AD=A099 188 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE-—ETC F/6 9/2
THE USE OF PARALLELISM TO IMPLEMENT A HEURISYIC SEARCH. (U
MAR 81 W A KORNFELD N0001~-75-C-0522
UNCLASSIFIED Al-M=627

lurl

i

END
nate
. s
! ©-8l
! pTIC

e e vt e -

C FILE COPY

Uil

ADAD99 184

UNCLASSIFIED

SEC MITY CLASSIFICATION OF TiS PAGE (Hhen Daets Entered)

REPORT " *".1%: "NTATION PAGE HEFORE COMPLETING FORM

. REPCRY NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

AIM 627 | A)- ALINLPH

A. TITLE (and Subtitle) 5. TYRE-OFREPORT-& FERIOD COVERED
ﬁ-The Use of Parallelism to Implement a Heuristic “ Memorandum 1 : .

* Search, ¢ PERFORTIN TREFPORT NUMBER

—_ Al
7. AUTHOR(s) .'. CONTRACTY OR GRANT NUMBER(as) -
|0 wittiam A.[xornfeld . - /Y& nooora-75-c-ps2z -
7
8. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Artificial Intelligence Laboratory ARER & MORK UNIT HUMBERS

545 Technology Square /9’ v e - 7
Cambridge, Massachusetts 02139 B - o

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency ’l March 1981 / //J ~
1400 Wilson Blvd 13, WUMBER OF PAGES T
Arlington, Virginia 22209 17

MONITORING AGENCY NAME & ADDRESS({t te
Office of Naval Research
Information Systems

-

Controlling Olllc,’ 18. SECURITY CLASS. (of this repory,

5%‘;& / UNCLASSIFIED

';
/! 52, DECL ASSIFICATION/ DOWNGRADING
=4’ SCHEDULE

Arlington, Virginia 22217

. DISTRIBUTION STATEMENT (of thia Report)

Distributfon of this document i1s unlimited. (m
s D

3T

i r e e >

DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i dlilerent from Report) - -) >

. SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on reverse side Il nacessary and Identily dy block number)

constraint networks
parallelism

search strategies
problem _solving

DD ,"S°%, 1473 eoition oF 1 nov 6815 OBsOLETE UNCLASSIFIED “ / 7*

S/N 0102-014-8601 |

20.

iffiﬁl?"t than a corr?sgggdiqgrﬁg usn:ja] one. Implications of this for prob

ABSTRACT (Continue on reverse eide I necesssty and identify by block number) . .
.The role of parallel processinsin heuristic search is examined by means of an

example (cryptarithmetic addition). A problem solver is constructed that
combines the metaphors of constraint propagation and hypothes1ze-and—§est. Thﬂ
system is capable of working on many 1ncomgat1b1g hypotheses at one time.
Furthermore, it is capable of allocating different amounts of processing power
to running activities and changing these allocations as computation proceeds.
It is empirically found that the parallel algorithm is, on the average more

yina in cdenera

o

prepa————

S

SECURITY CLASSIFICATION OF THIS PAGE (#"hen Dars Entered)

i MASSACHUSETTS INSTITUTE OF TECHNOLOGY
_ ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Mcemo No. 627 March, 1981

The Use of Parallelism to Implement a Heuristic Search

William A. Kornfeld Tu

Accession Tor
CRTIS 0Rsal
DTIC TAS

Unanne .24

By
i Dw"* Tl

Avelilis '

™ b
g

ABSTRACT. The role of parallel processing in heuristic scarch is examined by means of an cxample
(cryptarithimetic addition). A problem solver is constructed that combines the metaphors of constraint
proepagation and hy pothesize-and-test. The system is capable of working on many incompatible hypotheses at
one time. Frrthermore, it is capable of alfocating. different amounts of processing power to running, activitics
and changing these allocations as compiitation procecds. 1eis empiricatly found that the parallel alporithm s,
on the average, more etficient than a corresponding sequential one. Timplications of this for problem solving
in general are discussed.

ACKNOWILEDGEMENTS; This report describes research done at the Artfiaal Intelligence T aboratory of
the Massechusetts Tacditate of Technology, Support for the laboratory s artificial intelligence rescach s
provided in part by the Office of Naval Research uneler Oftice of Naval Rescarch contract NODOT4-75 C-0522.

Justifientiae _

1. Introduction

Many Al systems that perform a "heuristic search” (i.c. they can be thought of as scarching some space of
possibilitics for an answer) are based upon one or both of two programming techniques known as constraint

propagation and hypothesize-and-test.

In a system based on constraint propagation, internal data structures represent (implicitly or explicitly)
potentially acceptable points in the scarch space. Computation procceds in narrowing down these
possibilitics by employing knowledge of the domain in the structure of the computation. There is not enough
space here to properly introduce the concepts involved in constraint propagation. The reader is referred to
some systems described in the literature [1, 10] for an introduction. One point we wish to emphasizc about
purc constraint propagation is that at any time the internal data structures will be consistent with any solution
1o the problein. “Thus, if more than one solution is pussible, pure propagation of constraints will be unable to
select omly one of them. Further, ¢ven if a unique solution ¢xists, a constraint propagation system may not be

able to tind it. y

The hypothesize-and-test methodology allows the program to make assumptions that narrow the size of the
search space; there is no guarantee that the assumption is consistent with any solution to the problem. ‘The
program continues to make hypotheses until a solution is located or it has been determined that no solution is
possible with the current set of assumptions, There is no requirement that any, hypothesis be correct and so
mechanisms must be available that prevent commitment to any hypothesis until it has been demonstrated to
be acceplable. The most commonly available mechanism is known as bucktracking. Backtracking allows the

program to return to an environment that would exist had that assumption not been made.,

As Tong as the search space is enumerable (a very weak assumption) hypothesize-and-test can be casily seen to
be logically more powerful. 11 there are several consistent solutions, a pure constraint propagation system has
no way to establish preference for one of them. Fuen if onty one solution s possible a constraint propagation
system will not necessarily find it; this will be demonstrated later by example. The proponents of constraing
propagation point out that hypothesize-and-test 1s grossly meffiaent in situations where constraint
propagation can function {sce for example Walt [I2). The example i this paper bears out this claim, though
one recent studs 3] suggests U re are situations i wlich pure backtracking s more efficient than constraint

propagation.

One can, however, in‘luginc a composite system that has aspects of both constraint propagation and
hypothesize-and-test. In such a system, constraint propagation can be used to prune the search space, yet
allowing hypothesize-and-test to continue the search where constraint propazation is not able to. A constraint
language that can support the creation of such systems has heen constructed by Steele [11]. Steele allows
assumptions to be made and backtracking performed. The current work discusses another such system in
which the hypothesize-and-test methodology allows more than one assumption to be pursued concurrently, It
is an cxtension of carlier work discussing parallel problem solving systems [6, 7] and a language, FEther, for
implementing these systems, Here we examine one particular kind of secarch problem, cryptarithmetic
addition, of the sort used by Newell and Simon [9]. We study this problem, not because it is interesting in
itsclf, but because it is well-defined and test cases are relatively casy to come by. This allows us to test the
cfticiencies of algorithms empirically. We have constructed a parallel problem solver for doing these

cryptarithmetic problems.
There are two main points we wish to make:

1. That a system combining both constraint propagation and parallel hypothesize-and-test methodologies can

be constructed. 'The code is simple to read, write, and understand. Fxample code is presented.

2. That, on the average, a parallel program for solving these puzzles can be constructed that requires less
average run time when the purallel program is exccuted by time-slicing on a single processor than a scquential
program cxecuted on the same processor. Obviously, it matters which sequential and which parallel program
we compare: the benchmarks for this comparison will be explained later and are, 1 think, quite reasonable.
The speedup we are talking about here is not large, but is noticcable. The important point is that it is present
at gl A similar effect has been noticed in other studics for various probiems [5. 7] It suggests that
concutreney nnay he o usetal tor the design of heuristic search algorithms whether or not the programs are

exconted onconcurrent hardw.are or a conventional sequential computer.

I he rentainder of this paper consists of a discussion of the problem being solved and the natiire of the parallel
sofubion. We show how the efficiency of the parallel program depends on the use of heuristic information for
allocatm 1esanrees of the parallel program. We then develop o series of allocation strategics. cach one
mnpios g on the previoos ones We finallv discuss the saportance of this experiment for a general theory of

predlom sodvmge. We show how the allocahion stialeges represent o ose of what has been called nera-level

knowledge in the literature, i.c. knowledge about how to guide the search process to gain cfficiency. In this

study, concurrency is necessary to make use of this meta-level knowledge.

2. The problem

We are given three strings of letters, e.g. "DONALD", "GERALD", and "ROBERT" that represent intcegers when
substitutions of digits are made for cach of the letters. There is at least one pussible assignment of digits for
letters so that the numbers represented by the first two ("DONALD" and "GERALD"), when adasd, yicld the
number represented by the third ("ROBERT"). Any one of thesce assignments is a solution. In the problems
we will be looking at, cach will contain exactly ten letters. A solution consists of a mapping from these ten

letters onto the ten digits 0 through 9.

3. A Constraint Propagation Solution

In our construction of the constraint network we will use the actor model of computation. We find it a very
natural formalism for building these sorts of systems. In this formalism nodes of the nctwork are
implemented as actors. Constraint propagation between nodes is impicmented by sending of messages
containing the new constraints to the node being constrained. For our cryptarithmetic problem solver we

have three kinds of nodes: letters, digits, and columns. "They arc arranged as shown:

Column
Nodes

Lerrer
Podes

[R

Aude?

Arcs in the diagram indicate low of constraints. ‘Thus column nodes can ¢onstrain their left and right

neighbor columns and certain let:er nodes (the ones representing letters contamed within the column). Lctter
nodes can constrain digit nedes and column nodes that contain their respective letters. Digit nodes can
constrain ictier nodes. In the initial configuration, beiore constraint propagation begins, we store at each
letter node a list of possible digits that contains all ten digits. Similarly, cach digit node contains a “possible
letters list™ containing all ten letters. We will give @ short description of what cach node has to do when it

receives a message informing it of a new constraint,

Columns. A column can receive messages informing it of new constraints on letters it contains and on
possible values tur s carry-in and carry-out. If a column node receives any such messages, it computes
possible new constraints on its letters, carry-in, and carry-out. If any onc of these has no possible values a
CONTRADICTION is asserted. When a CONTRADICTION is asserted the code implementing
hypothesize-and-test is invoked te take an appropriate action. New constraints on letters are sent to the
respeciive leder rodes. New constraints on carry-in and carry-out are sent to the right and left ncighbor

columas respectively.

Letters.) etters receive messages that indicate subsets of the digits 0 through 9 that they can possibly be. 1f
they learn of digits that they cannot be, nodes representing those digits are sent messages. Also, cach column
that contains the letter receives a new micssage informing it of the new restrictions on the value of the

particular letter. If the set of possible digits becomes null, « CONTRADICT ION is asserted.

Digits. These receive messages from Ietter nodes indicating that they are or arc not the respective letter. If
the set of possible letters is reduced to a singleton, a message is sent to the particular letter. If the set of

possible letters is reduced to null, a CONTPADICT ION is asserted.

We can observe some things about the ability of this systenn to satisfactority derive a unique solution, First, if
there is more than one possible solution it will not find any of thens Since the letter and digit assignments of
cach possible solution are certainly possible assignments, they will appear on the possibility fists attached to
cach node. A fact that is not so casy to check by inspection, bat which is easiiy demonstrable empirically, is
that even if there is only one possible solution (ot no possible solutions) the system niay not find it (or

discover that no solutions exist). Nevertheless, the knowledye can be <aid 1o be "present™ in the network; if

the nodes of the network e instantiated with an assipnment of Teters to digits, the network will assert a

-6-

CONTRADICTION iff the assignment is not a solution. Our constraint network, then, needs the ability to

make assumptions and test them if it is to be able to solve these puzzles.

4. lypothesize and Test in Ether

The constrair network and hypothesize-and-test methodologies were written in the Ether language [6, 7] We
will enly give cnough details about the implementation to support the ensuing discussion. ‘The interested

reader is referred o [8] for a more detailed discussion of the implementation,

The primitive operations of the Ether languages are based around the notion of an assertion rather than
message passing. Rather than coding in a message passing formalism “Send the node for the letter 1D that is
57 we instead say "Assert that D is 5™ and a process of compilation turns this assertional code into a message
passing implementation. For certain problems this process of compilation is important because certain ideas
can be expressed quite naturally in the assertional form that compile into very complex message passing code.

These issues will be discussed in [8].

Because we are interested in the possibility of pursuing more than one instantiation of the constraint network
in parallel, we need the ability to have more than one available for processing, For this we introduce the
notion of a viewpoint. Fach viewpoint tags a mutually compatible collection of assumptions about the
possible values of letiers and digits together with the constraints that derive via propagation from these
assumptions. (i.c. a viewpoint is one particular instantiation of the network). Viewpoints are related to cach
other by an inheritance mechanism. The viewpaoint in which A is assumed (o be § and B is assumed to be 4
might be a subviewpoint of the onc in which A is assumed S and no other assumptions have been made.

Viewpoints are the repositories of assumptions and facts derived from these assumptions.,

In order to be able to hypothesize and test we need to introduce some control primitives. These primitives are
butlt around o construct known as an activity. All processing that happens during execution happens under
the auspices of some activity. There are language constructs for conveniently grouping parts of a related task
into a single activity. For example, we can create an activity, make a new assumption in a viewpoint, and
cause all further work within the viewpoint (i.e. all further constraint passing in the instance of the network

detined by the assumption) to e part of the activity.

Activities are of interest because they give us ways to control quantitics of system resources available for the
execution of alternative explorations. 1f we stifle an activity, all execution with the activity stops; a stifled
activity cannot be restarted. We also have the ability to control the rates that non-stifled activities run.
Different activities can be assigned different amounts of processing power; the total amount of CPU time an
activity will get during an interval of time is proportional to its processing power. The processing power of an

activity can be altered by the system asynchronously with the running of the activity.

Systems using hypothesize-and-test can be constructed in Ether by using viewpoints to represent assumptions

made, and activities to control which parts of the scarch space are explored, and with what vigor.

5. A Simple Parallel Solution

In this treatment we will ignore many details of how both the Fther system and the cryptarithmetic system
implemented within it are constructed. If we wish to “create a new instance of the constraint network” that
inherits from another, we create a new viewpoint (using the new-viewpoiat construct). To add an assertion
about a letter being associated with a digit within the context of this viewpoint, we cxccute
(assert (one-of =letter (-digit))) where letter and digit are bound to the respective letter and digit
which we want to assume are identified in this viewpoint. The second argument to one-of is a list of possible
digits that the letter can be. So, for example, we could execute (assert (one-of $ (13 5 7 9))) to indicate
that Sis odd. Ether syntax makes use of a guasi-quore convention in which symbols prefaced by the character
"' are substituted with the values of the associated symbols. I 1etter were bound o "1D" and digit were
bound to 5", the item actually asserted would be (one-of D (5)). If the assert is exccuted within the

conteat of a certain activity, then all work propagating constraints that follow from that assertion will happen

within that activity.

The implementation described in this section is quite simple. It first creates a viewpoint in which no
assumptions are made and continues propagating constraints within this view point until it has quiesced, i.c. no
more propagation can happen. When this state has been achicved, if cach letter does not have a unique digit
that it can be identified with, itis determined which Tetter has the Teast number of possible digits that it can be
{excluding those letters that alrcady have a unique assignment). For cach one of these digits, a new view point
and a new activity are created. Within these (in parallel), the letter is asserted (ssumed) to be the digit and

propagation of constraints continues. 1 guiescence is reached in this new activity and the problem has not

rYeIr e ——

been solved, we recurse.

The function shown below takes a letter, a list of alternative digits. and a viewpoint. 1t uses the environment
contained in the viewpoint to create new subviewpoints in which the letter is assumed to be cach of the
alternative digits. We first check to see if there is at least one possible digit. If not, there cannot be a possible
solution to this problem consistent with the parent viewpoint and so we assert that there is a contradiction
within the parent viewpoint. Otherwise we iterate over cach digit in the alternatives list and for each one we
create a new viewpoint whose parent is the parent viewpoint and a new activity with parent start-act and
assert the letter is the particular digit; this initiates propagation of constraints. If we discover there is a
contradiction within the viewpoint (this is accomplished by the code fragment beginning with
"(when {(contradiction)}") we assert within the parent viewpoint that the letter cannot be the particular
digit. We are justificd in doing this because the only difference, in terms of assumptions made, between the
current viewpoint and the parent viewpoint is the one assumption of the letter being identified with a
particular digit that was a possible alternative in the parent viewpoint; if this assumption lcads to a
contradiction, we know that this is not a possible identification for the letter. In addition we stifle (stop from
exccuting) the activity that was pursuing the now known to be invalid assumption. We further check to see if
the activity quiesces in the scction of code beginning with “(when {(quiescent »a)}". If this has occurred,
we first check to see if the problem has been solved. If so we are done; otherwise we determine the letter in
the viewpoint with the least number of possible digits (but greater than 1) and recursively call paral1s1-solve

on this.

D A S

T

(defun para11e1-solvé (letter alternatives parent-viewpoint)

(2 f {(npul) alternatives)
A there are no oviable aliernatives, the there s no consistent ussignment possible

(within-viewpoint parent-viewpoint (assert (contradiction})))
LOthenwnse, fork on cach alternative
(foreach
digit
alternatives
(let ({v (new-viewpoint purcnt parent-viewpoint))
(a {new-activity parent start-act)))
(within-viewpoint v
(assert (one-of ~letter (-~digit)))
(activate
(when {{contradiction)}
(within-viewpoint parent-viewpoint
(assert (cant-be -»letter ~digit)))
(stifle a))}))

(activate
A the acoving has quiesced. we muast first check i the problem has been solved: if so, we are done.

LOthernise we must pick a new branch 10 go down in a depth-first fashion.

(when {(quiescent =+a)}
(if (total-solution (quiescent-letter-constraints v))

(halt-ether) :/ladicates we are done
(let ((minpair (minimum #°'(lambda (pair)
(let ((length (length (cadr pair))))
(if (= length 1)
11.
length)))
(quiescent-letter-constraints v))))
(parallel-solve (car minpair) (cadr minpair) v))))}))))

When a new activity has been created (and has something ta do) it immediately begins executing concurrently
with alrcady existing activities. The default allocation of processing power, when ao explicit allocation has
been done, is such that each running activity gets approximately equal servicing (in terms of CPU seconds) by

the scheduler.

6. Alternative Paratlel Programs

The simple parallel program deseribed might well be reasonable if we had a large number of processors. With
asmall number of processers G particular, only one processor, the case actually studied) it is considerably
less efficient in terms of average total run tme than some other solutions, All the solutions we will examine

are claborations of. or simple modifications to the hasic parallel program alrcady presented.

We observe that a traditional depth-first search (with backtracking) is but a trivial modification of the code
above, When new alternative digits are proposed for a Tetter, instead of starting them up in concurrent
viewpaints as was done above, they wre placed ona liste Only the activity for the first one on the listis given
any processing power. WL quiesces we recursively call paratter sotve. i is discovered that the view point

s eonbadiciony, the next one i begun (G o next one exists); otherwise, the parent view point is asserted to be

inconsistent. Asscrting that it is inconsistent will trigger the activity monitoring the next higher viewpoint to

pick the next possibility on its hist. Depth-first is a degencrate case of parallel search in which only one

activity al alime is given non-zCro processing power.

6.1 Using Heuristic Information to Control Resource Allocation

A simple claboration we can make to the parallel implementation presented that preserves its parallel
character is to vary the processing power based on an assessment of how likely the assumptions we have made
within its assoclated viewpoint are to lead to useful information (cither leading to a solution or determining
that the viewpoint is contradictory). We hase the quantity of processing power allocated to the activity doing
the cxploration on the numerical value of this judgement. For this particular problem, we are more likely to
learn in a short period of time whether a viewpoint contains a valid solution or is contradictory if it is already
fairly well constrained, ie. if the letters in the viewpoint only have a few possible digits that they could be.
After some experimentation we came upon the following formula for determining relative processing power
alfocations for the various different activities participating in the search:
(10-np? + .. + (10-ny)? 2

where each n; is the number of possible digit assignments for the letter i in the viewpoint, 1fthe letters tend to
have fewer possible digit possibilities, the sum terms (10 - ny) will tend w0 be farge. Squaring this number, and
squaring the final sum serves to accentuate the relative differences between the different viewpoints, When
the system is first sct up, a scparate activity known as the manager activity continually monitors cach of the
other running activities and cvaluates this function for cach associsted viewpoint, The processing power
allocations to these activities are adjusted in proportion to the numerical value of this formuts The Ether
conunand we use for modifying the processing power allocations of an activity is called support-in-ratios,
I takes thiee arguments: an activity, a list of activities (that are childien of the first) and a list of non-negative
nnuhers with the same number of clements as the list of activities. The processing power assigned to the
parent activity s (reddivided among the children activities in proportion (o the numbers in this list. ‘Thus, if a
tactor for a given activity is 0 the activity gets no processing powers it the factor associnted with the activity is
twice the tactor associated with another, then the former activity gets twice as much processing power as the

Latter. The allocator deseribed is implemiented as follows:

q
i

(defunc square-both-allocator ()
(support-in-ratios
parent start-act
activitiey currentiy-exploring-activities
fucters (forlist
vpt
currently-explored-viewpoints
{let ((status (quiescent-letter-constraints vpt))
{(sum 1))
(foreach
pair
status
(Vncrement sum (expt (- 10. (length (caor pair))) 2)))
(max {expt sum 2) 1)))))

We create a separate activity at top-level catled the manager-activity and execute the following to have the

alocation stratesy continually called asynchronously with the activities doing the actual search:

(within-activity manager-activity
{continuousliy-execute
{funcall #'square-poth-allocator)))

The manager-activity is given a processing power of 1 (meaning it will use. on the average, a tenth of the

ot CPU thime for the entire run).

This scheme gives considerably better performance than the simple paraliel solution. 1t does better than the
backtracking solution on some examples with a single processor implementation, atthough on the average the
backtracking solution is more efficient. It is important o understand the sonree of this improvement. We
heve a scheme for estimating the likelihood that @ ranning activity will retarn usetul inforniation in-a short
period of time, We allocate more resources to those activitios that we estimate will supply us with informetion
for the Jeast amount ot resource expenditure. Assuming our heuristic s reasonable, the average time to

complete the seaich is reduced.

There are three more improvements we have made to the processing power allocation strategy before
reaching the final strategy for which we have eollected datain the next section. Fach will be deserihed in

tarn.

6.2 Concurrency Factors

We hunve observed e the allocation strategy discissed thas tar that even though actisvities e tunning with
difierent amounts of processing power that are elated to o estiniate of the atility of getting uselul

information back trom them, there sttt seems to be somany activities iunning that they emd to thrash aganst

.12_

onc another. We would like to limit the amount of concurrency so that the running activities can get
something done. For this purpose we introduce the notion of a concurrency factor. Instead of letting all
runnable activities run, we pick the n most promising activitics (using the metric above), where n is the
concurrency factor, and give only those activities processing power and in the ratios defined by the metric.

I'he optimal value for the concurrency factor is picked experimentally and is discussed below.

The value of the concurrency factor that yiclds the best result is a reflecuion of two aspects of the problem: the
quality of our heuristic know ledge and the distribution of computational expense for picking bad branches in
the search. Obviously if our heuristic knowledge were perfect, i.c. it could always point to the correct branch
to ‘cxplurc next, the optimal concurrency factor would be 1 -- it should simply explore this best branch. If we
are less surc we are about which is the best, more branches should be explored. Also, if the computational
cost of exploring a bad branch is always small, a small cencurrency factor would be appropriate. If, however,
the cost of a bad branch can be very large we would want to usc a larger concurrency factor. With a small
concurrency factor we increase the probability that the problem solver will become stuck for a very long time,
A limiting case of this is with a scarch space that is infinite (introducing the possibility of a bad branch that
never runs ous of possibilities) and a concurrency factor of 1. If the problem solver happens to pick onc of

these branches it will diverge.

Hayes-Roth has noted an analogy with portfolio theory, the purpose of which is to pick an investment strategy
that will vicld the greatest expected capital appreciation. Uncertainty about the future performance of certain

inddustiies and volatility in the market place argue for greater diversification of the portfolio.

0.3 Fotimating Which Assumiptions Are Most Valuable

Out strateys ~o far has been to use hypothesize-and-test on one letrer only in cach viewpoint. We sprout one
new view pomt and activity to test the hypothesis that that letter is each one of the digits it could possibly he in
the parent viewpoint. This is not necessarily the best strategy. By hypothesizing a letter is a certain digit we
My searn 4 ot or alittle. We have "learned a lot™ if we (1) discover quickly that a viewpoint is contradictory,
or () Ganse @ ot of constraint propagation activity that significantly increases our evaluation of the new
siewpoint. One thing we have observed s that the amount we Tearn from assuming a letter is a particular digit

docs not sipnficantly depend on which digit we wse. In other words, if we assume the letter Nis 2 and discover

acontradiction, then we are likely o cither discover a contradiction or signficantly constrain our solution by

————

- 13-

assuming N is any other digit on its list of alternatives. 'To take adsantage of this phenomenon the program
remembers what happened when it makes particular assumptions. When it creates a new viewpoint to study
the result of assuming a letter is a particular digit the result is recorded in the parent viewpoint when it has
completed. There are two possible results. 1f it led o a contradiction this fact is recorded. If it led to a
Quicscent (but consistent) state it records the difterence of the esaluation metric applied to the parent
viewpoint and the evaluation metric on the quicscent viewpoint == our estimate of the amount of reduction
that is likely to be obtained by assuming this letter to be a digit. Our new evaluation metric attempts to take
tus information into consideration. When assuming a letter L is a specific digit we use the old evaluation
metric if we do not have have never assumed 1. to be aparticular digit from this viewpoint; otherwise, we use
the average of the evaluations for cach of the resuftant viewpoints, We then multply this figure by the factor

1 + 5*n where nis the number of lotters that we have assumed 1. to be and determined that they lead to

contradictions.

Now that we hiave a mechanism for taking advantage of information learned by making different assumptions
we would Tike to ensure that a variety of choices are tried at cach branching point. We will slightly modify the
technique for picking the activitics to be run at any given time (in accordance with the concurrency factor).
Where ¢ is the concurrency fuctor, we use the following algorithm o pick the ¢ activities to run at a given

time:
1. ['he activity with the highest evaluation is scheduled.

2. 1 n < activities have been selected for running, the nt st activity is (1) the one with the highest metric if
it docs not duplicate any of the first 0 activities in terins of which letter it is making an assumption about for a
given viewpoint, or (b) the highest rated non-duplicated activity unless the highest rated activity has a rating
at least three times higher in which case we use the highest rated activity. The tactor three was picked
cxperimentally and is based on the following argument. There is a certain advantage in having a diversity of
letters heing tested because this gives us a greater chance to discover assumptions that will cause significant
shrinkage by constraint propagation. However, there is also an advantage to running the activity that we have
estimated will give us the best result. The factor thyee is the ratio of estimates for expected gain for which we

would rather run the higher estimated test than one that will increase our diversity.

bk

j
;

7. An Experiment

In order to test for the existence of a speed-up with concurrency we timed 10 problems using the final paraliel
algorithm described above for several concurrency factors. The problems tested are:

1) DONALD + GERALD = ROBERT
2) CRIME + TRIAL = THIEF
3) POTATO + TOMATO = VEGIES

4) MIGHT + RIGHT = MONEY
5) FUNNY + CLOWN = SHOWS
6) FEVER + CHILL = SLEEP

7) SHOVEL + TROWEL = WORKER
8) TRAVEL + NATIVE = SAVAGE
9) RIVER + WATER = SHIPS

10) LONGER + LARGER = MIODLE

They were picked by a trial-and-crror process of sclecting possible problems and then running them to see if
they have a solution. It is not known whether they have one or more than one solution. The program finishes
when it has found one solution. These tests were run on the MIT Lisp machine, a single user machine
designed for cfficient exccution of Lisp programs. The times represent processor run time only and are
adjusted for time lost due to paging. The manager activity, which continually monitors the state of the scarch
activities and readjusts processing power accordingly, receives a processing power allocation of .1. We tested
with concurrency factors between 1 and 7. Numbers 2 through 7 cach gave some improvement with 4 being

the best. Here we report the results for concurrency factors 1 and 4. ‘Times reported are in scconds:

concur- concur- ratio

rency rency

factor factor

= 1 = 4

1) 377 140 2.69
2) 85 153 .58
3) 167 192 .87
4) 79 246 .32
5) 663 227 2.92
6) 2868 348 8.24
7) 241 112 2.156
8) 78 335 .23
9) 1920 554 2.55
10) 474 212 2.24
total: 6952 2519 2.76

With a concurrency factor of 1 the algorithm becomes, functionally, a depth-first scarch, A concurrency
factor of 4 represents the value which yields least average run time for the problems examined. Concurrency
factors larger and smialler yicld higher average values. We caution the reader not to take the numbers too
seriously. We only wish to demonstrate that the parallel algorithm runs with some improvement of efficiency

over the sequential algorithm

Some interesting facts can be fearned by examining the data. Although the paratlel solution beat out the

4——J--.-.-.-.-l-.Il.lIIIlllIIlIllllllllIllllllll-----------Iilhllllll--.-u‘J

s
!

sequential solution in uﬁly 6 of the 10 cases. these six cases are the ones for which the sequential sofutions take
the longest. In particular, problems 6 and 9 have show by far the longest times for the sequential sofution and
the time saving of the paratlel solution is considerable. Similarly, for the cases in which the sequential
solution finished quickly. the parallel solution tended to take longer. This phenomenon is fairly casy to
explain. The paraliel selution supplies "insurance” against picking bad branches in the search space. If the
sequential solution happened to pick a bad branch (or several bad branches) there was no recourse but to
follow it throagh. Similarly, if the sequential program found a relatively quick path to the solution, the extra

ctficiency of e parallel solution was not nceded.

8. Conclusions

We have demonstrated that eryptarithmetic puzsles can be solved with a certain increase in average cfficiency
by the parallel algonthim deseribed over a more traditional depth-first search solution. While this result in
and ot itself s of little use it does demonstrate a tool that may be of great use in heuristic programming -- the
use of parallclism to control a heuristic search. Several writers have pointed to the use of nieta-level
knowledge (e.g. Davis [2]) in controlling a search. Meta-level knowledge is knowledge about how to usc the
problem solving tools at hand in a way that increases overall scarch cfficiency. The allocation strategics we
have examined are meta-level knowledge for cryptarithmetic problems. By allowing a few 1o run in parallel,
and with controllable amounts of processing power we are able to increase the cfticiency of the scarch.
Although the increase we gained is not dramatic Uiere is reason o suspect that it would be more significant in
more interesting problems. ‘The size of the scarch space in these problems is relatively quite small. Thus
picking a "bad branch” in the scarch can’t be too catastrophic. With a scarch space that is much larger, and
possibly infinite (as is the case with many interesting problems), a bad branch using o parallel scarch can only

do a bounded amount of harm, bounded by the quantity of processing power allocated to it.

We introduced several concepts that were used in the construction of the allocation strategy. Processing
power is allocated in proportion to an estitnate of how likely we are to get uselul information out of the
exploration of a branch. Concurrency factors have been introduced to keep the problem salver reasonably
focused. A certain amonnt of diversity is incorporated in the algorithm to increased the likelihood of
discovering assumptions that can be made that will fead o valuable information quickly. Although the only

problem we have examiined is cry plarithietic, here s nothing about these general strategies that s specilic to

cryptarithmetic. ‘They contribute Lo a gencral theory of parallel problem solving,

The form of the code is quite simple to write and understand. The algorithm consists of a mixture of
constraint propagation and parallel hypothesize-and-test. The programs involve asynchronous, concurrent
activities processing different sets of assumptions. Furthenmore, the resources allocated to these activities can

be altered asy nchronously with the exccution of the activities.

We have demonstrated that introducing concurrency in the search process does actually increase overall
cfficiency. in particular it does no harm. Thus lends support to efforts o design a computing system for
message passing languages that involves many intercommunicating autonomous processors (c.g. Hewitt [4]).
It suggests there is inherent concurrency in scarch problems that could be gainfully run on multiple

processors.

9. Acknowlcdgements

Beppe Attardi, Roger Duffey, Carl Hewitt, David [cvitt, and Barbara Whitc were kind enough to read carlier

drafts of this work and have substantially aided the presentation.

I offer my sincere thanks to the lisp machine devefopment group at MI'T. Without the superb computing
emvironment available on the lisp machine the program development necessary to carry out this rescarch

would have been impossible.

10. References

{1] Borning. Alan, Thinglab -- A Constraint-Oriented Simulation Laboratory, XEROX PARC report SS1.-79-3,
July 1979.

12} Davis, Randall, Meta-Rules: Reasoning About Controf, MU Artificial Intelligence Laboratory memo 576,
March 1980.

13 Gaschinig, John, Performance Measurement and Analysis of Certain Search Algorithms, Carnegic-Mellon
report CMU-CS-79-124, May 1979,

4] Hewitt, Carl, Design of the APIARY for Actor Systems, Procecdings of the 1980 Lisp Conference,
Stanford, CA, August 1980,

[5] Tma. Masaharu, Yuup Yoshida Teruo Fukumara, A Parallel Searching Scheme for Multy rocessor
Svatenrs and s Applicaton o Combmatonal Problens, Sixtn Intetnational Joint Conterence on Artificial
Intethigence, August 1979,

(6] Kornteld, Walliam, FHHER - 4 Parallel Problent Solving System Sixth Inteinational Joint Conference on
Vinticial ntelligence, August 1979.

[) borarekd Wathame sing Parallel Processing for Problom Sobvrg, M Arutical Intelligence | aboratory
memo SO, December 1979,

[S) Rornteld Watham AL PED thests, in preparation, 1981
{9] Newell, ALan, He bert A Simon, Human Probiens Soiving, Prentce Hall, 1972,

{10} Steele, Guy T Gerald Sussman, Constramis, MIET Arafiaal Intelhigenee 1 aboratory memo 502,
Novemnber 1978,

113 Steales Guy 1o ¢ Fhe Defininon and Implemeniation of a Computer Programmng T anguage Based on
Corvoramis) MU Aruticnd Intelhigence | aboratory 1R-595. August 1980.

(1] Waltz, Davad. Generating Semannie Deseriptions frome Drawmngs of Scenes with: Shadows, Phl) thesis
Assachusetts astitute OF Technology, 1972,

s it

