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I. INTRODUCTION

The technology for helium-free DF lasers is being examined to determine

if the operational advantages afforded by solid-grain reactants and closed-

system operation can be exploited. All of the required reactants can be

produced from storable solid-grain compounds. One solid-grain formulation

designed to produce fluorine utilizes NF4 BF4 , which results in the appearance

of BF3 by product in the combustion products. The development of solid-grain

compounds and auxiliaries to remove all BF3 would add cost, complexity, and

bulk to the solid-grain system. The object of the present study is to assess

the effect of BF3 on laser performance, with emphasis on the deactivation of

DF by BF3 . The study includes a review of the deactivation of DF(v) by BF3 ,

calculation of combustor products, and DESALE calculations to determine laser

power outputs with and without BF3 .
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II. DEACTIVATION OF DF(v) by BF3

The rate coefficient for the deactivation process

DF(v = 1) + BF3 k~l) DF(v = 0) + BF3 (1)

has been measured at T = 295 K by the technique of laser-induced fluores-

cence.1 Although the temperature dependence is not known, the deactivation

rate coefficients for the deactivation of DF(v = 1) by other molecules depend

rather weakly on temperature in the 300- to 500-K range. 2 We have chosen a

temperature-indeoendent rate for the modeling calculations given by

K(1) = 1.25 x 1011 cm3 /mol sec

The rate enofficients for the high vibrational levels have been estimated on

the basis of the v2 scaling that holds for DF(v) deactivation by diatomic

molecues.3 The remainder of the kinetics package used in the laser modeling

calculations are reactions and rate coefficients recommended by Cohen of The

Aerospace Corporation.4 These reactions are periodically reviewed and updated

for consistency with the latest literature.5 Cohen has estimated rate

coefficients for the upper vibrational levels where no data are available.
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III. CALCULATIONS

A. PRIMARY- AND SECONDARY-FLOW CALCULATIONS

Typical gas-f I'w conditions are shown in Table I (taken from statement of

work). Adiabatic flame-temperature calculations were performed for the

primary flow at a total pressure of 2 atm. The results of this calculation

are shown in Table 2. The combustion produces a temperature of 2291 K, with

the only species of any concentration being fluorine, HF, BF3 , and N2 . The

large bond strengths of HF, BF3 , and N2 make this result quite understand-

able. Although an adiabatic flame temperature of 2291 K is predicted, the

actual temperature of the gas at the entrance to the expansion nozzles is

probably closer to 1800 K after heat loss to the walls of the combustor.

The combustor gas was assumed to expand adiabatically from 2 atm at 1800

K to a velocity of 1.75 x 105 cm/sec (Mach No. = 5.0) with T = 282 K, and P =

2.86 Torr. These conditions were used as input conditions for the laser

modeling calculations. The mole fractions leaving the combustor are shown in

Table 2 to be fluorine, 0.161; HF, 0.356; N2, 0.379; and BF3 , 0.104.

The secondary flow of D2 is assumed to undergo a small expansion to a

velocity of 1.1 x 105 cm/sec corresponding to a Mach number of 1.25. If the

D2 is initially at room temperature, this expansion leads to a final static

temperature of 225 K.

B. DESALE CALCULATIONS OF LASER PERFORMANCE

DESALE 6 calculations were performed for a laser with the following

configuration: nozzle heights = 0.5 cm; primary nozzle width = 0.08936 cm;

secondary nozzle width - 0.01064 cm; total length of nozzle bank = 100 cm; and an

unstable cavity with a magnification M = 2. The DESALE calculations take into

account finite mixing rates of the primary and secondary flows in the laser

cavity, reaction rates, and laser radiation. The mirrors have one edge at x f

0, the nozzle exit, and the other edge at position x downstream. The optimum
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Table 1. Typical Gas Flow Conditions

Primary Flows

Gas Molar Amount

F2  1.0

NF3  1.0

BF3  0-1.0

N2  3.16

H2  1.72

Secondary Flow

D2  5.5

Static Pressure = 2-10 Torr
Initial Static Temperature = 200-400 K
Initial Total Temperature 1800 K
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sized mirrors are those that produce the maximum power (Fig. 1). The

calculations were performed for the conditions listed in Table 3, and the

results of output power versus mirror width are shown in Figs. I and 2.

A maximum power of 4700 W was calculated for Run 1, which contained the

full amount of BF3 and the deactivation kinetics for DF(v)-BF 3 . The calcula-

tion for Run 2 was performed for exactly the same conditions except the

deactivation kinetics for DF(v)-BF3 were deleted. The output power in Run 2

increased to 4875 W from 4700 W in Run 1, a change of only about 4%. The BF3

was removed from the primary flow for Run 3 with a consequent 10.4% decrease

in the static pressure. In order to match the pressures in the primary and

secondary flows, the D2 flow rate was reduced by 10.4%. The resulting power

of 4750 W falls between the powers of Runs I and 2. The lower pressure allows

mixing to occur sooner, but the lower D2 concentration tends to stretch out

the reaction zone.

In order to check the sensitivity of the results to uncertainties in the

deactivation rate coefficient, a calculation was performed in which the rate

coefficients for DF(v) deactivation by BF3 were arbitrarily increased by a

factor of 2. The calculated peak power in this case was 4515 W, about 4%

below the power for Run I with the most probable rates and about 8% below that

of Run 2 where the deactivation rates are set equal to zero. The decrease in

laser power is roughly proportional to the increase in the deactivation rate.

The temperature in the laser cavity increased from about 280 to 380 K at the

peak power in all cases so that the average temperature was 330 K, only about

12% above the temperature of the DF(1)-BF 3 rate measurements. A calculation

performed with the standard rate coefficients, but with a v3 scaling for the

DF(v)-BF3 rates gave 4370 W, compared to 4700 W for the v2 scaled calculation.

The most important deactivators in the system are HF and D2. Instead of

taking BF3 out of the primary flow, an alternative is to reduce heat losses in

the combustor and use 10% less H2 , which makes HF. Run 4 shows that the power

is increased about 5% by a 10% reduction in HF.
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IV. CONCLUSIONS

Laser modeling calculations have been performed for a helium-free DF

laser based on solid-grain reactants. The presence of BF3 , a combustion by-

product, in the laser cavity, degrades the laser performance by about 4% for

reasonable estimates of the temperature dependence of the deactivation rate

coefficient and for its scaling to higher vibrational levels. It is

concluded, on the basis of our DESALE calculations, that laser performance

degradation is not severe enough to warrant the removal of BF3 from a

combustor flow that utilizes an NF4 BF4 solid-grain formulation.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to new military concepts and systems. Ver-

satility and flexibility have been developed to a high degree by the laborato-

ry personnel in dealing with the many problems encountered in the Nation's

rapidly developing space systems. Expertise in the latest scientific develop-

ments is vital to the accomplishment of tasks related to these problems. The

laboratories that contribute to this research are:

Aerophysics Laboratory: Aerodynamics; fluid dynamics; plasmadynamics;
chemical kinetics; engineering mechanics; flight dynamics; heat transfer;

high-power gas lasers, continuous and pulsed, IR, visible, UV; laser physics;

laser resonator optics; laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric reactions and optical back-

grounds; radiative transfer and atmospheric transmission; thermal and state-
specific reaction rates in rocket plumes; chemical thermodynamics and propul-

sion chemistry; laser isotope separation; chemistry and physics of particles;

space environmental and contamination effects on spacecraft materials; lubrica-

tion; surface chemistry of insulators and conductors; cathode materials; sen-
sor materials and sensor optics; applied laser spectroscopy; atomic frequency
standards; pollution and toxic materials monitoring.

Electrnnics Research Laboratory: Electromagnetic theory and propagation
phenomena; microwave and semiconductor devices and integrated circuits; quan-

tum electronics, lasers, and electro-optics; communication sciences, applied
electronics, superconducting and electronic device physical millimeter-wave
and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; composite

materials; graphite and ceramics; polymeric materials; weapons effects and

hardened materials; materials for electronic devices; dimensionally stable

materials; chemical and structural analyses; stress corrosion; fatigue of

metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae

and airglow; magnetospheric physics, co*mic rays, generation and propagation

of plasma waves in the magnetosphere; solar physics, x-ray astronomy; the effects
of nuclear explosions, magnetic storms, and solar activity on the earth's

atmosphere, ionosphere, and magnetosphere; the effects of optical, electronag-

netic, and particulate radiations in space on space systems.
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