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The research results reported in the present paper represent a

substantial advance in the direction of providing more efficient, cost-

saving techniques for solving a wide class of commonly occurring two-

dimensional boundary value problems. In previous papers ([5], [61), it

has been shown that it is possible to dramatically reduce the cost of

solving two-dimensional problems by amalgating three formerly disparate

problem-solving tools, namely:

1. Computer graphics (visual feedback)

2. Numerical analysis (scientific computing software)

3. Qualitative information (the analyst's experience and

insight, and "weak" mathematical theorems).

aMore specifically, in [5], Gordon and Hall pointed out (via examples)

C.. the practical utility of such an amalgamation. The problems considered

LLJ therein were, however, restricted to elliptic boundary value problems sub-

L. Ject to Dirichlet boundary conditions, i.e., problems in which the function

values are specified on the perimeter of the domain. That paper, as well
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as [6], focused on the issue of contrasting the usual way of initializing

an iterative numerical solution method with the proposed new technique

which uses the so-called "blending-function methods" of interpolation to

a priori exactly match the boundary conditions.

As one would intuitively expect, starting with what literally "looks

like" (computer graphics) a good approximation reduces the computation

(numerical analysis) time very substantially. If, in addition, an analyst

is provided a mechanism for quantifying his experience-based knowledge

(qualitative information) of the particular class of problems under study,

the "exact" solution is almost in hand.

The Gordon/Kelly paper [6] extends these early results, involving only

Dirichlet boundary conditions, to the rather general problem of satisfying

"mixed linear boundary conditions," i.e., boundary conditions of the form:
aF

aF + 0 In g. The boundary conditions are, however, assumed to be "consis-

tent." By this is meant that, at the corners of the region, the boundary

conditions from either side "match."

The attached paper addresses the problem of inconsistently specified

boundary conditions. In the simplest instance of Dirichlet conditions, this

means that the function values do not match at the corners. Herein, we show

how to actually construct bivariate functions which exactly match the above

typed-ixed linear boundary conditions, even when they are inconsistently

specified, cf. Section III. Moreover, software has been developed which

numerically performs the necessary operator multiplications and constructs

the singular functions needed to accommodate such inconsistent boundary

conditions. This software will soon be available for general distribution.,

tn -40) W
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ABSTRACT Sivariate and higher dimensional interpolation is
most easily discussed In the formalism of projection

In this paper we consider the problem of con- operators ([1], [2], [51, [6]). For instance, the
structing bivariate functions which exactly match above expression (1.1) for U can be more succinctly
boundary conditions of the general form aF + eoF/an) expressed as the Boolean awn of the two elementary
a g(x,y) on the perimeter of the unit square. The projectors P and P given by:

reason for wishing to do this is that substantial x Y

savings in computation time can be realized in the P [F] - (1-x)F(O,y) + xF(ly)
subsiquent solution of the discretized boundary value (1.4)
problem: If an iterative method is used to solve the P IF] - (1-y)F(x.O) + vF(x,1).
discretized problem, beginning with a good initial
approximation can dramatically reduce the number of By definition, the Boolean sum of two projectors
iterations required to achieve convergence; if a di- (idempotent linear operators) is: P * P
rect solution method is used, a specified accuracy P + P - P P VFor the time being, weshall assume

can be achieved with far fewer algebraic unknowns. tgat tAe pr~nYtive function F is continuous at the
Although attention herein is restricced to rectangu- four corners of the unit square, in which case the pro-
1ar regions, the techniques developed can be jectors commute:
straightforwardly extended to any rectangular
polygon. The interpolation techniques wnich we de- PPy[F] - Py P xF]. (1.5)
velop for ,xact boundary matching are illustrated by
several examples which are accompanied by perspective (The main results of this paper are. as we shall soon
views of their graphs and by contour plots, discuss, concerned with problems involving corner sin-

gularities; in those cases, the relevant nrojectors co

1. Background and Introduction not commute.) In terms of these commutative pro-
jectors P and P , expression (1.1) for U is sicply:

To set the stage for the main ideas of this Y
paper, wt begin by displaying the familiar bilinearly U - (P * Py)[F] - (Py 0 Px)(F]. (1.6)
blended interpolant to :D, -' e 5ou- dzru cCdi .*X

on the perimeter of the unit square S [ [0,11x[0,1]. Interpolation schemes of this type are known by
Let F(x,y) be a suppo'ied primitive function from several aliases including Boc!.n aur nt'a cat:,
vhich the boundary conditions are extracted. Then. trnofinite inte.polation, ad blending f:'. ic'n
the ayntheti- fu.-rion L(x,y) which we construct via interpolation. Of these, the term transfinite comes
transfinite ("blending function") interpolation is closest to conveying the essence of this class of
given by the following (cf., [1], [2], [5]): techniques. These methods are distinguished from

classical finite dimensional interpolarion schemes by
O(x,y) - (l-x)F(O,y) + xF(l.V) the fact that they incorporate a nond-numerable number

+ (I-y)F(x,O) + yF(x,) (1.1) of scalar samples of F into the interpolant. Mare

- (1-x)(l-y)F(O.0) - (l-x)yF(O,l) precisely, interpolation schemes of this class extract
- z(1-y)F(l,O) - xyF(l,l). from the bivariate primitive function F uniici

*eaVOea of F, not simply scalar samples. (Note that
It is easy to verify that U - F on 3S. P iF] and P IF] individually and (P * P )EF! are

As an example of the use of (1.1), consider a t=ansfiniteyinterpolants. the produc PP IF]
primitive function F whose values along the four P P [Fl is merely the standard four parameter bilinear
edge. of the unit square are: I terpolant to the four corner values of F.)

Previous studies by Gordon and Hall [51 and Gordon
F(Oy) - oin(2wy) + 1.5 F(Iy) - y (y-l) + .5 and Kelly [6] have been aimed at demonstrating iio, f'r

2 2 (1.2) continuous boundary conditions, the transfinite, bi-
1(X,O) - 1.5 - x F(xl) - (x-l) + .5. linearly blended interpolant (1.1) can be employed to

reduce the computational effort in obtaining numerical
The function U which Interpolates these boundary con- solutions to second order elliptic boundary value
ditions is given by (1.1) as: problems. In those two papers, the authors discuss

2 the following general approach: First, use (1.1) to
U(s.y) - (l-x)sin(2ay) + xy(y -y-2) construct U, which exactlv matches the given Dirichlet

2 (1.3) boundary conditions and thus reotices the original pro-
+ a (2y-l) + 1.5. blem to one with homogeneous boundary condlt'ons;

than, examine the original problem for any additional

Ihe graph of U i shown In Fig. Is, and a contour information which may be inferred about the solution.
plot of U i given in Fig. lb. Such auxiliary knov)edre, althocgi perhaps merelv

qualitative or heuristic, can oft,.n be used to advan-
tage in improving upon the fir,;t ,pproximitoo U

This work was %upported by the U.S. Office of Naval obtained by simply matching the boundary conditions.
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Research under contract NOOOl-6O-C-O7l6 to Drexel must satisfy a Maximum Principle. If the Initial

University. estimate U does not, then th,re are simple ways ot con-
structing functions V which vanish on )S and are such



that U + V both matches the given boundary conditions
and satisfies the Maximum grinciple. cf., [5} and [6]. LO[F] - o0 F(O,y) + 00 FX(Oy) - V (y) along x-O
For the Poisson equation V-U = P, the sign of o deter-
mines that the solution Is (locally) either sub- L1I[F - a1F(l,y) * 1- gi(y) along x-l
harmonic or superharmonic [8), and this auxiliary_ .. (2.1)
information can be built into the exact boundary NO[F] - a0o(XO).+ iOF.(x,O) ho(X) along y=O
matching approximation U + V. In the actual testing
of these ideas, we have found that interactive corn- MI[F] - aIF(x,l) + 1 Fy(xl) - h(x) along y-1
puter graphics is an almost indispensable aid.

Numerical experiments using the techniques in which the a., a , and 0 are onstants, and the
" suggested in 15] and [6] to obtain good first approxi- boundary conditions are consistent, i.e.:

mations with which to enter standard iterative linear
system solvers demonstrated that very substantial re- LIMdIF] - 44L[F] (i ,J 0,1). (2.2)
ductions in total computational cost can be realized
using such preprocessing methods. Inasmuch as, lack- In the case of Dirichlet conditions, the Zinear
Ing any previously computed results, the standard operatores Li and " are Just:
initialization of an iterative scheme for solving j
large linear systems is to set all unknowns equal to L0[F] - F(O,y) - gO(y), L1[F] = F(l,y) - g1 (y)
zero (or some constant), it is no surprise that an (2.3)
exact boundary matching function which also incorpor- M0 [F] - F(x,0) - ho(x), MI[F] - F(x,l) - hl(x)
ates readily available auxiliary information should
produce a more rapidly convergent numerical solution. and the consistency requirement simply means that the

What may be more surprising are the results re- boundary conditions are continuous at the four
ported by Mitchell, Marshall and Wait ([9], [10, corners:
pp. 174-175]), and by Rice [11]. Namely, that merely
by reducing an elliptic problem with inhomogeneous M[gi(y)] Li[h4 (x)] (i,J - 0,1). (2.4)
boundary conditions to a problem with homogeneous con-
ditions one is able to achieve a numerical solution of Theorem (Gordon/Kelly): Let the Li and M be as in
specified accuracy using far fewer algebraic unknowns. (2.1) and define two projectors P -and P Jas follows:
(Exact a priori matching of boundary conditions is x y
tantamount to reducing the original problem to a pro- PxIF] = *o(x)Lo[F] + 1(X)L1 [F]
blem whose solution - the "residual" -- must satisfy (2.5)

* homogeneous boundary conditions.) Rice has observed P [F] = *o(y)M0[F] + I(Y)MIF,
this empirically for the collocation codes in 

the

ELLPACK suite, and Marshall and Mitchell have reported where the functions and 4P satisfy the cardinatity
this to be true in experiments contrasting standard conditions:
bilinear finite elements with "exact boundary,
elements". For the potential flow problem (V-U - 0) L [Ok] = 

6
k for i,k - 0,1

with a source at (.437,-k) 2 the exact olution 2f (Ironecker Delta) (2.6)
which is U - log r where r - (x-.437) + (y+k) , VY - s] for J,t - 0,1.
Marshall and Mitchell obtained results indicating that
for a "weak" singularity at (.437,-3), more than 256 Then, the function U obtained from the Boolean sum of
standard bilinear elements are required with inhcmo- P and P exactly satisfies all of the specified
geneous boundary conditions to achieve the same (four- boundary'conditions.
figure) accuracy as can be obtained with 16 elements P The function U is given by
if the boundary conditions are first homogenized. If
the singularity is located at (.437,-.1), the com- U - (Px + P y )F]
parison is roughly 256 elements to achieve three-
figure accuracy with Inhomogeneous conditions versus 0 *o(x)Lo[F] + 6I(x)LI[F] + 0 (Y)Mo[F] + 1(0111I[1
64 with homogeneous, cf. Table 4, p. 175 of [10]. (2.7)

In brief, the development of methodologies and - 0(x)*o(Y)LoMo[F] -
associated software preprocessors to a priori exactly
natch rather general boundary conditions, and thus - (x)0 (y)L I[F] - 01(X)W1 (y)LIPI [F].
permit their homogenization prior to discretization
and numerical solution, promises considerable savings The proof consists if a straightforward verification
in total computational cost, whether the discrete of the facts that Li[U - gi(y) and Mj[U] - hi(x).

linear system is solved by iterative or direct We have, for example:
methods.

• Lo[U] - Lo[F) + Po(y)Lo IF) + (Y)Lo I[F)

11. Transfinite Interpolation to Mixed (Consistent) 0  + 0 0  1 0 1

boundary Conditions - #(y)LOM 0oF] - *l(y)La1l[F] (2.8)

In this section, we consider rather general - Lo[F]
boundary conditions of the form *F + (aF/3n) - g on

the perimeter of the unit square. These boundary con- . g0 (y)
ditions are to be thought of as being associated with
s second order elliptic boundary value problem and, in which we have used the carudinaity conditions (2.6).
without further mention, we shall assume that they are To show that M[U] - M[ F] - h (x), we also use the

Ssuch as to guarantee that the problem is well-posed. consistency hyothesesa(2.2). 6.A.D.
I particular, this means that the solution must be As an illustration of this result, consider a
"pinned" along at least one of the four edges, i.e., function F such that:
en at least one of the edges the function value itself -1.2
mt be specified. LO[F] Fx(Oy) 2

In (6], Gordon and Kelly considered mixed Zinear (-1.2)2 + (y-.9)

boundary comdition. of the form:



ZI[F]- 6F(1,y) - F(l,y) 6[ln/(-.2) + (y-.)2+ 1.51 L1 1#0 - 1 a0 +(a1+61 )b0 +( 1 +2B
0
1 1 +(a1+3Sl)d 0  - 0

.2 for the determination of the polynomial coefficients
-)an0 ba , co and dO . (Bear in mind that the constants

2 2 a an06i, which completely characterize Ln and L1,ae known.) Cleaiy, since there are four unknowns

NO[F] - F(x,O) + 27y(xO) - ln/(x-.2)2 +(-.9) and only two equations, this system is, in general,
.(2.9) underdetermined. Our criterion for selecting one

(-.1.8 among the (in general) two-parameter family of
2 + 1.5 solutions is to take that solution which corresponds

(x-1.2) +7.9) to the minimal degree polynomial. This resolves all
2 ambiquities except two:

NI[F1 - F(xl) - ln/(x-l.2)2 + (.1)2 + 1.5 1. 0ubmOtrl+e1  - aIa - 0 and both of the following

2;2 suhmaatr1ces are nonsingular:
It may be easily verified that the four functions:

6 -i(X) 6 (2.10) : (a1+211 L+ 61) (a+21 (1

#0(y) = y - 1 1(y) - 2 - y t c w

In this case, we solve for a0 and co from Pe first of
satisfy the necessary cardinality conditions: Simply these and set b0 - d - 0.
apply the formulas for the L. and M. to these uni- 2. If all 2x2 subma~rices are singular except
variate "blending functions"'and coAfirm the IKronecker a00 0 [60 0
delta properties. The corner values are La 0 iM0 F] - ] and (2.15b
-1.387, L0MI[F] = -.828, LIM [F] - -2.962, and (a1+30 1 +Ll) (lI+3$L ,L1MI[FJ =u4.013. Thus, the ?unction U given by1(136(11)(13)

then solve for a0 and d from the first of these and
= (83-i 12 l.'04+ y- 2 set bo=e 0 -= 0.0 0

U(x~y) (.833-x) 1.2 + In/04 + (y-.9)2  Thus, assuming that cubic blending functions do
1.44 + (y-.9) exist, the above procedure produces a unique €o" The

function I is obtained in a completely analogous
fashion.

+ .1 -Jy-1) ln/x-1.2)2 + 81 Now, we must show that the linear system (2.13)
3(.04 +(9)2) l) will always have at Zeast one solution. To see this,

consider the conditions under which all five of the

nontrivial 2x2 submatrices of (2.13) are singular:

1.8 11 (2-y)ln/(x-l.2)2 + 0.1(x-1.2) 
2 + .811 ao(al+Bl) - U

a
10
O  

0

MO(%1+201) - 0

+ 1.387(x-.833)(y-1) + .828(x-.833)(2-y) 0O(a1+361) 0 (2.16)

- 1.994(y-1) + .831(2-y) + 1.5 (2.11) 60(01+201) 0

satisfies the boundary conditions: Li[U] - LIIF] and 0(01+301) 0.

MN UJ - M [F] (i,j - 0,1) on the perimeter of S. The The key to the proof of existence is the recognition
glaph of 4 is displayed in Fig. 2a, and its contour
plot is depicted in Fig. 2b. that if oi = 0, then i cannot be zero and vice versa

In the earlier work by Gordon and Kelly, the (i0 and 1). With this in mind, it is easy to show
authors asswned the existence of blending function that the five equations of (2.16) cannot all hold

!,(x) and * (y) which satisfy the requisite cardin- simultaneously. Q.E.D.
atity ondiiions (2.6). Here we show, for boundary As an example, consider the following consistent

conditions of the general form (2.1), how to actually boundary conditions:

oon tmrct the *i(x) and g4(y). In particular, we L (F] - F(0.y) + F (0,y) - 1.5re + .2
show that for any choice 6f the eight parameters a 0 x
* , a and B in (2.1), we can always find polyno ials LIF] - F(l,y) - .25e7(l+y)cos(ry) + .2
o deree thlee or less which satisfy (2.6). 1 (2.17)
Lenmz: Let LI and M , and the projectors P and P MOM " 2F(x,0) + Fy(x,O) - .25e-x (+sin6x) + (2.17)
be defined as in the above theorem. Then, there elist [
polynomials of maximal degree three such that (2.6) N [F) - 2F(xl) - F Xl) - .75e-(l+x)(-l+sin6-.rx) + .4.holds.I

roof: We need carry out the proof for only the *i(x). Here, a_-l, B , a -1, 8, - .2, -1, .-2 and
since the * (y) are constructed independently and B -l, so tha2 , by followng th2 above algotithm, we
anslogously. To this end, suppose that #0 is cubic in obtain for the blending functions:
a:

4o() .a 0 + b0x + c0x
2 + dOx3. (2.12) 0(X) 1 - x2 *(X) - x2  (

By applying the linear operators L0 and L tot 4 #o(y) - .5 + y Yy ) - -Y

and collecting terms, we obtain the linead system

LO1OJ -O 0  + bo- 1

(2.13)



which yield the function: of (2.5) In which the *[(x) and *(y) are determined
in precisely the same wsy as outlined in the previous

U(x.y) - 1.5w(l-x2)e + .2 1(e"(l+y)oswy) section. Now, however,

+ .25e-X(l+sin6x)(.5+y3) (2.19) P P yF] 0 P P IF]. (3.1)
I y y X

.75e--1 4%)(-l+sin6x)y3 -l.5w(l-x 2 )(.5+y 3 which has the important implication that the function

-1 2 3 -1 2 U - (P * P )[F] will not satisfy the (inconsistent)
+ 4.5-e (1-x )y - .25e x (.5+y3) boundary coXdltions. (Actually, (P * P )F] does

satisfy the conditions that Lf(FP P )F]] - L [F]
-223 it L v £

- .75e 2 x y + .2. (1-0,1), but does not satisfy theXothevr two con-
ditions: M .(P 0 P )[F]] 0 M [F].)

By applying the four linear operators L and MK to In order t deal with corer inconsistencies, we
this last expression, it can be confirmed that develop a class of interpolants specifically designed
LI[U] = L F] and M [U] = M [F] (i,j - 0,1), i.e., for the purpose. At each corner (i,j) we construct a
U does satisfy the 1equisitA boundary conditions, special function Uij such that
The graph and contour plot of U are shown in Figs.
3a and 3b. LkMI[Uij] - ikJL LiMj [F] (3.2)

III. Transfinite Interpolation to Inconsistent MIkUIJ] . 6* kajMjLi[F].
Mixud Boundary Conditions

In words, for fixed I and J, the function U vanishes
As a practical matter, boundary conditions for under operation by any of the six l .nzr f 4 tisofl

elliptic problems are quite frequently not consistent- LkM and M Lk (kii, 1j). When operated on by Li M
ly specified. By this we mean that, although the or h L , tAe result is L 4 F] or M jLI[F],
;otution must be smooth (analytic) inside the pro- respdclively.
blem domain, it may and often does have singularities The case of pure Dirichlet boundary conditions
(discontiruities) on the boundary. An elementary (a = a = a 1 1, s 0 =  = B = 0) is the
example f this is the textbook heat conduction S20plest to 2nterpret. Suppose the boundary con-
problee of du:ernining the equilibrium temperature ditions are such that
distribution in a square plate, three sides of which
are immersed in ice (O*C) and the fourth in steam F(x,J)j = lim F(x,j) - L1. j(F]
(100C). (Figs. 4a and b depict the graph of the Li.1 (ilj-0,l) (3.3)
solution and its contour plot.)

In simple instances such as this with Dirichlet F(iy) I - lim F(i,y) = M L[F]
boundary conditions, the analyst faced with solving ji
the boundary value problem will undoubtedly be aware Y- J
of the singular behavior at two of the corners since
it is so conspicuo,.. As a rule, however, inconsis- and LIMA[F] 0 M L [F]; cf., for example, Fig. 4a.
tenti" :rc-c-Zied mixed boundary conditions are not The fundtion U Jhich we shall construct will
easily spotted. For instance, suppose that a satisfy, for tl case of Dirichlet conditions:
Dirichlet condition F(O,v) = g,(y) is specified along
the edge x-0 of the unit square and that along the lim U j(x,j) = LIMi[F] - lim F(x,j)
edge yfO the Neumann condition F (-T,Q) = h0 (X) is x-i CiJ-0,) (3.4)
given. In order for the solutio t. h-e smoothly con-
tinuous at the corner (0,0), it is necessary that lim U(ij(,y) - MjLI[F] - lim F(i,y)
these two conditions be consistent, i.e.: y+J y-j

lim d F(O,y) = lim F (x,O) and at the three corners other than (i,j), U11 will
dy Yiy40 X O vanish.

d In the general case, suppose for the moment that
ho(x) I g°(yl" . (3.1) we have the required functions U (x,y) which satisfy

OyO conditions (3.2). Let W be equaito the sum of these
four corner functions:

The question of consistency or inuonsistency is, of V(xy) - Uoo(x,y) + Uol(x,y) + Ulo(x,y) + Ull(x,y).
course, even more subtle for general hundary con-
ditions of the form (2.1) above. (3.5)

Fortunately, high quality numerical software for
solving elliptic problems is sufficiently robust as to Clearly, W satisfies the eight conditions:
be able to accommodate even grossly inconsistent
boundary conditions. Provided that a solution exists, LiMJWJ - L X IF], M L [W) - M LIF) (i,J-0.1).
by taking a sufficiently fine discretization (and L F [ I
perhaps employing some special tricks), the applied (3.6)
analyst can normally obtain a solution to whatever
accuracy desired. This, however, is a computationally From this, we draw the important conclusion that, by
expensive procedure which can be better handleJ by virtue of the linearity of the operators L and M
a priori taking cognizance of the anticipated singular
behavior near corners. This Is the main goal of this LiM IF - W) - 0

With the same notation as the previous section, Mfor iJ 0,1. (3.7)
w nw consider bourwie,", opct ,trs L. and M. whzich do J -
not csutc' LA MF] V L I[F) (i,J'- 0,1) The non- If the solution to tl,,e original ente.5Zat.*n problem
coutativity of Ihe , Ad ''! t. what we mean by
noOnciatent bouncrq SonditiAns. We still find it is again denoted by 0, we want to represent U as the

useful to consider the projection operators P and P sum of W and a yet to be determined function V:
x y



U(zy) - W(xy) + V(x,y). (3.8) Uo1 0 (0. 1 ) " 0 (Y).T(e O)MOl1 - 1

Now, since U is to satisfy the boundary conditions
L(] " L [F) and - MJ (i,j - 0,1), we have + (I-T(O))LOl[Fj]
f~oM (.7 tha:,

LIjNv] - MjLi[V] - 0 (i~j - 0,1), (3.9) UllCx,y) - WI x )(TOe11)LM,[F]

which is to say that the function V satisfies con-
"*tent boundar4 conditions, as defined in relation + (1-T( 11 ))MILI[F]].
(2.2). Therefore, we can actually construct V using

the techniques presented in the previous section. The functions 4 x) and 1P(Y) (ij - 0.1) are the sams
Referring back to (2.7), we have that: as in (2.6), an1 the T(0 J) must satisfy the following

V(x,y) - 'P. * P )[F - W] conditions:

X YF- (3.10) T( ) 1 at e - 0, T(O 0 at 0 - (3.13a)

the last because of (3.7). - -T(8 0 at 0, 3 T(61 a)

In summary, we first construct the function Ui .  aOij T ) ij 38 a i ii 2

for each corner (i,J). Then, we compute the derive (3.13b) -

boundary conditions, L IF - W] and M [F - W1, and use
these in expression (3.10) for V. 4e function 32

U - W + V will then exactly satisfy the criginal, in- --- T( 1j) -0 at eij - - . (3.14)
oonsistent boundary c diion: L1 [U] - LI[F] and 30,1
"Mj[UI M jF] for i,j - 0,1.

In the case of Dirichlet boundary conditions,

We shall now without derivation, display the only equations (3.13a) must hold, and they are quite

functions U i. (For a more complete treatment, see simply satisfied by taking:
[7].) For e~ery point (x,y) in S - [0,1] x [0,1], 20i
define the angles 0 (i,J = 0,1) indicated in the T(eij) -(1 - ij - 0,1. (3.15)
accompanying figureli

For the more general operators L and M , the cubic
function I

T(O) - C-- - 1)2 + 1) (ij - 0,1) (3.16)
ij W I

satisfies (3.13a), (3.13b) and (3.14) as required.
Figure 5a shows a perspective view and 5b the

contour plot of the interpolant to the mixed incon-
sistent boundary conditions:

Lo[F] - F(O,y) - coshj(l-y)) + 1

L I[F] - F(ly) + F (1,y) - cosh(!(l-y))sin(! y)

-( 0[r] - F(x,O) - .s2 + (3l.17)

M r[F] - F(X, ) - O

DIO 
where:

0
oCx) - 1 - .5x #I(x) - .5x

(3.18)

-o arctan(1 ) 60 - arctanC -) 0 1 i(Y) -
I (3.11) and

e " arctan( - " arctand - Y). L0M0[F] - 1 L1N0 (Fj - 2.5

lb then define the functions U as follows: NOLo[F] - 3.509 N 0L 1 [F] - 0
Ii (3.19)

-oo(x~y) - *o(x)#(y)[T(Ooo)L0M0 [FI LoM1[F - 0 )LLN 1(F - 0

N1,l;0 F] - 0 N [L1(F) - 0.

+ (1-T(O00))"OO[F
]]  

Figure 6a shows a perspective and 6b the contour

plot of the interpolant to the mixed inconsistent

U 0o(Xy) - #o(x)*1 (y)IT(e0 1 )MILo[F] 
boundary conditions:

L0 IF) - F(O,y) - .25sin(w(4y+.5)) + .7

+ (1-T( 0 1 ))LOM[F]J L1 IF) - F(l,y) - 2y(1-y)cos(w(2y-.25) + .2

(3.12) (3.20)



NoIF] - F (x,O) - 5(1-x) References
0 y

MINFI - F (x,l) - 0 1. Gordon, W.J., "Distributive Lattices and the
Approximation of Multivariate Functions," Pr'p .

where: of the Sy-posiwn on ApproximPation ntwih Sppcia:
biphasis on Sptine Function3 held at ladlson,

o0 W - x 41(x) - x Wisconsin, May 5-7, 1969. Academic Press, 1969,

2  (3.21) pp. 223-277.

#0(7) - X 1 (y) - .5x
2  2. Gordon, W.J., "Blending-Function Methods ofBivariate and Multivariate Interpolation and

and Approximation," SIAM J. .. 'm. AnaZ., 8, No. 1,
March 1971, pp. 158-177.

LoMOIF] - 5 LIMo[F] - 0 3. Gordon, W.J., and Hall, C.A., "Construction of
Curvilinear Coordinate Systems and Application

MO I[F] - 0 MOLI[F] = 1.414 to Mesh Generation," J. ':en. Methoda in Era., 7,

(3.22) 1973, pp. 461-477.
LOMI[FI= 0 LM 1 [F] - 0 4. Gordon, W.J., and Hall, C.A., "Transfinite

Element Methods: Blending-Function Interpolation

MNLo[F] - 0 MN1L[F] - -1.414. Over Arbitrary Lurved Element Domains."
Nunerieche tathematik, E2, 1973, pp. 109-129.

Note that although the boundary conditions are incon- 5. Gordon, W.J., and Hall, C.A., "Exact !!at-
' 

:7r, of
sistent at the three corners (0,0), (1,0) and (1,1), Boundary Conditions and Incorporation of *',,i-
the function value of the interpolant is inconsis- Quantitative Solution Characteristics In Initial
tent only at the corner(,). Approximations to Boundary Valun-Problers." J.

To illustrate the construction of U(x,y) from Comp. Ph'/ics, 25, No. 2, Oct. 1977, pp. 131-162.
W(x,y) and V(x,y) we will consider a very simple pro- 6. Gordon, W.J., and Kelly, S.J., "Applicaticns 2f

blem with Dirichlet boundary conditions and a dis- Transfinite ("Blending-Functicn") Intorzc'lation

continuity at (1,1): to the Approximate Solution of Elliptic

2 Problems," To appear in Fr ce:'noa of c-c
L0 [F] = F(Oy) = y L1[F] - F(1,y) - 0 Conference on EMiptic Prob'e-. Sobvers held at

(3.23) Santa Fe, NM, June 30 - July 2, 1980.
M0 [F] - F(x,O) - 0 M1 [F] = F(x,l) = 0. 7. Gordon, W.J., and Thiel, L.C., Departnent of

Mathematical Sciences Technical Report, Drexel
Obviously, [F] M LIF for i = 0 and I = 0,1. University, (to appear April 1981).
But, LM f =50 and ALu[F] = 1. The blending 8. Kantorovich, L.V., and Krylov, V.1., Arrcr-c-rt-

functions are: Methods of Higher AnaZuai3, P. Noordhoff LTD.

Groningen, The Netherlands, 1958.
O0 1 - x 1 (x) x 9. Marshall, J.A., and Mitchell, A.R., J. -Sat.

(3.24) Math. and Its Applicaticns, 12, 1973, p. 353.
#o(7) = - y 01(Y) - y, 10. Mitchell, A.R., and Wait, R., Tke Finrite El-e:t

Method in PartiaZ Diffcentii Equatio:s,
which yield John Wiley & Sons, New York, 1977.

2001 y + y
2
) 11. Rice, J.R., Priviate corrunication, July 1980.U(x,y) - (1-x)[y(1 2

2 2e 1  (3.25)

(1-x)y(y - (

where 001 is defined in (3.11).

4 //

'. / \ 3. ;

C i. zZ'4E"

L 1. QC44
- 2. 3 4-.

0 2.a-31d

Figure la. Figure lb.



R -. 33-A

E- 0. c'-3

Figure 2a. Figure 2b.

-, LCNTCJR 1

I 3. ZSE4

t 0.

S 2.44493
~ 10 2.CZ3SI

Figure 3a. Figure 3b.

x '1' -- LONTCJR !D

/, r~~ J . Z; k~

III /1 ~ 3.j7FJJ

1, 3.4,79

pjJ 3333

L 3. /FJJJ

N 0. B'iFJ3

Figure 4a. Figure 4b.



E I- ol

4

9 2.~ZS
N3.3zFO3

Figure 5a. Figure 5b.

xe.. *11'

~> 1o Fti ( 17C

Figure 6a. Figure 6b.



EXACT A PRIORI .YjTCHI"[: OF MTY, ED BOUMDARY CO",DITIONq
FOR SECOnd) ORDER ELLIPTIC PROBLEMS

t'[llian J. Cordon
Linda C. Thiel

Mathematical Sciences Department

Drexel University
Philadelphia, PA 19104

ERRATA

1. p. 2, equation (2.7), (P + P )[F] should be (P * P )(F].x y x '

2. p. 3, equation (2.11), [(y-1) n (-l).2f2 + .81 2S
(x-1.2) F + .81

shoufd be (y-l) 1 xl2 2 1.8
L(x-1.2) 2 + .81J

3. p. 5, equation (3.20), L [r) = F(l,y) =2y(1-Y)cos(ir(2v-.25) + .2

should be L1[71 F(l.y) 2y(l-y)cos(ir(2'y-.25)) + .2
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