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MEASUREMENT AND ANALYSIS OF ECHOLOCATION CLICKS OF
FREE-SWIMMING DOLPHINS (T. truncatus)
IN A TANK WITH ECHO-REDUCING WOOD LINING

INTRODUCTION

The controversy associated with past measurements on dolphin echolocation signals [1,2] and the
recent measurements that show peak energy at much higher frequencies than previously reported [3,4]
indicate that more importance must be placed on the selection and application of hydrophones and
recording and analysis methods for measuring such signals. Variations existing between reported mea-
surements are of such a nature as to suggest that repeatability extends nc¢ farther than an individual
experiment, research activity, or institution. With this in mind, we investigated the effects that result
from using different types of hydrophones and different methods of recording on dolphin echolocation
signals by making some comparative measurements. Our intent was to make a useful contribution
derived from our experience in precision underwater acoustical measurements. ‘hile we ase indeed
able to identify certain measurement pitfalls, the principal purpose of this report is to present measure-
ments that serve to increase the span of reported observations.

DESCRIPTION OF EQUIPMENT

Tank space, the use of experimental animals, and the services of trainers were provided by the
Florida Branch of the Hubbs-Sea World Research Institute, which is a part of the Sea World organiza-
tion in Orlando, Florida. This experiment was located in a rectangular medication tank, about 6 X 9 m
in lateral dimensions and 2 m deep, which was connected at both ends to the main series of animal
tanks and could be isolated by portcullis-type gates. An echolocation task was invented so we could be
sure that the dolphin was actually echolocating when clicks were measured. To shorten the training
time, a simple detection task of requiring the dolphin to detect the presence of an egg-shaped
1.8 x 2.9-cm lead sinker was used. This target was visually masked by lowering it inside a thin-walled,
opaque rubber cup made of B.F. Goodrich RHO-C material. The cup, approximately 3 cm in diameter
by 7 cm deep, had walls approximately 0.2 cm thick and was intended to present a minimum of acoustic
reflection when filled with water. The cup, suspended by nylon monofilament lines, was raised from
and lowered into the water for each trial. The lead target, also suspended by monofilament, was
lowered inside the cup or left hanging above the surface, as called for by the random test schedule.

It was also necessary to eliminate as many as possible of the confusing jumble of echoes coming
from the walls of the tank and to minimize any waterborne noise coming from any animals or other
sources located in connecting tanks. To do this a tank lining of specially constructed wood panels was
developed. Echo-reduction values of about 15 to0 25 dB over the frequency range of 10 to 150 kHz
were achieved. Transmission loss varied from about 10 dB at 20 kHz to 35 dB at 150 kHz. Although
the performance of the lining has been described previously [5], the details of construction and test
results are given here in the appendix. The only large echoes remaining after installation of the lining
were those from the water surface and the tank bottom. Because the dolphins usually swim quite near
the surface when working, the surface echo arrives very early and the bottom echo much later. There
seems to be no practical way to absorb the surface echo. The only operable method is to keep the dol-
phin working deep enough so that the path-length differences between direct and surface-reflected ener-
gies will allow thcm to be separated in time.

Two of the Sea World show-performing dolphins were assigned to this experiment: Domino, an
adult male, who is blind in one eye, and Goofy, an adult female. We elected to make our measure-
ments with the animals in a free-swimming station rather than using a chin-cup or other type of head-
positioning device that could introduce a disturbance in the acoustic field. Our concern here was based
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on behavioral as well as acoustical reasons. Doppler effects and flow-noise masking are possible causes
for modification of echolocation signals. The animal’s position was recorded by an overhead camera
triggered from the rzcording instruments. Depth could be esimated from the photographic data when
the dolphin was not fully submerged or computed from the delay times when a surface echo was
observable.

DESCRIPTION OF RECORDING METHOD

Most experimenters who attempt to record and analyze echolocation signals use some form of
analog magnetic tape recorder. Unfortunately, the frequency range of interest in dolphin echolocation
dictates the use of direct analog recording, which, of all the recording methods available, degrades the
signal most. The intention of this investigation was to make digital recordings and analog tape record-
ings simultaneously to allow direct comparison of the two methods. The chief limitation of our digital
recording method was its short duration. A Nicolet Explorer 111 Digital Oscilloscope was used; it could
store 4096 words of 12-bit length. Using a sample period of 500 ns, we digitized 2 ms, or about one
click. of each click train. The digital recordings were stored on magnetic disks.

EXPERIMENTAL PROCEDURE

For the data presented here, the recording hydrophones were always placed near the cup. In most
of the sessions the hydrophones were spaced horizontally 2.5 to 10 cm from the cup. In two sessions
i%ie two hydrophone: were arranged vertically at depths of 0.5 and | m, with the cup at 0.5 m in front
of the upper hydrophone. This spacing represented a vertical angle of 15° when the dolphin was at a
distance of 1.8 m. The dolphin would be signaled when to begin echolocating by a tone emitted from a
J9 transducer. At the same time the experimenter would enable the trigger of the digital recorder. The
first click te exceed the trigger threshold would trigger the storage operation, the overhead camera, and
a tone-pulse generator. The tone puise was recorded on analog tape 1o place a time reference of the
digital record on the analog record. Date, trial number, tape-reel number, and animal identification
were included in the photographic record. When the animal had finished echolocating, it would signal
its decision by the appropriate behavior, and the cup would be raised in preparation for another trial.
No use was made of information from the detection part of the experiment, except 10 judge that the
animals were coniinuing to make an effort to echolocate.

Two types of hydrophones were used in this investigation to make measurements; both types are
currently used by othe. workets in the field. They are the LC-10, now manufactured by Celesco Indus-
tries, Inc.. and the Bruel and Kjaer Model 8103, two of which were tested. These hydrophones were
calibrated at the Underwater Sound Reference Detachment (USRD) over an extended frequency range
(300 kHz for the LC-10 and 500 kHz for the B&K 8103s). These calibrations are shown in Figs. |
through 3. The calibration charis supplied by the manufacturers are shown in Figs. 4 through 6. 1t is
apparent that the manufacturers’ calibrations do not extend high enough in frequency to give the
potential user a complete picture of the output of these hydrophones, especially when transients are
being measured. It is importatit to note here that these two models of hydrophones are oppositely
polarized. The LC-10 gives positive voltage at its output for an increase in pressure, anc the B&K 8103
gives negative voltage output for an increase in pressure,

The analog tape recorder used was an Ampex PR-2200 with intermediate band heads and elec-
tronics. It was operated at 152.4 cm/s (60-in./s) recording speed using Ampex type 787 tape, and all
possible précautions were taken to insure the lowest noise leve! and 10 minimize crosstalk. A family of
frequency response curves for various input levels is shown in Fig. 7. Overload compression is almost
uniform with frequency. and nie peculiar low-level nonlinearities arc present such as reported carfier
(1]. The tape recorder's passband at 152.4 cm/s (60 in./s) was 300 Hz 10 300 kHy + 3 dB. The
preamplifiers used with the hydrophones were adjusted for a passband of 1 to 300 kliz a1t the 3-dB
points.
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DISCUSSION OF RESULTS

Of approximately 365 recorded trials, we were able to use only 145 in which the overhead photo-
graphs showed the dolphin’s rostrum to be poir.ied toward the immediate area of the target

The only startling information to come out of the hydrophone comparison is the "hidden” fre-
quency response peak already seen in Figs. 1 through 3. The fact that the peak at 260 kHz exists in
both B&K 8103s seems to indicate that it is a characteristic of the design. Users should be aware of the
need to provide low-pass filtering of the output to the bandwidth of interest when observing transients
in the time domain. Any remaining comments that could be made would concern the geometry and
orieniation problems of transient measurements in general: both the source and the receiver should be
as near to mid-depth as possible. When interpreting received signals, beware of overlap between the
direct signal and unwanted echoes. At high frequencies, directivity and surface scattering can distort
echoes so that those arriving close after the direct signal appear 10 be part of a longer, more complex

transient.

The comparison of recording methods revealed just what one would expect: the analog magnetic
tape recorder, when properly adjusted and not pressed too close to the limits of its performance, is &
basic, reliable tool. It suffers from dynamic range limitations, however, and dolphins seem to have no
respect for the shortcomings of our instruments. A comparison of traces for the same click from the
digital recorder and from the analog tape recorder is shown in Fig. 8. The tape-recorded trace seems
much noisier; but a comparison of the spectra, seen in the same figure, shows that most of the noise
energy is concentrated in a narrow frequency range in the upper part of the passband. The digital
recorder does not have sufficient storage to record each click in a given train. Because of this, we had
to rely on the analog tape records to examine a click sequence. The availability of a programmable digi-
tizer would afford a more desirable means of recording these click sequences. This device would store
only a predetermined number of digitized samples {ollowing each trigger signal. [t would require
enough storage to allow time for transferring a block of data to the mass storage medium while it con-
tinued to digitize incoming data.

The peaks and nulls in the frequency response of our various hydrophones (for example. Fig. 3)
made us curious about the effect on the spectra of our click measurements. To determine this effect,
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we adopted an equalization operation in our program in which the frequency response function of the
hydrophone was reduced to a small number of straight-line segments. Figure 9 shows an example of
the approximation to the response of Fig. 3. It wus possible to approximate each hydrophone response
with errors no greater than 1.5 dB over the entire frequency range. The correction constants were
stored in tables used by the program to correct each spectrum sample by the appropriate value. Exam-
ples of uncorrected and corrected spectra may be seen in Fig. 10,

Eel

1.

1.20

0.49

CORRECTION FACTOR

FREQUENCY (H2)

Fig. 9 — Straight-line approximation of B&K model 8103 transducer serial 714332 response

One particular signal artifact that might be worth mentioning can arise when the dolphin whistles
and clicks at the same time. Our trainers attempted to eliminate this behavior by extinction, but it
occurred often enough 1o give rise to some peculiar received signals. When two recording hydrophones
were being used in a vertical array, the whistle would appear to shift from one hydrophone to the other,
or 10 both. This effect was being caused by cancellation from the surface reflection. As the whistle was
swept in frequency and as the dolphin approached the hydrophone array, cancellation occurred at
different depths. This was not apparent until the entire array output was played back on a strip-chart
recorder. It should be noted that when one uses a vertical configuration of two hydrophones whose
depths are known it is possible and practical to compute both the range and depth of the dolphin from
the time delays between the direct signals and the surface reflections received by the two hydrophones.

The use of filters during tape playback can lead to unexpected phase distortion, as shown in Fig.
11, In this case the signals were being reproduced at a lower tape speed to stretch the time interval
between clicks and allow separate records of each individual click to be made on the digital recorder. A
consequent effect was to scale the frequencies down by a factor of 32. The recorded bandwidth of 300
Hz to 300 kHz became 9.4 Hz to 9.4 kHz. The low-frequency cutoff of the tape recorder's playback
electronics limited this to a bandwidth of 100 Hz to 9.4 kHz. A 200-Hz high-pass filter was used to
reduce hum and low-frequency noise at playback. Because the lowest frequency at which energy
appeared in the click train was about 15 kHz, the (200 x 32)-Hz rolloff was not expected to affect the
data: however, phase shift in the filter passband was suflicient 1o completely distort the signal, as can be
seen in Fig, 11,
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The standard description for echolocation pulses of T. rruncatus was given by Fvans (6] He
placed the energy peak of typical clicks at 30 1o 60 kHz and their rms pressure source level at 140 w
180 dB re } uPaat I m. Later measurements in open water by Au ¢t al. [4] showed peak energy at 120
to 130 kHz. They concluded that the upward frequency shift of the clicks was caused by an adaptation
to the high level of ambient noise contributed by snapping shrimp in the open-water environment  As
our collected data were examined it became obvious that both of our dolphins were producing clicks
whose peak energies occurred at frequencies either much lower or much higher than those accepted as
normal for animals working in tanks. Figures 12 and 13 show seven representative traces of individual
chcks and their spectra from this experiment.  Peak-to-peak and rms source lesels were computed for
these clicks using ranges and depths estimated from the overhead photographs Figure {4 shows one of
the photographs. Because the rms pressure turned out to be 15+ 1 dB below the peak-to-peak pressure.
our peak-to-peak mean value of 166+ S dB for these seven traces falls within Exans” range of source
levels. The spectral energy. as previously stated, shows an unusual variation in distribution. All of the
clicks represented in Fig. 13 have an energy grouping in the 20- to 30-kH7 range. Only in curves ()
and (¢) is the major peak at a high frequency, and then it is in the 110- to 130-kHz arca. These clivks
are typical of all our measurements. In almost every case there was significant energy around 25 kHs
Sometimes there was a dominant peak around 120 kHz. Never was there any energy peak at 30 1o 640
kHz. The 120-kHz peaks cannot be attributed to the presence of ambicent noise. the tank used had a
fairly low noisc level. Separate measurements were made of neoise in the tank using an H32 hyvdro-
phone, PAR 113 preamplifier, and HP141T spectrum analyzer. Polaroid photos were made directly
from the analyzer screen with 0- to 20-kHz and 0- to 200-kHz bandwidths. This allowed replotting on a
log frequency scale. The spectrum level in the 30- to 60-kHz band was about SO dB. The entire noise
spectrum is plotted in Fig. 15, along with the Knudsen spectrum, as given by Urick, for comparison

It is not clear why our click measurements show two different main frequency components while
those reported by Evans and Au show only one. Our measurements seem more closely refated to those
of Méh! and Andersen [7] and Dubrovskii and Zaslavskii [8]. except for the difference of the animals’
genus.  Tursiops” echolocation signals, like those of Phocoena, seem to have a low-frequency part and a
high-frequency part. The low-frequency part is a decade higher in our casc, but it scems 10 foflow
fixed time relationship with respect to the high-frequency part. The high frequencies always appea
within the first full cycle of the low-frequency part. One common point between our experiment and
those of Refs. & and 9 is that the animals were free-swimming with no head-positioning or tethering
devices used. The observed dolphin signals seem 1o be composed of high-frequency (110 to 130 Kif/2)
and low-frequency (20 to 30 kHz) components. When click spectra from the widely spaced vertical
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Fig. 14 — Typical data photograph
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array are examined along with the corresponding photographs, it appears in most but not all cases that

the relative amplitudes of the high- and low-frequency components are determined by alignment of

cach dolphin’s acoustical axis with the hydrophone. The higher frequencies dominate when the orien-
tation is better, and the low frequencies are dominant when the orientation is worse. In the other cases
mentioned above, the absence or presence of high or low frequencies scems to be in the emitted signal.

A number of click sequences were examined o determine what degree of variability exists from
pulse-to-pulse in the click train. Wavelorms seen in different click trains are highly variable, but there
does appear to be a "tuning-up” effect where both amplitude and spectral content are changed markedly
for the tirst tew clicks. The early pulses in many of the click trains have no high-frequency energy.
Then the high frequencies gradually appear, superimposed on the low-frequency pulse. A good exam-
ple of this type of sequence is seen in Fig. 16, Here traces / through 4 show the development stage,
and traces 5 through // may represent scanning away from and then 1eacquiring the target. Traces /.
through 22 show variation chiefly in amplitude only. Whether the assumed scanning is done physically,
either by head-swinging or beam-steering, is not clear, except that no obvious head-swinging move-
ments were observed during the experiment.

CONCLUSIONS

Ve have made numerous carefully instrumented measurements of dolphin echolocation activity
and at this point have seen sufficient unexplained variations in the nature of dolphin echolocation sig-
nals to convince us that sufficient information is not yet available to establish norms or hypotheses.
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Appendix
DESIGN OF AN ANECHOIC WOOD LINING

Tank space is in constant demand at Sea World. Their needs are constantly changing due to vari-
ous programs of animal breeding, rescuing beach-stranded animals. etc. For this reason, our acouslical
treatment had to be of a portab nature that would permit its removal at the end of the project. In
fact. it was necessary for us 1o move the lining once during the project, when a change of tanks became
desirable. This was done successfully and with & minimum of lost time.

The walls and bottom of the tank were smooth concrete, and reflections from these surfaces had
to be reduced as much as possible. A wall-lining material was required that would absorb sound in the
dolphin sonar frequency range of approximately 10 to 150 k#{z. It was also necessary to reduce the
noise from adjacent tanks that passed through the common openings. This required a high transmis-
sion loss when the wall-lining material was used as a barrier. The large wall area to be covered (approx-
imately 30 m?) necessitated using an inexpensive, easily fabricated material. For this reason, we chose
1o investigate wood.

The acoustical treatment took the form of a lining constructed of modular curtain panels about
1.8-m square, which stood about 15 ¢cm from the wall. The panels were made up of brick-size cypress
blocks strung on stainless-steel cables and interlocked to form a free-standing panel (Fig. Al). At the
bottom of each panel, a precast concrete beamn served as a weighted base. lts ends were grooved to
interlock with adjoining panels. The tops of the cables were secured by a steel channe! (Fig. A2).
which was clamped to the tank wall by metal standofls.

DEVELOPMENT OF THE LINING

Data on absorption of underwater sound by woods are difficult to find. A number of woods were
tested by Lastinger {Al] in an impedance tube at high hydrostatic pressures, but only at lower frequen-
cies (3 to 8 kHz).

We set out to measure echo reduction (ER) and transmission loss (TL) directly and devised a
fast-working, convenient method. This consisted of using a small (1 x 0.6 x 0.6-m) polyvethyvlene
laboratory tank and a 30-cm-square sample of wood approximately S c¢m thick. We measured ER at
normal incidence only and used a simple pulsed system, reading the receiving hydrophone signal
directly from an oscilloscope.  Figure A3 shows a view of the tank with a sample in place for an ER
measurement. Measurements were possible from 150 kHz down 10 30 kl{z with these sample and tank
sizes. The ER measurements were made by moving the receiving hydrophone on axis toward or away
from the sample until the best pulse envelope shape was obtained. The amplitudes of the incident
pulse and the reflected pulse were recorded and corrected for spherical spreading. To check the spheri-
cal spreading correction, we used a 30-cm-square, 6.35-mm-thick plate of stainless steel as a total
reflector in place of the sample. The deviation of measured reflection from 1otal reflection was loss
than 0.5 dB across the entire frequency range.

The TL was measured simply by recording the sound pressure with the receiver on axis behind
the sample, then removing the sample and taking the ratio of the two readings.

it
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Fig. Al — Modular wood lining panels in tank during installation

Lastinger's results showed that the angle of grain orientation with respect to the incident sound is
important to absorption. The absorption is very low for all woods when the grain is oriented perpendic-
ularly to the sound. Grain orientations of 0° and 45° give higher attenuation, with 45° yielding a gen-
erally closer match of sound speeds, according 1o Lastinger. In addition, he routinely pressure-soaked
the samples to expel air from the wood and saturate them with water, thus obtaining the highest values

of attenuation.

We fabricated our test samples by nailing the S-cm-thick blocks to a piece of 1.2-cm-thick fir ply-
wood from the rear. Each panel was submerged in a pressure vessel, and pressure was cycled from
atmospheric pressure to 7 MPa at least twice. After this, each panel was kept submerged between tests
to prevent drying out. We tested redwood and cypress samples of 0° and 45° grain orientation in the
laboratory tank. The results for echo reduction (Fig. A4) showed redwood to have a slight advantage
over cypress. It appeared to be extremely impractical to use a 45° grain orientation rather than 0°,
when we considered the great difficulty in fabricating a structure with 45° grain orientation, (o obtain
the slight advantage it would have in echo reduction.

The results for TL (Fig. AS) look more conclusive, but they must be interpreted cautiously. A
highly reflective pancl might appear to have a TL as great as a highly absorptive one. 1n this figure
both types of wood show acceptable results for Tl
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Fig. A2 — Panel construction details

We decided to use cypress because of its local availability and because redwood bleeds a dark-
colored, opague stain into the water. Soaking the wood under high hyvdrostatic pressure was found to
be absolutely essential for high, stable values of ER. Our criterion for suflicient soaking was negative
buoyancy. The first samples tested were smooth-faced. We decided to try to improve ER by increasing
the surface area. This could be done by grooving the face of the panel. Two patterns of grooving were
tested. The first was a cross-hatch pattern of 0.64-cm-deep cuts, 0.32 ¢cm wide. on 1.27-cm centers.
The second was a pattern of parallel cuts 1.91 ¢m deep, 0.48 ¢cm wide., on 1.91-¢cm centers. The second
pattern proved slightly better for TL (Fig. A6) and required fewer saw cuts to fabricate.

The results from the test samples looked quite encouraging, so we decided to build and test a
full-size panel  This panel was tested in the VISRD Lake Facility using the same methods we had used
in the laboratory tank. The results for ER were about equal to those of the small panel except for fre-
quencies above 100 kHz. The TL was considerably reduced from the small panetl’s performance. but
still at acceptable levels (15 to 40 dB). Figure A7 shows results for the farge panel tested in the Lake
Facility.

CONSTRUCTION AND INSTALLATION

Figure A8 is a photograph of one of the blocks used in the panels. The overall dimensions are
approximately 9 x 19 x 6 cm. The blocks were made by multiple passes on a table saw. They were

21
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Fig. A — Sampie panel and instruments in laboratory test tank
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then drilled for stringing on the cables. The irregular spacing of the deep cuts on the face of each block
was intentional. The built-up construction of the panels was necessitated by the pressure treatment of
the wood and the grain oricntation that was required. Block size was limited to the cross section of the
largest practical size of lumber available from the local sawmill. The blocks had to be pressure treated
before assembly, because the diameter of the aperture in the pressure vessel used was 76 ¢cm. The
configuration shown in Fig. A2 proved to be an optimal solution to the above constraints. The sides of
the blocks are grooved to overlap slightly, and some rows of blocks have interlocking grooves to
prevent spreading. The panel shown in Fig. A2 has a concrete base intended for straight-wall applica-

tion. Corner panels have special bases with interlocking grooves at 90°. The top channels can be
bolted together for free-standing sections.

The dry blocks were loaded into 55-gal drums, cycled in the pressure vessel, and then stored ?
under water in the drums until needed for assembly. Panels could be assembled from the wet blocks :
and transported to the dolphin tank at Sea World for installation before the wood started to dry. '

RESULTS AND CONCLUSIONS

|
'
ER and TL measurements were made on sections of the lining after the initial installation at Sea }

World. Repeatability was difficult in these measurements because the aeration and low temperature of
the water continuously encouraged bubble formation on the instruments. We used a small water jet to '
flush bubbles from the hydrophone and projector every few minutes. Figures A9 and A10 show the i
final results of ER and TL measured from the tank lining after installation. i{
1
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Fig. A9 — Echo-reduction value for installed lining in Sea World tank

After a few months, the wood surfaces became covered with a slimy brown growth which did not
alter the acoustical properties of the lining. Sea World uses an artificial seawater purified with ozone.

This provided an antagonistic environment for all metal parts and elastomers in our experiment, but the
wood and concrete were quite unaffected.
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REFERENCE

Al. Lastinger, J.L., "Acoustic characteristics of woods at high hydrostatic pressure.” J. Acoust. Soc.

Am. 47, 285 (1970).

26

e e S e e






