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MODELS THAT REFLECT THE VALUE OF INFORMATION

IN A COMMAND AND CONTROL CONTEXT

D. P. Gaver

1. Introduction

The importance of information in military decision making

is widely recognized, and the existence of many sophisticated

intelligence-gathering and processing systems is a consequence

of this recognition. However, there now seem to be few analyti-

cal studies that attempt to explicitly relate information to

ultimate military success. In this report an attempt is made to

investigate some simple conflict situations, the outcomes of which

are likely to be strongly influenced by the information possessed

by the opponents. The situations selected are simple enough to

be analyzed mathematically, at least in a preliminary way, but

no attempt is made to thoroughly explore all of their ramifica-

tions, especially in mathematical directions. All of the formu-

lations suggested and explored are quite tentative and incomplete;

interesting refinements and realistic modifications will suggest

themselves to some readers.

One use for models of the type discussed here is to enhance

the efficiency, realism, or validity of complex conflict simula-

tions and wargames. At present, combat models such as Lanchester's

equations are used in a modular fashion in some wargames to decide

isolated confrontation outcomes. The Air Force TAC WARRIOR pro-

vides an example. Somewhat different models, such as the ones

described here, can serve such a purpose. Another use is to



KI

facilitate quick and simple exploration of tradeoffs between

asset types. Questions of the following types may be tentatively

addressed: is increased investment likely to be more profitably

spent on weapons or on command, control, and communications (C3)

systems? Likewise, tactical options may be investigated: should

attacks be directed at weaponry or at command centers? Answers

to such questions, even based on oversimplifications, should be

of help in suggesting improved defensive and offensive tactics.

If necessary, deeper probing by more elaborate wargaming can be

employed for backup confirmation. The kinds of models proposed

here are tentative and suggestive, and have no definitive

pretensions.
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2. Combat With and Without Coordination

2.1. The Problem Area

The purpose of this section is to suggest some extremely

simple models of combat that represent the effects of coordina-

tion or information sharing. Our approach will first be to

study the influence of lack of coordination upon the attrition

power of one force against another, and then to compare this

with the increased attrition power obtained under coordination--

the latter being made possible by the information flow character-

istic of a C3 system.

2.2. Model 1: Static Salvo Interchange Formulation

Suppose a group of B forces confront one of R (we

use the symbols B and R variously to label the forces, or

to refer to a generic member of the respective forces, or to

enumerate the initial force sizes; the context tells the tale).

Suppose B wishes to attack R, and does so without coordina-

tion, i.e. each B picks a member of R at random and fires at

it once, independently of the behavior of the other B's. For

the moment assume that all R's are equally likely to receive

fire from a single B. Also assume that the kill probability

of B against R is unity; this assumption is extreme but

convenient and somewhat informative, and will later be relaxed.

Obviously the lack of coordination or information transfer

among B's leads to inefficiency: some R's will receive two

or more of B's shots and experience overkill; others

may receive none, surviving by chance neglect. As a measure of

the effectiveness of such fire on the part of B, calculate
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2.3. The Expected Number of R's Hit

This is a classical "occupancy problem" (see Feller t1966])

that can be solved by use of indicator functions. If X is theR

random variable denoting the number of Rs hit by B missiles

after one B salvo, note that

XR = i + 
2 

+  + zR (2.1)

where the indicator

(1 if jth R is hit by B fire
£j=

0 otherwise.

Now by the linearity of the expectation operator,

R
E[X] R E[£] . (2.2)j=l

Since each indicator has the same marginal distribution, we need

only calculate the probability of at least one hit on j (recall

that kill probability is temporarily one): the probability that

all B shots are directed elsewhere is [(R-1)/R]B and so

P{t =0} = (1_I , (2.3)

while

B
P{k.=l} = 1-Pfkj=O} = 1-

) )

and, therefore, it follows that the expected number of R's hit

under uncoordinated attack is

E[XR] = R 1- (l- )B] . (2.4)
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Calculation of the variance, and the entire distribution is also

manageable and only a little more complicated. Under certain

conditions the distribution of the latter XRP properly normal-

ized will approach the normal or Gaussian form (see Sevastyanov

and Christyakov [1978]).

It is also possible to derive a formula for the situation

in which the probability of a B hitting each R depends upon

which R is fired upon. That is, suppose each B picks the

jth R with probability rj. Then the probability that no B

Bpicks the jth R is (1-r.)B , and, following the earlier

pattern,

E~'=R B
R[ [i - (1-rj B  (2.5)

j=l

It is even possible to calculate the expected number of R's hit

if the probability that the ith B picks the jth R independ-

ently is rij; note that such differences may be caused by

different intervisibilities, possibly reflecting terrain effects.

In this case the probability that the jth R is not picked is

B(1-r j) (1-r2j)'' (1-r Bj) =i H (1-r ij) tl

i=l

and, adding up over the j Ws, we find that

R B
E[XRJ = 1 [1- n (1-r ij)] (2.6)

j=l i=l

For the moment we stick with the simple model (2.4) for discussion.

It is instructive to look at the ratio
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E[X RR = Expected fraction of R's hit

as the latter depends upon the initial ratio of B to

R: B/R = B. From (2.4),

EIXR] - e (2.7)
R L

if B (and R) become large. This is very simple and handy,

and leads to an immediate assessment of the effect of lack of

coordination or information transfer, for by our assumptions

if B (= BR in number) fires in a coordinated fashion at R,

i.e. each B has only one R target, then E[XR] = aR, pro-

vided B r l(B-R), while EIX I = R if 6 - l(B>R). If we
R

assess the advantage of coordination by A($), then in the

light of the previous comments,

E(XR1 With Coordination] I1---

A(5) - __ ___ ____ ____ ___ ____ _ =(2.8)
E[XR I Without Coordination] = 2

l-e !

Here is a sketchy numerical table to illustrate the gain from

coordination at constant B-to-R ratio (a) when B and R

are large.

_ A(B)

0.2 1.10
0.4 1.21
0.6 1.33
0.8 1.45
1.0 1.58
1.2 1.43
1.4 1.33
1.6 1.25

Table 1.
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A graph appears below

2.0

1.58

1.0 _-- - - - - -I

Figure 1.

In this first simple model coordination pays off most when the

forces are about equally numerous: if B is much smaller than

R then the chances of random overlap are small, and so coordina-

tion is not required, while if B greatly outnumbers R coor-

dination will again not be required to assure coverage. Under

the latter conditions there is extensive overkill, and some B

forces can be usefully employed elsewhere.

2.4. The Expected Number of B's Hit

The above model merely calculates the effect of a B action

against R. If we assume that R fires simultaneously at B then

the corresponding expected number of B's hit is, from (2.4) by

symmetry.

The kill probability is still assumed to be unity in this model.
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2.5. The Expected Number of R's Killed in a Single

Engagement, Both Without, and With, Coordination

Here is a generalization of the earlier models to explicitly

account for (i) the less-than-unit kill probability of R by B,

denoted by PRB' and (ii) the rate of fire of B, denoted by

P similar calculations can be made for B and R.

Let XR denote the number of R's killed by B's per

engagement, during which period pBB shots by B take place.

Again use the representation

KR = Z1 + Z2 +  + Z j+ ... ZR (2.10

where

1 if jth R is killed by B fire
£ '3 = | C2. ll)

0 otherwise

Since

R
E[KR] I = RE[Zj] = R" P{Z. =l} (2.12)

R j=l j

by the assumptions (i) and (ii), it is only necessary to compute

the expectation E[iZj].

Follow these steps to compute the expectation:

(A) The probability that i of the B's target on a

particular (the jth) R is given by the binomial

B-i

i) ) 1 !R) 0 1,. ., (2 13



(B) Given that a B is targetted on the jth R, the

probability of at least one killing event (a kill) in a time

interval of length 6 (engagement duration) is

pB6

1- (l-PRB )

Consequently the probability of at least one killing event (kill)

by i B's firing independently is

1- l-PRB) PB6] = 1- z , (2.14)

where z may be interpreted as the probability of no kill (survival)

per engagement with one B.

(C) Now remove the condition on the number of B's:

B i B 1 i B-i(l-z )  (1 -1
i=O

z1+-1 g(2.15)

or

E[Zj] = P{ j= } = 1- 11- - (-PRB)

It follows from (2.12) that

E[KII = R l- !F[l- (l-PR)B B, (2.16)E[R [,R- i- RL R

the expected number of R's killed by B's in an engagement of

duration 6. This expression generalizes (2.4) to account for

less than unit kill probability and also allows the fire rate

PB to be specified. It continues to assume that all R's are
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equally susceptible to B targetting, i.e. that there is no

coordination. Note that this does not necessarily represent

minimum coordination, for it might well be that the R's could

arrange for most or all B's to target only members of a very

small subset of the R's--perhaps made up of valueless decoys.

The tools for evaluating such a capability are at hand. See

Section 3 of this report.

Next assess the advantage of coordination by B when

opposing R. It is worth remarking that coordination here

means that B shots are shared as equally as possible across

R's. This tactic seems sensible as long as PBR is high and

a reasonable number of shots can be gotten off. Otherwise, a

deliberate "gang up" tactic might be worth-while, and could be

evaluated.
()B

(a) R = 6 (constant); B,R *

Without coordination we have for fixed 6 the expression

(2.16); with coordination we have

ri PB B B<
E[KR ] = B1 - (-pR) for = 1

(2.17)
PB B B>

R - ( 1 -PRB) for > 1

the latter, second, formula assumes that (B/R= B) B's are allocated

to each R during 6. This may be called an even distribution

coordination tactic. The latter, first, formula assumes allocation

of one B per R as long as they last. Some R's are left

unattended.

It follows that when both B and R = (both forces are

large, but in constant ratio)

10



E IKR ICoordination]
A() =E [KRIWithout Coordination]

= pBP 6  ' 0 _ - 1

i- exp{-8[l- (1-pRB)  0 0

(2.18)

{ 1 - (1-PRB) }6

(1- exp{-8[l- (1 -PR B )  ]

It is important to note that we are assuming no opportunity to

check for the effect of a shot during time 6 and change aim

point if successful, so no advantage is shown for rapid fire

rate, high kill probability and re-direction. It is assumed that

at the beginning of the engagement interval 5 each available

target is acquired.

It is tempting to compare the above models for attrition

with and without coordination when the engagement length, 6,

becomes small. Unfortunately the present models give indistin-

guishable results in this limit.

(b) B, R fixed, engagement time 6 j 0.

To study attrition of R's without B coordination rewrite

(2.16) and expand in power series:

r TB]

E[ R 1  I e n1-RB) PB6} B

-- [R - 1

= R - {i + [Rn(l-PRB ) pB6 + ()

= - B (ln-PRB ) B ) +((6) . (2.19)
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With coordination we may use (2.17); expanding in power series

we get precisely the result (2.19). Another, halfway, approach

to coordination would be to split the R's into k disjoint

subgroups of size R/k each, and then assign B/k of the B's

to each group. Let KR/k denote the attrition in the generic

subgroup. Then total expected attrition is

E[kK R/k = (k)" L (lPRB) (2.20

and again a power series expansion shows that as 6 0,

E[kKR/k] = -B n(I-PRB)PB6 +o(6 ) . (2.21)

The conclusion is that in the limit the present model does not

reflect the advantage of coordination over a short time interval.

Note that the present simple model contains no explicit

agent for gathering and disseminating command and control infor-

mation. Some recognition of the cost of C3 can be introduced

by depleting the firing rate (in this case of R) of the coordinated

side to account for time spent in C3 activity. But more explicit

models are apt to be more informative; some are under development.

2.6. The Number of R Killed in a Single Engagement: A

Recursion Approach

It may be of interest to describe an alternative approach

to representing the attrition of R's by B's (and vice versa).

Think of B's being assigned sequentially to the R's so that

KR(j) is the number of R's killed after exactly j B's have

fired their salvos in an uncoordinated manner. Then notice that

12



A simple recursion (Markov chain) describes the situation:

(1 with probability (K1 R

KR(j) = KR(J-l) + (2.22)[ R(-) )
10 with probability 1 - 1 1- R )

The argument is that the number of killed R's increases by one

on the addition of the jth B salvo if and only if (i) the jth

B targets an R not yet killed (probability: 1- R
R

according to equal likelihood) and (ii) the jth B's salvo
P 6

results in at least one killing hit (probability z = 1- -R B

Notice that (2.22) shows that {KR(j)} is a Markov chain, and

that the representation can be used to easily simulate R attrition

for any number of B's. Of course the same procedure can be used

to generate or simulate B attrition.

Take expectations to re-derive (2.16):

E[KR(j)IKR(j-1)] = MR(j-l) + 1 R I z

= z + KR(j-I) 1 - (2.23)

and

E[KR(j)] = z + I-)E[KR(J-I)]

Start with j = 2; E[KR(1)] = z, and recurrence provides

E[KR(j)] = R -l B] (2.24)

which is precisely (2.16).
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The representation (2.22) allows the derivation of a

recursion for the variance of KR(J). Begin by squaring (2.2):

22K(j - 1) + 1 with probability 1- RR z

KR(J) = KR w(J-1) +p KR(J-1)) (2.25)

S0 with probability 1- 1- R z

Again take expectations:

22 + R -+ I •E[K R(j)IKR (j-1)] K KR (-)(2 il+)1 R

(2.26)
- {- . (j-1) +"iR2- K0-1)

Now remove the conditions to find

iK (j) I ~+ [l- 1)jEK~-) + 1[2 - I]E[KR~ ) . 2.27)

Of course the variance is simply

2 2 2
Var[KR(j)] = E[KR(j)] - (E[KR(i) . (2.28)

One can compute E(K2(j)] recursively from (2.27), knowing the

formula (2.24) or using (2.23). A closed-form expression can be

obtained if desired, but we skip this exercise for the result

will be very complex. Very likely KR(B), suitably normalized

is normally distributed (Gaussian) for large R and B. See

Gaver and Powell (1971) for a similar application of occupancy

models that invokes alternative approaches.

2.7. A Dynamic Attrition Model for Assessing the Value of

Coordination

It is tempting to write down Lanchester-type attrition

models to represent the course of combat between two opposed

14



forces when one side coordinates and the other does not. The

expressions for E[KR ]  (and EfKB] already derived can be used

for this, at least in a rough preliminary way.

The attrition equations will be developed in discrete

time, with units of time advance taken to be 6 = i. Imagine

that initially B's force size is B, and R's is R, and

let R(t) and B(t) represent force sizes after t engagements

or interchanges. Assume that B is uncoordinated in its engage-

ment with R, but R is coordinated against B. Our present

model treats combat as a sequence of individual engagements with

deterministic outcomes. Here are the equations:

R(t+l) = R(t) - R(t) - 1 - R t B)(t)]

(2.29)

= R(t) 1~+.rl 1  RB Bt= R~) iR(t) (I-PRB);

next,

B(t+1) B(t) - R(t) L- [ 1 -BR ]

(2.30)

B(t) - R(t) - (-PBR)] if R(t) B(t)

However,

B(t+l) = B(t)- B(t) 1i - ( 1-PBR)R ]
(2.31)

= B(t) (1-PBR)B if R(t) >B(t)

These equations, together with the initial conditions R(0) = R,

B(O) - B can be used to generate the entire de--erministic history

15



of a combat. Suitably modified, they can generate a stochastic

realization or simulation. Numerical illustrations follow.

Notice that there would be no difficulty with making PBR' PRB

or even pR and pB depend upon the time, t.

2.8. Numerical Examples of Dynamic Attrition

The simple discrete-time Lanchesterian equations (2.29),

(2.30), and (2.31) are exceptionally easy to solve on a com-

puter. A program has been written to do so, and is available

on the NPS system via interactive terminal. We report a few

isolated experiments to show the effects of coordination.

Begin with

Case I: PRB = PBR = 0.5, B(O) = R(0) = 20

R= B =

Here the two sides are evenly matched from a physical

viewpoint, but B is Uncoordinated in fire against B, while

R is Coordinated. Here is the result

t R(t) B(t)

0 20 20

1 12 10

2 8 0*

Table 2
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where rounding* is to the nearest integer. Clearly the battle

goes decisively to the Coordinated combatant, and quickly so:

Case II: Again PRB PBR =0.5

R- =1

We summarize for different initial forces for B:

t R(t) B(t) R(t) B(t) R(t) B(t) R(t) B(t)

0 20 20 20 22 20 23 20 25

1 12 10 11 12 11 13 11 15

2 8 0* 7 1 6 7+ 5 10

3-4 0* 3 4 2 7

4 -------------- 2 3 0* 6

5 0* 2

Table 3

Note that in the present hypothetical situation B needs an

advantage of 3 to win, and the battle is much prolonged. The

situation is probably unrealistic in that the model suggests

very heavy attrition in the first interchange. But this effect

must be largely attributable to the assumed very high kill proba-

bility leve]'. Here, by way of contrast, is

Case III: PRB = PBR =0.2

PR = PB = 1

17



Summarize for different initial forces for B:

t R(t) B(t) R (t___ B (t) R (t) B (t)

0 20 20 20 21 20 22

1 16 14 16 17 16 18

2 14 0* 13 14 13 15

3 11 11 10 12

4 9 9 8 10

5 7 7 6 9

6 6 6 5 7

7 5 5 3 7

8 4 4 2 6

9 3 3 1 5
10 2 3 0* 5

11 2 2

12 2 2

13 1 1

14 1 1

Table 4.

Note that in this case of lower kill probability B needs only

advantage of 2 to win, so that coordination has smaller leverage.

Of course the above analysis is entirely deterministic,

and a careful stochastic-model analysis might well add further

insights. As it turns out, the recursion relations (2.29)-(2.31) can

be converted to stochastic difference equations that can form

the basis for a stochastic simulation of mutual force attrition.

This idea will be investigated in future work.

2.9. Another Model Involving C 3 Activity: Assignment

with Checking

We present another model that represents the problem of

targetting a finite force, B, upon another, R. The model and

18



methodology are slightly different from the previous approaches.

This time we conduct the calculations recursively, imagining the

B's to be allocated one at a time to the R's.

Let XR(k) be the number of distinct R's targetted by

B's after k of the B's have conducted targetting activities;

k = 1,2,...,B. Here targetting consists of (a) initial target

selection (at random), and then (b) checking, and correction.

The idea of the second step is to avoid duplicate coverage (if

technically feasible). The checking step is conducted with error,

and may be viewed as a C3 function: the more effective the C3

the smaller will be the undesired duplicate coverage.

The first phase of targetting is initial target selection,

which is assumed to be done at random, in the sense that each R

unit has an equal chance of being present after this phase (the

kth), whether or not it was before, that is regardless of whether

it has been targetted after k- 1 B's are assigned.

The second phase may be termed checking, and has a command-

control flavor: if at the targetting time it is possible to

detect the possibility that another B has already targetted

the particular R selected, then a switch is made to a previously

untargetted R. Let this sequence take place with probability

3e. Then e = 1 represents full C coordination capacity, and

8 = 0 represents total absence of such capacity; 0 = 1-0

represents the probability of failure of checking. The present

model assumes that if duplication is discovered it can be avoided

with certainty. A second model avoids this assumption but turns

out to be rather unmanageable analytically, although a simulation

approach suggests itself.

19



(A) Random targetting with one recourse step.

The following recursive expression describes X (k):
R

XR (k-i)

0 with probability R

XR(k) = XR(k-l) + (k=l,2,3,...,B)

I with probability 1- R (232)

so long as X R(k) R (obviously since XR(0) = 0, X Rk) < k).

The idea is that if there are X (k-I) B's allocated to R's after
R

k- 1 targetting steps then the next step is unsuccessful in adding

a new R if a) the kth random selection is of a designated target
XRkl)-

(probability - R ) and b) the checking procedure is unsuc-

cessful (probability = 6). Assumption of independence leads to

the first line of (2.32), and the complementary probability gives

the second line. Now take conditional expectations to find

E[XR(k) IXR(k-1)] = XR(k-l) + l- R (2.33)

and hence

E [Xk I E E[XR M-1) I + 1i- E E[XR(k-1)

E [+ 1-;)E[X (k-1)

Of course,
E[XR(0)] = 0

E[XR(1)) = 1

20



and hence by induction in (2.29)

E[XR(2 )] 1+ 1- ,

(2.35)

E[XR~) W 1+ 1- + 1_..i ~ ni-{

Thus if B R we have

E[X R (B)] I R[ B] (2. 36)

and if e 0 or 6 - 1 to signify perfect ability to check

and switch, then the above expectation approaches B. If 1 = I,

meaning that there is no coordination capability, we are back to

the original formula (2.4). We do not discuss the case £ > R

for this model. With some added complication the effect of rate

of fire and hit probability may be introduced to account for

expected hits.

(B) Targetting with finite (geometric) recourse.

Suppose that a redundant targetting is detectable with

probability e, independently from occasion to occasion. We

wish to calculate the probability that XR(k) -XR(k-1) = 0,

i.e. the kth allocation is redundant. This happens if there are

n(n=l,2,...) random selections, each of which results in a

redundant selection, and each of which is finally undetected:

the probability that exactly n steps go on is

[XR(k-I) J.n-l[XR(k-l) (

R e I 2 (2.37)
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sum over mutually exclusive alternatives to obtainX R (k-1) XR k X XR (k-1)
R -l /  1- R -1)6 This then replaces R in

the recursive expression (2.32). But it seems next to impossible

to obtain further analytic information from this model, and so

it is hereby dropped from further discussion. Of course the

revised recursion may be utilized for simulation if desired.
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3. An "Over the Horizon Problem" with a Moderately Intelligent

Missile

3.1. The Problem

Suppose one is called upon to shoot a single missile at a

far-distant, "over-the-horizon" target. Moreover, there are apt

to be other targets of no value within the area of interest. These

false targets may well distract the missile, thus rendering it

useless. Some calculations will now be made that indicate the

chance of hitting (and killing) the target, as the latter depends

upon the number of surrounding targets, and--a new feature--the

ability of the missile to discriminate between false and true

(valuable) targets.

3.2. The Simplest Model

If a fixed number, N, of false targets are near the true

target in the area, and if the missile essentially picks one at

random (or with equal likelihood) then the probability of correct

attack is

A 1 (3.1)PCA -N + 1

Note that if there are t true targets in the area the probability

of a correct attack on one is

P t (3.2)

CA N +t

under the same conditions.

3.3. A Moderately Intelligent Missile

Suppose that a missile, or missile plus guidance from satel-

lite or another sensor system can be designed that has the following
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discriminatory behavior: a potential target is shown to the

missile; if it is (a) false the missile does not attack it with

, but (mistakenly) attacks it with probability . (5 +B = 1),

while if the target is (b) true or genuine, the missile mistakenly

disdains it with probability a, and correctly attacks it with

probability a. All of this is independent of the numbers of

times the missile has seen the particular target (the beast has

no memory). How has discrimination of this rudimentary kind

improved the previous situation?

The missile may be thought of as picking a target at random

from the N +1 present, and then deciding whether or not to

attack. On a given selection occasion the missile disdains the

target with probability

-- ?+ N+l (3.3)

for either a false target occurs with probability N/(N+l) and

then is not attacked with probability or a true target is

picked with probability l/(N+l) and the decision is made not to

attack with probability U. Now at the end of n trials (looks

at targets) the missile has still not committed itself with

probability

N + N + 1 (3.4

since the missile is indiscriminate in picking its next candidate.

The probability of correct attack is the probability that the

missile has remained uncommitted for n = 0,1,2,... looks, but

finally on the n+lst picks the correct target and attacks; thus
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PN 5 + 1 n
PCA N +-1 N +I + In-0-

~C~n.. \N~l N 1l3 N+.5)

N 1 N + N + ( )N+l -- ~T

It seems reasonable to name the ratio c/S the discrimination

of the missile (or the system), so (3.5) amounts to

_ discrimination (3.6)
CA N +discrimination(

Now note that the discrimination is equivalent to a certain

effective number of true targets. For instance let

a Probtattack true target, given a true target}
= Probtattack false target, given a false target}

have the value t, where t may be in the range [0,-), but

should be in the range [1,-); then

Pt (3.7)
PCA t+N

which is entirely equivalent to (3.2). This equivalence only

works for the first shot, if more than one is contemplated. A

consideration of the problem of dispatching more than one missile

at a group of targets might involve some interesting coordination

options. This problem is dodged for the moment.

3.4. Variable Numbers of False Targets

The above problem can be generalized, and possibly made

more interesting and informative, by assuming that the number of

false targets (e.g. decoys) are variable. In fact, take the

plunge and assume that N is a random variable with probability

mass function
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P{N=n} = pn (n=O,1,2,...). (3.8)

Then it is legitimate to calculate the probability of correct

attack by considering PCA(N) in the formulas (3.1), (3.2) and

(3.5) as being conditional probabilities, given the value of N,

and then removing the condition. Thus the generalization needed

is to find

CA =  n+ t nn=0

This calculation is very easily carried out in the case of no

discrimination: from (3.1) now

PC .Tn 1n (3.9)
n=0

For example, let N be Poisson,

n
e-P 2 -, (3.10)Pn =e n!'

where p is the mean number of false targets in the area. Then

n 0
CA = 1 _e n 1 n+l (YL P )

n=0 n1 n=0 (n+l); p

= (e p  I ) - = - (1l-P i -- (3.11)
P p

Another mathematical approach to this problem is through the

generating function of the distribution of false targets. It
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turns out that integrating the generating function is the right

move. Let the generating function be

p(z) = I z P n 0- IZI 1
n=O

Then integrate between 0 and 1 to find

1 n+1 1 1

p(z)dz = X 1n-1 n n 1 In CA(3.12)n=O 0 n=00

Try this for the case of N Poisson to establish its credentials:

we know that

p(z) e - p ( l - z )  (.3p~)= ,~1 z (3.13)

so

e-( 1 -Z)d - e-  f epzdz = e-- = 1 -e (3.14)

00

as before. Other distributions can be handled in the same general

way.

Now try the same trick on the mathematically equivalent

(3.2). Some modifications are necessary; first scrutinize

t
PCA = n+E t n " (3.15)n=0

Note that if we write

I zn+t-i Pn = zt - 1 p(z) (3.16)
n=7
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and then integrate

1 1

t - I p(z)dz = ( zn + t - 1 dz)Pn = n1t n (3.17)
fn=0 n=n0 i-tP

0 0

and finally multiply by t the desired result follows:

1

PCA = t z t - l p(z)dz (3.18)

0

With luck this can be evaluated, or be found tabled. Otherwise,

it is back to numerical summation, as in (3.15).

Let us try this method on the Poisson distribution of false

targets with t = 2 (with either two true targets present, or a

discrimination of a/a = 2). Now from (3.18)

1 1

9CA = 2 ze-P(l-z) = 2e-Pf ePZz dz

0 0
1

= 2e-  P e pz dz
Upz
0 (3.19)

= 2e-P d [eP 1] = 2e-P e p - (eP-I)]

=2- [e-P - i+] .
P2

One can easily do t = 3,4,... in principle although actual

results are increasingly messy.
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