 34,
(3.5) u(t,x) = ug(t,x) fort + b+ 8 <0, x€Q

where E = (u, u, u3)T is the electric part of u. The scattered field,

or echo, is defined by
(3.6) ue(t,x) = u(t,x) - ug(t,x) for t € R, x € Q.

The author has shown, by the method of [11l, 15}, that uy has an

asymptotic wave field

(3.7) uy(e,x) = x| e([x| - £,8,8,), x = [x| 8
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that converges to ue(t,x) in energy when t =+ =:

(3.8) lim lug(c,) - ug(t,*)g = 0.
trboo

The proof follows that for the scalar case of (15].

Points X in the far field of I satisfy |x| >> 1. The echo u,
will arrive at a receiver at such a point when t >> 1. Hence the echo
may be approximated in the far field by the asymptotic field (3.7). For
this reason e(7,8,8,) will be called the echo waveform. It depends on
the direction of incidence of the plane wave (3.1) and the direction of
observation 8. In this approximation, the echo prediction problem is
the problem of constructing e(7,8,8;) when the transmitter radiation
pattern s(7,8,) and the scatterers I' are given. The solution to this
problem given below is based on the theory of CW mode radar echoes

outlined in the next two sections.




4. CW MODE SIGNAL STRUCTURE.

The CW mode electromagnetic fields are solutions of the field

equations (1.3) of the form
(4.1) ult,x) = e 3 v(x), £(t,x) = e 1 p(x)

whence

3
(4.2) z A. D.v - iwv = p.
§=1 J 7]

CW mode signalsg in R? are generated by the Green's matrix [7]
2 .
W+ uw 13 -iuM(V) eiwlx-X'l

(4'3) G(X,X',U)) = _—1

6
!
1@ 942 1,| dmelex |

where ln denotes the n X n unit matrix. G is the outgoing solution of

the equation
3
(4.4) {Z A, D, - iw} G(x,x",w) = 8(x - x") 1.
=1 4 4

The outgoing solution in R® of (4.2) is

. G(x,x",w) p(x') dx'

(4.5) v(x) = J

R

Asymptotic evaluation of v(x) for large lxl using (4.3) and (4.5) gives

the far field form

Fh om




1w|x|
(4.6) vix) = MY &

X

P(8) P(-wd) + O(|x|™2)

where x = |x|6, P(9) is defined by (2.8) and

(4.7) B(p) RO ELE I . e~iptx p(x) dx
R

is the Fourier transform of p(x). 1In particular, noting that {
P(-9) P(B) = 0, it is seen that the Silver-Muller radiation condition

for v(x) can be written

:
!
(4.8) P(-8) v(|x|8) = 0(|x|7?), |x] » . 'L
|
i

4.1 CW Mode Plane Waves. G(x,x',w) represents a CW spherical wave from

a point source at the point x'. On putting x' = -|x'|n in (4.3) and

making |x'| + © with x fixed one finds after a short calculation
_ . ] : . -
(4.9) G(x,x",w) = (2m|x']) 1y elwlx l 2N X piny 4 0(|x"| 2.

Dropping the error term gives a matrix CW mode plane wave electromagnetic !
field. The general CW mode plane wave field is obtained by applying

(4.9) to a constant vector and dropping the error term. It has the form ]
(4.10) v(x) = eip'x P(N)e, p = (pln

where ¢ is an arbitrary 6-component vector. This may also be derived

Lut P(m)e. (4.10) is equivalent

from (3.1), (3.2) by taking s{(t,n) = e

to the familiar formulas




I

-

ipex

(4.11) E(x) = e *q, Hx) = e P *(nxa), asn=0

where v = (g] and p = Ipln.

13




5. CW MODE ECHO STRUCTURE.

The columns of the 6 X 6 matrix-valued function
(5.1) ¥(x,p) = (2m Y2 1P X p(nmy, p = pn,

are CW mode plane waves of the form (4.10). The scattering of the CW

mode matrix plane wave (5.1) by I produces a CW mode matrix-valued field
(5.2)  ¥(x,p) = ¥(x,p) + ¥°°(x,p), x €9, p e R® - {0}

that is characterized by the properties

3

(5.3) [ } A D, - 1|p|] ¥(x,p) = 0, x € Q,
jup 173

(5.4) M(n) WE(x,p) = 0, x € 30

(5.5) P(-0) ¥5°(|x|6.p) =~ O(|x[7%), [x| + =,

where WE is the electric part of ¥ (a 3 X 6 matrix). The author has
shown the existence and uniqueness of Y(x,p) for a large class of domains
Q, including the "cone domains” of N. Weck {9] and domains having

S. Agmon's "restricted cone property"” [1]. The proofs, which generalize
the results of {11] to Maxwell's equations, are based on compactness
results of N. Weck [9) and C. Weber [8], respectively. In the special
case that 3Q is a smooth surface ¥(x,p) can be constructed by the

integral equation method described below.

5.1 Far Field Form of CW Mode Echoes. Wsc(x,p) is the CW mode echo

produced by the scattering of W°(x,p) by I'. An integral representation

15
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of ¥5¢ by the Green's matrix (4.3) can be used to derive the far field
form ‘

el x| ﬁ

(5.6) ¥%%(x,p) = T(|ple,p) + 0(|x]|™%, x = |x|s, '

4mix|

where T(p,p') is a 6 X 6 matrix-valued scattering amplitude. The
polarization of the echo in the far field is characterized by the

property

(5.7) P(m) T(|pln,lpIn") = 0.

5.2 Construction of T(p,p'). Define

(5.8) J(x,p) = n(x) x ¥ (x,p), x € 3%,

where WH is the magnetic part of Y. J(x,p) is the matrix electric current

density on 9! induced by the plane wave ¥%, The divergence theorem and

the jump relations of potential theory can be used to show that

(5-9) J(X;P) = 2(n x ‘yﬁ(x,P)) + J K(x,X'slpl) J(X',P) ds’
1Y)

where K is the 3 x 3 matrix-valued kernel

(5.10) K{(x,x',w) = L {V — n(x) ¢ -

RO 5 elwfxx'| .
2n |x‘x'| an 3

|x-x"|

1f 3R 1s smooth then (5.9) is a Fredholm equation and can be used to

construct J(x,p) and ¥(x,p); cf. L. Marin and R. W. Latham (4] and




L. Marin {5]. The scattering amplitude can be calculated from J(x,p)

and the relation

J(x,p")
(5.11)  T(p,p") = (2m¥2 21|p| Jan ¥O (x,p)* [ }ds. el = Ip'l.
0

17
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6. PULSE MODE RADAR ECHO STRUCTURE.

The solution of the pulse mode radar echo prediction problem t

formulated in §3 is given by the relation

(6.1) e(1,0,05) = Re {j“ eirm T(wd,wd,) 8w, By) dw} -
0 ',L

where E‘
*1

(6.2) 8(w,8;) = -(2—13-172' [; e T 8(T,0y) dT t

is the Fourier transform of s(T,6,). Thus under the far field
assumptions of §1 the echo waveform is determined by the transmitter

waveform and the matrix scattering amplitude T(w8,w8y). The latter can

be calculated by solving the integral equation (5.9) and using

relation (5.11).

L m———

Equation (6.1) is the generalization to electromagnetic fields
of the analogous result for acoustic scattering that was derived in [15].
A proof of (6.1) may be given by the method of [15]. The key item in
the proof is the theorem that the CW mode fields ¥(x,p) are a complete
family of generalized eigenfunctions for the Maxwell system. A proof
along the lines of [l11] may be based on the results of Weck [9] or

Weber (8].

19




7. SEM EXPANSION OF PULSE MODE RADAR ECHOES.

If the scatterers I are bounded by smooth surfaces the integral
equation (5.9) can be solved for J(x,wB) by the Fredholm determinant
method [14]. Note that ¥°(x,w8) and K(x,x',w) are entire functions of

w. It follows from the Fredholm theory that

- M(x,wd)
(7.1) J(x,wd) D ()
and hence

- N(wo,wdg)
(7.2) T(wB,wBo) D (w)

where D{(w), M(x,wd) and N(w&,weo) are entire functions of w. Moreover,
the poles of T(wd,wb;) can be shown to lie in the lower half-plane.
These facts can be used to develop an SEM expansion of the echo
waveform (6.1).

The reality of s(Tt,8;) and symmetry properties of T(p,p') imply
that (6.1) can be rewritten

(7.3) e(1,0,8) = %-r AT T(w8,why) §(w,8y)dw.

It 18 natural to regard this integral as a contour integral in the
w-plane and to shift the contour to a line Im ¢ = -b < 0. Assume that

the poles w, of T(w8,wd,) satisfy
(7.4) D'(“’n). £0, n=1, 2, 3,00

21
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(71.5) {n:-b < Inw <O} 1s finite
(7.6) |NW8,why)| < Clw|™ for -b< Imw< 0

where C and m are constants. Then (7.3) implies

itw

(7.7 e(r,80,0) = I e T (8,00 §w_,00) + 0
Im w_>b
n-
where
(7.8) Tn(e,eo) = -Ti Res T(w6,wl,) -

n
Hypothesis (7.4) is inessential. If T(w8,w8,) has a higher order pole

itwn
then in (7.7) e

will be multiplied by a polynomial in T. Hypotheses
(7.5) and (7.6) are closely connected with the geometry of I' and the
assoclated question of the exponential decay on bounded sets of the
scattered fields. For acoustic scattering there is a considerable

literature on these questions: see [3] and [6] and the literature cited

there. The electromagnetic case awaits further analysis.
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