
7'AD-AG99 221 ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MA CEN--ETC F/6 12/1

~IMPLEMENTATION AND EVALUATION OF A GRAPH PARTITIONING TECI4IIQUE-ETC(U)
IFEB 81 J M LATTIN N00039-80-K-0573

p UNCLASSIFIED CISR PO 81 2-15 NLE liEllllllEll
IEEEEEEIIEEIIE
EEEEEEEEEIIIII
IIIIIIIIEEEIIIEEEIIEEEEEEIII

• E N

°

IlkLEVE1L MI 2

:2 L

Center for Information Systems Research

815 21 02 1

Contract Number W2 0039-80-K-0573

Internal Report Number P010-8102-15 "

Deliverable Number 003

DTICI ELECTF-!I

IMPLEMENTATION AND EVALUATION

OF A GRAPH PARTITIONING TECHNIQUE

BASED ON A HIGH-DENSITY CLUSTERING MODEL

Technical Report #15

James M. Lattin

February 1981

Principal Investigator:

Professor S.E. Madnick
S.SI

Prepared for:

N;aval Llectronics Systems Command

Washington, D.C.

SEURTRCASIICTORT OUETTO THIS PAG (*%on Dat ESnteredO)
-- LPD INSTRUCTIONSREP RT OCU EN ATI N P GEBEFORE COM PLETING FORM

i ',T e c h n i c a f -l 1 5"" " I , ,"# '" t q €2. G O V T A C C E SIO N N O . 3. R E C IP IE N T 'S C A T A L O G N U M B E R

-- FL E~r (an a , b I . j Z A T YP E O f
r

R EPO R T & P ERIO D CO VE RED

I -mplementation and Evaluation of a Graph ..

Partitioning Technique Pased on a High-Density I. PERFORMING ORG. REPORT NUMBER
• Clustering Model. - P010-8102-15

.. CONTRACT OR GRANT NUMBER(&)

James .f Cat tin t,,,. -9-$8 _
C .RFORMING OR- N NAME AND ADDRESS D10 PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Center for Information Systems Research
Sloan School of Mgt., M.I.T. Cambridge, MA 02139 1_ [i'b ..

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. RE ORT DATE

Naval Electronics Systems Command January, 1981
13. NUMBER OF PAGES

62
fR." 'C G. . u,.. .r rom r . .to n-f €j) la. SECURITY CLASS. (of this reportl)

/1 7L CT~kf/)J/~ -'1~~~-iUnclassified
1I. DECL ASS) FI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION S "ATEMENT (of this Report)

Approved for Public Release - distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract enteed in Block 20, it different from RePort)

Is. SUPPLEMENTARY NOTES

I9 KEY WORDS (Continue on revere* aide it necesearn And identify by block nemiber)

Systematic Design Methodology; High-Density Clustering; Graph
Partitioning; Graph Decomposition; Software Architectural Design

20. ASSRACT (Continue atn reveres aide It necesary atnd Ifntifp by block nusibet)

--_Complex design problems are characterized by a multitude of competing

requirements. System designers frequently find the scope of the problem
beyond their conceptual abilities, and attempt to cope with this difficulty
by decomposing the original design problem into smaller, more manageable
subproblems. In the SDM research effort, a systematic approach has beell
proposed for the decomposition of the set of functional requirements of a
design problem into subsets (called subproblems) to form a design structure.

D FOm , 1473 EDITION OF I NOV 65 IS OBSOLETZ
S/N 0Ifl2-14- 601 SECURITY CLASSIFICATION OF THIS PAGE IWhM Doae Po)

73r 0.I

"1 w.

,,hat will exhibit key characteristics of good design: strong coupling
among requirements within subproblems and weak coupling between subproblems.

This report documents the implementation of an efficient graph
partitioning technique based on a high-density clustering model. The new
method identifies the "high-density regions in the graph, which are sets of
functional requirements exhibiting a relatively high degree of inter-
dependency, and associates them with the different subsets of the designproblem.-,

The new technique, as currently implemented, is applied to several
problems from the design literature. The results indicate that the proposed
approach gives solutions that are conceptually and intuitively appealing, and
that these partitions are consistent with the currently accepted decomposi-
tions. Although direct comparison with computational requirements of other
partitioning procedures is difficult due to different machine implementations,
the empirical evidence suggests that the new method is useful for decomposing
design problems too large for the procedures currently in use.

/

10's

istribut

, . , a / or

DI'L'3

EXECUTIVE SUMMARY

Complex design problems are characterized by a multitude

of competing requirements. System designers frequently find

the scope of the problem beyond their conceptual abilities,

and attempt to cope with this difficulty by decomposing the

original design problem into smaller, more manageable

subproblems. In the SDM research effort, a systematic

approach has been proposed for the decomposition of the set

of functional requirements of a design problem into subsets

(called subproblems) to form a design structure that will

exhibit key characteristics of good design: strong coupling

among requirements within subproblems and weak coupling

between subproblems.

This report documents the implementation of an efficient

graph partitioning technique based on a high-density

clustering model. The new method identifies the

"high-density regions" in the graph, which are sets of

functional requirements exhibiting a relatively high degree

of interdependency, and associates them with the different

subsets of the design problem.

The new technique, as currently implemented, is applied

to several problems from the design literature. The results

indicate that the proposed approach gives solutions that are

conceptually and intuitively appealing, and that these

partitions are consistent with the currently accepted

decompositions. Although direct comparison with

computational requirements of other partitioning procedures

is difficult due to different machine implementations, the

empirical evidence suggests that the new method is useful for

decomposing design problems too large for the procedures

currently in use.

TABLE OF CONTENTS

1. Introduction ... I

2. Formalization of the High-Density Partitioning

Model .. 5

2.1 Review of the High-Density Clustering Model 5

2.2 Choosing a Partition Based on Branching

Clusters ... 12

3. Calculation of Arc Densities 20

3.1 Implementation of Algorithm 21

3.2 Computational Requirements 25

4. Maximum Spanning Tree Algorithm 28

4.1 Formation of the High-Density Clustering
Tree .. 28

4.2 Computational Requirements 32

4.3 Formation of the Partition Tree from
Nearest-Neighbor Densities 34

5. Adjustment of Subgraph Size 36

5.1 Implementation of Algorithm 36

5.2 Computational Requirements 40

6. Performance of the Partitioning Technique on
Real Graphs ... 41

6.1 Database Management System: Unweighted 41

6.2 Database Management System: Weighted 44

6.3 The Airport Design Problem 48

6.4 The Design of a PCB Test Facility 51

6.5 The Budgeting System Design Problem 55

7. Conclusion .. 59

REFERENCES .. 61

- .. 1.

1. INTRODUCTION

The Systematic Design Methodology (SDM) was introduced

to provide structure for the early stages of the design of

complex software systems (Huff [1979]). The third stage of

the SDM involves dividing the overall set of functional

requirments for a given design problem into subsets for

further analysis. In order to limit the conceptual

complexity of the design task as much as possible, these

subsets are chosen to be mutually exclusive and collectively

exhaustive, and to have the property that requirements

between subsets are minimally related. The system designer

subsequently employs these objectively determined "sub-tasks"

and interprets the links between them in order to improve the

outcome of the architectural design.

Wong [1980] reviewed several existing techniques for

decomposing the graph representation of the design problem,

in which each functional requirement of the design problem

corresponds to a node and each interdependency to a

(weighted) arc in the graph. He found that each of the

techniques had some significant shortcoming with respect to

the goals of the SDM. In short, they suffered from one or

more of the following limitations:

1. The technique required a predetermined number of

subg raphs.

1+

-- 1+zjA_.

2. The technique was incapable of solving problems with

a large number of nodes in a reasonable amount of

time.

3. The technique operated to optimize some

goodness-of-partition criterion that tended to be

biased toward extreme solutions (either partitions

with many small subgraphs or a few well-balanced

ones) .

Wong (1980] went on to propose a partitioning technique

based on a high-density clustering model on a graph, offering

the following motivation for its use:

1. The clustering model identifies the regions of "high-

density" (sets of nodes that are highly

interconnected) in the graph and thereby suggests to

the system designer an appropriate number of

subgraphs for the decomposition.

2. The high-density clustering algorithm utilizes a

maximum spanning tree formulation, which operates

very rapidly on large design graphs (which tend to

be relatively sparse).

3. The clustering model does not rely on a

goodness-of-partition measure that might tend to

favor extreme partitions.

While the report presents some limited examples demonstrating

the potential of the model and its conceptual appeal, it does

2

not offer a procedure to determine a partition for the graph

based upon the high-density clustering model.

To answer that need, this paper extends and formalizes

Wong's partitioning scheme, suggesting an efficient procedure

for finding the appropriate partition from the high-density

regions of the graph. The approach involves the construction

of a maximum spanning tree using only the nearest-neighbor

densities, and therefore operates as rapidly as the

high-density clustering algorithm. The balance of this paper

documents the implementation of the partitioning method, and

evaluates its performance with respect to existing

decomposition methods used in the design literature. The

method is applied to several design problems, including some

in the neighborhood of 200 nodes. In each case, the

high-density partitioning technique produces a solution in

less than a second of computer time that is largely

consistent with the accepted "best" existing partition.

The paper follows in several sections. Section 2

reviews the high-density clustering methodology proposed by

Wong [1980]. The next three sections outline the

implementation of the high-density partitioning technique:

section 3 focuses on the calculation of the arc densities

Section 4 discusses the maximum spanning tree algorithm (MSP)

for forming the high-density clusters and for producing the

appropriate partition from the high-density regions, and

3

I.

section 5 discusses a method for adjusting the partition in

order to achieve a minimum number of nodes in each subgraph.

Section 6 presents the results of applying the high- density

partitioning technique to five design problems from the

literature, ranging in size from 22 to250 nodes, and section

7 concludes the paper with some directions for further

investigation in support of the design process.

4

2. FORMALIZATION OF THE HIGH-DENSITV ..'ARTITIJNING TECHNIQUE

2.1 Review of th. U'L jensity Clustering Model

For a given graph G = (N,A), where N is the set of nodes

in G and A is the set of arcs connecting the nodes in G, Wong

proposes that clusters on a graph are the "densely-conne(ted

subgraphs separated from other such subgraphs by relatively

few cross links" (Wong [1980], p.8). To identify such

clusters, he defines the concept of a density on the arc

between any two nodes. For an unweighted graph, this concept

of density is operationalized as follows:

d.. = the number of nodes in the neighborhood of node i1.3

and node j divided by the number of nodes in either

the neighborhood of node i or the neighborhood of

node j

that is

IN n N.1
(1) d - 1 for all (i,j) £ A

INi L N.j

where

N. = the neighborhood of node i,

N, = the neighborhood of node j, andJ

I gives the cardinality of the enclosed set.

For the purpose of this paper we define the neighborhood of a

node i, Ni, to be node i and the set of all nodes in N

directly linked to i (i.e. N. = (i} + [k-jNj (i,k)-A}).

5

Depending upon the application, however, it might be

desirable to extend the neighborhood concept beyond the

nearest-neighbor to two removes; that is, N (2). = {i} + [k,
1

NI (j,k)EA for all j£Ni}, where Ni is the neighborhood of

node i at one remove (as defined above). Such an extension

might provide a more accurate picture of the high-density

regions of the graph, but might also involve a prohibitive

amount of computation.

For a weighted graph, Wong extends his definition of

density by weighting each of the nodes in the numerator:

weighting nodes i and j by wij, and weighting each node k by

the average of Wik and Wkj. Thus, for a weighted graph, the

density measure becomes:

2w.. + 1/2 E (Wi + wkj)
(2) d. =kC13 IN i Nj

where C = (kENi (i,k) and(k,j)EA}.
Because C = Ni n Nj - fi,j}, when wij = 1 for all (i,j)EA,

equation (2) is equivalent to the density calculated for an

unweighted graph:

2 + 1/2 E (1 + 1)
d.. keC

1J
INi U NJ

6

I

2 + IcI
IN. u Nj I

2 + IN i r - 2

= IN n NjI

I I N

Thus, it is possible to use the more general equation (2) to

calculate the arc densities for both weighted and unweighted

graphs. A similar measure is proposed by Andreu[1977], but he

does not generalize it to include weighted graphs.

With density thus defined we can examine a graph for

sets of nodes where the densities between pairs of nodes are

particularly high: these regions of the graph are the

high-density clusters. More formally, a high-density cluster

at level d* is a subgraph S where S is a maximally connected

set whose nodes are connected by links with density at least

d*. The value d* thus defines a density contour by

delimiting the high-density clusters at level d*.

Figure 1 shows an example of a graph with 13 nodes and

20 unweighted links connecting them; the arc densities are

shown in parentheses. The heavy lines in the figure

represent a density contour that identifies three high

density clusters at level d* = .60: {1,2,3}, [4,5,6,7}, and

{9,10,11,12). In any one of these subgraphs, each node is

7

coonected to any other node in the subgraph by some chain of

links of density .60 or higher.

Figure 1 here

By likening the density contours on a graph to the

altitude contours of a map, the hierarchical (or tree)

structure of the high density clusters is apparent. At very

high altitudes, only very small regions of the map (such as

mountain peaks) are enclosed within the contours at that

level. Similarly, at very high densities, there are

relatively few groups of small size that are linked at that

level. Just as a lower altitude contour encompasses the

entire region of the contour above it, so does a lower

density contour encompass all the nodes of the contour above

it.

Figure 2 shows the 13 node example with three distinct

density contours, demonstrating the structure described

above. At level d* = .50, the contour drops below the

density level of the region separating the second and third

subgraphs. These two subgraphs and node 8 thus joins to form

one high-density cluster of nine nodes at level d* = .50. As

the level reaches d* = .40, node 13 joins this group of nine.

Thus, at level d* = .40 the entire graph is included in only

two high-density clusters as shown in the figure. Below d*

• .(.67 8.(64.6

.. 7

Figure 1

Example showing the three high-density
clusters at level d* = .60

9

(.5 .75

(j~o)I

.29, which is the region of lowest density, the entire graph

forms a single cluster.

Figure 2 here

In his report, Wong introduces the notion of a minimal

branching cluster: a maximal high-density cluster at some

level d* that has not been formed as a result of the merging

of two or more clusters that are distinct at some level

higher than d*. Stated more formally, for a high-density

cluster S to be a minimal branching cluster, there must exist

no more than one high-density cluster within S for every

level d*e[O,l.0]. (That is, a branching cluster S has the

property that every cluster properly including S contains

some other cluster entirely disjoint from S). Thus, {1,2,3}

is a minimal branching cluster, but 14,5,6,7,8,9,10,11,121 is

not, because it is formed when (4,5,6,71 and [9,10,11,121

merge. The notion of a minimal branching cluster plays an

important conceptual role in determining the appropriate

partitioning scheme for a graph. If no more than one

branching cluster exists for a particular graph, it might

indicate that the graph (and the problem it was designed to

represent) does not exhibit a structure appropriate for

partitioning.

10

\ - d* = .60 d* .60

00 d* = .29 d*=.40

Figure 2

Example demonstrating the tree-like nature
of the high-density clusters on a graph

Though the representation of the high-density clustering

tree in Figure 2 is highly informative, it is not a

convenient representation for a graph with a large number of

nodes and arcs. Attempting to draw several hundred nodes and

their interconnections is a difficult and frustrating task,

and the result ends up obscuring more than it reveals. For a

more concise representation, we appeal to the standard

clustering tree output shown in Figure 3. (For more

information on this form, see Hartigan (19751).

Figure 3 here

As reported by Wong, the algorithm for finding the

clustering tree in Figure 3 is a maximum spanning tree

alqorithm, which is fully described in Section 4 of this

report. The algorithm produces the tree very rapidly, and

the output provides a convenient display of information about

the node membership of the high-density clusters.

2.2 Choosing a Partition Based on Branching Clusters

What remains to be done is to choose a partition of the

graph based on the high-density clustering model. As we have

seen, this is not necessarily best done by choosing the

high-density clusters at the highest level d* such that all

nodes in the graph are included in some cluster. In the 13

node example of Figure 1, the level d* must be at most .40 in

12

E
x

t- T. --

,.)

,'4-

1.)-

W4 TAW4

a 0 N 0 0 -

13

order to include each of the nodes in the graph in either one

of two clusters: [1,2,3) or [4,5,6,7,8,9,10,11,12,131.

However, the fact that the larger subgraph includes two

minimal branching clusters suggests that it should be

partitioned further.

This leads us to focus on the minimal branching clusters

to suggest the appropriate partition. In many cases,

however, the branching clusters do not indicate a

collectively exhaustive set of nodes. In the 13 node

example, the three branching clusters include neither node 8

nor node 13. Wong proposed to solve this problem by

assigning each "leftover" node to the branching cluster

containing the node with the highest density link to the

leftover, but suggested no procedure for extracting these

branching clusters and determining the assignments.

It is important to note that the clustering tree

representation does not provide sufficient information to

make these assignments. From Figure 3, we know only that

node 13 joins [4,5,6,7,8,9,10,11,121 at level d* = .40, but

nothing about its connectivity to either one of the branching

clusters t4,5,6,7) or (9,10,11,121. In order to make such an

assignment, we must generate additional information on the

nearest neighbor (in terms of densities) of each left-over

node. Even with nearest neighbor information, it may be

difficult to resolve an assignment. Node 8 in the 13 node

14

9raph is clearly a "toss-up" node in that it might just as

well be assigned to {4,5,6,7) as {9,10,11,12}. The

additional information necessary to place this node correctly

must come from the system designer in a later stage of the

SDM.

To identify the appropriate partition (i.e. using the

minimal branching clusters as subgraphs and assigning

leftover nodes to them), we use the following approach, which

uses the information provided by the nearest-neighbor links.

First, any link between two nodes is defined as a

nearest-neighbor link if one node is the nearest-neighbor (in

terms of density) of the other. Then, all other links that

are not nearest neighbor links are removed from the graph,

revealing a mutually exclusive, collectively exhaustive set

of connected subgraphs that form the appropriate partition

(see figure 4). The computation is done by applying the

maximal spanning tree algorithm to the nearest-neighbor

densities (described in section 4.3).

Figure 4 here

In order to demonstrate why the approach described above

gcaerates a partition that corresponds to the minimal

branching clusters within a graph, we appeal to the necessary

condition for a branching cluster and utilize the 13 node

15

I .

Node Nearest- Density
Noe Neighbor* of link

12 (1.0)
______ - indicates a nearest- 2 1 (1.0)

neighbor link between 3 1,2 (.75)
two nodes' 4 5 (.80)

5 6 (1.0)
- - - indicates a link in 6 5 (1.0)

graph that is not a 7 5 (.67)
nearest-neighbor link 8 7,9 (.50)

9 10 (.67)
10 9 (.67)
11 10 (.60)
12 10 (.60)
13 11,12 (.40)

-in case of a tie, the nearest-

neighbor is the node with the

lowest number.

Figure 4

Partition revealed by the nearest-neighbor densities
for the 13 node example

16

* ncs.fatitenaet

example as an illustration. (Figure 4 shows the list of

nearest-neighbor links for the 13 node graph, and the

partition determined by these nearest-neighbor densities).

First, we can assert that any subgraph in a partition

generated by the approach outlined above cannot include nodes

from more than one branching cluster. If this were the case,

there would be a nearest-neighbor link between two nodes of

different branching clusters. Clearly, this is impossible,

as it would imply that each node is closer (in terms of

densities) to the other branching cluster than its own. We

can also assert that any subgraph must contain at least one

full branching cluster. If there were some subgraph of the

partition containing less than the full number of nodes from

a given branching cluster, then the omitted node (or nodes)

would have no nearest-neighbor link to any node in the

branching cluster. Clearly, this would imply that the

omitted node would link first to some other node before

linking to the rest of the branching cluster, which is

contrary to the property of a branching cluster stated above.

The partition tree output for the 13 node example is shown in

Figure 5.

Figure 5 here

The calculation of arc densities and the formation of

the clustering and partition trees are the principal routines

17

I IO

I S-

I 4-)

I0

I -)

N 0

WT 0 s

in the high-density partitioning technique of the SDM. The

next sections describe their implementation in FORTRAN IV on

an IBM/370, and discuss the order of work required to perform

each. The fifth section introduces a fourth routine that

adjusts the subgraphs in the partition according to a minimum

subgraph size constraint. The result is a heuristic that

merges "nearest-neighbor subgraphs" in order to avoid a large

number of very small (e.g. two-node) subgraphs.

Armed with a full clustering hierarchy and a suggested

partition, we can present the system designer with a great

deal of information, which he can use to validate his

initial assumptions, look for counter-intuitive results, and

further refine his design architecture. The notion of the

"sensitivity" of the decomposition results to possible

misspecifications or omissions by the system designers is

addressed in the concluding section.

1

3. CALCULATION OF ARC DENSITIES

In these next three sections the computational

requirements of a given routine in the high-density

partitioning technique are specified in terms of the number

of nodes and arcs in the graph. Because we are principally

concerned with system design graphs that are typically quite

sparse, it will be helpf'l to introducing a measure of the

sparsity of the graph G = (N,A). This measure, k, is simply

the ratio of the total number of arcs in the graph to the

total possible number of arcs.

k = AI

INI(INI - 1)/ 2

For a ccmplete graph, k = 1.0, but for most design graphs, k

is substantially smaller. Another useful quantity will be

the average number of arcs incident to each node, d, which is

equal to 21AI/INI or k (INI- 1). Again, for a complete

graph, d =iNI- 1, and so increases linearly with INI. For

design graphs, d tends to be much smaller than INI, and may

increase as f(INI) or even log(INI). Unfortunately, not

enough design problems have been represented as graphs to

support such a statement, and so we simply assert that d

increases proportionately with INI, albeit a typically small

proportion.

2)

3.1 Implementation of Algorithm

The algorithm for calculating the arc densities depends

upon the manner in which the graph structure is stored in the

computer. Because the graph is typically quite sparse, a

node-node adjacency matrix or a node-arc incidence matrix

would be a storage-wasteful representation. In order to

exploit this sparsity, we choose a type of forward-star

representation. (See e.g. Golden and Magnanti [1982]).

Figure 6 shows the internal representation for the 13 node

example (without arc weights) alongside its conceptual

representation. The arc weights are handled in a similar

fashion, stored in a vector WEIGHTLISTS that uses the same

INDEX VECTOR.

Figure 6 here

Note that this storage scheme is not the most

parsimonious possible. Because it does not fully exploit the

symmetry of the graph, each arc in G is stored twice, thereby

requiring 21AI storage locations. Nonetheless, this extra

storage space permits a significant computational

simplification of the density calculation. The conceptual

representation in Figure 6 shows that for each node i in G we

have immediate access to the list of nodes in N. in sorteda

order. This enables us to determine rapidly the intersection

21

1 1 1 2
2 3 2 3
3 5 3 1
4 8 4 3
5 12 , 1 FROM TO
6 15 6 2 MI J2
7 18 7 4
8 23 ,8 3
9 25 9 5

10 30 10 6 " 1 2 4
11 33 11 7
12 36 12 4E] (3 5 b 7
13 39 13 6
14 41 14 7 51 '4 6 7

15 4
16 5 M 4 5 71
17
18 4 4 5 689
19 5
20 6 7 -9
21 8
22 9 9 7 8 10 11 12
23 7
24 F1 9 11 12
25 7
26 8 UE 9 10 13
27 10
28 11 1 91131
29 12
30 9 1112
31 11
32 12
33 9
34 10
35 13
36 9
37 10
38 13
39 11
40 12
41

INTERNAL REPRESENTATION CONCEPTUAL REPRESENTATION

Figure 6

Example representation of
the 13 node graph

22

tne union ot the neighborhoods of any two nodes for use

in equation (2), repeated below:

2wij + 1/2 Z (wik + Wkj)
d. .• _ _ _ _ __ _ _ _ _ _ _

1) IN i Nj I

The algorithm for calculating arc densities is stated

below:

STEP 1: Set i = 1

STEP 2: Identify the list of nodes directly connected to

node i, and denote it ILIST. This list of values

will be a segment of NODELIST with indexes from

INDEXLIST(i) through INDEXLIST(i + 1) - 1. Set j

= first node in ILIST (at index position

INDEXLIST(i)) .

STEP 3: Identify the list of nodes directly connected to

node j, and denote it JLIST. This list of values

will be a segment of NODELIST different from ILIST

running from index position INDEX-LIST(j) to

INDEXLIST(j + 1) - 1.

STEP 4: Set NODES IN COMMON = 0

Set SUMWEIGHTS = 0

Systematically compare the contents of ILIST and

23

JLIST. If a node is common to both, appearing in

index position k. in ILIST and in position k. in
1 3

JLIST, do:

a) Set NODES IN COMMON = NODES IN COMMON + 1

b) Set SUMWEIGHTS = SUM WEIGHTS + 1/2

(WEIGHTLIST(ki) + WEIGHTLIST(k))

STEP 5: Find w.. in WEIGHT LIST using the index position of13

node j in ILIST.

Set UNION = INDEX-LIST(i + 1) - INDEX-LIST(i) +

INDEX-LIST(j + 1) - INDEXLIST(j) - NODESINCOMMON

Set d. 2w.. + 1/2 (SUM WEIGHTS)

UNION

STEP 6: If all nodes connected to node i have been

considered (i.e. if d.. has been calculated for

all nodes j directly connected to node i), GO TO

STEP 7. Otherwise, set j = next node in ILIST and

RETURN TO STEP 3.

STEP 7: If i = INI , STOP. Otherwise, set i = i + 1 and

RETURN TO STEP 2.

Figure 7 illustrates steps 4 and 5 of the algorithm for node

i = 4 and node j = 7.

24

Figure 7 here

3.2 Computational Requirements

The routine for calculating arc densities shown above is

potentially the most time-consuming of the entire

high-density partitioning technique. The density calculation

must be completed for every arc in the forward star

representation, a total of 21AI iterations. Each density

calculation involves a systematic comparison of two lists of

nodes of average lengths d = 21A1/iNi. Because these lists

are sorted, a careful implementation requires only O(IAJ/INI)

comparisons. Thus, the total amount of work involved is

proportional to (JAI 2/).

The order of work required to calculate the arc

densities is shown below in terms of the average number of

arcs incident to each node, d:

41A12 / N (21AI/iNI) (21AI)

= k(INi -)k(INI) (INI - i

= [k(INI - 1)1 [k(INI - i)1 IN!

= d 2 NI

For a complete graph, where k = 1.0, the amount of work

3
required approaches INI However, due to the sparsity of

25

..a,I

2 3 .NODE 1 4
2 1
34 3 1 LIST= (3,5,6,7) IN
4 1

6 2 INDEX POSITIONS

18 7 48 THROUGH 11.

11 33 11 NODE 1 7
13 9 1 6JLIST =('4,5,6,8,9) IN

is 4 INDEX POSITIONS

17 7 18 THROUGH 22.

27 8 FIRST NODE IN COMMON IS

22 9 NODE K = 5
24 9WK IS IN POSITION 9

26 aWK IS IN POSITION 19

7.0 '97 SECOND NODE IN COMMON IS

32 12NODE K =b

34 10WK IS IN POSITION 10

36 9WK IS IN POSITION 20

4012 (NWEIGHTED GRAPH, SO

ALL WEIGHTS =1.0~

2W47 + 1/(w 4 +w57 6+w67) 4

Fioure 7

Example of density calculation

26

IIE

the graph in most design problems, the order of work is

typically much smaller. If d increases as \ (INI), as we

speculated above, then the amount of work required is only
2

INI ; if d increases as logIN I, the requirements are even

smaller. Because our experience with design graphs is

insufficient to support such claims, we assert only that the

computational requirements for the calculation of arc

densities are proportional to 1A1 2 1/Ni or k2lN 3 , where k is

typically a small fraction.

2

27

4. MAXIMUM SPANNING TREE ALGDRITHM

4.1 Formation of the High-Density Clusterinq Tree

The routine for computing the tree of high-density

clusters follows quite closely the maximum spanning tree

algorithm outlined by Wong [i980] and appearing in Ross

[1969] and Hartigan [1975]. The algorithm uses the

forward-star representation of the graph stored in INDEX LIST

and NODE LIST, as well as the vector off arc densities, and

forms a type of linked-list vector representation of the

clustering tree, a vector of nearest-neighbors, and a vector

of nearest-neighbors-within-tree. The vector Df

nearest-neighbors is later used to form the partitioning tree

(described in part 4.2), while the vector of

nearest-neighbor-within-tree is used in the heuristic to

adjust the size of the subgraphs in the partition (described

in section 5).

Figure 8 illustrates the vector representation of the

clustering tree for the 13 node example. krbitrarily, the

tree is rooted (or anchored) at node I of the graph. The

number of the node adjacent to node I with the highest

density is then stored in TREE LIST(1) and the density on

that arc is stored in the corresponding position in the

vector TREE DENSITIES. in the 13 node exampla, node 2 has

the highest density link to node I with ,2 1.0. Once

these values are stored, all the nodes adjacent to node 2 -ire

28

%canned, and the node closest to either node 1 or node 2 not

already in the tree is added by storing that number in

TREELIST(2). The process continues until all nodes have

been added to the tree.

Figure 8 here

The algorithm for forming the high-density clustering

tree as well as the vectors of nearest-neighbors (NN LIST)

and nearest-neighbor-within-tree (NNWT LIST) is stated below:

STEP 1: Set NNLIST and NNWTLIST blank

LNE (Last Node Entered) = 1

Set T = {LNE1 where T = set of all nodes in the

clustering tree.

STEP 2: Identify the list of nodes adjacent to the LNE, and

denote it LNE LIST.

STEP 3: For each node j in LNELIST, do.

a) If the density on the arc between node j and

LNE is greater than Lhe density between nodo

and any node scanned so fir (i.e. greater

than the density on the link between and

NN LIST(j)), then set NN LIST(j) = LNE.

29

ANCHOR NODE TREELIST TREEDENSITIES

1 2 1.0

2 3 .75

3 4 .29

4 6 .80

5 7 .67

6 5 1.0

7 8 .50

8 9 .50

9 10 .67

10 12 .60

11 13 .40

12 11 .60

13 X X

* I

Figure 8

Vector representation of clusterinq tree

b) f nocle j T and the density between node j and

LNE is greater than between node j and any

node scanned so far (i.e. greater than the

density on the link between j and

NNWTLIST(j)) then set NNWTLIST(j) = LNE.

c) If node j/T and the density on the arc between

node j and LNE is greater than any previous

link in the clustering tree to node j (i.e.

greater than TREE DENSITIES (j)) , then set

TREEDENSIrIES(j) = dj,LNE

STrEP 4: Search TREEDENSITIES for the highest entry among

nodes T and set NNE(Next Node Entered) equal to

number of the node for that entry.

STEP 5: Set TREELIST(LNE) = NNE

Set T = T + (LNE}

If T = N STOP. Otherwise, RETURN TO STEP 2.

Figure 9 shows "snapshots" of the vectors being built by

the clustering tree algorithm. Each one of the four

snapshots is taken at an iteration of the algorithm just

before STEP 4, when the vector TREE DENSITIES is searched to

determine the next node to enter the clustering tree. In the

fourth iteration, the last shown in the figure, node 4 enters

the tree. To indicate this, the number 4 is stored in

TREE LIST at the position of the last node entered, whi::h is

I- -" -] I .. .1 Il

3, and an 'X' appears alongside position 4. Node 4 now

becomes LNE, and the list of adjacent nodes [3,4,5,6,71 is

considered in STEP 3 of the algorithm. Node 3, which i3

already in the tree, clearly does not have a higher density

link to node 4 (LNE) than to node i (compare d = .29 to3,4

NNWTDENSITIES(3) = .75) so no change occurs. Nodes 5,6, and

7, however, have not yet been considered, and so the

corresponding densities are entered as shown in the fourth

snapshot. The algorithm continues in this manner through INI

- I iterations, at which point all the vectors in Figure 9

are complete.

Figure 9 here

4.2 Computational Requirements

rhe maximum spanning trce algorithm outlined above is

very rapid. The algorithm involves a total of INI - I

iteratioais. Each iteration must consider the list of arcs

adjacent to the last node entering the tree, which is of

average length d. Thus, the amount of work required is

proportional to d(IN)- 1) or roughly 21eIA. Regardless of

2
the nature of the graph, this is never more than INI , and

for the design graphs in question it is significantly less.

While the order of work might be -is ;mall as INI3/2 or even

INIlogINI, we assert only that the computational requirements

2
are proportional to IM or kINI , where k is typically a

32

NN_-DEN's NNWTDEN's

TREELIST TREEDEN's eT? NNLIST NNWTLIST

1 x N
2 1.0 1 1.0 1 1.0LN 1

3.75 1 .75 1 .5T =[Il
5 ~Node?2
6 enters
7 next

9

1 2 .75 X 2 1.0 N =2
2 1.0 X 1 1.0 1 1.0LE2
3 .75 1 .75 1 .75 T = {1 ,2j

C\4

.0 Node 3
4(6 enters

78 next

1 2 .75 X 2 1.0 LNE =3

2 3 1.0 X 1 1.0 1 1.0
(n 3 .75 X 1 .75 1 .75 T= 123
S4 .29 3 .29 3 .29

5 Node 4
6 enters

37 next

1 2 .75 X 2 1.0 LNE =4
2 3 1.0 X 1 1.0 1 1.0
3 4 .75 X 1 .75 1 .75 T = fl234

4.29 X 3 .29 3 .29
S5 .80 4 .80 4 .80 Either node

6.57 4 .57 4 .57 5 or 6
S7 .80 4 .80 4 .80 enters.

cu 8 Choose
smaller (5)

Figure 9

33

5*mcxll fraction.

4.3 Formation of the Partition Pree from Nearest Neighbor_

Densities

The same algorithm that generates the high-density

clustering tree can also be used to produce the partition

tree by applying the nearest-neighbor densities as described

above in Section 2. Figure 10 shows the nearest-neighbor

densities for the 13 node example in the form used by the

maximum spanning tree algorithm. Once these densities have

been put into the form shown in the figure, the computational

requirements for forming the partition tree are the same as

those stated for the high-density clustering tree.

Figure 10 here

34

1 11 2 1.0 1.

2 3 2 3 .75

3 S 3 1 1t.0 ; 1.0

4 8 4 3 75

S 12 s 1 .75 .75

6 IS 6 2 .75
7 18 7 4 .2.

8 23 8 3
9 25 9 S .80 .80

10 30 10 6 .80

11 33 11 7 .57

12 36 12 4 .

13 39 13 6 1.0 1.0

14 41 14 7 .67L_.__/ ~15 --"-.-gO -

16 S 1.0 1.0

17 7 .67
18 4 .57
19 5 .67 .67

20 6 .67
21 8 .50

22 9 ____
23 7 .50
24 9 .S0

25 7 .33
26 8 .50
27 10 .67 .67

28 11 .43
29 12 .43

30 .67 .7--

31 11 .60

32 12 .60

33 9.4
34 10 .60 .60

35 13 .40

36 9 .43
37 10 .60 .60

39 11 .4038 13 .40 040 12 40
41

Figure 10

Representation of nearest-neighbor densities

35

5. ADJUSTMENT OF SUBGRAPH SIZE

5.1 Implementation of Heuristic

When the number of nodes in a graph is substantial, the

number of subgraphs in the resulting partition may also be

quite large. It is often desirable to reduce the number of

small subgraphs in a given partition in order to simplify the

task of interpreting the interactions between all pairs of

subgraphs. We choose to do this by merging

"nearest-neighbor-subgraphs" until each subgraph or modified

subgraph meets a minimum size constraint. We do this

heuristically, examining each subgraph to see that it meets

the minimum specified size and, if it does not, choosing a

"central" node and merging the subgraph with the next

subgraph closest to this central node. This merging process

is not perfect, as the choice of a central node is not always

well defined. Nonetheless, the method is quite fast, and in

the end the system designer has recourse to the partition

tree supplied by the heuristic.

Figure 11 here

rhe partition tree for the 13 node graph before subgraph

modification is shown in Figure 11. This information (along

with the clustering tree and the nearest-neighbor lists) is

used in the modification heuristic outlined below:

36

SUBGRAPHLIST SUBGRAPHSIZE NUMBEROFSUBGRAPHS

1 1 1 3

2 1 2 5

3 1 3 5

4 2

5 2

6 2

7 2

8 2

9 3

10 3

11 3

12 3

13 3

Figure 11

Partition formed by maximum spanning tree

of nearest-neighbors

37

STEP 1: Let M be the minimum permitted size of a subgraph in

the partition. Set NUM equal to the number of

subgraphs in the partition. Set CURRENTSUBGRAPH =

1.

STEP 2: Check the subgraph size of CURRENTSUBGRAPH. If

SUBGRAPH-SIZE(CURRENT SUBGRAPH)>' M, GO TO STEP 6.

Otherwise continue.

STEP 3: Locate the first node in SUBGRAPHLIST that is an

element of CURRENTSUBGRAPH, and subsequently

locate the position of this node in the partition

tree.

STEP 4: From the current position in the partition tree read

"up" and "down" within CURRENTSUBGRAPH in order to

find a node adjacent to the highest density link in

the subgraph. Denote this node CENTRALNODE and

subsequently locate its position in the clustering

tree.

STEP 5: From the position of CENTRALNODE in the clustering

tree, do:

a) Read "up" in the tree until a node from a

subgraph other than CURRENTSUBGRAPH is found,

and note the density separating this node from

CURRENT SUBGRAPH.

38

b) Read "down" in the tree in the same manner as

in (a) above.

If the density found in (a) is -,Leatet,

then merge CURRENTSUBGRAP of the node which

is the nearest-neighbor of CENTRALNODE within

the tree (i.e. NNWT LIST(CENTRAL NODE)).

If the density found in (b) is greater,

then merge CURRENTSUBGRAPH with the subgraph

of the node reached by reading "down" in the

clustering tree.

Accomplish the merge by reading through

SUBGRAPHLIST and replacing every occurrence

of CURRENTSUBGRAPH with the number of the new

subgraph. Then, set SUBGRAPHSIZE (new

subraph) = SUBGRAPH-SIZE (new subgraph)+

SUBGRAPHSIZE (CURRENTSUBGRAPH). Set NUM =

NUM - 1.

STEP 6: If CURRENT SUBGRAPH is the last in the partition,

STOP. Otherwise, set CURRENTSUBGRAPH =

CURRENTSUBGRAPH + 1 and RETURN to STEP 2.

In the current imp'ementation of th.s routine, we arbitrarily

establish the minimum subgraph size M as follows:

39

M =LNI /0J + 2

where x]jequals the greatest integer part of a . An

interactive subroutine enables the system designer to vary

the size of M in order to achieve different modifications of

the partition.

5.1 Computational Requirements

On average, the heuristic presented above is quite

rapid, as it needs only modify the subgraphs which have fewer

than M nodes. In the worst case, there might be as many as S

=!NI/ 2 subgraphs, each with two nodes. If it turns out that

each of the subgraphs 1,2,3... ,S-1 merge with subgraph S,

then the heurstic might involve as many as (INI/ 2) - 1

iterations. Each iteration involves searching three lists of

dimension INI, and modifying a fourth list also of dimension

iNJ. Thus, in the worst case, the amount of work required to

2
modify the partition is at most proportional to IN.

Experience with several real design graphs suggests, however,

that the number of subgraphs modified is quite small, and the

computational requirements are minimal.

40

6. PERFORMANCE OF THE PARTITIONING TECHNIQUE ON REAL DESIGN

GRAPHS

The following section presents the results of applying

the High-Density Partitioning Technique to five real design

problems taken from the graph decomposition literature,

ranging in size from 22 to 77 functional requirements. For

each one of the five design graphs, we present the existing

decomposition and the high-density partition and note the

siqnificant similarities and differences. We also present

computational results from the new method on graphs of up to

250 nodes, and, when available, the results from other

decomposition techniques.

We conclude from our comparison that the new technique

is a useful heuristic that enables systems designers to better

focus on the global properties of their design specifications.

The high-density partition provides the designer with infor-

mation with which he can check his initial assumptions and

further refine his design architecture. In some cases, the

high-density clustering solution reveals opportunities in the

definition of the design sub-tasks clearly missed by the other

methods employed. In all cases, the new technique renders

a solution well in the "ballpark" of accepted decompositions,

and does so faster than other existing methods.

6.1 Database Management System: Unweighted Interdependencies

Andreu and Madnick [1977] outlined the design of a

database management system (DBMS). They listed 22 functional

41

requirements, (e.g. minimal data redundancy, rapid data

reference, and unambiguous query language) and 39 unweighted

interdependencies in their design problem. Andreu [1978]

used a variety of hierarchical clustering techniques and an

iterative partitioning approach to produce several

decompositions of the design graph, all of which were

identical to the partition shown in Figure 12.

The decomposition produced by the high-density

partitioning technique is shown in Figure 12 adjacent to the

solution proposed by Andreu, revealing the similarity between

the two. The sets of circled nodes in the figure represent

the original subgraphs of the unmodified partition; the

numbered subgraphs illustrate the result of merging the

original subgraphs to meet a minimum size constraint of M =

L22/10]+ 2 = 4. The only difference between the two is that

in the high-density decomposition {1,2,3,4,5,6,9,21} is a

single subgraph, while in the decomposition proposed by

Andreu it is two subgraphs: {1,2,3,51 and (1,9,21}.

Nonetheless, from the output provided by the high-density

partitioning routine, the designer can see that

11,2,3,5,6,9,211 was formed as a result of merging two

smaller subgraphs to meet the minimum size constraint. In

fact, wuen M = 3, the two solutions are identical.

Figure 12 here

47-

1 1,2,3,5 12DI
2 6,9,21

3 7,13,14.15 2 7,13,14,15

4 4,16,17,18,22 3 4,16,17,18,22

5 8,10,11 ,12,19,20 4 Q ,2(01,92

Partition proposed by Solution generated by high-

Andreu [1978] density partitioning technique

(for M = 4)

Figure 12

Andreu and Madnick's [1977] 22 node (unweighted)

Database Management System design problem

43

62 z Data base -Man ajern ent Ase:~1. 2~

iiuff afnd M3AnilrK 97.

problem bj wei.]ht in] the :ntr > . 1..

requ i remen t s - t th, en i n t r .A e, .•

followin arbitrary assignment:

I3TRO0NG 1NTERDE PENri D r. f

AVERAGE I NTERDE1r:N')< Y

WEAK 'NTE.4DrPl' P N .N

riuff [1979] Iike And reL, iso is i :r. -

techni ques and an inte1.3n4an pttt n' n,-).t) " [.'. ii

I NTE RCHANGE) to d ecoinpo-se t u. D3i IJ i. , t ' .

as his solution tne partition with th : ,:;t "mii, . 9
merit," a measure chosen to retlecr tne ex: t h

partition meets the key charc,-rist: i : f i,

Huff's solution is shown in Figure ' i.

The high density partition for tht wei hted 22-no i .

example, shown also in Figure 13, i!iffers t rom tnu part i

proposed by Huff in only one respect: Hur t in-cl Ades :I)d .

in [4,16,17,18,21,22} while the hig3h-dt'n:ity solutin

includes node 21 in [1,2,3,5,6,21f. Accordivg t-)t . -L s i jn I

graph, shown in Figure 14, node 21 a requ remen,_ all ini f r

minimal data redundancy) is related t two otner reqliiroml. t

in each of two subgraphs. In Huff' pirtit ion, i-)d 2 I ,

links within the subgraph to nodes 4 (call inj f r oil)ori-hwi

relationships imong data items) and 22 (min)imal ;t)r v,

44

*~~~~~ifl~~~~ hit: 1.'9tS I]' W.4 . L txt :ij -e ty

pa rt i in to Ii li .Ii K ~ ti, a r A~ p! t

wi7t..r -: 1 1l~~.)I 1. r ini i i;)f the2 Jata -iba:;a)

it3 in::)n'Jif elj W ry. a~ i Hfl ft ei.; 1re oft meri

r w -t I> 2ta~ ti .Jpi i 11 w, i i ;Ljr i~f p av:~ i p-i2l i zas

WV>~ ~~~~~ I2 h 1 ~b- , '- r i t n II e2'

2' 1 -

j-;. 1I f r I : 'Ir>. rasa

jj ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ : ol Ih i . 2 i A d' 2t V 3 t .I i o

.'If It tt Ii t1t

1 1,2,3,5,6 1~ 5 6 2

2 4,16,17,18,21,22 2 4,16,1718,22

3 8,9,10,11 ,12,19,20 391011,2

4 7,13,14,15 4 714,15

Partitio, ,roposed by Solution generated by the high-

Huff ['(-,79] density partitioning technique

(M = 4)

Figure 13

Huff and Madnick's [1978] adaptation

of Andreu's 22 node DBMS design problem

46

iA

Ow

w
14

A
w

7
w

5

A 13

2 3
w

A
A A

1

S
(.279) A

w w
(.233

9 21

(.15)
A .2C6)

S A
(.133 S 4

w S (.371)
2

A

A A

18
w w

8 9 A S

A
20

w 16 A
12 17

A 10

Figure 14

Huff's [1979] presentation of the 22 node
nRW nrnhlpm

47

storage characteristics and requirements; in the high-

density partition node 21 is included with the nodes

representing the requirements for log ical organi zation and

relationships among data. The final decision on the

appropriate placement of such a functional requirement within

a sub-task must rest with the system designer.

6.3 The Airport Design Problem

McCormick et. al. [1972] used a 27-node airport design

problem to illustrate the effectiveness of their Bond Energy

Algorithm (BEA). The results are shown in Figure 15. The

BEA does not suggest mutually exclusive, collectively

exhaustive sets of functional requirements, but rather

identifies overlapping "clumps" of interrelated requirements.

The system designer must subsequently decide how best to

divide these requirements into sub-tasks. McCormick reports

that the BEA required approximately 60 CPU seconds for a CDC

1604 computer to reach solution for the 27-node graph. The

high-density partition for the airport design problem is

shown ncxt to the Bond Energy solution in Figure 15. The

subgraphs are ordered from top to bottom so as to correspond

as closely as possible to McCormick's presentation and

facilitate comparison.

4S

Figure 15 here

Though both solutions present an intuitively appealing

decomposition of the design problem there are some

significant differences between the two. McCormick inclujes

node 18 (Concessions) with 25 (refuse removal) and 27

(aircraft service on apron). In the high-density partition

node 18 joins a group of nodes representing passenger

i-formation and check-ins. Examining the connectivity of

node 18, we find that it has links to two of the nodes in the

subgraph suggested by the high-density partitioning

technique, while it has one double-weighted link to a node in

the subgraph suggested by the Bond Energy Approach. In

general, the bond energy objective function is best improved

by preserving the weighted links at the expense of severing a

number of smaller links.

In another illustration of the difference between the

two proposed solutions, the BEA joins nodes 11 and 12

(service area and parking lots for rental cars) together in a

subgraph with node - (rental desk), while the high- density

solution includes nodt+ I and 12 with 7 (close parking

lots), 9 (main access road), an 10 (circulation roads). It

turns out that only node 12 is linked to node 19; however,

nodes ii an 12 have three links to 17,9,10). In general, it

49

BEA High-density

18 17 AIRCRAFT LOADING

25 25 REFUSE REMOVAL

2 27 AIRCRAFT SERVICE ON APRON

23 6 CARGO TERMINAL

6 23 1 CARGO TRANSFER
17 15 WAITING AREAS AT GATES

21 NUMBER OF GATES

21 5' INTRA-AIRPORT TRANSPORTATION SYSTEM

16 8 REMOTE PARKING LOTS

5 lb STATIONS FOR INTRA-AIRPORT TRANSPORTATION

8 1 PASSENGER CHECK-IN

9 BAGGAGE CHECK-IN

J0 4 BAGGAGE MOVING

13 CURB SPACE UNLOADING

18 CONCESSIONS

22 19 RENTAL DESK

1 2 PASSENGER INFORMATION

2 3 BAGGAGE CLAIM

4 H14 CURB SPACE FOR LOADING

3 7 CLOSE PARKING LOTS

9 MAIN ACCESS ROADS

9 10 CIRCULATION ROADS

12 11 SERVICE AREA FOR RENTAL CARS

11 12 PARKING LOTS FOR RENTAL CARS

0 RUNWAY CAPACITY

2~4 214 AIR TRAFFIC CONTROL

26 26 FLIGHT OPERATIONS AND CREW

Figure 15

McCormick et. a]. [1972] solution to
the Airport Design Problem

53A

seems that the diagonalization process used by the BEA may

not always be appropriate for positioning pairs or small

groups of heavily-linked nodes as part of a larger subgraph.

The high-density technique required about 0.15 CPU

seconds on an IBM/370 168 to read the data, calculate the arc

densities, compute the clustering and partition trees and

adjust the partition for the minimum subgraph size

constraint. This is a 400-fold improvement over the

computational requirements of the BEA for the same problem

though it is not strictly legitimate to compare performance

results across machines. However, McCormick reports that for

a graph of IN I items the number of operations in

3
INI , taking to account of the sparsity of the graph. For

the high-density technique, the number of operations

2 32
increases as k INI , where k .075 for the airport problem.

For sparse design graphs with very large INI, McCormick's BEA

is at a significant computational disadvantage.

6.4 The Design of a Printed Circuit Board (PCB) Test Facility

Tung [1980] outlined 69 functional requirements for the

design of a PCB Test Facility. Due to the rather technical

nature of the test facility, the reader is referred to Tung's

report for explanations of the requirements and

interdependencies. The decomposition proposed by Tung, based

on a time-consuming ad hoc search to determine the best value

for Huff's measure of merit (see section 6.2 above) appears

51

in Figure 16 below.

The high-density partition of the PCB Test Facility

design graph is shown in Figure 16 adjacent to the solution

proposed by Tung. Due to the significant size of this

problem, it is difficult to accurately assess the similarity

of the two results by simply scanning them. At the lowest

level of grouping presented in the high-density partition

(indicated by the circled groups of nodes in the picture),

these groups are almost always left intact in Tung's proposed

solution. The exceptions are the high-density subgraphs

[16,26,28,29,34,41,42,431 and 146,49,56,58,64,65,66,671.

Figure 16 here

At a somewhat higher level of grouping, there are some

disagreements between the two solutions, due to the fact that

partitioning a graph to somehow minimize the collective

weight of the arcs severed is not always consistent with

partitioning a graph through the regions of lowest density.

A good illustration is the appropriate placement of the

completely connected group [44,50,541. Tung joins this group

with the nodes [37,38,39,40,45,47,48,53,55,591 principally

because all three are linked to node 45 which is in turn

linked to many of the nodes in the same group. The

high-density solution joins this group to nodes [27,30,32,

52

1 1,2,7,10,11 ,12,13,14 1 1271,11

2 5,6,8,9,15,16,17,18,19,20 2 ~5,61,1, 5313 ,51,5,68,69

21,22,23,24,25,26,31,34,36

43,51 ,52,68,69

3 28,29,41,42 4 ~ 2~93,14

4 27,30,32,33,35 5

5 37,38,39,40,44,45,47,48 6 C =,84

50,53,54,55,59

6 64,65,66,67 _____________

7 46,49,56,57,58,60,61,62,63 ~' C~~95,86,56,

8 3,4 8 (:4:, 961 576623

Partition suggested by Solution generated by the high-

Tung [1979] density technique.

Figure 76

Tung's [1979] 69 node (weighted)

Printed Circuit Board Test Facility design problem

53

33,35} because only one of them (node 44) is linked to node

33, which in turn is not highly linked. Thus, the density on

the arc between 33 and 44 is relatively high because

IN33 U N I is small.

Herein lies a significant feature of the high-density

partitioning technique. A node such as node 45 (Good Printed

Circuit Board Simulator) seems to be a focal requirement for

a PCB Test Facility, as it is related to 25 percent of the

other requirements for the system by the concensus of the

designers. Yet node 45 is a low-density node, in the sense

that it is incident to arcs of relatively low density. Thus,

rather than having node 45 exert a significant influence in

the formation of the partition as it might using Huff's

approach, it becomes a "fringe" node in the high-density

partitioning approach and does not appear in the high-density

clusters.

This strategy is appropriate if a node such as node 45

represents a requirement that serves as a "cover-term" for

several subtasks in the design problem. in the example above

there may be four or five components of the single

requirement "Good PCB Simulator." The system designers

should be alerted to the existence of such a node, in order

to best coordinate work among the components of this specifi:

task.

54

6S rhe Budgeting System Design Problem

Huff [1979] applied the entire SDi to the problem of

designing a budgeting system for M.I.T. He identified 77

functional requirements and 289 weighted interdependencies to

form the system design graph, and used his INTERCHANGE

algorithm to produce the partition shown in Figure 17. Huff

reports no direct computational experience with the 77 node

graph; however, he does indicate that the INTERCHANGE

algorithm implemented in PL/I on the IBM/370 168 required

approximately 9 CPU seconds to decompose a 40-node graph.
3

Since the INTERCHANGE algorithm requires O(IN3) operations,

it is quite safe to assume that the 77-node graph requires at

least 18 CPU seconds.

Figure 17 also shows the high-density partition which

required only one second of CPU time to produce. Comparing

the results, the high-density partition seems to have some

clear superiorities. Huff includes node 27 with 15,6,351

even though it is linked to none of them. The high-density

solution joins node 27 with {53,54,55,67,69,701 because of

its link to node 53. The clear superiority exhibited by the

nigh-density approach, however, is the speed, with which the

technique decomposes the design graph.

55

-- - -- -- - -- - -- -p.....

Figure 17 here

Figure 18 summarizes the computational performance of

the high-density technique for the five design graphs

described above and three other graphs taken from the

literature. The total time is broken down into two

components, calculation of the arc densities and calculation

of the clustering and partition trees, in order to

demonstrate the computational dominance of the first.

Figure 18 here

56

1 7,28,38,56,57,58,59,60,61 1 75,960,6,26,66,1,64

62,65,66,68,71,76

2 18,19,20,21,22,23,24,25,26 2 8, 2563

29,31,32,33,34,36,39,40 21, 39,4

41,42

3 5,6,27,35 3 2,D35 671,1,32 3

4 11,12,14

5 16,43,44,45,46,47,48,49,50 4 -,,51,52

51,52,64,74

6 15,773 524,4,47

7 9,10,13

8 8,6J,75

9 1,2,3,4,17,30,37 7 ,4,17, 9,30,3 7

10 72,73

11 53,54,55,67,69,70 8

Figure 17

Huff's [1979] 77 node (weighted)
Budgeting System Design problem

57

- 1-

DATASET IN! I d (A) (B)

ANDREU DBMS 22 39 3.55 .02 .03

HUFF DBS 22 39 3.55 .02 .03

SV 25-NODE" 25 44 3,52 .02 .03

AIRPORT 27 96 7,11 .06 .08

SV 51-NODE 51 126 4.94 .06 .13

TUNG PCB 69 203 5,08 .30 .55

SPHERE*** 74 245 6.62 .30 .51

HUFF BUDGET 77 289 7,51 .33 .66

INDUSTRIAL # 200 466 4,66 .37 .91

IND.+ BANKS # 250 889 7,12 .52 1.71

(A) CPU SECONDS REQUIRED TO CALCULATE

BOTH CLUSTERING TREE AND PARTITION TREE

(B) CPU SECONDS REQUIRED TO CALCULATE
ARC DENSITIES

* Sangiovanni-Vincentelli et. al. [1977]

** Sangiovanni-Vincentelli et. al. [1977]
* Levine [1972]

Lattin [19811

Figure 18

Computational Results

We n a t2e pr esente d a g ra-,ph -par I- it -I jt~~ i e ',),;,,

on a h ig n-dens ity - I ste2r ing !ncd e. ' r)crjiql rqI I

no informat ion reqg ard inq the Tiumbe r D I i sib Ir i phs n~t~

decompos it ion , and it i Ii es no "good i;- of--pir ti i on"

measure w,: i ch m ig ht b ias the str uct-ure o f tie out caDne. I

pa rt it ioning techn ique J iv ides the gjraph inta 1 i 3h-dcns-;i ty

regions, and does so by forming maximum spanning t-reo,3. 7,1e

order of work required to calculate these densitie2s is

0 (I AI1/IN I) , and the amount of work requirad to ferm eacn

spanning tree is proporlional to JAI. Thus, thne tecnnique

exploits the sparsity typical of design graphs and prail-ies

the system designer witn (greater computational efficiency.

We also presented vildence of tne several advantages of

the liigh-density partitioning technique by comparing its

performance ajainst other existing methods. For each of fi-ve

different design graphs taken from the literature, the

solution generated by the high-density partitioning technique

was comparable to tho partition suggested by the existin~g

decomposition methods. The speed of the new technique

indicates that it may be useful for partitioning~ design

problems too large for either McCormick's BEA or Huff's

INTERCHANGE.

Further research in support of the design process should

focus on the "sensitivity" of the structure of the partition

to the specifications made by the system designers. As

design graphs become larger, it becomes less and less

desirable to partition every possible version of the graph

suggested by the system designers. There should be, built

into the high-density partitioning technique, some form of

diagnostic to alert tne designers to changes that might occur

in the structure of the partition due to some small

perturbation of their specifications. For example, in the 13

node iraph presented above, any differential weighting on the

links to node 3 would determine its membership in one of the

subgraphs, and it would -o longer be a "toss-up" node. Such

a diagnostic, built into the partitioning method, would

provide the designer witn a flexible, interactive system to

examine the implications of his specifications, look for

counter-intuitive results, and further refine his design.

REFERENCES

Andreu, R.C. and S.E. Madnick [19771 "A Systematic Approach
to the Design of Complex Systems: Application to
DBMS Design and Evaluation," CISP Research Report #32,
MIT, Sloan School of Management.

Andreu, R.C. [1977] "Solvinq Decomposition Problems:
Alternative Techniques and Descripition of Supportinc
Tools," CISR Technical Report #2, MIT, Sloan School of
Management.

Golden, B. and T.L. Maqnanti [1982] Network Optimization,
forthcoming.

Hartigan, J.A. [1975] Clusterina, Algorithms. New York:
John Wiley.

Huff, S.L. and S.E. Madnick [1978] "An Extended Model for a
Systematic Approach to the Design of Complex Systems,"
CISR Technical Report #7, MIT, Sloan School of Management.

Huff, S.L. [1979] "A Systematic Methodoloov for Desioning
the Architecture of Complex Software Systems,"
Unpublished Ph.D. Dissertation, MIT, Sloan School of
Management.

Lattin, J.M. [1981] "Partitioning the Corporate Network,"
Presented to the Annual Meeting of the Classification
Society in Toronto, June 1981.

Levine, J.H. [1972] "The Sphere of Influence," American
Sociological Review, v. 37, pp. 14-27.

McCormick, W.T., P.J. Schweitzer, and T.W. White [1972]
"Problem Decomu)osition and Data Reorganization by a
Clustering Technique," Operations Research, v. 20,
No. 5, pp. 993-1007.

Ross, G.J.S [1969] "Minimum Spannina Tree, Algorithm AS12,"
Applied Statistics, v. 18, pp. 103-104.

Sangiovanni-Vincentelli, A., L. Chen, and L.O. Chua [1977]
"An Efficient Heuristic Cluster Algorithm for Tearina
Large-Scale Networks," IEEE Transaction on Circuitsand Systems, v. CAS-24, No. 12, pp. 709-717.

Tunq, Pei-Ti [1980] "A Systematic Approach to Complex System
Design: An Application to Printed Circuit Board Test
System Desiqn," CISR Technical Report #13, MIT, Sloan
School of Management.

Wong, M.A. [1980] "A Graph Decomposition Technique Based on
a High-Density Clusterinq Model on Pranhs," CISR Technical
Report 414, MIT, Sloan School of MinatT(ment.

61

l I"1

