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1. Introduction

Many Al systenis that perform a "heuristic search" (i.e. they can bc thought of as scarching some space of

possibilities for an answer) are based upon one or both of two programming tcchniques known as constraint

propagation and hy-poihesize-and- test.

In a system hased on constraint propagation, internal data structures represent (implicitly or explicitly)

potentially acceptable points in the search space. Computation proceeds in narrowing down these

possibilities b) employing know ledge of the domain in the structure of i computation. Tlhere is not enough

space here to properly introduce the concepts in'~oled in constraint propagation. The reader is referred to

some systemis described inl the literature 1., 101 for at) introduction. One point we wish to emphasize about

pure constraint propagation is that at any time the internal data structures will be consistent with any Solution

to the problci. Thus, if more than one solution is possible, pure propagation of constraints will be unable to

select only one of them. Further, e~en if a unique solution exists, a constraint propagation system may not be

Ale to find it.

[he hypothesize-and-test methodology allows the program to make assumptions that narrow the si/e of theF

search space: there is no guarantee that the assumption is consistent %ith any solution to the problem. Thbe

programn continues to make li potheIses until it Solution is located or it his been determined that no0 Solution is

possible with tlie current set of assumiptions. '[here is no requiremnent that anl, hypothesis be correct and so

mechimnisms must be a~ ailable that prev ent commitment to ain hypothesis until it has been iemtonst rated to

be acceptable. [he most commonly ;avajlable miechanismn is known as baick tracking. Blacktracking allows the

program to ic(tu rn to ain enmi ronment that would exist had that assumption not been made.

As lon uiigs die search space is enumercable (at %er weak assimption) ht) pothcsi/ic-and- test canl be easily seen to

be logically more powerful. It there are several consistent solutions, a pure wuisirAlIt pro0pagation s~stcni has

no %%ay to cstablish pr-cfeecc for one oif them.l Fken if oly one soluion is possible at consirliint propagation

systemn will not nccssaril) find it: this w ill he dem-tonstr-aed liter hy example. [hle proponents of constraint

Sro p .it io n poiint out thait Iiy pu ithesi ic-and -test is groissl ii e fficicot in sito athins wherie const rainti

prop.ig.itniii c.iii hunctioi (see for example "ald, I 1 ?) 1 he ekxlilupk' In tis pi1per bemrs out thlis Claim, though

o ne rcecit siiud\ 1.11 suggests 11 iC are situations ini M~itch puie backtracking is more efficient thain constraint

pri ipagit ioin.



One can. ho~ev Cr, imagine a composite systemi that has aspects of both constraint propagation and

i pothiesiie-and- test. Ilsc tsse.cntanpragiocnbeudt prune the search space, yet

iillo' ig 11 pti thesi /C-and- test tO Coi6LtinC the search Mi ere constraint propagation is riot ablc to. A constraint

langu1.age that can support the creation of such s,,sterns has heen constructed by Steele 1111. Steele allows

ASSump11)iols to he nude1LI and backtrajcking performed, The current " ork diSCuIsseS another Such System in

".hich the i\ pothesi,'c-and-test methodology alluV.s more than one assumiption ho e pursued concurrcntly. It

is anl extension of earlier work discussing parallel problem solving systems 16. 71 and at language, FEthcr, for

implemienting these systems. Here we examine one particular kind of search problem, crypiaridlunelic

addiiion, of the sort used by Newell and Simon 191. We study this problem., not because it is interesting in

itself, hut because it is well-defined and test cases are relatively easy to come by. TIhis allows us to test the

efficiencies of algorithms empirically. We have constructed at parallel problem sulver for doing these

cr ptairitinietic problems.

T[here are tv.o main points we wish to make:

1. [hiat at system combining both constraint propagation and parallel hypothiesize-and- test methodologies can

be con-,incted. The code is simple to read, write, and understand. Example code is presented.

2. That, onl (he average, at parallel programn for solving these puzzles can be constructed that requires less

averae ruti timec vihen thec parallel programl is executedl 1by iime-slicing onl a single processor than a sequential

programn c xeciited on the same processor. Obviously, it matters which seqtiential and which parallel program

weC co nip'i i : the benchmnarks for this comparison %. ill he explained latter and are. I think, quite reasonable. =

'Ihle "I'Ctedip \&c are talk inrg about here is not large. hit is noticeable. The important point is that it is present

at .ill. A silitlar 016-1c hais been noticed ill othe stuLdies for varioius pr('I;ins (5. 71. It suggests that

con.. ill~i( %m m1a.1 he .i useful for thte design of hecuristic search algori thins whether oir not the programs arc

CXe.. iiedi oin coilciirr..ut li~mm'v. k' or at conventionail weijuential colputcr.

I hie reinder of this pitper consists ofa discussion of' theC piohlcin being sol'.ed and the nature of the parallel

%oliiii. We f1ul1" h1u1% 1die vfficienlc of' die parallecl lrrigi.in dcjienids (on th1C (se of heCuristic intoriiiion for

.110 e 'ii.e (ie paillel1 piIg,.ull. WeClir 1 e11 lo (10 1 Ac 1,11 Of' aClctionl stratcgic. .ich onel

(.1 .0 fw ic i i~oe We fiill11 l isii'.th 1nip.litce if If llcxpeiiiilent for a generAi thecory of

pi I~ i .. i ig ~ l,.o IN)" l. il il i.~I i'111Csei .10 ,1110 11 fk ( i 1 1. heCir called Oile l-re
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knowledge in the literature, i.e. knowledge about how to guide the search process to gain efficiency. In this

study, concurrency is necessary to make use of this meta-level knowledge.

2. The problem

We are given three strings of letters, e.g. "DONALD", "GERALD", and "ROBE RT" that represent integers when I
substitutions of digits are made for each of the letters. There is at least one possible assignment of digits for

letters so that the numbers represented by the first two ("DONALD" and "GERALD"), when adoed, yield the

number represented by the third ("ROBERT"). Any one of these assignments is a solution. In the problcms

we will be looking at, each will contain exactly ten letters. A solution consists of a mapping from these ten

letters onto the ten digits 0 through 9.

3. A Constraint Propagation Solution

In our construction of the constraint network we will use the actor model of computation. We find it a very

natural formalism for building these sorts of systems. In this formalism nodes of the network are

implemented as actors. Constraint propagation between nodes is implemented by sending of messages

containing the new constraints to the node being constrained. For our cryptarithmetic problem solver we

have three kinds of nodes: letters, digits, and columns. They are arranged as shown:

LtttEr

ot
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Arcs in the diagram indicate ilow of constraints. Ihus column nodes can cmstrain their left and right

neighbor columns and certain let er nodes (tile one,, representing letters contained within the column). Letter

nodes can ,:onstrain digit nudes and cotlunr nodc, that contain their respective letters. I)igit nodes can

constrain letter nodes. In the initial configuration, before constraint propagation begins, we store at each

letter node a list of possible digits that contains all ten digits. Similarly, each digit node contains a "possible

letters list" containing all ten letters. We will give a short description of what each node has to do when it

receises a message informing it of a new constraint.

Columns. A column can receive messages informing it of new constraints on letters it contains and on

possible sallies fr its cairy in and carry-out. If a columin node receives any such messages, it computes

possible new constraints on its letters, carry-in, and carry-out. If any one of these has no possible values a

CONTRADICTION is asserted. When a CONTRADICTION is asserted the code implementing

h) pothemi'e-and-test is invoked te take an appropriate action. New constraints on letters are sent to the

reSPCLzike letter nodes. New constraints on carry-in and carry-out are sent to the right and left neighbor

i column> respectively.

Lettvrs. I otters receive messages that indicate subsets of the digits 0 through 9 that they can possibly be. If

th.y learn of digits that they cannot be, nodes representing those digits are sent messages. Also, each column

that contains the letter receives a new message informing it of the new restrictions on the value of the

particular letter. If the set of possible digits becomes null, a CONTRADICT ION is asserted.

I)igits. These receive messages from letter nodes indicating that they are o, arc not the respective letter. If

the set of possible letters is reduced to a singleton. a Message is sent to tile particular letter. If the set of

possible lettcrs is reduced to null. a CONIPAD ICT ION is asserted.

We can olbsei'e some things ahout tle ability of this s.stotmi to siiisfacom ily dCrive a unique Solution. Iirst, if

there is more than one possihle solution it %ill not find any of then: Since the letter and digit assignments of

each possible solution are certainly possible as :igninclnts, they will appear it the po ssihility lists attaclhed to

each node. A fact that is not so easy t,0 Lheck by inspection, hut which is eis; demonstrable empirically, is

that even if there is only one possible solution (of no posible solutions) the system niay not find it (or

discover that o solutions exist). N~eiuhelcss, the knoA l,de can he ,uid to be "preseit" in 'lie network: if

the nloIdes." of the networ0k ale imst,,'iatcd % ith ,i ,,,,mt'nt of lel',, to digits, the netwolk will assert a
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CONTRADICT ION iff the assignment is not a solution. Our constraint network, then, needs the ability to

make assumptions and test them if it is to be able to solve these puzzles.

4. 1 lypothesize and Test in Ether

Ihe constrair netmork and hypothesiic-and-test methodologies were written in the "lther language [6, 7]. We

%ill only gi\c enough details about the implementation to support the ensuing discussion. [he interested

reader is referred to 181 for a more detailed discussion of the implementation.

ihe primitike operations of the Ether languages are based around tie notion of an assertion rather than

message passing. Rather than coding in a message passing formalism "Send the node for the letter 1) that is

5" "e instead say "Assert that 1) is 5" and a process of compilation turns this assertional code into a message

passing implementation. For certain problems this process of compilation is important because certain ideas

can be expressed quite naturally in the assertional form that coipile into very complex message passing code.

Ihese issues w ill be discussed in 181.

lecau.se we are interested in the possibility of pursuing more than one instantiation of the constraint network

in parallel, we need the ability to have more than one available for processing. For this we introduce the

notion of a viewpoint. Each viewpoint tags a mttually compatible collection of assumptions about the

possible values of letters and digits together with the constraints that derive via propagation from these

assumptions. (i.e. a viewpoint is one particular instantiation of the network). Viewpoints are related to each

other by an inheritance mechanism. The viewpoint in which A is assumed to be 5 and B is assumed to be 4

might he a suhvic~ point of the one in which A is assumed 5 and no other assumptions have been made.

\'icikpoints are the repositories of assumptions and ticts derived from these assumptions.

Ill order to he able to hypothesiie and test we need tm introduce some control primitives. Ihese primitives are

built ,mround a cunstruct known as aii aclivily. All processing that happens during execution happens under

the auspices of some activity. '[here are language constructs for con eniently grouping parts of a related task

into t single lctivity. For example, we can creaie a;il activity, mke a new assumption in a viewpoint, and

cause all fuirther \%ork within tile %iewpoint (i.e. ,ill further constrait passing in tie instance of the network

defined by the issumplion) to Ie part of the activity.
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Actikities are of interest because they give us ways to control quantitics of systcn resources available for the

execution of alternative explorations. If we s.ife an activity, all execution with the activity stops; a stifled

actisity cannot be restarted. We also hive the ability to control the rates that non-stifled activities run.

Different activities can be assigned different amounts of lo(cessing Jpvocr: the total anount of CPU time an

actik it. will get during ani interxal of time is proportional to its processing power. The processing power ofan

activity can be altered by the system asynchronously with the running of the activity.

S.stems using hypothesie-and-test can be constructed in .ther by using viettpoints to represent assumptions

made, and activities to control wkhich parts of the search space are explored, and with what vigor.

5. A Simple Parallel Solution

In this treatment we will ignore many details of how both the Ether system and the cry ptarithmetic system

implemented within it are constructed. If we wish to "create a new instance of the constraint network" that

inherits from another, we create a new viewpoint (using the new-viewpoint construct). TO add an assertion

about a letter being associated with a digit within the context of this viewpoint, we execute

(assert (one-of -letter (-digit))) where letter and digit are bound to the respective letter and digit

which we want to assume are identified in this vietpoint. The second argument to one-of is a list ofpossible

digits that the letter can be. So, for example, we could execute (assert (one-of S (1 3 5 7 9))) to indicate

that S is odd. Ither syntax makes use of a quasi-quote convention in which symbols prefaced by the character

are substituted Aith the ,altres of the associated symbols. If letter wcre bound to ")" and digit were

bound to "5", the itern actually asserted would be (one-of D (5)). If the assert is executed within the

context o0 a ccrtain acti it\. then all work propagating constraints that fo llow from that assertion will happen

within that activity.

The inplementation described in this section is quite simple. It first creates a viewpoint in which no

assumptions are made and continues propagating constraints " itin this i lpoilt until it has quicsc(e, i.e. rio

more propagation can happen. When this state hats been ,cliex cd, if each letter does not huxe a unique digit

that it can be identified xith, it is deternined xlhich letter ia, the least minonur ol'possiblc dNits that it can bc

(exchding those letters thllat aldy hae a ulnique ,signu -er). I r 'ach one of these digits, a new \ie\%point

and a new actikity are creactd. Within these (in i.rrallcl), the letter is asscrtcd l(-vsiicd) to be the digit aind

propagation of constraints contiulicS. If u1lK'ceClLc is rC.a4.11d il this ies l i tly and the pioblemn has not
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been solved, we recurse.

The function shown below takes a letter, a list of alternative digits. and a viewpoint. It uses the environment

contained in the viewpoint to create new subviewpoints in which the letter is assumed to be each of the

alternative digits. Wc first check to see if there is at least one possible digit. If not, there cannot be a possible

solution to this problem consistent with tie parent Niewpoint and so we assert that there is a contradiction

ithin the parent view point. Otherwise we iterate over each digit in the alternatives list and for each one we

create a new viewpoint whose parent is tie parent viewpoint and a new activiiy with parent start-act and

assert the letter is the particular digit: this initiates propagation of constraints. If we discover there is a

contradiction within the viewpoint (this is accomplished by the code fragment beginning with

(when [(contradiction))") we assert within tie parent viewpoint that the letter cannot be the particular

digit. We are justified in doing this because the only difference, in terms of assumptions made, between the

current viewpoint and the parent viewpoint is the one assumption of the letter being identified with a

particular digit that was a possible alternative in tile parent viewpoint: if this assumption leads to a

contradiction, we know that this is not a possible identification for the letter. In addition we stifle (stop from

executing) the activity that was pursuing the now known to be invalid assumption. We further check to see if

the activity quiesces in the section of code beginning with "(when ((quiescent -'a))". If this has occurred,

we first check to see if the problem has been solved. If so we are done: otherwise we determine the letter in

the viewpoint with the least number of possible digits (but greater thai I) and recursi~ely call paral lel-solve

on this.

.mom
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(defun parallel-solve (letter alternatives parent-viewpoint)
if (null alternatives)

If/ thtI i l Tov f itiwb/c 1tlti,iitetiy thie I/IS d ici k l no consisten~ I~flt possible
(within-viewpoint parent-viewpoint (assert (contradiction)))

o(Jjilse fbr oi cach alternative
(foreaci

digit
alternatives
(let ((v (new-viewpoint parent parent-viewpoint))

(a (new-activity p'arnt start-act)))

(thnvepit(assert (one-of -'letter (-digit)))
(activate

(when f( contradiction))
(Cl thin-viewpoint parent-viewpoint
(assert (cant-be -letter -digit)))

(stifle a))))
(activate

If' (lip at~v tn(i Jsp5 '/it de n7111W fiist chetck ij ikc problen has b(,,, salved. if so, ie are done.
(I n-ni rnlt pick a nion branch to go Joisn in a dcpti first fiishion.

(when ((quiescent .a))
(if (total-solution (quiescent-letter-constraints v))

(halt-ether) l/adiciacs ia are done
(let ((mmnpair (minimum C(lambda (pair)

(let ((length (length (cadr pair))))
(iif( length 1)

length)))
(quiescenit- letter-conistraints v)))

(parallel-solve (car minpair) (cadr minpair) v)))))))))

When a lie%& acti'itv has been created (and has something to do) it inllolediately begins execurtinlg concurrently

withI al ready existing actixities. '[he- defatrit allocation (of processing power. \hen £10 expi cit allocation has

bleen done, is Suich that Cach runlning activity gets applroximlatly equal servicing (in termns of CPU seconds) by

tile scheduler.

6. A ternti ie Parallel Programs

TIhe simrple parallel program described might well be reasonable it we bad a large nlumlber (Iffproccssors. With

a Small iltrilrbher of proccssors (in particular. only (oe pi'OCcsstr, tIle cas aCtua~lly studied) it is considerably

less efficient orl tcrms of aveiare total ill) tile tllaln somle other SOlutioilS. All tilc Solutions11 we will examine

are elabrh atilrs of'. or siminple mi ificat iotns to the basic parallel p rug ra t alreay p rese nted.

We obser\ e thait a traditional dcpth-firt search ( k itli backtrack irlg) is but a trivial miodi fication (if thle code

ahoxe. WhCer l rc\ arlntiie dig!its tire proplosed lor a letter, insteaid of staring thenill) in concurrent

kie'Apoiilts a % din lle ly;lear l~c d on i t li til x ty forl tile first one onl tIle list is giken

lily prn)cessiiy.L I~o%%r. II it qliriestees ACe recilisisely call1 parat 11 l Solvye. If'it is diseo~ercd 11hat thle siettpoinlt

kSt 1)iitr,rdi ~iml), ilic rest lor'liccr (if" nr ext ollk cisrs,): (1111cris ise tile paIolt S ies% Ioirit is isserited to be
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inconsistent. Asserting that it is inconsistent will trigger the activity monitoring the next higher viewpoint to

pick the next possibility on its list. Depth-first is a degenerate case of parallel search in which only one

act ii at a time is gisen non-/ero processing power.

6.1 Using leuristic lItformation to Control Resource kllocation

A simple elaboration %e can make to the parallel implementation presented that preserses its parallel

character is to varN the processing power based on an assessment of how, likely de assumptions we have made

Aithin its associated tiewpoint are to lead to useful information (either leading to a solution or determining

that tile view point is contradictory). We base the quantity of processing power allocated to the activity doing

the exploration on the numerical Value of this judgement. For this particular problem, we are more likely to

learn in a short period of time whether a viewpoint contains a valid solution or is contradictory if it is already

firl. sell constrained, i.e. if tie letters in the viewpoint only have a few possible digits that they could be.

Afiter some experimcntiation we came u)on tile folhing formula for dctermining relative processing power

allocations for the various different activities participating in the search:

2 2 \2((10- n1 ) + ... + (10 - ni0 )2 1

where each ni is the number of possible digit assignments fior tile letter i in the viewpoint. If the letters tend to

hase fewer possible digit possibilities, the sum terms (10 - nI ) will tend to be large. Squaring this number, and

squaring the final sum serves to accentuate the relatise differences between the different viewpoints. When

the system is first set up, a separate activity known as tile ,manaer dcliv iio coltinuall, monitors each of the

other ronning activities and evaluates this function for each associied \ iewpoint. The processing power

Allotitions to these actit ities are adjusted in proportion to the nituni:,il salue of this fornt'l The Fther

uuim od xt, use for nodilfing tile processing power allo(atio ns of .iII acti\lt is called support-in-ratios.

I tke' thrk e k irgnelits: an activity, a list of'cti ilies (tlht are childlen ofl the Flst) and a list of non-iieg'ttive

Atool, " Id) the same nmber ff' elements as the list (of ,ctikities. The processing power assigned to tile

p c ct'. i .lt i (Ie)di\ ided among the children acti% ities in proportiol to the numbers in this list. Tis, if a

tItt fIor .I gic cil icti\ it, is 0 the activity gets no processing pokci-: if the f actor as,s imitcd t. ith the acti\ ity is

tA ire 11e fI, tor .1-socited with another, then the foirmcr activity gets tw ice is nuch processing power as the

1.1tter. I he allocat ir described is implemented as follows:



(defunc square-both-allocator (
( sop po r t -in -rati Os

ptir: ?I start-act
(h : !It, currently-explor ing-ac tiv ities
filtfir% (for i s t

vipt
curr-ient] y-e vp 1ored-v iewpo ints
(let ((status (quiescent-letter-constraints vpt))

(sum1)
(foreach

pair
status
Uincienent sum (expt (- 10. (length (caor pair))) 2)))

(max (expt suml 2) 1)))))

W\e cretet a sep)aritt t% i t t p-kse cdIlled tile manager -ac t i 1ty itld Q \CQO[ [l he tolloss ilig [ao has the

aIII~catioll trte\coiItill1\ calledj ous sII010,1,\\ itit the iactitie> dhinti thev ;tcto! sarch:

(within-activity manager-activity
cont inlUOUS y-execute

(funcall #'5qUare-0oth-alloicator)))

I hc tranager-act iv i ty is g'isel a processing posse of' .1 (niclininc it %A il] us. aill thle itre a tenth of the

totad(l[ t 1 i tne for thle ciltire ruin).

Iik ischenlc ga es ca w idcirahi\ better performan1ceC than11 the siple paraillel :>IititOI. It doe>) better than the

hacktrackine sollitionl oul sole ecattipleS ssd it single processor impiemntaniton. ailotigh oit tile aserage the

kttcktraekini soIaitiollitn ore effhcienit. It is intlportant 10) tanlderstaiti the solree of tis inlpros enient. We

hose ,Cllscim f,'a c.stim~ailli tile likelihood that at inninLe ictksits 55 ill retturn useful iuhloritiall inl a short

pen i~d ol timei. We I1lioeate MOre reCSOur[cS to those actiities thatL sse cstiloatc wkill suppis ots 55 ti inforniiion

har' tile eaist artoalin1t Of reSOorce expenditure. iAsslmning aoi litetiiistic is iceasonahie, tile lseraigc tailc to

aa itplete tilese icit is redtuced.

Ihleae '11e three iloae ilripros entS weT haeC malde to tile praoCesstl paser llCoio btaeg efore

icacitlh!L tile tiil strtee forf sstlah \Ae h1,1e coillected data ira thle lext soction. Fach ss iii he described ill

6.2 ( oiicirrencY Factors

We: h1,s\ ohsea ed ill thle allocaltionl st1aitgi discis ,ed thus kl that1 eset] titouali aItities Juc 1111nning sAltih

diflreao tatloatait at Imiesslli Ipo\%e thait al'latea toc'd[ 0111 c~tialtae at, ~ the tillts ettio aiseall

111101 alatiola l h 1ick 1 dwail tltiaaher still seemsl to he s iIciati ies Illialag t11.t tlc ted to tlos lt ginst
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one another. We would like to limit the amount of concurrency so that the running activities can get

something done. For this purpose we introduce the notion of a concurrenco factor. Instead of letting all

runnahle activities run, we pick the n most promising activities (using the metric above), where n is the

concurrenc factor, and gi e only those activities processing power and in the ratios dcfincd by the metric.

the optimal valuc for the concurrency factor is picked experimentall and is discussed below.

ile %ALue Of the concurrenc% factor that ields the best result is a reflection of two aspects of the problem: the

qualit.\ of our heuristic know ledge and the distribution of computational expense for picking bad branches in

the search. Ob iously, if our heuristic knowledge were perfect, i.e. it could always point to the correct branch

to explore next, the optimal concurrency factor would be I -- it should simply explore this best branch. If we

are less sure we are about which is the best, more branches should be explored. Also, if the computational

cost ofexploring a bad branch is always small, a small concur, ency factor would be appropriate. If. however,

the cost of a bad branch can be very large we would want to use a larger concurrency factor. With a small

concurrenc factor we increase the probability that the problem solver will become stuck for a very long time.

A limiting case of this is with a search space that is infinite (introducing the possibility of a bad branch that

ncter runs ouz of possibilities) and a concurrency factor of 1. If the problem solver happens to pick one of

th,,ec tiranches it will diverge.

I lacs-Roth has noted an analogy with portfolio theory, the purpose of which is to pick an investment strategy

that Ail] 1 ield the greatest expected capital appreciation. Uncertainty about the future performance of certain

Hindust ic arIt u'lntilit, in the market place argue for greater diversific.tion of the portfolio.

0.3 IItiluating \\hich Assumiptions Are Most Valuable

tit r,it'. m) fr has becii to use hypothesime-and-lest on one letter o/ii in each viewpoint. We sprout one

% .c" Ic pI 1i( anld iactivity to test the hypothesis that that lecr is each ooe of the digits it could possibly he in

the plrent \I.c% point. This is not necessarily the best strategy. By hpothci/ing a letter is a certain digit we

0.1" a ni t o or a little. We have "learned a lot" if we (I) discover quickly that a viewpoint is contradictory.

(I ?1) alC 11 lot of constraint propagation activity that significantly increases our etaluation of the new

1, 11,it ( ne thing 'Ac 1;1\ ,bserved is that the .alotmnt we learn from ,ssioning a letter is a particulr digit

I u S ?I-/ S1 if:11i /i( , 111. 1 'lp nI on which digit wr n.s. in other wor'ds, if we as,,tniie the letter N is 2 and dliscoer

.I tonlltdiltl(Il. then vAc arc likely to either dicover at conltralictilon oi sigliicanlly constraill Our solution by
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assuming N is any other digit on its list of alternatives. To take ad\ ntage ot' this phenmenon tie program

remembers Ihat happened w hen it makes particular assumptions. When it creates at neA \ e\& point to study

tie result of assuming a letter is a particular digit the result is recorded in tile parent \iesspoinl Alen it has

1cotnpleted. Ihere are tMo possible results. If it led to a contradiction this tct is rccorded. It it led to a

quiescent (but consistent) state it records tile difference of tile es aluation metric applied to tile parent

ic ks point and tilee \aluIation metric On the qt0iesceiit \iewpoint -- tiir* est iinate of the ainlnont of reduction

that is ikel to be obtained by aSsuming this letter to be a digit. On r iiev1 Csaluatioti metric attenpts to Like

this in formation into consideration. When assuming a letter I, is a specific digit \e use the old esaluation

metric if we do not hase have ne \er assumied I- to be a particular digit from Lhis \iewpmint: otherwise, we use

the as erage of the ealuations for each of the resultant s iepoints. We then multiply this figure by the factor

1 + .5 * n where n is the number of letters that s\e have assumed I, to be and deternminCd that they lead to

contradictions.

Nosy that wke hase a mechanism for taking advantage of information learned by making different assumlptions

we ,"ould like to ensure that a sariety ofchoices are tried at each brnt hing l' p.ini. We ,ill slightly modify the

technique for picking tile activities to he run at an\ gisen time (in accordance \Nith the concuIrency tfactor).

Where c is tile concurrency factor, we use tile foll0V.ing a lgorithii to pick tile c actixities to rin at i given

time:

1. [he activity with tie highest eviluiation is scheduled.

2. If n < c acti ities have been selected for running, the n f 1st acti\ it, is (a) the one Awith the highest metric if

it does not duplicate an, of tile first n activities in teriis of which letter it is inking an assumption about for a

gis en viewpoint, or (b) the highest rated non-duplicated actis ity Unless the highest rated acti\ity has a rating

at least three times higher in which case we use the highest rated actisit.,. Ihe fCctor three was picked

experimentally and is hascd on the Following argument. There is a certain aslaintage in having i diversity of

letters being tested because this gives tIs a greater chance to discoser asNU.llptio us that will cause significant

shiinkage by constraint propagation. IHowever, theie is also an adviiirage to running tile activity that we have

estimated will gise is the best result. The factor thice is the ratio oh efciti1ites for expecled gin for %hich Ae

would rather rutn the higher estiiatcd test thain iiC [11At will increase ur diversity.
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7. An Experiment

In order to test for the existence of a speed-up with concurrency we timed 10 problems using the final parallel

algorithm described above for several concurrency factors. The problems tested are:

1) DONALD + GERALD =ROBERT
2) CRIME + TRIAL - THIEF
3) POTATO + TOMATO = VEGIES
4) MIGHT + RIGHT - MONEY

5) FUNNY + CLOWN - SHOWS
6) FEVER + CHILL - SLEEP
7) SHOVEL + TROWEL = WORKER
8) TRAVEL + NATIVE = SAVAGE
9) RIVER + WATER - SHIPS
I0) LONGER + LARGER = MIDDLE

They wcre picked by a trial-and-error process of selecting possible problems and then running them to see if

they ha\e a solution. It is not known whether they have one or more than one solution. The program finishes

when it has found one solution. These tests were run on the MIT lisp machine, a single user machine

designed for efficient execution of Lisp programs. The times represent processor run time only and are

adjusted for time lost due to paging. The manager activity, which continually monitors the state of the search

activities and readjusts processing power accordingly, receives a processing power allocation of .1. We tested

with concurrency factors between 1 and 7. Numbers 2 through 7 each gave some improvement with 4 being

the best. I lere we report the results for concurrency factors 1 and 4. Times reported are in seconds:

concur- concur- ratio
rency rency
factor factor

= I -4
1) 377 140 2.69
2) 85 153 .56
3) 167 192 .87
4) 79 246 .32
5) 663 227 2.92
6) 2868 348 8.24
7) 241 112 2.15
8) 78 335 .23
9) 1920 554 2.55
10) 474 212 2.24

total: 6952 2519 2.76

With a concturrency factor of I the algorichm becomes, firctionally, a depih-first search. A concurrency

fdctor of 4 rcl)rccnts the value which yields least average run time for the problems examined. Concurrency

factors larger and smaller yield higher average values. We caution the rerder not to take the numbers too

seriously. We only wish to demonstrate that tIhe parallel algorithm runs with some improvement of efficiency

over the sequential igOrithi

Some interesting facts can be Iained by examining the data. Although the pairallcl solution beat out the



sequential Solution inl only 6 of the 10 cases, these six cases are dhe ones for whIich the sequenltial Solutions Like

the 10UL~ h)et.I parlticlar, problemi; 6 and 9 haxe show by far fihe longest timeIS for the ,equential solution and

the time sax ing of' the parallel solution is considerable. Siiniilarl , for the cases in which the sequenltial

solution finished qui-kly. thc parallel solution tended to take lonlger. 'This phenomnenon is fairly easy to

ex plain. T he parallel sol ut ion supplies "insu ra nce" ai ist picking bad branches in the search space. If the

*sequenC~tial solution1 hlappened to pick at bad branch (oi- sexeral had branches) there was no recourse but to

follow it throughl. Sim ilarlv. if theC Sequential pr-ograml foutnd at relatix ely quick path to the Solution, the extra* I fficiency of the parallel solution A s not needed.

8. Conclusions

c ho~te demonstrated that Cr\ ptarithtuetic pu/les can be soix ed with at certain increase in average efficiency

* b\ the par-allcl ilgotin described oxer at more tractlitional depth1- first search Solution. While this result in

and Of itself , of little Use it does demonstrate at tool that may be of great use in heuristic programming -- the

use of' parallclisni to control at heuristic search. Several w riters ha~ve pointed to the use of meia-level

Anoi'dge (e.g. D avis 12]) in controlling at search. Nieta-level knowledge is knowledge about hlow to use the

problem solvng tools at hand in a way that increases overall search efficiency. TIhe allocation strategies we

hav e exaimined are meta-lex ci know edge for cryptarithmectic problenms. 1l%, allowing a few to run in parallel,

and with controllable amounts of processing power we are able to increase the efficiency of the search.

Although the increase we gained is not dramnatic there is reason to Sutspect that it would be more significant in

more interesting problenms. '[hIe size of the search space in these problemts is relatix ely quite Small. TIhus

picking at "had brantch' in the search Can't be too cataistrophic. With at search Space that is nuch larger, and

possNihl in finite (ats is the Case with many interesting prolemtrs), a baid branch using a1 parallel search canl only

doa bounded amiount of hiarm bohuntded bly the qutIanit ity of p ro cessi ng po we r allocated to it.

We introdticed sex eral concepts that were used in the construction of' the allocation strategy. Processing

power is allocated inl prol,01rtio1 to anl estimate of' how likely we ire to get usef'ul in formation otit of the

explorti ion of a branch. ('oncurrem-it']wors hiaw been inttodttced to keep) the pirobleim solver reasonably

tb'tted. A certain amoit of diversity is incorporated inl the algorithml to increased thle likelihood of

discovering assumptions 1hai Canl lie ma1,de th.'it \Nill leaid to xtlti1,tble inIkiwliaion qutic kl\. Although thie only

prohlcm we fiaxe cxanimiecd is ciftiithmL'.here tsCIC , nothling about these, general Sti'lfegies that1 is Specific to
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cry ptarithmetic. I hey contribute to a general theory of parallel problem solving.

Fhe form of the code is quite simple to write and understand. I he algi-ihm consists of a mixture of

constraint propagation and parallel hypothesite-and-test. lhe programs in~olve asynchronous, concurrent

activities processing different sets ot"assumptions. l'urthenrore, the resources allocated to these acti% ities can

be ahered asy nchronousls with the execution of the activities.

We ha\c demonstrated that introducing comurrenc, in the search pr(:ess does actuall) increase overall

efficiency. in particular it does no harm. lus lends support to efforts to design a computing system for

message passing languages that involves many intercommunicating autonomous processors (e.g. Ilewitl [41).

It suggests there is inherent concurrency in search problems that Could be gainfully run on multiple

p rocessors.
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