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hat will exhibit key characteristics of good design: strong coupling

-~ among requirements within subproblems and weak coupling between subproblems.

" This report documents the implementation of an efficient graph
partitioning technique based on a high-density clustering model. The new
method identifies the ™high-density regions® in the graph, which are sets of
functional requirements exhibiting a relatively high degree of inter-
dependency, and associates them with the different subsets of the design
problem.—

- The new technique, as currently implemented, is applied to several
problems from the design literature. The results indicate that the proposed
approach gives solutions that are conceptually and intuitively appealing, and
that these partitions are consistent with the currently accepted decomposi-
tions. Although direct comparison with computational requirements of other
partitioning procedures is difficult due to different machine implementations,
the empirical evidence suggests that the new method is useful for decomposing
design problems too large for the procedures currently in use.

A

e a m e e e e e — oDV




—_— ki tbutitthob s e - - Waisidcauiiiiipe. ome - Lo i 1o 02 S i

EXECUTIVE SUMMARY

Complex design problems are characterized by a multitude
of competing requirements. System designers frequently find
the scope of the problem beyond their conceptual abilities,
and attempt to cope with this difficulty by decomposing the
original design problem into smaller, more manageable
subproblems. In the SDM research effort, a systematic
approach has been proposed for the decomposition of the set
of functional requirements of a design problem into subsets
(called subproblems) to form a design structure that will
exhibit key characteristics of good design: strong coupling
among requirements within subproblems and weak coupling

between subproblems.

This report documents the implementation of an efficient
graph partitioning technique based on a high-density
clustering model. The new method identifies the
"high~density regions"™ in the graph, which are sets of
functional requirements exhibiting a relatively high degree
of interdependency, and associates them with the different

subsets of the design problem.

The new technique, as currently implemented, is applied
to several problems from the design literature. The results
indicate that the proposed approach gives solutions that are

conceptually and intuitively appealing, and that these




partitions are consistent with the currently accepted

decompositions. Although direct comparison with
computational requiresments of other partitioning procedures
is difficult due to different machine implementations, the
empirical evidence suggests that the new method is useful for
decomposing design problems too large for the procedures

currently in use.
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1. INTRODUCTION

The Systematic Design Methodology (SDM) was introduced
to provide structure for the early stages of the design of
complex software systems (Huff [1979]). The third stage of
the SDM involves dividing the overall set of functional
requirments for a given design problem into subsets for
further analysis. 1In order to limit the conceptual
complexity of the design task as much as possible, thess2
subsets are chosen to be mutually exclusive and collectively
exhaustive, and to have the property that requirements
between subsets are minimally related. The system designer
subsequently employs these objectively determined "sub-tasks”
and interprets the links between them in order to improve the

outcome of the architectural design.

Wong [1980] reviewed several existing techniques for
decomposing the graph representation of the design problenm,
in which each functional requirement of the design problem
corresponds to a node and each interdependency to a
(weighted) arc in the graph. He found that each of the
techniques had some significant shortcoming with respect to
the goals of the SDM. In short, they suffered from one or

more of the following limitations:

1. The technique required a predetermined number of

subgraphs.




2. The technique was incapable of solving problems with
a large number of nodes in a reasonable amount of
time.
3. The technique operated to optimize some
goodness—of—partition criterion that tended to be
biased toward extreme solutions (either partitions ;

with many small subgraphs or a few well-balanced

ones) .

Wong (1980] went on to propose a partitioning technique
based on a high-density clustering model on a graph, offering

the following motivation for its use:

1. The clustering model identifies the regions of "high-
density" (sets of nodes that are highly

interconnected) in the graph and thereby suggests to

the system designer an appropriate number of
subgraphs for the decomposition. k
2. The high-density clustering algorithm utilizes a

max imum spanning tree formulation, which operates

very rapidly on large design graphs (which tend to

be relatively sparse).

3. The clustering model does not rely on a
goodness-of~partition measure that might tend to
favor extreme partitions.

while the report presents some limited examples demonstrating

the potential of the model and its conceptual appeal, it does




not offer a procedure to determine a partition for the graph

based upon the high-density clustering model.

To answer that need, this paper extends and formalizes
Wong's partitioning scheme, suggesting an efficient procedure
for finding the appropriate partition from the high-density
regions of the graph. The approach involves the construction
of a maximum spanning tree using only the nearest-neighbor
densities, and therefore operates as rapidly as the
high-density clustering algorithm. The balance of this paper
documents the implementation of the partitioning method, and
evaluates its performance with respect to existing
decomposition methods used in the design literature. The
method is applied to several design problems, including some
in the neighborhood of 200 nodes. In each case, the
high-density partitioning technique produces a solution in
less than a second of computer time that is largely

consistent with the accepted "best" existing partition.

The paper follows in ssveral sections. Section 2
reviews the high-density clustering methodology proposed by
Wong [1980]. The next three sections outline the
implementation of the high-density partitioning technique:
section 3 focuses on the calculation of the arc densities
Section 4 discusses the maximum spanning tree algorithm (MST)

for forming the high-density clusters and for producing the

appropriate partition from the high-density regions, and




section 5 discusses a method for adjusting the partition in
order to achieve a minimum number of noedes in each subgraph.
Section 6 presents the results of applying the high- density
partitioning technique to five design problems from the
literature, ranging in size from 22 to 250 nodes, and section
7 concludes the paper with some directions for further

investigation in support of the design process.




2. FORMALIZATION OF THE HIGH-DENSITY TARTITIONING TECHNIQUE

2.1 Review of the Wi i, -pensity Clustering Model

For a given graph G = (N,A), where N is the set of nodes

in G and A is the set of arcs connecting the nodes in G, Wong
proposes that clusters on a graph are the "densely-connerted
subgraphs separated from other such subgraphs by relatively
few cross links" (Wong [1980], p.8). To identify such
clusters, he defines the concept of a density on the arc
between any two nodes. For an unweighted graph, this concept

of density is operationalized as follows:

di' = the number of nodes in the neighborhood of node i i}
and node j divided by the number of nodes in either ?ﬁ

the neighborhocod of node i or the neighborhood of

node j 4
1
that is i
X
lNi N N.|

(1) a,, = ——3_ for all (i,3j) € A
1] v, v $
5
where r
Ni = the neighborhood of node i, 7
4
Nj = the neighborhood of node j, and ‘

| . | gives the cardinality of the enclosed set.

For the purpose of this paper we define the neighborhood of a

node i, Ni’ to be node i and the set of all nodes in N ;

directly linked to 1 (i.e. N, = {i} + {[keN| (i,k)eA}).

1




Depending upon the application, however, it might be
desirable to extend the neighborhood concept beyond the
nearest-neighbor to two removes; that is, Niz) = {i} + { ke
Nl (j,k)eA for all jENi}, where N, is the neighborhood of
node i at one remove (as defined above). Such an extension
might provide a more accurate picture of the high-density
regions of the graph, but might also involve a prohibitive
amount of computation.

For a weighted graph, Wong extends his definitioﬁ of
density by weighting each of the nodes in the numerator:
weighting nodes i and j by wij’ and weighting each node k by
the average of Wik and wkj' Thus, for a weighted graph, the

density measure becomes:

2w, . +1/2 I (W., + w, .)
1] keC ik k3

lNi U le

(2) dij =

where C = {keNi (i,k) and(k,j)eA}.

Because C = N; N Nj - {i,j}, when W 4

equation (2) is equivalent to the density calculated for an

= 1 for all (i,3)eA,

unweighted graph:

2 +1/2 p) (1 + 1)
keC

IN, UN
1

dij -
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Thus, it is possible to use the more general equation (2) to
calculate the arc densities for both weighted and unweighted
graphs. A similar measure is proposed by Andreu[1977], but he
does not generalize it to include weighted graphs.

With density thus defined we can examine a graph for
sets of nodes where the densities between pairs of nodes are
particularly high: these regions of the graph are the

high-density clusters. More formally, a high-density cluster

at level d* is a subgraph S where S is a maximally connected
set whose nodes are connected by links with density at least

d*, The value d* thus defines a density contour by

delimiting the high-density clusters at level d¥*,.

Figure 1 shows an example of a graph with 13 nodes and
20 unweighted links connecting them; the arc densities are
shown in parentheses. The heavy lines in the figure
represent a density contour that identifies three high
density clusters at level 4* = ,60: {1,2,3}, {4.5,6,7}, and

{9,10,11,12}. 1In any one of these subgraphs, each node is




connected to any other node in the subgraph by some chain of
links of density .60 or higher.

Figure 1 here

By likening the density contours on a graph to the
altitude contours of a map, the hierarchical (or tree)
structure of the high density clusters is apparent. At very
high altitudes, only very small regions of the map (such as
mountain peaks) are enclosed within the contours at that
level. Similarly, at very high densities, there are
relatrively few groups of small size that are linked at that
level. Just as a lower altitude contour encompasses the
entire region of the contour above it, so does a lower
density contour encompass all the nodes of the contour above

it.

Figure 2 shows the 13 node example with three distinct
density contours, demonstrating the structure described
above. At level d4* = .50, the contour drops below the
density level of the region separating the second and third
subgraphs. These two subgraphs and node 8 thus joins to form
one high-density cluster of nine nodes at level d* = ,50. As
the level reaches d* = .40, node 13 joins this group of nine.
Thus, at level d* = .40 the entire graph is included in only

two high-density clusters as shown in the figure. Below d* =

-y




Figure 1

Example showing the three high-density
clusters at level d* = .60




.29, which is the region of lowest density, the entire gragh
forms a single cluster.

Figure 2 here

In his report, Wong introduces the notion of a minimal

branching cluster: a maximal high-density cluster at some

level d* that has not been formed as a result of the merging
of two or more clusters that are distinct at some level
higher than d*. Stated more formally, for a high-density
cluster S to be a minimal branching cluster, there must exist
no more than one high-density cluster within S for every
level d*e(0,1.0]. (That is, a branching cluster S has the
property that every cluster properly including S contains
some other cluster entirely disjoint from S). Thus, (1,2,3}
is a minimal branching cluster, but {4,5,6,7,8,9,10,11,12} is
not, because it is formed when {4,5,6,7} and {9,10,11,12}
merge., The notion of a minimal branching cluster plays an
important conceptual role in determining the appropriate
partitioning scheme for a graph. 1If no more than one
branching cluster exists for a particular graph, it might
indicate that the graph (and the problem it was designed to
represent) does not exhibit a structure appropriate for

partitioning.

10
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d* = .60 \d* = .60

d* = .29 d* = .40

Figure 2

Example demonstrating the tree-like nature
of the high-density clusters on a graph




Though the representation of the high-density clustering
tree in Figure 2 is highly informative, it is not a
convenient representation for a graph with a large number of
nodes and arcs. Attempting to draw several hundred nodes and
their interconnections is a difficult and frustrating task,
and the result ends up obscuring more than it reveals. For a
more concise representation, we appeal to the standard
clustering tree output shown in Figure 3. (For more
information on this form, see Hartigan [1975]).

Figure 3 here

As reported by Wong, the algorithm for finding the
clustering tree in Figure 3 is a maximum spanning tree
algorithm, which is fully described in Section 4 of this
report. The algorithm produces the tree very rapidly, and
the output provides a convenient display of information about
the node membership of the high-density clusters.

2.2 Choosing a Partition Based on Branching Clusters

What remaincs to be done is to choose a partition of the
graph based on the high~density clustering model. As we have
seen, this is not necessarily best done by choosing the
high-density clusters at the highest level d* such that all
nodes in the graph are included in some cluster. In the 13

node example of Figure 1, the level d* must be at most .40 in
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order to include each of the nodes in the graph in either one

of two clusters: {1,2,3} or {4,5,6,7,8,9,10,11,12,13}.
However, the fact that the larger subgraph includes two
minimal branching clusters suggests that it should be

partitioned further.

This leads us to focus on the minimal branching clusters
to suggest the appropriate partition., 1In many cases,
however, the branching clusters do not indicate a
collectively exhaustive set of nodes. 1In the 13 node
example, the three branching clusters include neither node 8
nor node 13. Wong proposed to solve this problem by
assigning each "leftover" node to the branching cluster
containing the node with the highest density link to the
leftover, but suggested no procedure for extracting these

branching clusters and determining the assignments.

It is important to note that the clustering tree
representation does not provide sufficient information to
make these assignments. From Figure 3, we know only that
node 13 joins {4,5,6,7,8,9,10,11,12} at level 4* = .40, but
nothing about its connectivity to either one of the branching
clusters {4,5,6,7} or {9,10,11,12}. 1In order to make such an
assignment, we must generate additional information on the
nearest neighbor (in terms of densities) of each left-over
node. Even with nearest neighbor information, it may be

difficult to resolve an assignment. Node 8 in the 13 node




graph is clearly a "toss-up" node in that it might just as
well be assigned to {4,5,6,7} as {9,10,11,12}. The
additional information necessary to place this node correctly
must come from the system designer in a later stage of the

SDM.

To identify the appropriate partition (i.e. wusing the
minimal branching clusters as subgraphs and assigning L
leftover nodes to them), we use the following approach, which
uses the information provided by the nearest-neighbor links.
First, any link between two nodes is defined as a

nearest-neighbor link if one node is the nearest-neighbor (in

terms of density) of the other. Then, all other links that

are not nearest neighbor links are removed from the graph,

revealing a mutually exclusive, collectively exhaustive set
of connected subgraphs that form the appropriate partition 3
{see figure 4). The computation is done by applying the
max imal spanning tree algorithm to the nearest-neighbor

densities (described in section 4.3).

Figure 4 here

In order to demonstrate why the approach described above
geaerates a partition that corresponds to the minimal
branching clusters within a graph, we appeal to the necessary

condition for a branching cluster and utilize the 13 node

o

15




Nearest- Density

Node  Neighbor*  of link ¢
|
1 2 (1.0) !
- indicates a nearest- 2 1 (1.0) !
neighbor link between 3 1,2 (.75) ;
two nodes’ 4 5 (.80) :
5 6 (1.0) i
..... -« - indicates a link in 6 5 (1.0) 1
graph that is not a 7 5 (.67) I
nearest-neighbor link 8 7,9 (.50) |4
9 10 (.67) F
10 9 (.67) ‘

N 10 (.60)

12 10 (.60)

13 11,12 (.40)

* in case of a tie, the nearest-
neighbor is the node with the
lowest number.

Figure 4

Partition revealed by the nearest-neighbor densities
for the 13 node example




example as an illustration. (Figure 4 shows the list of
nearest-neighbor links for the 13 node graph, and the
partition determined by these nearest-neighbor densities).
First, we can assert that any subgraph in a partition
generated by the approach outlined above cannot include nodes
from more than one branching cluster. 1If this were the case,
there would be a nearest-neighbor link between two nodes of
differaent branching clusters. Clearly, this is impossible,
as it would imply that each node is closer (in terms of
densities) to the other branching cluster than its own. We
can also assert that any subgraph must contain at least one
full branching cluster. If there were some subgraph of the
partition containing less than the full number of nodes from
a given branching cluster, then the omitted node {or nodes)
would have no nearest-neighbor link to any node in the
branching cluster. Clearly, this would imply that the
omitted node would link first to some other node before
linking to the rest of the branching cluster, which is
contrary to the property of a branching cluster stated above.

The partition tree output for the 13 node example is shown in

Figure 5.

Figure 5 here

- =

The calculation of arc densities and the formation of

the clustering and partition trees are the principal routines
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in the high-density partitioning technique of the SDM. The
next sections describe their implementation in FORTRAN IV on
an IBM/370, and discuss the order of work required to perform
each. The fifth section introduces a fourth routine that
adjusts the subgraphs in the partition according to a minimum
subgraph size constraint. The result 1s a heuristic that
merges "nearest-neighbor subgraphs" in order to avoid a large

number of very small (e.g. two-node) subgraphs.

Armed with a full clustering hierarchy and a suggested
partition, we can present the system designer with a great
deal of information, which he can use to validate his
initial assumptions, look for counter-intuitive results, and
further refine his design architecture. The notion of the
"sensitivity" of the decomposition rasults to possible
misspecifications or omissions by the system designers is

addressed in the concluding section.




3. CALCULATION OF ARC DENSITIES

In these next three sections the computational
requirements of a given routine in the high-density
partitioning technique are specified in terms of the number
of nodes and arcs in the graph. Because we are principally
concerned with system design graphs that are typically quite ,*
sparse, it will be helpfl to introducing a measure of the

sparsity of the graph G = (N,A). This measure, k, is simply

the ratio of the total number of arcs in the graph to the

total possible number of arcs.

|a]

INf (N} - 1) / 2

For a ccmplete graph, k = 1.0, but for most design graphs, k
is substantially smaller. Another useful guantity will be
the average number of arcs incident to each node, d, which is
equal to 2|A{/IN| or k (IN|~- 1). Again, for a complete
graph, 4 =IN|- 1, and so increases linearly with |N|. For
design graphs, 4 tends to be much smaller than iN|, and may
increase as J(INI) or even log({N]). Unfortunately, not

enough design problems have been represented as dgraphs to

support such a statement, and so we simply assert that d

increases proportionately with |[N|, albeit a typically small ) !

proportion.

20




3.1 Implementation of Algorithm

The algorithm for calculating the arc densities depends
upon the manner in which the graph structure is stored in the
computer. Because the graph is typically quite sparse, a
node-node adjacency matrix or a node-arc incidence matrix
would be a storage-wasteful representation. 1In order to
exploit this sparsity, we choose a type of forward-star
representation. (See e.g. Golden and Magnanti [(1982]),
Figure 6 shows the internal representation for the 13 node
example (without arc weights) alongside its conceptual
representation. The arc weights are handled in a similar
fashion, stored in a vector WEIGHT LISTS that uses the same

INDEX_VECTOR.

Note that this storage scheme is not the most
parsimonious possible., Because it does not fully exploit the
symmetry of the graph, each arc in G is stored twice, thereby
requiring 2|Al storage locations. Nonetheless, this extra
storage space permits a significant computational
simplification of the density calculation. The conceptual
representation in Figure 6 shows that for each node i in G we

have immediate access to the list of nodes in Ni in sorted

order. This enables us to determine rapidly the intersection

T e liae
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and tne union ot the neighborhoods of any two nodes for use

in equation (2), repeated below:

2w, . + 1/2 z (w., + w,_.)
a - 1] keC ik k3
ij
INi U Nj{

The algorithm for calculating arc densities is stated

below:

STEP 1: Set i =1

STEP 2: 1Identify the list of nodes directly connected to
node i, and denote it ILIST. This list of values
will be a segment of NODE LIST with indexes from
INDEX_LIST(i) through INDEX LIST(i + 1) - 1. Set j
= first node in ILIST (at index position

INDEX LIST(i)).

STEP 3: 1Identify the list of nodes directly connected to
node j, and denote it JLIST. This list of values
will be a segment of NODE LIST different from ILIST
running from index position INDEX-LIST(j) to

INDEX LIST(j + 1) - 1,

STEP 4: Set NODES_IN COMMON = 0
Set SUM _WEIGHTS = 0

Systematically compare the contents of ILIST and

23




JLIST. If a node is common to both, appearing in
index position ki in ILIST and in position kj in
JLIST, do:

a) Set NODES_IN COMMON = NODES_IN COMMON + 1

b) Set SUM WEIGHTS = SUM_WEIGHTS + 1/2

(WEIGHT_LIST(k;) + WEIGHT_LIST(k,))

STEP 5: Find wij in WEIGHT LIST using the index position of
node j in ILIST.

Set UNION = INDEX-LIST(i + 1) - INDEX-LIST (i) +

INDEX-LIST(j + 1) - INDEX LIST(j) - NODES_IN_COMMON

set a;. = 2w, + 1/2 (SUM_WEIGHTS)

J

UNION

STEP 6: If all nodes connected to node i have been
considered (i.e. 1if dij has been calculated for
all nodes j directly connected to node i), GO TO
STEP 7. Otherwise, set j = next node in ILIST and

RETURN TO STEP 3.

STEP 7: If i = IN] , STOP. Otherwise, set i = i + 1 and
RETURN TO STEP 2.
Figure 7 illustrates steps 4 and 5 of the algorithm for node

i = 4 and node j = 7.
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Figure 7 here

3.2 Computational Requirements

The routine for calculating arc densities shown above is
potentially the most time-consuming of the entire
high-density partitioning technique. The density calculation
must be completed for every arc in the forward star

representation, a total of 2|A| iterations. Each density

calculation involves a systematic comparison of two lists of
nodes of average lengths 4 = 2|A|/iN|. Because these lists
are sorted, a careful implementation requires only O(|A}/IN])
comparisons. Thus, the total amount of work involved is

proportional to (lAlz/N).

The order of work required to calculate the arc
densities is shown below in terms of the average number of

arcs incident to each node, d:

alal® /N = (2|al/|n])2]AD

= k(|N] - Dk(|N])(|N] = 1)

it

[k(|N| - L)Iik(IN] - 1)1 |N]|
2|n|

For a complete graph, where k = 1.0, the amount of work

required approaches |N|3. flowever, due to the sparsity of
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the graph in most design problems, the order of work is
typically much smaller. 1If 4 increases as v(lNl), as we
speculated above, then the amount of work required is only
|N|2; if d increases as logl|IN|, the requirements are even
smaller. Because our experience with design graphs is
insufficient to support such claims, we assert only that the ;
computational requirements for the calculation of arc
densities are proportional to lAlzl/Nl or k2|N|3, where k is

typically a small fraction.
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4. MAXIMUM SPANNING TREE ALGORITHM

4.1 Formation of the High-Density Clustering Tree

The routine for computing the tree of high-density
clusters follows guite closely the maximum spanning tree
algorithm outlined by Wong [1980] and appearing in Ross '
{1969] and Hartigan [1975]. The algorithm uses the
forward-star representation of the graph stored in INDEX LIST
and NODE LIST, as well as the vector of arc densities, and
forms a type of linked-list vector representation of the
clustering tree, a vector of nearest-neighbors, and a vector
of nearest-neighbors-within-tree. The vector of
nearest-neighbors is later used to form the partitioning tree
(described in part 4.2), while the vector of
nearest-neighbor-within-tree is used in the heuristic to
adjust the size of the subgraphs in the partition (described

in section 5).

Figure 8 illustrates the vector representation of the
clustering tree for the 13 node example. Arbitrarily, the
tree is rooted (or anchored) at node ! of the graph. The
number of the node adjacent to node . with the highest
density is then stored in TREE LIST(l) and the density on
that arc is stored in the corresponding position in the
vector TREE DENSITIES. In the 13 node example, node 2 has
the highest density link to node 1l with d1'2= 1.0. Once

these values are stored, all the nodes adjacent tn node 2 are




scanned, and the node closest to either node 1 or node 2 not

already in the tree is added by storing that number in

TREE_LIST(2). The process continues until all nodes have

been added to the tree.

Figure 8 here

The algorithm for forming the high-density clustering
tree as well as the vectors of nearest-neighbors (NN LIST)

and nearest-neighbor~within-tree (NNWT LIST) is stated below:

STEP 1: Set NN _LIST and NNWT_LIST blank
LNE (Last Node Entered ) = 1

Set T = {LNE} where T = set of all nodes in the

clustering tree.

STEP 2: Identify the list of nodes adjacent to the LNE, and

denote it LNE LIST.

STEP 3: For each node j in LNE LIST, do:

a) If the density on the arc between node ] and
LNE is greater than the density between node
and any node scanned so far (i.e, dJreater

than the density on the link between j and

NN LIST(J)), then set NN LIST(}) = LNE.

Y




ANCHOR NODE TREE LIST TREE DENSITIES
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@ > 2 2 1.0
2 3 .75
3 4 .29
4 6 .80
5 7 .67
6 5 1.0
7 8 .50
8 9 .50
9 10 .67
10 12 60
1 13 40
12 1k 60
13 X X
. . .
[} . ’
' . ’
)
) ]

Figure 8

Vector representation of clustering tree

1




b) It node ; ¢T and the density between node j and I
LNE is greater than between node j and any
node scanned so far (i.e. 4greater than the
density on the link between j and
NNWT LIST(j)) then set NNWT LIST(j) = LNE.

c) If node j#T and the density on the arc between
node j and LNE is greater than any previous

link in the clustering tree to node j (i.e. ;‘

greater than TREE_DENSITIZES(j)), then set
TREE DENSITIES (3J) = dj,LNE'

STEP 4: Search TREE DENSITIES for the highest entry among

i

nodes T and set NNE(Next Node Entered) equal to #
number of the node for that entry. L

STEP 5: Set TREE_LIST(LNE) = NNE i
Set T = T + {LNE}

[f T = N STOP. Otherwise, RETURN TO STEP 2.

Figure 9 shows "snapshots" of the vectors being built by
the clustering tree algorithm. Each one of the four
snapshots is taken at an iteration of the algorithm just
before STEP 4, when the vector TREE DENSITIES is searched to
determine the next node to enter the clustering tree. In the
fourth iteration, the last shown in the figure, node 4 enters

the tree. To indicate this, the number 4 is stored in

TREE LIST at the position of the last node entered, which is




3, and an 'X' appears alongside position 4, Node 4 now
becomes LNE, and the list of adjacent nodes {3,4,5,6,7} is
considered in STEP 3 of the algorithm. Node 3, which is
already in the tree, clearly does not have a higher density
link to node 4 (LNE) than to node 1 (compare d3’4 = .29 to
NNWT DENSITIES(3) = .75) so no change occurs. Nodes 5,6, and
7, however, have not yet been considered, and so the
corresponding densities are entered as shown in the fourth
snapshot. The algorithm continues in this manner through [N/
- 1 iterations, at which point all the vectors in Figure 9
are complete,

Figure 9 here

4.2 Computational Requirements

The max imum spanning tree algorithm outlined above i3
very rapid. The algorithm involves a3 total of IN| -1
iterations. Each iteration must consider the list of arcs
adjacent to the last node entering the tree, which is of
average length d. Thus, the amount of work required is
proportional to d{IN]- 1) or roughly 2/Al. Rejardless of
the nature of the graph, this is never more than INIZ, and
for the design graphs in question it is significantly less.
While the order of work might be as small as |N13/2 or aven

{NtlogIN|, we assert only that the computational reguirements

are proportional to [a]| or k|N|2, where k is typically a
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small fraction,

4.3 Formation of the Partition lree from Nearest Neighbor

Densities

The same algorithm that generates the high-density
clustering tree can also be used to produce the partition
tree by applying the nearest-neighbor densities as described
above in Section 2. Figure 10 shows the nearest-neighbor
densities for the 13 node example in the form used by the
max imum spanning tree algorithm. Once these densities have
been put into the form shown in the figure, the computational
requirements for forming the partition tree are the same as

those stated for the high-density clustering tree.
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Representation of nearest-neighbor densities
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5. ADJUSTMENT OF SUBGRAPH SIZE

5.1 Implementation of Heuristic

When the number of nodes in a graph is substantial, the
number of subgraphs in the resulting partition may also be
gquite large. It is often desirable to reduce the number of
small subgraphs in a given partition in order to simplify the
task of interpreting the interactions between all pairs of
subgraphs. We choose to do this by merging
"nearest-neighbor-subgraphs” until each subgraph or modified
subgraph meets a minimum size constraint. We do this
heuristically, examining each subgraph to see that it meets
the minimum specified size and, if it does not, choosing a
"central" node and merging the subgraph with the next
subgraph closest to this central node. This merging process
is not perfect, as the choice of a central node is not always
well defined. Nonetheless, the method is quite fast, and in
the end the system designer has recourse to the partition

tree supplied by the heuristic.

The partition tree for the 13 node graph before subgraph
modification is shown in Figure 11. This information (along
with the clustering tree and the nearest-neighbor lists) is

used in the modification heuristic outlined below:
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Partition formed by maximum spanning tree
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37

e i ey =




STEP 1: Let M be the minimum permitted size of a subgraph in
the partition. Set NUM equal to the number of
subgraphs in the partition. Set CURRENT SUBGRAPH =

1.

STEP 2: <Check the subgraph size of CURRENT_SUBGRAPH. If
SUBGRAPd_SIZE (CURRENT_SUBGRAPH)> M, GO TO STEP 6.

Otherwise continue.

STEP 3: Locate the first node in SUBGRAPH_LIST that is an
element of CURRENT SUBGRAPH, and subsequently
locate the position of this node in the partition

tree.

STEP 4: From the current position in the partition tree read
"up" and "down" within CURRENT_SUBGRAPH in order to
find a node adjacent to the highest density link in
the subgraph. Denote this node CENTRAL NODE and
subsequently locate its position in the clustering

tree.

STEP 5: From the position of CENTRAL NODE in the clustering
tree, do:
a) Read "up" in the tree until a node from a
subgraph other than CURRENT_SUBGRAPH is found,
and note the density separating this node from

CURRENT_SUBGRAPH.




b) Read "down" in the tree in the same manner as
in (a) above.
If the density found in (a) is greater,
then merge CURRENT SUBGRAPH of the node which

is the nearest-neighbor of CENTRAL NODE within

the tree (i.e. NNWT _LIST(CENTRAL NODE)).

If the density found in (b) is greater,
then merge CURRENT SUBGRAPH with the subgraph
of the node reached by reading "down" in the

clustering tree.

Accomplish the merge by reading through
SUBGRAPH_LIST and replacing every occurrence
of CURRENT _SUBGRAPH with the number of the new
subgraph. Then, set SUBGRAPH SIZE (new
subjraph) = SUBGRAPH SIZE (new subgraph)+
SUBGRAPH_SIZE (CURRENT_SUBGRAPH). Set NUM =

NUM - 1.

STEP 6: If CURRENT SUBGRAPH is the last in the partition,
STOP. Otherwise, set CURRENT_SUBGRAPH =
CURRENT_SUBGRAPH + 1 and RETURN to STEP 2.

In the current implementation of th.s routine, we arbitrarily

establish the minimum subgraph size M as follows:




M=L[N| /10_] + 2

where [a‘jequals the greatest integer part of o . An

interactive subroutine enables the system designer to vary
the size of M in order to achieve different modifications of
the partition.

5.1 Computational Requirements

On average, the heuristic presented above is guite

rapid, as it needs only modify the subgraphs which have fewer
than M nodes. In the worst case, there might be as many as S

=IN]/ 2 subgraphs, each with two nodes. If it turns out that

each of the subgraphs 1,2,3...,5-1 merge with subgraph S,
then the heurstic might involve as many as (IN]|/ 2) -1 k
iterations. Each iteration involves searching three lists of T
dimension [N|, and modifying a fourth list also of dimension t
IN]. Thus, in the worst casz, the amount of work required to
modify the partition is at most proportional to lle. 3
Experience with several real design graphs sugdgests, however,

that the number of subgraphs modified is quite small, and the

computational requirements are minimal.




6. PERFORMANCE OF THE PARTITIONING TECHNIQUE ON REAL DESIGN

' GRAPHS

The following section presents the results of applying
the High-Density Partitioning Technique to five real design
problems taken from the graph decomposition literature,
ranging in size from 22 to 77 functional requirements. For
each one of the five design graphs, we present the existing
decomposition and the high-density partition and note the
significant similarities and differences. We also present
computational results from the new method on graphs of up to

250 nodes, and, when available, the results from other

decomposition techniques.

We conclude from our comparison that the new technique
is a useful heuristic that enables systems designers to better

focus on the global properties of their design specifications.

. A_'__‘

The high-density partition provides the designer with infor-
mation with which he can check his initial assumptions and i
further refine his design architecture. 1In some cases, the

high-density clustering solution reveals opportunities in the

definition of the design sub-tasks clearly missed by the other
methods employed. In all cases, the new technique renders
a solution well in the "ballpark” of accepted decompositions,

and does so faster than other existing methods.

6.1 Database Management System: Unweighted Interdependencies

Andreu and Madnick [1977) outlined the design of a

pE——r—

database management system (DBMS). They listed 22 functional

A1




requirements, (e.g. minimal data redundancy, rapid data
reference, and unambiguous gJguery language) and 39 unweighted

interdependencies in their design problem. Andreu [1978]

used a variety of hierarchical clustering techniques and an
iterative partitioning approach to produce several
decompositions of the design graph, all of which were

identical to the partition shown in Figure 12.

The decomposition produced by the high-density
partitioning technique is shown in Figure 12 adjacent to the
solution proposed by Andreu, revealing the similarity between
the two. The sets of circled nodes in the figure represant
the original subgraphs of the unmodified partition; the
numbered subgraphs illustrate the result of merging the
original subgraphs to meet a minimum size constraint of M =
P2/1Q1+ 2 =4, The only difference between the two is that
in the high-density decomposition {1,2,3,4,5,56,9,21} is a g
single subgraph, while in the decomposition proposed by |
Andreu it is two subgraphs: {1,2,3,5} and {5,9,21}. 1
Nonetheless, from the output provided by the high-density

partitioning routine, the designer can see that

{1,2,3,5,6,9,21} was formed as a result of merging two

smaller subgraphs to meet the minimum size constraint. 1In

fact, waen M = 3, the two solutions are identical. g
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1 1,2,3,5

2 6,9,21

3 7,13,14,15

4 4,16,17,18,22

5 8,10,11,12,19,20

Partition proposed by
Andreu [1978]

pa—]

@D

2 (7,13,14,15 )
3 4,16,17,18,22

¢ GID(0.11,19,20)

Solution generated by high-
density partitioning technique
{(for M = 4)

Figure 12

Andreu and Madnick's [1977] 22 node (unweighted)
Database Management System design problem
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Huff and Madnick's [1978] adaptation

of Andreu's 22 node DBMS design problem




Figuré 14

Huff's [1979] presentation of the 22 node
NRMS nroahblem
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storage characteristics and requiraments; in the high-
density partition node 21 is includesd with the nodes
representing the requirements for logical organization and
relationships among data. The final decision on the
appropriate placement of such a functional requirement within
a sub-task must rest with the system designer.

6.3 The Alrport Design Problem

McCormick et. al. ([1972] used a 27-node airport design
problem to illustrate the effectiveness of their Bond Energy
Algorithm (BEA). The results are shown in Figure 15. The
BEA does not suggest mutually exclusive, collectively
exhaustive sets of functional requirements, but rather
identifies overlapping "clumps" of interrelated requir=ments.
The system designer must subsequently decide how best to
divide these requirements into sub-tasks. McCormick reports
that the BEA required approximately 60 CPU seconds for a CDC
1604 computer to rzach solution for the 27-node graph. The
high-density partition for the airport design problem is
shown next to the Bond Energy solution in Figure 15. The
subgraphs are ordered from top to bottom so as to correspond

as closely as possible to McCormick's presentation and

facilitate comparison.
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Though both solutions present an intuitively appealing
decomposition of the design problem there are some
significant differences between the two. McCormick inclues
node 18 (Concessions) with 25 (refuse removal) and 27
(aircraft service on apron). In the high-density partition
node 18 joins a group of nodes representing passenger
information and check~ins. Examining the connectivity of
node 18, we find that it has links to two of the nodes in the
subgraph suggested by the high-density partitioning
technique, while it has one double-weighted link to a node in
the subgraph suggested by the Bond Energy Approach. In
general, the bond energy objective function is best improved
by preserving the weighted links at the expense of severing a

number of smaller links.

In another illustration of the difference between the
two proposed solutions, the BEA joins nodes 11 and 12
(service area and parking lots for rental cars) together in a
subgraph with node "~ (rental desk), while the high- density
solution includes nodu 1 and 12 with 7 (close parking
lots), 9 (main access road), an 10 (circulation roads). It
turns out that only node 12 is linked to node 19; however,

nodes 11 an 12 have three links to {7,9,10}. 1In general, it
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Figure 15

McCormick et. al. [1972] solution to
the Airport Design Problem
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seems that the diagonalization process used by the BEA may
not always be appropriate for positioning pairs or small

groups of heavily-linked nodes as part of a larger subgraph.

The high-density technique required about 0.15 CPU
seconds on an IBM/370 168 to read the data, calculate the arc
densities, compute the clustering and partition trees and
adjust the partition for the minimum subgraph size
constraint. This is a 400-fold improvement over the
computational requirements of the BEA for the same problem
though it is not strictly legitimate to compare performance
results across machines. However, McCormick reports that for
a graph of IN| items the number of operations in
IN|3, taking to account of the sparsity of the graph. For
the high-density technique, the number of operations

2INI3, where k2 = .075 for the airport problem.

increases as k
For sparse design graphs with very large [N]|, McCormick's BEA
is at a significant computational disadvantage.

6.4 The Design of a Printed Circuit Board (PCB) Test Facility

Tung [1980] outlined 69 functional requirements for the
design of a PCB Test Facility. Due to the rather technical
nature of the test facility, the reader is referred to Tung's
report for explanations of the requirements and
interdependencies. The decomposition proposed by Tung, based
on a time-consuming ad hoc search to determine the best value

for Huff's measure of merit (see section 6.2 above) appears
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in Figure 16 below.

The high-density partition of the PCB Test Facility
design graph is shown in Figure 16 adjacent to the solution
proposed by Tung. Due tco the significant size of this
problem, it is difficult to accurately assess the similarity
of the two results by simply scanning them. At the lowest
level of grouping presented in the high-density partition
{(indicated by the circled groups of nodes in the picture),
these groups are almost always left intact in Tung's proposed
solution. The exceptions are the high-density subgraphs

{16,26,28,29,34,41,42,43} and {46,49,56,58,54,65,66,67}.

At a somewhat higher level of grouping, there are some
disagreements between the two solutions, due to the fact that
partitioning a graph to somehow minimize the collective
weight of the arcs severed is not always consistent with
partitioning a graph through the regions of lowest density.

A good illustration is the appropriate placement of the
completely connected group {44,50,54}. Tung joins this group
with the nodes {37,38,39,40,45,47,48,53,55,59} principally
because all three are linked to node 45 which is in turn
linked to many of the nodes in the same group. The

high-density solution joins this group to nodes {27,30,32,
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1 1,2,7,10,11,12,13,14

(1.2.7,10,1 TDGEDED
(1219 (85,5355

2 5,6,8,9,15,16,17,18,19,20 2 (5,6,15,19,21,22,31,36,51,52,68,69
21,22,23,24,25,26,31,34,36

43,51,52,68,69

3 28,29,41,42 4 16,26,28,29,34,41,42

(98]

5 37,38,39,40,44,45,47,48 6 ( 37,38,407

50,53,54,55,59

6 64,65,66,67

( 46,49,56,58,64,65,66,67 ,
7 46,49,56,57,58,60,61,62,63 l
( 48,59,61 ] 57,60,62,63 ) i

~

8 3,4 8
Partition suggested by Sotution generated by the high-
Tung [1979] density technique.

Figure 16

Tung's [1979] 69 node (weighted)

Printed Circuit Board Test Facility design problem




33,35} because only one of them (node 44) i3 linked to node
33, which in turn is not highly linked. Thus, the density on
the arc between 33 and 44 is relatively high because

IN33 U N44I is small.

Herein lies a significant feature of the high-density
partitioning technique. A node such as node 45 (Good Printed
Circuit Board Simulator) seems to be a focal requirement for
a PCB Test Facility, as it is related to 25 percent of the
other requirements for the system by the concensus of the
designers. Yet node 45 is a low-density node, in the sense
that it is incident to arcs of relatively low density. Thus,
rather than having node 45 exert a significant influence in
the formation of the partition as it might using Huff's
approach, it becomes a "fringe” node in the high-density
partitioning approach and does not appear in the high-density

clusters.

This strategy is appropriate if a node such as node 45
represents a requirement that serves as a "cover-term" for
several subtasks in the design problem. In the example abhove
there may be four or five components of the single
requirement "Good PCB Simulator.” The system designers
should be alerted to the existence of such a node, in order
to best coordinate work among the components of this specifi.

task.
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6S The Budgeting System Design Problem

Huff [1979] applied the entire SDM to the problem of
designing a budgeting system for M.,I.T. He identified 77
functional requirements and 289 weighted interdependencies to
form the system design graph, and used his INTERCHANGE
algorithm to produce the partition shown in Figure 17. Huff
reports no direct computational experience with the 77 node
graph; however, he does indicate that the INTERCHANGE
algorithm implemented in PL/I on the IBM/370 168 required
approximately 9 CPU seconds to decompose a 40-node graph.
Since the INTERCHANGE algorithm requires O(IN|3) operations,
it is quite safe to assume that the 77-node graph requires at

least 18 CPU seconds.

Figure 17 also shows the high-density partition which
required only one second of CPU time to produce. Comparing
the results, the high-density partition seems to have some
clear superiorities. Huff includes node 27 with {5,6,35}
even though it is linked to none of them. The high-density
solution joins node 27 with {53,54,55,67,69,70} because of
its link to nrode 53. The clear superiority exhibited by the
nigh-density approach, however, is the speed, with which the

technique decomposes the design graph.
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Figure 18 summarizes the computational performance of
the high-density technique for the five design graphs
described above and three other graphs taken from the {
literature. The total time is broken down into two L

|
i

components, calculation of the arc densities and calculation

of the clustering and partition trees, in order to

i
f demonstrate the computational dominance of the first. t




‘ 1 7,28,38,56,57,58,59,60,61 1
62,65,66,68,71,76

7,58,59,60,61,62,65,66,68,71,76,44
28,56,57

2 18,19,20,21,22,23,24,25,26 2 ((18,24,25,26,33
29,31,32,33,34,36,39,40 21,29,39,40

0,82
3 5,6,27,35 3 @
4 11,12,14

, 5  16,43,44,45,46,47,48,49,50 4

“ 51,52,64,74
7 9,10,13

)}

9,10,13,38
8  8,64,75

' 9 1,2,3,4,17,30,37 7 (3,2,3,4,17.19,30,30) (2.7
10 72,73
1 53,54,55,67,69,70 8 ((27,53,54,55,67_X69,70 )
Figure 17

Huff's [1979] 77 node (weighted)
Budgeting System Design problem
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DATASET_____ W[4 wow
ANDREU DBMS 22 39 3,55 .02 .03
Hure DBMS 22 39  3.55 .02 .03
SV 25-noDE” 25 44 3,52 .02 .03
AIRPORT 27 3% 7.11 .06 .08
SV 51-NODE - 51 126 4.9 08 .13 ]
Tune PCB 69 203 5.88 .30 .55 | :
SPHERE *** 4 245  6.62 .30 .51
HurF BupGET 77 289 7.5 33 4 *

INDUSTRIAL # 200 ubb 4,66 37 .91

IND.+ Banks # 250 889 7.12 .52 1.71

() CPU secONDS REQUIRED TO CALCULATE
BOTH CLUSTERING TREE AND PARTITION TREE

(B8) CPU SECONDS REQUIRED TO CALCULATE
ARC DENSITIES

* Sangiovanni-Vincentelli et. al. [1977]
** Sangiovanni-Vincentelli et. al. [1977]
*** Jevine [1972]

¥ Lattin [1981]
Figure 18

Computaticnal Results
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7. CONCLJSION

We nave prasented a graph-partit.isoning tecnnigae basoed
on a high-density clustering model. The tecihinigde reguites
no information regarding the number 5{ subjyriaiphs in tne
decomposition, and utilizes no “goodness-of-partition”
measure wh:ich might bias the structure of the outsome. Tno
partitioning technique divides the graph int» Lijh-density
regions, and does so by forming maxiinum spanning trees. The
order of work required to calculate these densitics is

2 _ .

O(lA] /IN]), and the amount of work ragquired to {orm each
spanning tree is proportional to |Al. Thus, the technique
exploits the sparsity typical of design graphs and provides

the system desiygner witn greater computational efficiency.

We also presented cvidence of tne s=2veral advantages of
the high-density partitioning technique by comparing its
performance against other existing methods. For each of five
different design graphs taken from the literature, the
solution generated by the high-density partitioning technigue
was comparable to the partition suggested by the existing
decomposition methods. The speed of the new technique
indicates that it may be useful for partitioning design
problems too large for either McCormick's BEA or Huff's

INTERCHANGE.




Further research in support of the design process should ‘
focus on the "sensitivity" of the structure of the partition
to the specifications made by the system designers. As
design graphs become larger, it becomes less and less
desirable to partition every possible version of the graph
suggested by the system designers. There should be, built
into the high-density partitioning technique, some form of
diagnostic to alert tne designers to changes that might occur
in the structure of the partition due to some small 1
perturbation of their specifications. For example, in the 13
node Jraph presented above, any differential weighting on the
links to node 3 would determine its membership In one of the f?
subgraphs, and it would 1o longer be a “toss-up" node. Such X

a diagnostic, built into the partitioning method, would

provide the desijner witia a flexible, interactive system to
examine the implications of his specifications, look for

counter—-intuitive results, and furthar refine his design. 3
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