
-7AD-AO99 174 RAND CORP SANTA MONICA CA F/6 9/2
AN ANALYSIS OF PROXIMITY-DETECTION AND OTHER ALGORITHMS IN THE "-ETC(U)
MAR 81 W S FAUGHT, P KLAHR F49620-77-C-0023

UNCLASSIFIED RAND/N-1587-AF NL*.mmllllllllll
IImlllllluulll
ImIIIIIuIII

A RAND NOTE

AN ANALYSIS OF PROXIMITY-DETECTICK AND OTHER
ALGORITHMS IN THE ROSS SIMULATOR

William S. Faught, Philip Klahr

March 1981

N-1587-AF %

Prepared For The United States Air Force

ipppoved for public XO1.O3s'

noe nsarh reported here Wa sponsored by the Dlrectoate of Opemtmmul
'% Rqu~emetsDeputy chief of Staff/Research, Development, and Acquiel-
tion, Hq UJSAF. under Contract F49620-77CA028. The United Staes
Governmnent is authorized to reproduce and distribute reprints for govern-
mtal purposes notwithstanding any copyright notation hereon.

The Rand Publications Serie: The Deport i. the principal publleatlais doe-
umenting and transmitting Rand's major research findings md final ressame
results. The Rand Note report. other outputs of spomomi mum fRh
general distribution. Publication, of The Rand Coxpondan do ad Boom
waily reflect the opinions or policies of the sponsom of land uuuinh

Published by The Rend Cotpareallo

r C -SIRCUmITYCLASIFICATION OP 'THIS PAox Data Entered)

REPOT DCUMEtATO14 AGEREAD 111TRWTONSREOT/OUEITINPG BEFORE COMPLETING FORM
R. ESPORT NUMBER 2 'GOVT AkCESSION NO.;- RECIPIENT'S CATALOG NUMBER

N~-1587-AF A)
4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

An Analysis of £oximity-etection ari other

5 , orithms in tSe O mulator - Interim /
- 4. PERFORMING ORG. REPORT NUMBER

7 AUT ORt&) 1. CONTRACT OR GRANT NUMBER(*)

William S. Faught, Philip:Klahr /7
" F49620-77-C-0023

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

The Rand Corporation AREA & WORK UNIT NUMBERS

1700 Main Street

Santa Monica, CA. 90406

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Requirements, Programs & Studies Group (AF/RDQM) March 1981
Ofc, DCS/R&D and Acquisition 13. NUMBER Or PAGES

Hg USAF, Washington, DC 20330 39
14. MONITORING AGENCY NAMi & AODRESS(// dilleret "ras Controling Olflt) 15. SECURITY CLASS. (of thie report)

UNCLASSIFIED

IS. DECL ASSI FICATION/DOWNGRADING~SCHEDULE
1S. DISTRIBUTION STATEMENT

(of t%* Report)

Approved for Public Release: Distribution Unlimited

17 DISTRIBUTION STATEMENT (of the abstract onfered In Block 20. it dilent tram, Report)

No Restrictions

IS SUPPLEMENTARY NOTES

1* K EY WORDS (Cantons,. an Poe..aiod. if necessary and Identity by block numbr)

Algorithms

Computerized Simulation

Scenarios

20 ADSTRACT (CohtnuP,, r*rero ie U nocoooy and Identify by block nmber)

See Reverse Side

DO ,AN7 1473 EDITION OF 1 NOV f IS OBSOLETE

0IICLASOt T;I P- '
SECURITY CLASSIFrICATION OF THIS PAGE (When Date .nioted)

rn
SECURITY CLASSIFICATION OF THIS PAGE(WheI Dda Znlere"

Summarizes the mechanisms by which the ROSS

simulator computes interactions (collisions and

proximities) between objects. ROSS simulates

an air penetration scenario and is being developed

to research techniques for improving large-scale

simulation. The basic algorithm is analyzed in

detail to determine its feasibility in the context

of large numbers of objects, and to determine

where improvements in speed can occur. (author)

UNCLASSIFIED
SECUMITY CLASSIFCATION OF THIS PAGEWM*n Dots Entered)

A RAND NOTE

AN ANALYSIS OF PROXIMITY-DETECTION AND OTHER

ALGORITHMS IN THE ROSS SIMULATOR

William S. Faught, Philip Klahr

March 1981

N-1587-AF

Prepared For The United States Air Force

Rand
SANTA MONICA, CA.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

PREFACE

The ROSS simulator is a program that simulates a strategic air war

scenario over enemy air space. It is being researched at Rand to test

ideas that apply rule-based programming technology to simulation

[1 problems.

A key component of the air battle simulation is an algorithm, or

procedure, that determines when objects are close enough to one another

to cause some interaction. In large-scale simulations, this algorithm

can be executed thousands of times.

This Note describes alternative algorithms for the job of

proximity detection," including the one developed for the ROSS program.

Mathematical and experimental analyses are conducted to test the

efficiency of the algorithm in different contexts.

The resparch described here is part of the project "Computer

Technology for Real-Time Battle Simulation" supported by Project AIR

FORCE to advance the technology and performance of large-scale

simulators.

WNTIS C?~
DTIC T.

U.rr

AV:-

"V-

SUMMARY

The ROSS project has been investigating techniques to improve

large-scale simulators. In particular, we are designing and

implementing mechanisms to enhance their flexibility, understandability,

and performance. Advances in Artificial Intelligence have provided

tools (languages, man-machine environments, expert systems) which we

have applied and extended to simulation. Our prototype simulator,

called ROSS, currently runs a small-scale air penetration simulation.

We are in the process of scaling up to more realistic levels.

The process of scaling up necessitates inclusion of more objects

and more complex behaviors, which will result in increased computation

time and slower simulations. We must make sure that the underlying

algorithms are as efficient as possible. This Note examines these

algorithms to determine their efficiency and whether they are suitable

in larger contexts.

Within the domain of air penetration, a simulator must be able to

detect collisions of objects as well as times at which objects can

interact with one another (e.g., aircraft entering radar coverages).

For efficiency, most air battle simulators compute times of future

interaction initially and then schedule these potential interactions as

events to be processed. During the simulation, the clock is moved to

the time of the next scheduled event, and the event is processed. This

approach (called "event-based") avoids computation during dead-time

periods when nothing is occurring. This efficiency, however, is at the

expense of flexibility, since objects are not allowed to modify their

-vi-

predefined behavior (i.e., spontaneous or unexpected events cannot

occur). Thus, for example, invading penetrators cannot modify pre-

existing mission plans, and defensive fighters cannot be autonomously

roving, looking for incoming penetrators.

To allow such flexibility, we have modified this approach to enable

spontaneous actions and behaviors to occur while retaining the event-

based scheduling mechanism. Our modified algorithm is explained in

detail and is tested in various contexts. Through mathematical analysis

and experimental testing, we found the algorithms to be computationally

feasible for purposes of scaling up. Several suggestions for further

improvements in efficiency are also presented.

-vii-

CONTENTS

PREFACE..1ii

SUMMARY.. v

Section

I. INTRODUCTION.. 1

II. OVERVIEW OF ROSS'S ALGORITHMS................................. 3
2.1 PROXIMITY DETECTION.................................... 5
2.2 DISENGAGEMENT DETECTION................................ 6
2.3 EVENT CHAINS... 7

III. ANALYSIS OF THE ALGORITHMS.................................... 9
3.1 EVENT CHAIN ANALYSIS................................... 9
3.2 PROXIMITY DETECTION ANALYSIS.......................... 10
3.2.1 Maximum vs. Actual Velocity...........................13
3.2.2 Direction of Approach............................... 18
3.2.3 Accuracy of Estimating Functions.................... 26
3.2.4 Distributions of Objects............................ 27
3.2.5 Execution Time Estimates............................ 29
3.2.6 Comparison with Other Proximity Detection Models

.......... 29
3.3 MONITORING ANALYSIS................................... 33

IV. SUGGESTIONS FOR MODIFICATIONS................................ 35

V. CONCLUSIONS... 38

REFERENCES... 39

I. INTRODUCTION

The ROSS simulator [1,3,41 is a program which simulates a strategic

air war scenario over enemy air space. Allied penetrators enter enemy

air space, are potentially detected by radars (ground or airborne), and

are intercepted by defensive fighters. ROSS is being built to test

several ideas which apply rule-based programming technology to

simulation problems. The hope is that this technology application will

make large-scale simulators more tractable.

ROSS contains only a fragment of the complexity required for the

eventual system. This Note addresses the question of how the simulator

will behave as more objects are added to the simulation.

The purpose of this document is threefold:

1. To provide a brief overview of the basic algorithms used in the

current version of the ROSS simulator.

2. To present an analysis of these algorithms, including an estimate

of the resources required when the simulator is "scaled up" with

more objects.

3. To present directly applicable suggestions for speeding up the

algorithms based on the analysis.

One of the major design decisions to be made is the method of

detecting collisions of objects or, more precisely, detecting when

objects are close enough to one another to cause some interaction (e.g.,

within radar range). We will use the term "proximity detection" to

refer to the determination of whether two objects can potentially

-2-

interact. The decision of how and when to perform such calculations has

a major effect on the functionality and efficiency of the system.

Large-scale battle simulators developed in the sixties chose an

efficient but severely limited methou of precomputing proximity

detections before running the simulator. Because of these

precomputations, these systems did not allow certain objects to modify

their predefined behavior during the simulation. This limitation is not

necessary and may result in unrealistic simulations (e.g., dynamic plan

modifications may become the norm and not the exception). This document

focuses primarily on the proximity detection algorithm and its

parameters, with minor comments on other efficiency considerations.

This Note will not deal with analyses of partial, focussed, or less

detailed simulation runs. The working hypothesis is that the entire

simulation will be run on all objects.

-3-

II. OVERVIEW OF ROSS'S ALGORITHMS

As a first approximation, the ROSS simulator works like this:

There is a set of objects, including penetrators (bombers), ground

radars, fighters, fighter bases, filter centers (command and control

centers), and targets. The penetrators move across the simulated

territory until they enter the radar range of a ground-controlled

intercept (GCI) radar. This detection then causes a chain of events to

occur, e.g., the raaar detects the penetrator and notifies its

corresponding filter center (FC), the FC assigns and vectors a fighter

to intercept the penetrator, and the fighter intercepts the penetrator.

Another event chain starts when the fighter intercepts the

j penetratc-, tries to detect the penetrator, and subsequently fires

missiles at it. A third event chain begins after a fighter intercepts a

penetrator (or fails to); its FC car reassign the fighter to another

penetrator, can ask the fighter to roam or loiter, or can send the

fighter back to base. One additional penetrator detection can occur if

a fighter has its radar on and is roaming; in this case, the fighter

starts the intercept chain directly without informing the filter center.

These event chains typically end when penetrators leave radar range and

the fighter is sent back to base. Penetrators also have their own

routing information that can be dynamically altered during the course of

a simulation run, e.g., a penetrator can take an evasive turn after

leaving GCI coverage and then reroute itself to its next targc

location.

-4-

Conceptually, then, all simulated actions in the current ROSS

simulator are part of event chains. For the most part, ROSS initiates

event chains when objects satisfy certain physical proximity conditions,

the primary condition being the "proximity" of two objects. By

proximity we mean two objects being within some interaction distance of

each other, e.g., within radar range, within missile range, or actually

colliding. Thus, all actions are the result of either:

(a) a proximity of two objects, or

(b) an action being caused directly by another action (as part of an

event chain). This includes actions that were scheduled, by previous

actions, to take place at certain specified future times (i.e.,

delayed to simulate real-time requirements).

For example, whenever a penetrator enters a GCI's radar range, ROSS

starts a chain of events responding to the situation, e.g., the GCI

detects the penetrator and notifies its FC for fighter assignment. An

example of an action being scheduled involves the time required by GCIs

to detect enemy aircraft: once a penetrator enters a GCI's range, the

GCI notification is delayed to simulate the real time needed for

detection.

The simulator itself is event-based. Events are either proximity

checks or actions. Each event is a pair consisting of a simulation time

(absolute time with respect to the start of the simulation) and an

action. The event list is ordered by time. A simulation clock

retrieves (and deletes) the next event to be run from the front of the

event list, sets the clock time to that time, and then executes the

-5-

associated action. Actions may themselves add more events to the event

list, again in order by time.

Note that the clock essentially skips all times from the current

time to the next time that an event should run. The result is that

there are no periodic or decaying functions that exist outside the

clock-event-list mechanism. Periodic functions must schedule their

periodicity by repeatedly putting events on the event list for their

next execution. Conceptually, the designer must anticipate events

occurring, such as collisions or fuel consumption. For example, to

simulate fuel consumption, the simulator must check the aircraft's fuel

when it first takes off, then schedule an event to check it later at

some appropriate time. The later check must calculate the current

availability, then reschedule a later event to recheck consumption.

We will divide the simulator algorithm descriptions into three

categories: proximity detection, disengagement detection, and event

chains.

2.1 PROXIMITY DETECTION

ROSS accomplishes proximity detection with a set of routines that

monitor the interaction between every pair of significant objects (e.g.,

every penetrator with every working defensive radar). The algorithm is

as follows: Two objects (as defined above) are tested to see if they

are within a certain interaction distance (unique to the particular

objects) of each other (e.g., a penetrator within a fighter's radar

range). If they are, a chain of events begins, dependent upon the types

of objects. If not, the objects are rechecked at a later time. The key

066',&

-6-

to the algorithm is that the objects are not rechecked until the

earliest later time that they could interact, based on their locations

and maximum velocities. The algorithm computes the time at which the

two objects would be within interaction range of each other if they were

headed directly toward each other at maximum velocity. The objects are

checked for proximity again at that time. Thus, the algorithm is

independent of any spontaneous or erratic behavior that either object

may take that changes its velocity or direction.

2.2 DISENGAGEMENT DETECTION

In addition to calculating object engagements, ROSS must calculate

one type of disengagement: penetrators exiting enemy radar ranges, e.g.,

GCI radars. This can be accomplished in one of two ways:

(1) with an algorithm similar to the one above: the simulator

calculates the earliest time in which the penetrator could leave

radar range, assuming it is headed at maximum velocity directly away

from the center of the range, or

(2) by calculating the exact exit point, using an intercept formula,

and requiring the simulator to detect any velocity changes the

penetrator makes within radar coverage, and then recalculating the

exit point.

Either of these two methods is viable. The current simulator uses the

first algorithm. The second seems more attractive. Since the GCI must

detect penetrator turns in any case, the same condition can be used for

activating the exit point recalculation.

-7-

2.3 EVENT CHAINS

The major event chains and their triggering conditions are:

$ 1. When a penetrator enters a GCI's range: the GCI detects the

penetrator a.id notifies its corresponding filter center; the filter

center then assigns and vectors fighters to intercept the

penetrator.

(Note: The fighter's intercept, with its assigned penetrator, may

or may not be calculated by the proximity detection algorithm above.

The fighter's assignment is to proceed to a certain location and attempt

to detect the penetrator. This scenario does not require the proximity

detection algorithm, only a local proximity check when the fighter

arrives at its intercept location. If, however, the fighter is allowed

to detect any object in its path on the way to the intercept point, the

proximity detection algorithm must be used.)

2. When the fighter arrives at the intercept point: the fighter

attempts to detect the penetrator, fires missiles until it

successfully kills the penetrator, and then notifies its filter

center of its results.

3. When a fighter has compleced intercepting a penetrator: the filter

center either revectors the fighter to the same penetrator (if not

killed), reassigns the fighter to another penetrator, lets the

fighter roam to detect other penetrators, or sends the fighter back

to its base.

-8-

4. When a penetrator leaves GCI coverage; the penetrator makes an

evasive turn, flies the new course for some amount of time, then

reroutes itself to its target.

These event chains also contain delays, corresponding to real-time

requirements of their simulated actions. (As a sidelight, it is

important to be aware of and resolve any conflicts involving the

interactions of a delayed action and a proximity check, both of which

may initiate event chains which may conflict with each other.)

-9-

Il1. ANALYSIS OF THE ALGORITHMS

In this section we analyze ROSS's algorithms to determine the

effects of scaling up the number of objects. Various experiments have

been run to examine the efficiency of these algorithms and determine

points at which improvements can be made.

For the inalysis, we considered two statistics:

I. the number of times a function is executed, and

2. the average execution time for one function execution.

We will focus on the number of executions of the major functions,

leaving fi.iict ion execution times for later consideration.

A quick survey of the functions suggests that the analysis can be

broken into three oarts corresponding to the three categories discussed

5b'"e: proximity detection, monitoring objects within radar range and

detecting disengagements, and event chains. (We ran the simulator to

count the number of executions for various functions and found that the

distribution of executions indeed fell into the above three categories.)

3.1 EVENT CHAIN ANALYSIS

The third category, the analysis of event chains, is the easiest to

dispose of. All the events in all the chains are primarily in one-to-

one correspondence with the initial detection of a penetrator by a GCI.

That is, each initial detection (of a continuous detection by GCIs)

causes one event chain and culminates in an intercept of the penetrator

by one or two fighters. These event chains are the heart of the

-10-

simulator. If the purpose of the simulator is to model events at the

level of individual penetrators, GCIs, and fighters, and to individually f
assign and vector these objects, then the number of function executions

corresponding to events in this third category cannot be reduced.

The one exception in this third category is the calculation of

fighter-penetrator intercept locations and times. Every time that a

filter center is notified of a penetrator detection, it calculates the

possible intercept locations and times for each of its available

fighters, selecting the closest to assign to the penetrator. Thus, the I
number of times the intercept function is called is O(D * F), where D is

the number of detections and F is the average number of fighters

available to be assigned. Some simple techniques (discussed later) can

reduce the number of fighters that the filter center needs to consider

for a given detection.

Thus, Lhe major concern for the number of function executions

focuses on proximity detection and monitoring for disengagements.

3.2 PROXIMITY DETECTION ANALYSIS

There are two straightforward methods for computing proximities

with which we will contrast our algorithm:

(a) Update and examine the locations of objects every N ticks of a

simulation clock, checking for proximities. (Note that for N=I, this

is a time-stepped simulation which can be quite inefficient unless

there is a high degree of interaction among objects at every tick.)

(b) Calculate the routes of all objects in advance and precompute

'I

all potential object proximities; then recompute for every

unanticipated change in velocity or direction during the simulation

run.

Our algorithm is an adaptation of (a), and is obviously more

efficient because it requires fewer proximity checks. For objects very

far apart, our algorithm reduces the number of checks to 0(1). For

objects approaching each OLher closely, the algorithm approaches the

behavior of (a)

Method (b) becomes quite inefficient if objects often make

unanticipated changes in velocities and directions during a simulation

run. For each change, the simulator would have to recompute future

proximities ct the changed object with all other objects. Thus, method

(b) requires :'It tl,. paths of all objecLs be known in advance, with few

exceptions. For the current ROSS, this is not the case: any roaming

fighter can detect penetrators if the fighter has its radar turned on.

Such fighters can change their paths based on calculated intercepts with

penetrator paths, which may, in turn, be influenced by any evasive

maneuvers taken by the penetrators.

A modification to method (b) would be to calculate the potential

proximities within a certain time frame. The proximity detection

algorithm provides a rough approximation of this modification for

objects far from each other. For close objects, and for short time

frames in which neither object changes its velocity, this modification

may be useful It is listed in the suggestions section as a possible

improvement to cur algorithm,

-12-

The proximity detection algorithm is efficient for objects far from

each other. The minimum proximity time for such objects will be large;

thus, they will seldom be rechecked. For close objects, however, the

unmodified algorithm can be quite inefficient. For example, two objects

flying close to each other in parallel will be checked often.

To analyze the algorithm, we need estimates of the number of times

the proximity-check test is made. Two objects are "checked" by testing

to see if they are colliding or are in radar range of each other. Most

of the analysis concerns the number of proximity checks for two objects

velocities, minimum distances, and radar ranges (e.g., a penetrator and

a GCI, or a penetrator and a fighter). We then generalize over varying

distributions of penetrators and radars.

In addition, we propose several modifications to the proximity

detection algorithm, based on initial estimates of the above and

analysis of the real events being simulated. We shall make similar

estimates for the modified algorithm.

The earliest time that two objects could interact depends upon the

distance between them and their maximum potential velocities. The

actual time when they will interact depends upon the direction they

travel and their actual speed. Thus, the number of times the objects

must be checked in our algorithm depends upon how these two sets of

factors compare with each other: If the actual velocity is much lower

than the maximum possible, more checks will be needed than if the object

flies at its maximum possible velocity. Similarly, if on~e object flies

close to another but almost parallel to it, more checks will be needed

-13-

than if the two were on a direct collision course. We shall separate

the two factors in our analysis.

3.2.1 Maximum vs. Actual Velocity

To isolate the speed component from direction, we shall consider

the case of a penetrator P heading straight for the center of a GCI G.

Let x be the initial distance of P from the closest point of G's radar,

v be the velocity of P, and U be P's maximum possible velocity. We will

calculate i, the number of checks made from the time the penetrator is

at distance x to the time it enters the GCI's range.

i 0 If v =U, then P will enter G's range at the earliest possible

time, and only I check is needed. If v < U, then an infinite number of

checks will be needed before P enters G's range, because the earliest

time P could enter G's range is always less than the time it will

actually take. However, the time granularity of the simulator prevents

this from happening. The simulator only schedules events to occur at

whole seconds. (Fractions of seconds are rounded up to the next

second.) Thus, when P is within one second's flying time from G, only

one more check will be needed.

Figure 1 shows the situation when P is flying directly towards G.

Det D distance between P and G's radar after ith check.

i

Thus,

D x.
0

-14-

p

(G

'I

I I
D,=X

Fig. 1

I
The earliest P can enter Gs range is

D / U.
0

P will fly a distance of

(D * v) / U
0

in that time. Thus,

D = D (D * v)/ U
1 0 0

-15-

D =D (D *v)/ U
Si i-I i-I

D (1 -v/U)
i-i

i

= D * (1 - v/U)
0

ln(D / T)
i 0

in(l -v/U)

Let m' be the minimum distance P can travel in one second. Assume

D m
i

i.e., at the next second, P will enter G's radar. Then the total number

of proximity checks executed before P enters G's radar is

ln(m'/x)
i =

ln(l - v/U)

As v -> 0, (1 - v/U) -> 1, ln(l - v/U) -> 0, i -> infinity.

Figure 2 shows the situation when P is flying away from G.

Again, let

D = distance between P and G's radar after ith check,
i

and let

D m
0

-16-

ri

D, = M.

D1

Fig. 2

the distance P flies in one second. The earliest P can reenter G's

range is

D / U.
0

P will fly a distance of

(D v) / U
0

in that time. Thus,

D = D + (D *v) / U
1 0 0

-17-

D =D + (D *v)/ U
i i-i 1-1

- D * (1 + v/U)

0

ln(1 + v/U)

At a distance of x away from G's radar,

j ln(x/m')
i = -- - - - - -

ln(l + v/U)

As v -> 0, (1 + v/U) -> 1, ln(l + v/U) -> 0, i -> infinity.

Thus, as v becomes increasingly less than U, the number of checks

grows rapidly. The obvious recommendation is to lower the maximum

velocity to the lowest possible value, especially if the objects tend to

move at a constant airspeed for the duration of the simulation.

For the remaining analysis (for direction of approach), we shall

assume that U = v. Most of the estimators can be modified to account

for U greater than v by replacing log base 2 by log base (1 + v/U),

since i above can be rewritten as

i log (D / D)
(I + v/U) i 0

-18-

3.2.2 Direction of Approach

We shall first consider the case of a penetrator approaching and

either entering a GCI 's range or bypassing it (without turning). (Later

sections will consider distributions of penetrators and radars.)

A GCI G is assumed to be stationary and have a fixed circular radar

range r. Assume penetrator P flies at a constant velocity (v =U) in a

straight line path starting at some distance from the GCI and ending on

the "opposite side" of the GCI an equal distance away. Let d be the

(perpendicular) distance of the GCI's center to the penetrator's flight

path.

There are five cases:

(1) d >> r P passes far away from G.

(2) d > r, d close to r P passes close to G.

(3) d = r P's path is tangent to G 's range.

(4) d < r, d close to r P enters G's range.

(5) d < r P enters G's range.

To simplify the estimator, we will assume P starts at the closest

point to G and flies away from G for some distance x; we will then

double the value obtained for i.

Case 1: d >> r (Figure 3). The first proximity check is after P

has flown Dl; the second check is after P has flown D2; etc.

Since d - r is the shortest distance P could have flown to interact

with G, then

-19-

D2

DI- d-r

/ -, X.
/x

/ 2///
/ A

/
/ A/

/ G

rFig. 3

D d- r.
1

Similarly,

D D +a -r
2 1 1

D D +a -r
3 2 2

D =D +a -r.
i i-I i-I

An upper bound on a is

i-I

-20-

a <d+D
i-I i-i

by the triangle inequality. Therefore

! a -r<d-r+D

i-I
i-l

which implies

D <D +d-r+D
Di <Di-i +i--r i

D <2D +d-r
i i-l

i-I i-l

D < 2 D + (2 l)(d-r).
i 1

Since D = d - r,
1

i
D < (2 - l)(d - r).

i

Let x = D , i.e.,
i

i

x < (2 - l)(d - r).

Because d >> r,

i approximates log (x/d).
2

Case 2: d > r and d is close to r (Figure 4). In this case, r

plays a large role. For example, if r is 1,000 and d is 1,001, P is

-21-

essentially flying parallel to G's radar range for a considerable

distance. Call this distance z. Then for x < z, x =i (d - r).

However, another factor comes into play. The simulator as a whole

*will have a minimum time granularity -- one second for the current ROSS.

Assume the distance P can travel in the minimum time (one second) is mn'.

If m' > (d - r), then x =i in'. That is, the minimum time until the

next check is one second; therefore P will fly at least mn' miles before

the next check.

This suggests a modification to the algorithm to enhance its

efficiency. Suppose the maximum time error for detecting proximities

(call it M) were larger than one second. For example, if ri 5, then

z
P

X

Fig. 4

-22-

all proximity detections will be accurate to within 5 seconds Let m be

the distance P flies in M seconds. Then for d close to r, x =i m; and

since m is larger than previously, i will be smaller. We shall assume

* this modification has been made for this case and the renaining cases.

The contributions to i will come from two sources:

(a) the checks when P is close to G's radar range; this part is

dominated by m; and

(b) the checks when P is far away from G, in whiclb i behaves more

like case 1, because r + m > r. [Note: if r - m this does not

hold.]

The problem is to find z, estimate i for (a), and then use the case 1

formula for (b).

When P is close to G, the incremental distance between checks will

be m. This will hold true until P is at least m away from G's range.

We define z to be the distance P travels until P is a distance of m away

from G's range. Thus, from Figure 4,

2 2 2
(m + r0 = z + d

/2 2 2
z V m + 2m r+ r - d

For (a), the number of proximity checks until P travels z is z/m.

For (b), we may use Case 1, subtracting those proximity checks that

occur when P is close to G's radar. Thus, we have

A

-23-

i approximates z/m + log (x/d) - log (z/d)
2 2

i approximates z/m + log (x/z).
2

[Again, if r >> m, this estimate will not work. Instead, z must be

defined another way. This is not the case in the current ROSS, or in

foreseeable applications, so we choose to ignore this case.]

Case 3: d = r, i.e., P's path is tangent to G's range. This is the

most inefficient case for our algorithm, but it can be readily estimated

as a special case of Case 2. Since d = r,

/ 2
z=\/ m + 2m r

i approximates z/m + log (x/z).
2

Case 4: d < r, and d close to r (Figure 5). Again, we define z as

the distance P must fly until it is a distance of m away from G's range.

In this case,

/ 2 2
D = z = \/ (r + m) - d

0

D D +a -r = z+m

1 0 0

D =D +a -r

2 1 1

-24-

D11

Ip

p

D <D aD +r
1+1 i i

a < D + d -r

i i

< 2 D + (2 1(d r)
1

-25-

i i
x < 2 (z + m) + (2 l)(d - r).

Thus, the number of proximity checks from the time P is at z to the time

P is at x is

x + d - r

i > log (---------------
2 z+m+d - r

To this we need to add the number of proximity checks from the time P

leaves G's radar to the time P is at z. Thus,

x+ d - r z -w
i > log (--------------) +--------

2 z +m+d - r m

/2 2
where w\/ r - d

Case 5: d < r, and d is small. In this case, as P flies away from

G, Di doubles at each check. Thus,

i i
D 2 D =2 m
i+l 0

i = log (x/m).
2

When P flies towards G, however, the first check will be when P is very

close to G. Thus, i is very small, and can be approximated by a

constant.

-26-

The above analysis is for an engagement between a penetrator and a

GCI. For fighters intercepting penetrators, there are two cases. The

first is the strategy often used by classic al simulators: The fighter

would leave its radar off until the time it was scheduled to intercept

the penetrator, then turn it on and try to detect the penetrator. if

the fighter crossed paths with any penetrators on the way, the

penetrators Would not be detected. Thus, the proximity detection

algorithm is not needed tar this strategy.

The second case is that the fighter can detect penetrators that it

comes across whenever it is in the air. In this case, the proximity

detection algorithm must be started whenever a fighter becomes airborne.

Two factors limit the number of checks that need to be made. The first

is that the fighter is in the air for a limited amount of time compared

with the time the simulator runs; the proximity detection algorithm can

be turned off as soon as the fighter lands back at its base. The second

is that the fighter will typically only interact with penetrators close

to it because its assignments will be limited to penetrators in its own

area.

3.2.3 Accuracy of Estimating Functions

We ran a number of test cases in the simulator and compared actual

checks made with the estimated i. The results are given in Table 1.

The estimating functions seem quite good except in the region from d

1.01 r to d = 2 r. These functions require a better estimate of z, or

perhaps a new third component of the equation for the section from the

minimum distance covered to the logarithmically additive far section.

-27-

Recall that m is the minimum granularity for checks being made,

i.e., m is the distance a penetrator could fly in M seconds, where M is

the maximum time error for detecting proximities. Estimates close to

the tangent case depended upon r not being much larger than m. In the

current simulation, r is 25 miles, M is 5 seconds, and m is 1 mile.

(That is, the error for detecting penetrators is 5 seconds.) Thus, m =

.04 r, or a radar has a boundary that has a 4% error. We found that M

5 was sufficient to significantly reduce i. When M = 10, little

reduction was made over M = 5.

3.2.4 Distributions of Objects

Armed with an estimator function, we then calculated the number of

checks for distributions of penetrators and GCls. We simplified this

part by assuming Lhe following:

1. The number of checks for p penetrators and g GCIs is equal to p

times the number of checks for one penetrator and g GCIs.

2. All distributions can be approximated by a single line of GCls,

with a penetrator intercepting the line at various angles.

Pictorially, this can be represented on an x-y plane by a single

vertical line of GCIs whose centers are on the y-axis, and a

p1netrator flying through the origin at various slopes.

3. If the penetrator intercepts more than 3 GCIs, it will be killed.

Thus, the greatest angle is when the penetrator is tangent to the

third GCI above the middle.

-28-

Table 1

Comparison of actual number of proximity checks to estimated number.

Initial and final distance from Penetrator to GCI: 250.0

m =5, r = 25, d =closest distance between Penetrator and GCI

Actual Estimated
d Number Number

0.1 9 10.2288187
5.0 9 10.2288187
10.0 11 10.2288187
15.0 11 11.1540442
20.0 13 11.9021556
22.5 14 13.2865173
24.0 16 15.5971725
24.5 19 17.4635124
24.8 20 19.7634819
24.9 21 21.2266185
24.99 21 24.183568
24.999 21 25.2712264
25.0 25 25.79977

25.001 25 25.79206
25.01 25 25.722475
25.1 24 25.0073988
25.2 23 24.166886
25.5 21 21.232878
26.0 18 15.9430871
27.5 14 13.3164229
30.0 11 11.3448507
35.0 9 9.4008794
40.0 8 8.285916
45.0 7 7.509775
50.0 6 6.91886324
60.0 6 6.0510703
70.0 5 5.4254361
80.0 5 4.94261146
90.0 4 4.5536804
100.0 4 4.23095447
150.0 3 3.169925
200.0 3 2.56021583
250.0 2 2.15600502

-29-

Let I be the sum of all of the i's for each penetrator-GCI pair

(only one penetrator). We then calculated I (using the estimator

functions above), varying the slopes of the penetrator, the uniform

distances of the GCIs from each other, and the number of GCIs.

The results are in Table 2. Multiplying by the number of penetrators

gives the total number of checks for an entire simulator run, given

in Table 3.

3.2.5 Execution Time Estimates

We also determined the execution time of each proximity check. In

the current simulator, the time is 25 ms. If just the calculation is

called, then the time is 2 ms. The extra time is consumed by the

particular data base strategy used in Director [2] (the language upon

which ROSS is implemented). This could be optimized so that the

resulting check time would be 3 ms. Table 3 shows the time required for

proximity detection for varying numbers of objects, assuming no other

optimization or speedup techniques are used.

3.2.6 Comparison with Other Proximity Detection Models

As stated earlier, there are two other straightforward methods for

computing proximities:

(a) Update and examine the locations of objects every N ticks of a

simulation clock, checking for proximities.

--I I I I I I

-30-

Table 2

Calculation of the total number of proximity checks for one penetrator
passing through a line of GCIs.

Initial and final distance from center Penetrator to GCI: 250.0

Distance between the centers of each neighboring pair of GCIs: 45 miles

m = 5, r = 25, slopes: 0, 1, and 6

Number of Total number of
GCIs in the line proximity checks

Slope 0.0
7 60

10 66
20 94
30 116
35 126
40 134
50 150
100 220
140 272
150 284
200 342

Slope 1.0
7 62

10 72
20 104
30 128
35 142
40 150
50 170

100 248
140 302
150 316
200 378

Slope 6.0
7 104

10 126
20 202
30 258
35 286
40 302
50 342

100 494
140 588
150 610
200 708

-31-

Table 3

Total number of proximity checks for all penetrators in a simulator run,
using the results of Table 2.

Initial and final distance from center Penetrator to GCI: 250.0

Distance between the centers of each neighboring pair of GCIs: 45 miles

m = 5, r = 25, slope = 1

Each penetrator intercepts the equivalent of one line of GCIs at slope 1.

No. of Penetrators 10 50 250 1000

No. of GCIs 2 10 50 200

Proximity checks: actual actual estimate estimate

GCIs only 338 3234 42K 300KI
Fighters and GCIs 583 7223 90K 600K
(of these, the (70) (1750) (12K) (200K)
number done to
initialize ROSS)

Times:

At 25 ms/check:
Fighters and GCIs 15 secs 180 secs 35 mins 4 hrs

At 2 ms/check:
Fighters and GCIs 2 secs 15 secs 3 mins 20 mins

-32-

(b) Calculate the routes of all objects in advance and preompute

all object proximities; then recompute for every unanticipated change

in velocity or direction during the simulation run.

We found method (b) to be unacceptable because of its limited

functionality: It is inefficient if we allow objects to exhibit

spontaneous behaviors, e.g., spontaneous evasive penetrator maneuvers

and spontaneous penetrator detections by fighters. Method (b) would be

preferable only if the routes and velocities of the objects were known

in advance. If this were the case, method (b) would be the most

efficient algorithm for determining proximities.

Method (a) provides the same functionalit) as our algorithm, but at

a much higher price. If the simulation is run with P penetrators and G

GCIs for T time periods (in which the objects are checked for proximity

once in each time period), then the total number of checks is

I = P * G *T.

This method assumes that the space of potential proximities is

homogeneous, whereas in fact the space is non-homogeneous. Proximities

only occur when penetrators enter a fixed, small (compared with the

entire airspace path) region surrounding each GCI or set of GCIs. Our

algorithm takes advantage of this fact by checking often when objects

are close to each other, and less often when far apart.

The estimations take account for this non-homogeneity in two ways:

(1) The estimator function itself is logarithmic with respect to the

distance between the objects.

-33-

(2) The distribution of GCIs with respect to penetrators assumes

that additional GCIs will probably be distant from a single

penetrator's yith.

The total nnbr of ehecks approximates

I = P G * k

where k is the averago number of GCIs that a penetrator will fly close

to (i.e., within a distance of twice the GCI's range).

3.3 MONITORING ANALYSIS

When a penetrator enters a GCI's radar range, the GCI must monitor

the penetrator to determine when the penetrator leaves its range. The

current simulator uses an algorithm similar to the proximity detection

algorithm. When the penetratoi enters the GCI's range, the GCI

calculates the earliest time at which the penetrator could leave the

radar's range, i.e. assuming the penetrator was headed directly away

from the GCI's center. The GCI then schedules another check at that

time to recheck the penetrator's position. Thus, the algorithm is

subject to the same potential inefficiency when the penetrator is

heading a course that is almost tangent to the GCl's circular range.

We calculated the actual number of monitor checks needed for a

penetrator intercepting a GCI at various distances from the GCI's center

and found that the number was quite small. The maximum number needed

was 15, given a minimum monitoring time of 5 seconds. Since the total

-34-

number of monitor checks for the entire run is bounded by the 15 times

the number of times a GCI detected a penetrator, we did not pursue the

analysis further.

-35-

IV. SUGGESTIONS FOR MODIFICATIONS

We have a number of suggestions for speeding up the algorithms

based on the analysis. For the most part, these suggestions are

directly applicable to the current design of ROSS.

In the event chains, the number of function executions for most

functions are linear with the number of penetrator detections by GCIs.

As stated above, these chains are an inherent part of the simulation and

cannot be changed without altering the nature of the simulation.

However, the number of intercept calculations for determining when

(or if) each fighter could intercept a particular penetrator is not

linear: The calculation is done for each fighter whenever a penetrator

is detected. The number of executions of this function could be reduced

by only calculating intercepts for fighters within some maximum range,

say 200 miles. (Calculating the distance between two objects is cheaper

than an intercept calculation.) Also, for similar fighters (e.g.,

fighters with similar flight characteristics and payload) that are at

the same fighter base, only one calculation need be done.

In the monitor calculation, the minimum monitoring time could be

increased to reduce the number of proximity checks, but the time we used

(5 seconds) already introduces an approximate 4% error in calculating

the time at which the penetrator leaves the GCI's range. However, an

entirely different algorithm may be useful: When the penetrator enters

the GCI's range, the GCI calculates the exact exit point and time, and

schedules another monitor check at that time (assuming no changes in the

penetratorts velocity). If the penetrator ever changes direction or

-36-

speed, it must report the change (probably indirectly) to the GCI so the

GCI can recalculate the exit point. It turns out that the penetrator

must report velocity changes anyway, because the GCI must notice such

changes and report them to the filter center. This algorithm seems

straightforward to implement, although it only reduces the already small

number of monitor function executions.

The number of proximity detection checks needed is a function of

three factors, each somewhat amenable to modifications for improving

performance:

1. The ratio of actual velocity to maximum possible velocity.

If the penetrators' actual velocities are constant for the entire

simulator run, then their maximum possible velocities should be set to

their actual velocities. Fighters will have more variable speeds, e.g.,

maximum for intercepting, minimum for loitering while waiting for

assignment, and something between the two for patrols. Thus, the

velocity ratio will have the most effect on fighter-penetrator

engagements.

2. The angle of approach of the two objects.

As seen above, increasing the time granularity of the proximity

detection algorithm can greatly improve the algorithm's performance for

parallel or tangential approaches.

3. The distribution of GCI's.

A penetrator flying close to a block of GCI's, but entering none of

their ranges, will require multiple proximity detection checks, one set

trom each GCI. A possiole modification to the algorithm is to consider

a set of closely bunched GCI's to be one aggregate GCI with a range

encompassing all of them. When the penetrator enters the aggregate

range, the simulator breaks it apart (but only with respect to the one

penetrator) and starts proximity detection checks between the penetrator

and each GCI. Until that tine, however, the simulator need only do

droximity checks between the one aggregate GCI and the penetrator.

-38-

V. CONCLUSIONS

There are a number of tentative but well-supported conclusions that

can be made from the analysis pertaining to scaling up the current

prototype ROSS simulator:

1. The analysis shows proximity detection to be potentially the

most time-consuming computational process in the simulator, but also

clearly shows the algorithm presented here (with its modifications) to

be computationally feasible.

2. The major portion of computational resources during a simulator

run will probably be consumed by computing proximities; the major)

portion of development time for the simulator will be consumed in

formulating and debugging the decision-based behavior of the simulator's

objects.

Several other facts are indicated by our experience with developing

the algorithm:

3. The scheduling of proximity-check events is potentially time-

and space-consuming. A great deal of effort should be put into

optimizing its time and space requirements. One option would be to

enlist another processor just for scheduling proximity checks.

4. The proximity detection algorithm does not preclude dividing up

the simulator's domain geographically and assigning a separate processorI

to compute all events for objects within its sector. But the algorithm

will not benefit particularly from this division: Interactions between

spatially distant objects consume few time resources. Such a division

would, however, allow the processors to operate in parallel to enhance

simulation speed.

-39-

REFERENCES

1. Faught, W. S., P. Klahr, and G. R. Martins. An artificial

intelligence approach to large-scale simulation. Proceedings 1980

Summ_____er Simulation Conference, Seattle, 1980.

2. Kahn, K. M. Director guide. AI Memo 482B, MIT, Cambridge, Mass.,

1979.

3. Klahr, P., and W. S. Faught. Knowledge-based simulation.

Proceedings First Annual National Conference on Artificial

Intelligence. Stanford, 1980.

4. Klahr, P., W. S. Faught, and G. R. Martins. Rule-oriented

simulation. Proceedings 1980 IEEE International Conference on

Cybernetics and Society, Cambridge, Mass., 1980.

AT

LME

