AD=A099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE--ETC F/6 9/2

DECENTRALIZED SYSTEMS, (U}

DEC 80 E E BALKOVICH DAS660-79-C=0117
NL

UNCLASSIFIED

l-v'—-p—.—-g-————-———-———-

COMPUTL: SCIENCE
TECHNICAL REPORT

Laboratory for Computer Science Research
The University of Connecticut

ADA099195

COMPUTER SCIENCE DIVISION

DTG FILE SoPY

A

- Electrical Engineering and Computer Science Department

%

U-157 <
i i . (RO TN
The University of Connecticut . g«@\. / .
. Storrs, Connecticut 06268 - 4¢ o
L a— g v\‘@

e i O T

81413 156

2 VAR Lapa L.
o

T A A, I e A e S T | g YO

Y
»

DECENTRALIZED SYSTEMS

E. Balkovich

Technical Report: v Cs-15-80

| l Contract: DASG60—7g-c-0117'LQ\, s P C»

R ST

The

Unl VerSi ty STORRS, CONNECTICUY 06268 .
Of . THE SCHOOL OF ENGINEERING
l Connecticut

March 31, 1981

The attached technical report is the Final Report on the Research
Grant #DASG 60-79-C-0117, Research in Decentralized Systems, U. S.
Army Contract. E. E. Balkovich, Principal Investigator

I
A

= PR |
’/ggcan'muxzm) srstass o /

[e

Technical Report: CSR-15-80

Contract Aascso-'r 9-c-0117 |

{
&

v e R s Vet P gy $8 R SNIAL

For the Period .
1 September 1979 - 31 December 1980(

— m @__.2\«2/ ».

Ballistic Missile Defense Advanced Technology Center
P.0. Box 1500
Huntsville, AL 35807 .~

TR CELSEE

R

Performed by
Electrical Engineering and Computer Science Department
University of Connecticut
Storrs, CT 06268 |

Authors: See Table of Contents
Principal Investigator: E. Balkovich

Accession F°f.--l-%'-
“NTIS GRARI :
DTIC TAB (]

Unannounced £3E]

Justificatio :
= [o LE =D .

B”___‘__&zg-b‘—‘—‘

Dgst_ljib\"-iﬂ / e

g
-
AN

. 405 I Bt

Ao S S W

S A et YT WM (%t Ty TP M e

e

DISCLAIMER

The views and conclusions contained in this report are those of the au-
thors and should not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of the Ballistic Missile
Defense Advanced Technology Center, Huntsville, Alabama, or the U.S. ’
Government.

:
i
§
H
£
[

\
.

TABLE OF CONTENTS .

I. Introduction and Overview - E. Balkovich
II. A Distributed Operating System Kernel .- S. Fontaine

III..Design of an Operating System for Distributed
Communicating Processes'~ J, Morse

IV. Extensions to the Programming Language EPL' -~
E. Balkovich

V. On the Performance of Decentralized Software’' -
E. Balkovich and C. Whitby-Strevens

VI, Performance of Distributed Software Implemented
by a Contention Bus, - E, Balkovich and J, Morse
VII. The Impact of Hardware Interconnection Structures
on the Performance of Decentralized Software,«
R. Souza and E. Balkovich

Part

Part

Part

Part

Part

Part

Part

I

I

III

IV

VI

VIl

Part I

Introduction and Overview

by

E. Balkovich

¢

1.0 INTRODUCTION

In September 1979, the University of Connecticut wunder contract
l DASG60~T79-C~0117, initiated a research program in decentralized systems.
This work was motivated by the observation that software architectures,
based on collections of cooperating, concurrent software processes or
tasks, could be applied to logically distribute applications such as
BMD, '

This approach to distributing the software of an application offers
a poténtial advantage in areas such as fault-tolerance. For example, it

is possible to distribute information structures so that they remain

generally accessable i1in spite of failures affecting component parts of

A ———— | —toe i i —

the structure. Furthermore, such gracefully degrading software struc-
tures do not incur the same run-time costs as roll-back and recovery
strategies. This approach is relevant to the BMD problem which requires
fault-tolerant application software that is constrained to operate in a

run-time environment with severe time constraints. s

An operating system is required to provide run-time support for the

software processes that would be used to distribute a BMD application.
This method of decentralizing software functions appears to make exten-

sive use of these operating system functions, Large numbers of -

processes are required, Typically, each process is relatively small
(measured in terms of execution time and storage requirements) and in-
teracts frequently with other processes to cooperatively implement the
functions needed by an application. '

1.1 RESEARCH OBJECTIVES

This research had two objectives: {1) to 4investigate implementa-

P Eor e — =g S ey

tions of the programming concepts needed to decentralize application
software, and (2) to examine the performance of such implementations,

The run-time environment of decentralized application software re- i
quires the implementation of software processes and mechanisms that al-

(1]

]

low processes to interact. This run-time environment is generally im-
plemented by a portion of an operating system known as the kernel. The
principles governing the construction of a kernel are well understood

for a conventional, single-processor system. One goal of this work was
to develop principles for distributing the implementation of kernel
functions among the processing elements of a distributed computer sys-
tem. These principles were to be based on a partition of state informa-
tion (used to control software processes and their interactions) and a §
communication protocol that would allow separate instances of the kernel

(resident at different processing elemonts) to cooperate in implementing i

process interactions. ;

It was expected that distributed application software would use the

i AR i

facilities of an operating system kernel in a qualitatively different }
way than software written for a single processor systemn. Thus, the
second goal of the investigation was to use a prototype implementation
of a distributed operating system kernel to investigate how distributed

application software would use a distributed computer system, This ef-

fort concentrated on chagacterizing the nature of software processes

used to distribute an application and how these processes used the func-
tions of the operating system kernel and the interconnection structure

of the distributed computer system. The latter portion of this effort

was limited to loosely coupled systems that could be constructed using
the experimental facility available at che University of Connecticut.

1.2 RESEARCH FACILITY i

The research facility used by this project reflects key views on
the decentralization of application software, The facility included H
both hardware and software. The following summary of the hardware is

intended to illustrate the types of loosely coupled systems considered

by this investigation and to provide backgound for later sections of the
final report., The summary of software used by this investigation is in-
tended to review the general structure of distributed applications tnat

was assumed by this study. It also summarizes some of the specific

[2)

tools used to support this study.

1.2.1 Hardware

This research was supported using an existing distributed computer
system. This system was constructed from five Digital Equipment Cor-
poration LSI-11 microcomputers hosted by a larger PDP-11 systen. The
host system provides support for software development and analysis of
performance data obtained from the distributed computer systen. Ini-
tially, the microcomputers were loosely coupled using a point-to-point
communication network based on standard serial interfaces. This provid-
ed a low-cost, flexible interconnection structure that could be used to
support investigations of alternative topologies, Later, a second com-
munication subsystem, based on a contention bus, was added. The second
subsystem provided more sophisticated hardware support for communication

funétions and a media that naturally supports broadcasting.

Each processing element of the distributed computer system uses a
fully configured LSI-11 microcomputer. The basic processor-memory con-
figuration of each element is identical, Each processor has a local
memory of 28K-words. The console device of each computer has been con-
figured as a port in a four-port, asynchronous serial interface. One
computer differs from the other processing elements. It has access to a

programmable real-time clock and a double-density floppy disk.

The experimental facilities are hosted by a PDP-~11/60 system. Five
serial interfaces of this system are connected to the system consoles of
each processing element of the experimental facility. The transmitter
of the console device of each element is routed to both the receiver of
its corresponding PDP-11/60 interface and to a connector on the console
panel of the experimental facility., Thus, the PDP-11/60 and a dedicated
terminal can be used used to monitor transmissions from each processing
element. The receiver of the console device of each element 1s routed
through a switch that can be used to connect it to either the

transmitter of its corresponding PDP-11/60 interface or to the keyboard

(3]

i

}

of a dedicated terminal. This switch can be used to select a local ter-
minal or the host facility to provide the inputs for a processing ele-

ment,

JEUSVOSNE YN VRPN SONEIP ST SURNR o

l There are two mechanisms available for measuring the performance of

software executed by the experimental facility. These are: the serial

interfaces to the PDP-11/60 system and the programmable real-time clock
available at one of the microcomputers. The programmable clock provides
rudimentary clock facilities to all the processing elements of the sys-
tenm, It generates an externally accessable overflow signal when the
clock is in operation. This signal is routed to the external event line
of all processing elements including the processor controlling the
clock, Thus, a periodic source of interrupts can be generated at each

element. These interrupts can be used to sample local state information

or to maintain a measure of elapsed time,

1.2.2 Software

This work was supported by a number of software development tools.
The host computer system, and its general purpose operating system, pro-
vided an environment for developing and evalvating experimental software
written for the distributed computer system. Due to an earlier colla-

boration with researchers at the University of Warwick, this research

language for distributed computing (EPL). This project adopted EPL and

applied it in two ways: (1) to write benchmark application programs for
the distributed computer system, and (2) to define a virtual mwmachine
that was implemented by the operating system kernel of the distributed

computer.,

The major features of EPL are:

(1) An EPL program executes a number of autenomous software

processes called actors. The code executed by a process is defined

N
' project had access to a compiler for an experimental programming
!
:
-
%

by a sharable unit called an act.

(2) Software processes (actors) interact with each other by sending
messages. It is not possible to share variables, Messages serve
to both communicate information and to synchronize processes (ac-

tors).

(3) Process definitions (acts) may be nested. Processes (actors)
can be created to provide parallelism and completely general net-

works of processes,

(4) The basic data object of EPL is a word. The language is type-
less so that a word may be regarded as a bit-pattern, a number, or
the name of a process (actor). In this respect, EPL has both the

flexibility and limitations of machine language.

These language features provide programming concepts that are represen-
tative of the mainstream of thinking about software structures for dis-
tributed computing. The simplicity of this language makes it well suit-
ed to experimentation since it can be easily modified to investigate new

ideas.

One of the design goals of the experimental distributed computer
was to exploit the facilities of the host computer operating system when
developing software for the distributed computer system and when observ-
ing or interacting with experimental software. The ability to operate
the entire distributed computer system from a single host terminal was a
specific objective., This required host software that could monitor and
display all data transmitted from the experimental facility, dynamically
switch a single terminal between the console devices of the five pro-
cessing sites, and provide suitably formatted inputs for the microcode
ODT loader of LSI-11 systems.

Software was developed for the PDP~11/60 to satisify these specifiec
requirements. When invoked, this software generates processes that mon-

itor and record, in separate files, all data received from the process-

o e

ing elements of the experimental facility. These data are also

displayed at an user terminal., The output of a terminal keyboard can be
switched to provide input for each of the processing elements of the ex-
perimental facility. These inputs can be used to execute any of the
commands recognized by the microcode ODT of the LSI-11 systems or to
supply data for software executed by the experimental facility. One of
the microcode ODT commands invokes a loader that can be wused with a
serial interface. The PDP-11/60 software includes an absolute loader

that can be used to read loadable files prepared at the host facility.

A major item of analysis software developed for the host computer
system was a trace driven simulation of EPL programs. This simulation
is driven by a dynamic trace of all process interactions occuring as a
benchmark EPL program is executed. The simulation was designe. to
evaluate how a particular EPL program would be executed by distributed
computer systems differing from those that could be configured in the
laboratory. Many of the key parameters used in the performance models
of this simulation (e.g., execution time requried support a particular
type of process interaction) were based on the experimental operating

system software developed for the laboratory facility.

2.0 SUMMARY OF RESULIS

Three major results were obtained from this work: (1) the design of
a prototype distributed operating system kernel for a loosely coupled
distributed computer system, (2) refinements to the programming concepts
(supported by the operating system kernel) that can be used to express
application software, and (3) preliminary evaluations of the performance

of such software,
2.1 OPERATING SYSTEM KERNEL

Part II of the final report describes the design aBd implementation
of a prototype operating system kernel for a distributed computer sys-
tem. This operating system is specifically designed to provide run-time
support for distributed software written in the programming language

[6]

>

o
s

EPL. The design of the operating system kernel is based on the princi-

ples that were outlined in section 1. The implementation of the proto-
type of the design was done using a loosely coupled computer system.
The communication network supporting this system was a full point-to-
point serial interconnection of the computers.

A key facet of the operating system design was a communication pro-
tocol, This protocol was the mechanism used by instances of the operat-
ing system, executed by different processing elements, to synchronize
software processes and to transfer data between processes, The initial
protocol was chosen to be as simple as possible, It is asymmetric and
always initiated by the processing element representing the sending pro-

cess,

The algorithms of the design are more complex than those required
to implement a functionally equivalent operating system kernel for a
uniprocessor. This increase in complexity is due to the 1lack of com~-
plete state information at any processing element, and the protocol re-
quired to overcome this limitation. The implementation of the design is
significantly slower than the implementation of a functionally
equivalent operating system kernel for a uniprocessor. Delays are 1in-
troduced by the more complex algorithms and by the communication subsys-

tem.

Another important feature of the design was its encapsulation of
the communication subsystem hardware. Outer layers of software (the
operating system kernel algorithms and application software written in
EPL) remained unaware of how the communication subsystem was actually
implemented. This encapsulation of the communication subsystem allowed
the algorithms of the operating system kernel to uniformly implement
process interactions and provided for a family of operating system ker-
nels, This family of operating system kernels anticipated variations in
the hardware that could be used to implement the communication subsystem
and variations in the functions implemented by the operating system ker-

nel.

[7]

T

PP

i,

PR

T LRt s e e # = —rar m =

-

[-

|

The provision for a family of operating system kernels was exer-
cised by implementing a second version of the operating system kernel
supporting EPL. The second version implemented the run-time environment
required by the extensions to EPL discussed in Part IV of the final re-
port. This design used a more complex, symmetric protocol required to
detect faults at the processing elements.

The concept of information hiding represents one of several
software engineering principles that can applied to the design of the

operating system kernel. The application of such principles, with par-'

ticular emphasis on the use of data abstraction, is discussed in Part
YII of this report.

2.2 REFINED PROGRAMMING CONCEPTS

The programming language EPL was designed for experimentation with
software for distributed computer systems. This research used it to de-
fine the virtual machine that was implemented by the operating system
kernel and to write applications that would use the distributed computer
system. Initial experience using this language and the operating aystem
supporting it indicated the need for a number of refinements to the pro-
gramming concepts embodied in the language.

It was virtually impossible to design a general purpose scheduling
algorithm for the operating system Kernel that would anticipate the in-
dividual needs of applications. It became clear that a general approach
would be to place static scheduling decisions (determining the residence
of processes when they were created) in the domain of the .application
software rather than the operating aystem kernel, This observation
motivated a programming concept that would allow the processing element
to be specified when a process was created.

In attempting to implement published algorithms for decentralized
software, it also became clear that programming concepts were needed

that would allow a process to detect and respond to fallures associated

with other processes in an application, This led to further modifica-

(8)

-

[.h-

tion of the programming concepts dealing with process interactions.

Part IV of the final report describes the programming concepts pro-
posed to deal with these issues. It does so by proposing refinements to
the programming langauge EPL. These refinements are described in terms
of theair impact on the svntax of the language and their impact on the
virtual machine required to provide run-time support for programs writ-
ten in the language. The majority of these changes introduce program-
ming concepts that allow an operating syﬁten kernel to report failures
occurring during process interactions, Part IV of the final report
discusses the events that should be reported to an application program
as faults. It also discusses approaches to implementing théso program-
ming concepts in an operating system kernel,

These refinements were incorporated into the translator for EPL.
As noted earlier, a second implementation of the operating system kernel
was also generated to support programs written in this revised version
of EPL. These refinements resulted in the use of a more complex, sym-
metric protocol to coordinate instances of the operating system kernel,

2.3 PERFORMANCE EVALUATION

The prototype operating system kernels, and benchmark programs
(written in EPL) were used to explore performance issues., This explora-
tion addressed the nature of software for decentralized systems and how
that software would use specific hardware components, It tried to quan-
tify the features of software written to decentralize systems. It also
tried to assess how that software would use the hardware interconnection
structure linking the processing elements of a distributed computer.

Initially, measurements of the characteristics of Dbenchmark
software written in EPL were obtained., One measurement of particular
interest was the use of operating system functions by EPL programs,
These measurements were then used to interpret existing performance
models of specific hardware interconnection structures, This provided
insight into how particular 1nterconnoction‘atruotures could be expected

(9]

[

to behave when used to implement decentralized systems, Finally,
trace-driven simulaticn techniques were used to compare the behavior of
benchmark EPL programs executed by different distributed computer archi-
tectures. The results of these investigations are reported in Parts V-
VII of the final report.

The measurements indicate that the software structures used to de-
centralize systems will extensively use the concept of a software pro-
ceas to distribute the functions provided by software, The grain of
computation represented by a process can be expected to be considerably
smaller than that used in a conventional multiprogrammed operating sys-
tem. In addition, multiple processes will generally cooperate to pro-
vide a specific service, or access to an information structure, As a
result, the software can be expected to use the functions provided by
the operating system kernel very frequently. These observations are
diécussed in Part V of the report.

Architectures based on the use of a shared contention bus are like-
ly to be a preferred design for loosely coupled systems because og their
simplicity and regularity. For this reason, a major effort was made to
examine how software for a decentralized system would use such an inter-
connection structure. These results are discussed in Part VI of the re-
port. The characteristics of software used to decentralized aystems
were used to interpret a number of existing models of contention bus
performance. The small size of processes and the use of a communication
protocol by the operating system lead to a distribution of message
lengths that favors short messages., This particular distribution of
message lengths utilizes a small fraction of the bandwidth of a conten-
tion Dbus, This limitation suggests that systems be designed with ade-
quate bus bandwidth or that alternative algorithms for using the bus be
developed to improve bus utilization,

The hardware facility of this research program supports experimen-
tation with only loosely coupled systems, Trace=driven simulation tech-

niques were used to explore how software for decentralized aystems would

[10])

e e

S il - —

perform with system configurations other than those that could be con~
structed in the laboratory. The simulation was driven by a trace of
process interactions obtained by actually executing a benchmark EPL pro-
gram. This trace of events was combined with timing information to
determine how the same set of events would occur in different system ar-
chitectures., These results are preliminary, but they do suggest a
number of architectural issues that should be explored and a methodology
for doing so. This work is presented in section VII of the report,

.

Part II f
A Distributed Operating System Kernel !
by i

S. Fontaine

CONTENTS

INTRODUCTION . . .

BACKGROUND

2.0.1 Process Model 4

2.0.2 Communications 5

2.0.3 Synchronization 5

2.0.4 Nondeterminism 5§

2.1 LANGUAGES .

2.1.} Communicating Sequential Processes 6

2.1.2 Distributed Processes 7

213 EPL 9

22 SYSTEMS

2.2.1 STAROS 1]

2.2.2 ROSCOE 12

2.2.3 HXDP 12

2.3 SUMMARY . ;. . . .

ENVIRONMENT « + «

JTEPL . . .« v v e v e e e e

J2 HARDWARE« . .

SYSTEMSOFTWARE

4.1 EPL

42 KERNEL

4.3

4.2.1 System Information 22
4.2.1.1 Data Structures 23
4.2.1.2 Actor States 25
4.2.2 EPL Primitives 27
4.2.3 Vertical Communications 29
4.2.4 Horizontal Communications 29
4.2.5 Local Policies 31
4.2.6 Global Policies 31

JOSUBSYSTEM

4.3.1 Vertical Communications 33

15 f4
i
i
15]
|
r
20
’
21
2]
b
!
%
|
|
32

A

4.3.2 Horizontal Communications 33

KERNEL PERFORMANCEMEASUREMENTS ¢ . . 36
50 LOGICALCOMPLEXITY ¢ ¢ ¢ ¢t v v v st s s o 0 s .M
52 COMMUNICATIONS ¢ v v ¢ v v s s s o s o6 . 3 t

53 SUMMARY ¢ v vt v v v v e v e e e e e e

CONCLUSIONS & & v v i 4 e v e s s e e e s o o s & o « 44
6.1 SYSTEMSANDLANGUAGES ¢ . ¢« ¢ e s o o o
62 EXPERIENCE « ¢ 4 4 ¢ v v o v o o o s o o o & « 45
6.2.1 System Information 45
6.2.2 Memory Management 46

6.2.3 Hardware Transparency 47

6.2.4 EPL Simplicity 47

6.3 MEASUREMENTS ¢ ¢« ¢ 4 ¢ o o s o o a v s o . @

64 IMPROVEMENTS ¢ ¢ ¢ 4 & v o v o o o o ¢ o o o o« 48

6.4.1 Actor Naming 48

6.4.2 Global Scheduling Policy 48

\

6.5 SIMPLICITY ¢« « ¢ ¢ ¢ o« « « o W

6.6FURTHERW6RK
EPL TO KERNEL INFORMATION PASSING
ACTOR PROCESS DESCRIPTOR
MEMORY LAYOUT AND FILE DESCRIPTION .

FORMATS FOR KERNEL TO KERNEL MESSAGES

THE DISTRIBUTED PROCESS STATE TRANSITION GRAPH

BIBLIOGRAPHY

48

49

52

56

61

Sl b A 2 . =

e g o e e

Figure 1.

Figure 2,

Figure 3.

Figure 4,

Figuse §.

Figure 6.

Figure 7.

LIST OF FIGURES

SYSTEM DIAGRAM

READY LIST

LIST OF SENDERS WAITING FOR A RECEIVER

LIST OF UNSTARTED CHILDREN

STATE TRANSITION DIAGRAM: .,

MACHINE INSTRUCTION COUNTS FOR MAJOR

PRIMITIVES

1/O MEASUREMENTS .

:
!

¥
¢

~

P

|
X
|
|
|
|
|
|
|
|
|
i
i
I
I
i
I
|
!

CHAPTER |

INTRODUCTION

The primary focus of this investigation is the structure and organization of software to
control distributed systems based on loosely coupled, multiple processors. It is assumed that

there is no shared memory and that all processors are directly connected by one or more

communication links.

There is a consensus among researchers that the concept of a process can be applied to
decentralize and distribute software. Collections of processes cooperate to accomplish a task.

Primitives for interprocess synchronization and communication are essential to support process

cooperation.

A particular model of processes was chosen for further study. In this model, all processes
are concurrent and independent once created. Process communication and synchronization are

combined in a message passing construct. Messages are not automatically buffered.

The design and performance characteristics of the operating system kernel, are of special
interest. The kernel provides the virtual machine to support the process model and hardware
transparency to conceal the machine configuration from the high level processes. The
performance of such a system is a tradeoff between the amount of parallelism possible versus

the additional costs incurred by the distribution of processes.

There has been much discussion about exactly what constitutes a distributed system. The

definition used here, proposed by Enslow[ENSL78], is presented as a set of requirements which

a distributed system must satisfy. It should possess:

1. A multiplicity of general purpose resource components, including both physical and logical

resources, that can be assigned to specific tasks on a dynamic basis.

2. A physical distribution of these system components interacting through a communication

network.

3. A high level operating system that unifies and integrates the control of the distributed
components. Individual processors each have their own local operating system, and these

may be unique.

4. System transparency, permitting services to be requested by name only. The user shouid
be able to request an action by specifying what is to be done and not be required to

specify which physical or logical component is to provide the service.

5. Cooperative autonomy, in the operation and interaction of both physical and logical

reésources.

Several of these requirements are met by features of the language EPL [TAYL}[MAY79)
and by the system hardware. Others are met by the kernel. EPL is based on a process model
which supports dynamic software configuration and multiple process instances. These processes
cooperate to accomplish a single task. The EPL constructs for process cooperation hide the
location of processes so that they could be on a single node or distributed across many. The
hardware is a network of iaterconnected microprocessor/memory pairs. These points are
sufficient to fulfill the requircmcnts‘-“for multiplicity, distribution and cooperative autonomy at

both the logical and physical levels.

High level system coordiration could be implemented by either EPL programs, the
kernel, or a combination of the two. Presently there is no high levei operating system, but the
kernel does support system wide policies for the essential functions such as memory
management and scheduling. Later, some of these and other resource management facilities

will be included in an operating system written in EPL.

The fifth requirement of the definition, that services be requested by name only, is not

completely met by the system. EPL has no built in capability for referencing processes by
service provided. However, this capability could be added by including a special name manager
process which keeps lists of process names indexed by service (similar to the switchboard in
DEMOS [BASK77]). A user needing a particular service could get its name from the name
manager and then communicate directly with the service process. The kernel does provide

hardware transparency, which enables EPL processes to be ignorant of the actual physical

component providing a service.]

PR AP e A e R LA SN e

11 oo, oo e VTN

e

CHAPTER 1l

BACKGROUND

Before attempting to study the problems involved in building distributed systems, the
concepts underlying the problems and possible solutions were examined. Systems and languages
currently under development for distributed processing were studied and compared with one
another to find a consensus on the central issues and to view a spectrum of proposed solutions.
A language which addressed these issues and whose solutions are representative of preseat

rescarch, was chosen as the implementation language for the project.

Each of the systems and languages examined defines 2 process model as the basic unit of
software organization. The processes of a program cooperate to accomplish some task.
Mechanisms must be provided to allow the processes to synchronize and communicate with one
another. Because the processes are distributed and control is decentralized, the interactions
between processes are nondcterministic. The languages studied reflect this by allowing
nondeterminism in certain language features. The basic concepts in distributed processing
emphasised here are the use of a process model as the basic software unit, communication and

synchronization between processes, and nondeterminism allowed for process interactions.

2.0.1 Process Model

The use of many small processes as a building block to implement a program provides a
convient unit for the distribution of software. Since these processes may be on scparate
processors they are designed to be autonomous entities. Interactions between processes are well
defined and independent of the actual distribution. Between interactions, processes on separate
processors are capable of running in parallel. In summary, the process requires no centralized

control and is the software unit of distribution and parallelism.

-4

e e e il

e T oty AT AL K A TR I €

T, L

.5.

2.0.2 Communications

The ability to exchange information is essential for process cooperation. Because the run
time configuration of the software is variable, the actual configuration should be transparent to
process communication. Two methods in particular have been widely accepted: shared memory
and message passing. Shared memory requires specialized hardware, but message passing can be
implemented on shared memory machines as well as on machines with disjoint memory.
Message passing is therefore considered to be the more flexible of the two. The main role of
process communications is to provide configuration transparency for the passing of information

between processes.
2.0.3 Synchronization

Because processes are autonomous, and have no centralized control, some means must be
provided for process synchronization. For example, a process which is a device handler must
have control over when it accepts requests, prehaps how many it accepts, and from whom.
Also, a process using the service might need to wait for its completion before-cominuing. A
mechanism for synchronization is necessary to maintain a coherent timing structure between

the processes.
2.0.4 Nondeterminism

Since processcs exist on separate processors, cach with its own environment, the absolute
timing of a particular process cannot be predicted. If the timing of a single process cannot be
predicted, the neither can the timing of interactions between processes. For example, a process
which is to be used by several other processes cannot always guarantee beforehand the ordering
of requests. Because of this, decentralized and distributed software is inherently
nondeterministic and a distributed system langusr -ust be designed to tolerate some degree of

nondeterminism in the interactions of processes.

Each of the systems and languages described in the following paragraphs defines a process

model with communication and synchronization capabilities. These three seem to be the

central programming language concepts needed to distribute computations. In the following
discussion, particular emphasis is placed on differences in the solutions proposed to implement

these concepts.
2.1 LANGUAGES
2.1.1 Communicating Sequential Processes

The main objective of Communicating Sequential Processes (CSP) [HOAR78) is to define
a single, simple solution to both process communication and synchronization. The text of a
CSP program places an upper limit, at compile time, on the number of processes which can
exist at run time. Multiple instances of a process are treated as an array of processes: each
process being distinguished by its integer subscript. As in a standard programming language,
the maximum number of array clements is specified. Since the maximum number of multiple
instances is known and the single instances can be counted, the upper limit of processes for the
CSP program is known at compile time. Processes are created dynamically and terminate at the
completion of their code. There is o special kil or self destruct mechanism in CSP. A
new process, or child, is entered into the system at the request of an already existing process,
called the parent. With the parallel command, a parent can simultaneously create several
children which run concurrently. The parent process cannot continue execution until all of its
children have terminated, and children are in turn blocked until their children complete. CSP

processes are structured into a strict hierarchy based on parent-child relationships.

Processes communicate by sending messages. Only two processes can be involved in a
single communication and each must specify the other’s name. Names are assigned at compile
time. The process which is the source of the message executes an output command, and
the destination process has a corresponding input command. Messages are not
automatically buffered, which means that both processes must be prepared to handle the
communication at the time it occurs. To guarantee this, the process which becomes ready first

is blocked from running until the other is ready $00. The message is sent and then both

e v e e vt e e e e

-

continue. If buffering is needed, then it can be implemented by the user with a buffer process.

Synchronization between a parent and its children is implicit in the fact that the parent is
delayed until its children complete execution. The synchronization of processes at a single level
in the hierarchy is implicit in the communication construct. To avoid buffering of messages, the
two communicating processes are required to be at a particular point in their code. Therefore,
the two processes are synchronized at the time the communication occurs. This second
mechanism can be used as the basis for constructing other means of synchronization, such as

semaphores.

Nondeterminism is introduced and controlled in CSP through the use of guarded
commands. A guarded command has two parts: a guard, which is executed first, and a
command list. The command list is executed if and only if the execution of its associated guard
does not fail. An alternative command consists of a series of guarded commands from
which one of the command lists with a true guard is chosen for execution. If all of the guards
fail, the alternative command fails. A variation of this is the repetitive command which
repeats an alternative command until all guards are false. CSP allows input commands to appear
in a guard. An input command succeeds if the corresponding output command is executed,
and fails if the source named in the input command has terminated. A repetitive command
which includes as part of its guard a series of input commands is effectively receiving a message
from a set of possible senders. This would probably be implemented with a first come first
serve algorithm. If none of the named sources are prepared to send, but are still executing,

then the receiver process is delayed until one of the guards succeeds.

2.1.2 Distributed Processes

Distributed Processes (DP) [HANS78] is designed for real time applications on a
microprocessor network with distributed storage. The DP process model has been affected by
the special requirecments of real time applications. To handle the high speeds and demands

associated with real time, only one process is to exist on each processor. At compile time, the

et ouNS OIS SN ome NN U OB oun Sown e R Ay AR N A G EE e

fixed number of concurrent processes are created and at run time they are started

simultaneously. As in CSP, the processes can be structured in an array.

A process has two basic operations: an initial statement and processing of external
requests. These operations are interleaved starting with the initialization. When the initial
statement is either completed or waiting, the process is prepared to handle requests form other
processes. If the operation for a particular request has in turn been terminated or put into a
wait, then cither a preempted operation is continued (possibly initialization) or a new request is

accepted. If the initialization operation terminates then the process simply accepts requests.

The operations being requested are in the form of procedures. Procedures can contain
input/output parameters, local variables and statements. A process making a procedure call is
delayed until the operation is completed. This arrangement is similar to the interactions foﬁnd
in a hicrarchy of processes, however, since all DP processes are created and started running

simultaneously and never terminate, it cannot be described as a hierarchy.

The only communication between processes is in the form of procedure calls. Information
is passed by value to the procedure in the input parameters and returned by value in the output
parameters. The passing of values could be implemented by either message passing or shared

memory.

DP introduces and controls nondeterminism with two types of guarded statements: the
guarded command and the guarded region. These constructs are similar in intent to the CSP
guarded command described earlier, but function somewhat differently. CSP allows input
commands in guards. If the process named in the input command is still active, but no
message has arrived the guard neither succeeds nor fails and the process is delayed until the
decision can be made. However, a DP guard is & conditional exp-ression based only on the state

of the process's variables, which means that success or failure is immediately evident.

A DP guarded command consists of a ssries of guards each associated with a command

list (similar to the CSP alternative command). One of the command lists with a true guard is

sy s

i
i
i
i
i
i
i
i
I
I
I
l
l
!
!
l
!
I
l

executed. If no guards are true, the guarded command fails. A guarded region is structurally the
same as a guarded command, but if none of the guards is true, instead of the command failing,

the process is blocked until at least one guard has become true.

There are two methods for synchronization provided by DP. The first is implicit in thz
procedure call. When a process makes a procedure call, it is not allowed to continue execution
until the call is completed. This assures synchronization between the two processes. The more
general method is the guarded region described in the previous paragraphs. The guarded
region can be used to implement control structures, such as a semaphore, to synchronize

processes. The semaphore could in turn be used to implement more complex control

structures.

2.1.3 EPL

EPL (Experimental Programming Language) [TAYL][MAY79] is designed as a systems
language for distributed systems. It encourages a style of programming which uses many small
cooperating processes. The code for a process is declared as an act and an instance of that
act is called an actor . An act is designed to be re-entrant so that muitiple instances of an act
can share the same code. Actors are created dynamically and terminate when the end of the
code is reached. EPL allows actors to be created simultaneously. Unlike CSP and DP, there is

no compile time upper bound placed on the number of actors that can exist in the system.

An actor wishing to create a new actor, specifies the act and makes a CREATE call to the
kernel. The actor making the call, referred to as the parent, is given the new actor’s, or child’s,
name and is allowed to pass parameters to the child before the child begins execution. Beyond
this point, there is no special connection between parent and child actors. EPL does not

enforce any strict relationship, such as a hicrarchy, between actors.

Both process communication and synchronization are handled by the message passing

(SEND/RECEIVE) construct. Only two processes, a sender and a receiver, can be involved in

i
i
i
i
!
"

I
1
i
i
i
i
|
|
|
I
!
i
!
!
I
!
I
l
!

a communication. The sending actor must name the receiver, but EPL sllows the receiver to

either specify the sender by name, or to receive from any sender. Therefore, the message
passing can by completely deterministic, with both of the actors involved naming the other, or
nondeterministic, with the sender specifying the receiver but the receiver being capable of
accepting from any requesting sender. EPL does not include a special mechanism for receiving
from one of a set of specified senders. However, if necessary, the user can structure the process

interactions to simulate this capability.

Synchronization is handled by causing either the sender or receiver, whichever is prepared
for communication first, to wait until the other is ready. With this mechanism, it is also
unnecessary to buffer the message, since it can be moved directly from the sender’s space to
the receiver’s space. EPL provides three ways by which a process may discover another's
name: 1) a parent knows the name of its child process, 2) a child can receive a name as a
parameter from its parent during initialization, or 3) the name could be sent as part of a
message. A process does not automatically know its own name, but must discoyer it in one of

the methods mentioned.

2.2 SYSTEMS

Scveral systems currently under development were studied to better understand a kernel’s
characteristics and role within a distributed system. In each of the systems, the kernel acts as
the interface between the hardware and the supported language constructs. This enables the
high level language to remain ignorant of the underlying hardware. Because it is so dependent
on the hardware and the language, the kernel for a particular system can be characterized by

describing these two aspects.

The software in the systems examined are each in two sections: a kernel to provide low

level support for the distributed language primitives (process operations such as creation and

o bt { MARAAET W (1 PRI

-11-

communication) and a high level set of utilities (resource managers, debugging aids) written in
the distributed language. Several of these systems have been selected for further description to
represent & wide range of view points. Since the major concern of this project is software and
not hardware or system utilities, more emphasis is piaced on the programming language
concepts. As in the previous discussion of languages, the most important language constructs
are the process model definition,and interprocess communication, synchronization and

nondeterminism.
2.2.1 STAROS

STAROS [JONE79] is a software kernel and set of utilities for a system called Cm* with
approximately fifty tightly coupled processors and shared memory. The processors in Cm®
support capability checking, which is one of the major goals of STAROS. Another of the main
objectives of STAROS is to explore the feasibility of and potential benefits from their process

model which is termed a task force.

The processes in a task force are created dynamically and either terminate at the
completion of the code, cycle endlessly or are terminated by a kil command in another
process. Muitipie instances of a process can share data objects. STAROS supports two different
types of process relationships: dependent - in which the processes form dependency trees based
on a parent-child hierarchy, and independent. If the root process of a dependency tree is killed,

the tree dies as well.

In STAROS, process communication is based on message passing. Since the nodes in Cm®
share memory, the message passing amounts to copying from one memory location to another.
Messages are automatically buffered in an object called & mailbox so the sender is not
required to wait for the receiver to become ready to receive. The receiving process need not
wait for a sender cither. If the message is not found in the mailbox , the receiver has

explicit control of whether or not it waits.

e g -

ey

R R e

«12-

Synchronization is handled explicitly by a process. STAROS has an event primitive which

a process can use to wait for some condition to become true such as receipt of a message.

2.2.2 ROSCOE

ROSCOE [SOLO79) is a general purpose distributed computation resource implemented
on a loosely coupled network of five LSI 11s with no shared memory. Both a kernel and high
level utility processes are included. Communication is based on links which represent a one
way connection between two processes. The owner of the link is the receiver, and the sender is
called the holder of the link. A holder can duplicate the link or give it away to other processes
by passing its name as part of a message. An owner can request to receive from any one of a
set of its owned links. Buffers are used by the 1/O system to hold outgoing as well as incoming
messages which implies that the link holder is not required to wait for the owner to be ready to

receive.
2.2.3 HXDP

Like DP, HXDP [BOEB] is designed for support of rea! time applications. Built at the
Honcywell Systems and Research Center, it is based on loosely coupled memory processor pairs
and special message passing hardware. Communication between processes is implemented with
buffered message passing. All knowledge of the hardware configuration is within the kernel so
network shape and process location are transparent at the process level. Synchronization is

explicit and based on an event primitive.
2.3 SUMMARY

Current research in distributed processing has focused on several programming language
concepts as solutions to problems in distributing software. However, there is disagreement on

the specific implementation of these features.

Every language examined uses a process model as the basic software unit. Functionally, a

process is on the same level as a subroutine in a standard language. The process provides a

‘ . — | : o

h

13-

convient unit for software distribution, the decentralization of control and parallelism. Processes

behave as autonomous entities cooperating to accomplish some task.

In several of the systems processes are created dynamically, in others they are created at
compile time. The processes can last forever or terminate either as a result of reaching the end
of the code or by being the subject of a kil command. The maximum number of processes
to exist can be defined at compile time or be limited only by the available resources. The
relationship between processes can be an enforced hierarchy or dependent only on the

programmer. Processes interact in well defined ways.

For processes to cooperate effectively, some means of exchanging information must be
provided. The most important aspect of a communications method is that it be capabie of
concealing the hardware configuration. All of the proposed cominunication mechanisms
described can be implemented with a message passing scheme. Message passing is a powerful

and general tool for constructing interprocess communications.

Some of the communication constructs provide automatic buffering of messages and
others rely on the user to provide buffering if it is necessary for the application. If the scheme
uses unbuffered messages, then both processes must be prepared to communicate st the time
the message is passed which requires that the process ready first be blocked. With automatic

buffering, only the receiver needs to wait and the sender is not affected by the state of the

receiver

Researchers agree that some kind of synchronization between processes is necessary to
structure autonomous processes into a coherent program. Since control is decentralized, a

mechanism is required for process coordination.

Two distinct solutions for process synchronization can be recognized. One is based on an
event primitive, in which the process waits for some condition 10 become true, and the other is
an extension of the message passing concept. in which whatever process becomes prepared to

communicate first is blocked until the other is ready The method associated with message

passing can be used to implement the event primitive and provides a general and simple

solution for the exchange of timing information.

Each of the languages has a control structure intended to handle the nondeterminism
inherent in distributed systems. When several processes are capable of sending messages to the

same process, that process cannot necessarily predict which of the senders will be prepared to

communicate first.

Each language has a slightly different approach for dealing with this special case. Several
of the languages use guarded commands to block a process until at least one of a set of

conditions becomes true. These conditions could include input commands or event primitives

keyed 10 2 message arrival.

In the systems examined, the kernel acts as the interface between the high level program
language and the hardware. Its major function is to support the primitives of the high level
language in such a way as to provide hardware transparency. Because of its role as interface, the
kernel is extremely sensitive to both the hardware and language characteristics.” The hardware
for the systems described range from those with off the shelf hardware to special purpose
components, and shared memory to disjoint memory. The programming language concepts

used by these systems have been included in the language summary.

EPL was chosen for use in this project for several reasons. It is representative of the state
of the art in distributed systems languages. Its designers have attempted to keep the language
simple and elegant by using the most general solutions to the major issues. There is no
hierarchy of processes, both timing and data exchange are managed by the message passing
construct, and a nondeterministic control structure is included for process interactions. EPL's
structural simplicity and minimum number of primitives is reflected in the size and complexity
of the kernel which means less expense is involved in exploring alternative kernel designs. An

EPL compiler designed to be easily modified and compatible with the research facility was

available.

i

e T A

\

CHAPTER 111

ENVIRONMENT

The major purpose of an operating system kernel is to provide a virtual machine for the
high level programming fanguage. The kernel acts as the interface between the high level
language being supported and the system hardware. The characteristics of the hardware and
high level language, considered here as part of the kernel environment, have great influence on
the design and implementation of the kernel. Another important aspect of the environment is
the development tools. These tools, such as compilers and bardware facilities, bave had some

impact on kernel structure as well as on performance measurements.

First, an overview of EPL is given, similar to that in Chapter II. The features of EPL
actually supported by the kernel, called primitives, are described in some detail. Following this,
are the EPL run time requirements, such as memory specifications and the format for EPL to
kernel communication. The resecarch facilities, including the hardware and tools, are then

described.

3.1 EPL

EPL is based on a process model in which processes are created dynamically and
coordinated with two party, synchronous message passing. An EPL process is called an actor
and the code for an actor is called an act. When a new actor is created, the parent actor is
provided with the name of the child so that it can send initialization arguments. An actor

terminates at the completion of its act.

The message passing construct is used for passing both data and timing information. The
source actor is called the sender and the destination actor is called the receiver. Messages are
not automatically buffered within the kernel, so the member of the pair prepared to

communicate first must be blocked until the other is ready as well. The sender must know the

.18

-16-

name of the receiver, but the receiver can either name a specific sender or reccive from any
sender. Actors are assigned names at run time. There 2re three ways for an EPL actor to
discover the name of another actor: 1) a parent knows its child’s name, 2) names can be passed

to a child as initialization arguments, and 3) names can be included in a message.

The basic operations needed to support the EPL process model have been grouped into a
set of primitives implemented within the kernel. When an actor needs to execute a primitive
the kernel is called. Occasionally, primitives are referred to as kernel calls. A summary of the

EPL primitives follows.

1. INIT - This primitive is not actually called by the EPL code, but by the startup routine.
INIT takes care of whatever system initialization is necessary.

2. CREATE - CREATE is used by a parent actor to enter a new actor, or child, into the
system. The child is allocated space on a processor but is not started until the parent

executes the RUN primitive.

3. RUN - The RUN primitive allows a parent actor to pass initialization arguments to the
newly created child. The child is then added to the local set of active processes.

4. TERMINATE - An actor executes the TERMINATE primitive when it completes (he
code for jts act. o

5. SEND - A SEND call is made by an actor to transmit a message to another process. If
the named receiver is ready to communicate, the message is sent. Otherwise the sender

waits.

6. RECEIVE - An actor needing information to continue execution uses the RECEIVE
primitive. It can either specify a particular process as the message source, or receive from
any process. If no appropriate sender is ready, the receiver waits.

7. SYSTEM - SYSTEM is for miscellaneous local operations which are not included among
the major primitives. Currently, SYSTEM calls are provided to bandle reading from and
writing to terminals, and voluntary rescheduling of actors.

Memory is allocated to an actor at the time of its creation. The amount of memory
required by an actor is static and the memory assigned to an actor cannot be accessed by any
other actor. Every actor is allocated memory for two data structures: a process descriptor and a
data segment. The process descriptor is of constant size and is used by the kernel to define the

state of an actor and its relationship with other actors. Since the process descriptor is used by

the kernel, the details of its implementation are discussed in Chapter IV and appendix [2).

i

17-

Acts are designed to be reentrant so that multiple instances of an act can share the same
code. Each actor is given a data segment to hold local variables called its runtime stack. The

stack size required by each act is defined at compile time and is associated with the code for the

act.

Before calling on the kernel to execute a primitive, EPL places any information needed
into predetermined locations. Occasionally, EPL expects information to be returned from the
kernel following the execution of a primitive. The interface between an actor and the kernel is
dependent on the function being requested. Generally, the information is passed in the general

purpose registers.

When an actor is executing, a pointer to the top of its stack resides in general purpose
register RO and serves as a base register. Certain primitives require the kernel to reference a
location or set of contiguous locations within an actor's stack. For example, a SEND requires
the message to be placed on the actor’s stack. To send it the kernel must be told its starting
location. When a kernel call requiring information on the stack is .nade, an offset to the start
of the information is placed in another general purpose register (R1). If the stack reference can
be more than one word, the kernel is given its length. Information returned from the kernel to
the calling actor is placed in a general purpose register or directly onto the actor’s stack. The
following paragraphs describe the information layout for each primitive (for diagrams see

appendix [1)).

1. CREATE - The parent actor names the act which the child js to execute. The act’s name,
defined as the start address of its code, is passed to the kernel in R1. The two words
before the start of the act contain the stack size (in bytes).required for an instance of the
act and the number of arguments (each one word) it expects to receive. After completion

of the call, EPL expects the name of the child to be in R1.

2. RUN - An offset from the top of the stack to the start of the space to be referenced is in

—— a4

e

s e i

1
!
i
|
!
i
|
l
I
I
I
I
|
I
I
I
I
I
I

-18-

R}. The first word in the stack space is the child’s name. Following this, nreI the
initialization arguments. The number of arguments to be sent is in the word before the
start of the act and can be zero. After completion of the call, EPL expects the

initialization arguments to be at the top of the child's stack.

3. SEND - An offset from the top of the stack to the start of the space to be referenced is in
R1. The first word of the space is the name of the receiver. Following this is the message
to be sent. The length of the message (in words) plus one word for the sender’s name is

known by the receiver.

4, RECEIVE - An offset from the top of the stack to the start of the space to be referenced
is in R1. The first word in the space contains the senders name. If the sender’s name is
zero, it is interpreted as a RECEIVE from anyone. The following locations are to be used
as a buffer to hold the message sent. The length of the message expected (in words) plus
one word for the sender’s name is placed in R2. Following a RECEIVE from anyone,
EPL expects the name of the sender chosen by the kernel to be stored in the first word of

the space referenced.

5. SYSTEM - An offset from the top of the stack to the start of the space to be referenced is
in R1. The first word is the code for the function to be executed. The second is an
optional argument. In the current version, the argument is used to hold a character for

printing or a character read from the terminal.

Except when calling the kernel or the software multiplication/division routines (replaced

by hardware), EPL does not use the system stack.

When creating a new actor, the parent names the ACT to be executed. Because creates
can occur across machines, the ACT name must be unique and known system wide. In the
present EPL, an ACT is referred to by its start address. Since this naming scheme is to be used
across machines, all machines must have the save ACT loaded at the same location (see

appendix[3] for the memory layout).

-

rn nan o A et T e e o

PPN

i
'
|
g
§
|
|
l‘

-19-

3.2 HARDWARE

The processors are DEC LSI 11s equipped with the standard LSI 11 instruction set. There

is no real time clock. Each processor has 28k bytes of memory, none of which is shared.

(BALKS0]

The processors are directly connected by means of DEC DLV11J serial links. These links
arc asynchronous and bidirectional. They are capable of detecting certain errors on data

received: framing, parity, and overwrite. Some alternative configurations, such as a ring and a

doubly linked ring, are under consideration.

A DEC 11/60 running UNIX™ was used for preliminary testing of the kernel, down line

loading to the LSI 11s, and general purpose tools such as the C compiler, editors etc. It

was also used to collect and evaluate data on system performance.

CHAPTER 1V

SYSTEM SOFTWARE

The system software is organized into three levels. The division and classification of the
software is based on its function and the amount of hardware knowledge required by the
function. The lower the level, the more hardware dependent are the functions performed.
Information flows are defined both between adjacent levels and between units within a single

level. Interlevel communication is described as being vertical and intralevel communication is

called horizontal.

At the top level are the EPL actors. They see a single virtual machine provided by the
second level, or kernel. A copy of the kernel resides on every processor. Each kernel is
distinguished by a unique ID number. The kernel is ignorant of the link hardware details and it
makes no distinction between requests from local and nonlocal actors. Knowledge of the link
hardware and actor distribution has been isolated in the third level, called the 1/O subsystem.

The 1/0O subsystem is responsible for routing kernel requests to the correct processor.

The communication paths between these levels and within them is shown in figure [1].
Each of the vertical arrows and the horizontal arrow between IfO subsystems represent an
actual information path. The horizontal arrows between kernels and EPL actors represent s
virtual communication link. Each of the virtual paths actually follows the vertical paths to the
1/O subsystem, across machines on the I/O subsystem horizontal paths, and back up again
through the different levels. The role played by each of the levels is described in the following
paragraphs. Next, the design and implementation details and communication protocols of the
kernel and 1/O subsystem are discussed. The memory layout and description of source code

files are in appendix [3].

.20-

N . E e e e L L

H v ' v H v { ! v {
{ kernel | kernel | kernel | ... | kernel |
' <=~=> <e==> Cmm=> €Ce~=> H
: : 1] ‘) []

[} [] [
e LT e . T -
H v ! v H v H ! v H
! 1/0 ! 1/0 V170 H { 1/0 H
H Cmmm> Cmmm> Cmm=> €=~ H
[] (]]] [[]
[] 1 []] 1] [}

machine machine
1 n

Figure 1. SYSTEM DIAGRAM

4.1 EPL

A high level description of EPL is in Chapter II and 2 more detailed one, including the
EPL 1o kernel interface, is in Chapter I1l. EPL actors communicate vertically with the kernel
and horizonally among themselves. The operations required to support the process model and
process interactions have been grouped into a set of primitives which are implemented within
the kernel. These primitives include such functions as actor creation, termination, and
communication. Before making a kernel call, the EPL actor places information needed by the
kernel in predefined places (the general purpose registers and the actor’s data segment) and

then executes a trap into the kernel.

The horizontal communications are handled' by a synchronous message passing construct
called SEND/RECEIVE. The mechanics for this construct arc actually shared between the

kernel and 1/O subsystem, but logically it can be considered a direct connection between actors.
4.2 KERNEL

The kernel is responsible for providing the virtual machine required by the EPL actors.
To do this, the kernel must fill three roles: 1) the interface between EPL and the hardware, 2)

low level resource manager, and 3) actor manager. All of the hardware dependent functions

e e e Sl e -

needed to support the top level EPL program are implemented within the kernel. These
functions, included among the primitives, are described in Chapter III. The low level resource
management implements both local and global policies for memory management and =~tor
scheduling. Actor management primarily involves maintaining all actors in a valid state, and is

not entirely scparate from the two other roles.

The overall design philosophy was to keep the kernel as simple as possible. It was decided
to optimize the kernel for logical simplicity, occasionally at the expense of efficiency. For
example, the kernel could handle references to local actors more efficiently as a special case and
pass nonlocal actor references to the 1/O subsystem for routing to other processors. However,
it is logically simpler to assign all routing of actor references to the 1/O subsystem, including
local references. Because of this decision, the kernel is able to handle all actor references in the
same way and is ignorant of the actual location of a particular actor. Another concern was to
keep dynamic memory requirements simple. This way, the problems associated with memory
allocation, and complex schemes to solve them, could be avoided. Because of ghis, memory is

not necessarily used efficiently.

4.2.1 System Information

Some of the most crucial issues in the design of & kernel revolve around the maintenance
of system information. The biggest question is whether or not to replicate nonlocal information
on each processor. It is possible that a system could use such information to simplify fault
recovery as well as to reduce processor to processor enquiries. However, replicating
information within the system introduces the problems associated with the maintainence of
consistency in a replicated data base. Access to the data base tr;ust be protected to guarantee its
integrity. It has been shown [FONT80] that replication of system information for an EPL kernel
is not practical. Information about actors (contsined in process descriptors) has been partitioned
so that cach kerne! knows only about resident actors and must pass enquiries to other kernels

for information about nonlocal actors. The kernel design relies on local information, enquiries,

-23-

and estimation instead of replicated information.

4.2.1.1 Data Structures

As explained in Chapter IlI, each actor is dynamically allocated memory for a run time
stack (or data segment) and a process descriptor. The stack is controlied by the actor, but the
process descriptor is maintained by the kernel. The process descriptor is used by the kernel to
maintain an actor’s state and its relationships with other actors, to pass information beiween

levels and to save context when an actor is preempted.

Each EPL actor is assigned a unique name at runtime. EPL actors refer to one another by
name and, on a kernel call, any actors pertinent to the execution of the primitive are specified
by name. The kernel must take the name and use it to access any information about the actor it
needs to complete the call. To simplify access to the information, it is placed in the calling
actor’s process descriptor. The name of an actor is defined as the start address of its process
descriptor. The ID of the local kernel is placed in the low three bits of the name. Process
descriptors are allocated at addresses where the low three bits are zero so thai no addressing

information is lost when the ID is added.

A process descriptor is sixteen words long. The first seven locations are used to save the
values of the five general purpose registers, the program counter and the processor status
register on a kernel call or interrupt. Several slots are provided for starting linked lists of
process descriptors, and one slot for linking the process descriptor into a list. The status word
holds the current state of the actor. Several other words are used to pass information to and

from the 1/O subsystem. The process descriptor is described in more detail in appendix [2).

The kernel maintains several queues of actors. The local set of all actors ready to run is
contained in a structure called the ready list which is implemented as a circular linked list of
process descriptors (figure [2]). This list is used by the kernel's low level scheduling and

dispatching routines. The variable ready points to the last process descriptor in the queue. The

top of the queue is pointed to by the chain link of the last process descriptor. The process

7

- ——n - — - ——— - - - - - o - -

-24-
ready --- last first
[]
[}
S A b eeed U a7 R !
! I \ ! H ! H H H H { $
; (O : \ (S H { L H H L {
! { { chain {___|I ! chain i__ | | chain i ___I { chain | _
! L H e H R e ! e }
H
H
H
H
‘

- o e ow oo wf

- = P o m e TR wn T e S e W e P e S W G M G G e e R G S em S e e G e b G e SR G e G G e G e

Figure 2. READY LIST

descriptor of the actor currently running is kept separately.

When an actor executes a RECEIVE, it is the kernel's responsibility to discover if the
sender is prepared to send. If the RECEIVE is a RECEIVE from anyone, the kernel has no
sender name to use in checking the sender’s state. For this reason, the kernel maintains a
queue for each actor, of actors ready to send it a message (figure [3]). If an actor wishes to ;
SEND a message but the receiver is not yet prepared, the kernel links the sender’s process ;
descriptor to the receiver's. If another actor wishes to SEND to that same tecei;ler, its process |

descriptor is added at the tail of the queue

receiver waiting senders

~——>i

R -—— - - - - - - - - - - - - - -

-~ = Bw v w-
- e we oo ee
- - - ma -
— ee e e

- -

-—— -

[—

- - w-
-— e m-
- - w-
(e —
- e
- e o=
- - e

- - - - - - - -

Figure 3. LIST OF SENDERS WAITING FOR A RECEIVER

When an actor exccutes a RECEIVE, its connected queue is checked for either the named

actor, or any actor.

The distribution of actors across processors complicates this scheme. The sender may be

on another processor and not have a local process descriptor which the kernel can add to the

B N s

[

.25.

linked list. One of the design decisions was to conceal the actual location of actors from the
kernel so that local and nonlocal actors could be treated the same way. In such cases, a dummy
process descriptor with the same size and structure as a regular one, is allocated locally to
represent the nonlocal actor. Any information about the actor needed to process the request is

placed in the dummy process descriptor.

Another list is needed to save the number of arguments expected by children created but
not yet started running. EPL allows a parent to create several actors, save their names on the
stack, and then start them running. This is so that the child actors can be passed one another’s
names as part of initialization. At the time a child is started running, the kernel must have
access 10 the number of arguments expected by the child. Because more than one count may
need to be stored at a time, a list is required. The information is placed in the child process
descriptors which are then connected into a linked list attached to the parent's process

descriptor (figure [4]). Any nonlocal children are allocated a dummy process descriptor.

parent childxren
oot S G S T {
! I ! Voo H . | {
. I v Voo . I !
{ child- 1--- { chain {--- { chain {--- { ni1 !
! 1ist | TR H P H g !
fomem e :

—— -
-— -

- = -
- e m-
-— - o
— - -
- ®a -
- on o

e - - ——-— - - - - - -

Figure 4. LIST OF UNSTARTED CHILDREN

4.2.1.2 Actor States

The behavior of an actor can be described by a finite state machine. The kernel has
exclusive access to the actor states and its functions define all of the operations possible on a
state. The kernel can be thought of as the actor state data abstraction. There are five basic

states which a process can be in:

e N d

1. NEW - the process has been created but has not yet been enabled to run.

2. RDY - the process is in the local set of possibly running processe, (i.c., it is on the ready
hist).

3. END - the process has completed execution and been terminated.

4. SND - the process has been blocked because the actor to which it wished to send is not
yet prepared to accept the message.

S. RCV - the process has been blocked because no appropriate sender is ready to
communicate with it.

The transitions between these states are shown in figure (5).

create
NEW
run

receive

terminate

P L e I I
]
®
o]
(o

END
Figure 5. STATE TRANSITION DIAGRAM:

KERNEL CALLS ARE IN SMALL LETTERS, STATES IN CAPITOLS

The basic statc transition diagram (used in a single processor version of the kernel) is
complicated by the distribution of the actors. Additional states have been included to handle
certain intermediate conditions, such as when the actor is blocked while its data segment is
buffering information to be sent (parameters for a new process, or a message being sent as part
of an EPL communication) or while the actor is waiting for an acknowledgement (a receiver
has responded to a sender but the message has not yet arrived). The process state definitions

for the distributed kernel are:

1. BLK - the process is waiting to receive a message and a suitable sender process has
not yet enquired if the process is prepared to receive

m

.21

2. CRT - the process is creating a child process and has not yet received the name of the
child process

3 END - the process has terminated (the process may be referred to by other processes)

4. ENQ - the process has sent a message 1o enquire if the receiver process 15 prepared to
accept a message

5. INT - the process 1s transmitting parameters 10 a child process

6. NEW - the process has been created (1.c. it has a name), but psrameters have not yet
been transmitted to it by 1ts parent process

7. RCV - the process has acknowledged a sender process and is waiting to receive the
text of the message

8. RDY - the process is logically ready 1v execute, but has not been assigned the CPU
RUN - the process is logically ready to execute and has been assigned the CPU

10. XMT - the process s transmitting a message to 8 recetver process that is prepared to
accept the message

A transition graph defining the possible interactions between these states is shown in
appendix [5]. The most important point is the increase in complexity from the single processor

version to the distnbuted version.
4.2.2 EPL Primutives

INIT - This pnmitive is not actually called by the EPL code. but by the startup routine.
INIT takes care of whatever system initialization is necessary The memory management
abstraction sets up pointers into free memory A free memory estimate is made for each
processor in the system based on the amount available locally. For the 1/O subsystem, waiting
qucues are sct up, the data structures used to refer to the devices are initialized, and the
devices are placed in a known state. An idle process is created on each processor to be run
whenever the Jocal ready list becomes empty. If the processor’s 1.D. is zero, the first EPL actor

is also created and started running.

CREATE - A CREATE call is made by a parent actor to enter a new actor, or child, into
the system. The processor with the highest local free space estimate is chosen as the site for
the child. A CREATE request, containing the parent's name and the child's act, is passed to
the chosen processor where a process descriptor and runtime stack are allocated for the child.

The process descriptor is initialized as required, the child's state is set to NEW, and, if the child

.28-

15 nonlocal, an acknowledgement with the child’s name and argument count is returned. Either
s dummy process descnptor containing the returned information or the actual child process
descriptor (depending on whether or not the child and parent are on the same processor) is

hinked to the parent’s process descnptor for later reference.

RUN - The RUN pnmitive is called by a parent actor to pass parameters t0 the newly
created child The number of parameters the child expects is retrieved and used 10 insure that
no extra arguments are sent A run request consisting of the arguments and the child's name is
sent to the child’s processor After the request is received, the child’s state is changed to RDY

and the child 13 scheduled on the local) ready list.

TERMINATE - This kernel call 1s made by an actor as it completes the code for its act.
The actor 1s simply removed from the local ready list and its state changed to END. Neither

the actor’s process descriptor nor its stack space is reused

SEND - A SEND call 15 made by an actor to transmit a message to another process. The
sender is put into SND state and removed from the local ready list. The sender's kernel then
passes an enquiry to the receiver's kernel indicating that it is prepared to send On the
receiver’s processor, the sender’s process descriptor, or a dummy process descriptor if it is
nonlocal, 1s added o a linked lhist attached to the receiver's process descriptor for later
reference When the receiver 1s ready to accept the message. an acknowledgement containing
the message length 1s passed back The message is then sent and the sending actor returned to

the ready hist

RECEIVE An actor needing tnformation to continue execution makes a RECEIVE
kernel cali The process descnptors (or dummy process descriptors) for actors prepared to send
to this receiver will be 1n a linked hst attached to the receiver's process descriptor. If the
receiver 1s able to accept a message from any source. then one of the possibie senders is
removed from the list If the receiver has specified a particular sender,then the list is scanned

and if @ match is found, 1t 1s taken from the list In either case, the receiver passes a message

j—‘—‘

.
P
1
H
I

request, containing the message size, to the sender. The sender responds by transmitting the

message. If a sender is not available, the receiver is placed in BLK state.

SYSTEM - SYSTEM is for miscellaneous operations which are not included among the
major primitives. Currently, SYSTEM calls are provided to handle reading from and writing to

terminals, and voluntary actor preemption.

4.2.3 Vertical Communications

The kernel can communicate vertically with the EPL actors and with the I/O subsystem.

Information . passed between the actors and the kernel via the general purpose registers and

the actor's run time stack. EPL actors use a trap to enter the kernel.

The kernel calls the 1/O subsystem when it needs to communicate with another kernel to
complete an EPL kernel call. All of the information necessary for the I/O subsystem to format

and pass the message is placed in the process descriptor of the EPL actor.

When the 1/O subsystem receives a message from another processor, it either puts the
information received into a dummy process descriptor or directly into an actor’s stack. In either

case, the kernel is called to take whatever actions may be necessary.

4.2.4 Horizontal Communications

The kernel may need to request cither information, service or both from another kernel
in order to complete a primitive. For example, Kernel A may have chosen kernel B's processor
as the site for a new actor. Kernel A must pass a request for the creation of the child to kernel

B, and kernel B must return the name of the child.

The kernel to kernel proiocol is dependent on the primitive being executed. The initial

protocol design was kept as simple as possible. Below is a graph representation [Stutzman) and

verbal explanation of the protocol for each primitive involving kernel to kernel communication.

- T (NS

EQUESTING PROCESSOR OTHER PROCESSOR
CREATE
H act
T i e kL Ry P >
H
D e R ikl E PP P v

H child’s name

CREATE: A create request is passed form the parent’s kernel to the kernel on which the new
actor has been scheduled. The child’s kernel returns an acknowledgement, containing the new
actor’s name, as well as the number of parameters it expects.

RUN: A request to run a newly created actor, along with its initialization parameters are passed
from the parent's kernel to the child's. There is no acknowledgement.

SEND receiver
! enquiry
e itk s >
message length H
D R e L v
: message
R e et e e >
:
v

SEND: The sender's kernel passes an enquiry to the receiver’s kernel asking if the receiver is
prepared to receive. When the receiver is ready to receive from that sender. its kernel sends an

acknowledgement containing the message length to the sender’s kernel. The sender’s message
is then passed to the receiver.

-31-
RECEIVE sender
: message length
R e i et >
message } 1
D R i el e it R el v

RECYV: This protocol is a subset of the SEND protocol, starting with the acknowledgement of
the enquiry by the receiver's kernel and ending with the arrival of the message.

The message formats are in appendix [4]. The memory layout for the kernel and the

contents of different files is in appendix [3].

4.2.5 Local Policies

Multi-tasking is done from the ready list with a round robin algorithm. The running actor

¥

is preempted when it makes a kernel call if there is a ready actor to take its place. There is no

s

protection against an actor written without kernel calls hogging the processor forever once it

starts running. However, for well intentioned users there is a voluntary preemption call.

In all of the kernel functions, speciaf concern was given to keeping memory management !
as simple as possible. The kernel allocates space dynamically in two ways: 1) sixteen word 4
pieces for use as process descriptors 2) variable length pieces for use as EPL run time stacks.
Once space is allocated for an actor, it is never dealiocated. Dummy process descriptors, which

are used by the kernel to hold information pertaining to nonlocal actors, can be reused.
4.2.6 Global Policies

The high level scheduler is designed to maximize parallelism of actors. It was decided)
that onc way to do this was to assure a distribution of actors by allocating children nonlocally.
Additional requirements were to keep the algorithm simple, avoid the use of polling, and

maintain an equal load balance (if possible).

i'
,

-32.

When each kernel is initialized, it sets up a local estimate of free space for every kernel in
the system. Since the code for every kernel is almost identical, each assumes that all other
processors have the same amount of free space as it does. On a CREATE call, the processor
with the highest estimate is chosen as the location for the new actor. The local free space
estimate for the chosen processor and that node’s own local estimate are updated, but not any
of the other processor’s estimates. This means that the only correct free space estimate for a
processor will be on that node and all others are too high. The net effect is a preference for

placing children nonlocally, which will tend to distribute actors to all processors.

4.3 1/0 SUBSYSTEM

The 1/O subsystem coatains the link protocol and link dependent software. The link
software was isolated for several reasons. It is shared by many other modules. Most of the
kernel routines which implement the EPL primitives require inter-kernel communication and
need to use the inter-processor links. The separation makes the kernel independent of the
interconnection protocol and iardware. This makes modifications in the fntcrconncction

schemes much easier.

The 1/O subsystem is responsible for routing all kernel to kernel communications. For
simplicity, the kernel is designed to be ignorant of the actor locations. It knows only that the
actor making the kernel call is local. If an actor other than the one making the call needs to be
referenced or manipulated then the kernel simply passes a request to the I/O subsystem to
communicate with the actor’s kernel. In fact, it could actually be requesting communication
with itself. For example, = 'or A wants to SEND to actor B. A’s kernel must ask B’s kernel
if actor B is ready to receive a . 1ge. Kernel A does not check if kernel B is itself but just
asks the 1/O subsystem to communicate with kernel B. If kernc; B is indeed kernel A, the /0
subsystem sets up the request in the same manner as those received from nonlocal kernels and

makes the appropriate kernel call.

- N ’ w . w
l ’33‘

The 1/O subsystem is divided into three major sections. There is &8 high level transmitter
which handles nearly all of the link level protoco! and is independent of the Jink hardware. The

link hardware information is in the low level transmitter and receiver which manage the actual

sending and receiving of information. The receiving processor’s part in the link protocol is

handled by the low level receiver.
4.3.1 Vertical Communications

The 1/O subsystem communicates vertically with the kernel. When the kernel requires the «
services of the I/O subsystem, it places all the information necessary for the call into the
process descriptor of the actor involved and then calls the 1/O subsystem. A kernel to kernel
message received by the 1/O subsystem is placed in either a dummy process descriptor, or
directly into an actor’s stack. The kernel is then called to perform any manipulation required for

that type of message.
4.3.2 Horizomal Communications

The lowlevel link protoco! is based on the concept of a connection. A’ requ’ést for a
connection is passed from the I/O subsystem wishing to communicate to the I/O subsystem
with which a connection is desired. The I/O subsystem initiating the communications then
waits until the other 1/O subsystem sends an acknowledgement. Once a connection is made, the
processors are dedicaled to the information exchange and remain connected until all the

information has been passed.

Because the basic protocol requires the initiating I/O subsystem to wait for an

acknowledgement from the cooperating I/O subsystem, it is possible for deadlocks to occur.
Another problem is that it is possible for each of two 1/O subsystems to simultaneously attempt
to initiate a connection with the other. To prevent deadlocks and arbitrate contention, the
processors are arranged in a hierarchy according to their ID numbers. Lower numbers have

higher priority. As with any hierarchical scheme, there is the danger of starving the low

priority processors. Further work needs to be done to find out how costly the problem is, and

o pa e

PP S

-34-

what are the solutions. One possibility would be to distribute the actors in a way that minimizes

contention.

The basic connection protocol has been extended to work with the hierarchy of 1/O
subsystems. A request for a connection is passed from the 1/O subsystem initiating the
communications to the I/O subsystem it wishes to communicate with. The initiating 1/O
subsystem then waits for an acknowledgement before proceeding. If it is a positive
acknowledgement the message is sent. If it is a negative acknowledgement, indicating that the
cooperating 1/0 subsystem is trying to initiate communications on the same link, its handling
depends on the relative positions of the two I/O subsystems in the hierarchy. The kernel with
the lower priority relinquishes the line, sends a positive acknowledgement and then waits to

receive the message. It tries again later to make the connection.

While a kernel is attempting to make a connection without priority, it must listen to 1/O
subsystems above it in the hierarchy in order to prevent deadlocking. If one of these wishes to
make a connection, the low priority I/O subsystem sends a positive acknowledgement and
receives the message before returning to its own communication. Once it has mu s the

connection, it no longer listens to the other 1/O subsystems.

When a communication is received, it is handled immediately by the kernel. It is quic.;
possible that the handling of the message will involve communications with another kernal.
However, the message in question may have been rectived while the kernel was attempting a
transmission. A flag is used to prevent nesting of transmissions, and requests made to the

transmitter while it is busy are placed on a queue. The transmitter is not exited until the queue

is empty.

The actual transmission and receipt of information across the links is done using wait loop
1/0. The request for a connection can be detected cither with an interrupt or by testing the
ready bit of the link device. An interrupt can occur only when either an EPL actor or the idle

actor has control of the processor. Execution within the kernel and 1/O subsystem must be

<1

protected from interrupts.

Wait loop 1/O is being used as the basic method of information passing instead of
interrupt 1/O for several reasons. It was calculated that with five fully connected processors in
the system, interruputs could occur as frequently as every six instructions. There is no special
purpose hardware in the system to manage the links, and this rate is too fast for the processor
to handle. The use of wait loop 1/O also simplifies the taking of performance mecasurements.

The researcher has precise control over how and when inter-processor communication will

occur, enabling him/her to more easily design experiments and measure its preformance.

PRSIy S

CHAPTER V

KERNEL PERFORMANCE MEASUREMENTS

The performance of a distributed system is a tradeoff between the benefits of increased
parallelism within the distributed software and the costs incurred by the increased complexity of
the kernel and the increased communications overhead. The amount of parallelism possible is
influenced by many factors, such as the design of the distributed software, the local and global
scheduling policies, and the availability of resources. Because the focus of this project is on the
kernel, and not on scheduling policies or performanc;.e of EPL programs, only the additional
costs due to distribution are to be examined. A later project will present a more compiete

performance analysis.

The most important factors to be considered in estimating the additional costs due to
distribution are the increases in logical complexity and communications overhead. These costs
are contained within the kernel and 1/O subsystem. An estimate of the increase has been
obtained through a comparison of the distributed kernel with an EPL kernel designed for a
single processor (both writtenin C). The increase in logical complexity is demonstrated by
comparing the two versions on the number of actor states and transitions possible and on the
number of kernel entry points. The increased costs in the kernel functions were estimated by
counting the number of machine instructions needed to implement the two versions of the
kernel. The increased communications costs were estimated by observing the frequency of
interprocessor communication, contention and preemption, and by computing the average
connection waits. The wait times for setting up a connection and actually passing the message
were measured by counting the number of executions of the 1/O wait loop on the sending side.

All measurements were taken with the test programs on three processors (appendix [5]).

-36-

- - -

-37-

5.1 LOGICAL COMPLEXITY

The logical complexity of a particular kernel implementation is dependent on its design.
This makes a precise measurement of the necessary increases in complexity from the single
processor kernel to the distributed kernel impossible. However, the general trend can be shown

by a comparison of the two kernel implementations.

Any increase in logical complexity of the kernel can cause a corresponding increase in the
implementation costs. The functions provided by the kernel are basic. and the costs of
implementing them are not exorbitant. However, any increase in the implementation costs of
the primitives can have a substantial effect on system performance because of the frequency of
their occurrence. Appendix [7] shows a histogram of the number of actor instructicns executed
between primitives. In general, the observed lengths of instruction sequences between kernel

calls were very short and exhibited little variation.

There is an increase in logical complexity which is reflected in actor management and in
the implementation of the EPL primitives. The state diagram for an EPL actor in the single
processor version (figure [S]) has six states and five transitions. A similar graph for the
distributed kernel (appendix [5]) has twelve states and twenty transitions. Several of these
differences are due to the partitioning of the primitives into separate functions which may be
executed on different machines. For example, the CREATE primitive is divided into three
parts: 1) the parent’s kernel schedules the new actor on a processor, 2) that processor (possibly
different than the parent’s) allocates resources to the child and returns its name, 3) the parent's
kernel receives the name and puts it in the parent’s data segment. Most of the new states and
transitions are necessary to handle the intermediate states which happen when the local part of
8 primitive is completed but the nonlocal part is not. In the above example, the parent cannot
be allowed to run until the child’s name has been returned and so between steps | and 3 the

parent is placed in the intermediate state CRT. The remainder of the differences are caused by

the use of the actor's data segment to buffcr arguments to be transmitted. The SEND and RUN

L2

e

Ane

J O e Y

-38.

primitives transmit information directly from the calling actor’s data segment. During the time
lapse between the kernel call and the actual data transmission, the actor cannot be run because

it may alicr the data.

The kernel for the single processor has only six entry points corresponding to the six
primitives. The distributed version has an additional six which are entered from the 1/O
subsystem. The additional entry points in the distributed kernel are simply to catch responses
from the nonlocal parts of a primitive. The original CREATE has essentially three entry points:
the first (called create) is entered from the parent actor, the second and third (create request

and child name) are entered from the I/O subsystem.

The costs of the major primitives have been estimated as the average number of machine
instructions executed by the kernel implementation. Figure [6] shows the instruction counts for
both the single processor kernel and the multiprocessor kernel. The count for the single
processor kernel is an estimate obtained by studying the assembled code. It does not include
register saving or context switching. The multiprocessor counts are a summation of the average
number of instructions executed by each kernel function participating in the primitive. These
functions are noi necessarily executed by the same kernel, but may be done by kernel's on
other processors. The counts were obtained at runtime by incrementing a counter between
each machine instruction. All instructions not part of the EPL actor were considered part of the
primitive. These include the saving and restoring of rcgisters on subroutine calls, support

functions, and coniext switching.

single processor distributed
CREATE : 33 H 348 H
e - R L L E e P H
RUN : 39 : 267 H
L L PSR R e i '
SEND H 40 ! 212 '
R R LSRR T -l
RECEIVE : 50 ' 253 !

" o e e = e e N S e e e e e e

Figure 6. MACHINE INSTRUCTION COUNTS FOR MAJOR PRIMITIVES

-390.

As can be seen from figure [6], the differences between the counts for the two kernels are
substantial. At least part of the increase can be accounted for by the fact that the distributed
kernel was designed for logical simplicity and not for efficiency. For example, the distributed
kernel made much greater use of subroutines than the single processor version. No attempt has
been made to estimate how much of the increase is due to the different design philosophies.

The counts for the multiprocessor kernel include context switching and register saving but the

single processor counts do not.

5.2 COMMUNICATIONS

The increased costs of communications can be seen on both the logical and physical
levels. In the single processor kernel, the only horizontal communication is between EPL
processes and it is implemented as copying within a local store. The only vertical
communication is between EPL actors and the kernel, and it is handled the same way as in the
distributed kernel. The distributed kernel must also support vertical communications between
the kernel and 1/0O subsystem. Horizontal communication can occur between processors and it

is sent across serial links. Transmission across serial links is clearly more expensive than local

memory references.

The communication costs for a particular program are dependent on the amount of
communication required and the expense of that communication. EPL processes tend to
exchange many short messages and, as mentioned in the previous paragraph, make many
kernel calls. In the distributed kernel, both of these may involve interprocessor communication.
The communicating actors may not reside on the same processor and the primitive requested in
a kernel call may require cooperation with another kernel. The amount of communication
which takes place across the links is dependent on the global scheduling policy and it can be
high. Even local communications are more expensive on the multiprocessor kernel. The

kernel does not distinguish between local and nonlocal communications. This means that the

distributed kernel can not take some of the short cuts available to the single processor kernel.

The expensc of nonlocal communication depends on the amount of data passed, the cost
of actually passing data on the link, and the cost of the 1/O subsystem protocol. On the
average, interprocessor messages are short. Kernel to kernel messages have an average length
of 3.3 bytes (appendix [1]) and EPL actor communications (SEND and RUN) also tend to be
short [BALK79). As explained in chapter IV, before communication takes place between two
processors, a connection must be set up. The processor wishing to send passes a request on the
link and waits for a response. After the response is received, both processors are dedicated to
the passing of the message. Because of this, the short message lengths, and the fact that
Lsills are not especially fast processors, the cost of actually passing data on the links is not

that great. A large part of the communications costs are in the setting up of connections.

The processors have been arranged in a hierarchy to prevent deadlocking. If there is
contention for a particular Jink, it is resolved in favor of the processor with the higher priority. l]
A low priority processor waiting 1o communicate with a higher priority processor is forced to *
listen 1o all processors with priorities higher than itself. If one of these processors wishes to
communicate, the low priority processor must accept the message. This is referred to as

preemption and is used to break multi-processor ties. The mechanisms used to arbitrate

I

contention and multiprocessor ties introduce both additional costs to the expense of making a

connection and the possibility of starving the lower priority processors.

Some preliminary measurements of the 1/O subsystem are shown in figure [7]. The
transmissions in each processor were grouped into categories based on type. Transmissions can
occur locally, nonlocally with priority, and nonlocally without pric ity. Since priority is based on
kernel ID number (lower numbers have higher priorities), nonlocal transmissions from kernel
zero always have priority and those from kernel two never have priority. Only kernel one has all ;
possible types of transmissions. The nonlocal categories are broken down into subtypes.

Nonlocal transmission with priority can occur with and without contention. Transmissions

without priority can occur with contention and with preemption. For each of these groups, the

table has both the average count of wait loops executed by the sender while setting up a

e

e

connection, and the relative frequency of each type. The nonlocal without priority group is
treated slightly differently than the others. Because it has no priority, the transmission can be
interfered with several times. The average wait count for all nonpriority transmissions is given
along with their percentage of occurrence. Following this, are the average wait counts due to
preemption and contention, and their frequency of occurrence. These last two figures are
computed in relation to the total number and cost of nonpriority transmissions and not the total

number of transmissions.

‘ MROBIN SIEVE
avg H avg |
processor wait percent | wait percent :
ID type count occurrence | count occurrance H
0 1local 0 20 ' 0 0 H
l ! !
nonlocal H H
w priority ' :
' w/0 contention 153 60 V130 84 '
w contention 89 20 : 94 16 !
(] []
------------------------------------- D e ettt |
1 local] 21 '] 4 }
H !
nonlocal ! !
w priority : !
' w/0 contention 116 26 H 110 55 !
w contention 94 10 : 91 12 |
! lf
' nonlocal H !
w/o priority 147 43 ! 115 29 H
w contention 117 29 : 116 01 H
' w preemption] 0 : 0 0 '
______________________ [} []

2 1local 0 18
b
nonlocal
w/0o priority 214 82
w contention 113 25
w preemption 140 50 E

- e - - - e . e M = A - R e e e = o e e =

Figure 7. I/O MEASUREMENTS

A majority of the transmissions are nonlocal. For the sieve, several processors have no !

loca!l transmissions, and for mrobin the highest proportion of local transmissions is 21%. These °

-4).

figures are dependent on the global scheduling policy, which did not attempt 1o maximize for

local communications (section [4 2 6]) but for parallelism

Nonlocal with prionty transmissions are cheaper with contention than without contention.
The fact that there is contention for the link means that the lower priority processor has already
passed a connection request on the link and is listening for an acknowledgement. Since the
lower priority processor is already prepared for commmunication, and not executing an
uninterruptable section of code, the high priority processor can make its connection more

quickly.

The average wait count for receiving the data for an entire message (not including the 1/O
subsystem protocol) averages approximately 100 (ranging from 78 - 144). The connection cost

is generally higher than the cost of sending the actual data.
5.3 SUMMARY

The kernel for the distributed system is more complex logically than the kernel for the
single processor system. Although impossible to measure precisely, this increase is evident in
the approximately two to one ratio of number of actor states, actor transitions, and kernel entry
points between the multiprocessor and single processor versions. Also, the implementation of
the multiprocessor kernel required a substantially greater number of machine instructions than
the single processor version. This increase is partly due to the emphasis on logical simplicity in
the design of the multiprocessor kernel and to differences in the methods used to count the

instructions.

Communications costs for the multiprocessor kernel are much higher than those for the
single processor kerncl. The design of the multiprocessor kernel not only required more
communications, but communications were more expensive. The costs of passing information
across links are greater than direct memory references. Even local communications in the
distributed kernel are more expensive because the design philosophy of logical simplicity

eliminated many shortcuts. Because inter-kernel and inter-actor communications are generally

|

1
i
¥
t

s o o1 anlprre i

quite short, the coests of implementing the I/O subsystem protocol is often greater than the
costs of actually passing the information. Also, the protocol introduces the possibility of
starving the low priority processors. The measurements presented in this chapter provide
evidence of a general trend of increased costs, where they occur and why. It is hoped that most

of these additional costs will be offset by the increased parallelism possible in the

multiprocessor environment.

Note that much of the 1/O overhead would be absorbed by the hardware in a more
intelligent device. In any decentralized implementation it would still be necessary to resolve
contention for the device, but more appropriate hardware would lessen processor time spent on

1/0. Further work needs to be done to characterize the I/O required and the response of

hardwar: interconnection structures to such loads.

CHAPTER V]

CONCLUSIONS

The major goal of the project was to gain experience in the design and implementation of
an operating system kernel for a distributed system. Current research in distributed systems and
languages was studied to isolate the important issues and to examine different solutions. An
operating system kernel to support a distributed programming language was designed and
implemented on loosely coupled, directly connected processors. Some performance
measurements of the kernel were taken to approximate the increased costs due to distribution.
Benefits from increased parallelism were not taken into account because the amount of
parallelism is dependent on many factors other than the design and implementation of the

kernel.
6.1 SYSTEMS AND LANGUAGES

A set of central concepts underlying distributed processing was derived from the research
projects examined. Each project defines a process model in which the process acts as the basic
unit of distribution and decentralization. Processes cooperate to accomplish a task with
mechanisms for communication and synchronization. Because there is no centralized control,
the systems must tolerate nondeterminism in process interactions. The projects examined were
built on the concepts of processes interacting nondeterministically with communication and

synchronization constructs. These concepts are implemented differently in each.

The different process models can be characterized by the process create and terminate
operations and interprocess relationships. Process creation can occur either dynamicaily or at
compil=s time. Processes can be either independent, autonomous entities or arranged in a strict

parent- child hierarchy. Processes can be allowed to kill one another, kill themselves, or

-44-

simply terminate at code completion.

Two schemes for interprocess communication have been widely accepted: shared memory
and message passing. The communication mechanism should ideally conceal the hardware
configuration and network fabric. Because message passing can be used to implement
communicatian on a shared memory machine, but shared memory cénnot be implemented on a
loosely connected machine, it is considered to be the more basic of the two. The message
passing mechanism can provide automatic message buffering or rely on the user to buffer
messages where needed. The unbuffered method requires a blocking send. Both the sender and
receiver must be prepared for the communication so that the message can be moved directly
between their data segments. Buffered message passing allows the sender to proceed regardless

of the state of the receiver.

Interprocess synchronization can be explicit, based on an event mechanism, or implicit,
based on message passing. Unbuffered message passing guarantees synchronization of the two

processes involved at the time the communication occurs.

Nondeterminism between processes can be allowed by letting processes receive from one
of a set of possible senders, rather than specifying a particular sender. This can be implemented
as a guarded command containing either receive commands or events keyed to a message

arrival.

The language chosen for the project, EPL, supports dynamically created, autonomous
processes which terminate at code completion. Processes communicate and synchronize with
unbuffered message passing. Nondeterminism is incorporated with a mechanism for receiving

from an unspecified sender.
6.2 EXPERIENCE
6.2.1 System Information

The kernel design is based on partitioned system information. The kernel knows about

-

-46-

local actors only, and relies on kernel to kernel enquires to get information about nonlocal
actors. Several kernel operations build queues of actors using linked lists of process descriptors.
In these cases, a nonlocal actor is temporarily represented locally with a dummy process
descriptor which is the same as the standard process descriptor. Information required by the

operation is placed in the dummy process descriptor.

Another possible implementation would have been to replicate system information. 1If all
process descriptors are copied locally, kernel to kernel enquiries would be unnecessary. Having
information replicated could enhance recoverability. Other information could be replicated to
simplify system algorithms, such as the global scheduling policy. However, maintaining
replicated information can be expensive. Mechanisms must be provided for updating the
replicated information and guaranteeing its integrity. These mechanisms would involve a great

deal of interprocessor communications.

The partitioned approach is simple but increases the communication costs of kernel
operations because of kernel to kernel enquiries. Replication offers the benefits of having

useful information locally, but adds the costs of maintaining a distributed data base,
6.2.2 Memory Management

The use of unbuffered message passing greatly simplifies memory management. Messages
are copied directly from the sender’s data segment to the receiver’s data segment. Problems of
flow contral need not be dealt with in an automatically buffered scheme. The kernel must
handle buffer shortages. Messages for a receiver must be queued. If the message is being
passed between processors, it must be buffered and queued at both locations. The case of a
receiver not accepting its messages can create cleanup problems and buffer shortages. Variable

length messages complicate the buffering scheme and fixed length messages could be overly

restrictive.

The major disadvantage of unbuffered message passing is that it prevents the sender from

running until the receiver is ready to accept the message. However, the user can overcome this

P

-47-

necessary, by creating a new process dedicated to sending the message. This secondary process

is blocked instead of the parent.
6.2.3 Hardware Transparency

The system software is divided into two sections. The kernel manages the actors and
provides the environment for the distributed programming language. The 1/O subsystem
manages the processor links and routes kernel requests to the correct processor. All kernel

requests for information about an actor other than the calling actor are passed to the 1/O

g E] A L

subsystem for routing. If the actor is local, the request is passed back up to the kernel, if not, it
is sent the proper kernel. Requests originating on other processors look identical to those
originating locally.

With this design the kernel does not distinguish between local and nonlocal actors and '
does not know whether a request originated locally or nonlocally. The physical distribution of

actors is transparent to the kernel, simplifying its design.
6.2.4 EPL Simplicity

EPL was designed as a system’s programming language. It provides a2 minimal set of
primitives intended to be building blocks for more complex structures. The simplicity of EPL is

reflected in the simplicity of the kernel design.
6.3 MEASUREMENTS

The increased costs, but not the benefits, from distribution were estimated. A comparison
of two kernel implementations, the multiprocessor version and one for a single processor,
shows substantial increases in logical complexity. The multiprocessor kernel has twice as many

entry points and states, and four times as many state transitions. The greater complexity is

reflected in the number of assembler instructions needed to implement the EPL primitives.

Both versions are implemented in C . The comparison is intended to show a trend of

S TER TR T WIS e ser T S AR e e

v

H
K
|
!
'
I
i
:
§
!

A T Wt SO e A ST P S 4

PR

TN

-48-

increased costs and their characteristics, and not intended to be a precise measurement.

The costs of communication were measured as the number of wait loop executions per
interprocessor communication. It was found that, in many cases, the link protocol cost more

than the actual passing of information.
6.4 IMPROVEMENTS

6.4.1 Actor Naming

In this kernel design, process names are unprotected from user errors. The EPL actors
store and manage the actual actor names. The names are used for interprocess communication.
The kernel does not check to ensure valid names. Each actor must have a unique, global name.
A terminated actor's name cannot be reuscd because that could result in a process mistakenly
communicating with a later actor of the same name. The kernel uses the address of an actor’s
process descriptor as its name. The requirement that names not be recused means that process
descriptors for terminated actors cannot be allocated to new actors. This places limits on the

system’s dynamic functioning.
6.4.2 Global Scheduling Policy

The goal of the global scheduling policy was to maximize parallelism. The algorithm used
tries to achieve this by favoring the placement of children on a different processor than the
parent. In system testing the processor with the first actor was much more heavily loaded than
the others, and some processors were hardly used. The imbalance in processor loads lessens
parallelism.

6.5 SIMPLICITY

The philosophy of simplicity enabled the kernel to be designed cleanly and concisely.
Memory management is minimal, the physical distribution is hidden from all but the lowest

level, and the kernel supports only a rudimentary set of primitives.

. . - . ij

-49.

6.6 FURTHER WORK

Further work needs to be done to understand the system’s characteristics, to evaluate the
current design in light of these characteristics, and to make alterations to improve performance.
In particular, the communication load needs further study. The current I/O structure should be
evaluated and tailored to that type of Joad. The effect of scheduling on performance needs to
be examined. The scheduling mechanism can then be optimized. Is the architecture suitable?

Perhaps a different architecture would be more appropriate.

The effectiveness of EPL as a language for distributed processing needs to be evaluated. It
may be that EPL cannot be used to achieve the goals of distributed processing or that it needs

some changes before it can be used as the basis for a system.

APPENDIX 1

EPL TO KERNEL INFORMATION PASSING

unless followed by dots, a slot is one word

CREATE
INFORMATION PASSED

structure of an act

s e - s an o= -

- = o= an - ———— -

: # of parameters H

_________________________ act: :_____________________{

R1 | address of start of act |---->| H

------------------------- | act code :

: H

! . H

Ve H
INFORMATION RETURNED »
R1 1ERITaTETRameTTTTTTTTTT : ¥
------------------------- ¥
RUN . L
INFORMATION PASSED '

parent’s stack

RO~-->

R1

(- U,

child’s stack X

- - - - - - - -

- - m- -

- - - -

<& - -

number of params known from act

-50-

9 ~
@ [
> > '
Bl (== on e - - --]
) oemm > - ' ! R R
1 \ Q 1 i
' N ° e o e o e e a= o= o —o e~ on 1 1 ' 1 1
e mm om e me o e o e o ot ae W . . . : . i ¥}] ' 1
) 1) T) o ‘N t o H to .m .
§]] I 1 ™ t 18 i O 1 1 1 "u“ " oo t
| (R} [\ [I | | 1 1w e] | | 1O O 1 oA M1 \
t 1o [«] t 1 ! [=4] o])
) ! '> 0 1 @ (R T -}) 1 o1 4 e v ! “mc.ﬁa"n
-~ ! I+ 81 ® 03 ! th { o n toa . ; Vo -
"] o & 1 @ 110 ' 10 4 1 W@ o : w :
' 1o g1 e) ' a | 9 0 | wae 4 ' 1 ” " " '
| (N 1} 1 g] 1 »] [~ [2 -] 1 e e% e em = = o o= —e —- ==
! (B Y]]) \ [} 1o []) |
' i i - i ra@a ¢ PR
]]] [}] +)] 1]])
- B® e e G ST =E e ee en o g m—— e e mS EmE e W - e = o we e o -
A ' [+ A [}
) mmee B>y o Voo D>t LN
i -]
o o -
-1 ~ [+ [:4

msg.

INFORMATION PASSED
INFORMATION PASSED
INFORMATION PASSED

SEND
RECEIVE
SYSTEM

R
’
|

APPENDIX 2

ACTOR PROCESS DESCRIPTOR

- . - - e

1
L}
]
]
[}
1
1
]
}
]
1
t
\
)
t
1
1
!
.

RS ; 4

name

which is to be the subject of a kernel to kernel communication. The lowest three bits of the
name indicate the kernel with which the communication is to take place (could be the local

)
|
Name is used to pass information to the 1/O subsystem. It holds the name of an actor ;
|
F
kernel). f

-52-

l ' buf]
1

vl dy ©

-53-

wailing

Waiting contains a pointer to the start of a list of process descriptors for actors waiting to
send to this actor. It is used by the SEND/RECEIVE primitive.

narg

Narg is used to hold the number of arguments to be sent for both child initialization
(CREATE/RUN) and inter-process message passing (SEND/RECEIVE).

buf
Bufl contsins & pointer into the actor's stack. It is the sum of the contents of RO (stack

pointer) and R1 (offuet [nto stack) which are set up by the EPL actor for the primitives RUN,
SEND/RECEIVE and SYSTEM.

chain

Chain is used to connect the process descriptor into a linked Jist. It holds cither a pointer
to the next process descriptor or nil if it is the end of the list. Since an actor can only be in one :
list at a time (ready list, child list, waiting list) chain is used by all the lists. :

child list '

Child list contains a pointer to the start of a list of process descriptors for children
created by the actor but not yet started running. It is used by CREATE/RUN.

o e e

Status holds an integer value representing the current state (as indicated by the actor
transition graph, FIGURE []) of the actor.

Sunc

Func is used to pass information to the I/O subsystem. It holds an integer which informs
the 1/0O subsystem what type of message is to be passed.

S R i s e SRR

‘ ' status

APPENDIX 3

MEMORY LAYOUT AND FILE DESCRIPTION

bottom of memory

- - e -

-54-

PR

| . =
{ trap vectors |
320 locmmcmemmeee e i
| ' '
i system :
: stack !
! H
I 1000 lememmmemmmcer e l<-- start address
i interfaces | |
label: i~---~c--e--o- Rl B
' ! { | loaded in same 4
i EPL acts ! | location on |
: ! | each processor r
1)
j R — - 3
! switche : i
lememe e -——-i ,
) H H !
l ! kernels ' :
: :
e !
| ! :
! 1/0 subsystem»!
! H
l end: lemcecccaccacea- -
‘ EPL HE
! process HE
! descriptors | | ‘
' ! N '
i ' P dynamic ;
! v { | allocation 3
l ! ' ’
{ Do :
{ ! ' ;
' : : oo ;
! EPL o iy
! stacks P 14
} I !
¢ el —— i
top of memory
l names followed by * are interrupt disabled

o

-55-

interface

Written in Unix assembler, the interface provides the bridge between the the EPL and the
kernel (writen in C) environments, and contains all of the assembler code needed for
certain operations such as 1/O. When the kernel is entered from an EPL actor the interface
saves the general purposec registers, program counter, and processor status register in the
running actor’s process descriptor. Upon exit, this information is restored from a possibly new
running actor . The interface contains all of the trap handlers (I/O interrupts, break point trap,
kernel trap), the code for the idle actor, and the software muftiplication and division routines
used by EPL (no longer necessary because the hardware is available). The Unix assembler used
does not include several standard LSI instructions, such as HALT or MTPS and MFPS (to
change processor status). The machine code for no operand instructions, such as HALT have
been inserted with direct assignments. MTPS and MFPS are simulated by placing the new
processor status and program counter on the system stack and then executing a return from
trap (RTT). The code for bringing up the kernel starts at location 1000 within the interface . It
initializes the system stack, processor status register, calls the kernel initialize routine and

dispatches the first actor (the first EPL actor if the kernel ID is zero and the idle actor
otherwise).

label

Labe! is an assembler file containing a label to mark the start of the EPL code.

kernel

The kernel functions have been grouped into four files. Kernel.c contains the functions
called directly by EPL actors (also called the nonpreemptive functions). Prempt.c has kernel
functions called from the 1/O subsystem. These are referred to as preemptive functions because
the 1/O subsystem can be entered by means of an interrupt, thus preempting an EPL actor.

Auxfns.c contains the auxiliary functions, such as memory aliocation, and scheduling. All of
the linked list manipulating routines are in llist.c.

1/O subsystem

The 1/O subsystem is divided into three main groups. The high level transmitter (xmt.c)
handles all of the link level protocol. The low level transmitter (xmtih.c) manages the actual
sending of messages and the low level receiver (revih.c) handles the receipt of messages.

end
End is a variable assigned by C to the end of the loaded code.

PO I

APPENDIX 4

FORMATS FOR KERNEL TO KERNEL MESSAGES

unless otherwise specified, slots are one word

create request

Receipt of a create request message causes the kernel 10 create a new actor locally. The
name of the parent is passed so that the kernel knows where to return the child's name. The
name of the act is the start address of its code. (part of CREATE)

name of act
name of parent

child name

The child name message is used to return the name of the child to the parent actor. The
number of initialization arguments required by the child is also included (part of CREATE). y

name of child
number of arguments expected (1 byte)
name of parent

run request

A run request message contains the initialization arguments for a newly created actor.
Once the child is initialized it can be started running. The number of arguments being passed
is included in the message so that the receiver handler does not need to refer to the child’s
process descriptor for the information. It is not really essential. (part of RUN)

name of child
number of arguments that follow (1 byte)
arguments

enquiry

The sending actor's kernel passes an enquiry message to the recciver’s kernel to indicate
that a sender is prepared to send a message. (part of SEND/RECEIVE)

name of sender
name of receiver

r—
|

)

|
|
(
(
)
|
'

| '

-57-

acknowledge enquiry

The acknowledge enquiry message is the response to an enquiry message. It is passed
from the receiving actor’s kernel to the sending actor’s kernel when the receiver is prepared to
accept the message. The sender’s name is passed so that the sender’s kernel can locate it. The
The number of arguments 10 be sent, information known by the receiver, is needed by the
sender's kernel to complete the message passing. (part of SEND/RECEIVE)

name of sender
number of arguments + 1 expected by the receiver (1 byte)
message received

This message contains the message expected by a receiver. (part of SEND/RECEIVE)

receiver’s name
arguments

APPENDIX 5

i THE DISTRIBUTED PROCESS STATE TRANSITION GRAPH

f 1
b
Newﬁz.
4

;
§
\(53
3 74 14
Y > RDY MT
" 2O o xﬂ‘\ﬁl '
17 7 13
i
| ¥ K —2% vwf)l 5 ENQ
j ‘ /oC} Z.C)‘\D_Lz
& o 5 . :
2 fo
;
b— _ CRT END INT —
§ 2
- N Y
|
|
' -58-
i

-59-
THE PROCESS STATE DEFINITIONS FOR THE DISTRIBUTED KERNEL

BLK: the process is waiting to receive a message and a suitable sender process has not yet
enquired if the process is prepared 1o receive

CRT: the process is creating a child process and has not yet received the name of the child
process

END: the process has terminated (the process may be referred to by other processes)

ENQ: the process has sent a message to enquire if the receiver process is prepared to
accept a message

INT: the process is transmitting parameters to a child process

NEW: the process has been created (i.e.. it has a name), but not parameters have been
transmitted to it by its parent process

RCV: the process has acknowledged a sender process and is waiting to receive the text of
the message

RDY: the process is logically ready to execute, but has not been assigned the CPU
RUN: the process is logically ready 1o execute and has been assigned the CPU
XMT: the process is transmitting a message to a receiver process that is prepared to accept

the message

THE TRANSITIONS

1:a parent process requests the crection of a child process

2.a sender process enquires if the process is willing to receive a message
3. the r:rameters needed to initialize the child process have been received
4: the i cssis assigned the CPU resource

5: the process terminates

6: the process initiates the creation of a child process

7: the request to create a process has been transmitted

8: the name of the child process has been returned

e

prov=

LN L - RN L b] Ay

-60-

9:the parent process wishes to transmit parameters initializinga child process

10: the parameters have been transmitted to the child process

11: the process wishes to send a message to a receiver process, an enquiry is sent to the
receiver process

12: the enquiry has been transmitted
13: the receiver process has acknowledged that it is prepared to receive the message
14: the message has been transmitted

15: the process wishes to receive a message from a sender process; no acceptable
sender has enquired if the process is ready to receive

16: an unacceptable sender enquires if the process is ready to receive a2 message
17:an acceptable sender enquires if the process is ready to receive a message
18: the acknowledgement has been transmitted

19: the message has been received

20: the process wishes to receive a2 message from a sender process; a acceptable sender
has already enquired if th process is ready to receive

APPENDIX 6
TEST PROGRAMS

Sieve

The sieve of Eratosthenes is implemented as a chain of actors. The first actor generates
possible prime numbers with a counter which are passed down the chain via the
SEND/RECEIVE mechanism. Each of the remaining actors (sieve actors) possesses a
previously generated prime number which it uses to filter multiples from the set of possible
primes. At the end of the chain is a sieve actor waiting to receive the next prime. After it
receives a prime number, it creates a new sieve actor to wait for the following prime. The new
prime is then sent to a set of formatting and printing actors and the sieve actor becomes part of
the filter.

! first |
! actor |
}
v
[}) [})]] 1] 1 [}
i sieve | ! sieve | | sieve | ! sieve | { sieve |
! actor i{-->! actor i-->! actor i-»>...->i actor i--»>! actor i
} 2 ' i 3 ' | 5 ' ' x H { null |
() [} 1 [] 1)
1 1 [1]]
() [})] []
1}]] 1]
!
v
! for .atting !
: + H
! printing !
; actors !
Mrobin

Mrobin sets up a structure, similar to a two dimensional array, in which each element is
an actor. There are three types of actors involved: element actors are elements in a row, header
actors cach create a row, and the initial actor (only one is created) creates header actors. The
header actor creates new element actors, and adds them to the head of the row. Each row is a
circular linked list of elements. After the header creates a new element, it prints the new
actor’s name and starts a null message down the row chain. When the message returns to the
header from the last element, (he next element is created. As each element receives the signal,

-6]-

3

‘ '

o NS T PR

62

it sends the name of the next actor in line to a printing actor, and then waits for the next
signal. With this arrangement, there is no parallelism allowed within a row.

! header (-->! element }|-->}! element i-->| element

t-->! element i-->| element 1-->! element |-

-2
®
o
=%
(1]
2]

! header !-->! element i-->! element i-->! element |-~

Qa
] N
Z
w
=2
o
9]
(75
Z
e
[
O
2
o
7
~
x & z w
Q b 0 > ~
2z o o} w ©
W [72] o mm.u v
a, I =
! JA: =
‘ O
H Z
w
-
L.
(e}
2
Qo
=
o]
a
[~
=
2
o]
- o o - o o

Part IIX

Design of an Operating System for
Distributed Communicating Processes

by

J. Morse

o A

il

1. INTRORUCTION

This paper reports on an attempt to apply some of the basic princi-

ples of software engineering to the design of an operatling system for
multiple loosely-coupled mini-computers. The goal of the project was to
develop a design that was independent of the CPU on which the operating
system was to run, and on the communicatons facility available to 1link
the CPU's, Such a design should make it possible to implement a "fami-
ly" of operating systems [Par76]. Possible variations among the 'family

pembers include:

1. Implenentation for several different interconnect facilities
with varyirg performance parameters. '

2. Inplementation for various network topologies, including in the
linit the single CPU case, .)

3. Incorporation of new operating system features sudh as time

dependent scheduling.

The design approach was to identify a set of requirements, exﬁress
those requirements in abstract terms, and then refine the abstractions
to forpulate a design. In refining the requirements into a design,
principles of software engineering were used that were drawn from tyo
areas in which a great deal of progress has been made in the 1last ten
years. The first of these areas is modularization of design and imple-
mentation with the goal of easing the expansion, contraction, and sub-
setting of large software systems. Much of the work in this area has
been done by Parnas -~ the bibliography gives numerous references. The

second area is the use of data abstraction as both a design tool and as

‘a principle to guide implementation. In abstraction- for design, the

contributions of Flon [Flon75] and Guttag [Gutt80] should be mentioned.

In the development of programming languages based on data abstraction,

prime examples aie CLU [Lisk77], ALPHARD [Wulf76), and EUCLID [Pope77].

¥

P

oo it A i e

N U s oo ooer

The operating system supports the programming language EPL [May79].
EPL is based on the principle of communicating processes very much like
CSP [Hoare78) or the Distributed Processes of [Brin78). ~Processes are
autonomous; they communicate and synchronize with each other only
through message passing. EPL was chosen as the basis for the study of

operating system design because it requires only a small number of prime-
itive operations:

% Send a message
* Receive a message
¥ Create a procecs

Run (initiate) a process

A puaber of other distributed operating systems were Eonsidered,
including HYDRA [WulfT4#], Cm* ([Joes77], Pilot [Red80], and Medusa
[oustB80]). An operating system to support EPL was chosen over these oth-
er possibilities because its simplieity allowed the design process to
focus on the essential prodblenm of distriﬁuted control of sequential com- '
municating processes without the need to deal with peripheral issues _
such as nexory ranagement and file systenms.

2. REQUIRMEZLTS

2.1 Abstract Requirements

ERSEENEN

Analysis of the definition of the EPL progranning language suggests !
that there are two basic abstractions that the operating system requires ;ﬂ
-- actors, and messages, For the remainder of this discussion, I shall
use the nore conventional term "process"™ in place of the EPL term "Mac- 5
tor". The requirements for an operating system to support EPL may be J3
expressed as follows: ’

1. There shall be Processes and lessages

2. Processes can do the following with reference to other
Processes:

® Create a Process
® Run (Initiate execution of) another Process
Send a Message‘to another Process
® Receive a Message from another Process
3. A Process may terminate itself,
4. Each Process may make progress independently of any other Pro-
cess except while executing:
® Send
% Receive

5. The result of Receive will depend soley on the stéte of the

corresponding Sending Process at the time that the Send is exe- '

cuted. - - -
6. Crecate and Run have no effect on the state of the Process exe-
cuting then. '
7. Apart froa the above, Processes can be modelled as independent

state pachines,

The first three requirements listed above follow directly fromn the
specification ¢f ®L. Requirements 4-T7 are an attempt to refine the no-
tion of Processes and the operations that they can perform in an ax-
iomatic way. Thesz Paxioms” conform to the usual notions ahout what a
"process™ is. They form the basis for a set of invariants that must be

preserved by all valid designs and implementations of any family member.

The given set of axions implies an equlvalence between mnessage
passing and synchronization of processes. Yet Parnas in [Par79] cites
combining message passing with synchronization as an example where con-~
poments perforn more than one function, thus making it difficult to im-
plement a subset that provides one feature without the other., 1In spite
of Parnas's warning, I will accept for this design that the semantics of
EPL have inexorably bound synchronization with message“passing, and that
the design of the operating system will be based on the same principfe.

If it were required to provide a mechanism for synchronization in the

N

-

absence of message passing, then some other mechanism, such as sema-

phores, would be required for synchronization. The added complexity

does not seem warranted in the present case.
2.2 Refinement of the Requirements

We now work from the abstract requirements toward a set of concrate

requirements, by introducing new abstractions. This may be viewed as a

process of describing increasingly lower level "virtual machines®

[Par79], or 23 a process of identifying levels of data abstraction.

The requirement that processes may make Independent progress and

may be regarded as independent state machines suggests that the concept

of process splits into 3 sub-concepts: 1) each process has a “ecurrent
. state”, 2) each process has a set of rules for making transitions from
state to state, and 3) there is some kind of executor which causes
processes to rake state transitions. We will refine these three notions
in terns of, respectively, 1) process descriptors, 2) executable state-

ments, and 3) the operating system dispatcher.

The process descraptor is a basic abstraction of the design. There
is a one-to-one correspondence between process déscriptors and
processes. All state associated with a partiocular process is either
contained in, or referenced by, its process descriptor. ' Various modules
will need to know about various components of the process descriptor. &
basic criterion for partitioning the system is to restrict the use of
each component to the minimum number of modules. '

i

Executable statenments define what a process does. We assvie that
these statements form a list of instructions that is re-entrant, and so
sﬁareable by multiple processes. The term used in ihe EPL definition
for such a statement 1ist is "ACT". One of the items that must be kept
in the process descriptor as part of the state information is a pointer

to the "current location counter" for this list of inatructions.

The dispatcher is the module that allows processes to make pro-
gress. The operating system scheduler in effect multiplexes the CPU by
repeated calls to the dispatcher to advance thé state of a particular
process. The requirement of independent progress requires that the
scheduler will eventually submit every process that is able to make pro-
gress to the dispatcher, We may add a further requirement that all
processes ready to run get "fair" treatment in the sense that once a
process has received service, it will receive no further service until
all other ready processes have been dispatched as least once. A funda-
mental goal of an operating system is to keep the CPU busy advancing the

state of runable processes whenever possible.
2.3 Extension to Multiprocessor Implementations

Up to this point, nothing has been said about supporting multiple

processors. If we assume .nat processes may reside on different CPOU's

in different physical locations, what effect will this have on the re-

quirements?

The existence of nultiple CPU's clearly requires that we have mule-
tiple schedulers, since it is the scheduler that provides the multiplex-
ing of a2 single CPU z2—ong multiple processes, Since the scheduler is at
the top of tha requirements hierarchy, this suggests (not too surpris-
ingly) that each CPU needs a copy of the entire operating system. This
operating systen will have the same requirements as outlined above, with
the additional requirement that the scheduler be able to deal with pro-

cess descriptors and queues on remote proc¢esses,

To incorporate remote processes into the operating system, it 1is
only necessary to provide a connunications facility so that remote pro-
cess descriptors and queues can be ac:essed. Presumably, the same data
abstractions will apply to remote data as to local data. An additional
requirement is that the access routines for process descriptors and
gueues be able to distinguish local objects from remote objects. The

dispatcher and other support modules need no change whatsoever., A pos-

o

sible difficulty is in the Create Process operation, which needs sbme

notion of creating a process at a remote CPU.

With the proposed approach, the details of the communication facil-
ity, and knowledge about the system topology, are all isolated to the
communications module., The goal with this approach is to allow for
changes in both communications facilities and system topologies with no
change to any part of the operating system except the communications

module, As we shall see, this approach does not work.

3. DESIGN

The boundary between requirements specification and design specifi-
catiorn is not hard and fast. The second and third parts of the previous
section besgen to talk about abstractions such as "process descriptor®
and modules such as "scheduler" and "dispatcher” which might be con-
sidered pzrt of design specification., However, the refinements made in
the last section were almost inevitable given the fundamental require-
ments of EPL. 02 the other hand, in this section refinements represent

choices fron a-org nmany alternatives,
3.1 Module Definition

The criteria for dividing the operating system into moduls will be

based on thcse given in [Par79].

A. Information will not be distributed. Parnas talks elsewhere [Par72]
about using "information hiding" as a criterion for modularization, The
design will attempt to achieve information hiding by the mechanisas of
data abstraction. Because of the complexity of an operating system, the
data abstractions will be hierarchical. As an example, the process
descriptor 1is a data abstraction. Many modules neced to deal with pro-

cess descriptors, but most need know in detail about only a small part

.
1

of the whole. This will be achieved by defining the process descriptor
as an abstraction which is itself made up of abstractions. Some modules
need to know only that the descriptor exists, without knowing any of its
detail. Other lower level level modules need to know about the ex-
istence of some of the sub-abstractions without knowing how to manipu-

late them. Finally, the lowest level module, the one that implements a

realization of the abstraction, needs to deal with the exact details.

B. The design will avoid the data transformation model. Modules will

deal with the data abstractions as they are, without changing formats.

This is almost an automatic result of the data abstraction approach,
since changes to data are only done through the operations associated
with the abstraction. '

C. Modules will perform single functions.

D. Loops will be avoided in the "uses™ relation. Parnas provides a de-
finition of the "us2s" relation based on the dependence between modules.

This desiga will incorporate the notion of dependence on data abstrac-

nodule "B" if podule A makes use of a data abstraction provided by

module B.
3.2 Abstract Data Types

It follows almost directly from the requirements specification that
we will require process descriptors and messages. In addition, the
operating systen will need to be able to organize process descriptors
for easy access as needed on a one-by-one basis. It will also need-to
panipulate messages in a similar way. A message nay be sent to a given

process before that process is ready to receive. The scheduler will

. s
L S AR A 1T P e T A

need a2 way to save the message and keep track of it until the process
signals that it is ready to receive. To handle both process descriptors

and messages, the queue abstraction will serve.

3.3 Notation

!
'
i
'
|
'
'
'
- tions in the "uses" relation, This 1is to say that module A "uses"
|
!
{
'
'
!
|
!
\
|

A varlant of Pascal is the design language, augmented with the
abstract type definition notation of [Flon75]. Some extensions and

changes to Pascal and Flon's notation have been adopted for convenience:

1. Each top-level name in the YDECLARE" part of a type definition
that is preceded by the keyword “EXTERN® is visible to the
modules which use the tyre. '

2. Fetch and store operations are implicitly associated with each
such external name of the type, so that one may write, for in-
stance, "new.state = old.state". This eliminates the necessity
to define an abundance of operators which merely fetch and
store values.

3. Enumeration type declarations create named constants with the
same scope, S0 we may write "new.state = Wrecv"., This does not
seen to violate the goal of information hiding; if constants of
this typs were not available, an externally visible operator
would be reqguired to accomplish the same purpose.

L, D:=CLARZ is used instead of the Pascal VAR, to declare a polinter
to a typed variable., Except in the create operation of a TYPE,
no iopiicit creation is done; the variable is initialized only
by a2ssignnent. All variables are pointers, as in CLU [Lisk76].

This choice of a design language presents a compromise between pre-
cision on the one hand, and wordiness on the other. With the extensions
cited a2bove, it is possible to convey all the details of the data
abstraction agpproach required, without getting into the cetails of
representations. The language is wordy enough to convey 1ts semantic
meaning to the casual reader, At the same time it is concise enough to
represent the essential details of the design of an operating systen .in

just a few pages of "pseudo-code",

3.4 The Initial Design

The initial attempt to design the operating system is given in Ap-~

pendix I. The design implements the basic oparations Create, Run, Send,

AD=A099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-~ETC F/6 9/2
nscsumnuzzn SYSTEMS, (U)
DEC 80 E E BALKOVICH DAS660~79=C-0117
UNCLASSIFIED TR=CS-15-80 NL

2 UFS

and Receive, where Receive is a general receive ~- the process will ac-
cept a message from any c:h~- . rrcess. The top level of the scheduler
is a loop which repeatedly ' .:+ . . current process from the ready
queue, dispatches the process t, ikhe CPU, and upon return, executes the
system call that caused the process to return to the scheduler.

Execution of system calls is done by the procedures in the module
"sc_procs™. These procedures paintain the state of the system as a

whole by moving process descriptors between the ready gqueue, which con-

tains descriptors for processes that are able to run, and the idle

queue, which contairs descriptors for processes that are blocked waiting
to send or receive nessages. '

The data abstractions to support the operating system are basically
those that represent process descriptors, queues, messages, and the phy-

sical CPU. This partitioning seems appropriate from a modularization

point of view since it neatly separates four critical aspects of the
operating system design:

1. Definition of Processes '
2. The Queueing discipline and implementation
3. Message fornats

Y}, Hardware details

One of the underlying principles of the design is that the data
abstractions form a hierarchy, with lower level abstractions being used
to form higher level abstractions, The following diagram illustrates
the relationship among some of the major data abstractions used in the‘
design. It also represents the "uses" relations anong the data abstrac-

tions.

Gowt Gomd OuNp Sund OCnay OIS} GEE BB oo emw Gaw G G Y G BN G BN &

l QUEUE =
! PROCESS i
DESCRIPTOR |

e i ,

{ T |
s it T, ol T s a4
| CPU_STATE | l HESSAGE x ! ACT |
e ————— — trecmr———— + R ettt

_Even though many of the details at the lower levels are onmitted
from this design, it gives an adequate framework for the analysis of the
operating system, and appears to have achieved the goals ot the current
project., Its limitations will be discussed in the follwing section.

b, CRITIQUE

The previous section optimistically proclaimed the truth and beauty
of a proposed operaiing system design, and claimed that it had achieved
some goals of information hiding and modularity. This section will ex-~
amine the faults of the design, and in particular how some software en-
gineering techniques, even applied informally, cen predict the problems
with this design.

h.1 Circularities

Messages point to process descriptors; process descriptors point to
messages. This interdependence between processes and messages points up
the fact that the operating system is using messages to implement pro-

cess synchronization.

System commands {send, receive, create, run) are the “undefined

terms" that both the lowest level (the user process) and the highest

e

b

level (the scheduler) deal with. This is a symptom of an essential co-

. routine relationship between the operating system and user proceases.

For the purpose of the design, the scheduler is placed at the top of the
control hierarchy -- 4t appears to call user processes as closed
subroutines. But on the other hand, the user process %¥calls®" the
operating system to receivghsome service such as message transmission or

process creation. There is a two-way flow of stimuli 4in an operating
system -~ the system issues "proceed” stimuli to processes; processes
issue "syscall" stimuli to the operating system. In the current design,
the "proceed" stimulus is treated as a normal call operation, while the
"syscall” stimulus is implemented through a back-door return paraneter .
from the process. This is a compromise solution because the existing
abstractions do not adequately deal with a co-routine control structure.

Of these two major loops in the "uses” relation betﬁeen abstract
data types, the message/process descriptor seems minor, Interestingly
enough, it would be possible to implement the scheduler in such é vay
that mnessages wore never pointed to by process descriptors, though at
some cost of convenience, On the other hand, messages will certainly
have to reference process descriptors, since they are used for communi-
cation and synchroaization between processes, This suggests that the
message is the higher level concept in the design.

I feel that the loop in the "uses" relation of system oommands, on
the other hand, is both significant and unavoidable., There is no obvi-
ous way of eliminating it, nor of re-arranging the levels in the hierar-

chy of abstractions to make the control structure cleaner,

4.2 Consistency

Investigation of the design in terms of the axioms of the require~
ments section must study how process descriptors are manipulated in the
system, The responsibility to insure progress of all processes (re-
quirement 4.) suggests as an invariant of the operating system that
every process descriptor be on exactly one queue. The only queues that

-11-

%

the scheduler has are the two called ready, and idle. During execﬁtion
a process may alter its own process descriptor in order to set up system

calls. But the processes have no access to the system queues. 'The only
place where process descriptors and queues are manipulated is in the
modules called system, and sc_procs. The following is an informal argu;
ment for the consistency of the process descriptor management. '

1. The module sc_procs is the only place where information of any
kind is passed between process descriptors. “
2. The top level scheduler always removes the current process from

cedure in sc_procs.
the current process descriptor into exactly one queue.

cess descriptor is successfully removed from a queue, it is
subsequently inserted into exactly one queue.

5. Therefore, the desired invariant holds at the beginning of the
WHILE loop in the Scheduler.

4.3 Multiple CPU's?

The 2bove consistency discussion points up the fact that the
desired invariant holds at the top of the WHILE loop. In fact, the in-
variant is a pre-condition for the subsquent exécution of the bcall to
the dispatcher, which is the only place where the system actually "makes
progress" (from the process point of view). Consider the problem of
maintaining the invariant in procedure sc_send if the destination pro-

variable p is accessible only by some communications link. Als=o, the
idle and ready queues for p are remote and are accessible only via the
link. Then the following 4 statements: '

IF p.state = Wrecv THEN BEGIN /% test state %/
p.msSg := m; /% transfer message %/

the ready queue, dispatches it, and then calls exactly one pro- .
3. Every procedure in sc_procs, under all path conditions, inserts.

4, 1In every path in every procedure in sc_proes, whenever a pro-

cess is on another processor. The process descriptor referenced by .

oy

PR r———— et T e Y iy

e et & S Y o PO AN

Aty o Ry S

i BN . o1 e £ £ e e e T S

q.remove (idle, p); /% remove from idle queue %y

q.put_end (ready, p); /% insert in ready queue %7

each require communication. The design can be improved substantialiy by
combining the last 3 statements into one operation that transfers the
message and then allows the operating system at the remote site to move
p from the idle to the ready queue. Nevertheless, the delay for commun-

Ications has been inserted into the scheduler at a point where the)

desired invariant does not hold. Thus the diapatcher‘will not dbe
called, and no process can progress while the communication is going on.
This violates the 1independent progress axiom since a process may be
ready to run, the CPU is available (it is just waiting for communica~
tions to complete) yet no process can make progress.

The problem is that the operating system has failed to perform its

basic function -- to keep the CPU busy. To achieve this, it must insure
that all the operations it performs directly are CPU bound. Any waiting
that is done, even on behalf of system level processing, must allow the
main scheduler loop to run, thereby keeping the CPU busy. In fact, only
processes can wait; the function of the operating system is to provide

a means whereby processes can wait without holding up the CPU. The ob~

vious conclusion is that communications must be handled at tﬁe process
level,

5. THE COMMUNICAIIONS PROCESSES

At this point the design has been forced back to an approach that I
had considered earlier and discarded on the grounds that it did not seenm
#clean", That approach is to handle all inter-~CPU communications
through a pair of processes which handle the network 1ink. For the pur~
pose of design exposition, these two processes will be treated as 1f
they were normal user processes, even though one of them is actually an
interrupt handler. An efficient implementation of this approach would

L madet s

probably give these processes special status, preferred scheduling, spe-
cial CPU contex:, and so forth, in order to service the link in a timely
manner., These two processes are called start ic and io _done,

5.1 Process Design

Whenever the scheduler encounters a Send to a remote ‘process, it
performs the normal send processing as if the message were sent to
start _io. Process start_io, which is created and initiated at system
startup time and never terminates, simply loops on a Receive primitive,
When it receives a message, it starts the link hardwaré to send the mes-

sage to the appropriate remote CPU. It then waits for a message from '

io done signalling that the message has been sent and the link is avail-

able for the next message.

Process 1o_done is really an interrupt handler. For a e¢lean con-
ceptuzl moldel, assume that the scheduler in fact dispatches it péribdi—
cally to poll the done status of the link, If the link is done, either
a message initiated by start fo has finished, or a message from another
CPU has besn received. In the first case, io _done sends a "done" mes-
sage to start_io to allow it to get the next outbound message. In the
second casz, io_done determines which local process the message ls dés-

tined for, and does a Send to that process,
5.2 Interaction with the Operating System

A little reflection will show that the proposed solution will pro-
vide the last 3 of the 4 steps invclved in executing a Send to a remofe
process. The message will be transfered, and, as a result of 1io _done
doing a local Send to the déstination process, the process descriptor of
the destination process will be moved from the idle queue to the ready

queue,

The original code depended on the pre-condition that the destina-

tion process was already in the Wrecv state, and so was guaranteed to

-1

e ot ma L

PN e

already be on the idle queue. It may be that the Send occurs before the
Recv. One approach to handling the remote synchronization is to design

a moderately elaborate handshaking protocol that' defers the mesasage .

transfer until both processes are in the appropriate state. This ap-
proach is in fact used in an existing operating system for EPl.. A con-

ceptualiy simpler approach, however, is to always let Sends proceed im- =~

mediately. If the scheduler gets a message from a remote process via
io_done, and the destination process is not ready to receive it, it will

create a temporary process descriptor for the remote process, save the

message in 4%, and place it on the idle queue. This allows the

_ scheduler to place io_done back on the ready queue immediately, so that

link service 1s not held up. Vhen the destination process is ready to
receive, the scheduler must nake sure that the temporary process
descriptor is discarded -~ if it 4is mistakenly placed on the ready
queue, disaster will strike in very short order.

5.3 Implications of the Approach

The new design for the scheduler and its modﬁles is shown in Appen-
dix II. Note that all the changes have been made at the top level --
none of the data abstractions have been ohanged in any way. Two details
have been omitted, One is that Create and Run of remote processes has
not been designed. There needs to be a mechanism for returning an iden-
tifier of the remote process to the creating process. The second detail
is that in the single CPU design, process desoriptors are used by the
scheduler as identifiers for the processes they represent, For the mul-
tiple CPU design, there need to be identifiers for remote processes that
can be distinguished from the process descriptors for local processes,

Reviewing the requirements in light of the new design yields an in-
teresting phenomenon. Requirement 5 is in fact still met, but by a
chain of indirection. A message from source to destination passes from
source to start_fo (local CPU), to io_done (remote CPU), possibly to a
dummy process descriptor, and finally to the destination process, Since

requirement 5 is met for each of these steps, it is met for the opera-

tion as a whole. Synchronization, however, is definitely.not achieved,
The original sending process can continue as soon as thé message has
been transferred to start io, and long before the ﬁesshse gets to the
destination, The new design effectively buffers message transfer, and
message sending can ho longer be used for real-time synéhronizatian even
though it still achieves logical synchronization. ‘ '

6. SUMMARY

This attempt to design an operating 'syétem using principles of
software 'engineering has been a qualified success. Certainly the dis-
cipline of applying the data abstraction approach has kept the design
cleaner, and clearer, than might otherwise have been the case, 'Progress
has been painfully slow, and many design approaches that at first seemeq
promising led to_either unworkable or impractical solutions,

Xt was hoped that the approach would be able to address the 4issues
of operating system families, The design is at a stage now where it
should be easy to show how other CPU's, various communications facili-
ties, and new features can be accomodated. Both the writer's energy and
the reader's patience are certainly exhausted by now, so the demonstra-
tion of the 1level of modularity that has been achieved will wait for
another day.

The most important design principle used in this exeroise was ﬁhat
of keeping cereful ocontrol over access to information, A atrong dis-
tinction emerged between access to the name of a data ftem and access to
its internal structure. By placing the names of (references to)
abstractions into the structure of higher level abstractions, a hierar-
chy of data abstractions was developed which served to keep the design
both coherent and modular.

-16-

APPENDIX I

/* Module Definitions for the Operating System

/% The scheduler is the top level module of the Operating System.
It makes use of the process descriptor, message, and queue

abstractions to manage the CPU. It assumes that The Force

*/

has incarnated an act called MainAct which is initially

made ready, and which creates and runs all the other processes

of the system.
MODULE systen =

PROCEDURE scheduler =

DECLARE "
current: proc_des,
ready: queue (proc_des),
idle: queuve (proc_des);

BEGIN

| ready := queue.create (proc_des);
idle := queue.create (proc_des);
current := proc_des,create (MainAct);
queue.put_end (ready, current);

WHILE not queue.empty (ready) DO BEGIN

current := queue,get next (ready);

/*
/%
/*

/*
VA
/*
/*

»/

current process L7

queue of ready processes ¥/ -

queue of idle processes ¥/

the ready queue LY}

the idle gqueue L7}
the current process #/

start with main procesa.'/

run so long as some progcess
get next process to run %/

CASE proc_des.dispatch (current); /* run process, test command #/
Create: sc_create (current.new_act);
Run: sc_run (current.new_proc);
Send: sc_send (current.smsg);
Recv: sc_recv ()

END of CASE
END of WHILE
END of scheduler
END of MODULE system.

P

f

-

/®* Definition of :sub~procedures to execute each command L4

/*® Single CPU ver:zion

MODULE se¢_procs =

*/

/* These procedures import the following from ti:e surrounding

scheduler context:
IMPORT
current: proc des,
ready: queue (proc des),

idle: queue (proc_dex);

PROCEDURE sc_create (a: act) = BEGIN
current.new_proc := proc_des.create (a);
queue,put_end (idle, current.new_proc);
queus,put_end (ready, current)

END of sc_create;

PROCEDURE sc_run (p: proc_des) = BEG'H
IF (queue.rebove (idle, p)) not = NIL
THEN queue.put_end (ready, p);
queue. put_end (ready, current)

END of sc_run;

PROCEDURE sc_send (m: msg) =
DECLARE p: proc_des;
BEGIN

p := n.dest;

IF p.state

n

Wreev THEN BEGIN
p.msg := m;
q.reaove (idle, p);
q.put_end (ready, p);
q.put_end (ready, current)
END

ELSE BEGIN
current.msg := n;
current.state := Vsend;

q.put_end (1dle, current)

-18-

Y

/* current process
/% ready queue .
/* idle queue -

»
*/

L7 2

/% Create a new process %/

/* new process descriptor %/

/* put onto idle queve #/

/* re-enable current

.

proc, %/

/* Run an idle process #/

/* if on idle queue,
/* make it ready

/* re-enable current

/% send a message ¥/

74
74
proc, %/

/% destination process %/

/% if ready tq receiv

e 4y

/% transfer the message #/

/* remove dest from i

dle %

/* make destination ready #/

/* make current ready

*/

/% not ready to receive %,

/* save message
/* waiting to send

/* suspend current

*/
*/
*/

END
END of sc_send;

PROCEDURE sc_recv =
DECLARE p: proc_des;
BEGIN
p := find msg (idle, current)
IF p not = NIL THEN BEGIN
' current.msg = p.BSE;
q.put_end (ready, P);
q.put_end {ready, current)
END
ELSE BEGIN
current.state := Wrecv;
g.put_end (idle, current)
END
END of sc_recv

END of MODULE sc_procs,

VA

VA

.

1%
7%
/*

,*
/*

receive a message %/

f£ind a process trying to

if there is one "/
transfer the message ®/
enable sending process ’/. '
enable current 74 |
waiting to receive %/
current now idle ®/

/* Abstract Data Types for the Operating System) L 74

/* The process descriptor is the abstraction t%..L embodies the
notion of independent processes, modelled as state machirnes,
The process_descriptor also contains abstractions that aliow

processes to communicate with each other by sending messages. uy

TYPE proc_des =
DECLARE
EXTERN: state: {Wsend, Wrecv},

EXTERN: context: cpu state, /* CPU context - ay ’
EXTERN: msg: msg, /* nessage to be seﬁt, .0/
/* or just received *y
EXTERN: new_act: act, /* act for create %/
EXTERN: new_proc: proc_des; . /* process created L7

OP dispatcn (p: proc des): command = BEGIN _
/* Dispatch the process by giving 1t to the CPU to execute L4
RETURY cpu_run (p.context); ' o '
END of OP dispatch;

/% Creats a new process descriptor #/
DECLARE p: proc_des;) /* create new descriptor #/
p.state := Idle; | /% initially idle 'y
p.context := cpu_state.create (2); /* initial context »/
p.msgq := qQueue,create (msg); /* initial message queue %/
END of OP create; '

END of TYPE proc_des;

/* Message abstraction. A message has a source process, a

destination process, and text : owy

TYPE msg = - :
DECLARE
EXTERN: source: proc_des, . /* source process L V4

EXTERN: dest: proc_des, /* destination process #/

-20~-

e TR T S WS

' OP create (a: act): proc_des = BEGIN

f
b
4
3
1

EXTERN: text: string; /J® text s/

OP create (s, d: proc_des, n: INTEGER): msg = BEGIN

DECLARE m: msg; /* create a new measage #/
m,source := 8; /% source process ®/
m.dest := d; /* destination process #/
m.text := create.string (n); /* room for text L 74

END of OP create;
END of TYPE msg;

/* Generalized Queue. A Queue is an ordered list of items
which may be accessed from either end of the queue, or
- by specifying the item explicitly. , L 4

TYPE queue (t: TYPZ) =

DECLARZ head, tail, quelen; /% both head and tail point
to queue elements 74
/* The operations will be declared, but not defined here.. 74

OP get_next (q: queue (t)): t = BEGIN
/"get_next renoves and returns item from front of the queue 74
END;

OP remove (q: queue {t), item: t): t = BEGIN
/% remove removes and returns item specified. If it is

not in the queue, returns a special constant NIL ‘ 7 Y

END; ' : {
OP put_end (q: queue (t), item: t) = BEGIN }
/% put_end inserts an item at the end of the queue u/ i
END; ‘

OP empty (q: queue (t)): Boolean = BEGIN
/¥ returns true if queue is empty, else false %/
END;

OP oreate (t: TYPE): queue = BEGIN . ;

/* create a queue */

Eaa e £ e

~21-

END of type queue; '

/% Abstract type cpu state captures the notion of the state of the -
hardware that must be established for each process, and saved when
the process is suspended. R : 7

/* This is the only hardware-dependent module, and would normally be
realized in the assembly language of the CPU. The example given

here is for an arionymous mini-computer, 74

TYPE cpu_state =
DECLARE r0, ri, r2, r3, ri, r5, sp, pe, ps: INTEGER;

OP cpu_run {(c: cpu _state): command =
/% load up the CPU registers with the state information and -

"resume” execution., When the processes executes a system

PR .-

call, the command is returned as the result of cpu run 74

END of OP cpu_run;

-

e~
PEPTY W

OP create (2: act) = BEGIN
/* create a new state for a process to begin execution of ,
the code identified as "act" N 7
DECLARE c¢: cpu_state; !

e LT

c.pc = 23 . /* point to start of act ¥/
c.sp := sys_alloc; /% allocate stack space #7 i
e.ps := disable; /% interrupts disabled ®7

END of OP create;
END of TYPE cpu_state;

/% Abstract data type "act" embodies the notion of a list of
executable instructions (procedure body, if you will). An
act is created by a compiler, - n

APPENDIX I1I

/% Module Definitions for the Operating System Y

{ Multiple CPU version - lines commented with { } are changes
from the single CPU version.)

/% The scheduler is the top level module of the Opeyatins’Systen.
It makes use of the process descriptor, message, and queue
abstractions to manage the CPU. It assumes that The Force - !
has incarnated an act called MainAct which is initially ‘

R
,

made ready, and which creates and runs all the other processes) T

of the systen. . 7

MODULE system =

|
|
i"

PROCEDURZ scheduler =

DECLARE
current: proc_des, /* current process 1 7
{ start_io process 3
io_done: proc_des, { 10_done process }

ready: queue {prog_des), /% queue of ready processes %/

idle: queue (proc_des); /% queue of idle processes #/ *

BEGIN

A s 2T I

!

l start_io: proc_des,

ready := queue.create (proc_des);

idle := queue.create (proc_des);
start_io := proc_des,create (Startl0);
queue.put_end (idle, start_io);
io_done := proc_des,create (IODone);
queue.put_end (ready, io_done);
current := proc_des,create (MainAct);

queue.put_end (ready, current);

WHILE not queue,empty (ready) DO BEGIN
current := queue,get_next (ready);
CASE proc_des,.dispatch (current);

Create:

/% the réady queue 1 74

/% the idle gqueue - L 74
{ -create start _io)
{ make it idle 3
{ create io_done }

{ always ready to test done }
/* the current process ¥#/

/* start with main process %/

/* run so long as some process
/* get next process to run %/
/* run process, test command #/

sc_create (current.nev_act);

\J

E " Runs sc_run (current.new_proc);
! Send: sc_send (current.smsg);.
Recv: sc_recv ()
END of CASE

END qf WRILE
END of scheduler
END of MODULE systenm,

.

-2l

|

0
|
|
1
!
!
|
i
i
i
i
i
i
I
i

-

/* Definition of sub-procedures to exscute each command o/

{ Multiple CPU version

MODULE ac_procs =

/® These procedures import the following from the surrounding

scheduler context:
IMPORT

current: proc_des,

start_io: proc_des,

1o _done: proc_des,

ready:

idle:

queue (proc_des),

queue (proc_dex);

PROCEDURE sc_create (a: act) = BEGIN
current.naw_proc :=z proc_ﬁes.create (a);
queue.put_end (idle, current.new_proc);
queue,put_end (ready, current)

END of sc_create;

PROCEDURE sc_run (p: proc_des) = BEGIN
IF (queue,remove (idle, p)) not = NIL
THEN queue.put_end (ready, p);
queue,.put_end (ready, current)
END of sc_run;

PROCEDURE sc_send (m: msg) =
DECLARE p: proc_des;
BEGIN

p := m.dest;

IF {p is remote} p := start_io;

Wrecv THEN BEGIN

p.usg := m;

IF p.state =

q.remove (idle, p);
q.put_end (ready, p);
q.put_end (ready, current)
END

}

8/
/® current process - %
{ start_io process }
{ 1o_done process }
/% ready queue 74
/* idle queue 74

/% Create a new process %/
/% neu process descriptor %/
/* put onto idle queue #/

/* re-enable ourrent proc. ¥/

/® Run an idle process %/
/* if on idle queue, »/
/* make it ready ' ¥

/* re-enadble current proc. #/

/® send a message %/

/% deatination process %/
{ divert remote messages

to atart_io process }
/* if ready to receive %/
/* transfer the message #/
/% remove dest from idle %/
/* nake destination ready #/
/* make current ready ®;

BLSE BEGIN

IF current = 10_done THEN BEGIN

P := process_des.create (dummy)

p.mag := m;
p.state := Wsend;
q.put_end (idle, p);
q.put_end {ready, current)
END

ELSE BEGIN
current.msg := m;
current.state := Wsend;
qQ.put_end (idle, current)
END

END

END of sc_send;

PROCEDURE sc_recv =
DECLARE p: proc_des;
BEGIN
p := find_msg (idle, current)
IF p rot = NIL THEN BEGIN
current.psg = p.wsg;
IF {p not dumay}
THEN q.put_end (ready, p);
q.pui_end (ready, current)
END
ELSE BEGIN
current.state := Wrecv;

q.put_end (idle, ocurrent)
END
END of sc_recv

END of MODULE sc_procs,

/* not ready to receive %/
{ special for 1o done }

{ create a dummy process }

{ insert the message .)

{ vaiting to send . }

{ put on 1dle queue }

{ allow io_done to continue }

/* save message Y
/* waiting to send L 74
/®* suspend current 74

/* receive a message %/

/* £ind a process trying to
/% if there is one L 74

/* transfer the nmessage %/

{ it not from dunay process }
{ enable sending process }

/* snadle current 74

VA wni;ing to receive W
/* current now idle LY

— o

230 ol s — =

BIBLIOGRAPHY

[Brin78]} Brinch Hansen, P., "Distributed Processes: A Concurrent Pro-

gramming Concept," Comm. ACM, 21,11 (Nov. 1978), 934-941.

[Flon75) Flon, L. "Program Design with Abstract Data Types," Technical

Report, Carnegie-Mellon Univ., (June 1975).

[GuttB80] Guttag, J., "Notes on Type Abstraction (Version 2),* IEEE ISE,
SE-6,1 (Jan, 1980), 13-23. '

[Hab76} Habermann, A. N., Flon, L., and Cooprider, L., "Modularization

and Hierarchy in a Family of Operating Systems," Comm. ACM, 19,5 (May
1976), 266-272.

[Hoare78) Koare, C. A. R., "Communicating Sequential Processes,"™ Comm.
m’ 21 '8 (Auz. 1978), 666‘677.) !

[Jones77) Jones, A., Chansler, R., Durham, I., Feller, P., and Schwans,
K., "Software Management of (n* -- a Distributed Multiprocessor,»

National Computer Cornference Proceedings, NCC 1977, 657-663.

[Lamp80) Lamport, L., "The Hoare Logic of Concurrent Programs,"” Acta
Informatica, 14,4 (June 1980), 21-37.

[Ledg77] Ledgard, H., and Taylor, R., "Two Views of Data Abstraction,"
Comm. ACM, 20,6 (June 1977), 382-384.

{Lisk75]) Liskov, B,, and Zilles, R., "Specification Teehnigques for Data
Abstractions," IEEE TSE, SE-1,1 (Mar. 1975), 1-

(Lisk77) Liskov, B., Snyder, A., Atkinson, R, and Shaffert, C,,
nAbstraction Mechanisms in CLU," Comm. ACM, 20,8 (Aug. 1977), 56u4-576.

-27-

——
PO,

{May79) May, M. D., and Taylor, R. J. B., The EPL Programping Manual,
Distributed Computing Project Report No. 1, Department of Computer Sei-
ence, University of Warwick, Coventry, England, (1979).

[Morr80]) Morris, J., "Programming by Successive Refinement of Data

Abstractions," Software - Practice and Experience, 10,4 (1980), 249-263.

[oust80] Ousterhout, J,, Scelza, D., and Sindhu, P., "Medusa: An Experi-
ment in Distributed Operating System Structure," Comm. ACM, 23,2 (Feb.
1980), 92-105.

[Par72A) Parnas, D. L., "A Technique for Software ModuleA Specification
with Examples,” Comm. ACM, 15,5 (May 1972), .330-336.

[{par72B] Parnas, D. L., "On the Criteria to be Used in Decomposing Sys-—
tems into Modules,™ Comm. ACM, 15,12 (Dec. 1972), 1053-1058.

{Par76A1 Parras, D. L., "On the Design and bevelopment of Program Fami-
lies," IEEE TSE, SE-2,1 (March 1976), 1-9.

{Par76B)] Parras, D. L., Handzel, G., and Wurges, H., "Design and Specif-
ication of the Minimal Subset of an Operating System Family,™ IEEE ISE,
SE~2,4 (Dec. 1976), 301-307.

{Par79] Parnas, D. L., "Designing Software for Ease 'of Extension and
Contraction,” IEEE ISE, SE-5,2 (Mar. 1979), 128-137.

[Pope77?]) Popek, G., Horning, J. J., Lampson, B. W., Mitchell, J., and
London, R., "Notes on the Design of EUCLID," Proc. Language Design for
Reliable Software, SIGPLAN Notices, 12,3 (March 1977), 11-18.

[Red80) Redell, D., Dalal, Y., Horsley, T., Lauer, H., Lynch, W,
McJones, P., Murray, H., and Purcess, 8., "Pilot: An Operating System
for a Personal C--puter," Comm. ACM, 23,2 (Peb. 1980), 81-92.

[Silb79) Silberschatz, A., "Communication and Synchronization in Distri-
buted Systems,” IEEE ISE, SE~5,6 (Nov. 1979), 542-546. . o

[Wulf74] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Piersor, |
C., and Pollack, F., "HYDRA: The Kernal of a Multiprocessor Operating - -]
System,” Comm. ACM, 17,6 (June 1974), 337-345. E - A |

[Wulf76) wWulf, W., Shaw, M., and London, R., "An Iuntroduction to the .
Construction and Verification of APLHARD Programs,® IEEE ISE, SE-2,4]
(Dec. 1976), 253-265. ‘ H

B L T T TR RS

P

F

Part IV
Extensions to the Programming Language EPL
by

E. BRalkovich

an AwaRe o

[

B

1.0 INTRODUCTION

The programming language EPL [May78, May79, TaylorB0] was developed
for experimental use with distributed computer systems. The language
was designed and implemented for the Digital Equipment Corporation
PDP-11 and LSI-11 computers as part or a distributed computing research
project at the University of Warwick. It was adopted for use in this.
research effort after an initial collaboration between researchers at

the University of Warwick and the University of Connecticut.

The language has been used in two roles by the research activity at
the University or Connecticut:

(1) to define the features of a virtual machine implemented by the

operating system kernel of a distributed computer system, and

(2) to provide a vehicle for exploring and evaluating the program-
ning concepts needed to decentralize and logically distribute func-

tions performed by software in a distributed computer system.

The use of EPL in the these roles led to several suggestions for
language extensions. These extensions were largely motivated by the is-
sues associated with exception handling and task assignment.

The purpose of this report is to document the extensions to EPL
that were proposed and implemented as part of this research effort,
These chzzzes redefine the virtual machine implemented by the operating
system kernel of a distributed computer system so that its features are
application independent, yet sufficient to support the decentralization
of application software., This document should be viewed as a specifica-
tion for the prototype operating system kernel implemented as part of

this research effort and future enhancements to that prototype.

1.1 TASK ASSIGNMENT

EPL can be used to write a single concurrent program whose

processes can be executed by the computers ot a distributed computer

system. This requires a policy for task allocation that governs which

computer will be assigned to execute a particular process.

Several approaches to the problem of task allocation in distributed
computer systems have been summarized in [Chu80). The allocation of
tasks is sensitive to the flow of information between processes, and
thus depends on the characteristics of the application. These ap-
proaches to allocaticn are futher complicated by constraints imposed by
fault-tolerance objectives., For example, it may be required that redun-
dant processes ngt be ailocted to the same computer, These considera-
tions suggest that task allocation in real-time systems is strongly
dependent on the nature of the application. Thus, a description of the
desired allocation should be possible at the level of the application.

tion of processes to computers could be expressed as part of the appli~

cation code. Initial versions of EPL deferred the allocation of f.
processes to the virtual machine implemented by the operating system
kernel supporting EPL. The language was revised so that the virtual
machine assumed by EPL programs provides only application independent
services related to interprocess communication and synchronization. In
the new version of EPL, language features are supported that ailow the
application programmer to specify the assignment of processes to comput-

ers in a distributed computer system.
1.2 EXCEPTION HANDLING

A primary responsibility of the software for a distributed computer i
system is the management of failures and reconfigurations of the comput- !
er system, One way of achieviing this objective is to wuse algorithms
that are logically distributed [Jones80] or decentralized. Examples of
such algorithms [LeLann74] generally prescribe the response required of
an application to isolate and recover from a detectable fault. In order
to support experimentation with decentralized software, EPL was extended
to define a virtual machine that was capable ot detecting of reporting

' i With this objective in mind, EPL was modified so that the alloca-

e b ke £ e, T o T e

e

H
i
I
]
:
)
.
i

l
{
l
l
|
l
|
l
|
i
|
l
l
|
|
|
|
|
|

faults, These extensions allow the virtual machine concepts of EPL to
be used to assess the value of these programming concepts in decentral-
izing software, the performance of decentralized software, and the im-

plementation issues associated with the virtual machine.

The extensions to EPL were chosen so that the virtual machine de-
fined by the language provides only fault detection and reporting
features that are application independent., The virtual machine is as-
sumed to make no attempt at fault isolation or recovery since these
responsibilities fall in the scope of the application. It was assumed
that faults detected by an operating system kernel could be mapped into
failures of virtual machine operations dealing with process interac-
tions. The feasiblity ot this approach for a variety of system archi-
tectures is yet to be assessed and is the subject of future research.
It has only been possible to state initial requirements for fault detec-
tion and to perform & preliminary evaluation of their implementation us-

ing the single system architecture supporting this study.
1.3 OVERVIEW OF THE REPORT

This report documents the extensions to the programming language
EPL. that were proposed and implemented as part of this research effort,
These changes refine the definition of the virtual machine required to
support applications written in EPL and thus have an impact on operating

system kernel functions and their implementation.

The bulk or these language extensions were implemented in a futher
collaboration between researchers from the University of Connecticut and
the University of Warwick. This report is intended to serve as documen-
tation of these changes. Section 2 provides a detailed description of
the changes to the syntax and semantics of EPL, Most of these exten-
sions deal with exeptions occuring during the interaction of processes.
The actual mechanisms for detecting and reporting such errors is assumed
to be the responsiblity of the operating system kernel that implements
EPL. Section 3 identifies types of errors that could be detected by the

(3]

. @

e AR AL 3

ain e m———

operating system kernel for EPL without elaborate hardware support.
Although 1t appears to be possible to implement algorithms for detecting
these errors using the system architecture supporting this study, the
content of section 3 should be viewed as formulating initial require-

ments for future implementations ot the operating system kernel.

Since the following sections assume that the reader is familiar
with EPL, the original EPL report and the virtual machine definition are

included as appendicies.

2.0 LANGUAGE EXTENSIONS

This study assumed that an EPL program wvould have and integrated
view of a distributed computer system (i.e., an EPL program would exe-
cute on a collection of computers rather than a uni-processor). Rather
than writing a collection of EPL programs, one per site, a single EPL

program would be used to control a distributed system.

Figure 2-71 illustrates the ievels of software required to support

such a system design. EPL programs are defined by multiple processes

A
1
]
]
'
]
]
[}

¢]

[y

cr

o

—_
]
]
1
]
]
1
!
U

v

Pal
|
1
]
[}

w

[

[w

~

8

[

!

]

]

]

]

1

!

]

]

)

v

- S S o Y S P A8 D R D G e S S - e = W 0 e e e P G A e o T T S A S D S - T

pl1,11 + oo | pl1,1] | pl2,1]) | ... [m,’] ! «o. | plo,n]

- O - e . - By e e G S G D D e BT R S | S D O e S S R e G D i | S G e e S D B S B S B G G s g G

operating syatem [1] v

- . P - e O - D P D S | - e S AP o | e A e o G - S -

- T £ 2> S T A B S O > . B B P B D P T Y o P P e A W e e B -

Figure 2-1

Levels of System Software

{(p(1,1) ... plm,n]). Each process is assigned to a specific site for

execution when 1t 1s created. =Each site requires an operating system

(4]

kernel to implement processes and their interactions, The operating
system kernels require a communication network in order to coordinate
their actions and to transfer data between processes, The details ot a

prototype of this design are givenn in [Fontaine 80]).

One of the major thrusts of decentralized control is to design and
build software systems that tolerate failures and/or changes in system
configuration. Such algorithms must must be expressed in terms of con-
cepts that allow a programmer to recognize and respond to faults or
changes in the system. This study was specifically intertested in algo-~
rithms that tolerate the loss of a processing site, or that find alter-

native ways ot providing functions and access to information.

The following subsections discuss extensions to the EPL programming
language that are intended to be used in expressing decentralized algo-
rithms, These changes impact both the creation of processes and inter-
process communication. The extensions proposed allow a progrzmmer to
directly control assignment or newly created processes to processing

sites, and to respond to detectable faults occurring when processes in-
teract.

The following subsections will present the changes that have been
made to EPL to accomplish these goals, The discussion of process crea-
tion and deletion will be separated from the discussion of interprocess
communication, Each discussion will present the syntax and semantics of
new concepts, and will discuss how the concepts were implemented for the
LSI-11. Generally, the extensions have tried to preserve much of the
flavor of EPL.

2.1 PROCESS CREATION AND DELETION

In EPL the ACTOR statement is used to generate new processes, Each
process (or actor in EPL terminology) is autonomous-and may be supplied
with initial parameter values, In many cases, these parameter values
specify other processes that will interact with the newly created pro-
cess, It is this requirement that motivates the concept of a parallel

(5]

oo

creation in which two or more processes can be created and made aware of
each other through initial parameter values,

The current BNF of EPL specifies an actor declaraction as follows:
<actor declaration> ::= ACTOR <actor> { , <actor> } #
<actord> ::=z <{identifier> : <tertiary> :: <{command)>

The scope of the identifier used to name a newly created process is lo-
cal to the statement containing the actor declaration statement. The
actor declaration returns a value equal to the name ot the newly created

process(es) when used as part of an expression. Process terminate when
there are no further commands to execute,

Four extensions were made to the language concepts dealing with
process creation and deletion. First is the option to specify the site
of creation for a new process, It is desirable, for reasons of relia-
bility and task allocation to specify that processes be executed at
specific sites of the system, This change makes an aspect of the com=-
puter system architecture visible to the EPL program. However, it tends
to make the functions of the operating system kernel application in-
dependent, since there is no generally acceptable task allocation policy
that can be implemented by an operating system kernel, The second ex-
tension is the option to specify a response if the operating system ker-
nel detects a failure to correctly create and initialize a new process,

Detectable failures are discussed in section 3.

The remaining extensions were motivated by frequently used program-
ming constructions in EPL. The first of these allows a parent process
to specify its name as a parameter when creating processes, The second

of these allows a process to specify its termination at an arbitrary
point 1n its execution.

2.1.1 Syntax and Semantics

The following new key words have been added to the languge: CPU,

(6]

FINISH, ONFAILURE, and SELF. FINISH defines an additional command that
can be used to terminate a process at arbitrary points, SELF defines a
constant whose value is the name of the process.

The syntax of actor declarations has been extended as follows:

<actor declaration> ::= ACTOR <actord> { , <actor> }* { ONFAILURE
{tertiary> }

<actor> ::= <identifier> { CPU <tertiary> } : <tertiary> :: <com~
mand>

+»The site of each new actor may be specified separately. Any failure to
create or transmit initial parameter values to a new actor will cause
the tertiary following the ONFAILURE statement to be executed immediate-
ly. If an ONFAILURE tertiary is not specified on a fault is detected

the default response 1s to terminate the creating actor,

Figure 2-2 fllustrates the semantics of this statement. It showa a
number of sequential create operations used to allocate space for in-
stances of simulaneously created processes. Following that are an equal
number of run operations that transmit initial parameter values to these
newly created processes and subsequently enable them for execution. The
failure of any of these operations transfers control the the code for
the tertiary following the ONFAILURE statement. If this option 1s not
specified and & failure occurs, a FINISH command is executed. If all
operations are successful, or if the tertiary following the ONFAILURE

does not terminate the process or redirect control flow (i.e, LOOP or
BREAK), then the command following the ACTOR declaration is executed.

S AP AT N e e g et T 95 et TR,

IR

2.1.2 Implegentation

The LSI-11 implementation of these concepts continues to use the
following the operating system kernel functions to implement the crea-

tion of new processes:

{7}

!
create process 1

failure? (yes) >
create process m

failure? (yes) >

transmit parameters to process 1

failure? B et § 1-1-) [T S ———
i

transmit parémeters to process m

faiiure? ------- (yes)mmmnmaeaa ~—>

{ execute tertiary following ONFAILURE
|

'<-- - !

]
execute n?xt command
1

Figure 2-2

Semantics for Process Creation

screate: allocate space for and return the name of a new process

srun: transmit initial parameters to a new process and make it
ready to execute

The LSI~-11 implementation of these functions has modified the format and
interpretation of parameters that are passed between a process and the
operating system kernel. Each process continues to use a single data
segment whose length constant and known at the time the process is
created. The first word of the segment is assumed to be initialized by
the operating system kernel with the name of the process, The keyword
SELF refers to the contents of this location. The base of the data seg-
ment is defined by the value of r0. When the operating system kernel is

(8]

e e e =

e

called to create a new process or to transmit initial parameter values
to a created process, the value of ri1 is a displacement in the data seg-
ment locating the parameters describing the operation. The process as-
sumes that the operating system kernel will return any results starting
at this displacement. When the operating system kernel returns control
to the process, the process assumes that the success or failure of the
operation is signalled by the value of r1. A value of -1 (0177777) in-
dicates success; a value of 0 indicates failure.

Figure 2-3 illustrates the process data segments before and after

the operating system kernel has been requested to create a new process,

“act
cpu actor
'
- - - - r'1 - - - an unws - =
self ! self self
wecmmnwe] =r0 mecmeee] €=r0) |e—ceme- <-ro
before after after
creating actor created actor
Figure 2-3

Data Segment Contents When Creating a New Process

The parameter "cpu" specifies the index ot the CPU assigned to execute
the new process, A negative value indicates that the EPL program has
not specified an index. The parameter "act" specifies the address of
the first executable instruction of the code defining the newly created
process, The general structure of a code segment is the seme as that of
previous implementations and is discussed in [Fontaine 80]. The parame-

(9]

e iy -~

ter "actor® is a result returned by the operating system kernel and
specifies the name of the newly created process.

Figure 2-4 illustrates the process data segments before and after
the operating aystem kernel has been requested to transmit initial

parameter values to a newly created process. The parameter "dst" speci-

i
pln) !
p[1] {

n —————— i
———eeoe plm] ¢
dst —————— N
! p(1]
o r1 - e o - - - - - - .-
self ! self self self
cnvanea{ =10 ——————— {=-rd cmmmee~ | =rQ —memeaa! {=r0
before after before after r
t
creating actor created actor V
'
¢
Figure 2-3 X
Data Segment Transmitting Initial Parameters to a Newly Created Process ’

fies the name of the new process waiting to receive initial parameters,
The parameter "n" specifies the number of parameters to be transmitted,
The parameters pl[1] ... p{n] are the values to be transmitted. The |
parameters p(1] ... p{m] are the values that are received to initialize §
the new process, The value of "m"” is that specified in the code segment

of the process [Fontaine 80].

2.1.3 Example

Hoare [Hoare79] shows that processes can be used to encapsulate
elements of a data structure so that the collection of processes
representing a single instance of a data abatractions (such as the small
set of integers) can be logically distributed among the elements of a
distributed computer system. In EPL, & process is created for each ele-
ment of the information structure. Logical distribution of the result-
ing software structure suggests that adjacent elements of the data
structure be resident at separate processing sites. The code fragment
shown in figure 2-4 is intended to suggest how EPL language features can
be used to achieve this goal, In this example; an attempt is made to

LET [this.cpu, max.cpul = [...]

n := this.cpu

REP
n := (n REM max.cpu) + 1
ACTOR a CPU n : {...] :: act,name ONFAILURE LOOP
BREAK []

PER

Figure 2=4

Example of Process Creation Features

create the new process starting at the next available processing site.
Should the attempt to create the process fail, the algorithm continue
trying to create the new process at a site other than its own. The site
of the parent process is selected only as a last resort and is assumed

(11}

to always be able to create a new process,
2.2 INTERPROCESS COMMUNICATION

The processes of EPL programs interact by transmitting and receiv-
ing messages. The message transmission primitives are synchronous, in
that both the source and destination of a message must issues commands
to send and receive data before the communication takes place. Thus,
there is no requirement for the operating system kernel to buffer mes-
sages, This same mechanism also serves as the only synchronization dev-

ice available to processes,

There are five commands that implement the transmission of data
between processes: REC, RECF, REPLY, SEND, and procedure call. The

current BNF specifies these message commands as follows
REC { <identifier> : } <idlist> THEN <{tertiary>
RECF <secondary> : <idlist> THEN <tertiary>
REPLY <tertiary>
SEND <command> : <{tertiary>
<identifier> [<parameters)>]

The REC command specifies that the process will wait to receive a mes-
sage from any source, The name of the source is optionally returned in
the identifier. The scope of the identifier and the idlist is the ter-
tiary following the keyword THEN. The RECF command indicates that the
process will wait to receive a message from a specific source. The
scope of variables is identical to that of the REC command. The REPLY
command specifies that the process will wait to send a reply to a pro-
cess, The destination of the message is the source of the message re-
ceived in the smallest textually enclosing REC command. The SEND com-
mand indicates that the process will wait to send a message to a specif-
ic destination, The procedure call is a language concept for a commonly

occuring programming construction used to implement procedure calls, It

has the effect of first SENDing a message to the destination named by
the identifier and them immediately RECFing a reply from that process.

A common extension was made to each of these language concepts
dealing with interprocess communication, This change is the option to
specify a response if the operating system kernel detects a fajlure in
sending or receiving messages, The detection of such failures is dis~

cussed in a later section,

2.2.1 Syntax and Semantics

The key word ONFAILURE as also been used in this context to delimit
commands that define the response to failure. Each of the statements
dealing with interprocess communication was modified to include an op-
tion aspecifying such response. The syntax of the language has been ex-
tended as follows

REC { <identifier) : } <idlist> THEN <tertiary> { ONFAILURE <{terti-
ary> }

RECF <(secondary> : <1dlist> THEN <tertiary> { ONFAILURE <tertiary>
}

REPLY <tertiary> { ONFAILURE <tertiary> }
SEND <command> : <tertiary> { ONFAILURE <tertiary> }
<identifier> [<parameters>] { ONFAILURE <tertiary> }

Any failure to transmit and/or receive values from another process will
cause the tertiary following the ONFAILURE statement to be executed im-
mediately. If an ONFAILURE tertiary is not specified and a failure 1is
detected, the default action is to terminate the transmitting or receiv-
ing process. The scope of variables has been extended to include the
tertiary following the key word ONFAILURE. The sehmantics of the REC,
RECF, REPLY, and SEND commands is shown in figure 2-5. 1In each of these
cases, a detectable failure causes the tertiary following the ONFAILURE
key word to be executed. If the ONFAILURE option is not specified and a

!
send, rec or recf operation
failure? —vecee-(yes)emme-wa ———D
execute tertiarT following ONFAILURE
<

execute n?xt comnmand
]

Figure 2-5
Semantics for the REC, RECF, REPLY, and SEND Commands

fallure is detected, then the process is terminated. Figure 2-6 1llus-

trates the semantics of the procedure call command, This command re-

]
send opération

fallure? —me--m-s (yes)—r=cmccuua -—>i
recf operation
failure? ------- (yes)emeonccaaas ->
execute tertiary following ONFAILURE
emeermmeeemmeeeeeee B
execute next command
! Figure 2-6
Semantics of the Procedure Call

quires the transmission and receipt of a message by the process execut-
ing the command, If either the tranamission or the receipt of a message
detects a failure, then the ONFAILURE tertiary is executed. No attempt

is made to distinguish between failures occurring during transmission
and reception, If the ONFAILURE tertiary is not specified, and either

component of the command fails, then the process is terminated.

2.2.2 Implementation

The LSI implementation of these concepts continues to use the fol-
lowing operating system kernel function to implement the transmission of
messages due to a SEND, REPLY, or procedure call

ssend: send a message to a specified process

The REC and RECF commands use a modified forms of an earlier operating
system function., These EPL commands are translated into distinct kernel
functions. This was done to relax a previous compiler limitation on the
names that could be used to represent processes. Specifically, the name
0 can not be used in previous implementations of the language. The REC
and PECF are now respectively implemented by the following by the fol-

lowing operating system kernel functions
srec: receive a message from any source

srecf: receive a message from a specified source

The LSI-11 implementation of these functions has modified the for-
nat and interpretation of parameters that are passed between a process
and the operating system kernel. When a process wishes to send or re-
ceive data, the value of r1 is used as a displacement in the data seg-
ment that identifies the location of parameters describing the opera-
tion. The process assumes that the operating system kernel will return
any results starting at this displacement. When the operating system
kernel returns control to the process, the process assumes that the suc-
cess or failure of the operation is signalled by the - value of ri, A
value of -1 (0177777) indicates success; a value of 0 indicates failure.

Figure 2-7 1llustrates the process data segments before and after

the operating system has been requested to transmit or receive a mes-

sage. The parameter "dst" specifies the destination of the message to

- o - - o - - - - - -

- o o o - - - - - = . - - - o -

—--
-
1
—rae
-
1

------- {~rg ~emmmne| {-r) ——====w | £-r0 —eemema] £=r0
before after before after

transmitting process receiving process

Figure 2-7

Data Segment for Processes Transmitting and Recelving Messages

be transmitted. The parameter "n" specifies the number of parameters to
be transmitted to the destination process. The parameters p[t1] ... p[n] r
are the values to be transmitted to the destination process. The
paramter "src" specifies the source of the message in the case of the

srecf function of the operating system kerrel, 1Its value is not inter- i

]]
]]
1]
[~ 1
[] [
] [
] [
B

[]
ke |
—)
-
L]

1

]

preted by the srec function of the operating system kernel. When the !

kernel functions of srec and srecf complete, the value of "src" the name

1

i4

of the process that sent the message. The parameter "m" specifies the 4
number of parameters that the process expects to receive, The parame~ s
i

ters p[1] ... p[m] are the values received by the destination process,

2.2.3 Example

(16]

b

__..-....-.._..-__-....___]

Consider a software structure in which several identical processes
are available are available to perform a particular function. If these
processes are resident at separate processing sites, then the function
provided by these processes has been replicated. Should one of the
processes become inaccessable, then another process can be selected to

perform the function,

Figure 2--8 illustrates how the EPL language extensions can be wused
to express such a software structure. The initial portion of the code
shows the creation of multiple instances of a function, There 1is one
instance per processing site, The process names are assigned to ele-
ments of a vector f. The latter portion of the code shows how the func-
tion can be used. A default (0) instance of the function is referenced.
Should it be inaccessable, then the remaining instances of the function
are accessed until an instance successfully provides results, Should
all instances of the function become inaccessable, then the calling pro-

cess terminated.

This example 1is trivial, in the sense that the function is assumed
to produce outputs that are only a function of its inputs. A more im-
portant case occurs when the function is assumed to produce outputs that
depend on its internal state. Replacating state-dependent functionality
requires significantly more complicated communictions between processes
than those used to implement a function call. The principles for

designing such algorithms are themselves the subject of future research.
3.0 FAULT DETECTION

The language extensions presented in section 2 define a virtual
machine that provides a specific format for reporting detectable errors
to an application program (written as an EPL program). This format al-
lows any process of an application program to determine if an interac-
tion with another process succeeds or fails. This approach assumes that
algorithms implemented as hardware or software (of the operating system

kernel) can detect and isolate low-level errors, and that these errors

(171

LET £
LET i

VEC size

H
o

// initialize the vector f to the names of all processes capable

// of providing the same software function

i:=0

REP
f£1i := (ACTOR a CPU 1 : [...] :: act.name)
P24+ 1
IF 1 = size THEN BREAK [] FI

PER

// example of function use
1 :=0
REP
output,.parameters := fl!i ([input.parameters] ONFAILURE (
1 := 1 + 1
IF i = size THEN FINISH
ELSE LOOP FI
)
BREAK []
PER

Figure 2-8

Replicated Functions

can always be mapped into the failure of a virtual machine instruction

1
—_
[%]
[

¥

e Sme it

governing process interactions,

This section of the report will present detectable errors that can
be mapped into fallures uf the virtual machine instructions discussed in
the previocus section. Several further assumptions are made inorder to
1imit the scope of this discussion to fallures that are clearly the
responsiblity of the operating system kernel functions implementing

these virtual machine operations. These assumptions are:

(1) the hardware of the distributed computer system is based on =a
direct interconnection structure [Anderson75) whose implementation

is decentralized (e.g., Ethernet [Metcalf761]),

(2) detectable hardware errors render an entire processing site

unusable,

(3) faults detected within a single process (e.g. addressing error)

are either recovered by the process or cause the process to ter-

minate.

The first of these assumptions eliminates the need to cc:sider elaborate
routing algorithms designed to recover from failures of paths in a com~
munication network. The second assumption 1is overly strong. It is
designed to simplify and focus the error detection algorithms of a sin-
gle computing cite to those required to support the interaction of com-
puting sites in a distributed system. The third assumption makes a pro-
cess responsible for only its own behavior and provides a uniform way of

recovering from faults that directly impact only one process.

Given these assumptions, the following section (3.1) discusses how
process interactions can fail, Given these modes of failure, section

3.2 discusses some simple approaches to implementing _fallure detection

and reporting.

3.1 FAILURE MODES

The fallure modes of process interactions can be systematically ex-

1195

|
1
?
|

amined by considering each of the virtual machine operations defined by
EPL. The analysis of failure modes also assumes a kernel-level protocol
[Balkovich 80] that is symmetric between sending and recelving
processes, I.e., either the source or destination may initiate a com-

munication and enter a waiting state until the other party is ready to
complete the communication.

This study approaches response to failure at the system level rath-
er than at the level of individual processing sites or processes. The
unit of hardware failure is a complete computing site, and the unit of
software failure is a complete process, Loss of a processing site

reéults in the loss of zero or more active processes.
3.1.1 Interprocess Communjecation

Communication between processes is defined by three virtual-machine

operations: SSEND, SRECF, and SREC. These operations allow a process to '

transmit a message to a specific process, and to receive a message from

‘ ' a specified or unspecified process. Each of these operations may fail

in one of the following ways:

(1) the source or destination of the message is invalid. This may
result from a programmer error (forging a process name) or from
data that becomes corrupted when transmitted between processes

(yielding «n undeefined process name),

(2) the source or destination process of the message has terminat-
ed,

(3) the site of the source or destination process fails before com-

munication is initiated, or

(4) the site of the source or destination process fails after the

process initiating the communication enters a waiting state,

B e e e bty e 4

3.1.2 Process Creation

Creation of a new process is defined by two operations: SCREATE and
SRUN. These virtual machine operations allow an application to allocate
space for a new process and to transmit initial parameter values to that

new process, These operations may fail in the following ways:

(1) the site ot creation or the destination process for parameters
is invalid,

(2) the site of creation does not have sufficient resources to

create the specified process,

(3) The site of creation fails before the creation was requested,

or

(4) the site of the new process fails after creation of the new

process, but before parameters are transmitted.

3.1.3 Issues

The problem of invalid process names can be approached in several
ways. The simplest method is to validate that a named process has been
created and that it has not yet terminated. A more comprehensive solu-
tion would be to treat process as capabilities [Denning76]. Using this
approach one can validate both the names of processes and the virtual
machine operations involving them. The use of capabilities was not ex-
plored as part of this work since the approach would require significant
revisions to a language 1like EPL to restrict process interactions so

that capability lists could be constructed and maintained,

Although there are several ways in which an interaction of
processes can fail, the virtual machine supporting EPL is not used to
distinguish between them, For example, any failure during the "simul-
taneous™ creation of processes results in a failure to create all
processes, This decision to not descriminate failure modes was based on

the view that processes should be autvnomous objects with little under-

[21]

standing of the internal state of other processes, If the need to dis-
tinguish the cause of failures becomes important, alternative language
constructions are possible using the virtual machine operations that
have been defined. At present, these new programming concepts of EPL,
and constructions that can be generated using them, form a starting
peint for further evaluation of the programming concepts needed to de-
centralize software.

3.2 DETECTION METHODS AND RESPONSE TO FAILURES

Each failure mode can be detected using several approaches, Furth-
ermore, each detectable error can be responded to in more than one way
at the operating system kernel level. This section discusses the alter-

natives for each of the failure modes that have been identified,

3.2.1 Invalid Site or Process Identification

An invalid site specification is possible with all operations in-
volving proéess creation or interprocess communication. As noted ear-
lier, this may be the result of a programmer error or data that was cor-
rupted during transmission between sites and subsequently used to iden-
tify a process,

An invalid site identification can be detected by the 1link-level
communications software of the operating system kernel. Site addresses
can be screened prior to transmission of kernel-level messages. An in-
valid site address should be reflected to the kernel-level software as a

failed atttempt to transmit a kernel-level message.

An invalid process identification can only be detected by the
operating system kernel receiving a kernel-level message. Screening for
valid process identifiers can be centrally performed by the link-level
software supervising the receipt of kernel-level messages. A kernel or
link-level protocol involving acknowledgements is implied if such

failures are to be made known to the site transmitting the message.

[2e;

A —

T e o A

Lo

-

vyt

The response to an invalid site or process identifier is the
responsiblity of the site transmitting the kernel-level message. The
alternative responses to such failures are: (1) causing the specified
virtual machine operation to fail at the application-level, and (2)
causing the process that supplied (to the kernel) the invalid parameter
to involuntarly terminate. The latter response assumes tha£ the invalid
parameter is a symptomatic of erronous process behavior and forcibly
terminates that behavior., The former view assumes that the application
programmer may wish to specify an algorithm for recovering from such
failures (the default algorithm is to terminate the process), The first
approach is more flexible and therefore perferable in an experimental

systen,

3.2.2 Communication with a Jerminated Process

It is possible a process that has terminated is the source or des-
tination of a message in a SSEND or SRECF operation. This may be the
result of a programmer error at the application—ievel. This may also be
the result from failures such as those described in the preceeding sec-

tion, when the response to failure is to terminate a process,

Process termination can occur at one of two times with respect to
communication, A process may terminate prior to being named as the
source or target of a communication with another process. A process may
also terminate after being named as the source or target of a communica-
tion, but before that communication is complete. This case arises when
a multiple~message protocol is used to implement kernel-level interac-
tions., An example of such a protocol is given in [Fontaine 80]. 1In the
latter case, the partner in the communication is in a blocked state.

A process terminating prior to being named as the- source or target
of a communication by another process can be detected by the operating
system kernel supervising the terminated process., Detection occurs when
the first kernel-level message arrives indicating that another process

wizhes to communicate with the terminated process. This assumes that

the kernel-level protocol implementing interprocess communications is
symmetric for the receiving and sending sites, When a receiving process
initiates the interaction (srecf), it must be able to interogate the
sender's site to determine if the sending process has terminated. This
requires a more complex protocol than that described in [Fontaine 80].
Since detection of this fault depends on interogation of process state
information, detection should take place in the kernel-level routines

dealing with the sending and receiving of application-level messages.,

A process that terminates after being named as the source or target
of an incomplete communication requires a more complicated response,
Process(es) blocked, waiting to communicate with the terminating pro-
cess, muat be notified of the termination., Since detection of this
fault depends on interogation of process state information, detection
should take place in the kernel-level routines dealing with the termina-
tion of a process, Detection requires that a message be broadcast to
all sites with processes (potentially) waiting to communicate with the
terminated process, notifying them of the process termination, If a
process termina‘«s before or during an interaction with another process,
it should result in a rfailure of the corresponding virtual machine in-
structions (i.e., ssend, srecf). This allows an application-level pro-

gram to respond to failures by rerouting appilication-level interactions.

3.2.3 Site Failures

It is possible to specify a site that has failed as the source or
destination of any kernel-level message, A site may fail at one of two
times with respect to virtual machine operations implemented by the
operating system kernel. The site may fail orior to being named as the
target of the kernel-level message initiating an interaction. The site
may also fail after the process initiating the interaction has been
placed in a blocked state pending a response of a process at the failed
site (e.g., SSEND, SRUN, SCREAT, and SRECF operations).

A site that fails prior to being named as the target of a kernel-

level message can be detected by the operating system kernel supervising
the process initiating the communication. Detection can be accomplished

by a 1link-level protocol when the first kernel~levecl message 1is
tranamitted to the falled site, This requires a link-level protocol
based on acknowledgements and time~outs.

A site that fails after processes at other sites are in states
walting for responses is more complicated, This type of error must be
detected by the sites supervising the blocked processes., Two approaches

are possibdble, A blocked process can be allowed to remain in a blocked
state for a fixed period of time., Failure to obtain a response in a
fixed amount of time is assumed to indicate that the other site associ-
ated with the operation has failed. Alternatively, adjacent sites can ;
be periodically interogated to determine if they have failed. The first
approach assumes that a suitable time-out interval can be defined for
all waiting processes. Since this depends on the nature of the applica-
tion, it must be chosen large enough to assure that site failures will
not be detected when the application requires an extensive amount of !
time before responding to a request. This approach is undesirable be- '
cause it provides very poor response to fallures and because 1t requires
a significant overhead to administer timers associated with waitiné
processes. The second approach can provide a more prompt response to
failures and does not require administeri..g timers for each waiting pro-
cess, However, it does introduce an overhead associated with the

periodic interogation of sites.

The response to a site failure is the responsibility of every other

e e ——— B e o el

site of the system. The only reasonable response to a such a failure is
to cause all subsequent virtual machine operations and any blocked vir-

tual machine operations associated with that site to fail. This allows

the application programmer to specify an algorithm for recovering from

such failures (the default algorithm is to terminate the process re-

questing the operation).

3.2.4 Insufficient Resources

A request to create a process may be find that there are insuffi-
cient resources to create the process at a particulab site. In the
design described in previous sections, this may be the result of exhaus-
ing process identifiers or exhausting the memory available for process

data segments.

Insufficient resources can be detected by the operating system ker-
nel at the target site of the creation. Since detection requires access
to local state information, detection should be the responsibility of
kernel-level routines. This type of failure should be reflected to the
operating system kernel requesting the creation by extending the
kernel-~-level protocol to include negative acknowledgements of the crea-

tation request.

The response to insufficient resources is the responsibility of the
operating system kernel administering the parent process, The appropri-
ate response is to cause the virtual machine operation to fail. This
assumes that the application programmer will specify an algorithm for
recovering from such failures (the default algorithm is to terminate the

parent process).

4.0 BIBLIOGRAPHY

[Anderson75] Anderson, G.A., "Computer Interconnection Structures: Tax-
onomy, Characteristics, and Examples", ACM Computing Surveys, (7,4), De-
cember 1975, pp. 197-213.

[Chu80] Chu, W.W., et.al., "Task Allocation in Distributed Computing",
Compyter, (13,11), November 1980, pp. 57-69.

[Denning76] Denning, P.J., "Fault-Tolerant Operating Systems", ACM
Computing Surveys, (8,4), December 1976, pp.359-389.

[Fontaine80) Fontaine, S., An Qperating Svstep Kernel for a Distribute
Computcr System, Technical Report Department of Electrical Engineering

Y

and Computer Science, University of Connecticut, Storrs, CT, (in

preparation).

[Hoare79] Hoare, C.A.R,, "Communicating Sequential Processes®,

Communications of the ACM, (21,8), August 1978, pp. 666-677.

[JonesB80] Jones, A.K., and K. Schwans, "Experience Using Multiprocessor

Systems: A Status Report™, ACM Computing Surveys, (11,2), June 1980, pp.
121-165.

[LeLann7X4] LelLann, G., "Distributed Systems ~ Towards a Formal Approach"
Proceedings of the IFIP 74 Congress, North Holland, 1977, pp. 155-160,

[May78] May, M.D., R.J.B. Taylor, and C. Whitby-Strevens, "EPL ~ An igi-

perimental Programming Language", in JEEE Conference on Trends and
Applications: Distributed Processing, Gaithersburg, MD, May 1978, pp.
68~T1.

[May79] May, M.D., and R.J.B. Taylor, The EPL Progragming Manual, Report
No. 7, Department of Computer Science, University of Warwick, Coventry,

England, 1979.

[Metcalf76] Metcalf, R,M., and D.R. Boggs, "Ethernet: Distributed Packet

Switching for Local Computer Networks", Communications of the ACM,
(19,7), July 1976, pp. 395~404.

[TaylorB0] Taylor, R.J.B., and J.R.N. Lowe, Notes on Programming in EPL,

Department of Computer Science, University of Warwick, Coventry, Eng-
land, (in preparation),

4.0 BIBLIOGRAPHY

{Anderson75] Anderson, G.A., "Computer Interconnection Structures: Tax-

onomy, Characteristics, and Examples", ACM Computing Surveys, (7,%), De-
cember 1975, pp. 197~213.

(ChuB0] Chu, W.W., et.al.,, "Task Allocation in Distributed Computing”,
Lonmputer, (13,11), November 1980, pp. 57-69.

o oemm ous oms =N A ’

[Denning?76]) Denning, P.J., "Fault-Tolerant Operating Systems®™, ACM
Computing Surveys, (8,4), December 1976, pp.359-389.

[Fontaine80] Fontaine, S., An Qperating System Kerpel for a Distribute
Lomputer System, Technical Report Department of Electrical Engineering
and Computer Scilence, University of Connecticut, Storrs, CT, (in

preparation).

[Hoare79] Hoare, C.A.R,, "Communicating Sequential Processes",

Communications of the ACM, (21,8), August 1978, pp. 666-677.

[Jones80) Jones, A.K., and K. Schwans, "Experience Using Multiprocessor

Systems: A Status Report"™, ACM Computing Surveys, (11,2), June 1980, pp.
121-165.

[LelLann74] LeLann, G., "Distributed Systems - Towards a Formal Approach"

Proceedings of the IFIP 74 Congress, North Holland, 1977, pp. 155-160.

{May78] May, M.D., R,J.B. Taylor, and C, Whitby-Strevens, "BPL - An Ex-
perimental Programming Language", in JEEE Conference on Irends and

Applications: Distributed Progessing, Gaithersburg, MD, May 1978, pp.
68-T71.
[May79] May, M.D., and R.J.B. Taylor, The EPL Programming Magual, Report

No. 7, Department of Computer Science, University of Warwick, Coventry,

Fngland, 1979.

{MetcalfT6] Metcalf, R.M., and D.R. Boggs, "Ethernet: Distributed Packet
Switching for Local Computer Networks™, Compunications of the ACM,
(19,7), July 1976, pp. 395-404.

[Taylor80] Taylor, R.J.B., and J.R.N. Lowe, Notes on Programming in EPL,
Department of Computer Science, University of Warwick, Coventry, Eng-

land, (in preparation).

(28]

|

Appendix A

DISTRIBUTED COMPUTING PROJECT REPORT #1

The EPL Programming Manual

by

M.D. May and R.J.B. Taylor

Depart=ment of Computer Science
University of Warwick
Covent:y CV4 TAL

May 1979

INTRODUCTION

EPL is an experimental progamming language designed to aid research into
distributed computer systems.

Some of the distinguishing features of EPL are:

An EPL program is expressed as a number of Acts, which are performed
by Actors.

Aciors communicate with each other only by sending messages.

Acts may be nested and Actors can be created by other Actors providing
both hierarchy and parallelism,

The basic data object is a word with no particular disposition as to

type. For example, a word may be regarded as a bit-pattern, a number, $'
or the name of an Actor, No attempt is made to enforce type restric-

tions either at compile-time or at run-time, In this respect EPL has

both the flexibility and pitfalls of machine language.

This manual is not intended as a primer; the constructs of the language are
presented with scant motivation and few examples. To the experienced and dis-
ciplined programmer it is a powerful and useful language but there are few pro-
visions for the protection of naive users.

The language described here is based on that desecribed in "The EPL Program-
ming Manual® by M.D.,May (Sept 1976), which in turn was based on BCPL. The
current version of EPL differs from the original in that several features of the
original have not been implemented and the syntax has been simplified,

Language Definition
2.1 Notation

The syntax of the language is given in an extended Backus-Naur form (BNF).
Nonterminals are enclosed in the sharp brackets '<' and '>', A production rule
consists of:

<nonterminal)> ::= <production®

« " .ctions may contain terminals and nonterminals. A number of symbols with
sp:cial meanings are used in productions. The symbol '|' denotes alternatives.
&) .00ls enclosed in curly brackets '{' and '}' are optional. A star after the
closing curly bracket '}#' denotes that the symbols within the brackets may be
repeated any number of times, or omitted.

2.2 Elements

EPL is a language which manipuiates values. A <value> is any value which
can be represented as a bit pattern in one computer word. 1In various contexts
values are interpreted in different ways, for instance as integers, characters
or pointers to objects.

A value can be explicitly represented in a number of ways, or associated
with an identifier, and these form the elements con which the language operates.

<element> ::= <identifier> | <valued
{value> i1z <number> | <string constant> | <character conctant>
! TRUE | FALSE

An <identifier> consists of a sequence of letters, digits and dots, the
first character of which must be a letter.

A <number> can be represented in several bases. A decimal number consists
of a sequence of decimal digits. All numbers in other bases consist of a '#!'
symbol, followed optionally by a character to denote the base, followed by a se-
quence of digits in that base,

Bases are signified by the following characters:

Letter Base Allowed Digits
B Binary 0 1
0 Octal 0 1 2 3 4 5 6 7T
X Hexidecimal 012 3 45 6 7T 8 9 A B CDEF

If the letter signifying the base is left out, the base defaults to Octal.

The value FALSE is represented as a number and the ropresentation of TRUE
is the logical complement of FALSE,

i ek il

A <string constant)> consists of up to 255 characters enclosed in string
l quotes (™). The character " may be represented only by the pair #" and the
character #* can only be represented by the pair #%,

Other characters may be represented as follows:

N is newline C carriage return
&T is horizontal tab *G bell

%3S is space

*B is backspace

#*p is newpage

The machine representation of a string is the address of the region of
store where the length and characters of the string are packed.

A <character constant)> consists of a single character enclosed in character
quotes ('). The character ' can be represented in a character constant only by
i the pair *', Other escape conventions are the same as for a string constant. A
! character constant is right justified in a word,

2.3 Expressions

All constructs of EPL are defined to return results, so the general syntax
and semantics are described here,

Depending on context a result may be a single value or a multiple value.
Although each construct returns a result, the use to which the result is put
depends upon the environment of the construct. In many cases the result is dis~ 4
carded.

The BNF for expressions is as follows:

[<1hs element> { , <1hs element> }#%]
<identifier> | <identifier> ! <secondary>
<tertiary> { ; <tertiary> }*
(<serial))
REP <serial> PER
IF <(serial> THEN <serial>
{ ELSE <serial> } FI
CASE <serial> IN <case serial> §
{ OUT <serial> } ESAC
<numbered pack> { , <numbered pack> }#%*
<constant> : { <constant) : }* <tertiary>

<1hs elenent>
{serial>
{clause>

<base> ::= <element> | <claused> | <{procedure calld>
<{primary> s:= { <monadic op> }* <base>
{secondary> ::= <primary> { <diadic op> <primary> }#* | <vatd>
<constant> t:= <secondary>
<command> 1= <message command>
| BREAK <tertiary>
| SYS <tertiary>
| LOOP
! <ths)> := <tertiary>
| <secondary>
Ctertiary> := <command>
i [{ <commmand> { , <command> }¥ }]
! <declaration>
<lhs> ::=z <1hs element>
t
t
]
H

{case serial> :
<numbered pack> ::

wnou

The BNF and explanation for <vat>, <declaration>, <message command> and
{procedure call> are given in the appropriate sections.

2.3.1 Primaries

A primary is a base optionally preceded by monadic operators. The monadic
operators are

+ plus
- minus (arithmeticcomplement)
\ not (- al complement)

The result returned by a primary preceded by an oper;tor is a single value.

2.3.2 Seconduries

A secondary 15 a primary optionally followed by a sequence of diadic opera-
tor:; and primaries, A secondury is evaluated from left to right except where

oo

the precedence of the operators dictates otherwise, The following are the diad-
ic operators given in order of precedence, highest (most binding) first.

Operators Comment

! subscription

<, > left shift, right shift

/\ and

\/ or

%, /, REM multiply, divide, remainder

+, -, EQV, KEQV plus, minus, equivalence, not equivalence
<, <=, >, >= less than, less than or equal,

greater than, greater than or equal

=, /= equal, not equal

ANDF and if

ORF or if

The arithmetic operators (+, -, *, /, REM) operate on single values and
yield a single value; overflow is undefined. Divide (/) operates on integers
and yields an integer dividend, while REM yields the integer remainder after
division. Divide and REM operate so that the following equation is always true
whatever the values of a and b,

a=x(a/b)®*ba+aREMD

If both operands are positive the value yielded by REM is positive.

The relational operators (<, <=, >, >=, =,\=) compare their ¢two operands
and yield either TRUE or FALSE. Inequalities (<, <=, >, >=) should not be used
to compare values other than integers and characters.

The logical operators (/\,\/, EQV, NEQV) operate on the whole of their
operands, and on each bit independently to produce a result bit,

The shift operators (<<, >>) yield the left hand operand shifted to the
left or right by the number of places given by the right hand cperand. Vacant
bits are filled with zero,

The subscription operator (1) takes the left hand operand as a pointer to a
VEC or TAB (see 2.4.2) and subscripts it by the right hand operand.

The truth value operators (ANDF, ORF) work in the following ways. For ANDF
the left hand operand is evaluated and if it is FALSE the value yielded is
FALSE, otherwise the value yielded is the right hand operand. For ORF the left
hand operand is evaluated and if it is TRUE the value ylelded is TRUE, otherwise

the value yielded is the right hand operand. The truth value operators are so
called because they can yield a truth value without the whole of an expression
being evaluated.

The result returned by a secondary which contains diadie operators is a
single value.)

2.3.3 Constants

A constant is a <{secondary> which contains only numbers, character con-
stants, names declared in previous constant declarations, TRUE, FALSE and the
operators #, /, REM, + and -.

2.3.4 Tertiaries
A tertiary yields a result which may be
. Empty (written as [J).

. A single value

. A multiple value

The result is normally enclosed in square brackets ([1), but if it is
single value they may be omitted.

A multiple value is either an expression whose result is a multiple value,
or a set of expressions which yield single values enclosed in square brackets.
If a multiple value 1is ylelded in a context which requires a single value (for
instance in a secondary which contains diadic operators or as one of the expres-
sions within a tertiary) the result is the first value ot the multiple value,

The order in which the values of a multiple value are evaluated is not de-~
fined.

2.3.5 Clauses _

Clauses are constructed from serials. The declarations and tertiaries of a
serial are evaluated in sequence, and the result of a serial is the result of
its final tertiary. There are four different types of clause, the simplest is a
serial enclosed in parentheses.

REP PER delimit a serial that is continually repeated until a BREAK is en-

countered within it (see 2.3.6).

The IF and CASE clauses both select an expression to be evaluated, In an
IF clause the serial following the IF is evaluated. If its value is TRUE the
result of the IF clause is the result of the serial following THEN, otherwise it
is the result of the serial following ELSE, or, if there is no ELSE, the result
is not defined.

In a CASE clause the serial follcwing the CASE is evaluated to give a
number which is matched against constants in the numbered packs following the
IN. If a match is found, the result of the CASE clause is the result of the
corresponding tertiary in the numbered pack. If no match is found the result of
the CASE clause is the result of the tertiary following OUT, or, if there is no
OUT, the result is not defined.

2.3.6 Commands

Description of <message command> is left until Acts and Actors are intro-
duced in section 2.5.

BREAK and LOOP are both commands used only in REP PER loops. BREAK <terti-
ary> forces an exit from the loop yielding the result of the tertiary. LOOP
causes execution to resume after the REP and is used to repeat tne loop, Both
operate only on the smallest textually enclosing loop.

Assignrment (:=) allows single and multiple values to be assigned to vari-
ables. Assignments are simultaneous. This means that the entire right hand
side is evaluated and then assigned to the left hand side, the first element of
the multiple value to the first element on the left hand side, the second to the
second , and so on. The left hand side may only consist of variables and sub-
scripted variables,

There are no requirement that the left hand side and the right hand side
have the same number of elements in a multiple assignment. However, if the
right hand side has more elements than the left hand side the surplus values are
ignored in the assignment, If the left hand side has more elements than the
right hand side, the values assigned to the surplus variables are undefined.
The result yielded by an assignment is the result of the right hand side.

SYS causes the tertiary to be passed as parameters to a procedure in the
runtime system, The effect of this command ia implementation dependent.

2.4 Declarations

There are two kinds of declaration in EPL. The CONST declaration intro-
duces constants., The LET declaration, together with the ACTOR declaration, the
parameters of an ACT and the Receive command (which are described in section
2.5), introduces variables,

In EPL the scope of a declaration is the <declaration> in which it appears,
and any subsequent <declaration> and <tertiary> (including any constructs within
them) in the <serial> in which it appears, Acts further restrict the scope of
variable declarations (see section 2.5.1). If an identifier is used again in a
declaration in an inner serial, the scope of the original declaration does not
extend to any construet in that serial after the <{declaration> in which the
identifier is reused., An identifier cannot be declared more than once in a
serial,

The result returned by a declaration is undefined.

GER GAN TN IR OB Gl AN W|mE o - - a TN . I =S EN e =
S
. cr

The BNF for declarations is as follows:

CONST <const decl> { , <const decl> }#
LET <idlist> = <decl pack>

{actor declaration>

<{identifier> = <constant>

{identifier> = <act declaration>

{declaration>

<const decl>

<idlist> HH {identifier)>
[<identifier> { , <identifier> }#]
<decl pack> HH <{secondary>

[<secondary> { , <secondary> }*]
VEC <constant>

TAB <tertiary>

<act declaration>

{vat>

The decriptions of <actor declaration> and <act declaration> are
given in section 2.5.

2.4.1 CONST Declarations

A constant declaration consists of a list associating identifiers
and constants., Within the scope of the declaration, an identifier

may be used only in contexts where the associated constant would
be allowable.

It is also possible to associate an Act with an identifier in a
CONST declaration.

No result is returned.]

2.4.2 LET Declarations ;

The LET declaration declares the names in the <idlist> as
variables., Each variable contains one value and it is initialized

from the <decl pack>. The order in which the variables are
initialized is undefined.

There are further restrictions on the scope of a variable, See
section 2.5.1.

The result is the value of the <decl pack), Z

2.4.3 VEC and TAB

VEC and TAB both reserve contiguous areas of storage which can be
accessed using the subscription operator. Each element of a VEC
or TAB is large enough to hold one value. Noth constructs return
a pointer to the area of reserved storage.

VEC reserves storage in such a way that the first element corresponds
to subscript zero, and the subscript of the last element is given by
the <constant> following VEC.

TAB reserves enough storage to hold the values of the <tertiary>
following it, It is initialized to the values of the tertiary, and
the subscript of the first element is zero. Each value in the tertiary
must be a <constant>.

The effect of assignments to the elements of a TAB is undefined,

The result of a VEC or TAB is undefined.

2.5 Acts and Actors

Programs in EPL are expressed in terms of Actors, which communicate by
sending messages to one another. Actors are created to perform Acts,
and there may be any number of Actors performing the same Act. Actors
start to perform their Act as soon as they are created, and die on 1
completion of their Act.

The BNF for Actors, Acts and Messages is as follows. 5

<act declaration>
<{procedure call>
{parameters>

¢identifier> [{ <parameters> }]
<command)> { , <command> }*

<{message command> :i= REC <message> THEN <tertiary> '
| RECF <message> THEN <tertiary> R
| SEND <message>
! REPLY <message)

<{message> := <secondary> : <{tertiary>

<actor declaration> = ACTOR <actor> { , <actor> }* {

<actor> - <identifierd> : <tertiary> : : <command>]

i
|
ACT <idlist> : <{tertiary> ‘
t
{
{

The definition of <message> is a general form. In specific contexts it is
more restricted as will be shown.

2.5.1 Acts

An Act is a description of a computation, It is declared as

ACT <idlist> : <tertiary>

and this yields a reference to code compiled to evaluate the tertiary. The code
is implementation dependant. The names in the <idlist> are declared as variable
names for the parameters of the act. These parameters are initialized for an
Actor of the Act when the Actor is declared.

An Act further restricts the scope of variable names. An Act cannot refer-
ence variable names declared outside that Act.

2.5.2 Actors

Actors are invocations of Acts. They are declared in ACTOR declarations
which have the form

ACTOR <identifier> : <tertiary> :: <command> { , <actor> }*

The <identifier> is a variable which is initialized to refer to the Actor, The
{tertiary> is used to initialize the parameters of the Act, The <{command) is
the Act which the Actor will perform. It must yield a value which is an Act,

The scope of an Actor variable includes the whole of the Actor declaration
in which it is declared, and in particular it can be used as a parameter of oth-
er Actors, The Actors of an Actor declaration are declared in parallel and are
created simultaneously. This means that several Actors can be declared at once
which know about each other and can send each other messages,

The result is the name of Actor.
2.5.3 Recelive Commands

The REC and RECF commands are used to receive messages, They may appear
anywhere within the body of an Act. When a Receive command is obeyed within an
Actor, its execution is halted until a message arrives (if a message is already
waiting the Actor can continue), The full BNF is:

Ri:C { <identifier> : } <idlist> THEN <(tertiary>

RECF <secondary> : <idlist> THEN <tertiary>

The identifiers in the <idlist> are declared as identifiers exactly as in a LET

declaration, and initialized with the received message, Their scope is the
{tertiary> following the THEN.

The REC command receives messages sent from any other Actor., The identity
of the Actor which sent the message is assigned to the identifier preceding the
colon if it is present., RECF receives a message only from a specified Actor.
This is given by the <{secondary> which precedes the colon.

The »ZC and RECF commands yield the value of the tertiary following the
THEN.

2.5.4 Send and Reply commands

A message is a set of values which is passed from one Actor to another,
Send always waits for a receive., Any value can be passed but some values (for
instance VECs or ACTs) may have no significance at their destination. A special
type of send is the REPLY command. It sends a message to the Actor which sent

the last message to the smallest textually enclosing REC command. The full BNF
is:

SEND <command)> : <tertiary>
REPLY <tertiary>

The message is formed by evaluating the <tertiary>. It is sent to the Actor
given by the command preceding the colon, which must yield a value which is an

Actcr. Becaus2 this Actor is knowwn in the REPLY command it is not explicitly
stated.

The result of SEND and REPLY are undefined
2.5.5 Procedures
A procedure call is of the fornm
<identifier> [<{parametersd>]

It is equivalent to the program fragment :-

SEND <identifier> : [<{parameters>];

... AR ———— - e
' RECF <identifier> : [a, b, ¢, . . . J THEN a, b, ¢, . . .)

The procedure call is used to call Actors which have already been created

and is akin to the use of a Class in a language which provides for data abstrac-
tion.

2.6 Program

At the outermost level an EPL program consists or a sequence of declara-
tions and initializing commands. There may be restrictions on the class of com-
mands that can be obeyed at the outermost level.

2.7 Miscellaneous Features
2.7.1 Conments and Spaces

The character pair /% denotes the beginning of a comment. All characters
from (and including) /* up to and including the character pair %/ will be ig-
nored by the ceompiler,

Blank lines are also ignored.

Space and tab characters may be inserted freely except inside an element, a
system reserved word (e.g. THEN), or inside an operator (e.g. :=) Space or tab
characters are required to separate identifiers or system words from adjoining
identifiers or system words,

2.7.2 Synonymous Symbols

For convience some operators have a number of different representations
They are:-

/\ &
\/ {
\ -
\= =

Discussion of the EPL Dictionary

1. A dictionary is always produced and saved,

2. EPL always tries to read a dictionary.

3. Any CONST declaration at the outermost level is entered
in the dictionary.

a. Manifest Constants are stored as constants
b. ACT3 are assigned a unique global symbol number

4. The unique numbering of ACTS depends upcn serial translation of
the ACTS.

5. An undeclared syrcbol is assumed to be an externally defired,
yet to be compliled ACT. A warning message 1s issued,

6. tssumption 5 mey impose ordering on computations if manifest
constants are scattered through program modules,

7. The main actor 1s the one loaded first. All acts are suffexed
with the empty tertiary, so that if a CONST is executed it
does nothing.

8. The dictionary uses file names to keep track of where symbols
were defined.

9. The dictionary is produced in SYN4 and consumed in TRN6 as well as
vpdatced.,

10. We should restrict compiler to producing load modules only
since execution is dependent on order of loading.

!
i
|
|.‘
|
!

Appendix B

VIRTUAL MACHINE DEFINITION FOR EPL

ECODE
S 1is a pointer to the first free location on the stack,
A points to the base of the actor: (S = €(A!1) initially).

+> is an addition operator whose left operator is zn address
and whose right operand is an integer.

Louad Operations:

LA n 1S := Aln; S 1= S+1
LN n 1S := n; S := S+1
LACT Ln 1S := Ln; S 1= S+1
LGACT GLn 1S := GLn; S = S+1
TRUE 1S := true; S 1= S+1
FALSE 1S := false; S := S+1
LSTR n 1S :z B<string>;S := S+1
C1 ... Cn <string> consists of following n characters
LTAE n 1S := €<tab>; S 1= S+1
Vi ... Vn <tab> consists of following n constants

LVEC n 'S := A +> n; S 1= S+1

Store Cperations:
SA n S 1= S-1; Aln := 1S |
SINDEX S := S=-3; 1(1(S+1) 4> 1(3+2) := I8

Arithmetic Operations: ;
INDEX S 1= S=1; 1(S~1) = 1(1(S=1) +> 18) ‘
MULT S 1=z S-1; 1(S-1) := 1{(S~1) * IS8 K
DIV S 1= S-1; 1(8<1) := 1(S=1) / IS)
REM S 1= S-1; 1(S~1) := 1(S-1) ren !S .
PLUS S 1= S-1; 1{S<1) := 1{S-1) + IS 4
MINUS S iz S-1; 1(S=1) = 1(S=~1) - IS
EQ S iz 5-1; 1(S-1) = 1(8~1) = 1S
NE S 1z S-1; 1(S=7%) := 1(S~1) / 'S |
GR S := 5-1; 1(S=1) := 1(S=~1) > 18 3
LS S := S-1; 1(S=1) := 1(S-1) < IS
GE S = S=1; 1(S=1) := 1(S-1) _ 18 s
LE S 1= S-1; 1(S-1) := 1(S-1) _ 18 i
LSHIFT S := S-1; 1(S=1) := 1(S~1) << I8
RSHIFT S 1= S-1; 1(S~1) := 1(S=1) >> 13
AND - = S=1; Y(S~1) := 1(8S=1) / 'S
OR S := S-1; 1(S=1) := 1(S=1) / 1S
EQV S :=z S-1; 1(S=1) := 1(S~-1) _ IS
NEQV S 1= S-~1; 1(S=-1) := 1(S=1) _ 18
NEG 1(S5-1) := =1(3-1)
NOT 1(S=1) = ~1(S-1)

Miscellaneous Operaticns: '

e o " — e N

JUMP Ln

JT Ln

JF Ln

Ln:

GLn:

SYS Lmn

CASE Ln k
C1: L1
Ck: Lk

STORE

STACK n

Mecssage Operations:

REC Lk nm

SEND Lm n

CREATE Lm n

RUN Lmn

ACT Ln p

goto Ln
S := S-1; if 1S goto Ln
S 1= S~-1; unless IS goto Ln

Ln: // labrlling program

GLn: // labelling program with externally
available label

call sys in runtime system (kernel) with

Aln onwards as parameters,

On failure goto Lm,

Any results will be found on the stack from Al!n on,

S 1= S-1; k cases follow; Ln is the OUT label
if 1S = C1 goto L1

if 15 = Ck goto Lk

directive to optimising code generator
to ensure that items held in temporary
storage are placed on the stack

S := A+n

Receive a nessage on the stack Al(n+1) to Alm.

Aln initially holds the identity of the actor

from which the message will come. If Aln = 0

then the message can come from any actor and

the identity of the sending actor is put there.

Al(n+1) initially holds the number of items to be received,
On failure goto Lk.

The operation implies a STORE.

S = A+m+1

Send items Aln onwards as a message. Aln, Al(n+t)
contain the identity of the actor to which

the message is sent and the number of items in the
message froper.

On failure goto Lm.

S := A+n

S := A+n+1; 1(S-1) := the identity of the actor created
from the act at A!(n+1) on CPU number Aln (if Aln = -1
any CPU may be chosen). The newly created actor has its
own identity as its Al1.

On failure goto Lm,

Exactly the same as SEND except that the destination is
a newly created actor and the message is the
parameterisation of that actor.

Declares an act at label n. Its parameters are Al12 to Alp;
S := A+p+i; and an implied STORE of its parameters is
performed. MNote that A!1 contains name of self,

ittt nitiich

ENDACT Ln Marks the end of an act. Ln is a label for premature
premature termination of the act

END Marks the end of the module.

R SO Y S VR

ek e -

e

Part V

On the Performance of Decentralized Software

by

E. Balkovich and C. Whitby-Strevens

ABSTRACT

Distribution of computing to achieve goals such as enhanced reliability
depend on the use of decentralized software. Decentralization typically
replaces a sequential process by a system of small, concurrent processes
that interact frequently. The implementation of processes and their in-
teractions represents a cost incurred as a result of decentralization.
Performance measurements are reported in this paper for decentralized
software written in a programming language for distributed computer sys-
tems., These performance measurements confirm that low-cost implementa—
tions of concurrency are possible, but indicate that decentralized
software rakes heavy use of run-time functions managing concurrency. An
initial model comparing the performance of a specific decentralized
software structure to its centralized counterpart indicates that these
implementation costs are generally offset by the performance irprove-
ments that are due to the parallelism inherent in the decentralized
structure. The research facilities for continued study of decentralized
software performance are discribed in the summary.

KEY WORDS AND INDEX TERMS

Distributed Computer Systems, Decentralized Software, Decentralized Con-

trol, Performance Measurement and Evaluation, Concurrent Software

|

1 INTRODUCTION

Distributed computer systems are frequently proposed as alterna-
tives to conventional, single computer systems for applications that re-
quire attributes such as high reliability, or incremental system growth.
Most of these system attributes can only be achieved if both software
and hardware are decentralized. For example, hardware reliability can
be improved by using multiple computers to decentralize the computatiom—
al capacity of a system. Unless software for such a system is also de-
centralized, the loss of a specific computer may preclude executing a
crucial software component, causing the system to fail.

Decentralization of software effects both control and data struc-
tures. Approaches involving partitioning, replication, or circulation
of state information are usually applied to decentralized a control al-
gorithm (e.g., [4,5,11]1). Information structures are generally decen-
tralized by representing the elements of the structure as individual
processes {e.q., [9,10]). Generally, a sequential process of a central-
ized inplementation has as its counterpart, a set of interacting con-
current processes in a decentralized implementation, The resulting
software structures can use large numbers of small processes that in-
teract frequently. One concern frequently voiced about decentralized
software is the potentially high cost of implementing large numbers of
small processes.

There is a body of research whose goal is to define programming
languages for distributed computer systems [1,3,7,9,12]. These
languages can be used to express decentralized algorithms that will
hopefully have Jlow-cost inplementations. The language features most
commonly proposed include: (1) the ability to apply concurrency at one
or more levels of the software structure (i.e., nested levels of com
currency), (2) restricted forms of process: interactién that generally
avoid shared variables, and (3) nordeterministic control structures such
as the guarded command ([6]. The inplementation of such language
fecatures implics the existance of an operating system kernel that pro—

vides functions to manage concurrency, interprocess communication, and
nondeterministic control.

The primary purpose of this paper is to report on findings that il-
lustrate how decentralized software utilizes the functions provided by
such an operating system kernel. These findings confirm the feasibility
of low-cost implementations of language concepts that are expressly
designed for distributed computers., These results also show that decen-
tralized software will make extensive use of these functions. This
usage normally represents a cost incurred by decentralization that would
not be present in an equivalent centralized approach. Thus, it can be
thought of as a trade~off required to achieve attributes such as
enhanced reliability or incremental growth.

The next section discusses the features of a specific programming
language used to write decentralized software. The implementation of
this language is outlined to establish the functions that are encom—
passed by its implementation costs. The third section reports on per-
formance measurements that describe how the implementation of this
language is used by decentralized software. A final section discusses
the application of these performance measurements and describes a
research facility that will be used to support future studies.

2 BLACKGRCUND

The results of this study were derived by observing decentralized
software written in a specific programming language -- EPL. Section 2.1
provides an overview of the features of this language and an illustra-
tion of its use, Programs written in EPL require a run-time envirorment
that manages process and their interactions. These functions are pro—
vided by an operating system kernel whose features are summarized in
section 2.2.

2.1 A Proaramming Lanquage for Distributed Computer Systems

The programming language EPL [13] was selected for use in this

G TN W &’ =N . T TN T OGN 3 W Wk W aGE 2 Tas TE- ...

-

- — ey

study for several reasons. It is representative of the types of experi-
mental languages being proposed for distributed computer systems. As
such, it has a sufficient number of the constructions needed to decen-
tralize software. It is particularly well suited to experimentation
since it makes no assumptions about data types and structures nor does
it place any constraints on the relationships between concurrent
processes. For example, it is possible to construct pipelines of
processes, co-routines, ‘conventional procedures, data-flow structures,

etc.

The programming language EPL provides a single abstract framework
for defining concurrent programs —- the act. Instances of acts, called
actors (more commonly termed processes), may be created dynamically.
All actors are concurrent, Acts may be defined parametrically, so that
multiple instances of actors (processes), defined by the same act, may
be provided with different initial values. Actors may terminate only
their own activies. This completely general structure is intended to
encourage the use of concurrency to refine programming abstractions,
just as procedures are used to construct layered architectures for

sequential software.

The data spaces of actors are independent prohibiting the sharing
of variables among actors. Actors are allowed to interact only by
tranamitting messages that are copied fram the sender's data space to
the receiver's data space. This restriction helps to make EPL programs
independent of the interconnection structure of a distributed computer
system. Transmission of messages is not implicitly buffered. Thus, the
interprocess communication mechanism can also be used to synchronize ac-
tors. A sending actor is delayed until a receiving actor is prepared to
accept the message. Also, a receiving actor is delayed until a sending

actor is prepared to transmit a message. -

The message transmission mechanisms are also the basis for a nomr
detministic control structure. Receiving actors may elect to receive

from a specific source, or to receive from any source. In the latter

3o turah e e

- g

D S PPN PN ST S 9

case, the choice of a sending actor is nondeterministic.

Figure 2-1 shows how these concepts can be used to define an imple-
mentation of the Sieve of Eratosthenes. This algorithm identifies suc—
cessive prime numbers by determining if successive integer are divisible
by any prime that has been found. The code fragement shown implements
this algorithm by defining a number of actors; one for each prime number
that has been found. Successive integers are communicated from actor to
actor unless they are found to be divisible by an existing prime., If an
integer is not divisible by any existing prime, then the integer is as-
signed to its own actor as a new prime number. A single act is used to
define all of the actors needed by this algorithm. The sieves function
as a pipeline of actors and can be applied to a stream of integers,
Each actor can potentially function in parallel with other actors defin-
ing the pipeline and can be distributed to a separate processing unit of
a multi-computer system. This approach should be contrasted with a cen-
tralized implementation in which an array would be used to record prime
nunbers and a iterative construction would be used to compare successive
integers to the set of prime number that have been found. The central-

ized version can be expressed as a single sequential process.

2.2 Run~Time Envirorment

The run-time enviroment of an EPL program rust provide functions
that create end delete processes, that schedule processes for execution,
and that transmit messages between actors. The implementation of the
last function realizes the non-deteministic control structure of EPL.
The following paragraphs describe these functions and their implementa-
+ion by an operating system kernel for a single CPU, LSI-11 microcomput-
¢r. This system was used to prototype decentralized algorithms written
in EPL and to collect the initial performance data describing their use
of the kernel.

The EPL compiler emits reentrant code. The scope of variables is
such that the total data space required by an actor (process) may be

computed at compile time, These language features make it possible to
implement a simple run-time storage management policy. When a new actor
1s creatud, space fer its local variables is allocated as a contiguous
set of locations from an available free pool of space. Operands are al-
ways addressed relative to the base of this area. An actor (process)
descriptor record 1is prefixed to the data area for each actor. No at-
tanpt 1s made to recover this space when an actor terminates.

Actors that are logically enabled to run are linked in a circular
chain that defines a ready list. A non-preemptive scheduling algorithm
is used to assign the CPU to one of the ready actors. 2An additional
language feature of EPL allows an actor to voluntarily relinquish its
turn in the ready chain before the occurence of same condition that log-
ically blocks its progress (e.g., sending a message to a actor that is

not ready to receive).

Figure 2-2 illustrates how descriptors are linked to define the
ready chain and lists of actors that are logically blocked. 1In figure
2-2, actors A, B, and C define the current ready chain. Actors D, E,
and F are blocked waiting to send messages to actor B. Their descrip-
tors have been removed from the ready chain and form a 1list associated
with the descriptor of the destination actor. Actors G and J are
tlocked waiting to receive messages and are removed from the ready
chain, The actor G is waiting for a messagc from a specifiC source othi-
cr than H or 1. The actor J is waiting to receive a message that has

not been sent,

The operating system kernel of EPL defines six functions that mani-
pulate these lists to manage actors and their interactions. These func-

tiony are

CREATE space for a new actor

RUON an actor

SEND a message
RECEIVE a message
TERMINATE an actor
SYSTEM call

The functions CREATE, RUN, and TERMINATE supervise actor creation and
and deletion. The functions SEND and RECEIVE implement interprocess
communication and synchronization. The SYSTEM call allows an actor to

relinquish its turn in the ready chain,

The function CREATE allocates space. The function RUN transmits
parameter values from the parent to the child actor and includes the
child in the ready chain. Both functions are needed to instanciate a
new actor. The function TERMINATE permanently removes an actor from the
ready chain. The function SEND will block the running actor or it will ¥
copy a message between data spaces and enable a suspended receiving ac- !
tor. The function RECEIVE will block the running actor or it will copy
a message betveen data spaces and enable a suspended sending actor. The

choice between a specific source and any source is determined by a
parareter of this system call. The only context that must be saved by
these system calls is the progrem counter and the register defining the
base of the data area of the running actor.

3 PERFORMANCE DATA : i

Performance was measured by counting executed instructions, This
was accomplished using the breakpoint trap »f * - L3I-11. Instruction
counts exclude the instructions executed bv . wa. i.plementation of
common arithmetic instructions such as multiply and divide. These stan-
dard arithmetic operations were counted as one executed instruction.

Table 3-1 gives the execution times of each of the six kernel func-
tions used by EPL programs. These cost figures are consistant with
values reported for similar kernel designs [15]). The cost figures are

e NP

- AT ol

very small and significantly less that those associated with general
purpose operating systems kernels (e.g., UNIX). These small costs are
explained by the use of a simple memory management algorithm, the lack
of protection mechanisms, the use of non~preemptive scheduling algo~
rithms, and low cost switching.

The primary objective of the performance measurements was to deter—
mine how {requently these operations were used by decentralized
software. This would establish an initial estimate of the costs of de-
centralization. The kernel was modified to measure the number of in-
structions executed by EPL programs between successive calls to perform
a function of the operating system kernel. These instruction sequence
lengths were accumulated as a histogram by the kernel and reported at
the end of execution of EPL programs. Six programsS were executed to
develop an estimate of how frequently the kernel functions were util-
ized.

Table 3-2 sumwarizes the observed characteristics of this perfor-
mance rmeasure for the progrems sampled. The programs executed included
the Sieve of Eratosthenes described in section 2.1, a cellular autamnata
(Life {8]), and a two-player video game. These codes represent complete
programs, In addition to these benchmarks, several smaller construc-
tions were also exercised as benchmarks, These latter codes represent
data structures and control constructions that would be used as building
blocks in larger programs. They include a decentralized table structure
for the Small Set of Integers problem discussed in [9], a limited imple-
mentation of gquarded commands involving input and output statements
similar to those proposed in [9)], and and implementation of the
eventcounter and sequencer synchronization mechanism proposed in [14].
The average length of instruction sequences executed between kernel

calls is shown for each of these programs.

In general, the observed lengths of instruction sequences were very
short and exhibitced 1little variation, This claim is justified by the

frequent occurence of lengths of 20 or less instructions. Figure 3-1

illustrates the distribution of observed lengths for the first three
programs of table 3-2. None of the programs sampled executed more than
17,000 instructions between successive kernel calls. The 1longest mes-
sage text transmitted was 9 words. In general, messages were the order
of 2 words or less, These short message lengths are probably due to the
use of structures of actors to represent single data structures (as in
figure 2-1). Because each actor represents a very elemental unit of in-

formation, communications with its envirorment are limited,

Assuming that concurrent programs rurning in steady state are pri-
marily using the kernel to send and receive messages, more than 2/3 of
the instructions executed by the sampled decentralized software are exe-
cuted by the kernel. When compared to a functionally equivalent, cen-
tralized implementations, these instructions represent an overhead asso-
ciated with decentralization. For example, the Sieve of Eratosthenes
would normally be written as a sequential program requiring no support
from an operating system kernel.

This overhead represents the cost of decentralization, and is a
basic trade-off that must be considered when using a distributed system
to achieve goals such as enhanced reliability or incremental growth.
These figures are mitigated by the parallelism that is inherent in many
of these decentralized software structures. Because multiple computers
will be used to execute decentralized software, performance improvements
due to parallelism will offset these overheads. This consideration
futher complicates analysis of the trade-of £s of distributed computing.

An initial study [2] has attempted to clarify the extent to which
performance improvements due to parallelism offset the implementation
costs for such decentralized software structures, The results of this
study were limited to a specific data structurc organized as a pipeline
of actors similar in organization to the code shown in figure 2-1,
Cueueing models were used to compare the performance of functionally
equivalent decentralized and centralized information structures under

similar loads. These models indicate that for moderate to heavy usage

of a shared data structure, the decentralized implementation should ex-
hibit comparable performance to that of a centralized implementation,
assuming implementation costs are similar to those shown in table 3-1,
These preliminary models suggest that decentralization, which depends on
the use of concurrency (and its associated implementation costs), can be
effectively implemented at suprisingly low levels using conventional
computer technology.

4 SUMMARY

The performance data of section 3 demonstrates that although the
cost of individual kernel functions is low, they are used very frequent-
ly by decentralized software. Therefore, implementation costs represent
a potentially large overhead in executing decentralized software. There
are preliminary indications that these high implementation costs are
offset by performance improvements due to the inherent parallelism of
decentralized software, Thus, the overall performance of a decentral-
ized implementation of an algorithm may be comparable to a functionally
equivalent centralized inplementation

These observations suggest an objective of performance models for
decentralized software be explainations the trade~off between perfor-
rance improvements due to parallelism and the implementation costs of
that parallelism. Such modelling results could then be used to directly
compare the performance of decentralized software with that of fuction-
ally equivalent, centralized software, Such comparisons would provide a
basis for understanding the costs of distributing computer applications
to achieve other attributes (e.g., reliability).

Initial efforts at modelling the behavior of EPL proyrams have em-
tloyed queueing networks [2] and probabilistic grammars [15] to model
cvents that correspond to the transmission of messages between actors.
Continued application of such modelling methods appears fruitful, Suc-
cessful applications of these models will require a performance measure—
ment facility that can provide data needed to define model parameters

r"’"""'_" B ' T — —

values and to validate models,

Figure 4~1 illustrates a research facility designed to provide such
support. The facility is hosted by a PDP-11/60. Five LSI-1ls define a
losely-connected, multi-computer subsystem that can be loaded and ob-
served by the host computer. The multi~computer subsystem has an inter—
connection structure that can be varied to study different topologies,
The host computer can be used to develop software for execution by the
multi-computer subsystem. It can also be used to record, reduce, and
analyze performance measurements describing the behavior of the multi-
computer subsystem. An alternative role of the host computer is the
simulation of an envirormment for the subsystem of LSI-1ls.

This research facility makes it possible to measure performance of
decentralized scftware using a truely parallel system. The measurements
cited in this paper were obtained for a single CPU implementation of EPL
prograns. The single CPU implementation of EPL is being revised to con-
trol the subsystem of LSI-11 computers. The objective of the design is
to demonstrate implementation independence of EPL programs by executing
unmodified programs using a variable number of processing elements,
Fach computer will have a kernel that provices an identical set of func-
tions to support the execution of and EPL program. The approach is
based on a kernel design that maintains partial state information
describing only those actors executed by its processor. This design in-
troduces a nunber of additional scheduling issues such as the allocation
of actors to computers, and global versus local memory management poli-

cies.

The implementation of the EPI, kernel for a multi-computer system is
expected to provide an estimate of the irplementation costs for a dis-
tributed computer system programming language. These.costs are expected
to be somewhat larger than those cited in section 3 for several reasons.
The use of slower, possibly indirect, computer interconnection struc-
tures will introduce delays in the transmission of messages between ac-
tors., More important, decentralization of the kernel will require the

,.10 -

o

-

use of low-level communications to coordinate the activities of in-
stances of the kernel. These latter costs are not present in the single
CPU implementation of EPL since the kernel has timely access to all
state information desc-ibing actors. However, it is expected that when
more sophisticated software applications are implemented and measured,
these increased costs will be offset by the performance improvements due
to the parallelism of longer instruction sequences be cween kernel calls.

5 REFERENCES

[1] Atkinson, R.R., and C.E. Hewitt, "Specification and Proof Techniques

for Serializers", JEEE Transactions on Software Engineering, Vol. SE-5,
No. 1, Jan. 1979, ppl0-23.

(2] Balkovich, E.E., and C. Whitby-Strevens, A Model and Measurements of
a Decentralized Information gStructure, Department of Electrical En-
gineering and Camputer Science, University 6f'Connecticut, (in prepara-
tion), 1979.

{3] Brinch Hansen, P., "Distributed Processes: A Concurrent Programming
Concept”, Communications of the ACM, Vol. 21, No, 11, Nov,., 1978, pp.
934-941i.

[4] Chang, E., and R. Roberts, "An Improved Algorithm for Decentraiized
Extrema-Finding in Circular Configurations of Processors",
Communications of the ACM, Vol. 22, No, 5, April 1979, pp. 281-283.

[5}] Dijkstra, E.W., "Self-Stabilizing Systems in Spite of Distributed
Control”, Communications of the AQd, Vol. 17, No. 11, Nov. 1974, pp.
643-644.

(6] Dijkstra, E.W., "Guarded Commands, Nondeterminacy, and Formal
Derivation of Programs", Communications of the ACM, Vol. 18, No. 8, Aug.
1975, pp. 453~457.

{7] Peldman, J. "High Level Programming for Distribuvted Computing",
Jommupications of the ACHM, Vol. 22, No. 6, June 1979, pp. 353-368.

-11_

[

(8] Gardner, M., "Mathematical Games", Scientific American, Vol. 223,
No, 10, Oct. 1970, pp. 120-123.

[9]) Hoare, C.A.R., "Communicating Sequential Processes", Communications
of the ACH, Vol. 21, No. 8, Aug. 1978, pp. 666-677.

[10) Kant, R.M., and T. Kimura, "Decentralized Parallel Algorithms for
Matrix Computation", in Proceedings of the 5th Annual Synposium op
Computer Architecture, Palo Alto, CA, April 1978, pp. 96-100.

[11] LeLann, G. "Distributed Systems - Towards a Formal Approach”, in
Proceedings of the IFIP Congress, August 1977, pp. 155-160.

{12] May, M.D., R.J.B. Taylor, and C. Whitby-Strevens, "EPL - An Experi-
rental Programing Language", in JEEE Conference on Trends and
Applications: Distributed Processing, Gaithersburg, MD, May 1978, pp.
69-71,

(13] May, M.D., and R.J.B. Taylor, The EPL Programming Manual Distribut-
ed Computing Project, Report }o.7, Dept. of Computer Science, University
of Varwick, Coventry, England, 1979.

(14]) Reed, D. P. and R. K. Kanodia, "Synchronizations with Evencounters

and Sequencers", Communications of the ACM, Vol. 22, No. 2, February
1979, pp. 115-123.

{15] Whitby-Strevens, C. "Towards the Performance Evaluation of Distri-
buted Computing Systems", in Proceedings of COMSAC 78, Chicago, IL, Oct.
13-16, 1978, pp. 141--146.

[16] Wirth, N., "Design and Implementation of Modula", Software:
Practice & Experience, Vol, 7, 1977, pp. 67-84.

-,12-.

Figure 2-1

Sieve of Eratosthenes

// This ACT is a sieve which is initialized to the first number sent
// it, n, It sieves out all multiples of n that are subsequently
// sent. All numbers that are not sieved out are sent to another

// sieve that it creates within itself, in sequence.

CONST sieve = ACT [] : // define the ACT sieve
REC n THEN // receive the first message
(// defining n
ACTOR nextsieve : [] :: sieve; // create another sieve
REP // repeatedly receive and
REC p THEN // sieve integers
IF (p REM n) = 0 THEN SEND nextseive : [p] FI
PER
)i
ACTOR firstsieve : {] :: sieve; // create the first sieve
LET m = 2; 4
REP // send successive integers ;
SEMND firstsieve : [m); // to the first sieve
m:=m+1

PER

b o pat

13

¥ 2% - o D mew

% 1
W. pCL _ o H
5 B B —7
~ 3 _
4 F 4 ﬁ “ _
o 9] \.ﬁ_ - 1._” / _
P o3 L
o ! .
3 o | - :
o A8 _ = <
P [S H —
5 :
> s i Mo 7|

Table 3-1

Execution Times of Kernel Functions

Average No. of

Kernel Function Executed Instructions

CREATE 17
RUN 16
TERMINATE 10
SEND 20+n*
RECEIVE 20+n*
SYSTRM 6

*n = length of the message

Table 3-2

Use of Kernel QOperations by EPL Programs

Program Name

Cellular Autcmata

Sieve of Eratosthenes
Video Game

Small Set of Integers
Eventcounters & Sequencers
Guarded Commands

Average

Ave, Ln, of an
Inst. Seq.

11.3
7.5
7.9
9.2
8.5
5.8

8-4

16

Prob, of a Seq.
of <= 20 Inst.

0.89
0.99
1.00
1.00
0.97
0.98

' 9

PP

EUNTRCA o\ Riciy)

1.1:1‘

Figure 3-1

Distribution of Observed Lengths of Instruction Sequences

/eT
‘J_____J
{
I /lf‘ e
AS - L AN T
ce S 1 + —
S 10 1S 20
/.0 T
__‘_____,______r*
—_—
sS4 TR
.
!
!
F
Dot A f o e et -
£ Ty IS 70
/.
e —T
! Wooafe
0.8 |
! _[~~l
3 /0 /5 20

Lencitt of Toaaraemion Srnoeaeé

-17 -

»

fdaae

O

-y

Figure 4-1

Distributed Computer System
Performance Measurement Facility

§
[

-— N -
R , ‘ Ll-n
[1
! L
t | ;
! {
' !
— e o R —— e e e —— . e e e = - —_—
o Tilay e 2 2 T rondceTiee

! AL l\] [;il"\ } {L?JI'\\

ROl

_18...

e

Part VI

Performance of Distributed Software
Implemented by a Contention Bus

by

E. Balkovich and J. Morse

g A

;
{

ABSTRACT

The &ominant features of software for distributed computer systems are
communication between processes and potential parallel execution of
processes. This paper examines how such a software architecture can be
expected to use a distributed computer system based on a contention bus,
Processes tend to be fine-~-grained and transmit short messages. An
operating system kernel that implements process interactions introduces
an additional source of short messages used to coordinate process in-
teractions. Existing analyses of contention bus performance show that
such traffic patterns will be unable to utilize more than a fraction of
the potential contention bus Bandwidth. An additional concern is that
many important assumptions made by these models are violated by such an
implementation of software, This paper suggests some possible ways to
extend performance models to more accurately reflect the features of
software for distributed computer systems. It also suggests an approach

to improving channel efficiency for implementations of such software,

KEY VORDS

Distributed Cruputing, Distributed Software, Contention Bus, Shared Bus,

Performance Evaluation, Queueing Theory, Operational Analysis

Py

— e

—] L2 S

1 Introduction

Typically, the total hardware resources of a distributed system are
implemented by several autonomous computers that are linked by a commun-
ication network. It is also necessary to distribute software that im-
plements system-wide services and functions in a similar way. One ap-
proach to logically distributing or decentralizing the functions provid~
ed by software is to implement software as a collection of independent
processes that cooperate to provide a service. One objective of such
designs are systems that continue to operate in the presence of
failures. This approach has been labeled as a task force [JonT79], or a
system of actors [Hew77] or objects [Gol80]. Generally, the component
processes that implement a function are executed by different computers
and interact via messages rather than shared variables. How this
software architecture uses hardware raises a number of important perfor-

mance questions.

The decomposition of a function into multiple, concurrent processes
may allow the inherent parallelism of a distributed system to be ex-
ploited in implementing a function., On the other hand, the required in-
terprocess communication, particularly when it uses the communication
network, can introduce delays, The tradeoff between these two factors
is impacted by design decisions that determine the decomposition and the
allocation or assignment of processes (o the computers of a distributed
systen. These interactions are further complicated by the characteris-
tics of the communication network linking the computers. For example,
the performance of a contention bus is sensitive to load characteristics
and requires the careful design of protocols that support process in-

teractions.

There is a clear need to model both the potential parallelism and
the communication traffic generated by a decontralized software design.
This information is needed to define the input parameters of optimal

task allocation algorithms [Chu80]. It also provides a basis for

selecting low-level algorithms that control hardware interconnection

structures, For example, time-division multiplexing and backoff algo-
rithns provide optimal wutilization of a shared communication channel

under very different load assumptions,

This paper reports on the author's experience designing a 1local-
area network to support a decentralized software architecture, The in-
terconnection structure is a contention bus similar to the Ethernet
[Met76]. The distributed software architecture is similar to that sug-
gested in [HoaT78].

The following sections review the features of a distributed
software architecture and briefly summarize the design of a prototype
comnputer system to support experimentation with such software. Prelim-
inary experience with this prototype system suggests that only a few of
the existing models of contention bus performance can be applied to
understanding the system's performance, The primary objective of this
pape:r is to review the models of contention bus performance and to dis-
cuss the interpretation of their results for the system being designed.
The wpplicable resuits suggest some algorithms for using the contention
bus. The sumnary discusses these algorithms and the author's views on
the performance codels that will be needed to completely understand the

behavior of the system.
2 Background

The nature of the primitive programming concepts needed to support
a decentralized software architecture is a tubject of current research,
Most of the results in this area {BrH78, Coo80, Dod80, Fel79, HoaT7$,
Lis79, May78, Mao80] propose programming languages tailored to distri-
buted computing. In spite of the diversity of results, several common
themes emerge. These common ideas provide insight :nto the factors that

deteraine the performance of distributed systems.

One feature of distributed software is the use of autonomous, con-
current processes as a basic unit of software modularity. Autonomy is

usually taken to mean that the behavior of one process cannot forcibly

el

influence the behavior of another process. Usually, this is achieved by
preventing sharing of variables and by placing few, if any, restrictions
on the relationships of processes. In the extreme, the notion of a con-
current process can be wused as the only source of program modularity
[BrH78, Hoa78, May78], replacing conventional concepts such as
subroutines, Since processes are concurrent, the resulting software

structures may have a significant potential for parallelism.

Without shared variables, process interactions are implemented with
messages. In many language proposals, wessages play two roles: they
provide a mechanism for transmitting data, and they also provide the
only mechanism for synchronizing processes. Given this latter use of
nessages, and the extensive use of fine-grained processes, 1interprocess
communication s the dominant feature of decentralized software, Since
procasses are generally resident at distinet computers, the hardware in-
terconnection structure will generally be used to implement message-

based interactions of processes.

The discussions that follow are based on the design and implementa-
tion of =an experimental system to support decentralized software with
these features [BalB0b, Fon80). Distributed software is written for a
virtual system with an unlimited number of independent virtual machines
implezented by an operating system kernel, No distinction i1s made
between process interactions occuring on the same physical machine and
process interactions involving multiple computers. An operating system
kernel at each machine provides identical virtual machine functions.
The implementation of these functions is distributed by a partition of
the process state information, Each instance of the kernel is responsi-
ble for only the set of processes executed by one physical machine,
Process interactions that involve processes on other physical machines
require that multiple instances of the kernel cooperaté to achieve t.e
interaction, This cooperation is accomplished by exchanging kernel-
level messages trancmitted over a contention bus similar to the Ethernet

[Met76]. Figure 1 illustrates the layers of software used in the imple-

(3]

mentation. The pli, j] represent individual processes used to distribute

R E—— Machine 1 =wee= Dimmmm, Piemnea Machine m =——-- >!
p[1)1]] . . ’ p[1,i] p£2|1]] LAY Dfm,1] : . : p[m,n]

[+]
o
o
e
o
(3
[
f=)
(8]
ta
«
2]
or
@
8
—
-—
—
.
2]
bl
]
3
[\
s
[
o
o)
[~}
<
0
ct
—
=]
o

- - = - T = - - D e S D T e B e

Figure 1

Layers of the Distributed System

softwvare,

The operating system kernels [Fon80] implement a virtual machine

that supports the EFL programming language [llay78, May79]. Interprocess

communication is accomplished with messages that are transmitted syn-'

chronously. Generally, connunication takes place between named
processes, although there is a provision for nondete-rministiec selection
of <« mnessage source. Most applications of the language can be charac-
terized as wusing large numbers of small, frequently interacting
processes that transmit short messages. The architecture of these pro-

grams most closely resembles that of CSP [Hoa78].

3 Structure of a Performance ledel

The dominant characteristic of a distributed software architecture
15 communicacion between ©processes that may be executed in pirallel.
Or iritial goal is to understand the performance of specific decomposi-
tions and assignments of processes to hardware linked by a contention
bug, Figure 2 illustrates the major components «f a such an explana-~

tien.

{r]

AD=A099 195 CONNECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-~ETC F/6 9/2
DECENTRALIZED SYSTEMS, (V)
DEC 80 E E BALKOVICH DASG60-79=C-0117
UNCLASSIFIED TR=CS-15-80 NL

3o

an s

e v i =PRI &

=

Logical Structure Operating Physical Structure
of Software . System Kernel of Hardware
Figure 2

Model Components

The software architecture can be described in terms of a logical
interconnection structure of autonomous processes., Conceptually, the
performance of the software is determined by the characteristics of mes-
sage traffic between processes and the computing required to respond to
and generate messages, The operating system kernel maps or projects the
logical structure of the software onto the physical structure of the
hardware, It does so by mnultiplexing a single computer to execute
several processes and by sharing the contention bus to implement multi-
ple logical channels between processes.

The performance problem can be reduced to explaining the perfor-
mance of the physical system executing the software structure. Concep-~
tually, the performance of the physical system is determined by the

characteristics of the contention bus, the characteristics of the mes~

[5]

~ e g

e Pt e e

[-

Sage traffic presented to it by each computer, and the composite comput-
ing load presented to each computer, These characteristics must be
derived from features of the logical structure of distributed software

and the mapping or projection of that logical structure onto hardware.

The logical structure of the software defines a partial ordering of
message traffic that arises from the synchronization of processes to
achieve correct behavior. This message traffic can be characterised by
distributions of message 1lengths and time intervals between tranamis-
sions. The operating system and the contention bus map this ordering
and these distributions into a totally ordered traffic pattern with dif-
ferent characteristies,

The allocation or assignment of processes to computers aggregates
logical message traffic into a single stream of traffic presented to the
contention bus by a computer. The characteristics of this physical mes-
sage traffic are modified by allocation decisions that allow processes
resident on the same computer to interact without using the communica-
tion network. Allocation and scheduling decisions have a corresponding
effect on the computational requirements for a computer.

A source of significant perturbations in the traffic characteris-
tics presented is the introduction of protocols used by the operating
system kernel to implement process interactions. Generally, these pro-
tocols modify the arrival pattern of messages and alter the distribution
of message lengths by introducing an additional source of short mes-
sages, Clearly, the delays and utilization of communication network
will depend on the characteristic usage of the network, In turn, the
performance of the contention bus plays a role in determining usage,
since the entire system is closed.

These arguments suggest that as a minimum, it is necessary to model
usage of a contention bus by particular software architectures and their

potential mappings onto the hardware, Most models of contention bus

performance assume that such information is available, The following

section reviews these models and summarizes the results that are

relevant to understanding how the architecture of decentraliged software
will use a distributed computer system based on a contention bus, These
results suggest some operating system algorithms that may improve the
use of the contention bus. These alternatives are discussed in the sum-
mary of this paper. Developing a suitable model of the software archi-
tecture still represents a major challenge in understanding distributed
systens, Although the detailed formulation of a closed model of a dis-
tributed system remains an open question, approaches,to formulating such

a model are discussed in the next section.

4 The Network Model

Our experimental distributed computer system assumes a communicae-
tion network implemented as a single channel that is shared by all com-
vuters. Such a channel can be implemented as a radio broadcast link, or
as a wire. In either case, computers that wish to transmit over the
channel must contend for use of the shared channel, since only one com-

puter at a tice may use the channel.
4,1 History of Analytic Models

A primary measure of contention bus performance is throughput effi-
ciency. Throughput efficiency is calculated as the ratio of the total
available bandwidth of a channel and the maximum bandwidth that can be
used for data communication. The most important assumption made in many
analyses is that message sources may be modelled as an {nfinite number
of identical, poisson processes which together provide a constant of-
fered load lambda to the channel. The parameter lambda is expressed as
some fraction of the total channel capacity. Generally, it is also as-

sumed that the time to transmit one message is a constant tau.

The basis for analytic models of contention bus performence can be

traced to the Aloha radio network [Abr70]. The Aloha network assumes
that the stations cannot know if the channel is busy. Whenever a sta-

tion has a message to transmit, it will immediately transmit the mes-

LAV 1 D, AT AP

ong omg OGN OGind SImd OEN SIS SEm Sws Smms Gum o OE D O TP & Dy =

sage. A given message, beginning at time T, will experience a collision
if any other message begins transmission within plus or minus tau
seconds of T. Thus the collision interval for messages of fixed size is
2 tau, It can be shown that the maximum efficiency of the channel is
17 (2 e), or 0.1839. When the offered load reaches 0.1839, the
remaining channel capacity can be attributed to damaged packets (due to
collisions), or to 4idle time (due to no station being ready to
transmit). 1In spite of the fact that the channel is fully 50% idle, in-
creasing the offered load beyond 0.18 results only in more collisions,
not more effective utilization of the channel.

The analysis that leads to the 1 / (2 e) limit on efficiency as-
sumes that the arrival rate of new messages and the arrival rate of re~
transmissions due to collisions are both exponentially distributed. In
practice, these assumptions are valid if (1) the mean time before re-
transmission is large relative to tau, and (2) not too many re-
transmissions occur, As long as the offered load stayé below 0.15,
these conditions are satisified.

A simple refinement of the Aloha scheme is to synchronize transmis-
sions, Ideally, time is divided into slots lasting tau seconds (where
tau is the time for one message as defined above). With this scheme,
called "slotted Aloha", messages collide when they are transmitted in
the same slot, The collision interval is reduced to tau. It can be
shown that the maximum efficiency of the channel is now 1 / e, or
0.3679. Adding synchronization effectively docubles the capacity of the
channel. In this case, when the offered 1load reaches 0.,3679, the
remaining capacity of the channel is consumed by collisions, and the
channel 1is never idle [Lam79]. Again, the same assumptions about ar-
rival time distributions invalidatc the model when offered loads exceed
0.30. -

Ethernet [Met76] introduced carrier detection circuitry at each
station to determine when other stations are transmitting. As a result,

stations can defer transmission when another station is found to be

(8l

i

transpitting. This avoids most of the collisions associated with Aloha,
However, there is still the possibility of collision. Two stations can
begin transmission during an interval of time so short that neither can
detect the other in time to defer. The deferral mechanism tends to syn-
chronize message transmissions to the completion of messages, particu-
larly under heavy loads. For this reason, Ethernet tends to behave like

slotted Aloha even though there is no explicit slot synchronization.

Adding deferral and collision detection reduces the <ollision in-
terval from tau to some fraction of tau, depending on the message size.
If messages are long relative to the slot time (the interval required to
establish a detectable carrier signal), then very high channel utiliza-
tion is possible, If a message does not collide in the first slot time,
then the channel will remain clear for the duration of the transmission,
Thus, there are two kinds of slots -- slots during which contention can
occur (the first slot of every message), and clear slots (subsequent
slots of messages that experience no collisions). The channel efficien-
cy for contention slots remains at a maximum of 1 / e, but the clear
slots have efficiency of 1.0 -- they can always be used to successfully

transmit data. The resulting throughput efficiency for messages of 4096
bits (85 slot times) is shown to be 0.98 [Met79].

The retransmission policies of Aloha and slotted Aloha assume that
the delay is 1"large". The Ethernet model assumes that after a colli-
sion, each station that is ready to transmit will do so in the next time
alot with probability 1/ Q (where Q is the total number of stations

ready to transmit). It can be shown that this much stronger assumption

satisfies the conditions of Abramson's model [Abr70], so that the {1 / e
upper bound on efficiency still holds. The advantage of the stronger
Ethernet assumption i1is that it becomes possible to predict the delay
characteristics of the channel, Delay is defined as the amount of time
a station has to wait after the channel becomes ready, but before it
successfully acquires the channel. An accurate model of channel delay

is essential for evaluating the use of a contention bus in implementing

(9l

the interaction of software processes.

A number of key peints in the above discussion are applicable to
our model of distributed computing. The usable throughput of a shared
channel will be a fraction of the total capacity of the physical 1link,
This fraction will depend on the length of messages transmitted. Under
heavy loads, there will be many collisions and consequent retransmis-
sions which will impact throughput efficiency and transmission delays.
Finally, the analysis is based on a set of restrictive assumptions about
arrival rates and service rates that may not be satisified by a distri-
buted computer systen.

4.2 Applying the Analysis

In order to apply these anzlytic models to our system, it is neces-
sary to identify where the system violates assumptions made by the
models. In our system, there is a finite number of message sources, and
in many cases this number will be small. This violates the infinite
source assunption, The software processes that generate messages do so
to effect cooperation. In many cases, the processes are synchronized
and violate the assumption of independent sources., Most of the messages
will be wused for synchronization and control of processes, These mes-
sages are very short and do not satisify the bounds on message length
that 1lead to high channel efficiency. Processes form pairs and engage
in extended dialogues tp carry out higher level protocols. The result
is that message arrivals tend to be "bursty" and violate the assumption

of exponential interarrival times.

The implementation of Ethernet, as specified in [Dig80], differs in
a number of important ways from the "ideal™ model [Met76]. The strategy
for re-transmission after collision is implemented by a backoff algo-
rithm. The backoff algorithm does not use Q to set the probability of

re~transmission in the following slot. A single station in a decentral-

ized implemeritation cannot know Q. The buckoff algorithm provides a
method of estimating Q. Analysis shows that the backoff algorithm's es-

Y

timate of Q is not very good unless collisions occur between only two
stations. The adequacy of the backoff algorithm therefore depends on
the assumption that the majority of collisions only involve two sta-
tions. It has been shown by simulation [Mar80] that this assumption

generally holds as long as broadcast messages do not require responses
from all stations.

For software architectures such as those assumed in our work, the
infinite source assumption must be replaced by a model of n sources
(where n, the number of computers in the system, is not only finite, but
in mnany cases quite small)., The performance of Ethernet for a limited
number of stations has been analyzed [Alm79, Met76]. These studies show
that for n >z 10, the finite source model closely approximates the in-
finite model. For n < 10, Ethernet efficiency is, in all cases, better
than that predicted by the infinite source model.

For our software architecture, the assumption that stations are in-
dependent is surely false., Since processes must synchronize in pairs in
order to transmit information, there is a tendancy for computers to-
"pair up" while a protocol is carried out by the operating system ker-
nel. It is also expected that many distributed algorithms will exhibit
a tendancy for pairs or groups of processes to engage in extended dialo-
gues. For significant lengths of time, channel usage will be dominated
by small subsets of computers. There are preliminary indications that
this pattern of usage improves the efficiency of an Ethernet-like con-

tention bus, but more work remains to be done on this subject.

A major concern about contention bus performance for our assumed
software architecture is the preponderance of short messages. If Ether-
net parameters [DigB80] are used for illustration, then the high
bandwidth (10 megabits) and long slot time (60.8 microseconds) cause any
message of less than 46 bytes (excluding address information) to fit
into a single slot. Our analysis indicates that for many applications
all, or almost all, messages will fit in a single slot. As an examplé,

a typical protocol to transfer a small block of data between 2 processes

(111

A AN i v . I b

e iy e e

poe—— e

RE = T AT . A N A

o B £ M

.

réquires 4 pmessages [Fon80]. The first 3 message are each 8 bytes in
length, and the fourth is 8 bytes plus the length of the data block.
Thus, the high potential efficiency of Ethernet will not be achievable
by our assumed software architecture. Efficiency will be no better than
slotted Aloha since every slot is a potential contention slot. The ef-
ficiency of the Ethernet, used for our purposes, would be 1 / e of the
channel capacity, or about 3.6 megabits per second. Whether this would

provide adequate performance remains an unresolved question.

Some preliminary insight into the kind of message traffic generated
by a distributed software architecture has been gained by experimenting
with the programming language EPL [Bal80a]. Typical processes execute a
very small number of instructions (almost always less than 20) between
calls to the operating system for message transfers between processes,
The result is very short, very frequent messages. This message traffic
cannot be accurately characterized as exponential, The pairing of
processes and the bursts of messages generated to synchronize processes
and coordinate data transfer suggests that the arrival pattern may be
hyper-exponential. It is tempting to assume that the exponential ar-
rival assumption may still be used to place a lower bound on expected
communications delay, but this hypothesis is in fact invalid, as shown
in [Cha78].

4.3 Future Models

The specific requirements of a distributed software architecture
suggest a number of ways in which existing models of contention bus com-
munication should be extended. Message traffic is self-limiting., Typi-
cally, processes generate most messages in response to messages from
other processes. If messages are delayed by high loads on the channel,
then processes will be blocked and will generate no further traffic un-
til the current demand is satisfied. When this happens, the operation
of the entire system is limited by the capacity of the communication
network, On the other hand, if a channel has sufficient capacity to

immmediately service transmissions, then the operation of the system is

[12]

limited by the processing speed of each computer. The system becomes
"processor bound” instead of "I/0 bound", Models should take both kinds
of behavior into account. Locating the crossover point is important
since it is expected that the performance characteristics of the two
cases will be very different. Part of our current work has attempted to
establish this crossover point by trace-driven simulation of a few
specific cases [Sou80).

An accurate model of the response (or delay) characteristics of a
communication network plays an important role in predicting this crosso-
ver point and the behavior of the system as a whole, It is not suffi-
cient to predict only the mean of the response time -- its variance is
required as well. The Ethernet exhibits a form of "last in first out®
behavior that results in a high variance of response time under heavy
loads [Alm79]. Under such circumstances, the performance of distributed
algorithms may be erratic or even un-predictable., One can imagine a
mode in which the system alternates between periods of processing, in
which messages accumulate during 1long periods of bus contention, and
periods of communications, when messages are finally transmitted, but in
an order that ensures that processes remain blocked until the last mes-
sage is transmitted. Such behavior is undesirable since neither commun-

ication nor processing is efficient.

If a standard queueing theory approach is to be successfully ap-
plied to analyze response, then something more complex than an M/M/1
queue is required. An embedded Markov process has been used in at least
one study [Tob79] to yield good estimates of channel delay given both a
finite number of stations and variable message lengths, Another ap-
proach that may prove fruitful is to account for collision resolution in
the model of the server, rather than in the model of the source (as was
done in [Abr70]). Collisions and re~transmissions are reflected in a
reduction in the service rate rather than an increase 1in the arrival
rate. If the source model is assumed to be finite, an M/G/1//m qQueueing
system results. The problem with either the embedded Markov process or

AP

et ~8 = ——

RS S

the M/G/1//m approach is that any attempt to incorporate more of the
essential features of the problem into a model increases the computa-
tional complexity. 1In [Tob79] numerical methods were used to derive the
most useful results, while most of the important results in [Alm79] were
derived from simulation. Tnese methods often require vast computational
resources to yield good results, The other major problem with these ap-
proaches is that it is very difficult to incorporate a model of the
software into the analysis. The embedded Markov process method looks

promising and should provide an opportunity for further research,

One approach to modelling the architecture of distributed software
operational analysis [Den78). This approach assumes a finite set of n
processes, allocated among m nodes, Each process is modelled as a mes-
sage generator. The time of occurrence and the destination of messages
are modelled as random variables., Once a process has generated a mes-
sage, it sends it and enters a wait state until it receives a reply mes-
sage. Each process needs to be characterized by the frequency of its
message generation, and by a probability vector. This vector represents
the probability that the next message generated by the process will be
routed to a specific destination. These probabilities are equivalent to

the visit ratios used in operational analysis.

Using this approach, the interaction of the computers in the system
is emphasized, while the details of the channel are subsumed in the
model as a simple queued device. This may be a useful model as a first
order approximation. It can probably be applied to determine whether a
specific system configuration will operate I/O bournd (the contention bus
is the saturated device) or processor bound (some process is the sa-

turated "device"),

5 Sugmary

Our review of contention bus performance models has led to several
conclusions about their applicability to systems implementing distribut-

ed software architectures. Interconnection structures, like the Ether-~

T "_'" o

& -

net, use detection principles that naturally divide the channel capacity
into clear slots and slots during which contention may occur, When mes-
sages span many slots, very high utilization of the channel is possible
under heavy loads. However, when messages are short, the utilization of

the channel is limited to a fraction of that raw channel capacity.

Under appropriate assumptions these models are useful, but not en-
tirely adequate for our purposes. In particular, the architecture of
distributed software places demands on the channel that in many impor-
tant ways violate assumptions made by the models. The number of sources
(conputers) is finite and generally cannot be expected to operate in an
independent manner. Preliminary data suggests that distributed software
will generate bursty message traffic of predominately short messages.
This does not satisify the assumptions made about the distributions of

traffic patterns.

These observations suggest that a contention bus should always be
sized so that it is lightly loaded. Given that this is not practical,
then the communiction network becomes a bottleneck and a significant
amount of message queueing will occur, Under these circumstances, it
nay be feasible to employ algorithms in the operating system kernel that
extend the 1length of messages transmitted over the network, One ap-
proach that is being considered is to provide bulk service when
transmitting mnessages. This approach would frame queued messages and
collectively transmit them as a single, longer message. Implementation
can be accomplished either by broadcasting all pending messages, or by
grouping pending messages according to their destinations. The former
approach should yield longer messages, but requires that each computer

of the system receive and decode all message traffic.

The use of bulk service methods should be judged by its impact on
performance. This requires understanding two aspects of how the network
would be used., The first issue is to determine the average message

length that would be generated using a bulk service algorithm and wheth-

er it would significantly alter the performance of the communication

network, To be successful, such an alsoriilum must generate aggregate
messages lengths longer than one slot. This would increase the effi-
ciency <f the channel. The second, and perhaps ror: important issue is
the dimpact of a bulk service policy on response time, This requires
evaluation of both the mean and variance of response time and can prob-

ably only be accomplished using simulatibn techiques.

Our plan for future work is to extend the existing models of inter-
process communication to include performance models of the distributed
system as a whole. We hope to extend some of the analytic models to ac-
count for the particular characteristics of the work load and service
time distributions that we feel characterize distributed software. The
preliminary work using trace-driven sipulation has proved fruitful and
will be persued further, Finally, we plan to explore operational
analysis models that would address both the software and the hardware

architectures.

REFERENCES

[Abr70] Abramson, N., "The Aloha System -- Another Alternative for Com-
puter Communicaiions," Proc. 1970 FJCC, AFIPS Press, Montvale, N,
J. (1970), 281-285.

[Agr77] A Bryant, R. M,, and Agre "Analysis of an

rawala, A. K. J.
Eéﬁernet-fike péotocol:" Froc. ompu ﬂg&ugzgigg_ﬁxmpggign, IEEE Com-
-111.

puter Society and N.B.S., (Dec. 1977), 10

Alm79] Almes, G, T., and Lazowska, E., "The Behavior of Ethernet-like
omputer Communications Networks," the Seventh Symposjum on

. O
Qperating System Principles, (Dec. 19797, 6643%-
[(Bal80a] Balkovich E., and Whitby-Strevens, C., "On the Performance

E. .3
of Decentralized Software," pProc. of the 7th infgfﬁggiongl Symposiug o
ggspg%gg 2e:fo§gagce Moﬁglligg, easurment and Ev on, Toronto, CEg
nada (May 1980), 173-180.
[Bal80b] Balkovich, E. E., The Des and QOperatjon of an E%BEE%E%E&QL
;gci;i;z for Diégggbugeé coggggéﬁ Sgsﬁfm Eesé%rgﬁy.ﬂahpu er Science
echnical FReport -80-8, Department o ectrical Engineering and Com-

puter Science, University of Connecticut, Storrs, CT, (September 1980).

[BrH78] Brinch Hansen, P., "Distributed Processes. A Concurrent Program-
ming Concept," Comm. AeM, 21,11 (hov. 1978), 934-941.

[Cap79] Capetanakis, J. I., "Genera:ized TDMA: The Multi-Accessing Tree
Protocol," IEEE Trans. on Comm., COM-27,10 (Oct. 1979), 1476-1484,

[Cha78] Chandy, K. M., and Sauer
Analyzing Queuein% ﬁet

Surveys, 10,3 (Sep

{Chu80] Chu, W. W., et al., "Task Allocation in Distributed Data Pro-
cessing," Cogputer, 13,11 (Nov. 1980), 57-69.

[CooB80) Cook, R. P., "®MOD - A Language for Distributed Programming,"
JIEEE Trans. on S. E., SE-6,6 (Nov. 1980), 563-5T71.

[Den78] Denning, P. J., and Buzen, J. P'i "The Operational Analysis of

ngugé?g Network Models," ACM Copputing Surveys, 10,3 (Sept, 1978),
225~ .

[{Dig80] Digital Equipment Corg Intel Corp.ﬁ and Xerox Corp., The

ernet, iA o¢ . ?eao)ue &6rk, Data Link Layer and Physical Laver
cifications (Sept. .

DoD80] Reference uanuaé for the Ada Prograpming Language, United States
epartnment o efense, July 1980, ’

, Sauery Cf CH., t"Apgrogimatﬁ Methods for
wor ‘odels of Computer Systems," ACM Computing
. 1978), 281-317. ’

[Fel79] Feldman, J., "High Level Programming for Distributed Computing,®
Comm. ACHM, 22,6 (June 19%9), 353-368. '

[Fon80) Fontaine, S. C., A Distributed Co e Qggigging §¥§§gn e
Masters Thesis,' Deparfmen 0 ectrica n% neering and Computer Sci-
ence, University of Connecticut, Storrs, CT, (December 1980).

EGol8OJ1gg%dbers. A., et al., Smalltalk: Dreages and Schemes, Xerox
orp., .

Hew77] Hewitt, C., "Viewing Control Structures as Patters of Passi
essages," Artif{clal Ingglilggngg, 8, (1977) 323-364. e

[Hoa78] Hoare, C. A. R., "Communicating Sequential Processes," Copmm.

AcM, 21,8 (Aug. 1978), 666-67T.

[JonT79) Jones, A. K., and Schwans, K. "TASK Forces: Distributed
Software for Solving Problems of Substanfial Size," Proceedings of the

%%-Msoma onal Conference on Software Engipeering, (Sept. 1979),

£K1e35] §leégrocki L.§ a?d Lam., Sé IPagket §witching in a Multiaccess
roadcas annel: Performance Evaluation JEEE Trans. on Comnm
COM-23,4 (Apr. 1975), 410-422. ' "

[Kle78) Kleinrock, L., and Yemini, Y., "An Optimal Adaptive Scheme for
Multiple Access Broadcast Communication," Proc. 1978 Internatiopnal
mgg_g_e.n.cg_m::.en_cg. (1978), 7.2.1-7.2.5.

{Lam79] Lam, S., "Satellite Packet Communications -- Multiple Access
?ﬁggo?g%g and Performance," JEEE Trans. on Comm., COM-27,10 (Oct. 1979),

[Lis79] Liskov, B., "Primitives for Distributed Computing,® ;roceediﬁgg

of the 7th Symposjum on Operating System Principles, (Dec. 1 R -42,

[Mao80) Mao, T. W., and R, T. Yeh, "Communication Port: A Language Con-

?388) f?gu 282current Programming®, IEEE Irans. on S. E., SE-6,2 (March
] - t.

[Mar80] Marathe, M., "A Study of NI Architectural Alternatives" Digital
Equipment Corp. internal report, (Aug 1980).

[May78}1 May, M. D., Taylor, R. J. B., and Whitby-Strevens, C., "EPL - An

Experimenta Programming Language gggggzgngg o} égggg%_ %§g

épg;icgtiogs: Distributed grocessing, aithersburg, (May 19787,
9-71.

[May79] May, M. D., and Taylor, R. J. B., The EPL E%Qg¥gmm;ng_ Manual

Dis{ributed'Computin% Project 'Report No. 1, Department of Computer Sci-
ence, University of Warwick, 6oventry, England, (1979).

[Met76] Metcalfe, R., and Boggs, D., "Ethernet: Distributed packet

ggétgging for local computer networks," Comm. ACM, 19,7 (July 1976),
[Sh§79] Shgch, gi ?nd Hupp, Jé,""Performancg of an Ethernet local neti

Work == preliminary repor Prog¢. Logg rea Communications Networ

Symposjum, N. B. S, and The MI%RE Corp, ston, (May 1979).

£3h080] Shore, J. E., "The Lazy Repairman and Other Models: Performance

ollapse tgue tgolﬁgﬁérhead i? S{mple, Single~server Queuing Systems,"
Prog, e nternationa m on Coppute erformanc
, Me'gfs'gremen E‘o, %oroFEo, %anaaa, !May 19%05,
217-224.

[Sou80] Souza, R. J. "On the Resource Requirements of Distributed
Sof tware," Téchnical Re ort, Department of Electrical Engineering and
Computer Science, University of Connecticut, (Oct 1980).

[Tob79] Tobagi, F. A. and Hunt, V. B., "Performance Analysis of Carrier
Sense Multiple Access with Collision Detection,®™ Technical Rexort 173,
Computer Systems Laboratory, Stanford University, Stanford CA, (June

1979).

(18]

FRRSINS SENE VIV T T

.S

B e
Dl ol gt

Part VII

The Impact of Yardware Interconnection Structures
on the Performance of Decentralized Software

by

R. Souza and E, Balkovich

PR

— -

Abstract

The results of an investigation of the relationhhip between software l

: !
structure, hardware interconnect structure and the performance of decen-

tralized computer systems are presented in this paper. Programs written in
a language which has the salient features of most languages suggested for
decentralized software were analyzed using trace-driven simulation. Among

the results is the fact that reasonable performance may be obtained at re-

latively low bandwidths using typical decentralized interconnect struc-

terconnect structures by decentralized software,

g e e

I Introduction

While a number of distributed systems have been constructed and

SR

described in the literature {Jen78], a design methodology for distributed
systens does not yet exist, Such a methodology will certainly be based on
nodels of the distributed software and hardware architectures. Such
nodels will require information about the requirements that a distributed

software architecture places on the communications and commputational

I tures. Additional results provide some insight into the use of hardware in-
l resources of the system.

Programming language research has produced a number of suggestions for
languages for distrubuted commputing [BrH78] [Hoa78] [Coo80]. A central

characteristic of these languages is the concept of wusihg a number of

: cooperating autonomous processes to acomplish a task. These processes exe-
cute concurrently, share no variables, and communicate with one another by

passing messages. Additionally, the processes tend to be small and conmuni-

|

cate frequently. Thus, there is potential for parallelism in the software
architecture, but the delays associated with message pacsing will certainly

be an important factor in evaluating system performance.

The communications subsystem characteristics and the interface between
the communications subsystem and the operating system kernel will have a
large impact on system per'formance, Due to cost, reliability and extensi-
bility requirements, only a few of the many hardware interconnection archi~
tectures are suitable for use in a distributed computing system. This
raises the question of how the software architecture should be designed in

order to best utilize the hardware.

This paper presents the results of an investigation conducted in order
to provide some insight into the use of computational and communications
resource by applications programs written in the distributed programming
language EPL ([MayT79]. The performance of two representative algorithms
written in EPL was nmeasured using trace~driven simulation [Fer78) in order
to quantify some of the performance tradeoffs made in the design of a dis-
tributed computing system. An understanding of these tradeoffs will allow
for a more methodical design of distributed systems. Of particular in-
terest in this research are the performance characteristics of a decentral-
ized software architecture running on a system constructed from a number of
processors interconnected by an Ethernet type [Met78) contention bus. Such
a system 1s available for experimentation. The expected performance of
such a system will be evaluated and compared to other better-understood ar-
chitecturcs, such as those using shared memory to communicate, with the in-

tent of assessing the impact of the hardware intcrconnect structures on the

performance of the distributed system.

-2

e} ”?_’"'__'.’. - e

[——

I
I
l
I
i
i
!
I
!
l
l
l
l
l
!
!
|
!
|

11 Background

The programming language EPL is representative of a number of

languages suggested for programming decentralized computer systems.

Processes (called gcts) may be created dynamically. An instance of a pro-

cess is an gector , and all actors execute concurrently. Multiple instances
of the same act may be created. Actors may communicate only by passing nes-
sages, so variables may not be shared among actors. EPL programs are in-
dependent of the hardware interconnect structure of a decentralized system.
ks 1long as the appropriate operating system kernel is used, the same EPL
program may be executed on a variety of decentralized architectures or a

single CPU,

In addition to communicating information between actors, messages may °

also be wused to synchronize actors. Messages between actors are not buf-
fered., Therefore a sending actor is delayed until the receiving actor is
ready to receive. Similarly, a rcceiving actor is delayed until the sending

actor is ready.

A Decertralized Kernel

In order for a computer system to be decentralized, all software, in-
cluding the operating system, must be decentralizcd. Operating systems for
nulticonputer systems which are not decentralized nay maintain globzl state
information in a central location, perhaps a table in shared memory. The

kernel for a distributcd operating system must disiribute this information

-3~

among the processors in the system, This distribution may be performed in a
number of ways. For example, each kernel may maintain its own copy of the
global state information (referred to as a distributed kernel). A kernel
which performs an operation which changes the global state information must
make sure that all other processors receive the new state information., This
problem is analagous to maintaining the consistency of a distributed data-
base, A number of algorithms have been proposed for performing the data
base update in a decentralized fashion.[Dij74] Alternatively, each kernel
may maintain information only about only those processes on the local pro-
cessor. If information about a non-local process is required (e.g. to send
or receive information to or from a process on another processor), the two
kernels must communicate in order for the information to be obtained. This
implementation will be referred to as a parjitioned kernel. A partitioned
kernel system has been implecented and is available for experimentation

(Fon801].

Hardware Interconpesct Structures

In order to construct a completely decentralized system, there must be
no central hardware component[Ens78]. This requirement restricts the number
of interconnect structures from which one may construct decentralized sys-
tems, Additionally, it is adventageous if the interconnect structure be
inexpensive, reliable and readily extensible, The Anderson-Jensen taxonomy
of multicomputer systems is a reasonably complete enumeration of intercon-
nection structures [And75]. Of the ten architectures in this taxonomy,
only three, the 1loop (DDL), global bus (DSB), and fully-interconnected
{DDC), cdo not exhibit some form of ccntralization. Of these three, the DDC

system possesses poor extensibility and cost characteristics and is not

-l-

—~—— e e—

reasonable for use in most distributed systems.

JII Analysis Approach

A reasonable way to determine the characteristics of applications
written in a distributed programming language is to measure actual pro-
grams. This was the method used in this research. The measurements were
performed in the following manner: A single~CPU version of an EPL runtime
kernel was instrumented to provide a trace of all significant events
(sends, receives, etc.) which occurred while a program was running. This
trace output could then be analyzed to provide information such as the
number of actors created, the names of 211 the actors, a histogram of mes-~
sage lengtns and a matrix of communication traffic between actors. Since
the EPL programs measured were deterministic, the information obtained in

this manner is independent of the hardware interconnection architecture.

The trace information could also be used as input to a trace-driven
simulation package which would sinulate the execution of the progrars on a

variety of multicomputer architectures,

Slgulation Models

This section describes the models used in the trace-driven simulation,

Kernel Model

The simulation kernel models the partitioned kernel as described
above, Identical c¢»opies of the kernel are maintained in each processor.
Each kernel possesses state information only for local processes. A pro-
cess wishing to send to or receive from a process on another processor is

-5

blocked while the two kernels exchange state information. Consider the
case where a process wishes to send to a process on another processor. The
sending process is blocked when its kernel determines that the receiving
process 1is not resident, The sender's kernel sends an enquiry to the
receiver's kernel. When the receiving process is ready to receive, 1its!®
kernel sends an acknowledgement to the sender's kernel. Upon receipt of the
acknowledgement the sending process is marked as ready to run. When
rescheduled, it will transmit the message text to the receiver. The re-
ceiver remains blocked until the text is received and then 1is marked as
ready to run, A total of three message are required to pass a message
between two processes on different processors: an enquiry for state infor-

mation, an acknowledgement with the state information, and the text itself.
Local Actor Scheduling

A FIFO queue of actors ready to run is maintained by the kernel at
each processor. The actor at the head of the queue is given control when
the processor is idle., MNote that an actor which has become ready to run

will not immediately execute, but must wait for those queued ahead of it.

Global Actor Scheduling (Process Allocation)

The problem of process allocation is complex and we do not attempt to
solve it here. It is hoped that the results of this work may be used in an
optimal task allucation algorithm.[ChuB0] The simulation has two algorithns
for process allocation, The first of these algorithms maintains a schedul-
ing policy which allows one to write distributed software which gracefully

degrades with failure [Bal79]. The second algorithm tries to minimize com-

——— RS ASWERS
[

munications between the processors.

Logical Ring Data structures implementations in distributed progran-
ming languages are of'ten chains or trees of processes [Tay79]. The process
allocation algorithm views the processors as connected in a 1logical ring.
Vhen a process creates another process, the child process is placed on the
logically adjacent processor. The intent is to avoid a situation in which
parent and child are resident on the same processor. If the software struc-
ture is constructed appropriately, failure of a processor may disrupt
parent-child communication, but not parent-grandchild communication, for

example. No check as to the loading of the logically adjacent processor is

performed.

Minipug Communjcations Cost This allocation will attempt to minimize
communications between processors by creating a child process on the same
processor as itst parent. The assunption, borne out by measurement, is that
most process intercommunication is parent-child in nature. If the local

processor is more that fifty per cent utilized, the child process will be

created on the logically adjacent processor.

The Process Model

A process may be characterized by three parameters: a sequence of
sends and receives, the time curation between sends and receives, and the
size of the messages sent by that process. The send/receive sequence for
each process is determined by processing the trace output from the single-
CPU instrumented kernel and forms the input to the simuiator. This pro-
cessing also determines the average message length for all processes. This

is the values used for message length for all messages in the system, in-

-1~

U = -

cluding kernel-kernel communication. The time between send)reeeives for
typical EPL prograns has been measured by counting instructions [Bal8¢].
Based on these measurements, the time between sends and receives is taken

to be exponentially distributed with a mean of 10 machine instructions.

Hardyare Interconnection Models

The simulation provides models for a number of different hardware in-

terconnection systems. Several of these are described below.

Shared Memory System

This model contains from one to five processors which communicate
through a shared memory. The time required to insert or remove a message
in/from the memory is assumed to be zero, This configuration corresponds to
the DSM architecture of Anderson and Jensen and may be used as a base from
which the costs of distribution may be measured, Additionally, the degen-
erate case of this architecture is a uniprocessor, so that the

distributed/uniprocessor tradeoffs may be measured.

The same kernel model is used in this system as the decentralized sys-
tems, but since all communication between processes is on the same proces-
sor, the kernel need not send messages to obtain state information. That
is, the overhead involved in sending a message between two processes is not
required to include the time required for kernels to exchange state infor-

mation, -
Global Arbitrated Bus (ICSB)
Processors are connected by a global bit-serial bus with FCFS arbitra-

-8-

b

tion. Each processor communicates with its' I/0 channel via DMA, so that
I/0 and processing may overlap. £ queue of processes wishing to access the
global bus is maintained., Bus bandwidths from 10 Kbit/Sec. to 1 Mbit/Sec.
were investigated. It should be noted that the arbitration method used by
this interconnection architecture requires a centralized arbiter. It is not
a decentralized architecture, but it was included in the analysis since it
is an architecture which nakes nost efficient use of the available bus
bandwidth. and provides a baseline from which to measure other bus inter-

connection methods,

Contention Bus (DSB)

This configuration models a Ethernet-type contention bus. [Met76] In-
terfaces listen before sending and only transmit on the bus if it is not in
use. An interface can determine the presence of information on the bus
(carrier detect) in zero time, This is somewhat unrealistic in a physical-
ly distributed systen, If the bus is in use, the interface waits until the
pus becomes free (no carrier), delays an exponentially-distributed random
time, and tries to send again, Note that it is possible for the bus to be
busy agiin at this time, causing the interface to retry again., If a colli-
sion occurs, both interfaces involved retry an exponentially-distributed
random time after the bus becomes free. This model differs slightly from
the Fthernet in that a collision is not detected until the end of a message
transnission so that a collision destroys both messages and makes the bus
unusable for a nmessage time, Additionally, the backoff time after a colli-
sion 1is generated by an exponentially-distributed random number gen-

erator rather than the binary exponential backoff algorithm. The bus

bandwidths investigated were the szme as for the ICSB system.

~Qm

Sample Application Prograus

Programming in a distributed programming language requires application
of a set of concepts quite different from those used when programming in a
sequential language [Tay79] [Hoa78] [BrH78). A fundamental difference is
the concept of using a process to encapsulate an element of data. An array
pmay be implemented by a string of processes, for exaﬁple. The directory for
a filing systen may be contained in such an array, and searching the
directory for an entry would involve @moving down the chain of
processas until the required entry is found. A process may also be used té
implenent a précedural abstraction, such as converting an integer to a
character string. Such a procedural abstraction differs from the implemen-
tation in a sequential program, as it is concurrent with the procedures us-

ing it.

Two sample application EPL programs were selected for study. It is
felt that these programs possess the characterics of a large number of pro-
grams written in languages for decentralized software. These programns com-
pute prime numbers by the sieve of Eratosthenes and perform a heap sort on

a random array of numbers,

Sieve of Eratosthenes

The sieve generates prime numbers by creating a pipeline of actors
driven by a number generator, Each actor in the pipeliine encapsulates a
prime nunmber and sieves out all numbers passed to it which are multiples of
that prime number, A new actor is created to encapsulate a number which

cannot be divided by any actor in the pipeline. The sieve is an example of

-10-

i

the concept of encapsulating data within a process,

Heap Sort

The heap sort generates an array of random numbers using a process to
implement the random number generator and then sorts the numbers using a
heap sort algorithm, Each node in the sort tree is a process. The processes
are created as the tree is loaded and deleted as the tree is unloaded. A
difference between the heap sort and the sieve is that the sieve tends to
create an ever-lengthening chain of processes, while the heap sort creates
a large nunber of processes arranged in a tree and then removes them. The
connunicztions requirements of the heap sort are felt to be quite different

than those of the sieve, which will allow for evaluation of two extremes of

this spectrun.

IV Results

Figures 1 and 2 illustrate the effects of the different interconnec-
tion structures and scheduling algorithms for the sieve and sort programs.
Several items are worthy of note. The first is that there is little differ-
ence 1in performance between systems communicating via a high speed global
bus (1Mbit/Sec) and those communicating via shared memory. While messages
between processes are sent frequently, the average message size is small
(around 2 bytes) and this places little demand on the interconnection sys-

tem.

The logical ring allocation algorithm offers better performance than

the mninimum coumnunications allocator for the bus architectures. This is

because communications resource is so abundant that the loss 4in potential

-11-

o

T " ——— ey

parallelism caused by placing child processes on the same processor as the

parent outweighs the communications delay.

Addition of a second processor with the logical ring scheduler dramat-
ically impacts the completion times of the two programs. The sieve algo-
rithm has two source of parallelism: the process which generates integers
and feeds the pipeline; and the first sieve in the chain. Processes further
and further down the chain are activated less and less frequently. Addition
of the second processor with the ring scheduler places these two processes
on different processors, allowing them to run concurrently. Similarly, the
root process of the heap sort can run nearly all the time., Addition of the
second processor allows this toc happen, and the additon of further proces-

sors contributes equitably to the performance.

The fact that a 1 Mbit/Sec global bus can provide performance equal to
that of a shared menmory system for this class of deceatralized system
raises the question of how bus bandwidth in a bus-interconnected system ef-
fects performance. Indeed, the bus bandwidth will surely be a large factor

in determining system cost.

Figures 3 through 6 present results of a set of experiments at various
bus bandwidths below 1 Kbit/Sec. Results are presented here only for the
sieve algorithm, but results for the sort are similar. The performance of a
100 Kbit/Sec bus was roughly the same as a 1 Mbit/Sec bus. Note that the
information for both the ICSB (arbitrated) and DSB (contention) buses are

shown to allow for comparison,

Fipure 3 plots complection time as a function of bus bandwidth. Per-

formance 1s dramatically increacsed at bus bandwidths above about 25 - 50

-12-

!
4

Kbit/Sec. This is the point at which the system changes from an I/0 bound
mode to a processor-bound mode of operation. This is borne out be Figure
4, which shows very high bus utilization below about 50 Kbit/Sec, and by
figures not presented here which show a sharp drop in the size of the com-

munications controller queue size as bus bandwidth approaches 50 Kbit/Sec.

Bus utilization increases as more processors are added to the system.
The arbitrated system achieves a higher bus utilization, especially at low
bandwidths, The contention system behavior parallels that of the arbitrated
system because the interfaces can detect carrier in zero time, The nodel is
currently being modified to associate a time delay with carrier detection.
The perforaance degradation with the contention bus is probably due to the
fact that the random delays generated by the controller may place mnessages

on the bus out of order., This second order effect requires further inves-

tigation.

Figures 5 and 6 show the effects of bus bandwidth on processor utili-
zation and throughput. These increase somewhat linearly with bandwidth, in-

dicating that there is a backlog of work at each processor.

Supmary

Trace-driven simulation was used to neasure the anticipated perfor-
nance of two representative programs written in the distributed programming
language EPL., The behavior of these programs on a number . of multicomputer

systems was measured,

Performance of these prograns was effected by a number of factors,

especially the bandwidth of the intercommunications medium. Systen perfor-

..13-

T PP I

B

[

mance is essentially CPU-bound until communications bandwidths are quite

low, at which point performance degrades significantly as the system be-~

comes I/0 bound. Another contributing factor is the procesS allocation al~

? 1 gorithm, Two simple algorithms resulted in quite different system perfor-
‘ mance characteristics., Optimal performance will require application-
dependent process allocation agd selection of én appropriate interconnec-~

l tion subsystem bandwidth,

References

[AndT5] Anderson,G. A, and Jensen,E.D, Computer Interconnection
Structures: Taxonomy, Characteristics and Examples, ACM Computing
Surveys, Vol. 7, No. 4, Dec. 1975.

[Bal79] Balkovich, E. E, A Structure for Decentralized Software, Techni-
cal Report CS-79-9, Department of Electrical Engineering and Com- : 1
puter Science, University of Connecticut

l [Bal80] Balkovich, E. E., and Whitby-Strevens, C., On the Performance of
Decentralized Software, Proc. of the Tth International Symposium on
Computer Performance Modelling, Measurement and Evaluation, Toron-
' to, Canada, May 1980, p 173.

[BrH78] Brinch-Hansen, P., Distributed Processes: A Concurrent
Programming Concept, CACHM, Vol. 21 No 11, November 1978, p. 943.

{Chu80} Chu, W.,W, et, al,, JTask Allocation in Distributed pata
Processing, Computer, Vol. 13 No. 11, November 1980, p. 57.

{Coo80] Cook, R.P., *MOD - A Language for Distributed Programming, IEEE
" Prans, on Software Engineering, Vol. 6, No. 6, Nov 1980, p. 57.

{Dij7h] Dijkstra, E. W., Self-Stabilizing Algorithms in Spite of
Distributed Contr.. CACM, Vol 17., No. 11, November 1974, p 643.

-1l

[Ens78) Enslow P., What Is A "Distributed” Data Processing System?, Com-
puter, Vol, 11 No 1, Jan, 1978 p 13.

[Fer78) Ferrari, D. Computer Systems Performance Evaluation, Prentice-
Hall, 1978.

(Fon80] Fontaine, S., A Distributed Computer Operating System Kernel,
M.S. Thesis, Department of Electrical Engineering and Computer Sci-
ence, December 1980.

[Hoa78] Hoare, C.A.R., Communicating Sequential Processes, CACM, Vol. 21
No. 8, August 1978, p 666.

[Jen78) Jensen, E. D., The Honeywell Experipmental Distributed Processor
- An Overview, Computer, January 1978, p. 28.

[May79] May, M.D and Taylor, R.J.B, The EPL Progremping Manual, Depart-
pent of Computer Science, University of Warwick, May 1979.

[Met76] Metcalfe, R.M, and Boggs, D.R., Ethernet: Distrjbuted Packet
Switching for Loeal Computer Networks, CACM, Vol. 19, No. 7 July
1976, p 395.

[Tay79] Taylor, R.J.B., Notes on Programming in EPL, Department of Com-
puter Science, University of Warwick, May 1979.

_

S,

mmomwmoommn 40 ¥39WNN

/] 1

1§00 SHOLIVI{NNAIRIOD HAUINIW 1880 +
ONIY V31001 4GS0 @
1900 SHOLIVOIRMMOS RARININ 8821 @

SNLY V31007 8301 @
YOSSIAAONILL WM

SAWIL NOI1I137dW0OJ 3A3IS 1 914

00°09"

T

100°08
NOI131dW03

0°001
WIlI

om

00°09

L
00°0.

00°08

J

00°06
(03SH) 3WI1 NOIL31dHOD

&
.t
o0
o -
o
1203 SNOLIVILRAIMGD HAKLINIM s85C +
-
ONLY TVOLE0T '88C w im
1809 SNOLIVOLNAINICY WAUINIK OS9] @ mu
(=]

SHI¥ V31001 4Ol @
YOIRIFCNILIIM ©

S3WIL NOIL3dWOJ 1¥0S ¢ 3dNold

(*ZHM) HL1QIMANYS Sng
0905l 00°Sil 00°00L 00°'§8 ©00‘0L 00°SS 00°0F 00°S2 00°0

00°d"

QﬂﬂuﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlLPTII

00°02

v

00°0¥

4./
00°09

(*33SW) 3WI1l NDOI1137dWO0D

[»
O 1
o
[= I
.
rl
SVOSTINNI T v g .
SV09S300¥S ¥ © S :
$VOSS908d € @ d
$UOSSII0US § *

HLGIMONYS SA 3WIL NOIL31dWOQ ¢ 914

1‘ —r ~ ———

(*ZHM) HIQIMAONVE SN8g
oo.onp oo.nf 00°001 oo.lm.m oo.f oo.lm% oo.o.q oo.m.m 00°01l,,
i o
o
o)
[«,]
®
e s
: 8c
(4]
\ -
// LS
s,
N
>
o
pf
3=
[DON
o
W\/-
0 ?..w
o
5]
$30583 3\ 350V -& uhw
SUOSSING 2 1830 @ o
S

SUCSSI0US ¥ 18RI @
$J058330¥4 2 8301 *

HIGIMONYS SA NO1LVZI1llIn Sng ¢ 914 .

(*ZHX) HIQIMONY8 SN
00°0St 00°Sil 00°001 00°S8 00°0/ 00°SS 00°0¥ 00°§2

SYCSO3I0Ud ¥ 1830 @
SNOSSIIONd T 830 G

2U0STIA0UL » EFL B
SUQLSIIONL T 80T ©

3
| HIJIMONYS SA NOILVYZ171.ln ¥0SS3J0¥d :§ 914

00°0¢ |

00°Si1

(* NIxV H1QIMONVE SN8

00°00L 00°S

00°04 00°SS 00°0¥

A

SUOSSI0US * 80 v
FY089I0VJ T 980 @

V03830084 T i1 @
SUORTIONS ¥ 28931 *

H1QIMANVE SA LINdHONOYHI 9 914

L

80°0

T

91°0
103008 FOVYIAY

-

J

d

