
ADA099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-ETC F/6 9/2
DECENTRALIZED SYSTEMS.(U)
DEC 80 E E BALKOVICH DAS60-79-C-0117

UNCLASSIFIED TR-CS-IS-80 NL

"'IEE....llmulllllllll

I

TECHNICAL REPORT
I' Laboratory for Computer Science Research
-The University of Connecticut

I'
I

I__ COMPUTER SCIENCE DIVISION

I U-.

-Electrical Engineering and Computer Science Department

LU-157
The University of Connecticut

V - Storrs, Connecticut 06268

8, 1 4 13 136

IotatDS6-7--17t, 0---

I
I
I

E. Balkovich ,

I Technical Report: "/CS-15-80'| contrct: DAsG6o-79---oi7' 'jV C.

! ,,
@

@

The

University TORRS,. CONNECTICUT 062

C on ctcu THE SCHOOL OF ENGINEERINGIConnecticut

March 31, 1981

The attached technical report is the Final Report on the Research
Grant #DASG 60-79-C-0117, Research in Decentralized Systems, U. S.
Army Contract. E. E. Balkovich, Principal Investigator

S

Ii

EETAIZE DAYSEMS

Technical Report: CS -15-80

Contract SG6-79-C-01 17

C/5I I,
For the Period

1 September 1979 , Decmber 0

I Performed for

Ballistic Missile Defense Advanced Technology Center

I I P.O. Box 1500

Huntsville, AL 35807. _.-

Performed by

Electrical Engineering and Computer Science Department

University of Connecticut

i Storrs, CT 06268

Authors: See Table of Contents

Principal Investigator: E. Balkovich3 A ocssion For

I S' GRA&I

DTIC TAB 0Unanounced 0

I I;ustifica ,io

I
V T-

Distrbuti

AVS1/

I DISCLAIMER

I The views and conclusions contained in this report are those of the au-

thors and should not be Interpreted as necessarily representing the of-

ficial policies, either expressed or implied, of the Ballistic Missile

Defense Advanced Technology Center, Huntsville, Alabama, or the U.S.

~~Goverment.

*1A.

1

TABLE OF CONTENTS.

I. Introduction and Overview - E. Balkovich Part I

II.- A Distributed Operating System Kerne!,- S. Fontaine Part II

III.. Design of an Operating System for Distributed

Communicating Processes,- J. Morse Part III

IV. Extensions to the Programming Language EPL'-

E. Balkovich Part .IV

I V. On thAe Performance of Decentralized Software-
E. Balkovich and C. Whitby-Strevens Part V

VI, Performance of Distributed Software Implemented

by a Contention Bus,- E, Balkovich and J. Morse Part VI

VII. The Impact of Hardware Interconnection Structures Part VII

on the Perfo-mance of Decentralized Software, -

R. Souza and E. Balkovich

Ii

I
I

I

I
I

Part I

I Introduction and Overview

by

I E. Balkovich

I
I
I
I
I
I
I
I
I
I
I
U
I
I

I

S1.0 INRQDW ZIQN

In September 1979, the University of Connecticut under contract

DASG60-79-C-0117, initiated a research program in decentralized systems.

This work was motivated by the observation that software architectures,

based on collections of cooperating, concurrent software processes or

tasks, could be applied to logically distribute applications such as

BMD.

This approach to distributing the software of an application offers

a potential advantage in areas such as fault-tolerance. For example, it

is possible to distribute information structures so that they remain

generally accessable in spite of failures affecting component parts of

the structure. Furthermore, such gracefully degrading software struc-

tures do not incur the same run-time costs as roll-back and recovery

strategies. This approach is relevant to the BMD problem which requires

fault-tolerant application software that is constrained to operate in a

run-time environment with severe time constraints.

An operating system is required to provide run-time support for the

software processes that would be used to distribute a BHD application.

This method of decentralizing software functions appears to make exten-

sive use of these operating system functions. Large numbers of

processes are required. Typically, each process is relatively small

(measured in terms of execution time and storage requirements) and in-

teracts frequently with other processes to cooperatively implement the

functions needed by an application.

1.1 RESEARCH OBJECTIVES

This research had two objectives: (1) to investigate implementa-

tions of the programming concepts needed to decentralize application

software, and (2) to examine the performance of such implementations.

The run-time environment of decentralized application software re-

quires the implementation of software processes and mechanisms that al-

I

3 (1],

Il

low processes to interact. This run-time environment is generally im-

plemented by a portion of an operating system known as the kernel. TheI principles governing the construction of a kernel are well understood

for a conventional, single-processor system. One goal of this work was

to develop principles for distributing the implementation of kernel

functions among the processing elements of a distributed computer sys-

tem. These principles were to be based on a partition of state informa-

tion (used to control software processes and their interactions) and a

communication protocol that would allow separate instances of the kernel

(resident at different processing elemonts) to cooperate in implementing

i process interactions.

It was expected that distributed application software would use the

facilities of an operating system kernel in a qualitatively different

way than software written for a single processor system. Thus, the

second goal of the investigation was to use a prototype implementation

of a distributed operating system kernel to investigate how distributed
application software would use a distributed computer system. This ef-

I fort concentrated on characterizing the nature Of software processes

used to distribute an application and how these processes used the func-5 tions of the operating system kernel and the interconnection structure

of the distributed computer system. The latter portion of this effort

5 was limited to loosely coupled systems that could be constructed using

the experimental facility available at che University of Connecticut.

3 1.2 RESEARCH FACILITY

The research facility used by this project reflects key views onI the decentralization of application software. The facility included

both hardware and software. The following summary of the hardware isI intended to illustrate the types of loosely coupled systems considered

by this investigation and to provide backgound for later sections of the5 final report. The summary of software used by this investigation is in-

tended to review the general structure of distributed applications tnat

was assumed by this study. It also summarizes some of the specific

1 [2)

tools used to support this study.

1.2.1 Hardware

This research was supported using an existing distributed computer

system. This system was constructed from five Digital Equipment Cor-

poration LSI-11 microcomputers hosted by a larger PDP-11 system. The

host system provides support for software development and analysis of

performance data obtained from the distributed computer system. lIni-

tially, the microcomputers were loosely coupled using a point-to-point

communication network based on standard serial interfaces. This provid-
ed a low-cost, flexible interconnection structure that could be used to

support investigations of alternative topologies. Later, a second com-

munication subsystem, based on a contention bus, was added. The second

subsystem provided more sophisticated hardware support for communication

functions and a media that naturally supports broadcasting.

Each processing element of the distributed computer system uses a

fully configured LSI-11 microcomputer. The basic processor-memory con-

figuration of each element is identical. Each processor has a local

memory of 28K-words. The console device of each computer has been con-

figured as a port in a four-port, asynchronous serial interface. One

computer differs from the other processing elements. It has access to a

programmable real-time clock and a double-density floppy disk.

The experimental facilities are hosted by a PDP-11/60 system. Five
serial interfaces of this system are connected to the system consoles of

each processing element of the experimental facility. The transmitter

of the console device of each element is routed to both the receiver of

its corresponding PDP-11/60 interface and to a connector on the console

panel of the experimental facility. Thus, the PDP-11/60 and a dedicated

terminal can be used used to monitor transmissions from-each processing

element. The receiver of the console device of each element is routed

through a switch that can be used to connect it to either the

transmitter of its corresponding PDP-11/60 interface or to the keyboard

-3-

of a dedicated terminal. This switch can be used to select a local ter-

minal or the host facility to provide the inputs for a processing ele-

ment.

There are two mechanisms available for measuring the performance ofI software executed by the experimental facility. These are: the serial

interfaces to the PDP-11/60 system and the programmable real-time clock

available at one of the microcomputers. The programmable clock provides

rudimentary clock facilities to all the processing elements of the sys-

tem. It generates an externally accessable overflow signal when the

clock is in operation. This signal is routed to the external event line

of all processing elements including the processor controlling the

clock. Thus, a periodic source of interrupts can be generated at each

element. These interrupts can be used to sample local state information

I or to maintain a measure of elapsed time.

5 1.2.2 Software

This work was supported by a number of software development tools.3 The host computer system, and its general purpose operating system, pro-

vided an environment for developing and evaluating experimental software

3written for the distributed computer system. Due to an earlier colla-

boration with researchers at the University of Warwick, this research

project had access to a compiler for an experimental programming

Ulanguage for distributed computing (EPL). This project adopted EPL and

applied it in two ways: (1) to write benchmark application programs forU the distributed computer system, and (2) to define a virtual machine

that was implemented by the operating system kernel of the distributed

* computer.

The major features of EPL are:

(1) An EPL program executes a number of autonomous software

5 processes called actors. The code executed by a process is defined

(4

by a sharaLle unit called an act.

(2) Software processes (actors) interact with each other by sending

messages. It is not Possible to share variables. Messages serve

to both communicate information and to synchronize processes (ac-

tors).

(3) Process definitions (acts) may be nested. Processes (actors)

can be created to provide parallelism and completely general net-

works of processes.

(4i) The basic data object of EPL is a word. The language is type-

$ less so that a word may be regarded as a bit-pattern, a number, or

the name of a process (actor). In this respect, EPL has both the

I flexibility and limitations of machine language.

These language features provide programming concepts that are represen-

tative of the mainstream of thinking about software structures for die-

tributed computing. The simplicity of this language makes it well suit-

ed to experimentation since it can be easily modified to investigate new
ideas.

I One of the design goals of the experimental distributed computer

was to exploit the facilities of the host computer operating system when

developing software for the distributed computer system and when observ-

ing or interacting with experimental software. The ability to operate

the entire distributed computer system from a single host terminal was a

specific objective. This required host software that could monitor and

I display all data transmitted from the experimental facility, dynamically

K switch a single terminal between the console devices of the five pro-

* cessing sites, and provide suitably formatted inputs for the microcode

* ODT loader of LSI-11 systems.

Software was developed for the PDP-11/60 to satisify these specific

requirements. When invoked, this software generates processes that mon-

itor and record, in separate files, all data received from the process-

[5]

Ing elements of the experimental facility. These data are also

displayed at an user terminal. The output of a terminal keyboard can be

I switched to provide input for each of the processing elements of the ex-

perimental facility. These Inputs can be used to execute any of the

I commands recognized by the microcode OD? of the LSI-11 systeMs or to

supply data for software executed by the experimental facility. One of

the microcode ODT commands invokes a loader that can be used with a

serial interface. The PDP-11/60 software includes an absolute loader

that can be used to read loadable files prepared at the host facility.

A major item of analysis software developed for the host computer

system was a trace driven simulation of EPL programs. This simulation

is driven by a dynamic trace of all process interactions occuring as a

benchmark EPL program is executed. The simulation was designe2 to

evaluate how a particular EPL program would be executed by distributed

computer systems differing from those that could be configured in the

laboratory. Many of the key parameters used in the performance models

of this simulation (e.g., execution time requried support a particular

U type of process interaction) were based on the experimental operating

system software developed for the laboratory facility.

2.0 SUMMhARY. a~f RESULLI

Three major results were obtained from this work: (1) the design of

a prototype distributed operating system kernel for a loosely coupled

distributed computer system, (2) refinements to the programming conceptsI
(supported by the operating system kernel) that can be used to express

application software, and (3) preliminary evaluations of the performance

of such software.

3 2.1 OPERATING SYSTEM KERNEL

Part II of the final report describes the design and implementation

I of a prototype operating system kernel for a distributed computer sys-

tem. This operating system is specifically designed to provide run-time

3 support for distributed software written in the programming language

1 [6)

I EPL. The design of the operating system kernel is based on the princi-

ples that were outlined in section 1. The implementation of the proto-I type of the design was done using a loosely coupled computer system.

The communication network supporting this system was a full point-to-

point serial interconnection of the computers.

A key facet of the operating system design was a communication pro-

U tocol. This protocol was the mechanism used by instances Of the operat-
Ing system, executed by different processing elements, to synchronize

I software processes and to transfer data between processes. The initial

protocol was chosen to be as simple as possible. It is asymmetric and

always initiated by the processing element representing the sending pro-

cess.

The algorithms of the design are more complex than those required

to implement a functionally equivalent operating system kernel for a

uniprocessor. This increase in complexity is due to the lack of com-

plete state information at any processing element, and the protocol re-

quired to overcome this limitation. The implementation of the design is

significantly slower than the implementation of a functionally

equivalent operating system kernel for a uniprocessor. Delays are in-

troduced by the more complex algorithms and by the communication subsys-
tem.

Another important feature of the design was its encapsulation of

the communication subsystem hardware. Outer layers Of software (theI operating system kernel algorithms and application software written in

EPL) remained unaware of how the communication subsystem was actually

implemented. This encapsulation of the communication subsystem allowed

the algorithms of the operating system kernel to uniformly implement

I process interactions and provided for a family of operating System ker-

nels. This family of operating system kernels anticipated variations In

the hardware that could be used to implement the communication subsystem

and variations in the functions implemented by the operating system ker-

I nel.

I [7)

The provision for a family of operating system kernels was exer-

ciaed by implementing a second version of the operating system kernel

supporting EPL. The second version implemented the run-time environment

required by the extensions to EPL discussed in Part IV of the final re-

port. This design used a more complex, symmetric protocol required to

detect faults at the processing elements.

The concept of information hiding represents one of several

software engineering principles that can applied to the design of the

operating system kernel. The application of such principles, with par-

ticular emphasis on the use of data abstraction, is discussed in Part

HII of this report.

2.2 REFINED PROGRAMMING CONCEPTS

The programming language EPL was designed for experimentation with

software for distributed computer systems. This research used it to de-

fine the virtual machine that was implemented by the operating system

I kernel and to write applications that would use the distributed computer
system. Initial experience using this language and the operating system

supporting it indicated the need for a number of refinements to the pro-

gramming concepts embodied in the language.

It was virtually impossible to design a general purpose scheduling

algorithm for the operating system kernel that would anticipate the In-

dividual needs of applications. It became clear that a general approach

would be to place static scheduling decisions (determining the residence

of processes when they were created) in the domain of the .application

software rather than the operating system kernel. This observation
motivated a programming concept that would allow the processing element

to be specified when a process was created.

In attempting to implement published algorithms for decentralized

software, it also became clear that programming concepts were needed

that would allow a process to detect and respond to failures associated

with other processes in an application. This led to further modifios-

tion of the programming concepts dealing with process interactions.

Part IV of the final report describes the programming concepts pro-

posed to deal with these issues. It does so by proposing refinements to

the programming langauge EPL. These refinements are described in terms

at tLair impact on the sy-ntax of the language and their impact on the

virtual machine required to provide run-time support for programs writ-

:1 ten in the language. The majority of these changes Introduce program-

ming concepts that allow an operating system kernel to report failures

occurring during process interactions. Part IV of the final report
discusses the events that should be reported to an application program

as faults. It also discusses approaches to implementing these program-

ming concepts in an operating system kernel.

These refinements were incorporated into the translator for EPL.

As noted earlier, a second implementation of the operating system kernel

was also generated to support programs written in this revised version

of EPL. These refinements resulted in the use of a more complex, sym-

metric protocol to coordinate instances of the operating system kernel.

2.3 PERFORMANCE EVALUATION

The prototype operating System kernels, and benchmark programs

(written in EPL) were used to explore performance issues. This explora-

Ition addressed the nature of software for decentralized systems and how

that software would use specific hardware components. It tried to quan-

tify the features of software written to decentralize systems. It also

tried to assess how that software would Use the hardware interconnection

structure linking the processing elements of a distributed computer.

Initially, measurements of the characteristics of benchmark

software written in EPL were obtained. One measurement of particular

interest was the use of operating system functions by EPL programs.

These measurements were then used to interpret existing performance

models of specific hardware interconnection structures. This provided

insight into how particular interconnection structures could be expected

191

to behave when used to implement decentralized systems. Finally,

trace-driven simulationt techniques were used to compare the behavior of

benchmark EPL' programs executed by different distributed computer archi-
tectures. The results of these investigations are reported in Parts V_

VII of the final report.

The measurements indicate that the software structures used to do-

I centralize systems will extensively use the concept of a software pro-

cess to distribute the functions provided by software. The grain of

I computation represented by a process can be expected to be considerably

smaller than that used in a conventional multiprogrammed operating sys-

tem. In addition, multiple processes will generally cooperate to pro-

vide a specific service, or access to an Information structure. As a

result, the software can be expected to use the functions provided by

the operating system kernel very frequently. These observations areI discussed in Part V of the report.

Architectures based on the use of a shared contention bus are like-

ly to be a preferred design for loosely Coupled Systems because of their

simplicity and regularity. For this reason, a major effort was made to

examine how software for a decentralized system would use such an inter-

connection structure. These results are discussed in Part VI of the re-

port. The characteristics of software used to decentralized systems

were used to Interpret a number of existing models of contention bus
performance. The small size of processes and the use of a communication

I protocol by the operating system lead to a distribution of message

lengths that favors short Messages. This particular distribution of

message lengths utilizes a small fraction of the bandwidth of a conten-
tion bus. This limitation suggests that systems be designed with ade-

I quate bus bandwidth or that alternative algorithms for using the bus be

developed to improve bus utilization.

The hardware facility of this research program supports experimen-

tation with only loosely coupled systems. fraoe-driven simulation tech-

niques were used to explore how software for decentralized systems would

I (10]

IAg

I
I

perform with system configurations other than those that could be con-

Itructed in the laboratory. The simulation was driven by a trace of

process Interactions obtained by actually executing a benchmark EPL pro-

I gram. This traoe of events was combined with timing information to

determine how the same set of events would occur in different system ar-

ohitectures. These results are preliminary, but they do suggest a

number of architectural issues that should be explored and a methodology

for doing so. This work is presented in seotion VII of the report.

I
I
I
I
I
I
I
I
I
I
I
I

I [11]

I
I

Part II

I A 1~ietribut.d Operating System Kernel

I byI Fontaine

I
I
I
I
I.
I
I
U
I
I
I
I
I
I

'S

rI

I ICONTENTS

I INTRODUCTION

BACKGROUND 4

2.0.1 Process Model 4

2.0.2 Communications 5

5 2.0.3 Synchronization 5

2.0.4 Nondeterminism 5

2.1 LANGUAGES 61
2.1.1 Communicating Sequential Processes 6

I
2.1.2 Distributed Processes 7

2.1.3 EPL 9

2.2 SYSTEMS 10

1 2.2.1 STAROS 11

2.2.2 ROSCOE 12

1 2.2.3 HXDP 12

2.3 SUMMARY 12

II

II
I

II

I
ENVIRONMENT . Is

I3.1 EPL .. . Is

3.2 HARDWARE 19

SYSTEM SOFTWARE 20

I 4.1 EPL 21

I 4.2 KERNEL 21

4.2,1 System Information 22

4.2.1.1 Data Structures 23

4.2.1.2 Actor States 25

4.2.2 EPL Primitives 27

4.2.3 Vertical Communications 29I
4.2.4 Horizontal Communications 29

4.2.5 Local Policies 31

I 4.2.6 Global Policies 31

I 4.3 1/0 SUBSYSTEM 32

I 4.3.1 Vertical Communications 33

I
I -v

I

I

I 4.3.2 Horizontal Communications 33

I KERNEL PERFORMANCE MEASUREMENTS 16

I 5.1 LOGICAL COMPLEXITY 37

I.2 COMMUNICATIONS. 39

I 5.3 SUMMARY 42

CONCLUSIONS.....

6.1 SYSTEMS AND LANGUAGES. 44

I 6.2 EXPERIENCE 45

6.2.1 System Inrormation 45

6.2.2 Memory Management 46

6.2.3 Hardware Transparency 47

6.2.4 EPL Simplicity 47

6.3 MEASUREMENTS 47

I 6.4 IMPROVEMENTS 48

I 6.4.1 Actor Naming 48

I 6.4.2 Global Scheduling Policy 48

I

I
1 v.*,-.

6.5 SIMPLICITY. 4

I 6.6 FURTHER WORK. 49

EPL TO KERNEL INFORMATION PASSING. 0

ACTOR PROCESS DESCRIPTOR. 1

MEMORY LAYOUT AND FILE DESCRIPTION 54

FORMATS FOR KERNEL TO KERNEL MESSAGES 6

THE DISTRIBUTED PROCESS STATE TRANSITION GRAPH

BIBLIOGRAPHY. 6

I LIST OF FIGURES

I figure 1. SYSTEM DIAGRAM. 20

I Figure 2. READY LIST 24

IFigure 3. LIST OF SENDERS WAITING FOR A RECEIVER 24

Figure 4. LIST OF IJNSTARTED CHILDREN. 25

1Figure S. STATE TRANSITION DIAGRAM: . . . 26

Figure 6. MACHINE INSTRUCTION COUNTS FOR MAJOR

PRIMITIVES. 38

Figure 7. 1/0 MEASUREMENT'S. 41

CHAPTER I

I INTRODUCTION

The primary focus of this investigation is the structure and organization of software to

control distributed systems based on loosely coupled, multiple processors. It is assumed that

there is no shared memory and that all processors are directly connected by one or more

communication links.

There is a consensus among researchers that the concept of a process can be applied to

decentralize and distribute software. Collections of processes cooperate to accomplish a task.

Primitives for interprocess synchronization and communication are essential to support process

I cooperation.

3 A particular model of processes was chosen for further study. In this model, all processes

are concurrent and independent once created. Process communication and synchronization are

I combined in a message passing construct. Messages are not automatically buffered.

3 The design and performance characteristics of the operating system kernel, are of special

interest. The kernel provides the virtual machine to support the process model and hardware

I transparency to conceal the machine configuration from the high level processes. The

performance of such a system is a tradeoff between the amount of parallelism possible versus

the additional costs incurred by the distribution of processes.

I There has been much discussion about exactly what constitutes a distributed system. The

definition used here, proposed by Enslow(ENSL78I, is presented as a set of requirements which

a distributed system must satisfy. It should possess:

I I. A multiplicity of general purpose resource components, including both physical and logical

--

2-I
resources, that can be assigned to specific tasks on a dynamic basis.

2. A physical distribution of these system components interacting through a communication

I network.

l 3. A high level operating system that unifies and integrates the control of the distributed

components. Individual processors each have their own local operating system, and these

i I may be unique.

4. System transparency, permitting services to be requested by name only. The user should

be able to request an action by specifying what is to be done and not be required to

specify which physical or logical component is to provide the service.

5. Cooperative autonomy, in the operation and interaction of both physical and logical

resources.

Several of these requirements are met by features of the language EPL [TAYLIMAY79]

and by the system hardware. Others are met by the kernel. EPL is based on a process model

which supports dynamic software configuration and multiple process instances. These processes

3 cooperate to accomplish a single task. The EPL constructs for process cooperation hide the

location of processes so that they could be on a single node or distributed across many. The

I hardware is a network of interconnected microprocessor/memory pairs. These points are

sufficient to fulfill the requirements for multiplicity, distribution and cooperative autonomy at

both the logical and physical levels.

I High level system coordination could be implemented by either EPL programs, the

kernel, or a combination of the two. Presently there is no high leve operating system, but the

1 kernel does support system wide policies for the essential functions such as memory

management and scheduling. Later, some of these and other resource management facilities

will be included in an operating system written in EPL.

I The fifth requirement of the definition, that services be requested by name only. is not

I
I

'I -3-

completely met by the system. EPL has no built in capability for referencing processes by

service provided. However, this capability could be added by including a special name manager

process which keeps lists of process names indexed by service (similar to the switchboard in

DEMOS [BASK77]). A user needing a particular service could get its name from the name

manager and then communicate directly with the service process. The kernel does provide

I hardware transparency, which enables EPL processes to be ignorant of the actual physical

component providing a service.I

Iq
I
I
I

I

I
I

I
I
I

I,

i CHAPTER 11

BACKGROUND

Before attempting to study the problems involved in building distributed systems, the

concepts underlying the problems and possible solutions were examined. Systems and languages

currently under development for distributed processing were studied and compared with one

another to find a consensus on the central issues and to view a spectrum of proposed solutions.

A language which addressed these issues and whose solutions are representative of present

I research, was chosen as the implementation language for the project.

Each of the systems and languages examined defines a process model as the basic unit of

software organization. The processes of a program cooperate to accomplish some task.

Mechanisms must be provided to allow the processes to synchronize and communicate with one

another. Because the processes are distributed and control is decentralized, the interactions

between processes arc nondeterministic. The languages studied reflect this by allowing

I nondeterminism in certain language features. The basic concepts in distributed processing

emphasised here are the use of a process model as the basic software unit, communication and

synchronization between processes, and nondeterminism allowed for process interactions.

2.0.1 Process Model

The use of many small processes as a building block to implement a program provides a

I convient unit for the distribution of software. Since these processes may be on separate

processors they are designed to be autonomous entities. Interactions between processes are wel

defined and independent of the actual distribution. Between interactions, processes on separate

I processors are capable of running in parallel. In summary, the process requires no centralized

control and is the software unit of distribution and parallelism.

I

I
-*4

2.0.2 Communications

The ability to exchange informat'on is essential for process cooperation. Because the run

time configuration of the software is variable, the actual configuration should be transparent to

process communication. Two methods in particular have been widely accepted: shared memory

and message passing. Shared memory requires specialized hardware, but message passing can be

I implemented on shared memory machines as well as on machines with disjoint memory.

Message passing is therefore considered to be the more flexible of the two. The main role of

process communications is to provide configuration transparency for the passing of information

between processes.

2.0.3 Synchronization

Because processes are autonomous, and have no centralized control, some means must be

I provided for process synchronization. For example, a process which is a device handler mosm

have control over when it accepts requests, prehaps how many it accepts, and from whom.

IAlso, a process using the service might need to wait for its completion before continuing. A

mechanism for synchronization is necessary to maintain a coherent timing structure between

the processes.

I 2.0.4 Nondeterm'inism

1 Since processes exist on separate processors, each with its own environment, the absolute

timing of a particular process cannot be predicted. If the timing of a single process cannot be

I predicted, the neither can the timing of interactions between processes. For example, a process

1 which is to be used by several other processes cannot always guarantee beforehand the ordering

of requests. Because of this, decentralized and distribuited software is inherently

jnondeterministic and a distributed system languor , ust be designed to tolerate some degree of

nondeterminism in the interactions of processes.

Each of the systems and languages described in the following paragraphs defines a process

I model with communication and synchronization capabilities. These three seem to be the

Ii -6-

central programming language concepts needed to distribute computations. ln the following

discussion, particular emphasis is placed on differences in the solutions proposed to implement

I these concepts.

2.1 LANGUAGES

2.1.1 Communicating Sequential Processes

The main objective of Communicating Sequential Processes (CSP) [HOAR781 is to define

I a single, simple solution to both process communication and synchronization. The text of a

CSP program places an upper limit, at compile time, on the number of processes which can

I exist at run time. Multiple instances of a Process are treated as an array of processes: each

process being distinguished by its integer subscript. As in a standard programming language,

the maximum number of array elements is specified. Since the maximum number of multiple

instances is known and the single instances can be counted, the upper limit of processes for the

CSP program is known at compile time. Processes are created dynamically and terminate at the

completion of their code. There is rno special kill or self destruct mechanism in CSP. A

5 new process. or child, is entered into the system at the request of An already existing process,

called the parent. With the parallel command, a parent can simultaneously create several

5 children which run concurrently. The parent process cannot continue execution until all of its

children have terminated, and children are in turn blocked until their children complete. CSP

I processes are structured into a strict hierarchy based on parent-child relationships.

3 Processes communicate by sending messages. Only two processes can be involved in a

single communication and each must specify the other's name. Names are assigned at compile

Itime. The process which is the source of the message executes an output command, and

5the destination process has a corresponding input command. Messages are not

automatically buffered, which means that both processes must be prepared to handle the

5 communication at the time it occurs. To guarantee this, the process which becomes ready first

is blocked from running until the other is ready too. The message is sent and then both

1 .7-

I continue. If buffering is needed, then it can be implemented by the user with a buffer process.

Synchronization between a parent and its children is implicit in the fact that the parent is

delayed until its children complete execution. The synchronization of processes at a single level

3 in the hierarchy is implicit in the communication construct. To avoid buffering of messages, the

two communicating processes are required to be at a particular point in their code. Therefore.

I the two processes are synchronized at the time the communication occurs. This second

mechanism can be used as the basis for constructing other means of synchronization, such as

semaphores.

I Nondeterminism is introduced and controlled in CSP through the use of guarded

commands. A guarded command has two parts: a guard, which is executed first, and a

command list. The command list is executed if and only if the execution of its associated guard

Idoes not tail. An alternative command consists of a series of guarded commands from

which one of the command lists with a true guard is chosen for execution. It all of the gWud

Ifail, the alternative command fails. A variation of this is the repetitive command which

repeats an alternative command until all guards are false. CSP allows input commands to appear

in a guard. An input command succeeds it the corresponding output command is executed,

and fails if the source named in the input command has terminated. A repetitive command

which includes as part of its guard a series of input commands is effectively receiving a message

I from a set of possible senders. This would probably be implemented with a first come first

serve algorithm. If none of the named sources are prepared to send, but are still executing,

then the receiver process is delayed until one of the guards succeeds.

2.1.2 Distributed Processes

Distributed Processes (DP) [HANS7SI is designed for real time applications on a

microprocessor network with distributed storage. The DP process model has been affeted by

the special requirements of real time applications. To handle the high speeds sad demands

associated with real time, only one process is to exist on each processor. At compile time, the

fixed number of concurrent processes are created and at run time they are started

simultaneously. As in CSP, the processes can be structured in an army.

I A process has two basic operations: an initial statement and processing of external

requests. These operations are interleaved starting with the initialization. When the initial

statement is either completed or waiting, the process is prepared to handle requests form other

3 processes. If the operation for a particular request has in turn been terminated or put into a

wait, then either a preempted operation is continued (possibly initialization) or a new request is

I accepted. If the initialization operation terminates then the process simply accepts requests.

The operations being requested are in the form of procedures. Procedures can contaiit

input/output parameters, local variables and statements. A process making a procedure call is

I delayed until the operation is completed. This arrangement is similar to the interactions found

i in a hierarchy of processes, however, since all DP processes are created and started running
simultaneously and never terminate, it cannot be described as a hierarchy.

I The only communication between processes is in the form of procedure calls. Information

is passed by value to the procedure in the input parameters and returned by value in the output

parameters. The passing of values could be implemented by either message passing or shared

I memory.

DP introduces and controls nondeterminism with two types of guarded statements: the

guarded command and the guarded region. These constructs are similar in intent to the CSP

guarded command described earlier, but function somewhat differently. CSP allows input

commands in guards. If the process named in the input command is still active, but no

1 message has arrived the guard neither succeeds nor falls and the process is delayed until the

decision can be made. However, a DP guard is a conditional expression based only on the state

of the process's variables, which means that sucss or failure is immediately evident.

A DP guarded commared consists of a saries of guards each associated with a command

list (similar to the CSP alternative command). One of the command lists with a true guard Is

.92
3 executed. If no guards are true, the guarded command fails. A guarded region is structurally the

same as a guarded command, but if none of the guards is true, instead of the command failing.

3 the process is blockcid until at least one guard has become true.

There are two methods for synchronization provided by DP. The first is implicit in tk:

procedure call. When a process makes a procedure call, it is not allowed to continue execution

3 until the call is completed. This assures synchronization between the two processes. The more

general method is the guarded region described in the previous paragraphs. The guarded

I region can be used to implement control structures, such as a semaphore, to synchronize

processes. The semaphore could in turn be used to implement more complex control

structures.

2.1.3 EPL

IEPL (Experimental Programming Language) [TAYLJ[MAY79J is designed as a systems

language for distributed systems. It encourages a style of programming which uses many small

Icooperating processes. The code for a process is declared as an act and an instance of that

act is called an actor .An act is designed to be re-entrant so that multiple instances of an act

can share the same code. Actors are created dynamically and terminate when the end of the

I code is reached. EPL allows actors to be created simultaneously. Unlike CSP and DP, there is

no compile time upper bound placed on the number of actors that can exist in the system.

An actor wishing to create a new actor, specifies the act and makes a CREATE call to the

kernel. The actor making the call, referred to as the parent, is given the new actor's, or child's,

name and is allowed to pass parameters to the child before the child begins execution. Beyond

this point, there is no special connection between parent and child actors. EPL does not

enforce any strict relationship, such as a hierarchy, between actors.

Both process communication and synchronization are handled by the message passing

I (SEND/RECEIVE) construct. Only two processes, a sender and a receiver, can be involved in

.I

I -10.

a communication. The sending actor must name the receiver, but EPL allows the receiver to

either specify the sender by name, or to receive from any sender. Therefore, the message

passing can by completely deterministic, with both of the actors involved naming the other, or

nondeterministic, with the sender specifying the receiver but the receiver being capable of

accepting from any requesting sender. EPL does not include a special mechanism for receiving

from one of a set of specified senders. However, if necessary, the user can structure the process

interactions to simulate this capability.

I Synchronization is handled by causing either the sender or receiver, whichever is prepared

I for communication first, to wait until the other is ready. With this mechanism, it is alfso

unnecessary to buffer the message, since it can be moved directly from the sender's space to

the receiver's space. EPL provides three ways by which a process may discover another's

name: 1) a parent knows the name of its child process, 2) a child can receive a name as a

I parameter from its parent during initialization, or 3) the name could be sent as part of a

message. A process does not automatically know its own name, but must discover it in one of

the methods mentioned.

2.2 SYSTEMS

Several systems currently under development were studied to better understand a kernel's

characteristics and role within a distributed system. In each of the systems, the kernel acts as

the interface between' the hardware and the supported language constructs. This enables the

I high level language to remain ignorant of the underlying hardware. Because it is so dependent

I on the hardware and the language, the kernel for a particular system can be characterized by

describing these two aspects.

I The software in the systems examined are each in two sections: a kernel to provide low

level support for the distributed language primitives (process operations such as creation and

communication) and a high level set of utilities (resource managers, debugging aids) wriuen in

the distributed language. Several of these systems have been selected for further description to

U represent a wide range of view points. Since the major concern of this project is software and

not hardware or system utilities, more emphasis is placed on the programming language

concepts. As in the previous discussion of languages, the most important language constructs

are the process model definition,and interprocess communication, synchronization and

nondeterminism.

I 2.2.1 STAROS

STAROS IJONE79I is a software kernel and set of utilities for a system called Cm with

approximately fifty tightly coupled processors and shared memory. The processors in Cm*

support capability checking, which is one of the major goals of STAROS. Another of the main

objectives of STAROS is to explore the feasibility of and potential benefits from their process

model which is termed a task force.

The processes in a task force are created dynamically and either terminate at the

I completion of the code, cycle endlessly or are terminated by a kill command in another

process. Multiple instances of a process can share data objects. STAROS supports two different

types of process relationships: dependent - in which the processes form dependency trees based

on a parent-child hierarchy, and independent. If the root process of a dependency tree is killed.

the tree dies as well.

In STAROS, process communication is based on message passing. Since the nodes in Cme

share memory, the message passing amounts to copying from one memory location to another.

I Messages are automatically buffered in an object called a mailbox so the sender is not

i required to wait for the receiver to become ready to receive. The receiving process need not

wait for a sender either. If the message is not found in the mailbox , the receiver has

explicit control of whether or not it waits.

L
I

* - I 2-

Synchronization is handled explicitly by a process. STAROS has an event primitive which

a process can use to wait for some condition to become true such as receipt of a message.

2.2.2 ROSCOE

I ROSCOE [SOL079I is a general purpose distributed computation resource implemented

on a loosely coupled network of five LSI I Is with no shared memory. Both a kernel and high

level utility processes are included. Communication is based on links which represent a one

way connection between two processes. The owner of the link is the receiver, and the sender is

called the holder or the link. A holder can duplicate the link or give it away to other processes

I by passing its name as part of a message. An owner can request to receive from any one of a

set of its o~4ned links. Buffers are used by the 1/0 system to hold outgoing as well as incoming

messages which implies that the link holder is not required to wait for the owner to be ready to

g receive.

2.2.3 IIXDP

Like DP, HXDP (BOEB] is designed for support of real time applications. Built at the

I Hont ywell Systems and Research Center, it is based on loosely coupled memory processor pairs

and special message passing hardware. Communication between processes is implemented with

I buffered message passing. All knowledge of the hardware configuration is within the kernel so

network shape and process location are transparent at the process level. Synchronization is

explicit and based on an event primitive.

I 2.3 SUMMARY

j Current research in distributed processing has focused on several programming language

concepts as solutions to problems in distributing software. However, there is disagreement on

I the specific implementation of these features.

Every language examined uses a process model as the basic software unit. Functionally. a

process is on the same level as a subroutine in a standard language. The process provides a

-13.

convient unit for software distribution, the decentralization of control and parallelism. Processes

I behave as autonomous entities cooperating to accomplish some task.

I In several of the systems processes are created dynamically, in others they are created at

compile time. The processes can last forever or terminate either as a result of reaching the end

Iof the code or by being the subject of a kill command. The maximum number of processe"

to exist can be defined at compile time or be limited only by the available resources. The

relationship between processes can be an enforced hierarchy or dependent only on the

3 programmer. Processes interact in well defined ways.

For processes to cooperate effectively, some means of exchanging information must be

provided. The most important aspect of a communications method is that it be capable of

3 concealing the hardware configuration. All of the proposed cominunication mechanisms

described can be implemented with a message passing scheme. Message passing is a powerful

I and general tool for constructing interprocess communications.

I Some of the communication constructs provide automatic buffering of messages and
others rely on the user to provide buffering if it is necessary for the application. If the scheme

I uses unbuffered messages, then both processes must be prepared to communicate at the time

the message is passed which requires that the process ready first be blocked. With automatic

buffering, only the receiver needs to wait and the sender is not affected by the state of the

* receiver

Researchers agree that some kind of synchronization between processes is necessary to

structure autonomous processes into a coherent program. Since control is decentralized, a

mechanism is required for process coordination.

Two distinct solutions for process synchronization can be recognized. One is based on an

I event primitive, in which the process waits for some condition to become true, and the other is

I an extension of the message passing concept, in which whatever process becomes prepared to

communicate first is blocked until the other is ready The method associated with messaee

-14-

passing can be used to implement the event primitive and provides a general and simple

solution for the exchange of timing information.

Each of the languages has a control structure intended to handle the nondeterminism

inherent in distributed systems. When several processes are capable of sending message$ to the

same process, that process cannot necessarily predict which of the senders will be prepared to

communicate first.

Each language has a slightly different approach for dealing with this special case. Several

of the languages use guarded commands to block a process until at least one of a set of

conditions becomes true. These conditions could include input commands or event primitives

I keyed to a message arrival.

I In the systems examined, the kernel acts as the interface between the high level program

language and the hardware. Its major function is to support the primitives of the high level

I language in such a way as to provide hardware transparency. Because of its role as interface, the

kernel is extremely sensitive to both the hardware and language characteristics.' The hardware
for the systems described range from those with off the shelf hardware to special purpose

I components, and shared memory to disjoint memory. The programming language concepts

used by these systems have been included in the language summary.

I EPL was chosen for use in this project for several reasons. It is representative of the state

I of the art in distributed systems languages. Its designers have attempted to keep the language

simple and elegant by using the most general solutions to the major issues. There is no

I hierarchy of processes, both timing and data exchange are managed by the message passing

construct, and a nondeterministic control structure is included for process interactions. EPL's

I structural simplicity and minimum number of primitives is reflected in the size and complexity

1 of the kernel which means less expense is involved in exploring alternative kernel designs. An

EPL compiler designed to be easily modified and compatible with the research facility was

I available.

I CHAPTER III

ENVIRONMENT

I The major purpose of an operating system kernel is to provide a virtual machine for the

high level programming language. The kernel acts as the interface between the high level

language being supported and the system hardware. The characteristics of the hardware and

high level language, considered here as part of the kernel environment, have great influence on

the design and implementation of the kernel. Another important aspect of the environment is

I the development tools. These tools, such as compilers and hardware facilities, have had some

I impact on kernel structure as well as on performance measurements.

First, an overview of EPL is given, similar to that in Chapter 11. The features of EPL

I actually supported by the kernel, called primitives, are described in some detail. Following this,

g are the EPL run time requirements, such as memory specifications and the formnat for EPL to

kernel communication. The research facilities, including the hardware and tools, are then

I described.

I 3.1 EPL

EPL is based on a process model in which processes are created dynamically and

I coordinated with two party, synchronous message passing. An EPL process is called an actor

and the code for an actor iq called an act. When a new actor is created, the parent actor is

provided with the name of the child so that it can send initialization arguments. An actor

terminates at the completion of its act.

The message passing construct is used for passing both data and timing information. The

I source actor is called the sender and the destination actor is called the receiver. Messages are

I not automatically buffered within the kernel, so the member of the pair prepared to

communicate first must be blocked until the other is ready as well. The sender must know the

-15

name of the receiver, but the receiver can either name a specific sender or receive from any

sender. Actors are assigned names at run time. There ere three ways for an EPL actor to

I discover the name of another actor: 1) a parent knows its child's name, 2) names can be passed

g to a child as initialization arguments, and 3) names can be included in a message.

The basic operations needed to support the EPL process model have been grouped into a

I set of primitives implemented within the kernel. When an actor needs to execute a primitive

g the kernel is called. Occasionally, primitives are referred to as kernel calls. A summary of the

EPL primitives follows.

1 . FNIT - This primitive is not actually called by the EPL code, but by the startup routine.
[NTtakes care of whatever system initialization is necessary.

2. CREATE - CREATE is used by a parent actor to enter a new actor, or child, into the
system. The child is allocated space on a processor but is not started until the parent
executes the RUN primitive.

I3. RUN - The RUN primitive allows a parent actor to pass initialization arguments to the
newly created child. The child is then added to the local set of active processes.

4. TERMINATE - An actor executes the TERMINATE primitive when it completes theI code for its act.

5. SEND - A SEND call is made by an actor to transmit a message to another process. If
the named receiver is ready to communicate, the message is sent. O0herwise the sender
waits.

6. RECEIVE - An actor needing information to continue execution uses the RECEIVEI primitive. It can either specify a particular process as the message source, or receive from
any process. If no appropriate sender is ready, the receiver waits.

7. SYSTEM - SYSTEM is for miscellaneous local operations which are not included amongI the major primitives. Currently, SYSTEM calls are provided to handle reading from and
writing to terminals, and voluntary rescheduling of actors.

Memory is allocated to an actor at the time of its creation. The amount of memory

required by an actor is static and the memory assigned to an actor cannot be accessed by any

other actor. Every actor is allocated memory for two data structures: a process descriptor and a
data segment. The process descriptor is of constant size and is used by the kernel to define the

I state of an actor and its relationship with other actors. Since the process descriptor is used by

the kernel, the details of its implementation are discussed in Chapter IV and appendix [2].

-17-

Acts are designed to be reentrant so that multiple instances of an act can share the same

code. Each actor is given a data segment to hold local variables called its runtime stack. The

stack size required by each act is defined at compile time and is associated with the code for the

act.

Before calling on the kernel to execute a primitive, EPL places any information needed

into predetermined locations. Occasionally, EPL expects information to be returned from the

kernel following the execution of a primitive. The interface between an actor and the kernel is

dependent on the function being requested. Generally, the information is passed in the general

purpose registers.

When an actor is executing, a pointer to the top of its stack resides in general purpose

register RO and serves as a base register. Certain primitives require te kene to reeecea

location or set of contiguous locations within an actor's stack. For example, a SEND requires

Ithe message to be placed on the actor's stack. To send it the kernel must be told its starting

g location. When a kernel call requiring information on the stack is .nade, an offset to the start

of the information is placed in another general purpose register (RI). If the stack reference can

be more than one word, the kernel is given its length. Information returned from the kernel to

the calling actor is placed in a general purpose register or directly onto the actor's stack. The

I following paragraphs describe the information layout for each primitive (for diagrams see

g appendix [1I).

1 1. CREATE - The parent actor names the act which the child is to execute. The act's name,

defined as the start address of its code, is passed to the kernel in Rl. The two words

before the start of the act contain the stack size (in bytes)-required for an instance of the

act and the number of arguments (each one word) it expects to receive. After completion

of the call, EPL expects the name of the child to be in RI.

2. RUN - An offset from the top of the stack to the start of the space to be referenced is in4

Ii All-

RI. The first word in the stack space is the child's name. Following this, arel the

initialization arguments. The number of arguments to be sent is in the word before the

start or the act and can be zero. After completion of the call, EPL expects the

I initialization arguments to be at the top of the child's stack.

3. SEND - An offset from the top of the stack to the start of the space to be referenced is in

I RI. The first word of the space is the name of the receiver. Following this is the message

to be sent. The length of the message (in words) plus one word for the sender's name is

1 known by the receiver.

4. RECEIVE -An offset from the top of the stack to the start of the space to be referenced

is in RI. The first word in the space contains the senders name. If the sender's name is

zero, it is interpreted as a RECEIVE from anyone. The following locations are to be used

as a buffer to hold the message sent. The length of the message expected (in words) plus

one word for the sender's name is placed in R2. Following a RECEIVE from anyone,

EPL expects the name of the sender chosen by the kernel to be stored in the first word of

the space referenced.

15, SYSTEM - An offset from the top of the stack to the start of the space to be referenced is

g in RI. The first word is the code for the function to be executed. The second is an

optional argument. In the current version, the argument is used to hold a character for

I printing or a character read from the terminal.

i Except when calling the kernel or the software multiplication/division routines (replaced

by hardware), EPL does not use the system stack.

I When creating a new actor, the parent names the ACT to be executed. Because creates

I can occur across maclines, the ACT name must be unique and known system wide. In the

present EPL, an ACT is referred to by its start address. Since this naming scheme is to be used

across machines, all machines must have the save ACT loaded at the same location (ace

appendix[3) for the memory layout).

-19-

3.2 HARDWARE

The processors are DEC LSI I Is equipped with the standard LSI 1 instruction set. There

is no real time clock. Each processor has 28k bytes of memory, none of which is shared.

IBALK80]

The processors are directly connected by means of DEC DLVI IJ serial links. These links

I are asynchronous and bidirectional. They are capable of detecting certain errors on data

received: framing, parity, and overwrite. Some alternative configurations, such as a ring and a

doubly linked ring, are under consideration.

I A DEC 11/60 running UNIXTM was used for preliminary testing of the kernel, down line

loading to the LSI I Is, and general purpose tools such as the C compiler, editors etc. It
I was also used to collect and evaluate data on system performance.

IV
I
I
I
I

I

I

I

I

CHAPTER IV

3 SYSTEM SOFTWARE

The system software is organized into three levels. The division and classification of the

3 software is based on its function and the amount of hardware knowledge required by the

function. The lower the level, the more hardware dependent are the functions performed.

I Information flows are defined both between adjacent levels and between units within a single

level. Interlevel communication is described as being vertical and intralevel communication is

called horizontal.

I At the top level are the EPL actors. They see a single virtual machine provided by the

second level, or kernel. A copy or the kernel resides on every processor. Each kernel is

distinguished by a unique ID number. The kernel is ignorant of the link hardware details and it

makes no distinction between requests from local and nonlocal actors. Knowledge of the link

hardware and actor distribution has been isolated in the third level, called the 1/0 subsystem.

I The 1/0 subsystem is responsible for routing kernel requests to the correct processor.

The communication paths between these levels and within them is shown in figure [1).

Each of the vertical arrows and the horizontal arrow between 1/0 subsystems represent an

I actual information path. The horizontal arrows between kernels and EPL actors represent a

virtual communication link. Each of the virtual paths actually follows the vertical paths to the
1/0 subsystem, across machines on the 1/0 subsystem horizontal paths. and back up again

I through the different levels. The role played by each of the levels is described in the following

paragraphs. Next, the design and implementation details and communication protocol& of the

I kernel and 1/0 subsystem are discussed. The memory layout and description of source code

Riles girt in appendix 131.

1 .20.

-21 -

I ~ACTORSI

V S V a V aI V -
Ikernel 1 kernel Ikernel I . kernel

* V S V , V aV

< * ~> C7 21, <>

machine machine

I n
Figure 1. SYSTEM DIAGRAM

4.1 EPL

A high level description of EPL is in Chapter II and a more detailed one, including the

EPL to kernel interface, is in Chapter 111. EPL actors communicate vertically with the kernel

and horizontally among themselves. The operations required to support the process model and

process interactions have been grouped into a set or primitives which are implemented within

the kernel. These primitives include such functions as actor creation, termination, and

communication. Before making a kernel call, the EPL actor places information needed by the

kernel in predefined places (the general purpose registers and the actor's data segment) and

then executes a trap into the kernel.

The horizontal communications are handled by a synchronous message passing construct

I called SEND/RECEIVE. The mechanics for this construct are actually shared between the

I kernel and 1/0 subsystem, but logically it can be considered a direct connection between actors.

4.2 KERNEL

I The kernel is responsible for providing the virtual machine required by the EPL actors.

To do this, the kernel must fill three roles; 1) the interface between EPL and the hardware, 2)

low level resource manager, and 3) actor manager. All of the hardware dependent functions

-22-1

needed to support the top level EPL program are implemented within the kernel. These

functions. included among the primitives, are described in Chapter 111. The low level resource

3 management implements both local and global policies for memory management. and a-,tor

scheduling. Actor management primarily involves maintaining all actors in a valid state, and is

3 not entirely separate from the two other roles.

3 The overall design philosophy was to keep the kernel as simple as possible. It was decided

to optimize the kernel for logical simplicity, occasionally at the expense of efficiency. For

example, the kernel could handle references to local actors more efficiently as a special case and

pass nonlocal actor references to the 1/0 subsystem for routing to other processors. However,

U it is logically simpler to assign all routing of actor references to the 1/0 subsystem, including

local references. Because of this decision, the kernel is able to handle all actor references in the

same way and is ignorant of the actual location of a particular actor. Another concern was to

keep dynamic memory requirements simple. This way, the problems associated with memory

allocation, and complex schemes to solve them, could be avoided. Because of this, memory is

I not necessarily used efficiently.

4.2.) System Information

Some of the most crucial issues in the design of a kernel revolve around the maintenance

of system information. The biggest question is whether or not to replicate nonlocal information

on each processor. It is possible that a system could use such information to simplify fault

recovery as well as to reduce processor to processor enquiries. However, replicating

I information within the system introduces the problems associated with the maintainonce of

I consistency in at replicated data base. Access to the data base must be protected to guarantee its

integrity. It has been shown [FONT8O] that replication of system information for an EPL kernel

is not practical. Information about actors (contained in process descriptors) has been partitioned

so that each kernel knows only about resident actors and must pass enquiries to other kernels

I for information about nonlocal actors. The kernel design relies on local information. enquiries,

-23-

and estimation instead of replicated information.

4.2.1.1 Data Structures

As explained in Chapter Ill, each actor is dynamically allocated memory for a run time

stack (or data segment) and a process descriptor. The stack is controlled by the actor, but the

process descriptor is maintained by the kernel. The process descriptor is used by the kernel to

maintain an actor's state and its relationships with other actors, to pass information between

levels and to save context when an actor is preempted.

U Each EPL actor is assigned a unique name at runtirne. EPL actors refer to one another by

name and, on a kernel call, any actors pertinent to the execution of the primitive are specified

by name. The kernel must take the name and use it to access any information about the actor it

I needs to complete the call. To simplify access to the information, it is placed in the calling

I actor's process descriptor. The name of an actor is defined as the start address of its process

descriptor. The ID of the local kernel is placed in the low three bits of the name. Process

1descriptors are allocated at addresses where the low three bits are zero so that no addressing

information is lost when the ID is added.

A process descriptor is sixteen words long. The first seven locations are used to save the

values of the five general purpose registers, the program counter and the processor status

register on a kernel call or interrupt. Several slots are provided for starting linked lists of

I process descriptors, and one slot for linking the process descriptor into a list. The status word

holds the current state of the actor. Several other words are used to pass information to and

I from the 1/0 subsystem. The process descriptor is described in more detail in appendix 12).

I The kernel maintains several queues of actors. The local set of all actors ready to run is

contained in a structure called the ready list which is implemented as a circular linked list of

process descriptors (figure (1J). This list is used by the kernel's low level scheduling and

I dispatching routines. The variable ready points to the last process descriptor in the queue. The

top of the queue is pointed to by the chain link of the last process descriptor. The process

i -24-

* Iready --- last first

*I I 6 6 I

I chain a chain I I chain a chain

-- -- - -- -- - -- -- - ----- --- -- -- -- --- - - -

I Figure 2. READY LIST

descriptor of the actor currently running is kept separately.

When an actor executes a RECEIVE, it is the kernel's responsibility to discover if the

sender is prepared to send. It the RECEIVE is a RECEIVE from anyone. the kernel has no

sender name to use in checking the sender's state. For this reason, the kernel maintains a

quee oreah ctrofactor-s ready to send it a message (iue131). If an aco ihsto

SEND a message but the receiver is not yet prepared, the kernel links the sender's process

descriptor to the receiver's. If another actor wishes to SEND to that same receiver, its process

descriptor is added at the tail of the queue

receiver waiting senders

- --- - --- - -6 6 - I----

waiting --- 1 chain --- I chain --- a nila
II6 6I6i chai- 6---I-H--a

Figure 3. LIST OF SENDERS WAITING FOR A RECEIVER

When an actor executes a RECEIVE, its connected queue is checked for either the named

actor, or any actor.

The distribution of actors across processors complicates this scheme. The sender may be

on another processor and not have a local process descriptor which the kernel can add to the

!

-25-

3linked list One of the design decisions was to conceal the actual location of actors from the

kernel so that local and nonlocal actors could be treated the same way. In such cases, a dummy

3 process descriptor with the same size and structure as a regular one, is allocated locally to

represent the nonlocal actor. Any information about the actor needed to process the request is

I placed in the dummy process descriptor.

5 Another list is needed to save the number of arguments expected by children created but

not yet started running. EPL allows a parent to create several actors, save their names on the

I stack, and then start them running. This is so that the child actors can be passed one another's

names as part of initialization. At the time a child is started running, the kernel must have

access to the number of arguments expected by the child. Because more than one count may

5 need to be stored at a time, a list is required. The information is placed in the child process

descriptors which are then connected into a linked list attached to the parent's process

Idescriptor (figure 141). Any nonlocal children are allocated a dummy process descriptor.

parent children

I a a ac a n n

1 list ---- ---- I-------

I Figure 4. LIST OF UNSTARTED CHILDREN

I 4.2.1.2 Ador Stats

I The behavior of an actor can be described by a finite state machine. The kernel has

exclusive access to the actor states and its functions define all of the operations possible on a

1 state. The kernel can be thought of as the actor state data abstraction. There are five basic

I states which a process can be in:

.

-26-

I. NEW - the process has been created but has not yet been enabled to run.

2. RDY - the process is in the local set of possibly running processe, (i.e., it is on the ready
list).

U 3. END - the process has completed execution and been terminated.

4. SND - the process has been blocked because the actor to which it wished to send is not
yet prepared to accept the message.

5. RCV - the process has been blocked because no appropriate sender is ready to
communicate with it.I

The transitions between these states are shown in figure (5).I
create

V

NEW

!; I t:run

receive v send
RCV <--------------- > RDY < - SND

I
terminateda

v
END

i Figure S. STATE TRANSITION DIAGRAM:

KERNEL CALLS ARE IN SMALL LETTERS, STATES IN CAPITOLS

The basic state transition diagram (used in a single processor version of the kernel) is

complicated by the distribution of the actors. Additional states have been included to handle ,

i certain intermediate conditions, such as when the actor is blocked while its data segment is i

buffering information to be sent (parameters for a new process, or a message being sent as part

I of an EPL communication) or while the actor is waiting for an acknowledgement (a receiver

has responded to a sender but the message has not yet arrived). The process state definitions

I for the distributed kernel are:

I
1. BLK - the process is waiting to receive a message and a suitable sender process has

not yet enquired if the process is prepared to receive

I

S-27-

2 CRT - the process is creating a child process and has not yet received the name of the
child process

3 END - the process has terminated (the process may be referred to by other processes)

4. ENQ - the process has sent a meswge to enquire if the receier process is prepared to
accept a message

5. INT - the process is transmitting parameters to a child process

6 NEW - the process has been created (i.e , it has a name), but parameters have not yet
been transmitted to it by its parent process

7. RCV - the process has acknowledged a sender process and is waitng to receive the
text of the message

8 RDY the process is logical]) ready tu execute, but has not been assigned the CPU

9. RUN - the process is logically ready to execute and has been assigned the CPU

10. XMT the process is transmitting a message to a receiver process that is prepared to
accept the message

I A transition graph defining the po,siblr interactions between these states is shown in

appendix 15]. The most important point is the increase in complexity from the single processor

I version to the distnbuted version.

I 4.2.2 EPL Primitives

INIT - This primitive is not actually called by the L/PI code. but b) the startup routine.

I INIT takes care of whatever system initialization is necessar, The memory management

abstraction sets up pointers into free memory A free memory estimate is made for each

processor in the system based on the amount available locally. For the i/O subsystem, waiting

queues are set up, the data structures used to refer to the devices are initialized, and the

devices are placed in a known state. An idle process is created on each processor to be run

I whenever the local ready list becomes empty. If the processor's I.D. is zero, the first EPL actor

is also created and started running.

CREATE - A CREATE call is made by a parent actor to enter a new actor, or child, into

I the system. The processor with the highest local free space estimate is chosen as the site for

the child. A CREATE request, containing the parent's name and the child's act, is passed to

the chosen processor where a process descriptor and runtime stack are allocated for the child.

The process descriptor is initialized as required, the child's state is set to NEW, and, if the child

I

-28-

is nonlocal, an acknowledgement with the child's name and argument count is returned. Either

a dumm) process descriptor containing the returned information or the actual child process

descriptor (depending on whether or not the child and parent are on the same processor) is

linked to the parent's process descrptor for later reference.

IRUN - The RUN primitive is called by a parent actor to pass parameters to the newly

created child The number of parameters the child expects is retrieved and used to insure that

no extra arguments are sent A run request consisting of the arguments and the child's name is

g sent to the child's processor After the request is received, the child's state is changed to RDY

and the child is schediuled on the local ready list

3 TERMINATE - This kernel call is made by an actor a it completes the code for its act.

The actor is simpl) removed from the local ready list and its state changed to END. Neither

the actor's process descriptor nor its stack space is reused

I SE\D - A SEND call is made by an actor to transmit a message to another process. The

sender is put into SND state and removed from the local ready list. The sender's kernel then

passes an enquiry to the receiver's kernel indicating that it is prepared to send On the

receivers processor, the sender's process descriptor, or a dummy process descriptor if it is

nonloLd!, is added ,) a linked list attached to the receiver's process descriptor for later

I reference When tl'e receiver is ready to accept the message, an acknowledgement contaning

the message length is passed back The message is then sent and the sending actor returned to

the ready list

I RECEIVE An actor needing information to continue execution makes a RECEIVE

kernel call The process descriptors (or dummy process descriptors) for actors prepared to sendI
to this receiver will be in a linked list attached to the receiver's process descriptor. If the

I receiver is able to accept a message from any source, then one of the possible senders is

removed from the list If the receiver has specified a particular sender,then the list is manned

I and if a match is found, it is taken from the list In either case, the receiver passes a message

I
I

-29-

request, containing the message size, to the sender. The sender responds by transmitting the

message. If a sender is not available, the receiver is placed in BLI(state.

I SYSTEM - SYSTEM is for miscellaneous operations which are not included among the

major primitives. Currently, SYSTEM calls are provided to handle reading from and writing to

I terminals, and voluntary actor preemption.

4.2.3 Vertical Comnmunications

The kernel can communicate vertically with the EPL actors and with the 1/0 subsystem.
'I

Information ,passed between the actors and the kernel via the general purpose registers and

the actor's run time stack. EPL actors use a trap to enter the kernel.

I The kernel calls the 1/0 subsystem when it needs to communicate with another kernel to

I complete an EPL kernel call. All of the information necessary for the 1/0 subsystem to format

and pass the message is placed in the process descriptor of the EPL actor.

I When the 1/0 subsystem receives a message from another processor, it either puts the

information received into a dummy process descriptor or directly into an actor's stack. In either

case, the kernel is called to take whatever actions may be necessary.

1 4.2.4 Horizontal Communications

I The kernel may need to request either information, service or both from another kernel

in order to complete a primitive. For example, Kernel A may have chosen kernel B's processor

I as the site for a new actor. Kernel A must pass a request for the creation of the child to kernel

1 B, and kernel B must return the name of the child.

The kernel to kernel protocol is dependent on the primitive being executed. The initial

I protocol design was kept as simple as possible. Below is a graph representation [StutzmanJ and

verbal explanation of the protocol for each primitive involving kernel to kernel communication.

-30.

EQUESTING PROCESSOR OTHER PROCESSOR

CREATE
act

V---

<---VI child's name
V

CREATE; A create request is passed form the parent's kernel to the kernel on which the new
actor has been sch-duled. The child's kernel returns an acknowledgement, containing the new1 actor's name, as well as the number of parameters it expects.

RUN

arguments
V--

RUN: A request to run a newly created actor, along with its initialization Parameters are passed
from the parent's kernel to the child's. There is no acknowledgement.

SEND receiver
enquiry

v---

message length
-- vI message

V--

ISEND: The sender's kernel passes an enquiry to the receiver's kernel asking if the receiver is
prepared to receive. When the receiver is ready to receive from that sender. its kernel sends an
acknowledgement containing the message length to the sender's kernel. The sender's message
is then passed to the receiver.

-31-

I RECEIVE sender
* message length
V ---

message
-- -- V

V

RECV: This protocol is a subset of the SEND protocol, starting with the acknowledgement ofI the enquiry by the receiver's kernel and ending with the arrival of the message.

S
The message formats are in appendix [41. The memory layout for the kernel and the

3contents of different files is in appendix 131.

I 4.2.5 Local Policies

Multi-tasking is done from the ready list with a round robin algorithm. The running actor

is preempted when it makes a kernel call if there is a ready actor to take its place. There is no

protection against an actor written without kernel calls hogging the processor forever once it

starts running. However, for well intentioned users there is a voluntary preemption call.I
In all of the kernel functions, special concern was given to keeping memory management

as simple as possible. The kernel allocates space dynamically in two ways: 1) sixteen word

pieces for use as process descriptors 2) variable length pieces for use as EPL run time stacks.

i Once space is allocated for an actor, it is never deallocated. Dummy process descriptors, which

are used by the kernel to hold information pertaining to nonlocal actors, can be reused.

4.2.6 Global Policies

IThe high level scheduler is designed to maximize para!lelism of actors. It was decided

that one way to do this was to assure a distribution of actors by allocating children nonlocally.

Additional requirements were to keep the algorithm simple, avoid the use of polling, and

maintain an equal load balance (if possible).

I
I

-32-I
When each kernel is initialized, it sets up a local estimate of free space for every kernel in

the system. Since the code for every kernel is almost identical, each assumes that all other

I processors have the same amount of free space as it does. On a CREATE call, the processor

with the highest estimate is chosen as the location for the new actor. The local free space

I estimate for the chosen processor and that node's own local estimate are updated, but not any

i of the other processor's estimates. This means that the only correct free space estimate for a

processor will be on that node and all others are too high. The net effect is a preference for

placing children nonlocally, which will tend to distribute actors to all processors.

4.3 I/0 SUBSYSTEM

The I/O subsystem coatains the link protocol and link dependent software. The link

software was isolated for several reasons. It is shared by many other modules. Most of the

kernel routines which implement the EPL primitives require inter-kernel communication and

need to use the inter-processor links. The separation makes the kernel independent of the

I interconnection protocol and ;,ardware, This makes modifications in the interconnection

schemes much easier.

The I/0 subsystem is responsible for routing all kernel to kernel communications. For

I simplicity, the kernel is designed to be ignorant of the actor locations. It knows only that the

actor making the kernel call is local. If an actor other than the one making the call needs to be

referenced or manipulated then the kernel simply passes a request to the I/0 subsystem to

communicate with the actor's kernel. In fact, it could actually be requesting communication

with itself. For example, -- ',r A wants to SEND to actor B. A's kernel must ask B's kernel

I if actor B is ready to receive a . -ige. Kernel A does not check if kernel B is itself but just

asks the I/O subsystem to communicate with kernel B. If kernel B is indeed kernel A, the 1/0

subsystem sets up the request in the same manner as those received from nonlocal kernels and

makes the appropriate kernel call.

I

I .33-

The 1/0 subsystem is divided into three major sections. There is a high level transmitter

which handles nearly all of the link level protocol and is independent of the link hardware. The

I link hardware information is in the low level transmitter and receiver which manage the actual

sending and receiving of information. The receiving processor's part in the link protocol is
handled by the low level receiver.

4.3.1 Vertical Communications

1 The 1/0 subsystem communicates vertically with the kernel. When the kernel requires thq~

services of the 1/0 subsystem, it places all the information necessary for the call into the

process descriptor of the actor involved and then calls the I/0 subsystem. A kernel to kernel

message received by the 1/0 subsystem is placed in either a dummy process. descriptor, or

I directly into an actor's stack. The kernel is then called to perform any manipulation required for

that type of message.

4.3.2 Horizontal Communications

The lowleve) link protocol is based on the concept of a connection. A requ'st for a

I connection is passed from the 1/0 subsystem wishing to communicate to the 1/0 subsystem

with which a connection is desired. The I/0 subsystem initiating the communications then

I waits until the other I/0 subsystem sends an acknowledgement. Once a connection is made, the

processors are dedicated to the information exchange and remain connected until all the

information has been passed.

I Because the basic protocol requires the initiating 1/0 subsystem to wait for an

acknowledgement from the cooperating 1/0 subsystem, it is possible for deadlocks to occur.

Another problem is that it is possible for each of two 1/0 subsystems to simultaneously attempt

to initiate a connection with the other. To prevent deadlocks and arbitrate contention, the

processors are arranged in a hierarchy according to their ID numbers. Lower numbers have

I higher priority. As with any hierarchical scheme, there is the danger of starving the low

priority processors. Further work needs to be done to find out how costly the problem is, and

-34-

what are the solutions. One possibility would be to distribute the actors in a way that minimizes

II contention.

3 The basic connection protocol has been extended to work with the hierarchy of 1/0

subsystems. A request for a connection is passed from the 1/O subsystem initiating the

3 communications to the 1/O subsystem it wishes to communicate with. The initiating 1/0

subsystem then waits for an acknowledgement before proceeding. If it is a positive

I acknowledgement the message is sent. If it is a negative acknowledgement, indicating that the

3 cooperating 1/O subsystem is trying to initiate communications on the same link, its handling

depends on the relative positions of the two 1/O subsystems in the hierarchy. The kernel with

3 the lower priority relinquishes the line, sends a positive acknowledgement and then waits to

receive the message. It tries again later to make the connection.

While a kernel is attempting to make a connection without priority, it must listen to 1/0

subsystems above it in the hierarchy in order to prevent deadlocking. If one of these wishes to

make a connection, the low priority I/O subsystem sends a positive acknowledgement and

receives the message before returning to its own communication. Once it has mi J-. the

I connection, it no longer listens to the other 1/O subsystems.

When a communication is received, it is handled immediately by the kernel. It is qui(.

I possible that the handling of the message will involve communications with another kernal.

However, the message in question may have been received while the kernel was attempting a

transmission. A flag is used to prevent nesting of transmissions, and requests made to the

transmitter while it is busy are placed on a queue. The transmitter is not exited until the queue

is empty.

The actual transmission and receipt of information across the links is done using wait loop

I 1/O. The request for a connection can be detected either with an interrupt or by testing the

ready bit of the link device. An interrupt can occur only when either an EPL actor or the idle

I actor has control of the processor. Execution within the kernel and 1/O subsystem must be

-35-

protected from interrupts.

Wait loop 1/0 is being used as the basic method of informationi passing instead of

I interrupt I/0 for several reasons. It was calculated that with five fully connected processors in

the system, interruputs could occur as frequently as every six instructions. There is no special

purpose hardware in the system to manage the links, and this rate is too fast for the processor

5 to handle. The use of wait loop I/0 also simplifies the taking of performance measurements.

The researcher has precise control over how and when inter-processor communication will

I occur, enabling him/her to more easily design experiments and measure its preformance.

Ir

I
I
i

IL
I
i
!

I
!

I
I
I

3 CHAPTER V

KERNEL PERFORMANCE MEASUREMENTS

The performance of a distributed system is a tradeoff between the benefits of increased

3 parallelism within the diitributed software and the costs incurred by the increased complexity of

the kernel and the increased communications overhead. The amount of parallelism possible is

I influenced by many factors, such as the design of the distributed software, the local and global

scheduling policies, and the availability of resources. Because thc focus of this project is on the

kernel, and not on scheduling policies or performance of EPL programs, only the additional

zosts due to distribution are to be examined. A later project will present a More complete

performance analysis.

The most important factors to be considered in estimating the additional costs due to

distribution are the increases in logical complexity and communications overhead. These costs

Rre contained within the kernel and 1/0 subsystem. An estimate of the increase has been

obtained through a comparison of the distributed kernel with an EPL kernel designed for a

single processor (both written in C). The increase in logical complexity is demonstrated by

comparing the two versions on the number of actor states and transitions possible and on the

3 number of kernel entry points. The increased costs in the kernel functions were estimated by

counting the number of machine instructions needed to implement the two versions of the

3 kernel. The increased communications costs were estimated by observing the frequency of

interprocessor communication, contention and preemption, and by computing the average

connection waits. The wait times for setting up a connection and actually passing the message

I were measured by counting the number of executions of the 1/0 wait loop on the sending side.

All Measurements were taken with the test programs on three processors (appendix 151).

-36-

.37.

I 5.1 LOGICAL COMPLEXITY

The logical complexity of a particular kernel implementation is dependent on its design,

I This makes a precise measurement of the necessary increases in complexity from the single

processor kernel to the distributed kernel impossible. However, the general trend can be shown

by a comparison of the two kernel implementations.

I Any increase in logical complexity of the kernel can cause a corresponding increase in the

implementation costs. The functions provided by the kernel are basic. and the costs of

implementing them are not exorbitant. However, any increase in the implementation costs of

the primitives can have a substantial effect on system performance because of the frequency of

their occurrence. Appendix [71 shows a histogram of the number of actor instructitns executed

I between primitives. In general, the observed lengths of instruction sequences between kernel

calls were very short and exhibited little variation.

There is an increase in logical complexity which is reflected in actor management and in

$1 the implementation of the EPL primitives. The state diagram for an EPL actor in the single

processor version (figure [51) has six states and five transitions. A similar graph for the

I distributed kernel (appendix [51) has twelve states and twenty transitions. Several of these

differences are due to the partitioning of the primitives into separate functions which may be

executed on different machines. For example, the CREATE primitive is divided into three

II parts: 1) the parent's kernel schedules the new actor on a processor, 2) that processor (possibly

different than the parent's) allocates resources to the child and returns its name, 3) the parent's

kernel receives the name and puts it in the parent's data segment. Most of the new states and

transitions are necessary to handle the intermediate states which happen when the local part of

a primitive is completed but the nonlocal part is not. In the above example, the parent cannot

I be allowed to run until the child's name has been returned and so between steps I and 3 the

parent is placed in the intermediate state CRT. The remainder of the differences are caused by

the use of the actor's data segment to buffer arguments to be transmitted. The SEND and RUN

I -38-

I primitives transmit information directly from the calling actor's data segment. During the time

lapse between the kernel call and the actual data transmission, the actor cannot be run because

it may alt,.r the data.

I The kernel for the single processor has only six entry points corresponding to the six

primitives. The distributed version has an additional six which are entered from the 1/0

I subsystem. The additional entry points in the distributed kernel are simply to catch responses

from the nonlocal parts of a primitive. The original CREATE has essentially three entry points:

the first (called create) is entered from the parent actor, the second and third (create request

and child name) are entered from the 1/0 subsystem.

I The costs of the major primitives have been estimated as the average number of machine
instructions executed by the kernel implementation. Figure 161 shows the instruction counts for

I both the single processor kernel and the multiprocessor kernel. The count for the single

processor kernel is an estimate obtained by studying the assembled code. It does not include

I register saving or context switching. The multiprocessor counts are a summation of the average

number of instructions executed by each kernel function participating in the primitive. These

functions are no', necessarily executed by the same kernel, but may be done by kernel's on

other processors. The counts were obtained at runtime by incrementing a counter between

each machine instruction. All instructions not part of the EPL actor were considered part of the

I primitive. These include the saving and restoring of registers on subroutine calls, support

functions, and context switching.

single processor distributed

ICREATE 33 348

RUN s39 a267I o------------------------- ------------------ a
SEND 140 1212

------------------ -------------------
RECEIVE 50 1253

Figure 6. MACHINE INSTRUCTION COUNTS FOR MAJOR PRIMITIVES

-39-

As can be seen from figure 16], the differences between the counts for the two kernels are

substantial. At least part of the increase can be accounted for by the fact that the distributed

kernel was designed for logical simplicity and not for efficiency. For example, the distributed

kernel made much greater use of subroutines than the single processor version. No attempt has

3 been made to estimate how much of the increase is due to the different design philosophies.

The counts for the multiprocessor kernel include context switching and register saving but the

3 single processor counts do not.

5.2 COMMUNICATIONS

The increased costs of communications can be seen on both the logical and physical

U levels. In the single processor kernel, the only horizontal communication is between EPL

processes and it is implemented as copying within a local store. The only vertical
communication is between EPL actors and the kernel, and it is handled the same way as in the

I distributed kernel. The distributed kernel must also support vertical communications between

the kernel and 1/0 subsystem. Horizontal communication can occur between processors and it

I is sent across serial links. Transmission across serial links is clearly more expensive than local

memory references.

The communication costs for a particular program are dependent on the amount of

I communication required and the expense of that communication. EPL processes tend to

exchange many short messages and, as mentioned in the previous paragraph, make many

kernel calls. In the distributed kernel, both of these may involve interprocessor communication.

The communicating actors may not reside on the same processor and the primitive requested in

a kernel call may require cooperation with another kernel. The amount of communication

I which takes place across the links is dependent on the global scheduling policy and it can be

high. Even local communications are more expensive on the multiprocessor kernel. The

I kernel does not distinguish between local and nonlocal communications. This means that the

distributed kernel can not take some of the short cuts available to the single processor kernel.

-40,I
The expense of nonlocal communication depends on the amount of data passed, the cost

of actually passing data on the link, and the cost of the 1/0 subsystem protocol. On the

average, interprocessor messages are short. Kernel to kernel messages have an average length

of 3.3 bytes (appendix [11) and EPL actor communications (SEND and RUN) also tend to be

I short [BALK791. As explained in chapter IV, before communication takes place between two

processors, a connection must be set up. The processor wishing to send passes a request on the

link and waits for a response. After the response is received, both processors are dedicated to

I the passing of the message. Because of this, the short message lengths, and the fact that

L.IlIs are not especially fast processors, the cost of actually passing data on the links is not

I that great. A large part of the communications costs are in the setting up of connections.

I The processors have been arranged in a hierarchy to prevent deadlocking. If there is

contention for a particular link, it is resolved in favor of the processor with the higher priority.

I A low priority processor waiting to communicate with a higher priority processor is forced to

listen to all processors with priorities higher than itself. If one of these processors wishes to

communicate, the low priority processor must accept the message. This is referred to as

I preemption and is used to break multi-processor ties. The mechanisms used to arbitrate

contention and multiprocessor ties introduce both additional costs to the expense of making a

connection and the possibility of starving the lower priority processors.

I Some preliminary measurements of the 1/0 subsystem are shown in figure 17). The

transmissions in each processor were grouped into categories based on type. Transmissions can

I occur locally, nonlocally with priority, and nonlocally without pric ity. Since priority is based on

kernel ID number (lower numbers have higher priorities), nonlocal transmissions from kernel

- I zero always have priority and those from kernel two never have priority. Only kernel one has all

I possible types of transmissions. The nonlocal categories are broken down into subtypes.

Nonlocal transmission with priority can occur with and without contention. Transmissions

S I without priority can occur with contention and with preemption. For each of these groups, the

table has both the average count of wait loops executed by the sender while setting up aI
I

-41-I
connection, and the relative frequency of each type. The nonlocal without priority group is

treated slightly differently than the others. Because it has no priority, the transmission can be

interfered with several times. The average wait count for all nonpriority transmissions is given

along with their percentage of occurrence. Following this, are the average wait counts due to

preemption and contention, and their frequency of occurrence. These last two figures are

computed in reiation to the total number and cost of nonpriority transmissions and not the total

number of transmissions.

MROBIN SIEVE

avg avg
processor wait percent : wait percent
ID type count occurrence count occurrance

0 local 0 20 0 0

nonlocal
w priority
w/o contention 153 60 130 84 l
w contention 89 20 94 16

-- - - - -- --------------------------- ---------------

1 local 0 21 0 4

nonlocal
w priority

w/o contention 116 26 110 55
w contention 94 10 91 12

nonlocal ?
w/o priority 147 43 115 29

w contention 117 29 116 01
w preerption 0 0 0 0

------------------------------------- - -
2 local 0 18 0 0

nonlocal
w/o priority 214 82 136 100

w contention 113 25 110 22
w preemption 140 50 114 42

- - - - - - -- - - - - - - - - - - - - -7- - - - --- -;

Figure 7. 1/0 MEASUREMENTS ,

A majority of the transmissions are nonlocal. For the sieve, several processors have no

local transmissions, and for mrobin the highest proportion of local transmissions is 21%. These *Il
II

I -42-

figure-, are dependent on the global scheduling policy, Ahich did not attempt to maximize for

local communications (section (4 2 61) but for parallelism

I Nonlocal with priont) transmissions are cheaper with contention than without contention.

I The fact that there is contention for the link means that the lower pnority processor has already

passed a connection request on the link and is listening for an acknowledgement. Since the

lower priority processor is already prepared for communication, and not executing an

uninterruptable section of code, the high priority processor can make its connection more

quickly.

The average wait count for receiving the data for an entire message (not including the 1/0

subsystem protocol) averages approximately 100 (ranging from 78 - 144). The connection cost

I is generally higher than the cost of sending the actual data.

9 5.3 SUMMNARY

g The kernel for the distributed system is more complex logically than the kernel for the

single processor system. Although impossible to measure precisely, this increase is evident in

the approximately two to one ratio of number of actor states, actor transitions, and kernel entry

points between the multiprocessor and single processor versions. Also, the implementation of

I the multiprocessor kernel required a substantially greater number of machine instructions than

g the single processor version. This increase is partly due to the emphasis on logical simplicity in

the design of the multiprocessor kernel and to differences in the methods used to count the

9 instructions.

Communications costs for the multiprocessor kernel are much higher than those for the

single processor kernel. The design of the multiprocessor krrnel not only required more

communications, but communications were more expensive. The costs of passing information

across links are greater than direct memory references. Even local communications in the

I distributed kernel are more expensive because the design philosophy of logical simplicity

eliminated many shortcuts. Because inter-kernel and inter-actor communications are generally

-43-

quite short, the ctsts of implementing the 1/0 subsystem protocol is often greater than the

costs of actually passing the information. Also, the protocol introduces the possibility of

starving the lo'k priority processors. The measurements presented in this chapter provide

evidence of a general trend of increased costs, where they occur and why. It is hoped that most

1 of these additional costs will be offset by the increased parallelism possible in the

multiprocessor environment.

Note that much of the 1/0 overhead would be absorbed by the hardware in a more

I intelligent device. In any decentralized implementation it would still be necessary to resolve

contention for the device, but more appropriate hardware would lessen processor time spent on

1/0. Further work needs to be done to characterize the 1/0 required and the response of

hardwar interconnection structures to such loads.

IL

CHAPTER Vi

CONCLUSIONS

I

The major goal of the project was to gain experience in the design and implementation of

an operating system kernel for a distributed system. Current research in distributed systems and

languages was studied to isolate the important issuies and to examine different solutions. An

operating system kernel to support a distributed programming language was designed and

implemented on loosely coupled, directly connected processors. Some performance

measurements of the kernel were taken to approximate the increased costs due to distribution.

Benefits from increased parallelism were not taken into account because the amount of

parallelism is dependent on many factors other than the design and implementation of the

kernel.

6.1 SYSTEMS AND LANGUAGESI
A set of central concepts underlying distributed processing was derived from the research

projects examined. Each project defines a process model in which the process acts as the basic

unit of distribution and decentralization. Processes cooperate to accomplish a task with

mechanisms for communication and synchronization. Because there is no centralized control,

the systems must tolerate nondeterminism in process interactions. The projects examined were

built on the concepts of processes interacting nondeterministically with communication and

synchronization constructs. These concepts are implemented differently in each.

The different process models can be characterized by the process create and terminate

operations and interprocess relationships. Process creation can occur either dynamically or at

compi!' time. Processes can be either independent, autonomous entities or arranged in a strict

parent- child hierarchy. Processes can be allowed to kill one another, kill themselves, or

I
-44.

I

-45-

I
simply terminate at code completion.

Two schemes for interprocess communication ha'.e been widely accepted: shared memory

and message passing. The communication mechanism should ideally conceal the hardware

configuration and network fabnc. Because message passing can be used to implement

communication on a shared memory machine, but shared memory cannot be implemented on a

loosely connected machine, it is considered to be the more basic of the two. The message

passing mechanism can provide automatic message buffering or rely on the user to buffer

messages where needed. The unbuffered method requires a blocking send. Both the sender and

receiver must be prepared for the communication so that the message can be moved directly

between their data segments. Buffered message passing allows the sender to proceed regardless

of the state of the receiver.!
Interprocess synchronization can be explicit, based on an event mechanism, or implicit,

based on message passing. Unbuffered message passing guarantees synchronization of the two

processes involved at the time the communication occurs.

Nondeterminism between processes can be allowed by letting processes receive from one

of a set of possible senders, rather than specifying a particular sender. This can be implemented

as a guarded command containing either receive commands or events ke)ed to a message

I arrival.

The language chosen for the project, EPL, supports dynamically created, autonomous

processes which terminate at code completion. Processes communicate and synchronize with

unbuffered message passing. Nondeterminism is incorporated with a mechanism for receiving

from an unspecified sender.

6.2 EXPERIENCE

6.2. 1 System Information

The kernel design is based on partitioned system information. The kernel knows about

design n syste

-46-

local actors only. and relies on kernel to kernel enquires to get information about nonlocal

actors. Several kernel operations build queues of actors using linked lists of process descriptors.

In these cases, a nonlocal actor is temporarily represented locally with a dummy process

descriptor which is the same as the standard process descriptor. Information required by the

operation is placed in the dummy process descriptor.

Another possible implementation would have been to replicate system information. If all

process descriptors are copied locally, kernel to kernel enquiries would be unnecessary. Having

information replicated could enhance recoverability. Other information could be replicated to

simplify system algorithms, such as the global scheduling policy. However, maintaining

replicated information can be expensive. Mechanisms must be provided for updating the

replicated information and guaranteeing its integrity. These mechanisms would involve a great

g deal of interprocessor communications.v

The partitioned approach is simple but increases the communication costs of kernel

operations because of kernel to kernel enquiries. Replication offers the benefits of having

useful information locally, but adds the costs of maintaining a distributed data base.

6.2.2 Memory Management4

The use of unbuffered message passing greatly simplifies memory management. Messages

are copied directly from the sender's data segment to the receiver's data segment. Problems of

flow control need not be dealt with in an automatically buffered scheme. The kernel must

handle buffer shortages. Messages for a receiver must be queued. If the message is being

passed between processors, it must be buffered and queued at both locations. The case of a

receiver not accepting its messages can create cleanup problems and buffer shortages. Variable

J length messages complicate the buffering scheme and fixed length messages could be overly

restrictive.

I The major disadvantage of unbuffered message passing is that it prevents the sender from

running until the receiver is ready to accept the message. However, the user can overcome this

I if

g necessary, by creating a new process dedicated to sending the message. This secondary process

is blocked instead of the parent.

1 6.2.3 Hardware Transparency

The system software is divided into two sections. The kernel manages the actors and

provides the environment for the distributed programming language. The 1/0 subsystem

manages the processor links and routes kernel requests to the correct processor. All kernel

requests for information about an actor other than the calling actor are passed to the I/0

subsystem for routing. If the actor is local, the request is passed back up to the kernel, if not, it

is sent the proper kernel. Requests originating on other processors look identical to those

originating locally.

I With this design the kernel does not distinguish between local and nonlocal actors and

gdoes not know whether a request originated locally or nonlocally. The physical distribution of

actors is transparent to the kernel, simplifying its design.

I 6.2.4 EPL Simplicity

EPL was designed as a system's programming language. It provides a minimal set of

primitives intended to be building blocks for more complex structures. The Simplicity of EPL is

I reflected in the simplicity of the kernel design.

1 6.3 MEASUREMENTS

The increased costs, but not the benefits, from distribution were estimated. A comparison

I of two kernel implementations, the multiprocessor version and one for a single processor,

g shows substantial increases in logical complexity. The multiprocessor kernel has twice as many

entry points and states, and four times as many state transitions. The greater complexity is

reflected in the number of assembler instructions needed to implement the EPL primitives.

Both versions are implcmented in C . The comparison is intended to show a trend of

1 -48-

I increased costs and their characteristics, and not intended to be a precise measurement.

g The costs of communication were measured as the number of wait loop executions per

interprocessor communication. It was found that, in many cases, the link protocol cost more

than the actual passing of information.

6.4 IMPROVEMENTS

6.4.1 Actor Naming

In this kernel design, process names are unprotected from user errors. The EPL actors

store and manage the actual actor names. The names are used for interprocess communication.

The kernel does not check to ensure valid names. Each actor must have a unique, global name.

9 A terminated actor's name cannot be reused because that could result in a process mistakenly

communicating with a later actor of the same name. The kernel uses the address of an actor's

process descriptor as its name. The requirement that names not be reused means that processt I descriptors for terminated actors cannot be allocated to new actors. This places limits on the

system's dynamic functioning.

I 6.4.2 Global Scheduling Policy

{ ~ The goal of the global scheduling policy was to maximize parallelism. The algorithm used

tries to achieve this by favoring the placement of children on a different processor than the

I parent. In system testing the processor with the first actor was much more heavily loaded than

the others, and some processors were hardly used. The imbalance in processor loads lessens

parallelism.

I 6.5 SIMPLICITY

The philosophy of simplicity enabled the kernel to be designed cleanly and concisely.

Memory management is minimal, the physical distribution is hidden from all but the lowest

level, and the kernel supports only a rudimentary set of primitives.

I -49-

I 6.6 FURTHER WORKC

Further work needs to be done to understand the system's characteristics, to evaluate the

current design in light of these characteristics, and to make alterations to improve performance.

In particular, the communication load needs further study. The current 1/0 structure should be

evaluated and tailored to that type of load. The effect of scheduling on performance needs to

I be examined. The scheduling mechanism can then be optimized. Is the architecture suitable?

Perhaps a different architecture would be more appropriate.

The effectiveness of EPL as a language for distributed processing needs to be evaluated, It

I may be that EPL cannot be used to achieve the goals of distributed processing or that it needs

some changes before it can be used as the basis for a system.

I
g APPENDIX I

EPL TO KERNEL INFORMATION PASSING

unless followed by dots, a slot is one word

CREATE
INFORMATION PASSED

structure of an act

stack size in bytesi

---a
of parametersact:

R1 : address of start of act ---- act.code
---- --- --- ---- --- --- act code

I
INFORMATION RETURNED

R1 :l bc 1i s name

I RUN
INFORMATION PASSED

I parent's stack

*o > -- - -- - - IRO--
I I I I

-- ichild name child's stack

-- - ------------- ---------------
args ------ > params I

I

number of params known from act

II
-50-

I

SEND
INFORMATION PASSED

a a
R1

V
-- receiver

name

messagea *I
a-----------------

msg. length known by receiver

RECEIVE
INFORMATION PASSED

~R1-

VI
- I :sender name

or 0
-- R2

buffer for
messageIV

~SYSTE:M
INFORMATION PASSED

IRO-->!- - - - - -

II

ode

ac e

~optional
arg

, a I
R -- - - - -

----- f-nct-on-

APPENDIX 2

I ACTOR PROCESS DESCRIPTOR

I register0

register 1
- - - - - - - - - - -

register 2

I * register 3

register 4

register 5

I * program counter

processor status

--------------I name
----------------------- a

waiting

narg

chain
--------------I child list

--------------I func

I name
Name is used to pass information to the 1/0 subsystem. It holds the name of an actor

which is to be the subject of a kernel to kernel communication. The lowest three bits of the
name indicate the kernel with which the communication is to take place (could be the local
kernel).

1 -52-

-53-

wailing

Waiting contains a pointer to the start of a list of process descriptors for actors waiting to
send to this actor. It is used by the SEND/RECEIVE primitive.

I narg
Narg is used to hold the number of arguments to be sent for both child initialization

(CREATE/RUN) and inter-process message passing (SEND/RECEIVE).

buf

Huf contain% it pointer into the actor's stack. It is the sum of the contents of RO (stack
pointer) und RI (ofrset Into stack) which are set up by the EPL actor for the primitives RUN.
SEND/RICEIVF and SYSTEM.

chain

Chain is used to connect the process descriptor into a linked list. It holds either a pointer
to the next process descriptor or nil if it is the end of the list. Since an actor can only be in one
list at a time (ready list, child list, waiting list) chain is used by all the lists.

child list
Ii Child list contains a pointer to the start of a list of process descriptors for children

created by the actor but not yet started running. It is used by CREATE/RUN.

I status

Status holds an integer value representing the current state (as indicated by the actor
transition graph, FIGURE Li) of the actor.

I func,

Func is used to pass information to the I/0 subsystem. It holds an integer which informs
the I/O subsystem what type of message is to be passed.

I
I
I
I

APPENDIX 3

MEMORY LAYOUT AND FILE DESCRIPTION

bottom of memory

0 1
trap vectors

320 --------------- a

system

1000------------------ start address
interface*

label: -- - - - - - -
* : :loaded in same

EPL acts location on

*----------------each processor--------
switch*

I kernel*

1 /0 subsystem*:

end: -- - - - - - -

EPL
process

descriptors

1 dynamic
V 1 allocation

I I EPL
I stacks

top of memory

names followed by 0 are interrupt disabled

-54

I-55-

interface

Written in Unix assembler, the interface provides the bridge between the the EPL and the
kernel (written in C) environments, and contains all of the assembler code needed for
certain operations such as 1/0. When the kernel is entered from an EPL actor the interface
saves the general purpose registers, program counter, and processor status register in theIrunning actor's process descriptor. Upon exit, this information is restored from a possibly new
running actor . The interface contains all of the trap handlers (I/O interrupts, break point trap,
kernel trap), the code for the idle actor, and the software multiplication and division routines
used by EPL (no longer necessary because the hardware is available). The Unix assembler used
does not include several standard LSI instructions, such as HALT or MTPS and MFPS (to
change processor status). The machine code for no operand instructions, such as HALT have
been inserted with direct assignments. MTPS and MFPS are simulated by placing the new
processor status and program counter on the system stack and then executing a return from
trap (RTT). The code for bringing up the kernel starts at location 1000 within the interface . It
initializes the system stack, processor status register, calls the kernel initialize routine and
dispatches the first actor (the first EPL actor if the kernel ID is zero and the idle actor
otherwise).

l Label is an assembler file containing a label to mark the start of the EPL code.

kernel

The kernel functions have been grouped into four files. Kernel.c contains the functions
called directly by EPL actors (also called the nonpreemptive functions). Prempt.c has kernel
functions called from the 1/O subsystem. These are referred to as preemptive functions because
the I/O subsystem can be entered by means of an interrupt, thus preempting an EPL actor.
Auxfns.c contains the auxiliary functions, such as memory allocation, and scheduling. All of
the linked list manipulating routines are in llist.c.B
I/0 subsystem

The I/O subsystem is divided into three main groups. The high level transmitter (xmt.c)
handles all of the link level protocol. The low level transmitter (xmtih.c) manages the actual
sending of messages and the low level receiver (rcvih.c) handles the receipt of messages.I
end

End is a variable assigned by C to the end of the loaded code.

!

I

APPENDIX 4

FORMATS FOR KERNEL TO KERNEL MESSAGES

unless otherwise specified, slots are one word

create request

Receipt of a create request message causes the kernel to create a new actor locally. The
name of the parent is passed so that the kernel knows where to return the child's name. The
name of the act is the start address of its code. (part of CREATE)

name of act
name of parent

e child name
The child name message is used to return the name of the child to the parent actor. Theg number of initialization arguments required by the child is also included (part of CREATE).

name of child
number of arguments expected (I byte)

name of parent

run request

A run request message contains the initialization arguments for a newly created actor.
Once the child is initialized it can be started running. The number of arguments being passed
is included in the message so that the receiver handler does not need to refer to the child's
process descriptor for the information. It is not really essential. (part of RUN)

g name of child
number of arguments that follow (I byte)

arguments

enquiry

The sending actor's kernel passes an enquiry message to the receiver's kernel to indicateI that a sender is prepared to send a message. (part of SEND/RECEIVE)

name of senderI name of receiver

I -56-

I -7-

acknowledge enquiry

The acknowledge enquiry message is the response to an enquiry message. It is passed
from the receiving actor's kernel to the sending actor's kernel when the receiver is prepared to
accept the message. The sender's name is passed so that the sender's kernel can locate it. The
The number of arguments to be sent, information known by the receiver, is needed by the

i sender's kernel to complete the message passing. (part of SEND/RECEIVE)

name of sender
I number of arguments + I expected by the receiver (I byte)

message received

This message contains the message expected by a receiver. (part of SEND/RECEIVE)

receiver's name
arguments

!

',!

I
t
I
I

I
I
I

A PPENDIX 5

THE DISTRIBUTED PROCESS STATE TRANSITION GRAPH

1,I

OLKA

END TNTJ7(7

-58-

I -59.

I THE PROCESS STATE DEFINITIONS FOR THE DISTRIBUTED KERNEL

BLK: the process is waiting to receive a message and a suitable sender process has not yetg enquired if the process is prepared to receive

CRT: the process is creating a child process and has not yet received the name of the childI process

END: the process has terminated (the process may be referred to by other processes)

ENQ the process has sent a message to enquire if the receiver process is prepared toI accept a message

INT: the process is transmitting parameters to a child process

NEW: the process has been created (i.e.. it has a name), but not parameters have beeng transmitted to it by its parent process

RCV: the process has acknowledged a sender process and is waiting to receive the text of
the message

I RDY: the process is logically ready to execute, but has not been assigned the CPU

g RUN: the process is logically ready to execute and has been assigned the CPU

XMT: the process is transmitting a message to a receiver process that is prepared to accept
the message

THE TRANSITIONS

1: a parent process requests the creLtion of a child process

2.a sender process enquires if the process is willing to receive a message

3: the - ameters needed to initialize the child process have been received

4, the F, ess is assigned the CPU resource

5: the process terminates

6: the process initiates the creation of a child process

I7: the request to create a process has been transmitted

8: the name of the child process has been returned

1 -60-

9: the parent process wishes to transmit parameters initializing a child process

'U 10: th(parameters have been transmitted to the child process

I1: the process wishes to send a message to a receiver process, an enquiry is sent to the3 receiver process

12: the enquiry has been transmitted

13: the receiver process has acknowledged that it is prepared to receive the message

14: the message has been transmitted

15: the process wishes to receive a message from a sender process; no acceptable
sender has enquired if the process is ready to receive

16: an unacceptable sender enquires if the process is ready to receive a message

1 17: an acceptable sender enquires if the process is ready to receive a message

18: the acknowledgement has been transmitted

1 19: the message has been received

20: the process wishes to receive a message from a sender process; a acceptable sender

has already enquired if th process is read), to receive

I

I

II

I
I

Ia

APPENDIX 6

TEST PROGRAMS

Sieve

The sieve of Eratosthenes is implemented as a chain of actors. The first actor generates
possible prime numbers with a counter which are passed down the chain via the
SEND/RECEIVE mechanism. Each of the remaining actors (sieve actors) possesses a
previously generated prime number which it uses to filter multiples from the set of possible
primes. At the end of the chain is a sieve actor waiting to receive the next prime. After it
receives a prime number, it creates a new sieve actor to wait for the following prime. The new
prime is then sent to a set of formatting and printing actors and the sieve actor becomes part of
the filter.

f irstI actor

V

sieve 1 1 sieve sieve a a sieve a a sieve I
actor 1-->: actor -- > actor ->...-> actor I-->I actor I

2 3 5 X nulli

I V

foz .atting I
+

printing I

a actors a

Mrobin

Mrobin sets up a structure, similar to a two dimensional irray, in which each element is
an actor. There are three types of actors involved: element actors are elements in a row, header
actors each create a row, and the initial actor (only one is created) creates header actors. The
header actor creates new element actors, and adds them to the head of the row. Each row is a
circular linked list of elements. After the header creates a new element, it prints the new
actor's name and starts a null message down the row chain. When the message returns to the
header from the last element, ihe next element is created. As each element receives the signal,

I ,-61-

-62-

it sends the name of the next actor in line to a printing actor, and then waits for the next

signal. With this arrangement, there is no parallelism allowed within a row.

* header 1-->! element 1-->! element :-->! element -

*header 1-->: element :-->! element :-->: element -

*header 1-->! element 1-->! element 1-->! element 1--

- -- - - - - - - - - - - - - - -

- -

I APPENDIX 7

I DISTRIBUTION OF LENGTHS OF INSTRUCTION SEQUENCES

I MROBIN

I 1.0

0.5_r

1 0. 01
ies

0 5 10 15 20

I SIEVE

I 1.0

0.5

0.0-- - - - -

I05 10 15 20

-63-

I Part III

Design of an Operatin6 System for
Distributed Communicating Processes

by

J. Morse

I

l
This paper reports on an attempt to apply some of the basic princi-

pies of software engineering to the design of an operating system for

multiple loosely-coupled mini-computers. The goal of the project was to

g develop a design that was independent of the CPU on which the operating

system was to run, and on the communicatons facility available to link

the CPU's. Such a design should make it possible to implement a "fami-

ly" of operating systems [ParT6]. Possible variations among the family

members include:

1. Implementation for several different interconnect facilities

with varying performance parameters.

2. Implementation for various network topologies, including in the

limit the single CPU case.

3. Incorporation of new operating system features such as time

dependent scheduling.

The design approach was to identify a set of requirements, express

those requirements in abstract terms, and then refine the abstractions

to formulate a design. In refining the requirements into a design,

principles of software engineering were used that were drawn from two

areas in which a great deal of progress has been made in the last ten

1 years. The first of these areas is modularization of design and imple-

mentation with the goal of easing the expansion, contraction, and Bub-

I setting of large software systems. Much of the work in this area has

been done by Parnas -- the bibliography gives numerous references. The

second area is the use of data abstraction as both a design tool and as

a principle to guide implementation. In abstraction- for design, the

I contributions of Flon [Flon75) and Guttag [Gutt8O) should be mentioned.

In the development of programming languages based on data abstraction,

prime examples aie CLU [Lisk77], ALPHARD [Wulf76], and EUCLID [Pope7T].

l -1-

l

The operating system supports the programming language EPL [May79].

EPL is based on the principle of communicating processes very much like

CSP [Hoare78] or the Distributed Processes of [BrIn78J. Processes are

I autonomous; they communicate and synchronize with each other onlj

through message passing. EPL was chosen as the basis for the study of

I operating system design because it requires only a small number of prim-

itive operations:

I , Send a message

Receive a message

Create a procees

* Run (initiate) a process

A number of other distributed operating systems were considered,

including HYDRA [Wulf74], Cm* [Joes77], Pilot [Red80, and Medusa

[Oust8O]. An operating system to support EPL was chosen over these oth-

3 er possibilities because its simplicity allowed the design process to

focus on the essential problem of distributed control of sequential com-

municating processes without the need to deal with peripheral issues

such as memory management and file systems.

I

2. REQU-RMETS

2.1 Abstract Requirements

Analysis of the definition of the EPL programming language suggests

that there are two basic abstractions that the operating system requires

-- actors, and messages. For the remainder of this discussion, I shall

use the more conventional term "process" in place of the EPL term "ac-

tor". The requirements for an operating system to support EPL may be

expressed as follows:I
1. There shall be Processes and Messages

I
i -2-

I

2. Processes can do the following with reference to otherI. Processes:

* Create a Process

I * Run (Initiate execution of) another Process
*Send a Message to another ProcessI B Receive a Message from another Process

3. AProcess may terminate itself.

4I. Each Procesa may make progr'ess independently of any other Pro-
cess except while executing:

*Send

*Receive
5. The result of Receive will depend soley on the state of the

Icorresponding Sending Process at the time that the Send is exe-

cuted.

06. Create and Run have no effect on the state of the Proc ess exe-

cuting them.

g7. Apart from the above, Processes can be modelled as independent

state machines.

The first three requirements listed above follow directly from the1 specification cf EPL. Requirements 4-~7 are ark attempt to refine the no-

tion of Processes and the operations that they can perform in an ax-

giomatic way. These_ "axioms" conform to the usual notions about what a

"process" is. They form the basis for a set of invariants that must beg preserved by all valid designs and implementations of any family member.

The given set of axioms implies an equivalence between message

I passing and synchronization of processes. Yet Parnas in [Par79) cites

combining message passing with synchronization as an example where comn-

I porents perform more than one function, thus making it difficult to im-

plement a subset that provides one feature without the other. In spite

of Parnas's warning, I will accept for this design that the semantics of

EPL have inexorably bound synchronization with message passing, and that

the design of the operating system will be based on the same principle.

.If it were required to provide a mechanism for synchronization in the

-3-

Iabsence of message passing, then some other mechanism, SUCh2 as Sema-

phores, would be required for synchronization. The added complexity

does not seem warranted in the present case.

2.2 Refinement of the Requirements

We now work from the abstract requirements toward a set of concrete

requirements, by introducing new abstractions. This may be viewed as a

process of describing increasingly lower level "virtual machines*

[Par79J, or as a process of' identifying levels of data abstraction.

The requirement that processes may make independent progress and

gmay be regarded as independent state machines suggests that the concept

of process splits into 3 sub-concepts: 1) each process has a "current

*state", 2) each process has a set of rules for making transitions from

state to state, and 3) there is some kind of executor which causes

processes to =a-ke state transitions. We will refine these three notions

I in terms of, respectively, 1) process descriptors, 2) executable state-

1 ments, and 3) the operating system dispatcher.

The process descriptor is a basic abstraction of the design. There

is a one-to-one correspondence between process descriptors and

processes. All state associated with a particular process is either

3 contained in, on referenced by, its process descriptor. Various modules

will need to know about various components of the process descriptor. A

basic criterion for partitioning the system is to restrict the use of

each component to the minimum number of modules.

Executable statements define what a process does. We asri'e that

these statements form a list of instructions that is re-entrant, and so

sh areable by multiple processes. The term used in the EPL definition
for such a statement list is "IACTII. One of the items that must be kept

I in the process descriptor as part of the state information is a pointer

to the "current location counter" for this list of instructions.

-4

The dispatcher is the module that allows processes to make pro-

gress. The operating system scheduler in effect multiplexes the CPU by

I repeated calls to the dispatcher to advance the state of a particular

process. The requirement of independent progress requires that the

scheduler will eventually submit every process that is able to make pro-

gress to the dispatcher. We may add a further requirement that all
processes ready to run get "fair" treatment in the sense that once a

I process has received service, it will receive no further service until

all other ready processes have been dispatched as least once. A funda-

I mental goal of an operating system is to keep the CPU busy advancing the

state of runable processes whenever possible.

2.3 Extension to Multiprocessor Implementations

Up to this point, nothing has been said about supportin~g multiple

processors. If we assume .nat processes may reside on different CPU's

in different physical locations, what effect will. this have on the re-

quirements?

iThe existence of m~ultiple CPU's clearly requires that we have mul-

tiple schedulers, since it is the scheduler that provides the multiplex-

ing of a, single CPU anong multiple processes. Since the scheduler is at

I the top of the requirements hierarchy, this suggests Cnot too surpris-

ingly) that each CPU needs a copy of the entire operating system. This

I operating system will have the same requirements as outlined above, with

the additional requirement that the scheduler be able to deal with pro-

cess descriptors and queues on remote processes.

To incorporate remote processes into the operating system, it is

only necessary to provide a communications facility so that remote pro-

Icess descriptors and queues can be ac !essed. Presumably, the same data

abstractions will apply to remote data as to local data. An additional

requirement is that the access routines for process descriptors and

queues be able to distinguish local objects from remote objects. The

dispatcher and other support modules need no change whatsoever. A pos-

I -5-

rsible difficulty is in the Create Process operation, which needs some

notion of creating a process at a remote CPU.!
With the proposed approach, the details of the communication facil-

9 ity, and knowledge about the system topology, are all isolated to the

communications module. The goal with this approach is to allow for

changes in both communications facilities ard system topologies with no

change to any part of the operating system except the communications

module. As we shall see, this approach does not work.

3. DESIGN

The boundary between requirements specification and design specifi-

cation is not hard and fast. The second and third parts of the previous

section began to talk about abstractions such as "process descriptor"

I and modules such as "scheduler" and "dispatcher" which might be con-

sidered part of design specification. However, the refinements made in

the last section were almost inevitable given the fundamental require-

ments of EPL. On the other hand, in this section refinements represent

choices fron azorg many alternatives.

3.1 Motile Definition

The criteria for dividing the operating system into moduls will be

based on thcse given in [Par791.

A. Information will not be distributed. Parnas talks elsewhere [Par72]

about using "information hiding" as a criterion for modularization. The

g design will attempt to achieve information hiding by the mechanisms of

data abstraction. Because of the complexity of an operating system, the

g data abstractions will be hierarchical. As an example, the process

descriptor is a data abstraction. Many modules need to deal with pro-

cess descriptors, but most need know iii detail about only a small part

I -6-I

of the whole. This will be achieved by defining the process descriptor

as an abstraction which is itself made up of abstractions. Some modules

need to know only that the descriptor exists, without knowing any of its

detail. Other lower level level modules need to know about the ex-

3 istence of some of the sub-abstractions without knowing how to manipu-

late them. Finally, the lowest level module, the one that implements a

3 realization of the abstraction, needs to deal with the exact details.

B. The design will avoid the data transformation model. Modules will

9 deal with the data abstractions as they are, without changing formats.

This is almost an automatic result of the data abstraction approach,

since changes to data are only done through the operations associated

with the abstraction.

S C. Modules will perform single functions.

§ D. Loops will be avoided in the "uses" relation. Parnas provides a de-

finition of the "uses" relation based on the dependence between modules.

This design will incorporate the notion of dependence on data abstrac-

U tions in the "uses" relation. This is to say that module A "uses"

module "B" if module A makes use of a data abstraction provided by

5 module B.

3.2 Abstract Data Types

It follows almost directly from the requirements specification that

we will require process descriptors and messages. In addition, the

9 operating system will need to be able to organize process descriptors

for easy access as needed on a one-by-one basis. It will also need to

A manipulate messages in a similar way. A message nay be sent to a given

process before that process is ready to receive. The scheduler will

need a way to save the message and keep track of it until the process

I signals that it is ready to receive. To handle both process descriptors

and messages, the queue abstraction will serve.I
3.3 Notation

-
1 -7-

I!

A variant of Pascal is the design language, augmented with the

abstract type definition notation of [Flon751. Some extensions and

gchanges to Pascal and Flon's notation have been adopted for convenience:

1. Each top-level name in the "DECLARE" part of a type definition

that is preceded by the keyword "EXTERN" is visible to the

modules which use the type.

2. Fetch and store operations are implicitly associated with each

g such external name of the type, so that one may write, for in-

stance, "new.state = old.state". This eliminates the necessity

to define an abundance of operators which merely fetch and

store values.

3. Enueration type declarations create named constants with the

same scope, so we may write "new.state = recv". This does not

seem to violate the goal of information hiding; if constants of

this type were not available, an externally visible operator

would be required to accomplish the same purpose.

g 4. DECLARE is used instead of the Pascal VAR, to declare a pointer

to a typed variable. Except in the create operation of a TYPE,

9 no implicit creation is done; the variable is initialized only

by assignment. All variables are pointers, as in CLU [Lisk76].B
This choice of a design language presents a compromise between pre-

cision on the one hand, and wordiness on the other. With the extensions

cited above, it is possible to convey all the details of the data

abstrastion approach required, without getting into the details of

representations. The language i, wordy enough to convey its semantic

neaning to the casual reader. At the same time it is concise enough to

represent the essential details of the design of an operating system in

just a few pages of "pseudo-code".

3.1 The Initial Design

The initial attempt to design the operating system is given in Ap-

pendix I. The design implements the basic operations Create, Run, Send,

I

AD-A099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-ETC F/6 9/2
DECENTRALIZED STETEMS. (U)
DEC 80 E E BALKOVICH DASGO-79-C-OI17

2 CIED TRCS 5II IL

III4IIIIIIIIIIE hEEEEEEEE hE
EEEmhEEEEEEEEEIIIIumIIIIIIIu
EEEIIEEEIhhEEE
*IIuIIIIIIuumI
*EEEIIIIEIIE

and Receive, where Receive iz a general receive -- the process will ao-

Cept a message from any c.h , r,-cess. The top level of the scheduler

is a loop which repeatedly .ij -. current process from the ready

queue, dispatches the process tO z e CPU, and upon return, executes the

system call that caused the process to return to the scheduler.

Execution of system calls is done by the procedures in the module

"sc procs". These procedures maintain the state of the system as a

i whole by moving process descriptors between the ready queue, which coa-

tains descriptors for processes that are able to run, and the Idle

queue, which contains descriptors for processes that are blocked waiting

to send or receive messages.

IThe data abstractions to support the operating system are basically

those that represent process descriptors, queues, messages, and the phy-

sical CPU. This partitioning seems appropriate from a modularization

point of view since it neatly separates four critical aspects of the

I operating system design:

1 1. Definition of Processes

2. The Queueing discipline and implementation

I 3. Message formats

4. Hardware details

One of the underlying principles of the design is that the data

abstractions form a hierarchy, with lower level abstractions being used

to form higher level abstractions. The following diagram illustrates

the relationship among some of the major data abstractions used in the

design. It also represents the "uses" relations among the data abstrac-

tions.

I
I
I -9-

I

QUEUE

i I+DESCRIPTOR

----------- --- ----- - ------

CPUSTATE MESSAGE IACT

Even though many of the details at the lower levels are omitted

from this design, it gives an adequate framework for the analysis of the

i operating system, and appears to have achieved the goals or the current

project. Its limitations will be discussedin the follwing section.I

I The previous section optimistically proclaimed the truth and beauty

of a proposed operating system design, and claimed that it had achieved

1 some goals of information hiding and modularity. This section will ex-

amine the faults of the design, and in Darticular how some software en-

I gineering techniques, even applied informally, can predict the problems

with this design.Ii
4.1 Circularities

I essages point to process descriptors; process descriptors point to

messages. This interdependence between processes and messages points up

the fact that the operating system is using messages to implement pro-

cess synchronization.

System commands (send, receive, create, run) are the "undefined

I terms" that both the lowest level (the user process) and the highest

I -10-

hI

" level (the scheduler) deal with. This Is a symptom of an essential CO-

routine relationship between the operating system and user processes.

For the purpose of the design, the scheduler Is placed at the top of the

oontrol hierarchy - It appears to call user processes as closed

subroutines. But on the other hand, the user process Noallso the

operating system to receive some service such as message transmission or

3 process creation. There is a two-way flow of stimuli in an operating

system -- the system issues "proceed" stimuli to processes; processes

Issue wsyscall" stimuli to the operating system. In the current design,

the "proceed" stimulus is treated as a normal call operation, while the

'syscall" stimulus is implemented through a back-door return parameter

from the process. This is a compromise solution because the existing

abstractions do not adequately deal with a co-routine control structure.

Of these two major loops in the "uses" relation between abstract
Idata types, the me3sage/process descriptor seems minor. Interestingly

enough, it would be Possible to implement the scheduler in such a way

I that messages were never pointed to by process descriptors, though at

some cost of convenience. On the other hand, messages will certainly

have to reference process descriptors, since they are used for communi-

cation and synchro ization between processes. This suggests that the

Imessage is the higher level concept in the design.

I I feel that the loop in the "uses" relation of system commands, on

the other hand, is both significant and unavoidable. There is no obvi-

ous way of eliminating it, nor of re-arranging the levels in the hierar-

chy of abstractions to make the control structure cleaner.

I 1.2 Consistency

IInvestigation of the design in terms of the axioms of the require-

ments section must study how process descriptors are manipulated in the

I system. The responsibility to insure progress of all processes (re-

quirement 4.) suggests as an invariant of the operating system that

Ievery process descriptor be on exactly one queue. The only queues that

1-11-

the scheduler has are the two called ready, and idle. During execution

a process may alter its own process descriptor in order to set up system

calls. But the processes have no access to the system queues. *The only

place where process descriptors and queues are manipulated is in the

modules called system, and sc procs. The following is an informal argu-

ment for the consistency of the process descriptor management.

1. The module scprocs is the only place where information of any

kind is passed between process descriptors.

2. The top level scheduler always removes the current process from

the ready queue, dispatches it, and then calls exactly one pro-

cedure in scprocs.

3. Every procedure in scprocs, under all path conditions- inserts

the current process descriptor into exactly one queue.

4. In every path in every procedure in scprocs, whenever a pro-

cess descriptor is successfully removed from a queue, it Is

subsequently inserted into exactly one queue.

5. Therefore, the desired invariant holds at the beginning of the

WHILE loop in the Scheduler.

4.3 Multiple CPU's?

The above consistency discussion points up the fact that the

desired invariant holds at the top of the WHILE loop. In fact, the in-

variant is a pre-condition for the subsquent execution of the call to

the dispatcher, which is the only place where the system actually "makes

progress" (from the process point of view). Consider the problem of

maintaining the invariant in procedure scsend if the destination pro-

cess is on another processor. The process descriptor referenced by

variable p is accessible only by some communications link. Also, the

I idle and ready queues for p are remote and are accessible only via the

link. Then the following 4 statements:

IF p.state Wrecv THEN BEGIN /* test state 0/

i p.msg := m ; /* transfer message 0/

1! -12-.

I q.remove (idle, p); /* remove from idle queue 3/

* I q.putkend (ready, p); /0 insert in ready queue m1

each require communication. The design can be improved substantial4 by

SI combining the last 3 statements into one operation that transfers the

message and then allows the operating system at the remote site to move

* p from the idle to the ready queue. Nevertheless, the delay for commun-

ications has been inserted into the scheduler at a point where the

desired Invariant does not hold. Thus the dispatcher will not be

called, and no process can progress while the communication is going on.

This violates the independent progress axiom since a process may be

I ready to run, the CPU is available (it is just waiting for communica-

tions to complete) yet no process can make progress.I
The problem is that the operating system has failed to perform its

basic function -- to keep the CPU busy. To achieve this, it must insure

that all the operations it performs directly are CPU bound. Any waiting

3 that is done, even on behalf of system level processing, must allow the

main scheduler loop to run, thereby keeping the CPU busy. In fact, only

processes. can wait; the function of the operating system is to provide

a means whereby processes can wait without holding up the CPU. The ob-

vious conclusion is that communications must be handled at the process

level.

I
I 5. MEL COrMUNICATIONS P

I At this point the design has been forced back to an approach that I

had considered earlier and discarded on the grounds that it did not seem

I "clean". That approach is to handle all inter-CPU communications

through a pair of processes which handle the network link. For the pur-

3 pose of design exposition, these two processes will be treated as if

they were normal user processes, even though one of them is actually an

SI interrupt handler. An efficient implementation of this approach would

II

probably give these processes special status, preferred scheduling, spe-

l cial CPU context and so forth, in order to service the link in a timely

manner. These two processes are called startjio and iodone.

5.1 Process Design

Whenever the scheduler encounters a Send to a remote process, it

performs the normal send processing as if the message were sent to

start_io. Process startio, which is created and initiated at system

i startup time and never terminates, simply loops on a Receive primitive.

When it receives a message, it starts the link hardware to send the mes-

sage to the appropriate remote CPU. It then waits for a message from

iodone signalling that the message has been sent and the link is avail-

able for the next message.

Process 10_done is really an interrupt handler. For a clean can-

ceptual model, assume that the scheduler in fact dispatches it periodi-

cally to poll the done status of the link. If the link is done, either

a message initiated by &tart._io has finished, or a message from another

CPU has been received. In the first case, io._done sends a "done" mes-

sage to start_io to allow it to get the next outbound message. In the

second caz, io_done determines which local process the message is des-

tined for, and does a Send to that process.

I 5.2 Interaction with the Operating System

A little reflection will show that the proposed solution will pro-

I vide the last 3 of the 4 steps involved in executing a Send to a remote

process. The message will be transfered, and, as a result of iodone

I doing a local Send to the destination process, the process descriptor of

the destination process will be moved from the idle queue to the ready

3 queue.

The original code depended on the pre-condition that the destina-

tion process was already in th(Wrecv state, and so was guaranteed to

I
-1I

.U. , ,

I already be on the idle queue. It may be that the Send occurs before the

Recv. One approach to handling the remote synchronization is to design

a moderately elaborate handshaking protocol that defers the message

transfer until both processes are in the appropriate state. This ap-

proach is in fact used in an existing operating system for EPL. A con-
ceptually simpler approach, however, is to always let Sends proceed im-

mediately. If the scheduler gets a message from a remote process via

Io_done, and the destination process is not ready to receive it, it will

I create a temporary process descriptor for the remote process, save the

message in i, and place it on the Idle queue. This allows the

scheduler to place io...done back on the ready queue Immediately, so that

link service is not held up. When the destination process is ready to

receive, the scheduler must make sure that the temporary process

descriptor is discarded -- if it is mistakenly placed on the ready

queue, disaster will strike in very short order.

5.3 implications of the ApproachI
The new design for the scheduler and its modules is shown in Appen-

dix II. Note that all the changes have been made at the top level

none of the data abstractions have been changed in any way. Two details

have been omitted. One is that Create and Run of remote processes has

not been designed. There needs to be a mechanism for returning an iden-

3 tifier of the remote process to the creating process. The second detail

is that in the single CPU design, process descriptors are used by the

scheduler as identifiers for the processes they represent. For the mul-

tiple CPU design, there need to be identifiers for remote processes that

can be distinguished from the process descriptors for local processes.

Reviewing the requirements in light of the new design yields an in-

i teresting phenomenon. Requirement 5 is in fact still met, but by a

chain of indirection. A message from source to destination passes from

3 source to startto (local CPU), to io.done (remote CPU), Possibly to a

dummy process descriptor, and finally to the destination process. Since

Srequirement 5 is met for each of these steps, it is met for the opera-

i -15-

I

tion as a whole. Synchronization, however, in definitely not achieved.
The original sending process can continue as soon as the message has

been transferred to start~jo, and long before the message gets to the

destination. The new design effectively buffers message transfer, and

I message sending can no longer be used for real-time synchronization even

though it still achieves, logical synchronization.I

I 6. UMARY

IThis attempt to design an operating system using principles of

software engineering has been a qualified success. Certainly the dis-

cipline of applying the data abstraction approach has kept the design

cleaner, and clearer, than might otherwise have been the case. Progress

i has been painfully slow, and many design approaches that at first seemed

promising led to either unworkable or impractical solutions.I
It was hoped that the approach would be able to address the issues

' Iof operating system families. The design is at a stage now where it

should be easy to show how other CPU's, various communications facili-

ties, and new features can be accomodated. Both the writer's energy and

the reader's patience are certainly exhausted by now, so the demonstra-

tion of the level of modularity that has been achieved will wait for

another day.

I The most important design principle used in this exeroise was that

of keeping careful control over access to information. A strong dis-

tinction emerged between access to the name of a data item and access to

its internal structure. By placing the names of (references to)

3 abstractions into the structure of higher level abstractions, a hierar-

chy of data abstractions was developed which served to keep the design

3 both coherent and modular.

* -16-

I

-

APPENlDIX I

1 / Module Definitions for the Operating System '/

/* The scheduler is the top level module of the Operating System.

It makes use of the process descriptor, message and queue

abstractions to manage the CPU. It assumes that The Force

has Incarnated an act called MainAct which is initially

made ready, and which creates and runs all the other processes

of the system. 5/

MODULE system=

PROCEDURE scheduler =

DECLARE

current: proc_des, / current process SI

ready: queue (proc._des), /0 queue of ready processes *1

idle: queue (proc des); /f queue of idle processes

ready := queue.create (procedes); /* the ready queue 5/

idle := queue.create (procjies); /* the idle queue 5/

current := procLdes.create (MainAct); / the current process i/

queue.put_end (ready, current); /* start with main process 0/

WHILE not queue.empty (ready) DO BEGIN /* run so long as some process

I current := queue.get_next (ready); /* get next process to run e/

CASE procdes.dispatch (current); /* run process, test command 0/

I Create: so_create (current.new,_act);

Run: so_run (currentnewproc);

Send: so_send (current.smsg);

Recv: scorecv ()

I END of CASE

END of WHILE

END of scheduler

END of MODULE system.

I
I -17-

I

/* Definition of siub-procedures to execute each command */

/* Single CPU ver.;ion

MODULE sc procs =

I /* These procedures import the following from t.he surrounding

scheduler context:

IMPORT

current: proc des, /* current process a,

3 ready: queue (proo-des), /c ready queue

idle: queue (procdex); /0 Idle queue •,

PROCEDURE sc~create (a: act) = BEGIN /* Create a new process */
current.newroc := proc_des.create (a); /* new process descriptor 0/

I queue.put-end (idle, current.new-proc); /* put onto idle queue RI

queue.outend (ready, current) /* re-enable current proc. *1

END of sccreate;

PROCEDURE sa-run (p: procdes) = BEG.-il /* Run an idle process 5/

k IF (queue.retove (idle, p)) not = NIL /* if on idle queue, 5/

THEN queue.putend (ready, p); /* make it ready 5

queue.putend (ready, current) /* re-enable current proc. *1

END of sc _run;

I PROCEDURE scsend (m: msg) /* send a message */

DECLARE p: proc-des;

I BEGIN

p := m.dest; /* de,5tination process *1

I IF p.state Wrecv THEN 13,:(;IN /* if ready to receive */

p.rsg m; /* transfer the message *

3 q.remove (idle, p); /* remove dest from idle 5/

q.putend (ready, p); /P make destination ready 5/

3 q.putjend (ready, current) / make current ready */

END

3 ELSE BEGIN /* not ready to receive 5/

current.msg := m; P save message a,

3 ourrent.state := Wsend; /* waiting to send 5/

q.put,_end (idle, current) I' suspend currentI

I!
END

END of sco_send;
PRCDRE scend /, receive a message '/

PROCEDUREcreoV=

DECLARE P: procdes;

BEG :I findjsg (id1e, current) /* find a process trying to
p = f n~ m g (d e u r n)/ * if there is one "

IF p not = NIL THEN BEGINI r ts/ transfer the message *1urrent.msg := p -Ms ; J n b e s n i g p o 0 3 Y

q.putend (ready, P); 0 enable sending pro.ss 0/

q.put~end (ready, current)
/* enable current *1

END

* ELSE BEGIN

current.state := Wrecv; 0 waiting to receive *1

q.put-end (idle, current) 0 current now idle.

END of screcv

END of MODULE sc.procs.

I
I

I

I
I

I 4S

I
1 -19-

I

I /* Abstract Data Types for the Operating System e1

/* The process descriptor is the abstraction tl embodies the

notion of independent pron.z , modelled as state machines.

The process d-scriptor also contains abstractions that allow

processes to communicate with each other by sending messages. 01

I TYPE procdes =

DECLARE

5 EXTERN: state: (Wsend, Wrecv],

EXTERN: context: cpustate, /* CPU context 0/

EXTERN: msg: msg, /* message to be sent, 0/

/* or just received 0/

g EXTERN: newact: act, /* act for create e/

EXTERN: newproc: procdes; /* process created 0/

I OP dispatch (p: proc-des): command = BEGIN

/* Dispatch the process by giving it to the CPU to execute

RETU.N cpujrun (p.context);

END of OP dispatch;

OP create (a: act): proc-des = BEGIN

/* Create a new process descriptor */

I DECLARE p: proodes; /* create new descriptor 0/

p.state := Idle; P initially idle e/

I p.ccntext := cpu_state.create (a); /* initial context 0/

p.msgq := queue.create (msg); /* initial message queue Of

3 END of OP create;

END of TYPE proc-des;

3 /* Message abstraction. A message has a source process, a

destination process, and text */

TYPE Msg

5 DECLARE

EXTERN: source: proc des, /* source process */

3 EXTERN: dest: proc-des, /* destination process 0/

I -20-

EXTERN: text: string; 1* text .1

OP create (s, d: procdes, n: INTEGER): msg = BEGIN
DECLARE m: mag; / create a new message */

M.source := s; /I source process WI
m.dest := d; /* destination process */

m.text := create.string (n); /* room for text 0/

END of OF create;

END of TYPE msg;

/* Generalized Queue. A Queue is an ordered list of items

which may be accessed from either end of the queue, or

by specifying the item explicitly. 5/

TYPE queue (t: TYPE)

DECLARE head, tail, quelem; /0 both head and tail point

to queue elements *1

/* The operations will be declared, but not defined here.. ./

OP get_next (q: queue (t)): t BEGIN

/* getnext removes and returns item from front of the queue 0/

END;

OP remove (q: queue (t), item: t): t = BEGIN

/* remove removes and returns item specified. If it is

not in the queue, returns a special constant NIL a,

END;I
OF putend (q: queue (t), item: t) = BEGIN

/* put end inserts an item at the end of the queue a/

END;

OP empty (q: queue (t)): Boolean = BEGIN

/* returns true if queue is empty, else false ./

END;

OP create (t: TYPE): queue BEGIN

/* create a queue '/

-21-

1

I
END;

I| END of type queue;

/ Abstract type cpukstate captures the notion of the state of the

hardware that must be established for each process, and saved when

the process is suspended.

/* This is the only hardware-dependent module, and would normally be

realized in the assembly language of the CPU. The example given

here is for an aronymous mini-computer. .1

I TYPE cpu_state

DECLARE rO, rl, r2, r3, r4, r5, sp, PC, Ps: INTEGER;

OP cpu_run (c: cpu.state): command =

/* load up the CPU registers with the state information and

"resume" execution. When the processes executes a system

call, the command is returned as the result of cpurun a,

END of 0? cpu_run;

OP create (a: act) = BEGIN

/* create a new state for a process to begin execution of

the code identified as "act" a,

DECLARE c: pu.state;

c.pc := a; 1* point to start of act 'I

c.sp sys alloc; /* allocate stack space I
c.ps := disable; I' interrupts disabled *1

END of OP create;

END of TYPE cpukstate;

/* Abstract data type "act" embodies the notion of a list of

executable instructions (procedure body, if you will). An

act is created by a compiler. a,

I
I

i -22-

I

I APPENDIX II

I /* Module Definitions for the Operating System 0/

Multiple CPU version - lines commented with {) are changes

from the single CPU version.

I/ The scheduler is the top level module of the Operating System.

It makes use of the process descriptor, message, and queue

I abstractions to manage the CPU. It assumes that The Force

has incarnated an act called HainAct which is initially

made ready, and which creates and runs all the other processes

of the system.

I MODULE system =

PROCEDURE scheduler

DECLARE

current: proc..des, /* current process e,

start _io: procdes, { start_io process)

io_done: procjdes, { io.done process }

ready: queue (prodes), ~/ queue of ready processes *I

idle: queue (proo.des); /1 queue of idle processes /

BEGIN

ready := queue.create (procdes); /* the ready queue S1

I idle := queue.create (proc_des); /* the idle queue

start_io := procdes.create (StartIO); fcreate start_io

queue.put_end (idle, start.o); { make it idle 3

iodone := proc_des.create (IODone); I create io_done 3

queue.putend (ready, iodone); J always ready to test done II
current := procdes.create (MainAct); /0 the current process */

queue.put end (ready, current); /* start with main process 0/

WHILE not queue.empty (ready) DO BEGIN /* run so long as some process

current := queue.get next (ready); /* get next process to run l/

CASE prco_des.dispatch (current); /* run process, test command 0/

j Create: so_create (current.newact);

-23-

*Run: soL-run (current. newjproc);
USend: so._send (current.umsg);.

Recv: so-.recy C

END of CASE

* END of WHILE

END of scheduler

END of MODULE system.

-24

I
/* Definition of sub-procedures to execute each command 0/

I Multiple CPU version

MODULE soprocs

/0 These procedures import the following from the surrounding

scheduler context:

IMPORT

current: proo -des /e current process e/

start_io: proc_des, (startc process 3
l..done: procdes, (lodone process)

ready: queue (proo. des), /0 ready queue/

idle: queue (procdex); /1 Idle queue

PROCEDURE sc_create (a: act) BEGIN /0 Create a nw process a/

current.newproc := proc__des.oreate (a); /0 new process descriptor 0/

queue.put.end (idle, current.nevproo); /e put onto idle queue /L

queue.put-end (ready, current) /0 re-enable current proc. f/

END of sc_create;

PROCEDURE sc..run (p: procdes) z BEGIN /0 Run an Idle process 0/

IF (queue.remove (idle, p)) not = NIL /0 if on Idle queue, 0/

THEN queue.put end (ready, p); /0 make It ready 0/

queue.putend (ready, current) /e re-enable current proo. 0/

END of sc-run;

PROCEDURE scsend (m: mag) : /0 send a message G/

DECLARE p: procdes;

BEGIN

p := m.dest; /0 destination process 0/

IF (p is remote) p := start_io; I divert remote messages
to atartIo process)

IF p.state Wrecv THEN BEGIN /0 if ready to receive N/

p.msg :: m; /0 transfer the message R/

qremove (idle, p); /0 remove dest rm de /

q.put..end (ready, p); /0 make destination ready Of

q.put-end (ready, current) /* make current ready SI

END

2
I -25-

I2

ELSE BEGIN /0 not ready to receive o/

IF current = ±odone THEN BEGIN (special for io..done 3
p :z processades.create (dummy) C create a dummy process 3
P. msg :M; f insert the message)
p.state := Wsend; C waiting to send 3
q.putend (idle, p); C put on idle queue 3
q.put end (ready, current) (allow ic_done to continue I
END

ELSE BEGIN
current.Msg := M; /0 save message 5/

I current.3tate := Wsend; / waiting to send 0/

q.putend (idle, current) /* suspend current 0/

I END
ENDI EJEND fscsed

PROCEDUR 3c...rev /* receive a message 0/

DECLARE p: proc_des;

BEGIN

I p := find4_sg (idle, current) / find a process trying to

IF p not = !ITL THEN BEGIN /0 if there is one 0/

Icurrent.ng := p.msg; /* transfer the message/

IF (p not dummy) I it not from dummy process

THEN Q.putend (ready, p); { enable sending process }

q.puL-end (ready, current) /0 enable current 0/

END

ELSE BEGIN

current.state := Wrecv; /* waiting to receive 0/

q.putend (idle, current) /* current now idle 0/

END

END of sc_recv

END of MODULE scprocs.

I
I

I -26-

I

BIBLIOGRAPHY

I-

I
[BrIn78] Brinch Hansen, P., "Distributed Processes: A Concurrent Pro-

gramming Concept," oQ . AM, 21,11 (Nov. 1978), 934-941.

EFlon75J Flon, L. "Program Design with Abstract Data Types," Technica

Report, Carnegie-Mellon Univ., (June 1975).

[GuttBO] Guttag, J., "Notes on Type Abstraction (Version 2)," IEE i,
SE-6,1 (Jan. 1980), 13-23.

[Hab76] Habermann, A. N., Flon, L., and Cooprider, L.p "Modularization

I and Hierarchy in a Family of Operating Systems," Q=. ACJ, 19,5 (May

1976), 266-272.I
[Hoare78] Hoare, C. A. R., "Communicating Sequential Processes," JOB

I AM, 21,8 (Aug. 1978), 666-677.

[Jones77 Jones, A., Chansler, R., Durham, I., Feiler, P., and Schwans,

K., "Software Management of Cm* -- a Distributed Multiprocessor,*

National CoDuter Co.ference Proceedings, NCC 1977, 657-663.

[Lamp8O] Lamport, L., "The Hoare Logic ot" Concurrent Programs," A

I Informatica, 14,4 (June 1980), 21-37.

I [Ledg77] Ledgard, H. and Taylor, R., "Two Views of Data Abstraction,"

.omm. A2,I, 20,6 (June 1977), 382-384.

[Lisk75] Liskov, B., and Zilles, R., "Specification Techniques for Data1 Abstractions," I= TSE, SE-1,1 (Mar. 1975), 1-

[Lisk77] Liskov, B., Snyder, A., Atkinson, R. and Shaffert, C.,

"Abstraction Mechanisms in CLU," om. AfM, 20,8 (Aug. 1977), 564-576.

[May79] May, M. D., and Taylor, R. J. B., The " Programming J3nu&2,

I Distributed Computing Project Report No. 1, Department of Computer Sci-

ence, University of Warwick, Coventry, England, (1979).

[Morr80] Morris, J., "Programming by Successive Refinement of Data

I Abstractions," Software- Practice and Exoerience, 10,4 (1980), 249-263.

[OustS0] Ousterhout, J., Scelza, D., and Sindhu, P., "Medusa: An Exper'i-

ment in Distributed Operating System Structure," o2gq. ALZ, 23,2 (Feb.

1 1980), 92-105.

[Par72A] Parnas, D. L., "A Technique for Software Module Specification

with Examples," Comm. Ara, 15,5 (May 1972), .330-336.

I [Par72B] Parnas, D. L., "On the Criteria to be Used in Decomposing Sys-

tems into Modules," Comm. A2I, 15,12 (Dec. 1972), 1053-1058.

[Par76A] Parnas, D. L., "On the Design and Development of Program Fami-
I I lies," IEEE MS, SE-2,1 (March 1976), 1-9.

I [Par76B] Parnas, D. L., Handzel, G., and Wurges, H., "Design and Specif-

ication of the Minimal Subset of an Operating System Family," I=

SE-2,4 (Dec. 1976), 301-307.

[Per79] Parnas, D. L., "Designing Software for Ease *of Extension and

I Contraction," HIEE M, SE-5,2 (Mar. 1979), 128-137.

I [Pope77J Popek, G., Horning, J. J., Lampson, B. W., Mitchell, J., and

London, R., "Notes on the Design of EUCLID," Proc. Language Design for

I Reliable Software, SIGPLAN Notices, 12,3 (March 1977), 11-18.

j [Red8O) Redell, D., Dalal, Y., Horsley, T., Lauer, H., Lynch, V.,

Mcjones, P., Murray, H., and Purcess, S., "Pilot: An Operating System

for a Personal C-puter," f, . ACM, 23,2 (Feb. 1980), 81-92.

2
-28-I

I
Isilb7g) 3ilbersohatzg A.,, "Co=unication and Synchronization :In Distri-Ibuted Systems," I= SE-5,6 (Nov. 1979), 542-546.

[VulfT4] Wulf, W., Cohen, E., Corwin, V., Jones, A., Levin, R., Piersod,

C., and Pollack, F., "HYDRA: The Kernal of a Multiprocessor Operating

System," _Q=. A... , 17,6 (June 1974), 337-345.

I [Wulf76] Wulf, W., Shaw, M., and London, R., "An Introduction to the

Construotion and Verification of APLHARD Programs," I= SE-2,

3 I(Dec. 1976), 253-265.

I9
I
I.

I
+I
I

I

I!
i" Part IV

i Extensions to the Programming Language EPL

ii

I
I
I
I
I,I

I r o
1.0 INTROU~TION

The programming language EPL [May78, MaY79, TaylorBO) was developed3 for experimental use with distributed computer systems. The language

was designed and implemented for the Digital Equipment CorporationI PDP-11 and LSI-11 computers as part of' a distributed computing research

project at the University of Warwick. It was adopted for use in this.

research effort after an initial collaboration between researchers at

the University of Warwick and the University of Connecticut.

The language has been used in two roles by the research activity at

the University or Connecticut:

I (1) to define the features of' a virtual machine implemented by the

operating system kernel of a distributed computer system, and

(2) to provide a vehicle for exploring and evaluating the program-

ming concepts needed to decentralize and logically distribute func-

I tions performed by software in a distributed computer system.

I The use of EPL in the these roles led to several suggestions for

language extensions. These extensions were largely motivated by the is-

sues associated with exception handling and task assignment.

The purpose of this report is to document the extensions to EPL

that were proposed and implemented as part of this research effort.

These ohan-es redefine the virtual machine implemented by the operating

system kernel of a distributed computer system so that its features are

application independent, yet sufficient to support the decentralization

of application software. This document should be viewed as a specifica-

I tion for the prototype operating system kernel implemented as part of

this research effort and future enhancements to that prototype.

1.1 TASK ASSIGNMENT

EPL can be used to write a single concurrent program whose

processes can be executed by the computers of' a distributed computer

system. This requires a policy for task allocation that governs which

computer will be assigned to execute a particular process.

I Several approaches to the problem of task allocation in distributed

computer systems have been summarized in [Chu8O). The allocation of

tasks is sensitive to the flow of information between processes, and

thus depends on the characteristics of the application. These ap-

proaches to allocation are futher complicated by constraints imposed by

fault-tolerance objectives. For example, it may be required that redun-

dant processes not be allocted to the same computer. These considera-

tions suggest that task allocation in real-time systems is strongly

dependent on the nature of the application. Thus, a description of the

desired allocation should be possible at the level of the application.

With this objective in mind, EPL was modified so that the alloca-

tion of processes to computers could be expressed as part of the appli-

cation code. Initial versions of EPL deferred the allocation of

processes to the virtual machine implemented by the operating system

kernel supporting EPL. The language was revised so that the virtual

machine assumed by EPL programs provides only application independent

services related to interprocess communioation and synchronization. In

Ithe new version of EPL, language features are supported that allow the

application programmer to specify the assignment of processes to comput-

ers in a distributed computer system.

1.2 EXCEPTION HANDLING

A primary responsibility of the software for a distributed computer

1system is the management of failures and reconfigurations of the comput-
er system. One way of achieviing this objective is to use algorithms

that are logically distributed [Jones80] or decentralized. Examples of

such algorithms [LeLann7] generally prescribe the response required of

an application to isolate and recover from a detectable fault. In order

Ito support experimentation with decentralized software, EPL was extended

to define a virtual machine that was capable or detecting of reporting

(
I[2)

I

I faults. These extensions allow the virtual machine concepts of EPL to

be used to assess the value of these programming concepts in decentral-

izing software, the performance of decentralized software, and the im-

plementation issues associated with the virtual machine.

The extensions to EPL were chosen so that the virtual machine de-

fined by the language provides only fault detection and reporting

features that are application independent. The virtual machine is as-

sumed to make no attempt at fault isolation or recovery since these

responsibilities fall in the scope of the application. It was assumed

that faults detected by an operating system kernel could be mapped into

failures of virtual machine operations dealing with process interac-

tions. The feasiblity or this approach for a variety of system archi-

tectures is yet to be assessed and is the subject of future research.

I It has only been possible to state initial requirements for fault detec-

tion and to perform a preliminary evaluation of their implementation us-

ing the single system architecture supporting this study.

1 1.3 OVERVIEW OF THE REPORT

This report documents the extensions to the programming language

IEPL that were proposed and implemented as part of this research effort.

1These changes refine the definition of the virtual machine required to

support applications written in EPL and thus have an impact on operating

system kernel functions and their implementation.

The bulk oi these language extensions were implemented in a futher

collaboration between researchers from the University of Connecticut and

the University of Warwick. This report is intended to serve as documen-

tation of these changes. Section 2 provides a detailed description of

the changes to the syntax and semantics or EPL. Most of these exten-

I sions deal with cxeptions occuring during the interaction of processes.

The actual mechanisms for detecting and reporting such errors is assumed

to be the responsiblity of the operating system kernel that implements

EPL. Section 3 identifies types of errors that could be detected by the

13

I operating system kernel for EPL without elaborate hardware support.

Although it appears to be possible to implement algorithms for detecting

these errors using the system architecture supporting this study, the

content of section 3 should be viewed as formulating initial require-

ments for future implementations o* the operating system kernel.

Since the following sections assume that the reader is familiar

I with EPL, the original EPL report and the virtual machine definition are

included as appendicies.

I 2.0 LANGUAGE EXENSI

This study assumed that an EPL program rould have and integrated

view of a distributed computer system (i.e., an EPL program would exe-

cute on a collection of computers rather than a uni-processor). Rather

than writing a collection of EPL programs, one per site, a single EPL

program would be used to control a distributed system.

Figure 2-' illustrates the levels of software required to support

such a system design. EPL programs are defined by multiple processes

j< ------- site 1 -------- >1 : ---- site m ----------- >1

| -[I I ... I p[li] P[2,1) ... p[m',]1 I ... I pcmnJ
operating syLtem (1] ... operting system m]
I----------------------- -------------- ------------------------Inetwork interface [1] network interface [i]

---a

I Figure 2-1

Levels of System Software

(p[1,1] ... p[m,nJ). Each process is assigned to a specific site for

execution when it is created. Each site requires an operating system

I [14]

I

kernel to implement processes and their interactions. The operating

system kernels require a communication network in order to coordinate

their actions and to transfer data between processes. The details of a

prototype of this design are givenn in [Fontaine 80].

One of the major thrusts of decentralized control is to design and

build software systems that tolerate failures and/or changes in system

configuration. Such algorithms must must be expressed in terms of con-

cepts that allow a programmer to recognize and respond to faults or

changes in the system. This study was specifically intertested in algo-

rithms that tolerate the loss of a processing site, or that find alter-

native ways or' providing functions and access to information.

The following subsections discuss extensions to the EPL programming

language that are intended to be used in expressing decentralizei al~go-

rithms. These changes impact both the creation of processes and inter-

process communication. The extensions proposed allow a progr~mmer to

directly control assignment or newly created processes to processing

sites, and to respond to detectable faults occurring when processes in-

teract.

The following subsections will present the changes that have been

made to EPL to accomplish these goals. The discussion of process crea-

tion and deletion will be separated from the discussion of interprocess

communication. Each discussion will present the syntax and semantics of
new concepts, and will discuss how the concepts were implemented for the

LSI-11. Generally, the extensions have tried to preserve much of the

flavor of EPL.

2.1 PROCESS CREATION AND DELETION

In EPL the ACTOR statement is used to generate new processes. Each

process (or actor in EPL terminology) is autonomous-and may be supplied

with initial parameter values. In many cases, these parameter values

specify other processes that will interact with the newly created pro-

cess. It is this requirement that motivates the concept of a parallel

[5]

3 creation in which two or more processes can be created and made aware of

each other through initial parameter values.

I The current BNF of EPL specifies an actor declaraction as follows:

<actor declaration> :=ACTOR <actor> (,<actor> *

<actor> ::= <identifier> :<tertiary> ::<command>

I The scope of the identifier used to name a newly created process is lo-

cal to the statement containing the actor declaration statement. The

3 actor declaration returns a value equal to the name or the newly created

process(es) when used as part of an expression. Process terminate when

3 there are no further commands to execute.

Four extensions were made to the language concepts dealing withI process creation and deletion. First is the option to specify the site

of creation for a new process. It is desirable, for reasons of relia-

I bility and task allocation to specify that processes be executed at
specific sites of the system. This change makes an aspect of the comn-

puter system architecture visible to the EPL program. However, it tends

to make the functions of the operating system kernel application in-

dependent, since there is no generally acceptable task allocation policy

that can be implemented by an operating system kernel. The second ex-

tension is the option to specify a response if the operating system ker-

nel detects a failure to correctly create and initialize a new process.
Detectable failures are discussed in section 3.

The remaining extensions were motivated by frequently used program-

ming constructions in EPL. The first of these allows a parent process

to specify its name as a parameter when creating processes. The second
of these allows a process to specify its termination at an arbitraryI point in its execution.

12.1.*1 Synltax andSeanic
The following new key words have been added to the languge: CPU,

(6

I

FINISH, ONFAILURE, and SELF. FINISH defines an additional command that

can be used to terminate a process at arbitrary points. SELF defines a

constant whose value is the name of the process.

The syntax or actor declarations has been extended as follows:

<actor declaration> ::= ACTOR <actor> { , <actor>)' { ONFAILURE

1 <tertiary>)

g <actor> ::= <identifier> { CPU <tertiary> } : <tertiary> :: <com-

mand>

,The site of each new actor may be specified separately. Any failure to

create or transmit initial parameter values to a new actor will cause

the tertiary following the ONFAILURE statement to be executed immediate-

ly. If an ONFAILURE tertiary is not specified on a fault is detected

the default response is to terminate the creating actor.

Figure 2-2 illustrates the semantics of this statement. It shows a

l number of sequential create operations used to allocate space for in-

stances of simulaneously created processes. Following that are an equal

number of run operations that transmit initial parameter values to these

newly created processes and subsequently enable them for execution. The

failure of any of these operations transfers control the the code for

i 1the tertiary following the ONFAILURE statement. If this option is not

specified and a failure occurs, a FINISH command is executed. If all

operations are successful, or if the tertiary following the ONFAILURE

does not terminate the process or redirect control flow (i.e, LOOP or

BREAK), then the command following the ACTOR declaration is executed.

2.1.2 ImoleMentation

The LSI-11 implementation of these concepts continues to use the

following the operating system kernel functions to implement the crea-

tion of new processes:

I

[7]

........I..I.... " ... "

I!

-I

II
create process 1

failure? ------ (yes) ----------- >

create process m
failure? ------ (yes) ---------

transmit parameters to process 1

failure? --- (yes) ----------- >

transmit parameters to process m

failure? ------- (yes) ----------- >

execute tertiary following ONFAILURE
I --------------------------

execute next command

Figure 2-2

Semantics for Process Creation

Iscreate: allocate space for and return the name of a new process
srun: transmit initial parameters to a new process and make it

ready to execute

The LSI-11 implementation of these functions has modified the format and

interpretation of parameters that are passed between a process and the

operating system kernel. Each process continues to use a single data

segment whose length constant and known at the time the process is

created. The first word of the segment is assumed to be initialized by

Ithe operating system kernel with the name of the process. The keyword

SELF refers to the contents of this location. The base of the data seg-

ment is defined by the value of rO. When the operating system kernel is

I called to create a new process or to transmit initial parameter values

to a created process, the value of ri is a displacement in the data seg-I ment locating the parameters describing the operation. The process as-

sumes that the operating system kernel will return any results starting

at this displacement. When the operating system kernel returns control

to the process, the process assumes that the suOces or failure of the

operation is signalled by the value of ri. A value of -1 (0177777) in-

dicates success; a value of 0 indicates failure.

Figure 2-3 illustrates the process data segments before and after

the operating system kernel has been requested to create a new process.

act

-- - - -_' - - - - <-rO -- - - <-rO

before after after

creating actor created actor

IFigure 2-3
Data Segment Contents When Creating a New Process

The parameter "CPU" specifies the index or the CPU assigned to execute

the new process. A negative value indicates that the EPL program has

not specified an index. The parameter "act" specifies the address of

the first executable instruction of the code defining the newly createdI process. The general structure of a code segment is the same as that of

previous implementations and is discussed in [Fontaine 80]. The parame-

I [9]

I

I ter *actor" is a result returned by the operating system kernel and

specifies the name of the newly created process.

Figure 2-4 illustrates the process data segments before and after

the operating system kernel has been requested to transmit initial

parameter values to a newly created process. The parameter "dat" speoi-

p~n] I

I Ie

i n

dot

I pill

self 1else self
-<-rO - -rO <-ro ---- <-rO

before after before after

creating actor created actorI"
Figure 2-3

Data Segment Transmitting Initial Parameters to a Newly Created Process

I
fies the name of the new process waiting to receive initial parameters.

The parameter "n" specifies the number of parameters to be transmitted.

The parameters p(] ... p[n] are the values to be transmitted. The

parameters p[1] ... p~m] are the values that are received to initialize

the new process. The value of "W" is that specified in the code segment

of the process [Fontaine 80].

I
I (1]

I
I

2.1.3 ZAnI1

Hoare [Hoare79] shows that processes can be used to encapsulate

elements of a data structure so that the collection of prooesseb

representing a single instance of a data abstractions (such as the small

set of integers) can be logically distributed among the elements of a

distributed computer system. In EPL, a process is created for each ele-

ment of the information structure. Logical distribution of the result-

ing software structure suggests that adjacent elements of the data

structure be resident at separate processing sites. The code fragment

shown in figure 2-4 is intended to suggest how EPL language features can

be used to achieve this goal. In this example, an attempt is made to

LET [this.cpu, max.cpu] z [...II a

n this.cpu

jREP

n := (n REM max.cpu) + 1

ACTOR a CPU n i [...] act.name ONFAILURE LOOP

BREAK [)
IPER

I Figure 2-4

Example of Process Creation FeaturesI
I

create the new process starting at the next available processing site.

IShould the attempt to create the process fail, the algorithm continue

trying to create the new process at a site other than its own. The site

1 of the parent process is selected only as a last resort and is assumed

I
[(11]

I

I
to always be able to create a new process.

2.2 INTERPROCESS COMMUNICATION

The processes of EPL programs interact by transmitting and receiv-

ing messages. The message transmission primitives are synchronous, in

that both the source and destination of a message must issues commands

to send and receive data before the communication takes place. Thus,

there is no requirement for the operating system kernel to buffer mes-

sages. This same mechanism also serves as the only synchronization dev-

ice available to processes.

There are five commands that implement the transmission of data

between processes: REC, RECF, REPLY, SEND, and procedure call. The

current BNF specifies these message commands as follows

REC (<identifier>:} <idlist> THEN <tertiary>

RECF <secondary> : <idlist> THEN <tertiary>

REPLY <tertiary>

SEND <command> : <tertiary>

<identifier> [<parameters>]

The REC command specifies that the process will wait to receive a mes-

sage from any source. The name of the source is optionally returned in

the identifier. The scope of the identifier and the idlist is the ter-

tiary following the keyword THEN. The RECF command indicates that the

process will wait to receive a message from a specific source. The

scope of variables is identical to that of the REC command. The REPLY

command specifies that the process will wait to send a reply to a pro-

cess. The destination of the message is the source of the message re-

ceived in the smallest textually enclosing REC command. The SEND com-

mand indicates that the process will wait to send a message to a specif-

ic destination. The procedure call is a language concept for a commonly

occuring programming construction used to implement procedure calls. It

I: [121

I

I has the effect of first SENDing a message to the destination named by

the identifier and them immediately RECFing a reply from that process.

A common extension was made to each of these language concepts

dealing with interprocess communication. This change is the option to

specify a response if the operating system kernel detects a failure in

sending or receiving messages. The detection of such failures is dis-

I cussed in a later section.

2.2.1 Syntaxa Smantis

The key word ONFAILURE as also been used in this context to delimit

commands that define the response to failure. Each of the statements

dealing with interprocess communication was modified to include an op-

tion specifying such response. The syntax or the language has been ex-

tended as follows

REC { <identifier> J <idlist> THEN <tertiary> { ONFAILURE <tertl-
ary>)

RECF <secondary> <idlist> THEN <tertiary> { ONFAILURE <tertiary>

I REPLY <tertiary> { ONFAILURE <tertiary> }

SEND <command> : <tertiary> { ONFAILURE <tertiary>

<identifier> [<parameters>] { ONFAILURE <tertiary>

I Any failure to transmit and/or receive values from another process will

cause the tertiary following the ONFAILURE statement to be executed im-

mediately. If an ONFAILURE tertiary is not specified and a failure is

detected, the default action is to terminate the transmitting or receiv-

ing process. The scope of variables has been extended to include the

tertiary following the key word ONFAILURE. The semantics of the REC,

RECF, REPLY, and SEND commands is shown in figure 2-5. In each of these

cases, a detectable failure causes the tertiary following the ONFAILURE

key word to be executed. If the ONFAILURE option is not specified and a

I [13]

I

I
I
I

send, rec or recf operation

failure?---- (execute following ONFAILURE

tertiarj

execute next command

Figure 2-5

Semantics for the REC, RECF, REPLY, and SEND Commands

I
failure is detected, then the process is terminated. Figure 2-6 illus-

trates the semantics of the procedure call command. This command re-

send operationfailure? ---- (yes) ------------ >i

recf operation

I failure? ------- (yes) ----------- >
execute tertiary following ONFAILURE

I ----------
execute next command

Figure 2-6

Semantics of the Procedure CallI __ _ _ _ _ _ _ _ _ _ _ _ _

i quires the transmission and receipt of a message by the process execut-

ing the command. If either the transmission or the receipt of a message

detects a failure, then the ONFAILURE tertiary is executed. No attempt

[14]

I is made to distinguish between failures occurring during transmission

and reception. If the ONFAILURE tertiary is not specified, and either

component of the command fails, then the process is terminated.

I 2.2.2 Implementation

The LSI implementation of these concepts continues to use the fol-

lowing operating system kernel function to Implement the transmission of

messages due to a SEND, REPLY, or procedure call

I ssend: send a message to a specified process

g The REC and RECF commands use a modified forms of an earlier operating

system function. These EPL commands are translated into distinct kernel

functions. This was done to relax a previous compiler limitation on the

names that could be used to represent processes. Specifically, the name
0 can not be used in previous implementations of the language. The EEC

I and PECF are now respectively implemented by the following by the fol-

lowing operating system kernel functions

I arec: receive a message from any source

erect: receive a message from a specified source

I The LSI-11 implementation of these functions has modified the for-

mat and interpretation of parameters that are passed between a process

and the operating system kernel. When a process wishes to send or re-

I ceive data, the value of ri is used as a displacement in the data seg-

ment that identifies the location of parameters describing the opera-

tion. The process assumes that the operating system kernel will return

any results starting at this displacement. When the operating system

kernel returns control to the process, the process assumes that the suc-

cess or failure of the operation is signalled by the -value of ri. A

value of -1 (0177777) indicates success; a value of 0 indicates failure.

Figure 2-7 illustrates the process data segments before and after

the operating system has been requested to transmit or receive a mee-

I15

I

sage. The parameter "dst" specifies the destination of the message to

I
p n)

I0 p Em)
I .. t. p~i]

I I Idst src e

rl r
s self self 'self

<-rO <-rO ------ <-rO

before after before after

I transmitting process receiving process

Figure 2-7

Data Segment for Processes Transmitting and Receiving Messages

l
be transmitted. The parameter "n" specifies the number of parameters to

be transmitted to the destination process. The parameters p[1] ... p[n]

are the values to be transmitted to the destination process. The

paramter "sre" specifies the source of the message in the case of the

srecf function of the operating system kernel. Its value is not inter-

preted by the srec function of the operating system kernel. When the

kernel functions of srec and srecf complete, the value of "src" the name

j of the process that sent the message. The parameter "m" specifies the

number of parameters that the process expects to receive. The parame-

I ters p[11 ... p[m] are the values received by the destination process.

2.2.3 Exmpl

I
[16)

II

I

Consider a software structure in which several identical processes

are available are available to perform a particular function. If these

processes are resident at separate processing sites, then the function

provided by these processes has been replicated. Should one of the

processes become inaccessable, then another process can be selected to

perform the function.

Figure 2.-8 illustrates how the EPL language extensions can be used

to express such a software structure. The initial portion of the code

shows the creation of multiple instances of a function, There is one

instance per processing site. The process names are assigned to ele-

ments of a vector f. The latter portion of the code shows how the func-

5tion can be used. A default (0) instance of the function is referenced.

Should it be inaccessable, then the remaining instances of the function

are accessed until an instance successfully provides results. Should

all instances of the function become inaccessable, then the calling pro-

cess terminated.

This example is trivial, in the sense that the function is assumed

to produce outputs that are only a function of its inputs. A more im-

portant case occurs when the function is assumed to produce outputs that

depend on its internal state. Replacating state-dependent functionality

requires significantly more complicated communictions between processes

than those used to implement a function call. The principles for

designing such algorithms are themselves the subject of future research.

3.0 FAULT DEECI

The language extensions presented in section 2 define a virtual

machine that provides a specific format for reporting detectable errors

to an application program (written as an EPL program). This format al-

lows any process of an application program to determine if an interac-

tion with another process succeeds or fails. This approach assumes that

algorithms implemented as hardware or software (of the operating system

kernel) can detect and isolate low-level errors, and that these errors

i i
I [17)

I
I
I

LET f = VEC size

LET i = 0

// initialize the vector f to the names of all processes capable

1/ of providing the same software function

A 0

REP

PEf!i (ACTOR a CPU i act.name)

i :=i+ 1 :

IF i size THEN BREAK] FI

PER

//* example of function use

i ::0

IREP
output.parameters := fli [input.parameters] ONFAILURE (

I i i+ 1

IF i size THEN FINISH

l ELSE LOOP F1

)

BREAK []

PER

I
Figure 2-8

I Replicated Functions

Ican always be mapped into the failure of a virtual machine instruction

mai

governing process interactions.

This section of the report will present detectable errors that can

be mapped into failures uf the virtual machine instructions discussed in

the previous section. Several further assumptions are made inorder to

limit the scope of this discussion to failures that are clearly the

I responsiblity of the operating system kernel functions implementing

these virtual machine operations. These assumptions are:

(1) the hardware of the distributed computer system is based on a

direct interconnection structure [Anderson753 whose implementation

is decentralized (e.g., Ethernet [Metcalf76J),

g (2) detectable hardware errors render an entire processing site

unusable,

(3) faults detected within a single process (e.g. addressing error)

are either recovered by the process or cause the process to ter-

I inate.

The first of these assumptions eliminates the need to cc-.Sider elaborate

I routing algorithms designed to recover from failures of paths in a com-

munication network. The second assumption is overly strong. It is

designed to simplify and focus the error detection algorithms of a sin-

gle computing A:te to those required to support the interaction of com-

puting sites in a distributed system. The third assumption makes a pro-

cess responsible for only its own behavior and provides a uniform way of

g recovering from faults that directly impact only one process.

Given these assumptions, the following section (3.1) discusses how

process interactions can fail. Given these modes of failure, section

3.2 discusses some simple approaches to implementing -failure detection

I and reporting.

3.1 FAILURE MODES

* The failure modes of process interactions can be systematically ex-

I1

I
amined by considering each of the virtual machine operations defined by

EPL. The analysis of failure modes also assumes a kernel-level protocol

(Balkovich 80] that is symmetric between sending and receiving

processes. I.e., either the source or destination may initiate a com-

munication and enter a waiting state until the other party is ready to

complete the communication.

This study approaches response to failure at the system level rath-

er than at the level of individual processing sites or processes. The

unit of hardware failure is a complete computing site, and the unit of

software failure is a complete process. Loss of a processing site

I results in the loss of zero or more active processes.

g 3.1.1 Interproceps Communication

Communication between processes is defined by three virtual-machine

operations: SSEND, SRECF, and SREC. These operations allow a process to

transmit a message to a specific process, and to receive a message from

a specified or unspecified process. Each of these operations may fail

in one of the following ways:

3 (1) the source or destination of the message is invalid. This may

result from a programmer error (forging a process name) or from

data that becomes corrupted when transmitted between processes

(yielding .n undeefined process name),

1 (2) the source or destination process of the message has terminat-

ed,

(3) the site of the source or destination process fails before com-

munication is initiated, or

(4) the site of the source or destination process fails after the

1 process initiating the communication enters a waiting state.

I
! *1

I

3.1.2 Process Crato

Creation of' a new process is defined by two operations: SCREATE and

SRUN. These virtual machine operations allow an application to allocate

space for a new process and to transmit initial parameter values to that

new process. These operations may fail in the following ways:

(1) the site of' creation or the destination process for parametersg is invalid,

(2) the site of creation does not have sufficient resources to

create the specified process,

(3) The site of' creation fails before the creation was requested,I or

* (4) the site of the new process fails after creation of the new

process, but before parameters are transmitted.

I 3.1.3 Issues

The problem of invalid process names can be approached in several

ways. The simplest method is to validate that a named process has been

created and that it has not yet terminated. A more comprehensive solu-

tion would be to treat process as capabilities [DenningT6]. Using this

approach one can validate both the names of processes and the virtual

I machine operations involving them. The use of capabilities was not ex-

plored as part of this work since the approach would require significant

revisions to a language like EPL to restrict process interactions so

that capability lists could be constructed and maintained.

I Although there are several ways in which an interaction of

processes can fail, the virtual machine supporting EPL is not used to

distinguish between them. For example, any failure during the "simul-

taneous" creation of processes results in a failure to create all

I processes. This decision to not descriminate failure modes was based on
the view that processes should be autonomous objects with little under-

[21.J

standing of the internal state of' other processes. If the need to dis-I tinguish the cause of failures becomes important, alternative language
constructions are possible using the virtual machine operations that

I have been defined. At present, these new programming concepts of EPL,
and constructions that can be generated using them, form a starting

I point for further evaluation of' the programming concepts needed to de-
centralize software.

I 3.2 DETECTION METHODS AN4D RESPONSE TO FAILURES

Each failure mode can be detected using several approaches. Furth-

Iermore, each detectable error can be responded to in more than one way

at the operating system kernel level. This section discusses the alter-

natives for each of the failure modes that have been Identified.

3.2.1 Inai ieo rc~ Identification

An invalid site specification is possible with all operations in-

3 volving process creation or interprocess communication. As noted ear-

lier, this may be the result of a programmer error or data that was cor-

rupted during transmission between sites and subsequently used to iden-

tify a process.

3 An invalid site identification can be detected by the link-level

communications software of the operating system kernel. Site addresses

3 can be screened prior to transmission of kernel-level messages. An in-

valid site address should be reflected to the kernel-level software as a

failed atttempt to transmit a kernel-level message.

An invalid process identification can only be detected by the

3 operating system kernel receiving a kernel-level message. Screening for

valid process identifiers can be centrally performed by the link-level

software supervising the receipt of kernel-level messages. A kernel or

link-level protocol involving acknowledgements is implied if such
failures are to be made known to the site transmitting the message.

rI

I
The response to an invalid site or process identifier is the

I responsiblity of the site transmitting the kernel-level message. The

alternative responses to such failures are: (1) causing the specified

I virtual machine operation to fail at the application-level, and (2)

causing the process that supplied (to the kernel) the invalid parameter

to involuntarly terminate. The latter response assumes that the invalid

parameter is a symptomatic of erronous process behavior and forcibly

terminates that behavior. The former view assumes that the application

programmer may wish to specify an algorithm for recovering from such

failures (the default algorithm is to terminate the process). The first

approach is more flexible and therefore perferable in an experimental

i system.

3.2.2 Communication -a T Froes

It is possible a process that has terminated is the source or des-

tination of a message in a SSEND or SRECF operation. This may be the

i result of a programmer error at the application-level. This may also be

the result from failures such as those described in the preceeding sec-

tion, when the response to failure is to terminate a process.

Process termination can occur at one of two times with respect to

communication. A process may terminate prior to being named as the

source or target of a communication with another process. A process may

also terminate after being named as the source or target of a communica-

tion, but before that communication is complete. This case arises when

a multiple-message protocol is used to implement kernel-level interac-

tions. An example of such a protocol is given in [Fontaine 80]. In the

latter case, the partner in the communication is in a blocked state.I
A process terminating prior to being named as the- source or target

of a communication by another process can be detected by the operating

system kernel supervising the terminated process. Detection occurs when

the first kernel-level message arrives indicating that another process

wishes to communicate with the terminated process. This assumes that

!I

II[2

'I
I

the kernel-level protocol implementing interprocess communications is

symmetric for the receiving and sending sites. When a receiving process

initiates the interaction (srecf), it must be able to interogate the

sender's site to determine if the sending process has terminated. This

requires a more complex protocol than that described in [Fontaine 801.

Since detection of this fault depends on interogation of process state

information, detection should take place in the kernel-level routines

dealing with the sending and receiving of application-level messages.

A process that terminates after being named as the source or target

of an Incomplete communication requires a more complicated response.

Process(es) blocked, waiting to communicate with the terminating pro-

cess, mukat be notified of the termination. Since detection of this

fault depends on interogation of process state information, detection

should take place in the kernel-level routines dealing with the termina-

j tion of a process. Detection requires that a message be broadcast to

all sites with processes (potentially) waiting to communicate with the

I terminated process, notifying them of the process termination. If a

process terminates before or during an interaction with another process,

it should result in a failure of the corresponding virtual machine in-

structions (i.e., ssend, srecf). This allows an application-level pro-

gram to respond to failures by rerouting application-level interactions.

3.2.3 .UIFailre.

SIit is possible to specify a site that has failed as the source or

destination of any kernel-level message. A site may fail at one of two

I times with respect to virtual machine operations implemented by the

operating system kernel. The site may fail orior to being named as the

1. target of the kernel-level message initiating an interaction. The site

may also fail after the process initiating the interaction has been

S I placed in a blocked state pending a response of a process at the failed

site (e.g., SSEND, SRUN, SCREAT, and SRECF operations).

A site that fails prior to being named as the target of a kernel-

- !
7-

I .4

level message can be detected by the operating system kernel supervising

I the process initiating the communication. Detection can be accomplished

by a link-level protocol when the first kernel-level message is

transmitted to the failed site. This requires a link-level protocol

based on acknowledgements and time-outs.

I A site that fails after processes at other sites are in states

waiting for responses is more complicated. This type of error must beI detected by the sites supervising the blocked processes. Two approaches

are possible. A blocked process can be allowed to remain in a blocked

state for a fixed period of time. Failure to obtain a response ina
fixed amount of time is assumed to indicate that the other site associ-

ated with the operation has failed. Alternatively, adjacent sites can

be periodically interogated to determine if they have failed. The first

approach assumes that a suitable time-out interval can be defined for

all waiting processes. Since this depends on the nature of the applica-

* tion, it must be chosen large enough to assure that site failures will

U not be detected when the application requires an extensive amount of

time before responding to a request. This approach is undesirable be-

I cause It provides very poor response to failures and because it requires

a significant overhead to administer timers associated with waiting

9processes. The second approach can provide a more prompt response to

t failures and does not require administeri., timers for each waiting pro-

cess. However, it does introduce an overhead associated with the

periodic interogation of sites.

I The response to a site failure is the responsibility of every other

site of the system. The only reasonable response to a such a failure is

to cause all subsequent virtual machine operations and any blocked vir-
tual machine operations associated with that site to fail. This allows

I the application programmer to specify an algorithm for recovering from
such failures (the default algorithm is to terminate the process re-

9 questing the operation).

9 (25]

I
I

3.2.4 Insufficiemt Resources

A request to create a process may be find that there are insuffi-

cient resources to create the process at a particular site. In the

design described in previous sections, this may be the result of exhaus-

ing process identifiers or exhausting the memory available for process

data segments.

Insufficient resources can be detected by the operating system ker-

nel at the target site of the creation. Since detection requires access

to local state information, detection should be the responsibility of

kernel-level routines. This type of failure should be reflected to the

operating system kernel requesting the creation by extending the

kernel-level protocol to include negative acknowledgements of the crea-

tation request.

The response to insufficient resources is the responsibility of the

I | operating system kernel administering the parent process. The appropri-

ate response is to cause the virtual machine operation to fail. This

assumes that the application programmer will specify an algorithm for

recovering from such failures (the default algorithm is to terminate the

parent process).

41.0 B.IBLIOGRBAPHY

I [Anderson75] Anderson, G.A., "Computer Interconnection Structures: Tax-

onomy, Characteristics, and Examples", ACmp SurveYs, (7,4), De-

Icember 1975, PP. 197-213.

[Chu8Oj Chu, W.W., et.al., "Task Allocation in Distributed Computing",

I Computer, (13,11), November 1980, pp. 57-69.

[Denning76] Denning, P.J., "Fault-Tolerant Operating Systems", AM

C n g Sureys, (8,4), December 1976, PP.359-369.

I [Fontaine8O] Fontaine, ASystem Kenl D

c S m Technical Report Department of Electrical Engineering

1 [26]

I
I

Iand Computer Science, University of Connecticut, Storrs, CT, (in

preparation).

[Hoare79] Hoare, C.A.R., "Communicating Sequential Processes',

i Communication f the AM, (21,8), August 1978, pp. 666-677.

[Jones80] Jones, A.K., and K. Schwans, "Experience Using Multiprocessor

I Systems: A Status Report", A= om n Surveys, (11,2), June 1980, pp.
121-165.

I [LeLann74] LeLann, G., "Distributed Systems - Towards a Formal Approach"
Ren L9 the UU 74 Conr , North Holland, 1977, pP. 155-160.

I [May78] May, M.D., R.J.B. Taylor, and C. Whitby-Strevens, "EPL - An .-
perimental Programming Language", in I= Conference 9A21 Trdn d
A A clctions: Dj 1edroces*ing, Gaithersburg, MD, May 1978, pp.

68-71.

-[May79] May, M.D., and R.J.B. Taylor, The fELPr Manual, Report
No. 7, Department of Computer Science, University of Warwick, Coventry,

I England, 1979.

[Metcalf76] Metcalf, R.M., and D.R. Boggs, "Ethernet: Distributed Packet

Switching for Local Computer Networks", Communications 9f the AM,

(19,7), July 1976, pp. 395-404.

(Taylor80] Taylor, R.J.B., and J.R.N. Lowe, otes M oin j PL,
Department of Computer Science, University of Warwick, Coventry, Eng-

land, (in preparation).

(Anderson75] Anderson, G.A., "Computer Interconnection Structures: Tax-

onomy, Characteristics, and Examples", ACMu Dp_ g Suryges, (7,4), De-

cember 1975, pp. 197-213.

[Clu8OJ Chu, W.W., et.al., "Task Allocation in Distributed Computing",

,, (13,11), November 1980, pp. 57-69.

'i

I

[Denning76] Denning, P.J., "Fault-Tolerant Operating Systems', AM

C SveY3, (8,4), December 1976, PP.359-389.

[Fontaine80] Fontaine, S., An Operating Syajem Ker n .a A aiite

Couter v , Technical Report Department of Electrical Engineering

and Computer Science, University of Connecticut, Storrs, CT, (in

preparation).

(Hoare79] Hoare, C.A.R., "Communicating Sequential Processes",

Communications 2L the ACM, (21,8), August 1978, pp. 666-677.

[Jones8O] Jones, A.K., and K. Schwans, "Experience Using Multiprocessor

Systems: A Status Report", AM omPuting Surveys, (11,2), June 1980, pp.

121-165.

[LeLann71] LeLann, G., "Distributed Systems - Towards a Formal Approach"

ProeisL f the IM 2A Confess, North Holland, 1977, pP. 155-160.

(May78] May, M.D., R.J.B. Taylor, and C. Whitby-Strevens, "EPL - An Ex-

perimental Programming Language", in 1= C 2a Trends alE

A: Distributed Processing, Gaithersburg, MD, May 1978, pp.

68-71.

[May79] May, M.D., and R.J.B. Taylor, The ZPr Man!i , Report

No. 7, Department of Computer Science, University of Warwick, Coventry,

England, 1979.

(Metcalf76] Metcalf, R.M., and D.R. Boggs, "Ethernet: Distributed Packet

Switching for Local Computer Networks", Communications St the AM,

(19,7), July 1976, pP. 395-404.

[Taylor80] Taylor, R.J.B., and J.R.N. Lowe, Notes 9nPrrmmi In

Department of Computer Science, University of Warwick, Coventry, Eng-

land, (in preparation).

[28]

I
I
I
I
I
I
I
I
I Appendix A

1
DISTRIBUTED COMPUTING PROJECT REPORT #1

1
I
I
I
I
I
1

'I

I
I
I
I
I

IThe EPL Programming Manual

by

M.D. May and R.J.B. Taylor

I

Department of Computer Science

UniverIty ot Warwick
Coventry CV4 7AL

May 1979

r

I

I
INTRODUCTION

EPL is an experimental progamming language designed to aid research into

distributed computer systems.I
Some of the distinguishing features of EFIL are:I

An EPL program is expressed as a number of Acts, which are performed
I by Actors.

Actors communicate with each other only by sending messages.

Acts may be nested and Actors can be created by other Actors providing
both hierarchy and parallelism.

The basic data object is a word with no particular disposition as to
type. For example, a word may be regarded as a bit-pattern, a number,
or the name of an Actor. No attempt is made to enforce type restric-
tions either at compile-time or at run-time. In this respect EPL has
both the flexibility and pitfalls of machine language.

This manual is not intended as a primer; the constructs of the language are
presented with scant motivation and few examples. To the experienced and dis-

ciplined programmer it is a powerful and useful language but there are few pro-
visions for the protection of naive users.

The language described here is based on that described in "The EPL Program-
ming Manual" by M.D.May (Sept 1976), which in turn was based on BCPL. The
current version of EPL differs from the original in that several features of the
oliglnal have not been implemented and the syntax has been simplified .

Language.Definition

2.1 Notation

The syntax of the language is given in an extended Backus-Naur form (BNF).

Nonterminals are enclosed in the sharp brackets '<' and '>'. A production rule
consists of:

I <nonterminal> ::= <production*

!*

.ctions may contain terminals and nonterminals. A number of symbols with
sp,.cial meanings are used in productions. The symbol 'I' denotes alternatives.
! .aols enclosed in curly brackets 'I' and '}' are optional. A star after the

closing curly bracket '}*' denotes that the symbols within the brackets may be
repeated any number of times, or omitted.

2.2 Elements

EPL is a language which manipulates values. A <value> is any value which
can be represented as a bit pattern in one computer word. In various contexts
values are interpreted in dIfferent ways, for instance as integers, characters
or pointers to objects.

A value can be explicitly represented in a number of ways, or associated
with an identifier, and these form the elements on which the language operates.

<element> <identifier> 1 <value>
<value> <number> 1 <string constant> 1 <character constant>

TRUE 1 FALSE

An <identifier> consists of a sequence of letters, digits and dots, the
first character of which must be a letter.

A <number> can be represented in several bases. A decimal number consists
of a sequence of decimal digits. All numbers in other bases consist of a '#'

symbol, followed optionally by a character to denote the base, followed by a se-
quence of digits in that base.

Bases are signified by the following characters:

Letter Base Allowed Digits
B Binary 0 1
0 Octal 0 1 2 3 4 5 6 7
X Hexidecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

If the letter signifying the base is left out, the base defaults to Octal.

The value FALSE is represented as a number and the representation of TRUE
is the logical complement of FALSE.

A <string constant> consists of up to 255 characters enclosed in string
quotes ("). The character " may be represented only by the pair *, and the
character # can only be represented by the pair **.

Other characters may be represented as follows:

*N is newline *C carriage returnIT is horizontal tab *G bell
'S is space
*B is backspace
'P is newpage

The machine representation of a string is the address of the region of
store where the length and characters of the string are packed.

A <character constant> consists of a single character enclosed in character
quotes ('). The character ' can be represented in a character constant only by
the pair *'. Other escape conventions are the same as for a string constant. A
character constant is right justified in a word.

2.3 Expressions

All constructs of EPL are defined to return results, so the general syntax
and semantics are described here.

Depending on context a result may be a single value or a multiple value.
Although each construct returns a result, the use to which the result is put
depends upon the environment of the construct. In many cases the result is dis-
carded.

I

The BNF for expressions is as follows:I
<base> <element> I <clause> I <procedure call>
<primary> { <monadic op>)* <base>

i <secondary> ::: <primary> { <diadic op> <primary> 1' 1 <vat>
<constant> ::= <secondary>
<command> ::= <message command>

BREAK <tertiary>
SYS <tertiary>

I LOOP
<lhs> := <tertiary>
<secondary>

<tertiary> :: < (command>
I [f <commmand> { , <command> }* }]
' <declaration>

<lhs> ::= <lhs element>

i [<lhs element> { , <lhs element> 1]
<lhs element> <identifier> <identifier> ! <secondary>
<serial> ::= <tertiary> { ; <tertiary> }*
<clause> ::= (<serial>

REP <serial> PER
IF <serial> THEN <serial>

I ELSE <serial>) FI
CASE <serial> IN <case serial>

I OUT <serial> I ESAC
<case serial> <numbered pack> { , <numbered pack> }*

<numbered pack> ::= <constant> I <constant> < (tertiary>

The BNF and explanation for <vat>, <declaration>, <message command> and
<procedure call> are given in the appropriate sections.

2.3.1 Primaries

A primary is a base optionally preceded by monadic operators. The monadic
operators are

+ plus

- minus (arithmeticcomplement)
not (1- -41 complement)

The result returned by a primary preceded by an operator is a single value.

2.3.2 Secondaries

A secondary in a primary optionally followed by a sequence of diadic opera-
tor:j and primaries. A secondary is evaluated from left to right except where

the precedence of the operators dictates otherwise. The following are the diad-

ic operators given in order of precedence, highest (most binding) first.

Operators Comment

I subscription
<<, >> left shift, right shiftI and

or
,IREM multiply, divide, remainder

I + -,EQV, NEQV plus, minus, equivalence, not equivalence
U (,<~,>, >= less than, less than or equal,

greater than, greater than or equal
:, I:equal, not equal

ANDF and if
ORF or if

The arithmetic operators (+ ,* ,REM) operate on single values and
yield a single value; overflow is undefined. Divide (/) operates on integersI and yields an integer dividend, while REM yields the integer remainder after
division. Divide and REM operate so that the following equation is always true
whatever the values of a and b.

a = (a /b) * b + a REM b

If both operands are positive the value yielded by REM is positive.

The relational operators (<, <=, >, >=, =,\=) compare their two operands
and yield either TRUE or FALSE. Inequalities (<, <=, >, >=) should not be used
to compare values other than integers and characters.

The logical operators (/\,\/, EQV, NEQV) operate on the whole of their
operands, and on each bit independently to produce a result bit.

The shift operators (<<, >>) yield the left hand operand shifted to the
left or right by the number of places given by the right hand operand. Vacant

bits are filled with zero.

The subscription operator (1) takes the left hand operand as a pointer to a
VEC or TAB (see 2.4.2) and subscripts it by the right hand operand.

The truth value operators (ANDF, ORF) work in the following ways. For AIIDF
the left hand operand is evaluated and if it is FALSE the value yielded is
FALSE, otherwise the value yielded is the right hand operand. For ORF the left
hand operand is evaluated and if it Is TRUE the value yielded is TRUE, otherwise

the value yielded is the right hand operand. The truth value operators are soI called because they can yield a truth value without the whole of an expression
being evaluated.

The result returned by a secondary which contains diadic operators is a
single value.

2.3.3 Constants

A constant is a <secondary> which contains only numbers, character con-
stants, names declared in previous constant declarations, TRUE, FALSE and the

operators *, /, REM, + and -

I 2.3.4 Tertiaries

j A tertiary yields a result which may be
" Empty (written as[.

I . A single value

" A multiple value

The result is normally enclosed in square brackets ([3,but if it is U
single value they nay be omitted.

A multiple value is either an expression whose result is a multiple va.lue,
or a set of' expressions which yield single values enclosed in square brackets.
If a multiple value is yielded in a context which requires a single value (for
instance in a secondary which contains diadic operators or as one of the expres-

sions within a tertiary) the result is the first value or the multiple value.

The order in which the values of a multiple value are evaluated is not de-
fined.

1 2.3.5 Clauses

I Clauses are constructed from serials. The declarations and tertiaries of a
serial are evaluated in sequence, and the result of a serial is the result or
its final tertiary. There are four different types of clause, the simplest Is a

serial enclosed in parentheses.

REP PER dc~imit a serial that is continually repeated until a BREAK is en-

IA

countered within it (see 2.3.6).

The IF arnd CASE clauses both select an expression to be evaluated. In an
IF clause the serial following the IF is evaluated. If its value is TRUE the
result of the IF clause is the result of the serial following THEN, otherwise it
is the result of the serial following ELSE, or, If there is no ELSE, the resultI is not defined.

In a CASE clause the serial followuing the CASE is evaluated to give a
number which is matched against constants in the numbered packs following the
IN. If a match is found, the result of the CASE clause is the result of the
corresponding tertiary in the numbered pack. If no match is found the result of
the CASE clause is the result of the tertiary following OUT, or, if there is no

OUT, the result is not defined.

1 2.3.6 Commands

Description of <message command> is left until Acts and Actora are intro-

duced in section 2.5.

I BREAK and LOOP are both commands used only in REP PER loops. BREAK <terti-
ary> forces an exit from the loop yielding the result of the tertiary. LOOP
causes execution to resume after the REP and is used to repeat the loop. Both

operate only on the smallest textually enclosing loop.

Assignment (:=) allows single and multiple values to be assigned to vari-
ables. Assignments are simultaneous. This means that the entire right hand
side is evaluated and then assigned to the left hand side, the first element of
the multiple value to the first element on the left band side, the second to the
second , and so on. The left hand side may only consist of variables and sub-
scripted variables.

There are no requirement that the left hand side and the right hand side
have the same number of elements in a multiple assignment. However, if theI right hand side has more elements than the left hand side the surplus values are
ignored in the assignment. If the left hand side has more elements than the
right hand side, the values assigned to the surplus variables are undefined.j The result yielded by an assignment is the result of the right hand side.

SYS causes the tertiary to be passed as parameters to a procedure in theI runtime system. The effect of this command is implementation dependent.

1 2.41 Declarations

There are two kinds of declaration in EPL. The CONST declaration intro-
duces constants. The LET declaration, together with the ACTOR declaration, the
parameters of an ACT and the Receive command (wh~ich are described in section
2.5), introduces variables.

I In EPL the scope of a declaration is the <declaration>
in which it appears,

and any subsequent <declaration> and <tertiary> (including any constructs within
them) in the <serial> in which it appears. Acts further restrict the scope of

I variable declarations (see section 2.5.1). If an identifier is used again in a
declaration in an inner serial, the scope of the original declaration does not
ietfe isrue. Aidniircno bedcae moe ta oneiextend to any co~nstruct in that serial after the <declaration> in which the

idnferiaesd.nidniircno b elrdmre ta ne i

I The result returned by a declaration is
undefined.

t i

i

I
The BNF for declarations is as follows:

<declaration> CONST <const decl> { , <const decl> }*
LET <idlist> = <decl pack>

I <actor declaration>
<const decl> ::= <identifier> = <constant>

< (identifier> = <act declaration>
<idlist> <identifier>

[(<identifier> { , <identifier> 10]
<deal pack> := <secondary>

[<secondary> { , <secondary> }*
<vat> ::: VEC <constant>

' TAB <tertiary>I <act declaration>

The decriptions of <actor declaration> and <act declaration> are

given in section 2.5.

2.4.1 CONST Declarations

A constant declaration consists of a list associating identifiersand constants. Within the scope of the declaration, an identifiermay be used only In contexts where the associated constant would
be allowable.

It is also possible to associate an Act with an identifier in a
CONST declaration.

No result is returned.

2.4.2 LET Declarations

The LET declaration declares the names in the <idlist> as
variables. Each variable contains one value and it is initialized
from the <decl pack>. The order in which the variables are
initialized is undefined.

There are further restrictions on the scope of a variable. See
section 2.5.1.

The result is the value of the <decl pack>.

2.4.3 VEC and TAB!
VEC and TAB both reserve contiguous areas of storage which can be

accessed using the subscription operator. Each element of a VEC

or TAB is large enough to hold one value. Noth constructs return
a pointer to the area of reserved storage.

VEC reserves storage in such a way that the first element corresponds

to subscript zero, and the subscript of the last element is given by

the <constant> following VEC.

TAB reserves enough storage to hold the values of the <tertiary>

following it. It is initialized to the values of the tertiary, and

the subscript of the first element is zero. Each value in the tertiary

must be a <constant>.SI
The effect of assignments to the elements of a TAB is undefined.I
The result of a VEC or TAB is undefined.

2.5 Acts and Actors

Programs in EPL are expressed in terms of Actors, which communicate by

sending messages to one another. Actors are created to perform Acts,

and there may be any number of Actors performing the same Act. Actors
start to perform their Act as soon as they are created, and die on
completion of their Act.

I
The BNF for Actors, Acts and Messages is as follows.

<message command> REC <message> THEN <tertiary>
I RECF <message> THEN <tertiary>

SEND <message>

I REPLY <message>
<message> <secondary> : <tertiary>
<actor declaration> ACTOR <actor> { , <actor> 1*
<actor> <identifier> <tertiary> <command>
<act declaration> ACT <idlist> <tertiary>
<procedure call> <identifier> [(<parameters> }]
<parameters> <command> < (command> }*

The definition of <message> is a general fnrm. In specific contexts it is
more restricted as will be shown.

I

I
2.5.1 Acts

An Act is a description of a computation. It is declared as

ACT <idlist> : <tertiary>!
and this yields a reference to code compiled to evaluate the tertiary. The code
is implementation dependant. The names in the <idlist> are declared as variable
names for the parameters of the act. These parameters are initialized for an
Actor of the Act when the Actor is declared.

An Act further restricts the scope of variable names. An Act cannot refer-

ence variable names declared outside that Act.I
2.5.2 ActorsI

Actors are invocations of Acts. They are declared in ACTOR declarations

which have the form

ACTOR <identifier> : <tertiary> :: <command> , (actor> 1*

The <identifier> is a variable which is initialized to refer to the Actor. The
<tertiary> is used to initialize the parameters of the Act. The <command> is
the Act which the Actor will perform. It must yield a value which is an Act.

The scope of an Actor variable includes the whole of the Actor declaration
in which it is declared, and in particular it can be used as a parameter of oth-
er Actors, The Actors of an Actor declaration are declared in parallel and are
created simultaneously. This means that several Actors can be declared at once
which know about each other and can send each other messages.

The result is the name of Actor.

2.5.3 Receive Commands

The REC and RECF commands are used to receive messages. They may appear
anywhere within the body of an Act. When a Receive command is obeyed within an
Actor, it.% execution is halted until a message arrives (if a message is already
waiting the Actor can continue). The full BNF is:

RIC f <Identifier> : I <Idlist> THEN <tertiary>

I

RECF <secondary> : <idlist> THEN <tertiary>

The identifiers in the <idlist> are declared as identifiers exactly as in a LET
declaration, and initialized with the received message. Their scope is the
<tertiary> following the THEN.

The REC command receives messages sent from any other Actor. The identity
of the Actor which sent the message is assigned to the identifier preceding the

3 colon if it is present. RECF receives a message only from a specified Actor.
Thisi s given by the <secondary> which precedes the colon.

TNThe J LC and RECF commands yield the value of the tertiary following the
THEN.

2.5.4 Send and Reply commands

A message is a set of values which is passed from one Actor to another.
Send always waits for a receive. Any value can be passed but some values (for
instance VECs or ACTs) may have no significance at their destination. A special
type of send is the REPLY command. It sends a message to the Actor which sent
the last message to the smallest textually enclosing REC command. The full BNF
is:

SEND <command> : <tertiary>

I REPLY <tertiary>

I The message is formed by evaluating the <tertiary>. It is sent to the Actor
given by the command preceding the colon, which must yield a value which is an
Actcr. Because- this Actor is knowwn in the REPLY command it is not explicitly
stated.

The result of SEND and REPLY are undefined

2.5.5 ProceduresI
A procedure call is of the form

<identifier> [<parameters>]

' It is equivalent to the program fragment

!
I

4.J

I

SEND <identifier> : [<parameters>];
RECF <identifier> : [a, b, e, . . . I THEN a, b, c, . .

The procedure call is used to call Actors which have already been created
and is akin to the use of a Class in a language which provides for data abstrac-
tion.I
2.6 ProgramI

At the outermost level an EPL program consists or a sequence of declara-
tions and initializing commands. There may be restrictions on the class of com-
mands that can be obeyed at the outermost level.

f 2.7 Miscellaneous Features

2.7.1 Comments and Spaces

The character pair /* denotes the beginning of a comment. All characters
from (and including) 1* up to and including the character pair *I will be ig-
nored by the compiler.

Blank lines are also ignored.

Space and tab characters may be inserted freely except inside an element, a
system reserved word (e.g. THEN), or inside an operator (e.g. :=) Space or tab
characters are required to separate identifiers or system words from adjoining
identifiers or system words.

2.7.2 Synonymous Symbols

For convience some operators have a number of different representations
They are:-

\ &

Discussion of the EPL Dictionary

1. A dictionary in .'ways produced and saved.

I
I
I 2. EPL always tries to read a dictionary.

3. Any CONST declaration at the outermost level is entered
in the dictionary.

a. Manifest Constants are stored as constants
b. ACTS are assigned a unique global symbol number

I 4. The unique numbering of ACTS depends upcr serial translation of
the ACTS.

I 5. An undeclared symbol is assumed to be ar externally defined,
yet to be compiled ACT. A warning message is issued.I

6. Assumption 5 may impose ordering on computations if manifest
constants are scattered through program modules.

7. The main actor is the one loaded first. All acts are suffexed
with the empty tertiary, so that if a CONST is executed it
does nothing.

8. The dictionary uses file names to keep track of where symbols
were defined.I

9. The dictionary is produced in SYN4 and consumed in TRN6 as well as
rpdased.

10. We should restrict compiler to producing load modules onlyg aince execution is dependent on order of loading.

I
i

II

II
II

I
U
I
I
I
I
a
I
I Appendix B

VIRTUAL ~1ACHINE DEFINITION FOR EPL

I
I
I
I
I
I
I
I
I
I

I ECODE

S is a pointer to the first free location on the st, ak.
A points to the base of the actor: (S = @(All) initially).
+> is an addition operator whose left operator is an address

and whose right operand is an integer.

I Load Operations:

LA n IS Ain; S :=S-t

LN n IS n; S S+i
LACT Ln IS:=Ln; S:=S+1
LGACT GLn IS GLn; S :=S-t
TRUE IS :~true; S S-ti

FALSE IS :=false; S :=S-t

LSTR n IS @<string>;S :=S-t
Cl i... Cn <string> consists of following n characters

LTAB n IS := @<tab>; S := S-ti
Vl ... Vn <tab> consists of following n constants

LVEC n !S :=A +t> n; S := 3+1

Store Operations:

SA n S :=S-i; Ain := IS
SINDEX S :zS-3; !(I(S+1) 4.> 1(3+2) :=IS

Arithmetic Operations:

INDEX S 0= -1; I(S-i) := (I(3-i) +t> IS)
MIJLT S :=S-i; 1(5-1) :=I(S-1) *IS

DIV S :=S-1; [(S-i) :=I(S-1) / s
REM S :=S-i; [(S-i) : (S-i) rem IS9PLUS S S-i; I(S-1) := [S-i) + I
MINUS S : S-1; [(S-i) : (S-i) IS
EQ 5 : S-1; [(S-i) := (S-i) IS

9NE S :=S-i; [(S-1) :I (S-i) /IS
GR S S-1; [(S-i) :I (S-i) > IS
LS S :=S-1; [(S-i) :I(S-i) < IS
GE S :=S-i; I(5-i) := (5-i) -is

LE S :=S-1; I(5-i) : (S-i) -IS

LSHIFT S :=S-1; [(S-i) [(S-i) << IS
RSHIFT S :=S-1; I(S-i) : (S-i) >> ISIAND :=S-1; !(5-i) := (S-i) /Is
OR S :=S-1; I(S-i) := (5-i) /IS
EQV S :=S-i; [(S-i) : (s-i) IS3NEQV S :=S-i; [(S-i) :I (S-i) is
NEG [(S-i) :-!(S-i)

NOT [(S-i) :-I (S-i)

Miscellancour Oppr~ii-s:

JUMP Ln goto Ln
JT Ln S S-I; if IS goto Ln
JF Ln S S-i; unless IS goto Ln
Ln: Ln: // la!,lling program

GLn: GLn: // labelling program with externally
available label

SYS LW n call sys In runtime system (kernel) with
Ain onwards as parameters.

On failure goto Lm.

Any results will be found on the stack from A!n on.

CASE Ln k S := S-I; k cases follow; Ln is the OUT label
CI: Li if IS = C1 goto Li

Ck: Lk if ;S = Ck goto Lk
STORE directive to optimising code generator

to ensure that items held in temporary

storage are placed on the stack

STACK n S := A+n

Me-,.sage Operations:

REC Lk n m Receive a message on the stack AI(n+i) to Alm.

Ain initially holds the identity of the actor
from which the message will come. If An = 0

then the message can come from any actor and
the identity of the sending actor is put there.
AI(n1) initially holds the number of items to be received.

On failure goto Lk.
The operation implies a STORE.
S := A+m+1

SEND Lm n Send items Ain onwards as a message. Ain, AI(n+1)

contain the identity of the actor to wnlch
the message is sent and the number of items in the
message proper.
On failure goto Lm.
S := A+n

CREATE Lm n S := A+n+i; I(S-i) := the identity of the actor created
from the act at AI(n+1) on CPU number Ain (if Ain = -1

any CPU may be chosen). The newly created actor has its
own identity as its All.
On failure goto Lm.

RUN Lm n Exactly the same as SEND except that the destination is
a newly created actor and the message is theg parameterisation of that actor.

ACT Ln p Declares an act at label n. Its parameters are A12 to Alp;
S := A+p+l; and an implied STORE of its parameters is
performed. Note that All contains name of self.

I

ENDACT Ln Marks the end of an act. Ln is a label for premature

I premature termination of the act

IEND Marks the end of the module.

i
I
I
I
I
I

i
I

I

I
1 i

I

Part V

On the Performance of Decentralized Software

I by

E. Balkovich and C. Whitby-Strevens

I

I

I

I
I
I
I
I
I
I
I
1

I

I ABSTRACT

I Distribution of computing to achieve goals such as enhanced reliability

depend on the use of decentralized software. Decentralization typically

I replaces a sequential process by a system of small, concurrent processes
that interact frequently. The implementation of processes and their in-

I teractions represents a cost incurred as a result of decentralization.

Performance measurements are reported in this paper for decentralized

software written in a programming language for distributed computer sys-

tels. These performance measurements confirm that low-cost inplementa-
tions of concurrency are possible, but indicate that decentralized
software makes heavy use of run-time functions managing concurrency. An

initial model comparing the performance of a specific decentralized

software structure to its centralized counterpart indicates that these
irrplementation costs are generally offset by the performance irprove- 1.
ments that are due to the parallelism inherent in the decentralized

structure. The research facilities for continued study of decentralized

software performance are discribed in the summary.

I
KEY WORDS AND INDEX TEMIS

IDistributed Coriputer Systems, Decentralized Software, Decentralized Con-
trol, Performance Measurment and Evaluation, Concurrent Software

I

I
I
I

I
-- -

I

I Distributed computer systeas are frequently proposed as alterna-

tives to conventional, single computer systems for applications that re-

quire attributes such as high reliability, or incremental system growth.

Most of these system attributes can only be achieved if both software

and hardware are decentralized. For example, hardware reliability can

I be inproved by using multiple computers to decentralize the computation-

al capacity of a system. Unless software for such a system is also de-

centralized, the loss of a specific computer may preclude executing a

crucial software component, causing the system to fail.

I Decentralization of software effects both control and data struc-

tures. Approaches involving partitioning, replication, or circulation

of state information are usually applied to decentralized a control al-

gorithn (e.g.,- [4,5,111). Information structures are generally decen-

tralized by representing the elements of the structure as individual

processes (e.g., [9,10]). Generally, a sequential process of a central-

g izoc implementation has as its counterpart, a set of interacting con-

current processes in a decentralized implementation. The resulting

software structures can use large numbers of small processes that in-

teract frequently. One concern frequently voiced about decentralized

software is the potentially high cost of implementing large numbers of

I small processes.

There is a body of research whose goal is to define programming

languages for distributed computer systems [1,3,7,9,12]. These

languages can be used to express decentralized algorithms that will

I hopefully have low-cost inplementations. The language features most

commonly proposed include: (1) the ability to apply concurrenc-y at one

I or more levels of the software structure (i.e., nested levels of con-

currency), (2) restricted forms of process interaction that generally

avoid shared variables, and (3) nondeterministic control structures such

a; the guarded command [6]. The inplementation of such language

I features iuplies the existance of an operating system kernel that pro-

I- -

I

vides functions to manage concurrency, interprocess communication, and

nondeterministic control.

The primary purpose of this paper is to report on findings that il-

lustrate how decentralized software utilizes the functions provided by

such an operating system kernel. These findings confirm the feasibility

of low-cost implementations of language concepts that are expressly

designed for distributed computers. These results also show that decen-

tralized software will make extensive use of these functions. This

usage normally represents a cost incurred by decentralization that would

not be present in an equivalent centralized approach. Thus, it can be

thought of as a trade-off required to achieve attributes such as

enhanced reliability or incremental growth.

The next section discusses the features of a specific programming

language used to write decentralized software. The implementation of

this language is outlined to establish the functions that are encon-

passed by its implementation costs. The third section reports on per-

formance measurements that describe how the implementation of this

language is used by decentralized software. A final section discusses

the application of these performance measurements and describes a

research facility that will be used to support future studies.

2 DL'.CKGRCWI_

The results of this study were derived by observing decentralized

software written in a specific programming language -- EPL. Section 2.1

provides an overview of the features of this language and an illustra-

tion of its use. Programs written in EPL require a run-time environment

that manages process and their interactions. These functions are pro-

vided by an operating system kernel whose features are summarized in

i;ect ion 2.2.

2.1 A Prqraminq Lanqgae for Distributed Compute ys

The programming language EPL 113] was selected for use in thisI

-2-

I

Istudy for several reasons. It is representative of the types of experi-

mental languages being proposed for distributed computer systems. As

such, it has a sufficient number of the constructions needed to decen-

tralize software. It is particularly well suited to experimentation

I since it makes no assunptions about data types and structures nor does

it place any constraints on the relationships between concurrent

processes. For example, it is possible to construct pipelines of

processes, co-routines, conventional procedures, data-flow structures,

i etc.

The programming language EPL provides a single abstract framework

for defining concurrent programs -- the act. Instances of acts, called

actors (more commonly termed processes), may be created dynamically.

I All actors are concurrent. Acts may be defined parametrically, so that

multiple instances of actors (processes), defined by the same act, may

be provided with different initial values. Actors may terminate only

their own activies. This completely general structure is intended to

encourage the use of concurrency to refine programming abstractions,

I just as procedures are used to construct layered architectures for

sequential software.

The data spaces of actors are independent prohibiting the sharing

of variables among actors. Actors are allowed to interact only by

I tranamitting messages that are copied from the sender's data space to

the receiver's data space. This restriction helps to make EPL programs

I independent of the interconnection structure of a distributed computer

systen. Transmission of messages is not implicitly buffered. Thus, the

interprocess communication mechanism can also be used to synchronize ac-

tors. A sending actor is delayed until a receiving actor is prepared to

accept the message. klso, a receiving actor is delayed until a sending
actor is prepared to transmit a message.

The message transmission mechanisms are also the basis for a non-

detministic control structure. Receiving actors may elect to receive

3 from a specific source, or to receive from any source. In the latter

II -3-

I

I

case, the choice of a sending actor is nondeterministic.

j Figure 2-1 shows how these concepts can be used to define an imple-

mentation of the Sieve of Eratosthenes. This algorithm identifies suc-

cessive prime numbers by determining if successive integer are divisible

by any prime that has been found. The code fragement shown implements

I this algorithm by defining a number of actors; one for each prime number

that has been found. Successive integers are communicated from actor to

actor unless they are found to be divisible by an existing prime. If an

integer is not divisible by any existing prime, then the integer is as-

signed to its own actor as a new prime number. A single act is used to

define all of the actors needed by this algorithm. The sieves function

as a pipeline of actors and can be applied to a stream of integers.

Each actor can potentially function in parallel with other actors defin-

ing the pipeline and can be distributed to a separate processing unit of

I a multi-computer system. This approach should be contrasted with a cen-

tralized implementation in which an array would be used to record prime

9 numbers and a iterative construction would be used to compare successive

integers to the set of prime number that have been found. The central-

ized version can be expressed as a single sequential process.

2.2 Run-lime Environment

9 The run-time envirortnent of an EPL program must provide functions

that create and delete processes, that schedule processes for execution,

i and that transmit messages between actors. The implementation of the

last function realizes the non-deterministic control structure of EPL.

I The following paragraphs describe these functions and their implementa-

,-ion by an operating system kernel for a single CPU, LSI-11 microcomput-

efr. This system was used to prototype decentralized algorithms written

in EPL and to collect the initial performance data describing their use

of the kernel.

The EPL compiler emits reentrant code. The scope of variables is

i such that the total data space required by an actor (process) may be

I4

b

cc~nputed at compile time. These language features make it possible to

implement a simple run-time storage management policy. When a new actor

is creatcd, space fcr its local variables is allocated as a contiguous

set of locations from an available free pool of space. Operands are al-

ways addiessed relative to the base of this area. An actor (process)

descriptor record is prefixed to the data area for each actor. No at-

tempt is made to recover this space when an actor terminates.

Actors that are logically enabled to run are linked in a circular

chain that defines a ready list. A non-preemptive scheduling algorithm

is used to assign the CPU to one of the ready actors. An additional

language feature of EPL allows an actor to voluntarily relinquish its

turn in tie ready chain before the occurence of some condition that log-

gically blocks its progress (e.g., sending a message to a actor that is

not ready to receive).

Figure 2-2 illustrates how descriptors are linked to define the

ready chain and lists of actors that are logically blocked. in figure

g 2-2, actors A, B, and C define the current ready chain. Actors D, E,

and F are blocked waiting to send messages to actor B. Their descrip-

tors have been removed from the ready chain and form a list associated

With the descriptor of the destination actor. Actors G and J are

blocked waiting to receive messages and are removed from the ready

Ichain. The actor G is waiting for a messagc from a specific source oth-
(r than H or I. The actor J is waiting to receive a message that has

not been sent.

The operating system kernel of EPL defines six functions that mani-

I pulate these lists to manage actors and their interactions. These func-

tions are

I5

I

I

I

II
4.-.

CREATE space for a new actor

3 JN an actor

SEND a message

3 RECEIVE a message

TEIW4INATE an actor

SYSTErI call

The functions CREATE, RUN, and TERMINATE supervise actor creation and

and deletion. The functions SEND and RECEIVE implement interprocess

conmunication and synchronization. The SYSTEM call allows an actor to

relinquish its turn in the ready chain.

The function CREATE allocates space. The function PIN transmits

parameter values from the parent to the child actor and includes the

child in the ready chain. Both functions are needed to instanciate a

new actor. The function TERMINATE permanently removes an actor frcm the

ready chain. The function SEND will block the running actor or it will

copy a message between data spaces and enable a suspended receiving ac-

Itor. The function RECEIVE will block the running actor or it will copy

a message betieen data spaces and enable a suspended sending actor. The

Ichoice between a specific source and any source is determined by a

parar-eter of this system call. The only context that must be saved by

these system, calls is the program counter and the register defining the

base of the dnta area of the running actor.

I ERFO CE

Performance was measured by counting executed instructions. This

was accomplished using the breakpoint trap nf I £I-lI. Instruction

counts exclude the instructions executed by _ ,wa, Lplementation of

Icommon arithmetic instructions such as multiply and divide. These stan-

dard arithmetic operations were counted as one executed instruction.

Table 3-1 gives the execution times of each of the six kernel func-

tions used by EPL programs. These cost figures are consistant with

I values reported for similar kernel designs [15]. The cost figures are

-6

...II ' -' - F.,'"l .-t ,- .

I
i

very small and significantly less that those associated with general

purpose operating systems kernels (e.g., UNIX). These small costs are

explained by the use of a simple memory management algorithm, the lack

of protection mechanisms, the use of non-preemptive scheduling algo-

rithms, and low cost switching.

The primary objective of the performance measurements was to deter-

mine how frequently these operations wlere used by decentralized

software. This would establish an initial estimate of the costs of de-

centralization. The kernel was modified to measure the number of in-

structions executed by EPL programs between successive calls to perform

Sa function of the operating system kernel. These instruction sequence

lengths were accumulated as a histogram by the kernel and reported at

5 the end of execution of EPL programs. Six programs were executed to

develop an estimate of how frequently the kernel functions were util-

g ized.

Table 3-2 sLnrarizes the observed characteristics of this perfor-

Sr tance measure for the programs sampled. The programs executed included

the Sieve of Eratosthenes described in section 2.1, a cellular automata

(Life [81), and a two-player video game. These codes represent complete

programs. In addition to these benchmarks, several smaller construc-

p tions were also exercised as benchmarks. These latter codes represent

data structures and control constructions that would be used as buildingIIi blocks in larger programs. They include a decentralized table structure

for the &nall Set of Integers problem discussed in [9], a limited imple-

mentation of guarded commands involving input and output statements

I similar to those proposed in 191, and and implementation of the

eventcounter and sequencer synchronization mechanism proposed in [14].

I The average length of instruction sequence: executed between kernel

calls is shown for each of these programs.

I In general, the observed lengths of instruction sequences were very

short and exhibitcd little variation. This claim is juftified by the

I frequent occurence of lengths of 20 or less instructions. Figure 3-1

,7 - 7-

I
" -* *' € t ,. - -% _ .. ._

illustrates the distribution of observed lengths for the first three

programs of table 3-2. None of the programs sampled executed more than

17,000 instructions between successive kernel calls. The longest mes-

sage text transmitted was 9 words. In general, messages were the order

of 2 words or less. These short message lengths are probably due to the

use of structures of actors to represent single data structures (as in

figure 2-1). Because each actor represents a very elenEntal unit of in-

formation, communications with its environment are limited.

VAssuming that concurrent programs running in steady state are pri-

marily using the kernel to send and receive messages, more than 2/3 of

the instructions executed by the sampled decentralized software are exe-

cuted by the kernel. When compared to a functionally equivalent, cen-

tralized irplementations, these instructions represent an overhead asso-

ciated with decentralization. For example, the Sieve of Eratosthenes

would normally be written as a sequential program requiring no support

from an operating system kernel.

This overhead represents the cost of decentralization, and is a

basic trade-off that must be considered when using a distributed system

to achieve goals such as enhanced reliability or incrcmental growth.

These figures are mitigated by the parallelism that is inherent in many

of these decentralized software structures. Because multiple computers

will be used to execute decentralized software, performance improvements

due to parallelism will offset these overheads. This consideration

futher conplicates analysis of the trade-ofts of distributed computing.

An initial study [21 has attepted to clarify the extent to which

performance inprovements due to parallelism offset the irrplementation

costs for such decentralized software structures. The results of this

study were limited to a specific data structure organized as a pipeline

of actors similar in organization to the code shown in figure 2-1.

SCueueing models ,;ere used to compare the performance of functionally

equivalent decentralized and centralized information structures under

similar loads. These models indicate that for moderate to heavy usage

-8-

I

II

of a shared data structure, the decentralized implementation should ex-

hibit comparable performance to that of a centralized implementation,

assuning implementation costs are similar to those shown in table 3-1.

These preliminary models suggest that decentralization, which depends on

the use of concurrency (and its associated implementation costs), can be

effectively implemented at suprisingly low levels using conventional

computer technology.

4 SUMI*ARY

The performance data of section 3 demonstrates that although the

cost of individual kernel functions is low, they are used very frequent-

ly by decentralized software. Therefore, implementation costs represent

a potentially large overhead in executing decentralized software. There

are preliminary indications that these high implementation costs are

offset by performance improveents due to the inherent parallelism of

decentralized software. Thus, the overall performance of a decentral-
ized implementation of an algorithm may be comparable to a functionally

equivalent centralized implementation

These observations suggest an objective of performance models for
! decentralized software be explainations the trade-off between perfor-

r ance improvements due to parallelism and the implementation costs of

that parallelism. Such modelling results could then be used to directly

compare the performance of decentralized software with that of fuction-

j uilly equivalent, centralized software. Such comparisons would provide a

Lasis for understanding the costs of distributing computer applications

to achieve other attributes (e.g., reliability).

Initial efforts at modelling the behavior of EPL programs have em-

1loyed queueing networks [21 and probabilistic grammars 115] to model

(vents that correspond to the transmission of messages between actors.

Continued application of such modelling methods appears fruitful. Suc-

cessful applications of these models will require a performance measure-

Sment facility that can provide data needed to define model parameters

1 -

I

values and to validate models.

Figure 4-1 illustrates a research facility designed to provide such

support. The facility is hosted by a PDP-Il/60. Five LSI-lls define a

g losely-connected, multi-computer subsystem that can be loaded and ob-

served by the host computer. The multi-computer subsystem has an inter-

connection structure that can be varied to study different topologies.

The host computer can be used to develop software for execution by the

multi-computer subsystem. It can also be used to record, reduce, and

analyze performance measurements describing the behavior of the multi-

computer subsystem An alternative role of the host computer is the

simulation of an envirornment for the subsystem of LSI-lls.

This research facility makes it possible to measure performance of

decentralized software using a truely parallel system. The measurements

cited in this paper were obtained for a single CPJ implementation of EPL

tprograms. The single CPU implementation of EPL is being revised to con-

trol the subsystem of LSI-11 computers. The objective of the design is

to demonstrate implementation independence of EPL programs by executing

unmodified progrars using a variable number of processing elements.

fach computer will have a kernel that provices an identical set of func-

tions to support the execution of and EPL program. The approach is

based on a kernel design that maintains partial state infoLmation

describing only those actors executed by its processor. This design in-

troduces a nutnber of additional scheduling issues such as the allocation

of actors to computers, and global versus local memory management poli-

cies.

The implementation of the EPI, kernel for a multi-computer system is

expected to provide an estimate of the irplementation costs for a dis-

tribtited computer system programming language. These-costs are expected

to be somewhat larger than those cited in section 3 for several reasons.

The use of slower, possibly indirect, computer interconnection struc-

tures will introduce delays in thie transmission of messages between ac-

tors. More important, decentralization of the kernel will require the

10

i
I

use of low-level communications to coordinate the activities of in-

stances of the kernel. These latter costs are not present in the single

CF implenentation of EPL since the kernel has timely access to all

state information describing actors. However, it is expected that when

more sophisticated software applications are implemented and measured,

these increased costs will be offset by the performance improvements due

to the parallelism of longer instruction sequences bc-ween kernel calls.

5 ME CU

[11] Atkinson, R.R., and C.E. Hewitt, "Specification and Proof Techniques

*for Serializers", IEEE Transactions pa Software Enqineering, Vol. SE-5,

No. 1, Jan. 1979, pplO-23.

[2] Balkovich, E.E., and C. 'Whitby-Strevens, A Nodel and M-easuremnents of

a Decentralized Information Structure, Department of Electrical En-

*gineering and Computer Science, University tif Connecticut, (in prepara-

tion) , 1979.

[3] Brinch Hansen, P., "Distributed Processes: A Concurrent Programming

Concept", Commu.nications of the &, Vol. 21, No. 11, Nov. 1978, pp.

934-941.

[4] Chang, E., and R. Roberts, "An Improved Algorithm for Decentralized

Extrema-Finding in Circular Configurations of Processors",

Communications of the ACM, Vol. 22, No. 5, April 1979, pp. 281-283.

[5] Dijkstra, E.W., "Self-Stabilizing Systers in Spite of Distributed

Control", Coxmunications of the A Vol. 17, No. 11, Nov. 1974, pp.

643-6411.

(6] Dijkstra, E.W., "Guarded Commands, Nondeterminacy, and Formal

Derivation of Programts", Communications of tLje &U, Vol. 18, No. 8, Aug.

)975, pp. 453-457.

17] Feldman, J. "High Level Programming for Distributed Computing",

Zommunications of k p LM, Vol. 22, No. 6, June 1979, pp. 353-368.

I
- 11 -

.1

I

(81 Gardner, M., "tathematical Games", $cientific American, Vol. 223,

No. 10, Oct. 1970, pp. 120-123.

19] Hoare, C.A.R., "Communicating Sequential Processes", Ccruunications

_Qf the WA, Vol. 21, No. 8, Aug. 1978, pp. 666-677.

101 Kant, R.M., and T. Kimura, "Decentralized Parallel Algorithms for

Matrix Computation", in Proceedings of t_ 5th u _S'nosium 2a

Cmputer Architecture, Palo Alto, CA, April 1978, pp. 96-100.

[11] LeLann, G. "Distributed Systems - Towards a Formal Approach", in

Proceedings of the F Congress, August 1977, pp. 155-160.

[121 May, M.D., R.J.B. Taylor, and C. Whitby-Strevens, "EPL - An Experi-

r mental Prograning Language", in .IUE Conference on rends d

Applications: Distributed Processinq, Gaithersburg, MD, May 1978, pp.

69-71.

(131 May, M.D., and R.J.B. Taylor, The LM Programing n Distribut-

ed Computing Project, Report No.7, Dept. of Computer Science, University

of Warwick, Coventry, England, 1979.

(141 Reed, D. P. and R. K. Kanodia, "Synchronizations with Evencounters

and Sequencers", Communications of the AM, Vol. 22, No. 2, February

1979, pp. 115-123.

[151 Whitby-Strevens, C. "Towards the Performance Evaluation of Distri-

buted Computing Systcus", in Proceedings .f _QaAC 7U, Chicago, IL, Oct.

13-16, 1978, pp. 141-146.

$ [16] Wirth, N., "Design and Implementation of Modula", Software:

practice & Experience, Vol. 7, 1977, pp. 67-84.

2- 2 - i

1j

I

I Figure 2-1

i Sieve of Eratosthenes

// This ACT is a sieve which is initialized to the first number sent

// it, n. It sieves out all multiples of n that are subsequently

// sent. All numbers that are not sieved out are sent to another

// sieve that it creates within itself, in sequence.

CONST sieve = ACT [] // define the ACT sieve

REC n THE / receive the first message
(// defining n

ACIOR nextsieve :] sieve; // create another sieve
REP // repeatedly receive and

REC p TMEN / sieve integers

IF (p R4 n) = 0 THEN SEND nextseive : [p] FI

PER
| I

ACTOR firstsieve : :: sieve; // create the first sieve

I LET in = 2;
REP // send successive integers

SI SED firstsieve [m]; // to the first sieve

m :m +

PCR

1
I

I - 13 -

Il

I Figure 2-2I
g Kernel Data Structures

I
I

I
A

L.
*1

~ 1
I

KIR

I
I
i~
I i .4

I I
~ I

I
I -'4-

I Table 3-1

I Execution Times of Kernel Functions

i Average No. of

Kernel Function Executed Instructions

CREATE 17

g RUN 16

TEM1INTE 10

SEND 20+n*

RDCEIVE 20+n*

SYSTRI4 6I__
n length of the message

11

I
I

I

I
I

I - 15 -

IIi

II

i Table 3-2

I Use of Kernel Operations by EPL Programs

I
Ave. Ln. of an Prob. of a Seq.

Program Name Inst. Seq. of <= 20 Inst.

Cellular Automata 11.3 0.89

Sieve of Eratosthenes 7.5 0.99

Video Game 7.9 1.00

I Small Set of Integers 9.2 1.00

Eventcounters & Sequencers 8.5 0.97

i Guarded Corands 5.8 0.98

IAverage 8.4

I
I
I

I
I

I
I

I

I
I

Figure 3-1

IDistribution of observed Lengths of Instruction Sequences

6 /o

I I"

It
Ic-

1 17

I '1 _______ 70

I K, .

S- ---------i---------

S /0 /S o

- 1"7 -

I Figure 4-1

I Distributed Computer System

Performance Measurement Facility

1L -11I

O I

I i .

I ,

II

I
I
I

1 - 18-

Part VI

Performance of' Distributed Software
Implemented by a Contention Bus

I by

E. Balkovich and J. Morse

I ABSTRACT

I The dominant features of software for distributed computer systems are

communication between processes and potential parallel execution of

processes. This paper examines how such a software architecture can be

expected to use a distributed computer system based on a contention bus.

gProcesses tend to be fine-grained and transmit short messages. An

operating system kernel that implements process interactions introduces

an additional source of short messages used to coordinate process in-

teractions. Existing analyses of contention bus performance show that

such traffic patterns will be unable to utilize more than a fraction of

I the potential contention bus bandwidth. An additional concern is that

many important assumptions made by these models are violated by such an

implementation of software. This paper suggests some possible ways to

extend performance models to more accurately reflect the features of

I software for distributed computer systems. It also suggests an approach
to improving channel efficiency for implementations of such software.

I KEY WCORDS

Distributed Crzputing, Distributed Software, Contention Bus, Shared Bus,

Performance Evaluation, Queueing Theory, Operational Analysis

I 1 Introduction

g Typically, the total hardware resources of a distributed system are

implemented by several autonomous computers that are linked by a commun-

ication network. It is also necessary to distribute software that im-

I plements system-wide services and functions in a similar way. One ap-

proach to logically distributing or decentralizing the functions provid-

ed by software is to implement software as a collection of independent

processes that cooperate to provide a service. One objective of suct.

3 designs are systems that continue to operate in the presence of

failures. This approach has been labeled as a task force Lion79l, or a

I system of actors iHew77] or objects [Gol8O]. Generally, the component

proctesses that implement a function are executed by different computers

g and interact via messages rather than shared variables. How this

software architecture uses hardware raises a number of important perfor-

mance questions.

The decomposition of a function into multiple, concurrent processes

g may allow the inherent parallelism of a distributed system to be ex-

ploited in implementing a function. On the other hand, the required in-

a terprocess communication, particularly when it uses the communication

U network, can introduce delays. The tradeoff between these two factors

is; impacted by design decisions that determine the decomposition and the

allocation or assignment of processes to the computers of a distributed
system. These interactions are further complicated by the characteris-

tics of the communication network linking the computers. For example,

the performance of a contention bus is sensitive to load characteristics

I and requires the careful design of protocols that support process in-
teractions.

I There is a clear need to model both the potential parallelism and

the communication traffic generated by a decK2ntralized software design.

IThis information is needed to define the input parameters of optimal

task allocation algorithms [Chu8O]. It also provides a basis for

I selecting low-level algorithms that control hardware interconnection

I

gstructures. For example, time-division multiplexing and backoff algo-

rithms provide optimal utilization of a shared communication channel

under very different load assumptions.

I This paper reports on the author's experience designing a local-

area network to support a decentralized software architecture. The in-

terconnection structure is a contention bus similar to the Ethernet

[Met76]. The distributed software architecture is similar to that sug-

gested in [Hoa78].

The following sections review the features of a distributed

software architecture and briefly summarize the design of a prototype

computer system to support experimentation with such software. Prelim-

inary experience with this prototype system suggests that only a few of

the existing models of contention bus performance can be applied to

understanding the system's performance. The primary objective of this

I paper is to review the models of contention bus performance and to dis-

cuss the interpretation of their results for the system being designed.

The Lpplicable results suggest some algorithms for using the contention

bus. The summary discusses these algorithms and the author's views on

the performance models that will be needed to completely understand the

behavior of the system.

2 Packground

The nature of the primitive programming concepts needed to support

t a decentralized software architecture is a :;ubject of current research.

lP!ost of the results in this area [BrH78, Coo80, Dod80, Fel79, Hoa78,

Lis79, May78, MaoO] propose programming languages tailored to distri-

buted computing. In spite of the diversity of results, several common

themes emerge. These common ideas provide insight i.nto the factors that

determine the performance of distributed
systems.

One feature of distributed software is the use of autonomous, con-

current processes as a basic unit of software modularity. Autonomy is

usually taken to mean that the behavior of one process cannot forcibly

r2.i

*1

I

i influence the behavior of another process. Usually, this is achieved by

preventing sharing of variables and by placing few, if any, restrictions

on the relationships of processes. In the extreme, the notion of a con-

current process can be used as the only source of program modularity

4 [BrH78, Hoa78, May78], replacing conventional concepts such as

subroutines. Since processes are concurrent, the resulting software

structures may have a significant potential for parallelism.

Without shared variables, process interactions are implemented with

messages. In many language proposals, messages play two roles: they

provide a mechanism for transmitting data, and they also provide the

only mechanism for synchronizing processes. Given this latter use of

messages, and the extensive use of fine-grained processes, interprocess

communication 4s the dominant feature of decentralized software. Since

processes are generally resident at distinct computers, the hardware in-

terconnection structure will generally be used to implement message-

based interactions of processes.

The discussions that follow are based orn the design and implementa-

tion of an experimental system to support decentralized software with

these features [BalBOb, Fon8O]. Distributed software is written for a

virtual system with an unlimited number of independent virtual machines

implemented by an operating system kernel. No distinction is made

between process interactions occuring on the same physical machine and

process interactions involving multiple computers. An operating system

kernel at each machine provides identical virtual machine functions.

The implementat 4 on of these functions is distributed by a partition of

the process state information. Each instance of the kernel is responsi-

ble for only the set of processes executed by one physical machine.

Process interactions that involve processes on other physical machines

require that multiple instances of the kernel cooperate to achieve t.e

interaction. This cooperation is accomplished by exchanging kernel-

lcvel messages transmitted over a contention bus similar to the Ethernet

[Met76]. Figure 1 illustrates the layers of software used in the imple-

[3]

I

mentation. The p[i,j] represent individual processes used to distribute

I.<----- Machine 1 ----- ><-----.. .------ ><--- Machine m-

p[1,1] 1 ... 1 p[1,i] p[2,1] i ... i p~o,, I ... 1 p~m,n]

operz.ting system [Ii operating system [m]

network interface [1] I network interface [m]
--

communication network

Figure 1

Layers of the Distributed System

software.

The operating system kernels [Fon8O] implement a virtual machine

that supports the EFL programming language [ay78, May79]. Interprocess

communication is accomplished with messages that are transmitted syn-

chronously. Generally, communication takes piace between named

processes, although there is a provision for nondete.ministic selection

of . message source. Most applications of the language can be charac-

terized as using large numbers of small, frequently interacting

processes that transmit short messages. The architecture of these pro-

graws most clo3ely resembles that of CSP [Hoa78].

3 Structure of a Performance Model

The dominant characteristic of a distributed software architecture

i:; communication between processes that may be executed in p;rallel.

O1,r initial goal is to understand the performance of speaific decomposi-

tions and assignments of processes to nardware linked by a contention

bus. Figure 2 illustrates the major componeiits (,f a such an explana-

ticn.

I
r !

AD-A099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-ETC Ffe 9/a
DECENTRALIZED SYSTEMS. CU)

DEC 80 E E BALKOVICH DAS6-79-C-0117

UNCLASSIFIED TR-CS-15-80 NL

mhEESoEEEEEEEEEEEEEEKo

LoiaItutr rtigPyia tutr
ofSfwrIytmKre fHrwr

inteLognil structure opatingmu p hycs i. cal tultur e
promnof oftware Ssdtemienel of th har a risise s

sa he soaffctwen rc etues cand be decribedtin eurs o aeslogial

I and generate messages. The operating system kernel maps or projects the

logical structure of the software onto the physical structure of the

hardware. It does so by multiplexing a single computer to execute

several processes and by sharing the contention bus to implement multi-
ple logical channels between processes.

The performance problem can be reduced to explaining the perfor-

j mance of the physical system executing the softw~re structure. Concep-

tually, the performance of the physical system is determined by the

characteristics of the contention bus, the characteristics of the mea-

[5

I Sage traffic presented to it by each computer, and the composite comput-

ing load presented to each computer. These characteristics Must be

I derived from features of the logical structure of distributed software

and the mapping or projection of that logical structure onto hardware.

I The logical structure of the software defines a partial ordering of

message traffic that arises from the synchronization of processes to

achieve correct behavior. This message traffic can be characterised by

distributions of message lengths and time intervals between traninis-

sions. The operating system and the contention bus map this ordering

and these distributions into a totally ordered traffic pattern with dif-

ferent characteristics.

The allocation or assignment of processes to computers aggregates

logical message traffic into a single stream of traffic presented to the

contention bus by a computer. The characteristics Of this physical mes-

sage traffic are modified by allocation decisions that allow processes

resident on the same computer to interact without using the communica-

tion network. Allocation and scheduling decisions have a corresponding

effect on the computational requirements for a computer.

A source of significant perturbations in the traffic characteris-

tics presented is the introduction of protocols used by the operating

3 system kernel to implement process interactions. Generally, these pro-

tocols modify the arrival pattern Of messages and alter the distribution

of message lengths by introducing an additional source of short mes-

sages. Clearly, the delays and utilization of communication network
will depend on the characteristic usage of the network. In turn, the

performance of the contention bus plays a role in determining usage,

since the entire system is closed.

I These arguments suggest that as a minimum, it is necessary to model

usage of a contention bus by particular software architectures and theirI i potential mappings onto the hardware. Most models of contention bus
performance assume that such information is available. The following

.~[6I

I section reviews these models and summarizes the results that are

relevant to understanding how the architecture at decentralized software

I will use a distributed computer System based on a contention bus. These

results Suggest some operating system algorithms that may improve the

use of the contention bus. These alternatives are discussed in the sun-

mary of this paper. Developing a suitable model of the software archi-

tecture still represents a major challenge in understanding distributed

systems. Although the detailed formulation of a Closed model of a dis-

tributed system remains an open question, approaches,to formulating such

a model are discussed in the next section.

4i The Network Model

Our experimental distributed computer system assumes a communica-I tion network implemented as a single channel that is shared by all com-

puters. Such a channel can be implemented as a radio broadcast link, or

as a wire. In either case, computers that wish to transmit over the

channel must contend for use of the shared channel, since only one com-

puter at a tine may use the channel.

4.1 History of Analytic Models

I A primary measure of contention bus performance Is throughput effi-

ciency. Throughput efficiency is calculated as the ratio of the total

I available bandwidth of a channel and the maximum bandwidth that can be

used for data communication. The most important assumpti.on made in many

analyses is that message sources may be modelled as an infinite number

of identical, poisson processes which together provide a constant of-

fered load lambda to the channel. The parameter lambda is expressed as

some fraction of the total channel capacity. Generally, it is also as-

1 sumed that the time to transmit one message is a constant tau.

The basis for analytic models of contention bus performance can be

I traced to the Aloha radio network [Abr7 03. The Aloha network assumes
that the stations cannot know if the channel is busy. Whenever a sta-

I tion has a message to transmit, it will immediately transmit the mes-

1 [7]

II _

I sage. A given message, beginning at time T, will experience a collision

if any other message begins transmission within plus or minus tau

seconds of T. Thus the Collision interval for Messages Of fixed size is

2 tau. It can be shown that the maximum efficiency of the channel is

1 / (2 e), or 0.1839. When the offered load reaches 0.1839, the

remaining channel capacity can be attributed to damaged packets (due to
collisions), or to idle time (due to no station being ready to

transmit). In spite of the fact that the channel is fully 50% idle, in-
creasing the offered load beyond 0.18 results only in more collisions,

I not more effective utilization of the channel.

The analysis that leads to the 1 / (2 e) limit on efficiency as-
sumes that the arrival rate of new messages and the arrival rate of re-

transmissions due to collisions are both exponentially distributed. In

Ipractice, these assumptions are valid if (1) the mean time before re-

transmission is large relative to tau, and (2) not too many re-

transmissions occur. As long as the offered load stays below 0.15,

these conditions are satisified.

I A simple refinement of the Aloha scheme is to synchronize transmis-

sions. Ideally, time is divided into slots lasting tau seconds (where

Itau is the time for one message as defined above). With this scheme,
called "slotted Aloha", messages collide when they are transmitted in

the same slot. The collision interval is reduced to tau. It can be

shown that the maximum efficiency of the channel is now 1 / e, or

0.3679. Adding synchronization effectively doubles the capacity of the

channel. In this case, when the offered load reaches 0.3679, the

remaining capacity of the channel is consumed by collisions, and the

channel is never idle [Lam79J. Again, the same assumptions about ar-

rival time distributions invalidate the model when offered Joads exceed

0.30.

Ethernet [11et76J introduced carrier detection circuitry at each

station to determine when other stations are transmitting. As a result,

stations can defer transmission when another station is found to be

[8

transmitting. This avoids most or the collisions associated with Aloha.

However, there is still the possibility of collision. Two stations can

begin transmission during an interval of time so short that neither can

detect the other in time to defer. The deferral mechanism tends to syn-

chronize message transmissions to the completion of messages, particu-

larly under heavy loads. For this reason, Ethernet tends to behave like

slotted Aloha even though there is no explicit slot synchronization.

Adding deferral and collision detebtion reduces the collision in-3 terval from tau to some fraction of tau, depending on the message size.

If messages are long relative to the slot time (the interval required to

establish a detectable carrier signal), then very high channel utiliza-

tion is possible. If a message does not collide in the first slot time,

then the channel will remain clear for the duration of the transmission.I Thus, there are two kinds of slots -- slots during which contention can

occur (the first slot of every message), and clear slots (subsequent

slots of messages that experience no collisions). The channel efficien-

cy for contention slots remains at a maximum of 1 / e, but the clear

slots have efficiency of 1.0 -- they can always be used to successfully

transmit data. The resulting throughput efficiency for messages of 4096

bits (85 slot times) is shown to be 0.98 [Met79J.

The retransmission policies of Aloha and slotted Aloha assume that

the delay is "large". The Ethernet model assumes that after a colli-

sion, each station that is ready to transmit will do so in the next time

slot with probability 1 / Q (where Q is the total number of stations
ready to transmit). It can be shown that this much stronger assumption

satisfies the conditions of Abramson's model [Abr7OJ, so that the 1 / e

upper bound on efficiency still holds. The advantage of the stronger

Ethernet assumption is that it becomes possible to predict the delay

characteristics of the channel. Delay is defined as the amount of time

a station has to wait after the channel becomes ready, but before it

successfully acquires the channel. An accurate model of channel delay
is essential for evaluating the use of a contention bus In implementing

I9

the interaction of software processes.

A number of key points in the above discussion are applicable to

our model of distributed computing. The usable throughput of a shared

channel will be a fraction of the total capacity of the physical link.

This fraction will depend on the length of messages transmitted. Under

heavy loads, there will be many collisions and consequent retransmis-

sions which will impact throughput efficiency and transmission delays.

Finally, the analysis is based on a set of restrictive assumptions about

arrival rates and service rates that may not be satisified by a distri-

buted computer system.

4.2 Applying the Analysis

In order to apply these analytic models to our system, it is neces-

i sary to identify where the system violates assumptions made by the

models. In our system, there is a finite number of message sources, and

in many cases this number will be small. This violates the infinite

source assumption. The software processes that generate messages do so

to effect cooperation. In many cases, the processes are synchronized

and violate the assumption of independent sources. Most of the messages

will be used for synchronization and control of processes. These mes-

sages are very short and do not satisify the bounds on message length

that lead to high channel efficiency. Processes form pairs and engage

in extended dialogues to carry out higher level protocols. The result

is that message arrivals tend to be "bursty" and violate the assumption

of exponential interarrival times.

The implementation of Ethernet, as specified in [Dig80], differs in

a number of important ways from the "ideal" model [Met76]. The strategy

for re-transmission after collision is implemented by a backoff algo-

rithm. The backoff algorithm doea not use Q to set the probability of

re-transmission in the following slot. A single station in a decentral-

iz(ed implementttion cannot know Q. The b:,okoff algorithm provides a

method of estimating Q. Analysis shows that the backoff algorithm's ee-

l10]

Itimate of Q is not very good unless collisions occur between only two

stations. The adequacy of the backoff algorithm therefore depends on

the assumption that the majority of collisions only involve two sta-

tions. It has been shown by simulation [Mar80] that this assumption

generally holds as long as broadcast messages do not require responses

from all stations.

For software architectures such as those assumed in our work, the

infinite source assumption must be replaced by a model of n sources

I (where n, the number of computers in the system, is not only finite, but

in many cases quite small). The performance of Ethernet for a limited

I number of stations has been analyzed [Alm79, Met76]. These studies show

that for n >= 10, the finite source model closely approximates the in-

finite model. For n < 10, Ethernet efficiency is, in all cases, better

than that predicted by the infinite source model.

S I For our software architecture, the assumption that stations are in-

dependent is surely false. Since processes must synchronize in pairs in

order to transmit information, there is a tendancy for computers to

"pair up" while a protocol is carried out by the operating system ker-

nel. It is also expected that many distributed algorithms will exhibit

a tendancy for pairs or groups of processes to engage in extended dialo-

gues. For significant lengths of time, channel usage will be dominated

by small subsets of computers. There are preliminary indications that

this pattern of usage improves the efficiency of an Ethernet-like con-

I tention bus, but more work remains to be done on this subject.

A major concern about contention bus performance for our assumed

software architecture is the preponderance of short messages. If Ether-

net parameters [Dig8O] are used for illustration, then the high

bandwidth (10 megabits) and long slot time (60.8 microsgconds) cause any

message of less than 46 bytes (excluding address information) to fit

I into a single slot. Our analysis indicates that for many applications

all, or almost all, messages will fit in a single slot. As an example,

a typical protocol to transfer a small block of data between 2 processes

Ilc ofdaa etee

requires 14 messages (Fon8O]. The first 3 message are each 8 bytes in
length, and the fourth is 8 bytes plus the length of the data block.

Thus, the high potential efficiency of Ethernet will not be achievable

by our assumed software architecture. Efficiency will be no better than

slotted Aloha since every slot is a potential contention slot. The ef-

ficiency of the Ethernet, used for our purposes, would be 1 / e of the

channel capacity, or about 3.6 megabits per second. Whether this would

provide adequate performance remains an unresolved question.

Some preliminary insight into the kind of message traffic generated

by a distributed software architecture has been gained by experimenting

with the programming language EPL [Bal8OaJ. Typical processes execute a

very small number of instructions (almost always less than 20) between
* calls to the operating system for message transfers between processes.

U The result is very short, very frequent messages. This message traffic

cannot be accurately characterized as exponential. The pairing ofI processes and the bursts of messages generated to synchronize processes

and coordinate data transfer suggests that the arrival pattern may be

hyper-exponential. It is tempting to assume that the exponential ar-

rival assumption may still be used to place a lower bound on expected

1 communications delay, but this hypothesis is in fact invalid, as shown
in [Cha7B).

4.3 Future Models

The specific requirements of a distributed software architecture

I suggest a number of ways in which existing models of contention bus com-

munication should be extended. Message traffic is self-limiting. Typi-1 cally, processes generate most messages in response to messages from

other processes. If messages are delayed by high loads on the channel,

j then processes will be blocked and will generate no further traffic un-

til the current demand is satisfied. When this happens, the operation

of the entire system is limited by the capacity of the communication

network. On the other hand, if a channel has sufficient capacity to

immmediately service transmissions, then the operation of the system is

I (121

I

I limited by the processing speed of each computer. The system becomes

"processor bound" instead of "I/O bound". Models should take both kinds

of behavior into account. Locating the crossover point is important

since it is expected that the performance characteristics of the two

cases will be very different. Part of our current work has attempted to

establish this crossover point by trace-driven simulation of a few

specific cases [Sou8O).

An accurate model of the response (or delay) characteristics of a

communication network plays an important role in predicting this crosso-

ver point and the behavior of the system as a whole. It is not suffi-

cient to predict only the mean of the response time -- its variance is

required as well. The Ethernet exhibits a form of "last in first out"

behavior that results in a high variance of response time under heavy

loads [Alm79]. Under such circumstances, the performance of distributed

algorithms may be erratic or even un-predictable. One can imagine a

I mode in which the system alternates between periods of processing, in

which messages accumulate during long periods of bus contention, and

I periods of communications, when messages are finally transmitted, but in

an order that ensures that processes remain blocked until the last mes-

I sage is transmitted. Such behavior is undesirable since neither commun-

ication nor processing is efficient.

IIf a standard queueing theory approach is to be successfully ap-

plied to analyze response, then something more complex than an 1M/I/

Iqueue is required. An embedded Narkov process has been used in at least

one study [Tob79] to yield good estimates of channel delay given both a

I finite number of stations and variable message lengths. Another ap-

proach that may prove fruitful is to account for collision resolution in

the model of the server, rather than in the model of the source (as was

done in [Abr7O]). Collisions and re-transmissions are reflected in a

reduction in the service rate rather than an increase in the arrival

rate. If the source model is assumed to be finite, an K/G/I//m queueing

system results. The problem with either the embedded Harkov process or

I [13]

1
the H/i//rn approach is that any attempt to incorporate more of the

essential features of the problem into a model increases the computa-I tional complexity. In [Tob79J numerical methods were used to derive the

most useful results, while most of the important results in [Almyg] were

derived from simulation. Tnese methods often require vast computational

resources to yield good results. The other major problem with these ap-

proaches is that it is very difficult to incorporate a model of the
software into the analysis. The embedded Markov process method looks

promising and should provide an opportunity for further research.

One approach to modelling the architecture of distributed software

operational analysis [Den78). This approach assumes a finite set of n

processes, allocated among m nodes. Each process is modelled as a mes-

sage generator. The time of occurrence and the destination of messages

are modelled as random variables. Once a process has generated a mes-

sage, it sends it and enters a wait state until it receives a reply mes-

sage. Each process needs to be characterized by the frequency of' its

message generation, and by a probability vector. This vector represents

the robbilty hatthe next message generated by the process will be

routed to a specific destination. These probabilities are equivalent to

the visit ratios used in operational analysis.

Using this approach, the interaction of the computers in the system

I is emphasized, while the details of the channel are subsumed in the

model as a simple queued device. This may be a useful model as a first

order approximation. It can probably be applied to determine whether a

specific system configuration will operate I/O bound (the contention bus

is the saturated device) or processor bound (some process is the sa-

turated "device").

I 5 3uaryE

j Our review of contention bus performance models has led to several

conclusions about their applicability to systems implementing distribut-

ed software architectures. Interconnection structures, like the Ether-

[14

net, use detection principles that naturally divide the channel capacity

into clear slots and slots during which contention may occur. When mes-

sages span many slots, very high utilization of the channel is possible

under heavy loads. However, when messages are short, the utilization of

the channel is limited to a fraction of that raw channel capacity.

Under appropriate assumptions these models are useful, but not en-

tirely adequate for our purposes. In particular, the architecture of

distributed software places demands on the channel that in many impor-

tant ways violate assumptions made by the models. The number of sources

(computers) is finite and generally cannot be expected to operate in an

independent manner. Preliminary data suggests that distributed software

will generate bursty message traffic of predominately short messages.

This does not satisify the assumptions made about the distributions of

traffic patterns.

These observations suggest that a contention bus should always be

sized so that it is lightly loaded. Given that this is not practical,

then the communiction network becomes a bottleneck and a significant

amount of message queueing will occur. Under these circumstances, it

* nay be feasible to employ algorithms in the operating system kernel that

extend the length of messages transmitted over the network. One ap-

proach that is being considered is to provide bulk service when

transmitting messages. This approach would frame queued messages and
collectively transmit them as a single, longer message. Implementation

can be accomplished either by broadcasting all pending messages, or by

grouping pending messages according to their destinations. The former

approach should yield longer messages, but requires that each computer

of the system receive and decode all message traffic.

The use of bulk service methods should be judged by its impact on

performance. This requires understanding two aspects of how the network

would be used. The first issue is to determine the average message

length that would be generated using a bulk service algorithm and wheth-

er it would significantly alter the performance of the communication

I

network. To be successful, such an alvrri.&a must generate aggregate

messages lengths longe- thian one slot. This would increase the effi-

ciency cf the channel. The second, and perhaps more important issue is

the impact of a bulk service policy on response time. This requires

evaluation of both the mean and variance of response time and can prob-

ably only be accomplished using simulation techiques.

Our plan for future work is to extend the existing models of inter-

process communication to include performance models of the distributed

system as a whole. We hope to extend some of the analytic models to ac-

count for the particular characteristics of the work load and service

I time distributions that we feel characterize distributed software. The

preliminary work using trace-driven simulation has proved fruitful and

will be persued further. Finally, we plan to explore operational

analysis models that would address both the software and the hardware

architectures.

I 16

I
I
I

I
I
I

1 [163

I

REFERENCES

[Abr7O] Abramson N. "The Aloha System -- Another Alternative for Com-puter Communication;,- Proc. AFIPS IM LM, AFIPS Press, Montvale, N.
J. (1970), 281-285.

[Agr77] Agrawala, A. K., Bryant, R. M., and Agre J. "Analysis of an
Ethernet-like protocol,"Proc. Comuter Networkn ymp m, IEEE Com-
puter Society and N.B.S., (Dec. 1977), 104-111.

Alm79] Almes, G. T.) and Lazowska, E. "The Behavior of Ethernet-like
omputer Communicatons Networks," I -. of the Seventh Symp oOperating astemPrincioles, (Dec. 19797,66-Wi.

[Bal8Oa] Balkovich E. E., and Whitby-Strevens C., "On the Performance
of Decentralized Software " o of the 7th fotnuon 1ym oiM M
C r Perform ' ance Modellige.aurm and , TorontoCa-
nada (May 1980), 173-180.

[Bal80b] Balkovich E E The Design and Operation of an x2er mental
Facility for Distributed -- mputer System ear-, Cmp er Sci
Technical Report CSR-80-8, Department of Electrical Engineering and Com-
puter Science, University of Connecticut, Storrs, CT, (September 1980).
[BrH78] Brinch Hansen P., "Distributed Processes. A Concurrent Program-
ming Concept," Comm. A, 21,11 (Nov. 1978), 934-941.
[Cap79] Capetanakis, J. I. "Generalized TDMA: The Multi-Accessing Tree
Protocol," U Trans. on Comm., COM-27,10 (Oct. 1979), 1476-1484.

[ChaT8] Chandy, K. M and Sauer C. H., "Approximate Methods for
Analyzing Queueing Network Models of Computer Systems," ACM utin
Surveys, 10,3 (Sept. 1978), 281-317.

[Chu80] Chu, W. W., et al. "Task Allocation in Distributed Data Pro-I cessing," Computer, 13,11 CNov. 1980), 57-69.

[Coo80 Cook, R. P., "*MOD - A Language for Distributed Programming,"
IMEE Trans. on a. Z., SE-6,6 (Nov. 1980), 563-571.

[Den78) Denning, P. J., and Buzen, J P "The Operational Analysis of
Queueing Network Models," A21 Computlng Surveys, 10,3 (Sept. 1978),
225-261.

[Dig80] Digital Equipment Corp., Intel Corp. and Xerox Corp., The
Ethernet, A Local Area Network, Data Lin. Layer and Physical. LayerSPecificati~Ons (Sept . 1980).

b DoD80] Reference Manual for the Ada Programming Language, United States
epartment of Defense, July 1980.

[Fel79] Feldman, J., "High Level Programming for Distributed Computing,"_Q2=. AfA, 22,6 (June 1979), 353-368.

[Fon80] Fontaine, S. C A Distributed ComputeC Svstem KernelMasters Thesis, Department of Electrical_En ineergad Computer Sci
ence, University of Connecticut, Storrs, CT, (December 1980).

[G01801 Goldberg, A., et al., Smalltalk: eDreame an. S , Xerox
Corp., 1980.

(ew77] Hewitt C "Viewing Control Structures as Patters of Passing
Messages," Artifical Intele , 8, (1977) 323-364.

[Hoa78] Hoare, C. A. R., "Communicating Sequential Processes," fo=.

[17)

II

I ACM, 21,8 (Aug. 1978), 666-677.

[Jon79] Jones, A. K., and Schwans K. "TASK Forces: Distributed
Software for Solving Problems of Substantial Size," Proceedings the
4th Xnterntiona Con erence on Sotwr Eganeng, Sp. 9.T
315-330~.

[Kle75] Kleinrock L. and Lam., S. "Packet Switching in a Multiaccess
Broadcast Channel: Performance Evaluation," I= Trans. o o
COM-23,4 (Apr. 1975), 410-422.

[Kle78) Kleinrock, L., and Yemini, Y., "An Optimal Adaptive Scheme for
Multiple Access Broadcast Communication," Proc. _ ___Iternaiona

mv Conference, (1978), 7.2.1-7.2.5.

[LamT9] Lam, S., "Satellite Packet Communications -- Multiple Access
Protocols and Performance," I= Trans. on Comm., COM-27,10 (Oct. 1979),
1456-1466.

[Lis79] Liskov, B., "Primitives for Distributed Computing," Er2eeJdngn
the 7th Symposium on Operating System Principles, (Dec. 1

I [Mao80] Mao T. W., and R. T. Yeh, "Communication Port: A Language Con-
cept for 6oncurrent Programming", I=E Trans. _n.9., SE-6,2 (March
1980), 194-204.
[Mar80) Marathe, M., "A Study of NI Architectural Alternatives" Digital
Equipment Corp. internal report, (Aug 1980).

[May78) May M. D., Taylor, R. J. B., and Whitby-Strevens, C. "EPL - An
Experimental Programming Language." IM Conference os4nolications: Distributed Procssing, atersu (ay 978

3 [May79) May, M. D and Taylor, R. J. B., The ZL Programmin& naj
Distributed Computirg Project Report No. 1, Department of Computer Sci-
ence, University of Warwick, Coventry, England, (1979).

[Met76] Metcalfe R and Boggs, D., "Ethernet: Distributed packet
switching for local computer networks," Comm. A21, 19,7 (July 1976),395-404.

[Sho79] Shoch, J. and Hupp, J., "Performance of an Ethernet local net-
* work -- A preliminary report " Proc. Lo1 AreaCommunications Network

Ss , N. B. S. and The MITRE Corp, Boston, (May 1979).

[Sho80] Shore, J. E., "The Lazy Repairman and Other Models: Performance
ollapse due to Overhead in Simple, Single-server Queuing Systems,"
Rroc. -the th IFIP International m Computnr Performanct
ode , Measurement and va uton, Toronto, Canada, (May 1980),217-224.

[SouB0] Souza, R. J "On the Resource Requirements of DistributedSoftware," Technical Report, Department of Electrical Engineering andComputer Science, University of Connecticut, (Oct 1980).

[Tob79] Tobagi, F. A. and Hunt, V. B., "Performance Analysis of CarrierSense Multiple Access with Collision Detection," Technical Re ort 173,
Computer Systems Laboratory, Stanford University, Stanford C, (June
1979)•

I
1 [181

I

Part VII

The Impact of Hardware Interconnection Structures
on the Performance of Decentralized Software

by

R. Souza and E. Balkovich

I

I
I
[
[

I fI

[
I1'
I'

I
l I"

I,
Abstract

The results of an investigation of the relationship between software

structure, hardware interconnect structure and the performance of decen-

tralized computer systems are presented in this paper. Programs written in

a language which has the salient features of most languages suggested for

decentralized software were analyzed using trace-driven simulation. Among

the results is the fact that reasonable performance may be obtained at re-

3 latively low bandwidths using typical decentralized interconnect struc-

tures. Additional results provide some insight into the use of hardware in-

terconnect structures by decentralized software.

1
IntroductionI

While a number of distributed systems have been constructed and

I described in the literature [Jen78), a design methodology for distributed

systems does not yet exist. Such a methodology will certainly be based on

models of the distributed software and hardware architectures. Such

I models will require information about the requirements that a distributed

software architecture places on the communications and commputational

j resources of the system.

Programming language research has produced a number of suggestions for

languages for distrubuted commputing [BrH78] [Hoa78] [Coo8o]. A central

characteristic of these languages is the concept of usibg a number of

I cooperating autonomouz processes to acomplish a task. These processes exe-

cute concurrently, share no variables, and communLcate with one another by

1 passing messages. Additionally, the processes tend to be small and corimuni-

1 -I-

cate frequently. Thus, there is potential for parallelism in the software

architecture, but the delays associated with message passing will certainly

be an important factor in evaluating system performance.

The communications subsystem characteristics and the interface between

the communications subsystem and the operating system kernel will have a

large impact on system performance. Due to cost, reliability and extensi-

bility requirements, only a few of the many hardware interconnection archi-

tectures are suitable for use in a distributed computing system. This

raises the question of how the software architecture should be designed in

order to best utilize the hardware.

This paper presents the results of an investigation conducted in order

to provide some insight into the use of computational and communications

resource by applications programs written in the distributed programming

language EPL (May79]. The performance of two representative algorithms

written in EPL was measured using trace-driven simulation [Fer78] in order

to quantify some of the performance tradeoffs made in the design of a dis-

tributed computing system. An understanding of these tradeoffs will allow

for a more methodical design of distributed systems. Of particular in-

terezit in this research are the performance characteristics of a decentral-

ized software architecture running on a system constructed from a number of

processors interconnected by an Ethernet type [Met78J contention bus. Such

a system is available for experimentation. The expected performance of

I such a system will be evaluated and compared to other better-understood ar-

chitecturCs, such as those using shared memory to communicate, with the in-

tent of ;,ssessirjg the impact of the hardware interconnect structures on the

performance of the distributed system.

I--

I

ii
,U j~ac!(&Lunck

I

The programming language EPL is representative of a number of

languages suggested for programming decentralized computer systems.

I Processes (called acts) may be created dynamically. An instance of a pro-

cess is an actor , and all actors execute concurrently. Multiple instances

I of the same act may be created. Actors may communicate only by passing mes-

sages, so variables may not be shared among actors. EPL programs are in-

ependent of the hardware interconnect structure of a decentralized system.

As long as the appropriate operating system kernel is used, the same EPL

program may be executed on a variety of decentralized architectures or a

I single CPU.

In addition to communicating information between actors, messages may

also be used to synchronize actors. Messages between actors are not bur-

fered. Therefore a sending actor is delayed until the receiving actor is

I ready to receive. Similarly, a r(.ceiving actor is delayed until the sending

actor is ready.I
A Decer Lalize. Kernel

In order for a computer system to be decentralized, all software, in-

I cluding the operating system, must be decentralized. Operating systems for

I multico:1puter systems which are not decentralized nay maintain global state

information in a central location, perhaps a table in shared memory. The

I kernel for a distributed operating system must distribute this information

I -3-

I

among the processors in the system. This distribution may be performed in a

number of ways. For example, each kernel may maintain its own copy of the

global state information (referred to as a d k .ernel. A kernel

which performs an operation which changes the global state information must

I make sure that all other processors receive the new state information. This

g problem is analagous to maintaining the consistency of a distributed data-

base. A number of algorithms have been proposed for performing the data

I base update in a decentralized fashion.[Dij74] Alternatively, each kernel

may maintain information only about only those processes on the local pro-

cessor. If information about a non-local process is required (e.g. to send

or receive information to or from a process on another processor), the two

kernels must communicate in order for the information to be obtained. This

I implementation will be referred to as a .aritioned kre. A partitioned

kernel system has been imple=ented and is available for experimentation

[Fon80].

Hardware Interconnect Structures

In order to construct a completely decentralized system, there must be

no central hardware component[Ens78]. This requirement restricts the number

of interconnect structures from which one may construct decentralized sys-

I tems. Additionally, it is advantageous if the interconnect structure be

inexpensive, reliable and readily extensible. The Anderson-Jensen taxonomy

of multicomputer systems is a reasonably complete enumeration of intercon-

3 nection structures [And75]. Of the ten architectures in this taxonomy,

only three, the loop (DDL), global bus (DSB), and fully-interconnected

(DDC), do not exhibit some form of centralization. Of these three, the DDC

I system possesses poor extensibility and cost characteristics and is not

_At!-A

r reasonable for use in most distributed systems.

gra s his Aserodch

A reasonable way to determine the characteristics of applications

written in a distributed programming language is to measure actual pro-
grams. This was the method used in this research. The measurements were

i performed in the following manner: A single-CPU version of an EPL runtime

kernel was instrumented to provide a trace of all significant events

5 (sends, receives, etc.) which occurred while a program was running. This

trace output could then be analyzed to provide information such as the

I number of actors created, the names of all the actors, a histogram of mes-

5 sage lengths and a matrix of communication traffic between actors. Since

the EPL programs measured were deterministic, the information obtained in

j this manner is independent of the hardware interconnection architecture.

I The trace information could also be used as input to a trace-driven

simulation package which would simulate the execution of the programs on a

I variety of multicomputer architectures.

Simulation Moel

This section describes the models used in the trace-driven simulation.

The simulation kernel models the partitioned kernel as described

above. Identical cpies of the kernel are maintained in each processor.

Each kernel possesses state information only for local processes. A pro-

j cess wizhing to send to or receive from a process on another processor is

i -5-

blocked while the two kernels exchange state information. Consider the

case where a process wishes to send to a procebs on another processor. The

sending process is blocked when its kernel determines that the receiving

process is not resident. The sender's kernel sends an enquiry to the

receiver's kernel. When the receiving process is ready to receive, its'

kernel sends an acknowledgement to the sender's kernel. Upon receipt of the

acknowledgement the sending process is marked as ready to run. When

rescheduled, it will transmit the message text to the receiver. The re-

ceiver remains blocked until the text is received and then is marked as

ready to run. A total of three message are required to pass a message

between two processes on different processors: an enquiry for state infor-

mation, an acknowledgeient with the state information, and the text itself.

Local Actor Scheduling

A FIFO queue of actors ready to run is maintained by the kernel at

each processor. The actor at the head of the queue is given control when

g the processor is idle. Note that an actor which has become ready to run

will not immediately execute, but must wait for those queued ahead of it.

Global Actor Scheduling (Process Allocation)

The problem of process allocation is complex and we do not attempt to

solve it here. It is hoped that the results of this work may be used in an

optimal task allication algorithm.[ChuBO] The simulation has two algorithms

for process allocation. The first of these algorithms maintains a schedul-

ing policy which allows one to write distributed software which gracefully

degrades with failure [Bal79]. The second algorithm tries to minimize com-

I!
I -6-I

munications between the processors.

Logical & Data structures implementations in distributed program-

Iming languages are oeten chains or trees of processes [Tay791. The process

allocation algorithm views the processors as connected in a logical ring.

When a process creates another process, the child process is placed on the

logically adjacent processor. The intent is to avoid a situation in which

parent and child are resident on the same processor. If the software struc-

ture is constructed appropriately, failure of a processor may disrupt

parent-child communication, but not parent-grandchild communication, for

example. No check as to the loading of the logically adjacent processor is

performed.

MinimM Co!ruunications Cst This allocation will attempt to minimize

communications between processors by creating a child process on the same

3 proces;or as its' parent. The assumption, borne out by measurement, is that

most process intercommunication is parent-child in nature. If the local

3I processor is more that fifty per cent utilized, the child process will be

created on the logically adjacent processor.

3 The Process Model

3 A process may be characterized by three parameters: a sequence of

sends and receives, the time curation between sends and receives, and the

3 size of the messages sent by that process. The send/receive sequence for

each process is determined by processing the trace output from the single-

CPU instrumented kernel and forms the input to the simulator. This pro-

3 cessing also determines the average message length for all processes. This

is the values used for message length for all messages in the system, in-

I -7-

I

I eluding kernel-kernel communication. The time between send/receives for

Itypical EPL programs has been measured by counting instructions [Bal8o].

Based on these measurements, the time between sends and receives is taken

to be exponentially distributed with a mean of 10 machine instructions.

IHardware Interconnection Models
IThe simulation provides models for a number of different hardware in-

terconnection systems. Several of these are described below.

Shre Memory System

This model contains from one to five processors which communicateI
through a shared memory. The time required to insert or remove a message

in/from the memory is assumed to be zero. This configuration corresponds to

the DSM architecture of Anderson and Jensen and may be used as a base from

I which the costs of distribution may be measured. Additionally, the degen-

erate case of this architecture is a uniprocessor, so that the

distributed/uniprocessor tradeoffs may be measured.

I The same kernel model is used in this system as the decentralized sys-

tems, but since all communication between processes is on the same proces-

sor, the kernel need not send messages to obtain state information. That

is, the overhead involved in sending a message between two processes is not

required to include the time required for kernels to exchange state infor-
I mation.

I Qb...g., Arbitrategd ju. (I=S)

I Processors are connected by a global bit-serial bus with FCFS arbitra-

I -8-

tion. Each processor communicates with its' I/O channel via DMA, so that

I/O and processing may overlap. A queue of processes wishing to access the

global bus is maintained. Bus bandwidths from 10 Kbit/Sec. to 1 Mbit/Sec.

were investigated. It should be noted that the arbitration method used by

this interconnection architecture requires a centralized arbiter. It is not

I a decentralized architecture, but it was included in the analysis since it

is an architecture which makes most efficient use of the available bus

bandwidth, and provides a baseline from which to measure other bus inter-

connection methods.

Contention Bus (D__)

This configuration models a Ethernet-type contention bus. [Met76] In-

terfaces listen before sending and only transmit on the bus if it is not in

use. An interface can determine the preLence of information on the bus

(carrier detect) in zero time. This is somewhat unrealistic in a physical-

ly distributed system. If the bus is in use, the interface waits until the

Ius becomes free (no carrier), delays an exponentially-distributed random

time, and tries to send again. Note that it is possible for the bus to be

Ii busy again at this time, causing the interface to retry again. If a colli-

sion occurs, both interfaces invol'ed retry an exponentially-distributed

random time after the bus becomes free. This model differ. slightly from

the Fthernet in that a collision is not detected until the end of a message

transmission so that a collision destroys both messages and makes the bus

unusable for a message time. Additionally, the backoff time after a colli-

I sion is generated by an exponentially-distributed random number gen-

erator rather than the binary exponential backoff algorithm. The bus

bandwidths investigated were the same as for the ICSB system.

| 9-

Sample Application Programs

Programming in a distributed programming language requires application

of a set of concepts quite different from those used when programming in a

sequential language [Tay79] [Hoa78] [BrH78]. A fundamental difference is

the concept of using a process to encapsulate an element of data. An array

may be implemented by a string of processes, for example. The directory for

a filing system may be contained in such an array, and searching the

directory for an entry would involve moving down the chain of

processes until the required entry is found. A process may also be used to

implement a procedural abstraction, such as converting an integer to a

Icharacter string. Such a procedural abstraction differs from the implemen-

tation in a sequential program, as it is concurrent with the procedures us-

ing it.I
Two sample application EPL programs were selected for study. It is

felt that these programs possess the characterics of a large number of pro-

grams written in languages for decentralized software. These programs com-

I pute prime numbers by the sieve of Eratosthenes and perform a heap sort on

a random array of numbers.

Sieve of Eratosthenes

The sieve generates prime numbers by creating a pipeline of actors

driven by a number generator. Each actor in the pipel-ine encapsulates a

3 prime number and sieves out all numbers passed to it which are multiples of

that prime number. A new actor is created to encapsulate a number which

i cannot be divided by any actor in the pipeline. The sieve is an example of

i -10-

I

the concept of encapsulating data within a process.

jiHeap Sort
The heap sort generates an array of random numbers using a process to

implement the random number generator and then sorts the numbers using a

I heap sort algorithm. Each node in the sort tree is a process. The processes

are created as the tree is loaded and deleted as the tree is unloaded. A

difference between the heap sort and the sieve is that the sieve tends to

I create an ever-lengthening chain of processes, while the heap sort creates

a large number of processes arranged in a tree and then removes them. The

I communications requirements of' the heap sort are felt to be quite different

g than those of the sieve, which will allow for evaluation of two extremes of

this spectrum.

I .13LResults

Figures 1 and 2 illustrate the effects of the different interconnec-

I tion structures and scheduling algorithms for the sieve and sort programs.

9 Several items are worthy of note. The first is that there is little differ-

ence in performance between systems communicating via a high speed global

9 bus (11-bit/Sec) and those communicating via shared memory. While messages

between processes are sent frequently, the average message size is small

I (around 2 bytes) and this places little demand on the interconnection sys-

9 tem.

9The logical ring allocation algorithm offers better performance than

the minimum counrnunications allocator for the bus architectures. This is

because commrunications resource is so abundant that the loss in potential

LI

r-l

parallelism caused by placing child processes on the same processor as the

parent outweighs the communications delay.

Addition of a second processor with the logical ring scheduler dramat-

ically impacts the completion times of the two programs. The sieve algo-

rithm has two source of parallelism: the process which generates integers

and feeds the pipeline; and the first sieve in the chain. Processes further

and further down the chain are activated less and less frequently. Addition

of the second processor with the ring scheduler place- these two processes

on different processors, allowing them to run concurrently. Similarly, the

root process of the heap sort can run nearly all the time. Addition of the

I second processor allows this to happen, and the additon of further proces-

sors contributes equitably to the performance.

The fact that a 1 Mbit/Sec global bus can provide performance equal to

U that of a shared memory system for this class of decentralized system

raises the question of how bus bandwidth in a bus-interconnected system ef-

fects performance. Indeed, the bus bandwidth will surely be a large factor

in determining system cost.

I Figures 3 through 6 present results of a set of experiments at various

bus bandwidths below 1 Kbit/Sec. Results are presented here only for the

I sieve algorithm, but results for the sort are similar. The performance of a

i 100 Kbit/Sec bus was roughly the same as a 1 Mbit/Sec bus. Note that the

information for both the ICSB (arbitrated) and DSB (contention) buses are

shown to allow for comparison.

9 Figure 3 plots completion time as a function of bus bandwidth. Per-

formance is dramatically increased at bus bandwidths above about 25 - 50

I
-12-

"; I

Kbit/Sec. This is the point at which the system changes from an I/0 bound

mode to a processor-bound mode of operation. This is borne out be Figure

4, which shows very high bus utilization below about 50 Kbit/Sec, and by

figures not presented here which show a sharp drop in the size of the com-

munications controller queue size as bus bandwidth approaches 50 Kbit/Sec.

Bus utilization increases as more processors are added to the system.

The arbitrated system achieves a higher bus utilization, especially at low

bandwidths. The contention system behavior parallels that of the arbitrated

system because the interfaces can detect carrier in zero time. The model is

currently being modified to associate a time delay with carrier detection.

The performance degradation with the contention bus is probably due to the

fact that the random delays generated by the controller may place messages

on the bus out of order. This second order effect requires further inves-

Itigation.

Figures 5 and 6 show the effects of bus bandwidth on processor utili-

I zation and throughput. These increase somewhat linearly with bandwidth, in-

1 dicating that there is a backlog of work at each processor.

Trace-driven simulation was used to measure the anticipated perfor-

mance of two representative programs written in the distributed programming

I language EPL. The behavior of these programs on a number- of multicomputer

I systems was measured.

Performance of these programs was effected by a number of factors,

especially the bandwidth of the intercommunications medium. System perfor-

i I -1H-,

mance is essentially CPU-bound until communications bandwidths are quite

low, at which point performance degrades significantly as the system be-

comes I/O bound. Another contributing factor is the process allocation al-

gorithm. Two simple algorithms resulted in quite different system perfor-

mance characteristics. Optimal performance will require application-

dependent process allocation and selection of an appropriate interconnec-

tion subsystem bandwidth.

_References

[And75] Anderson, G.A, and Jensen,E.D, Computer Interconnection
Structures: Taxonomy, Characteristics and Examples, ACM Computing
Surveys, Vol. 7, No. 4, Dec. 1975.

[Bal79] Balkovich, E. E, A Structure for Decentralized Software, Techni-
cal Report CS-79-9, Department of Electrical Engineering and Com-
puter Science, University of Connecticut

[BalSO] Balkovich, E. E., and Vhitby-Strevens, C., On the Performance of
Decentralized Software, Proc. of the 7th International Symposium on
Computer Performance Modelling, Measurement and Evaluation, Toron-
to, Canada, ay 1980, p 173.

[BrH78] Brinch-Hansen, P., Distributed Processes: A Concurrent
Prozramming Concept, CACM, Vol. 21 No 11, November 1978, p. 943.

(Chu80] Chu, W.W, et. al., Task Allocation in Distributed Data
Processing, Computer, Vol. 13 No. 11, November 1980, p. 57.

[Coo80] Cook, R.P., 'MOD - A Language for Distributed Programming, IEEE
Trans. on Software Engineering, Vol. 6, No. 6, Nov 1980, p. 57.

[DiJ711] Dijkstra, E. W., Self-Stblzn Aloitm In Spite

Distributed Contr CACM, Vol 17., No. 11, November 1974, p 643.

I
m-_14_

I

I [Enl8] Enslow .E., What Is A "Distributed" Data Processing System?, Com-
puter, Vol, 11 No 1, Jan. 1978 p 13.

I (Fer78] Ferrari, D. Computer Systems Performance Evaluation, Prentice-
Hall, 1978.

[Fon80] Fontaine, S., A Distributed Computer Operating System Kernel
M.S. Thesis, Department of Electrical Engineering and Computer Sci-
ence, December 1980.

[Hoa78] Hoare, C.A.R., Communicating Sequential.Processes, CACM, Vol. 21

No. 8, August 1978, p 666.

[Jen78] Jensen, E. D., The Honeywell Experimental Distributed Processor
- An overview, Computer, January 1978, p. 28.

[May79) May, M.D and Taylor, R.J.B, The UL Programming Manual, Depart-
ment of Computer Science, University of Warwick, May 1979.

[Met76] Metcalfe, R.M, and Boggs, D.R., Ethernet: Distributed Packet
Switching for Local Computer Networks, CACM, Vol. 19, No. 7 July
1976, p 395.

I [Tay79] Taylor, R.J.B., Notes ok.n Proraming Ln EPL, Department of Com-

puter Science, University of Warwick, May 1979.I
I
I
I
I
I
I
1 -15-

L

U)

Lii

C)

C0

C) /)

ooc,

oc

o 4-

2 C,

- 4) +i

00,09 00opt 0 *ZL 0 '0L 0 ,8 0 -s
OL* (3SW)3W~lN0111JWO

C3
w 0

CO

I LI

oL + L

00It Cooo 000 00 OO 0
0 1 (3SW) W~l 0113-LIW]

uj 0

0~00

C3U) U)
=-

1e A

0001 0*8 6 -0 o 001 0

0 1 *03W) 3~l 0113dW0

00

_0

a 0
If)

4a-

03
0 4 .0

oc

coc

1-0

0001 0 I6 0 1 09. 0090Is
(z) Nuvzimn sn

Ink

Cl0

-01

o<

o 0o
zL

00

a--

000t 000 009 0 lp 00? 02

9C-O

C30

C30

0OC

03

o 0a

.m
9-4 00

0@4.00 zccg~o91 o o(I .- I: If :*' Jfd1- .3 V 3A

