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The research results reported in the present paper represent a
substantial advance in the direction of providing more efficient, cost~
saving techniques for solving a wide class of commonly occurring two-

In previous papers ([5], [6]), it

dimensional boundary value problems.

has been shown that it is possible to dramatically reduce the cost of
solving two-dimensional problems by amalgating three formerly disparate
problem-solving tools, namely:
1. Computer graphics (visual feedback)

2. Numerical analysis (scientific computing software)
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3. Qualitative information (the analyst's experience and
insight, and "weak” mathematical theorems).
More specifically, in [5], Gordon and Hall pointed out (via examples)

the practical utility of such an amalgamation. The problems considered
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therein were, however, restricted to elliptic boundary value problems sub-

ject to Dirichlet boundary conditions, i.e., problems in which the function
values are specified on the perimeter of the domain. That paper, as well
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as [6], focused on the issue of contrasting the usual way of initializing

an iterative numerical solution method with the proposed new technique

which uses the so-called "blending-function methods" of interpolation to

a priori exactly match the boundary conditions.

As one would intuitively expect, starting with what literally "looks
like" (computer graphics) a good approximation reduces the computation
(numerical analysis) time very substantially. If, in addition, an analyst
is érovided a mechanism for quantifying his experience~based knowledge
(qualitative information) of the particular class of problems under study, % )
the "exact" solution is almost in hand.

The Gordon/Kelly paper [6] extends these early results, involving only
Dirichlet boundary conditions, to the rather general problem of satisfying
'"mixed linear boundary conditions,”" i.e., boundary conditions of the form:
aoF + B'%§ = g, The boundary conditions are, however, assumed to be "consis-
tent."” By this is meant that, at the corners of the region, the boundary
. conditions from either side "match,"

’;The attached paper addresses the problem of inconsistently specified

boundary conditions. 1In the simplest instance of Dirichlet conditions, this

means that the function values do not match at the corners. Herein, we show

how to actually construct bivariate functions which exactly match the above

type~mixed linear boundary conditions, even when they are inconsistently ;
§

specified, cf. Section III. Moreover, software has been developed which 3
i

numerically performs the necessary operator multiplications and constructs

the singular functions needed to accommodate such inconsistent boundary

conditions. This software will soon be available for general distrihution\
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ABSTRACT

In this paper we consider the problem of con-
structing bivarfate funcrions which exactly match
boundary conditions of the general form aF + 8(3F/3n)
= g(x,y) on the perimeter of the unit square. The
reason for wishing to do this is that substantial
savings in computation time can be realized in the
subsaquent solution of the discretized boundary value
problem: If an iterative method is used to solve the
discretized problem, beginning with a good {nittal
approximation can dramatically reduce the number of
iterations required to achieve convergence; if a di-
rect solution method is used, a specified accuracy
can be achieved with far fewer algebraic unknowns.
Although attention herein is restricted to rectangu-
lar regions, the techniques developed can be
straightforwardly extended to any rectangular
polygon. The interpolation techniques which we de-
welop for coxact boundary matching are illustrated by
several exanples which are accompanied by perspective
wviews of their graphs and by contour plots.

I. Background and Introduction

To set the stage for the main ideas of this
paper, we begin by displaying the familiar bilinearly
blended interpolant to Siptznler boundiry condtisiong
on the perimeter of the unit square S = [0,1]x(0,1].
Let F(x,y) be a supposed primitive function from
which the boundary conditions are extracted. Then,
the synthetis function U(x,y) which we construct via
transfinite ("blending function") interpolation is
given by the following (cf., [1], [2], [5)):

u(x,y) = (1-x)¥(0,y} + xF(1, V)

+ (1-y)F(x,0) + yF(x,1)
~ (1-x)(1-y)F(0,0) - (1-x)yF(0,1)

- 2(1-y)F(1,0) - xyF(1,1),

(1.1)

It is easy to verify that U = F on 23S.

As an example of the use of (1.1), consider a
primitive function F whose values along the four
edges of the unit square are:

7(0,y) = sin(2ry) + 1.5  F(l.y) = y2(y-1) + .5

2 2 (1.2)
?(x,0) = 1.5 - x P(x,1) = (x-1)" + .5,
The function U which {nterpolates these boundavy con-
ditfons is given by (1.1) as:

U(x,y) = (1-x)sin(2wy) + xy(yz-y-z)
2 (1.3)
+ x°(2y-1) + 1.5,

The graph of U is shown in Fig. la, and & contour
plot of U ts given {n Fig. 1b. -
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Bivariate and higher dimensional interpolation is
most easily discussed in the formalism of projection
operators ([1]), [2], (51, [6]). For instance, the
above expression (1.1) for U can be more succinctly
expressed as the foolerm sum of the two elementary
projectors Px and Py given by:

P [F] = (1-x)F(0,y) + xF(1,y)
(1.4)
P,[P] = (1-y)F(x,0) + v¥(x,1).

By definition, the Boolean sum of two projectors
(idempotent linear operators) is: P_ O P =
P_+P - PP . Forthe time being, ‘we shall assume
that the prmetive function F is continuous at the
four corners of the unit square, in which case the pro-
jectors commute:
PxP,[P] - Pny[F]. (1.5)

(The main results of this paper are, as we shall soon
discuss, concerned with problems involving corner sin-
gularities; in those cases, the relevant nrojectors co
not commute.) In terms of these commutative pro-
jectors Px and Py. expression (1.1) for U i{s sicply:

U= (Px ® Py)[F] - (Py [ Px)[F]‘ (1.6)

Interpolation schemes of this type are known by
several aliases including Bocleqn swn intermclatiom,
tranafinite interpolation, and bilending function
interpolation. Of these, the term transfinite comes
closest to conveying the essence of this class of
techniques. These mcthods are distinguished frea
classical finite dimensional interpolat.on schemes by
the fact that they in.orporate a nondenumerable -umber
of scalar samples of F into the interpolant. More
precisely, interpolation schemes of this class extract
from the bivariate primitive function F univarizce
samples of F, not simplv scalar samples. (Note that
P_[F] and P _[F] individually and (P‘ @ P )[F! are
ttansfinite’ {nterpolants, the produce P P [F] =
P_P_(F] 1s merely the standard four parameter bilinear
1Xt=rpolant to the four corner values of F.)

Previous studies by Gordon and Hall [5] and Gorden
and Kelly [6] have been aimed at demonstrating how, for
cont inuous boundary conditions, the transfinite, bi-
linearly blended interpolant (1.1) can be emploved to
reduce the computatfonal effort in obhtaining numerical
solutions to second order elliptic boundary value
problems. In those two papers, the authors discuas
the following general approach: First, use (1.1) to
construct U, which exactlv matches the given Dirichlet
boundary condi{tions and thus reduces the orfginal pro-
blem to one with homogeneous boundary conditfons;
then, examine the oripinal problem for any iddicional
information wvhich may be inferred about tihe solution.
Such suxiliary know)edpe, althouch perhaps merelvy
qualitative or heuristic, can oftcen be used to advan-
tage in {mproving upon the ffrec approximition U
obtained by simply matching the boundary ronditions.

As an exanmple, the solution to laplace's cquation
must satiufly a Maximum Principle. 1If the {nitfal

estimate Ul does not, then there arc simple wavs of cone
structing functions V which vanish on 3§ and are such
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that U + V both matches the given boundary conditions
and satisfies the Maximum Principle, cf., [5} and (6].
For the Poisson equation 7°U = p, the sign of p deter-
uines that the solution is (locally) either sub-
harmonic or superharmonic [8]), and this auxiliary
information can be built into the exact boundary
matching approximation U + V. In the actual testing
of these ideas, we have found that itnteraztive com-
puter graphtcs is an almost indispensable aid.

Numerical experiments using the techniques
suggested in [5] and [6] to obtain good first approxi-
mations with which to enter standard Tterative linear
system solvers demonstrated that very substantial re-
ductions in total computational cost can be realized
using such preprocessing methods. Inasmuch as, lack-
ing any previously computed results, the standard
initialization of an iterative scheme for solving
large linear systems is to set all unknowns equal to
zero (or some constant), it is no surprise that an
exact boundary matching function which also incorpor-
ates readily available auxiliary information should
produce a more rapidly convergent numerical solution.

What may be more surprising are the results re~
ported by Mitchell, Marshall and Wait ({9], [10,
pp. 174-175)), and by Rice [11]. Namely, that merely
by reducing an elliptic problem with inhomogeneous
boundary conditions to a problem with homogeneous con-
ditions one is able to achieve a numerical solution of
specified accuracy using far fewer algebraic unknowns.
(Bxact a priori matching of boundary conditions is
tantamount to reducing the original problem to a pro-
blem whose solution — the "residual" -- must satisfy
homogenaous boundary conditions.) Rice has observed
this empirically for the collocation codes in the
ELLPACK suite, and Marshall and Mitchell have reported
this to be true in experiments contrasting standard
bilinear finite elements with "exact boundary,
elements". For the potential flow problem (V'U = 0)
with a source at (.437,-k), the exact §olution Qf
wvhich is U = log r where r° = (x-.437)" + (y+k)°,
Marshall and Mitchell obtained results indicating that
for a "weak'" singularity at (.437,-3), more than 256
standard bilinear elements are required with inromo-
geneous boundary conditions to achieve the same (four-
figure) accuracy as can be obtained with 16 elements
1f the boundary conditions are first homogenized. If
the singularity is located a: (.437,-.1), the com-
parison is roughly 256 elements to achieve three-
figure accuracy with inhomogeneous conditions versus
64 wvith homogeneous, cf. Table 4, p. 175 of [10].

In brief, the development of methocdologies and
associated software preprocessors to ¢ priort exactly
match rather general boundary conditions, and thus
permit their homogenization prior to discretization
and numerical solution, promises considerable savings
in total computational cost, whether the discrete
linear system is solved by iterative or direct
sethods.

II. Transfinite Interpolation to Mixed (Consistent)
Boundary Conditions

In this section, we consider rather general
boundary conditions of the form aF + 8(3F/3n) = g on
the perimeter of the unit square. These boundary con-
ditions are to be thought of as being associated with
some second order elliptic boundarv value problem and,
without further mention, we shall assume that they are
such as to guarantee that the problem is well~posed.
In particular, this means that the solution must be
"pinned” along at least onc of the four edpes, i.e.,
on at least one of the edges the function value i{tself
aust be specified.

In (6], Gordon and Kelly considered mixed linear
boundary conditions of the form:

LOIF] = 067(0.y) + B°F¥(O.y) = ¢ (y) aléng x=0

L,[F] = a,F(1,y) * 8,F (L.7) = gi(y) ' slong x-iz b

Mo[F] = aoFSx.O)-+ BoFy(x.O) -.ho(x) along y=0
‘along y=1

M1[F] - alF(x,l) + Blry(x,l) - hl(x)

in vhich the a_, 2, 8, and 81 are conataitg, and the
boundary condi%ions are consistent, i.e.:

LiﬂalF] = MjLilF] (1,3 = 0,1). (2.2)

In the case of Dirichlet conditions, the linear
overators L1 and X, are just:

b
Ly[F] = F(0,y) = go(¥),

MolF] = F(x,0) = hy(x),

Lllr] = F(l,y) = sl(y)
(2
M, [F] = F(x,1) = by (x)

and the consistency requirement simply means that the _
boundary conditions are continuous at the four
corners:

Myle (] = Ly[h ()

Theorem (Gordon/Kelly): Let the L, and /. be as in

(2.1) and define two projectors Pxiand Pyjas follows:

(1,5 = 0,1). (2.4)

P_IF] = 0oLy [F) + ¢, ()L, [F]

P IF) = v (A [F] + ¥, (M, [F],

(2.5)

where the functions L2 and ¥, satisfy the cardinality

conditions: 3
L,[é, ] =28 for i,k = 0,1
1% 1k (Kronecker Delta) (2.6)
‘4j[w1] = sz for j,L = 0,1.
Then, the function U obtained from the Boolean sum of
P and P_ exactly satisfies all of the specified
bgundaryyconditions.

Procf: The function U is given by

U= (Px + Py)[F]

= 0o (ILGIF) + 6, L, [F] + ¥y (M IF] + b, (I, [F)
= 09GNI LPHIF) = 80 (x)¥, (NI, [F] @.n
= 0y VWL PGIF] = 8 GIvy (LM, [F].

The proof consists »f a straightforward verification
of the facts that L [U] = gi(y) and MJ[U] - hj(x).
We have, for examplée:

LylU} = Ly[F) + vo (1L [F) + o) (¥)LoY, [F)
= $oONLM[FY = ¥, ()L M [F]

. (2.8)
- LlF]

- zo(y)

in which we have used the cardinality conditions (2.6).
To show that M _{U]) = 2 [F) = h (x), we also use the
consistency hyéothesesj(Z.Z). .E.D.

As an illustration of this result, consider a
function F such that:

-1.2

Ly(F] = F_(0,y) -

-1.2% + (y-.9)2

S




L,[F] = 6F(Ly) - F,(L,y) = 6[1a/(-.2)7 + (y-.9)% 1.5]
.2

-.2)2 + (y-.9)2

MylF] = P(x,0) + 27 (x,0) = n(x-1.2)% + (-.9)2

.. (2.9)
1.8

- + 1.5
x-1.2)% + (-.9)2

« 1In/(x-1.2)2 + (1) + 1.5

It may be easily verified that the four functions:

+

Mi[?] = F(x,1)

i 0°(x)'- x - % Ol(x) - %
: (2.10)
satisfy the necessary cardinality conditions: Simply

apply the formulas for the [, and M, to these uni-~
variate "blending functions" and codfirm the Kronecker
delta properties. The corner values are L. Y [F] =
—1 387 L M [F) = -.828, L M. [F] = -2.962, and

[P] ="4,013. Thus, the gunction U given by

— L2, aa/os + (y-.9)2

1.44 + (y-.9)>

PO S— {(y-l) n/(x-1.2)2 + .81

3¢.04 + (3-.92)

U(x,y) = (.833-x)

- —¢8——]+ @-pIn/(x-1.2)% + 0.1

x-1.2)2 + .81

4+ 1.387(x-.833) (y-1) + .828(x~-.833)(2-y)

- 1.994(y-1) + .831(2-y) + 1.5 €2.11)

latisftes the boundary conditions: L,[U]) = L [F] and

U} = M, [{F] (1,5 = 0,1) on the perimeter of S. The
géaph of 6 i{s displayed in Fig. 2a, and its contour
plot is depicted in Fig. 2b.

In the earlier work by Gordon and Kelly, the

authors assumed the existence of blending function

¢,(x) and ¢, (y) which satisfy the requisite cardin-
aiity condilions (2.6). Here we show, for boundary
conditions of the general form (2.1), how to actually
oonstruct the $ (x) and ¥ (y). In particular, we
show that for any choice of the eight parameters a

, &, and B, in (2.1), we can always find polynom}als
of delree thiec or less which satisfy (2.6).
Lemma: Let L, and M, and the projectors P_ and P
be defined as in thejabove theorem. Then, ere ekist
polynomials of maximal degree three such that (2.6)
holds.
Proof: We necd carry out the proof for only the 0i(x).
since the ¢ (y) are constructed independently and
lnllogouslyj To this end, suppose that 00 is cubic in
x:

$o() = ay + box + x2 ¢ d.x3, * (2.12)

0 0 0

By applying the lincar operators L and L. to ¢,
snd collaecting terms, we obtain the llnea} systém

-1
(2.13)

Lolegl = agsy + 850y

thool a,a, +(a1+a1)b° f(°‘1"231‘")
for the determinatfon of the polynomial céefficients
and d . (Bear in mind that the constants

ang B . which completely characterize L, and Ll

+(a1+381)d° =0

- l%e known ) Clea.iy, since there are four unknowns

and only two equations, this system is, in general,
underdetermined. Our criterion for selecting one
among the (in general) two-parameter family of
solutions is to take that solution which corresponds
to the minimal degree polynomial. This resolves all
ambiquities except two:
1. 1f ay (a +8 ) - ay By = 0 and both of the following
2x2 submatr}ces are nonsingular.
(@, © [ 8, 0
and

1 (al+281) _§a1+81) (c|1+281)_l .
In this case, we solve for a, and S from rhe first of
these and set b 0.
2. _If all 2x2 submagrices are singular except
ag 0 Bo 0

L?l (a1+381) £°1+Bl) (Gl+381?- ,

(2.14)

(2.15;

then solve for a_, and do from the first of these and
set b =0,

Qhus, assuming that cubic blending functions do
exist, the above procedure produces a unique ¢ The
function ¢, is obtained in a completely analcgous
fashion.

Now, we must show that the linear system (2.13)
will always have at least one solution. To see this,
consider the conditions under which all five of the
nontrivial 2x2 submatrices of (2.13) are singular:

a (a +B ) - °180 =0
uo(al+281) =0
ag(a, +38,) -0 (2.16)
Bo(a1+281) =0
Bo(al+381) = 0.

The key to the proof of existence is the recognition
that i{f aj = 0, then B, cannot be zero, and vice versa
(=0 and 1). With this in mind, it is easy to show
that the five equations of (2.16) caannot all hold
simultaneously. Q.E.D.

As an example, consider the following consgistent
boundary conditions:

Ly(F] = F(0,y) + F,(0,y) = 1.5m¢ 7 + .2

L. [F] = F(1,y) - 25e-<1*y)cos(wy) + .2

1 2.17)
Mb[F] = 2F(x,0) + Fy(x.O) = (1+sin61x) + .4
MIF) = 2FCx,1) - Fo(x1) = 75;“1+“’(-1+s1n6nx) + .4,

Here, 8y =1, B.=1, a,=1, B =0, a.=2, 5 =1, a,%2 and
B,==1, so tha? by }ollowlng thg above algo}ithm. we
o%taln for the blending functions:
$(x) =1 - x? ¢ () = x2
3 (2.18)

bo(r) = S +y ’1(’" - -73




;hlch y!eldithe.functlon:

U(x,y) = ]‘.Sw(l-xz)e.y + .2517(em(1+y)coawy)
+ .25¢ X (L+sinbme) . S+y°) (2.19)
~ 756 M) Clistagmy” -1.5001-x2) (54"

+ A.Sue.l(l-xz)y3 - .25e-1x2(.5+y3)

- 756320 4 2,

By applying the four linear operators L, and M, to
this last expression, it can be confirmed :hatj
L,{u) = L [F) and M [U} = M _{F) (i,] = 0,1), i.e.,
U does saéisfy the ;equisité boundary conditioms.
The graph and contour plot of U are shown in Figs.
3a and 3b.

I1I. Transfinite Interpolation to Inconsistent
Mixed Boundary Conditions

As a practical matter, boundary conditions for
elliptic problems are quite frequently not consistent-
ly specified. By this we mean that, although the
solution must be smooth (analytic) inside the pro-~
blem domain, it way and often does have singularities
{discontinuities) on the boundary. An elementary
example .{ this is the textbook heat conduction
oroblen of ducermining the equilibrium temperature
distribution in 2 square plate, three sides of which
are immersed in ice (0°C) and the fourth in steam
(100°C). (Figs. 4a and 4b depict the graph of the
solution and its contour plot.)

In simple instances such as this with Dirichlet
boundary conditions, the analyst faced with solving
the boundary value problem will undoubtedly be aware
of the singular behavior at two of the corners since
it s so conspicuons. As a rule, however, inconsis-
tently ~rezilied mixed boundary conditions are not
easily spotted. For instance, suppose that a
Dirichlet condition F(O,v; = go(y) is specified along
the edge x=0 of the unit squaré and that along the
edge y=0 the Neumann condition F (x%,0) = h_ (x) is
given. In order for the solutiodl toc ke smoothly con-
tinuous at the cormer (0,0), it is necessary that
these two conditions be consistent, i.e.:

1in -g— F(0,y) = lim P_(x,0)
y0 4 0 7

B (x) - :—y 8| - .1)
x=0 y=0

The question of consistency or inconsistency is, of
courge, even more subtle for general houndary con-
ditions of the form (2.1) above.

Fortunately, high quality numerical software for
solving elliptic problems is sufficiently robust as to
be able to accommodate even grossly inconsistent
boundary conditions. Provided that a solution exists,
by taking a sufficiently fine discretization (and
perhaps employing some special tricks), the applied
analyst can normally obtain a solutfon to whatever
accuracy desired. This, however, is a computationally
expensive procedure which can be better handled by
a priori taking cognizance of the anticipated singular
behavior near corners. This is the main goal of this
section.

With the same notation as the previous section,
we now consider bowniary opcrators L, and M, vhich do
not commute: LM (F) ¢4 4L IF) (4,1 = 0,1)Y The non-
commutativity of éhe I, and’!!, 1s what we mean by
iIneonsistent boundary éondi:iéns. We still find {t
useful to consider the projection opcrators Px and Py

of (2.5) in which the Ql(x) and ¢ (y) are determined
in precisely the same wiy as outl{ncd in the previous
section. Now, however,

P'Py[F] ¢ Pny[?]. (3.1)

which has the important implication that the function
U= (P_ ® P ){F] will not satisfy the (inconsistent)
boundary colditions. (Actuallv, (P ® P )[F] does
satisfy the conditions that L [(P % PV)YF]I = L _[F)
(1=0,1), but does not satisfy the“othef two con-
ditions: M [(P_ & P )[F]] # 2 [F].)

In ordér ¢ deal with corAer inconsistencies, we
develop a class of interpolants specifically designed
for the purpose. At each corner ({,j) we construct a
special function U such that

i)
LM, U1 =8
ANUBER

§,.L.M [F]
ik jL 1) (3.2)
1k6lejL1[F]'
In words, for fixed { and j, the function U, 6 vanishes
under operation by any of the six linzar fuéétionals
LkM and M,L, (k¥1, 2#j). When operated on by Liﬁg
or ﬁ R tﬁe result is LIM [F] or ¥ LilF],
respécéively. 3 3

The case of pure Dirichlet boundary conditfons

(ao =0 =a) =a = 1, Bo =f8 =8 =8 =0) is the
simples% to gnterpret. Suppose the boundary con-
ditions are such that

F(x,3) = lim F(x,j) = Li.'-.’J[F]

x=y *1 (1,3=0,1)  (3.3)

r(i.y)l = 1im F(i,y) = MjLi[F]

=3 bas ]

and LiM [F) # ML, [F); cf., for example, Fig. 4a.
The funétion U 3 which we shall construct will
satisfy, for téé case of Dirichlet conditions:

1im Uij(x.j) - LIMEIF] = lim F(x,j)
x 1 (1,3%0,1) (3.4)
[F} = lim F(1,y)

lim Uy (1,y) = ML
bas]

vy 4 t

and at the three corners other than ({i,3), "13 will
vanish.

In the general case, suppose for the moment that
we have the required functions U, (x,y) which satisfy
conditions (3.2). Let W be equaijto the sum of these
four corner functioms:

Vix,y) = Ugg(x,y) + Up, (x,y) + U, Oay) + U, (xuy),
(3.%)
Clearly, W satisfies the efight conditions:
Liualw] - Limj[F], MBLl["] - MjLi[F) (1,j=0,1),
(3.6)

From thig, we draw the {mportant conclusion that, by
virtue of the linearity of the operators L1 and M&:
LIMBIF -Wl =0
for 1, = 0,1. (3.7)

MBL‘[F -W)} =0

If the solutfon to the original <nterrolatizn problem
i3 again denoted by U, we want to vepresent U as the
sum of W and a yet to be determined function V:




» s .

-

U(x,y) = W(x,y) + V(x,y). (3.8)
Now, since U is to satisfy the boundary conditions
L,[U) = L [F] and Mj[U] - M,[F] (1, = 0,1), we have
frfom (3.7’ that:

Lt"j[vl - ”j[‘ilv] -0 (¢, = 0,1), (3.9)
vhich is to say that the function V gatisfies con-
sistent boundary conditions, as defined in relation
(2.2). Therefore, we can actually construct V using
the techniques presented in the previous section.
Referring back to (2.7), we have that:

Vix,y) = \P_ ® P )[F - W]
y €3.10)
- Px[P - Wl + Py[F - W],

the last because of (3.7).

In summary, we first construct the function U1
for each corner (1,j). Then, we compute the derivcé
boundary conditions, L, [F -~ W] and M, [F - W], and use
these in expression (3,10) for V. THe function
U= W+ V will then exactly saticfy the criginal, in-
congistent boundary comdiitionms: Li[U) = L1[F] and
'M}[U] - MJ[P] for i,§j = 0,1,

We shall now without derivation, display the
functions Ui . (For a more complete treatment, see
[?]1.) For eéery peint (x,v) {n S = [0,1] x [0,1],
define the angles 8 (i, = 0,1) indicated in the
accompanying figure%j

yl\

11

01
(x,y)

10

LA 4

- !
[} nrctan(‘)

l-x
0 5

010 = arctan
3.11)

1 -
) [ 2O nrct.n(I—:—i).

x
[ nrct-n(l pr et

0

Ve éhen define the functions Uij as follows:

Uoo(x.y) - ‘o("”o(")n(eoo”‘o"o(”
+ (1-1(000))M°L0[F])
Um(x.y) - oo(x)vl(y)l'r(em)nll,o[r]

+ (1-7(001))L0M1(F)]

(3.12)

LR ERNCIROTLICMLA Rey

+ -8, )L, [F1)
Uy (xoy) = 9, G, () [TC8 )0 M, [F)

+ (1-1(911))MEL1[F]].

The functions ¢, ,(x) and ¢ ,(y) (i,j = 0,1) are the sanme
as in (2.6), and the r(eij) must satisfy the following
conditions: ]

"
T(eij) =]ate,6 =0, T(elj) =Qat g, = 7 (3.13a)

1) 1)

’—r(e“)-o“e -0 -’—-r(e“)-oace -

20 13 "7 %0 13772
4 1 (3.13b)
32 "

;—63—' T(ei.j) = 0 at eij - 7 (3.1%)
13 :

In the case of Dirichlet boundary conditionms,
only equations (3.13a) must hold, and they are quite
simply satisfied by taking:

20
i
16,0 =~ @ -~ 100 (3.15)

For the more general operators Li and Ag, the cubic
function

[}
ye G -niHl ey @y -0 (3.16)
satisfies (3.13a), (3.13b) and (3.14) as required.
Figure 5a shows a perspective view and 5b the

contour plot of the interpolant to the mixed incon-
sistent boundary conditions:
Ly(F) = F(0,y) = cosh(G(1-y)) +1

Li[F) = F(Ly) + F,(1,y) = cosh(G(1-y))sin(F y)

2 (3.17)

Mb[?] = F(x,0) = 5x" +1
Ni[F] - Fy(x.l) -0
wvhere:

$.(x) =1 - .5x ¢, (x) = .5x

0 1 (3.18)
o) =1 o) =y

and

LOMb[F) -] Llﬂb(F] = 2,5
N L [F] = 3.509 ML [F] =0

oo o1 (3.19)
LONEIF] L) Llhi[F] =0
H&Lo[F] =0 Mi&llF] -0,

Figure 6a shows a perspective and 6b the contour
plot of the interpolant to the mixed inconsistent
boundary conditions:

LOIF] = F(0,y) = .25sin(n(4y+.5)) + .7
Lll?] = F(l1,y) = 2y(l-y)cos(n(2y-.25) + .2

(3.20)
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ey,

no[l-'l = Fy(x.O) = 5(1-x)

Mi[?] = Fy(x.l) =0

wvhere:

$p(x) =1 - x ¢, (x) = x

to(y) = x - .5x wl(y) = 5%

and

LoMo(F) =5 LMyIF] = 0

nbnolrl =0 MbLllF] = 1.414 .22
LM (F] = 0 LM, [F] = 0 ’
“i”o[F] =0 MiLl[P] = -1.414.

Note that although the boundary conditions are incon-
sistent at the three corners (0,0), (1,0) and (1,1),
the function value of the interpolant is inconsis-
tent only at the corner (1,1).

To illustrate the construction of U(x,y) from
W(x,y) and V(x,y) we will consider a very simple pro-
blem with Dirichlet boundary conditions and a dis-
continuity ar (1,1):

L,F] = F(0,y) = ¥
Mb[F] = F(x,0) = 0

LllF] = F(l,y) =0

(3.23)
M]_[F] = F(x,1) = 0.
Obviously, LiMj[F] = M LilF] for 1 = 0 and § = 0,1.
But, L M [F]i=10 and MiLo[F] = 1. The blending
functions are:

00(1) =1-x Ql(x) - x
(3.24)

$o() =1 -y h =y,
which yield

2803 2
U(x,y) = (1-x){yQ1 - = ) -y+yl)

20 (3.25)

- Q-0yty - =2)

where 601 is defined in (3.11).

Figure la.
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EXACT A PRIORI MATCHING OF MTYED BOUNDARY CONDITIONS
FOR SECO:MD CRDER ELLIPTIC PROBLEMS

William J. Cordon
Linda C. Thiel
. Mathematical Sciences Department
Drexel University
Philadelphia, PA 19104

ERRATA

1. p. 2, equation (2.7), (Px + Py)[F] should be (Px & Py)[F].

2. p. 3, equation (2.11), [(y-l) 1n/?x-1.2)2 + .81 - 1.8 |

(x-1.2)% + .81

should be (y-1) ln/fﬁ—l.Z)z + .81 - 1'?
(x~1.2)° + .81

3. p. 5, equation (3.20}, Ll[F] = F(1,y) = 2y(1-y¥)cos(n(2v-.25) + .2

should be Ll[F] = F(1.v) = 2y(1~y)cos(n(2y-.25)) + .2







