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by:

A. Elci, J. Nagel and D. Rogovin
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Abstract: This work examines interband transitions near the bandedge, alkali type
fous embedded in dielectrics, and two-photon resonances in three-level systems
for the purpose of four-wave mixing and phase conjugation at the iodine Tlaser
frequency. It also examines the time-dependent properties of unstable resonators
with a saturable gain medium. The third order susceptibility and the conjugate
reflectivity of semiconductors are calcylated., Near the band edge the
reflectivity is enhanced. The unstable-resonator field is represented in terms
of a series of empty resonator modes, and a set of first order in time
differential equations for the exapansion coefficients is achieved. There is a
stable solution and a bistable one, with self-sustaining pu15ationsg




e

!

!

-
LI

I. STATEMENT OF WORK

a. Examine non-linear materials, particularly liquids and gasses for
candidates for high efficiency, degenerate, four-wave mixing media for use with
an lodine (I*) laser. Several such candidates are:

1. Nd-YAG

2. I*

3. Two-photon resonant dyes

4, Two-Photon resonant metal vapor

5. Excited state alkalai metal

b. Consider the above materials and such others that may arise in tre
study, or be suggested by the Air Force Weapons Laboratory.

¢. Consider systems that might emulate a potential non-1inear medium
at a frequency that is experimentally attainable, i.e., a D.F. frequency.

d. Modeling of the media selected will be developed in conjunction
with experiments at the Air Force Weapons Laboratory.

e. Analyze the effects of transverse mode competition in unstable
resonator lasers using Lamb Theory of the Active medium and actual unstable
resonator mode functions.




IT. NONLINEAR ADAPTIVE OPTICS SUMMARY

The results of our work on nonlinear adaptive optics are given in two
papers: "Novel Approaches to Nonlinear Adaptive Optics at 1.3u", which will te
published in the Proceedings of the International Conference on Lasers '80, New
Orleans, and in "Four-Wave Mixing Near the Band Edge”, which is submitted for
publication. These papers are reprodgced in this report as Appendices 1 and 2,

We examined two-photon resonances for the purpose of four-wave mixing
and found that the third-order susceptibility is typically two orders of
magnitude iess than what is practically desired. We therefore searched for
alternative means, particularly for phase conjugation at the ijodine laser
wavelength, 1.3y,

An alternative method uses the interband transitions near the band
edge. We found that the reflectivity for conjugate waves is resonantly enhanced
near the band edge. If the frequency of the 1ight is near the band edge, large,
third-order susceptibilities and reflectivities are obtained. To match 1.3u, a
particularaly promising material turns out to be (Gax In;_x)As, which is a
semiconductor compound with a direct band gap at the center of the Brilloin zone.
Tha size of the gap can be varied by changing the alloy composition. It is
therefore possible to match the band gap and the iodine laser frequency as
closely as desired. The reflectivity, as it turns out, has a simple Lorentz
factor near the band edge, which leads to the resonant enhancement. When
x ~ 0.6, the (GaxInl_x)As band gap approximately matches 1.3u. The third order
susceptibility is then about 10-6 esu, which is a substantial amount.

The calculations we have performed are sufficiently general so that
they can be adapted to other semiconductors.

We also considered another method tr. match 1.3u with a single photon
resonance of a nonlinear medium. Foreign atoms embedded in solids or liquids
strongly interact with their surroundings and therefore, the relative spacing of
their atomic levels can be drastically altered. By choosing the proper solid or




Tiquid, and a foreign atom, it 1is possible to match 1.3u with an atomic
transition. For this purpose we have considered alkali ions embedded in solid

dielectrics. A promising system like this has an additional advantage. Most of
the absorption at 1.3u is due to the NaI themselves. By controlling the number
of Nal in the sample, it is possible to have a system which can easily be

saturated at 1.3y,




ITI. TRANSVERSE MODE COMPETITION IN GAIN DRIVEN UNSTABLE RESONATORS

The analysis, calculations, results and discussion are presented in
Appendix 3, which is a preprint of a paper submitted to the Journal of the
Optical Society of America. Below we summarize the results of the project.

The calculation hinges on the expansion of the field in an unstable
resonator with a saturable gain medium in terms of a series of empty resonator
modes. Substitution into the Maxwell equations yields, after some reductions, a
set of first order differential equations for the time dependence of the
expansion coefficients. The diffraction losses are included in a natural way and
the results are physically transparent.

The equations are coupled together by overlap integrals involving the
empty resonator modes and the nonlinear, field dependent susceptibility. The
integrals range over longitudinal and transverse coordinates, and hence are quite
complicated. However, if the emptv resonator modes are assumed to be known in
advance and can be stored on disc, the calculation is much easier than the
numerical evaluation of the nonlinear Fresnel-Kirchoff transform. The necessary
accuracy for the evaluation was determined, and it was found that the grid size
requirements for the longitudinal integration were two orders of magnitude less
stringent than for the transverse integration.

*baicufations were carried out for M = 2 cavities with Neq = 6.5 and
Neq = 7.02. These two values of equivalent Fresnel number were chosen because
they are the locations of a peak and a crossing point of the eigenvalue versus
equiva]eni Fresnel number plot. The lowest loss empty resonator modes for the
Neq = 6.5 cavity is well separated from the others, and thus we expected that
this mode would dominate the laser operation. In the calculations this indeed
occurred, with about 95% of the energy concentrated in the lowest 1ncs modes.
The higher order modes were found to affect strongly the output coupling,
frequency pulling, and Tinewidth of the 1laser, but not the distribution of
energy.

111-1
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By contrast, for the Neq = 7.02 cavity the two lowest loss modes have
equal losses, and the posibility of unstable behavior was considered. Bistable
operation was found to occur in a small region of pumping strengths, with stable
solutions on either side of this region. In the region of small gain both modes
were found to be oscillatory, and above the bistable regime one of the lowest
loss modes was suppressed. In the region of bistability itself, self-sustaining
pulsations were found to occur for most initial conditions of the laser system.
The iterative solution of the equations of motion did not converge to a stable
point in these cases, but to a well defined limit cycle. This type of behavior
is well known in laser systems and is a result of nonlinearity. This is the
first demonstration of nonlinear oscillations arising from competition between
transverse modes.

The formulation of the equations of motion of unstable laser resonators
in Lamb Theory form has been shown to be useful both qualitatively and
quantitatively. Physically, the idea of expressing the laser energy distribution
as a superposition of empty resonator modes is appealing. Bistable behavior and
self-sustaining pulsations result naturally from this model. The numerical
results are expected to be most accurate when one of the modes manages to
suppress all the others. Quantities such as frequency pulling, laser linewidth,
and output coupling are given, as well as the stable distribution of radiation in
the cavity.

I11-2




4 APPENDIX 1

NOVEL APPROACHES TO NONLINEAR ADAPTIVE OPTICS AT 1.3m

’ by
A. Elci and D. Rogovin




[} NOVEL APPROACHES TO NONLINEAR ADAPTIVE OPTICS AT 1.3u

A. El¢i and D. Rogovin
Science Applications, Inc.,1200 Prospect Street,La Jolla, CA 92038

"bstract

In gases degenerate four-wave mixing at 1.3y poses unusual difficulties due to the
lack of suitable systems. However, nonlinear adaptive optics at these wavelengths appears
to be quite promising in solids.

introduction

Recent advances in the technology of the chemically pumped atomic iodine laser have
generated an interest in the resonantly enhanced phase conjugation via degenerate four-
wave mixing at 1l.3u. Previous studies have shown that the reflectivity of the conjugate 1)
waves is sensitive to frequency detuning from an allowed atomic or molecular transition.
For instance, the rﬂf}ectivity for NH, is essentially zero a few wavenumbers from an
allowed transition. The fact that one needs to work near an allowed transition limits
drastically the number and type of materials one can use as conjugators at l.3u.Unfortun-
ately, there do not appear to be any known gases which are suitable for resonant
degenerate four-wave mixing at l.3u, at least not in thermal equilibrium. Althouqgh

g - resonant l.3u-transitions do occur between some excited states in atomic gases, their short
T, times as well as the additional difficulties due to maintaining the medium in a
sSecified nonequilibrium state make their use impractical. Two-photon resonances and the
use of neutral iodine are also impractical as discussed below.However, there are solid-
state systems which are gquite promising:; particularly the following two:

(1) The semiconductor alloy (Ga In, , )As with x = 0.6,
(2) Atomic or molecular impuritfes embedded in solid dielectrics.

The following two sections are devoted to the discussion of these two systems. In the
remainder of this introduction we discuss briefly the limitations of the use of two-photon
resonance and neutral atomic iodine.

' To examine the two-photon resonant enhancement of degenerate four-wave mixing in gases,
we consider the three-level configurations depicted in Fig. 1. 1In Conficuration A, levels
0 and 2 are not coupled by radiative transitions and wg # wy ¥ w , but 26 = wy + & if
the atom or the molecule is initially i? }ts ground state, then the third-ordgr suscepti-
bility at W is approximately given by 2

_ 2 2 - - -
V@) AN T N s ] Juie] (womwi) (wewetiv) T (wmwitiy )7 (2umwemw, +iv) Th. (D)
) -
Typically,y & 2x10 rad.sec ! at 1 torr (3

and U ~a~ u e~ 1 Debye. Let w1 eV and
2w swo+wy , then ar one torr, 12 10

Ix i | ~ (6x107 esul. (w + w )2 PR w)? +ay?17¥2 (2)
H .
LY - -y
! ]
L wy
“ 2
[ °
gy eyg O gy ~ %19 * 0
w [ 1}
1 FIG.l.Two-photon resonance in three-level systems.
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€
&
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The overall ‘r=quency factor in Eq.(2) is on the order ?g)unitv if w 1is significantly
differ=nt from w . To achieve useful reflectivities, |y | should bé op,the order of

10"** esu or ! larger. To increase the right hand side of (2) to 10 esu requires
WA wyma~wy , in which case single photon transitions are important and Egq. (l) does not

apply. Besides, in that case one has found a system whose levnl structure matches iodine.

In Configuration B , levels 0 and 2, and 1 and 2 are coupled by dipole transitions;
0 and 1 are not. In this case we assume that 2w=> w¢- w,;; then. at one torr,

-14esu]-(uo -wy )2( wot+ m;)-z. (3)

(x| (6x10

This is also about two orders of magnitude smaller than the minimum value needed.
The impracticality of neutral iodine comes

from the fact that the lasing levels of atomic

iodine are ?gypled by magnetic dipole

transitions . Since magnetic dipole

transition ratec are smaller than electric

dipole transition rates by a factor of (v/c)”,

the corresponding susceptibilities are related by

3 3
S SPORCTEIRE SR T (4)

since (v/clas10™> for outer electrons, it is
clear that one camnnot achieve useful reflectivities

semiconductor, the four-wave mixing is resonantly

i |

! |

} l

using atomic 1iodine. : EG \

1

I =

2

£ (Ga_In, _)A Pl

use o a lIn,_  )as . i { E=0

| 1

| 56 |

Wwhen  matches the band gap of a direct gap ] :
)

i

enhanced. One can exploit this fact for phase
conjur>+<ion at l.3u using (Ga_In,__)As alloys. v=12
They are direct gap materialsxané §hergig? of the

band gap depends on the composition x.” ' 'To a good

approximation one can write

2
EG(X,T)=90(T)+91(T)x+gz(T)x . (5)

At T=300K, g,=0.36eVv, g,=0.77 eV and qz=0.31ev.
It is therefgre possiblé to make the direct

gap as close to l.3u as desired, either from FIG.2. The band structure.

above or from beleow, by a judicious choice of (3)

the composition, and thus resonantly enhance ¥ .

Further fine tuning is provided by temperature since a's are temperature dependent. (3
In order to obtain an estimate of the conjugate wave reflectivity, we calculate v
using the band structure shown in Fig.2 for (Ga_In,_  As. To simplify the calculation we
assume that (a) all waves are polarized in the §-d}réction: (b) conduction and valence

electrons have the same lifetime v: (c) the dipole moment is given by

e v - - =1l -
Yey Le(mOEGvca) pcv(k o) (6)
where m, is the bare electron mass, c¢_ is the high freguency dielectric constant and Sﬁ
is the ?nterband momentum operator: (d) intraband transitions are negligible and only ~
those interband transitions which are near the band gap as shown in Fig.2 need be taken
into account: and finally (e) band energies are parabolic:

2,2 2,2 m for v=1,2
E = %</ =— - = 4
nc(k) (EG/Z)*(ﬁ X /2m£), Ev(k) (EG/Z) “Hk /2mv), m, {T? for v=3 . (T
) .
« (w=w+w=w} is given by (see Ref.2)
L3 I P 4 _ | 2 1 2 ool 2 .2
R uey! TEEN=E(ED AL =L ) ('L © +IL 1)+ Raran/2) 7T (LE -1
(8)
1-2
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oyl
where Lnn'xT§¥ch +E_,+iy)

energy.

Designating the result as xé3) , one finds

Xg

(@, 78,0 " (1420, Guriv) “he(1y/8 )+ (5_-iv) (Ku/2+1v/4) "
3/2

where xo-(zuu3)'1 s lucv!4(mlmv)3/2(mz+mv)'

For small detuning from EG' IEG-lul/EG<<1, the + terms in (9) can be neglected and

x$ W = xgta_a3H s -iv). (10)
In particular,
Ixg> W = V2xgaT 2 = vaxg (B ~Hur VIEg-Hw) 2ev?) TV (11)

Thus, lx(B) | rises sharply when w increases above the band gap as shown in Fig.

The te%perature-dependent part of the susceptibility, which we designate as Y ),
cannot be integrated explicitly, although an approximate form for [E.-Hw|<<E. ¢ be
obtained readily. At thermal equilibrium,Ef is nearly in the middle 8

Ef << EG. Using this fact, one finds
3w = - we) (o)

x Zdy ys[(y2+EG-Hm)2*Y2]-2(exp[-8mvy2(m£+mv)-1]+exp[-6mzmvy2m;l(m£+mv)-

10

a (VZxi=? 1x?)

W e

T 1 T Vv TTTg

10~

'3
3
:
T
,0-2 —la b
-80 40 -20 0 20 4.0 6.0

5

FIG.3. The third-order susceptibility
as a function of the frequency
detuning é=(EG-Mm)/V.

. £(E)=[l+exp8(E_-E,)17Y, B8a(k,1) 7!, and E, is the Fermi
] all b2 separated iflto a tempexacufc-indepcndzgt and a ¢t
part. The integrals for the temperature-independent part can be evaluated exactly.

3 (1= xgl(a_va) T4 20_/Mo) + (/8 ) + (A_+iv) (Hu/2+iv/4)~h) ;

(5 lugylt2mym )3 Ztmyem )73/ 2 1exp -8 (E/2-E ) ) (121

rature~dependent

(9)
piF
, Qtil(EGtﬁw)2+72]1/2 and A:-(EG:uu)+ﬂ+.

f the ggp and thus

b

15 (1+4) (kD) 7/2(o8(E/2=Eg) _=8(Eg/2+E,) |

B T ——

an3 23y (e gHw) 2y 2

4 172 -1/2 1 1
“lugy " tmpam ) 7% (2mym,) F(mpem,).
In obtaininag (12), we nealectei (E,~Hw) or
v which appear together with v° in“'the
numerator, and also used the fact that v<«<

EC or Hw. It is clear from (12) that

fxf‘_” 1/1%¢3) inetkgT/v)

and ngs Xt(3) is extremely small compared
to x due” to tg? exg?nential factor. For
all “intents, x\ =x‘ e

We can now estimate Let us consider
a particular composition with x=0.6 at
T=300K, for which E_.=0.95 eV and thus matches
1.3u. The other pardmeters are:c_z=10, m.=0.lm°,

=0.6m, and!u | =10 Debye. The finite
1 fetimg for ef¥ctrons and holes arises
mainly from phonon g¢atterings and is on the
order of t={/v A 10 10 sec. Using
thege valuesg one fipds that at 1.3,
I'x |l 10 "= 4x10 esu. These are extremely
promising values.

Since both object and conjugate waves are
damped in a lossy medium, the reflectivity
also depends on absorption even when pump
waves are assumed to quyndamped. "he ref-
lectivity is aiven by

7/24-(8Eg/2)  q4,

i
1
)
i
i
)
P
f
i
i
'
]
§
H
i

1
3
!
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ne lxsinuﬁecosu + asingzl'z.
NIERULR LAY 2 ARG o

E b 'l‘[z - sz

where ¢ is the length of the nonlinear mixing region, n, is the index of the refraction,

I, and I, are the intensities of the two counterpropagating pump waveg; o iz the absorption
céefficiant. At room temperatures o can be written approximately as

- a°~ul(EG-Hu) for Ku<EG
a,/MaE, © for Ww>E, (15}

where a.1.3x10% cm™l, a,210 em™lev™! and a,%6x103 cm™! ev™1/2 | 1t is clear that
absorptgon will be high lnd 9% will usually"be in the absoyptive regime, 1-3;15 will
usyally,be imaginary. Let | x |10~ esu and I =I,=1 MW/cm", then Jx|=2260 em “.a is about
107 cm ~. When £is imaginary n is independent o} £° and is given by

nele]2/(20)2 = 2x1072%= 23 (16)

This corresponds to a reasonably efficient phase conjucation.

impurities embedded in solid dielectrics

It is clear from the above discussion that if their linewidths were smaller, solids would
be extremely efficient for fgﬁr—w ve mixing. One approach for achieving nacrow linewidths
in solids is to use discrete/wnhi couple weakly to phonons compared to continuum states
of the energy bands. For example, when an atom or an ion is embedded_gn a dielectric,
the lifetimes of the low lyinc states are usually on the order of 10 ° sec. Ong can also
use the fact the atomic energy levels are reduced approximately by a factor ¢ , where
e, i3 the static dielectric constant, to tune some atomic transition fzequencges to 1.3u
by choosing £, appropriately.

For the sake of concreteness we consider alkali type ions embedded in semiconductors
and insulators in the followina, However, the basic idea can be extended to neutral atoms
and other types of ions in hichlv degenerate solids or glasses. Also, the system whose
discrete states are to be used need not be an ion or atom: it could equally well be a
defect in the solid. (8)

The discrete energy levels of an alkali ion can be approximated by

2

E = B - R(z-2'+1) 2egl(n=0)” (17)

n G
where R is the Rydberg eneray, 2 is the nuclear charge, 2' is the number of electrons,
n is an integer and 4 is the guantum defect. The energy levels are measured from the
edge of the valence bands. For resonant tuning we require 1.3u-ﬁu=0.95eV~En-En, for
some n'>n. Thus,

2 2

o = (z-2'+1 2 (n-0)"2 - (nrep)”

0.07%¢ 1. (18)

One way to proceed is to choose a specific atom or ion, as well as a particular transition
and then solve for €y

= 3.8(z-2'+1) [n'=a! " n-a| " (n =) Y2 (nant 200 172, (19)

o

Below we list the values of €9 given by Ea. (19) for a number of ions.(e)




- a

n at il
Nat:  z-z'+1=2, 4aml.4 1 2 12
1 - 19
2 3 12
2 ® 13
ALYYT:  2-z2'+1=4, s=0.9 1 2 68
1 ® 152
P3*:  2-2'+1=6, 8=0.7 1 2 99
1 « 76

As static dielectric constants go, all of these are reasonable values. In small gap mater-
ials (E.S 0.2eV) €9 is usually large. For insulator and high gap materials €5 is on
the ordef of 10.

At first glance, it may seem that there would be strona absorption in small gap materi-
als like PbSe or PbTe alloys, since MHuw>E and thus they would have negligible reflec-
tivity. However, leV is so large compared t3 the gaps of these materials that the tran-
sition would fall onto very high conduction bands. Bv a slight adjustment of the composi-
tion, the relative position of these bands can be altered and absorption decreased. €g
can also be adjusted by varyina the alloy composition.

The numbers for Na are quite close to pure Si and CdS. Si has €,x11.8. Cds
is an insulator and has E,*2.4eV. CdS has an added advantage in that absdrption at 1.3y
would only be due to the iﬁpurity sites themselves, and hence these transitions can be
saturated for sufficiently low impurity densities.

We acknowledge the support of AFOSR for this work.
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FOUR-WAVE MIXING AND PHASE CONJUGATION NEAR THE BAND EDGE

By

A. Elci and D. Rogovin
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ABSTRACT

We discuss degenerate four-wave mixing and phase conjugation
near the band edge of direct gap semiconductors and show that
the refiectivity for conjugate waves is resonantly enhanced

in the vicinity of the band edge. We also compare the quantum
mechanical results with the classical Drude model.




I. INTRODUCTION

There is presently a considerable body of work on phase conjugation

(1-6)

via degenerate four-wave mixing in semiconductors. It has been moti-

vated partly by the availability of a variety of frequency ranges, and partly
by the relatively high efficiencies observed in these materials. This paper,
too, is concerned with degenerate four-wave mixing. We consider a direct
gap semiconductor and calculate the contribution of interband transitions

(3)<

near the band edge to the third order susceptibility x WEWwtwe-w.

We also consider the absorption coefficient o in the semiconductor in order

to obtain a realistic expression for the conjugate wave reflectivity n.

There are two reasons for the interest in a band-edge mechanism

(3)

for four-wave mixing. First, x is resonantily enhanced as fw increases

1.0 EG' the band gap. As a result, n is also enhanced despite increased

7’8). Second, a band-

absorption (which adversely affects phase conjugation
edge mechanism offers a greater pctential for frequency tunability, since in
many semiconductor compounds Such as Gal_x(InAs)x, Cdl_x(HgTe)x, Pbl_x(SnSe)x,

(9)

etc., EG can be continuously varied by changing composition.

A number of authors have discussed band-edge mechanisms for four-

(1,3,6) (1,3) have considered

wave mixing. Among these, R. K. Jain, et al.,
a mechanism which is similar to what we have in mind. They imagine creation
of an electron-hole plasma in the semiconductor and use a Drude model to
calculate X(3). In this paper, however, we perform a density matrix cal-

culation to provide a more precise picture of the frequency dependence of




x(3) and n. Also, our results apply to frequencies that are lower than EG.

A detailed comparison of our results with those of Ref. 1 is given in Section V.
Finally, we also note that M. A. Khan, et a].,(4> have studied a case in which ‘
X<3) is resonant for fw EG because of a nonparabolic band structure. This
nonlinear process is quite different than the one taken up here.(lo) Here,

we are concerned with an ordinary and direct electron-field coupling via

interband transitions.

In Section II, we describe the band structure used in the calculation.
[t is a simplified version of the band structure of III-V compounds, chosen with
the phase conjugation of iodine laser beams in mind. In Section 11l we give
the general results for a two-component piasma in the semiconductor. In Sec-
tion IV, the general results are specialized to small perturbations from
thermal equilibrium. Finally, in Section VI, we discuss the reflectivity of

a spacific direct gap semiconductor, Gal_X(InAs)X.

The main result of our work is that the reflectivity of conjugate
waves has a resonance in the vicinity of the band edge. The precise position
of the resonance depends parametrically on the sample thickness. The resonance
shifts to lower frequencies for thicker samples, as one might expect from the
depletion of the pump waves. If the depietion of the pump waves are negligible,
as when the semiconductor is saturated, then the reflectivity is nearly constant

above the band edge and decreases rapidly below it, independently of the sample

thickness.




II. BAND MODEL

To be definite, we assume a band structure as shown in Fig. 1,
which is typical of III-V compounds. It has one light hole band, two

heavy hole bands which are degenerate, and one conduction band. To

) simplify the calculation we also assume that the bands are parabolic:

E (k)

(k) = (Eg/2) + (W8 2m *) (1)

k)

"

E (

S0 = - (E2) - (WA ), (v=1,2,3) (1b)

where the m*'s are the appropriate effective masses near the center of the
BriTlouin Zone. For the calculation one also needs the dipole matrix element
for the interband transitions. It is related to the more familiar interband

momentum matrix element by the following relations:

U= - esm'1/2; R (2a)
5= - im ﬁ'l[I,H ] , (2b)
0 0
RSP G V7 0 A W g
“ey 1eﬁmo 3 (EC EV> Pey (2¢)

Here =_ is the high frequency dielectric constant, my is the bare electron
mass, and H0 is the one-electron crystal Hamiltonian. The factor sm°1/2
in {2a) comes from high freguency screening of electrons and renormalizes

the bare electronic charge. Since our concern is with the band edge, the

_ 1




->
right hand side of (2c) need be evaluated only at k=0. :cv can be taken

as constant,

We are interested in those situations in which the semiconductor
is either at room temperature or at a temperature which is not too low
relative to room temperature. At these temperatures the absorption edge
is smoothly broadened to frequencies which are considerably below the
band edge, due to interactions among electrons, holes and phonons. To
take into account this broadening, we assign average linewidths Ye and Yy
to electron and hole states, respectively. This procedure should be
adequate to describe the actual situation for intermediate and room tem-
peratures. However, for lower temperatures, there are well defined discrete
excitonic peaks and one must take the discrete nature of these peaks %nto
account. This requires considerable modification of the calculation and

is reserved for another publication. Here we confine ourselves to the

regime in which discrete excitonic peaks are not observable.
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I111. THIRD ORDER SUSCEPTIBILITY, ABSORPTION AND REFLECTIVITY
)y The geometry of degenerate four-wave mixing is shown in Fig. 2.
We assume that all four waves are linearly polarized in the z-direction
and actually calculate ngiz (w=uw+w-w). Since absorption is important
) for phase conjugation, we also calculate the frequency-dependent absorption
coefficient a(w) under the same assumptions. A density matrix calculation
gives the following expressions for X(3) and o {see Ref. 8 and Footnote 11):
N 3
- % [ dken e, - ste)] (3a)
v=1 BZ
2 -1 2
: x [lror ) 2rr) MLt ML+ 1, 1)
+ (4T\w+1'Yc+1'yv)(2hw+iyc)—I(ZhwﬁYv)—l(Liv-Lsc)] s
’ 2 = hnw?(cnE ) 233 W2 12 fdk #(g,)-7(E,)] (3b)
w %6) & YevlVey [ viT e
2 2]
X Dch| * ]ch!
4 where n = Y_ is the index of refraction, and
- -1
Lpn —[m-E(k)«*E nn] (4a)
] =
Yane = (Ygtvp-2/2 » (4b)
- _ -1 - -1
ey = [1vemslE (0-E)] L 8= (kDT (sc)
) Efc for n=¢
'n -th for n=v=1,2,3 .
) 2-6
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In (4c¢,d), Efn are Fermi energies for electrons and holes, assumed to be
distinct in order to include those situations in which absorption at fw

significantly affects band populations.(lz)

One can let the upper limit of k go to infinity to simplify the
integrals. We do not expect much error resulting from this procedure since
as k+o, the integrands decrease rapidly for parabolic bands. However, the
situation is quite different for nonparabolic bands. Ffor instance, the
integrals for Kane's two-band mode1(13) diverge if one lets the upper limit
of k go to infinity; therefore, they must be evaluated for a finite

Brillouin Zone.

x(3) and a consist of two types of terms,
(3) 3 0.t
x = (KK,
v=1
3 o] t
a=v§1 (A, +A)),
where k2 and AS are temperature independent, and Ks and AS are temperature

dependent. This separation is effected by writing the population factor as

FIE) - £(E) = 1 - [1-7(E) + f(E)]

1 - {[1 + exp 3 (-Ev-th)]-1+[1+expB(Ec-ET»C)]'1} .

The integrals for Ke and As can be evaluated by contour integration (see

the appendix) and one finds




-1,-3 3/2 4 -
K% = (2n)"'n mv/ |U§v| [ZY(Z:V(YCYV"W/A__) 1] (7a)

+ [(A_+1'ch)(ﬂ_/f\'_)°1- ng(A_YCYV)'1+(¢hw+21'YC)'1+(4ﬂw+2iyv)°1]

: -17 - .y .-
' + [ tro @ m) TR, 8 vy ) R (amanziv ) (amwr2iy, )71
- [2Y2 (v.y hw/A_)'l]}
cvi'c'v +
and
i
0 _ 2.3/2, 2z 12,52 -1[ 1/2
RO = anu®md 212 1A (necE ) A_+2(T\w-EG)J , (7b)
. where
! 1
m, = mAmE(mrem*) o, (7¢)
- 2 1/2
2. = [(ggma)® + 2 ]2, (7d)
| ! ’ and
A, =0, ¢+ (Ethw) . (7e)
' The temperature-dependent terms cannot be evaluated explicitly
3 for arbitrary temperature. We write them in terms of Fermi-Dirac integrals
of the dimensionless form
G
I o ’ 2 -1
g Fro(352) = [ dy y™y%+a)Misc, exp (byy©) : (8)
‘ m o J J
Az
"" Let us define
.:J
X o o= (Egrivg, )M (9a)
<
i ¢, = exp3 (EG/Z'Efc) , (9b)
! c, = expd (Eg/2-Egy) s (9¢)
R ’ b, = (mv/mz) 8fw (9d)
. !
. by = (m,/m¢) 3fw . (Ge)
il .AI 2'8
A a
e p— -’—-.T"""M RS 22 X AR LYY : R .s-‘s- u.'l'l'-'v"-.-r.-‘ - e

N SIE P o . o . o <




Kt and AS are then given by
t_ 3 -1 3/2 2 4
K= oy ) " eam,) 3 2ne) 2| (10a)

2:. 2 (.
g J‘=1{I"‘[F1(J'C'” *F Gseen)]

+

e, Ma[F(5en-1) - F2(gieen)]

+

(vey/MlRe[i(-F(532-1) + 1(ees1)F (335w

+

(v.v,/2hw) [(Zﬁw’fivc)'l + (2ﬁm+iyv)‘1] [Fg(j;:ﬂ) - Fg(j;;*-n]}

and

2

= duniZ (22m oY 2 (nee) ! 3 m[F2(550-1) + P50 (100) |

>
1]

j=1

Finally, the reflectivity for conjugate waves in degenerate

four-wave mixing is given by(7’8)
_ R Y4
n = |[ksinZi|“|zZcosEl + o singe| , (11a)
where
] = 167%uc 22 (1,1,) Y23, (11b)
and
£ = (iKI2 12)1/2 (11c)

In Eq. (lla), % is the length of the nonlinear mixing region, and I1 and
12 are the intensities of the two counterpropagating pump waves. We note

that (1la) is derived under the assumption that the conjugate and signal
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waves are depleted but the pump waves are not. When the depletion of the
pump waves is also taken into account, as seen from Fig. 2, the constant

pump amplitudes A1 and A2 are replaced by

>
—
—
x
~—
n

A(2) exp [-(2-x)as2] , (11d)

P
~ny
—
>
~—
"

Az(o) exp (-ax/2) , (1le)

and thus the product

AI(X)AZ(X) = Al(R)Az(o) exp (-a2/2) (11f)

is independent of position. |k| becomes

-’) -
2,2

|<| = 167 )1/2ix(3)iexp (-a2/2) . (

—
—

Vo]

~—

1112

Above the band edge x is usually on the order of 104 cm'l.

A1l four
waves can be severely depleted and one should use (11g). The use of
(11b) should be restricted to frequencies that are lower than the band
edge. There is still significant absorption at these frequencies,

however, due to the broadening of the absorption edge.




~

IV. MODERATE EXCITATIONS

In order to obtain efficient phase conjugation, one would
naturally seek a situation in which absorption at hw is as low as possible.
We now take this to be the case and assume that electron and hole popula-
tions are not perturbed significantly from their equilibrium forms. We
note in passing that this assumption contrasts with the premise of Ref. 1
in which Jain and Klein imagine creation of a dense electron-hole plasma
in the semiconductor. In their case, it would be more appropriate to assign
a separate Fermi energy to each component of the plasma, since each ther-
malizes separately before the interband transitions can take over and bring

the -two components into a common thermal equi]ibrium.(lz)

At the thermal equilibrium, there is one common Fermi energy:

Ef = Efc = -th (12a)
Ef is nearly in the middle of the band gap, given by

E. = (k.T/2)an{1+ T (m*/m*)3/2] (12b) |

f B v v C :
One can therefore set

Cp = Cy = exp (SEG/Z) >>] (13)
for band gaps on the order of 0.5-1 eV and for room temperatures. Also,
the integrand in (8) contributes mostly in the vicinity of y=0 and

i) = (2c ) la (T (ot (14)

m Js \ J J ‘ 2 .
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To simplify the following discussion, we further assume that

= y and focu

:th/EG<<1.

Yo = Yy ¢ our attention on the vicinity of the band edge, by

which we mean |Eq

In the vicinity of the band edge (7a) yields

-1/2
(15a)

E\,:‘K?/ = xiﬂ&@“@ﬁ}yz (1+62)

§ where
§ = (EG-ﬂw)/Y (15b)

¥ and
3/2 uz 4 (15¢)

3 3/2y-1
X°=(27mY/) 2;, mol 2t

’ From {7b), one has
(16a)

Z Ae = ao[v/l_:; —“]1/2 ,
v

4 where
(16b)

2 1/2/2 - 3/2: ?
g = dnw Y / (f CEG) 1 %mv/ \uiv\

the use of (14) in the vicinity of the band edge yields

g similarly,
F RVE Xt(6+1)(5+i)(1+52)'2 (17a)
4 V
! ]
and
t _ 2,-2
§V:AV = 2 (187 (17b)

P T
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. w A, -~

where

X, = 2(1-1)(Zns)‘3/2ﬁ'3y'3exp(-eEG/2)E;Iuiv14[}mg)3/2+(m;)3/2]

and

oy = -4n(Znﬁ)'llz(cEGy)'1m7/2exp (-8E4/2) %: Iy vlz[ me *)3/2, m*)3/2]

(17¢)

(17d)

We can now compare temperature-dependent and temperature-independent

terms. From (15c), (16b), (17c) and (17d}, one finds
Ixg/xo! (ZW)(kBT/WY)3/2 exp (-BE4/2)

and

)3/2

lat/ao| n (2m) (Fw/ 2Ty exp (-BEG/Z)

Due to the exponential terms, the temperature-dependent terms are clearly

negligible either for room temperatures under thermal equilibrium conditions
or for small perturbations from thermal equilibrium., For lower temperatures
they decrease further, exponentially. For all intents and purposes, x(3)
+ are given by the temperature-independent terms under moderate excitations

as long as the band gap is not too small.

2-13
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(18a)

(18b)

and




Neglecting the temperature-dependent terms,

]
L e "
- ao[@+ a]'l/z , (19b)
rex(3) - (xg/0) (1+67)71/2 o - (19¢)
= 20 x5 [t + o], (19d)
and
(3)

Imyx

(xg/0g) (1+6%)1/2 o (19€)

(Zxo/uo)as[ag + a4]'1 . (19f) ]

Finally one needs |X(3)= for the reflectivity:

1530 = /2—X0(1+62)-1/4( AesZ + )71 - (199)

Fig. 3 shows |x(3)|/(/?ko) as a function of § = (EG-ﬁw)y'l, the ;1
frequency detuning per linewidth. Below the band gap, &6>>1 and ©
&

X3 = 2x0(26)'3/2 ; (20a)

which should be compared with

a=a(25)7 (20b)




in the same region. Thus, lx(3)| decreases faster compared to a for

§>1. Above the band gap, < o, [§]|>>1, and

X3 = 2 (20012,

which has the same &-dependence as a.




V. COMPARISON WITH DRUDE MODEL

We can compare our expression for x(3) with that of Jain and

(1)

Klein Their expression for X(3)’ obtained from a Drude model, is

X(S)= ncezrn*a*(Snm;'hm

3y-1
ph™)

(21)
Here t is the lifetime for electrons and holes, o* is the total absorption
coefficient, {n*a*) designates the fraction of the absorptior which corre-

. sponds to an actual electron-hole pair creation (i.e., n*a* corresponds to
our a), and m;h is the reduced mass of an electron and a hole: mgh =

)LL)

Xp is real and describes an adiabatic response of

(3) (3)

m* m* (m* + m*
e "h ( e h

the system. It corresponds to our Rex OQur expression for X has

an additional part which is imaginary. Im X(3) describes those processes in
which at least one real transition occurs. Such processes can either put
energy into the system or extract energy from the system. Note that above
the band edge, 8<0 and |§|>>1. One therefore has a>>a , and (19f)

simplifies to

Imx(3) = (2x4/2,) (22)

Thus, above the band edge Imx(3)

is proportional to the absorption coef-
- ficient, having the same functional dependence on the frequency detuning

(EG:ﬁu) as a. This is consistent with having at least one real transition

occur.




(3)

To compare XD

and Rex(3)

The ratio of the sums over the dipole moments can be estimated as
3 -
(Lo & <zm3/21u’ 15 = 2.
Using (2c), one has

z .2 _ 2i52 12, 2 2, 2,~1
ISAEERS STAECIN A

The momentum matrix element is related to the electron and hole masses

near the band edge (see Ref. 12):

= (2m* -1

{PZI{ eh)

0 G

With these approximations and also using v = (f/t), one finds

Rex(3) e~ (ﬁw/Z)[(ﬁw-EG)z + YZ]-I/Z n'4xé3) .

Thus, as far as the freguency dependence is concerned, the two expressions
differ only by the square root of a Lorentz factor. The other factor n'4
arises from two sources. One is that we are taking into account the short
wavelength screening and treating electrons as particles each wiih an
effective charge e/ve_ = e/n, as in (2a). This contributes a factor n~2

n {25). The remaining n'2 factor comes from the difference between the

way we count the number of photons and the way it is done in Ref. 1. We

, we make the following approximations.

(23a)



use the standard expansion for the electric field operator such that

(see Ref. 14),

BG) = 2 ifamo /0 12 & oo [i (K feu, )] dfexo [ 11Kk, 0]}, (280)

with

+] .
[b}\,bx S8, (26b)

where XA designates the modes, éA is the unit polarization vector, V is

the volume, and wy and kx are related by

wy = (c/n)kx . {26¢c)

For a single coherent mode at w,
(am) L fa% CEZY, = mubTbD =t (27)

where N is the average number of photons in this mode. Thus, the photon

current density is

5, = e (armum) ™t (28)

For complex field amplitudes,

iy c(E-Bwy_ (8rFun) ™! (29)

b This expression for j differs from the corresponding one in Ref. 1 in

that (29) has an extra m'2 factor. Finally, if we write out n'4xD(3)

7,3y~ (30)

’

'{ ‘ n'axé” = (¢/n) (ezlew)( T*ock) (8mE




———————

we see that n’4 factor helps to renormalize both the charge and the

speed of light.

4

It is interesting that the presence of n ' somewhat compensates

for the Lorentz factor in (25) and makes Rex(3) and Xé3) comparable, since

usually n2 ~ 10-20 for semiconductors, i

PPEYY




VI. REFLECTIVITY FOR Ga,_,(InAs),

We now consider a specific semiconductor: Gal_x(InAs)X with
x = 0.4 for which the band gap is EG = 0.95 eV¥. This coice is motivated
by the fact that A, = ZﬂﬁCEal > 1.3 un, which coincides with the wave-
length of high energy iodine lasers. There has been a practical interest
in obtaining phase conjugation at the jodine wavelength. To the authors'
knowledge there is no gaseous or atomic system which matches this wave-
length and which might be used for resonant enhancement of the conjugation
process. Neutral iodine itself cannot be used, since the lasing transition
is a magnetic dipole transition. A semiconductor such as Gal_x(InAs)x is

therefore a natural choice for phase conjugation at xo = 1.3 um.

n

The remaining parameters for our sample are € = 10, mE = m§

0.1 m, and m; = my = 0.6 m (see Ref. 15). A typical lifetime is t = (h/y)
> 10-11 sec'l. Thus,
- -1 _
m;h = mZmi(mz+mi) = 0.09 my {31a)

and

zZ . . -1
Wl = en(ams e €007 = 10 Oebye, (31b)

where we used (23b) and (24). Setting EG = Myu in (15¢) and (16b) yields

X = 3 x IO'GeSu and %y = 1.2 x 103 cm'l. The value of Xy which corre-

sponds to the value of a at the exact band edge & = (EG-hw)/Y=O, is in

reasonable agreement with the experimentally observed value for GaAs (see

2-20




page 61 of Ref. 15). Further, et 11=12=1MN/cm2, then from (11b), |«|=

1

1.1 x 103 cm -, which is comparable to but less than a. Two comments are

in order. The first is that |x (3)1 and hence |x| are quite sensitive to

the linewidth. For example, for 1 = 10712 sec'l, one finds a = 4 x 103 m™?

Xo = 10”7 esu and [x] = 36 em™!. The second is that the parameter £ of (1llc),

which actually determines the reflectivity, is usually an imaginary quantity.

For imaginary £, (1la) simplifies to

n = lxl2a)7? .

-11 s

Thus, if the pump waves are not depleted and T = 10 ec'l, one has from

(32) and (11b) that n = 0.22 = 22%, which is a reasonably efficient phase

conjugation.

The frequency-detuning dependence of n as gjven by (32) can be

written out as

n=ng 1M 1/2(/1+A exp [ 1+fg 1/2] .

where

Ny = ZwZEGz( #2,2c% %8y 2: 3/2’ §V|4)2(§: m3/22 12y

and

a L.

\¥]
"

We used (1lg) to obtain (33a). The parameter 2o May be called the optical

thickness of the sample. If one wants to ignore the pump depletion, one can
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(32)

(33a)

(33b)

)

(V8]
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let 0 0 in (33a), which would then revert to the form that is obtained
from (11b). Figure 4 shows (n/no) vs & for various Og- Above the band

edge,

(n.no) = 2[1-(462)"]exp (-po/2|5|).

Thus, when the pump waves are undepleted, n has an upper limit which is

Zno for frequency detunings that are large relative to the linewidth. For

the specific semiconductor above and for 11 = 12 =1 MW/cm2 and 1 = 10'11 sec,
Zno * .44 = 44%, Similarly, below the band edge,

(n/no) x (262)'1 exp (-oo//ﬁﬁ),

which decreases rapidly with increasing 3.

It is clear that the optimum place for phase conjugation is in
the vicinity of the band edge. When the pump depletion is taken into
account, there is more structure in the reflectivity as a function of the
frequency detuning. Also, the reflectivity decreases as fiw - EG increases
above the band edge. The reflectivity generally peaks in the vicinity of
the band edge. The position of the peak is given by a fifth order equation
which is obtained by setting the derivative of (n/no) with respect to 3

equal to zero:

5 -
y ry - (84/5,) =0

where

y = (V1es - 9)l/2

(34a)

(34b)

(35a)

(35b)




.
+

4

.

There is at least one root of Eq. (3537, say ¥,» which is real and

positive, The left-hand side can be expanded as

Y +y - (80g) = (y-y)aly) (36a)

2 U4 3 2.2 3 4
Ay) =y +yy Y Y Ry Ty vy L (36b)
The constant coefficients of g are all real and positive; therefore, the
roots of g = 0 are all complex. This can be seen as follows. If there
were another real root, it would have to be negative. Let Y4 be r2al and

positive. For Y12 Ygs
_ 3 2 4
9(-yy) = (y” *y oy lygy,) +y, *+1>0. (36c)

Similarly for Y1<Y, s

3

2 4
9(-yy) = {y,” + yo¥ Myy-yy) + vy +1>0. (36d)

g is always positive for a real y and g=0 can have only complex roots.

Thus, there is only one peak in the reflectivity. As % increases, the

peak shifts to larger 5. It follows that if the semiconductor is saturated,
the optimum place for phase conjugation is slightly above the band edge,

and if there is significant absorption at w, the place to be is slightly

below the band edge.
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APPENDIX

For the convenience of the reader, we explicitly display the
contour integrations which yield (7a) and (7b). After the angular
integrations are performed, one obtains four types of integrals which
can be written as

+o

dy y2(y2+n) 2 (y2enx)

plee]

1

1,(A)
40
L(A8) = [ ay yPyZem % Ty Aeen

+o
= [ ey YRR

+

1,(A.8) =f

dy y2 [(3’2"")2 N 82]-

The integrand of I1 can be written as

2 2 1

y2(y2+8) 2 (y2en%) 7L = a(a-a%)2(yZen) "L o ax(A-Ax) e (yReax)

- (A-n) " yR(yPen)
An integration by parts gives

+o +oo
f dy yi(yo+n)72 = 2'1f dy(y2+a)7t .

Thus,

+

A) = 2‘1(A-A*)'2[(A+A*)f

-0 -0

=) +00 .
dy(yPem) 7t - 2A*f dy(y2+A*)‘l} :

(A-5)

(A-7)




Y
{
let A = azezw, where a is real and positive and - g— <¢ = 721 . There are
two distinct roots for y2 + A= (0, which are Yo = 2 exp {9+ %)] and Y
a expli{¢+ —3—21)] Closing the contour in the upper half,
e 2 a1
f dy (y“+A)™" = (n/a) exp (-i¢) (A-8)
= m(1+A%/ [A]) (2] A]+Arar) "2
Using (A-8) in (A-7), one finds that
II(A) = (v/4a3)(1+cos 2¢>)'1 exp (-i¢) (A-9)
= (1/2)(14A%/[A]) (2] A]+A+ax) 7372
The integrand of 12 can be written as
y2(y2en) " HyPem) THyeax) Tt = a(a-B) " (a-Be) " 1(yPea) "] (A-10)
-B(8-A) "1 (B-B*) " (y248) 7 - Bx(Bx-a)"Y(B*-8)"(yean) L |
Now use (A-8):
1,(A,8) = -n{A(l«‘A*/iA{)(A—B)'l(A—B*)'l(Z}A}+A+A*)'1'/2 (A-11)
+ 8(1+8%/(8])(8-A)"L(B-8+) (2B |+8+p¥)"1/2 ]
+ Br(148/ (8] ) (8%-8) "} (82-8) L (218 [+8++8) V2 |
= +(a-8)"}(n-8%)" (A B]) (218 sepw) T2/
(he a2 aean) 2T
' :
7
b
A 2-26




In (A-3), an integration by parts yields
S T |
13(A) = 27 dy (y%+A) (A-12)
= (1/2) (1+A%/|A]) (2] A | +A+ax) "/ 2

Finally, the integrand of {A-4) can be written as

LA}t < (72 (a-18) (y2a-18)7) - (animyyPemim) L], (ae13)
where A and B are real. Now using (A-8) yields

1,(A,8) = (n/8/2)(A%+8%) /4 (A%p8 _n)1/2

Let z, = (4n%) Y (am M%)3/2. Using (A-7), (A-11), (A-12) and (A-14),

one finds

[dkizn) ™ LI, )12 = 21 (Rurigrivg,) (A-15a)
T -3 ) V12 . U N
J’dk(zm Loy (@) (L (w1 = 2 1y (Eg-hu-iy ) s (A~15b)
jd‘sz<zn)'3 Lye(®) Loy (@) 12 = 2 Ty(Egsfumiy | Eghuriy ) (A-15¢)
210 \=3 2 . .
' fdk(?n) Loy (@) Ly ()17 = 2 To(Egetumiy  Egthuriv,) (A-15d)
>0 =3 2 _ . i
[ dk(2n) [ch(w)} = 2 L(EgHuriv,,) (A-15¢)
[di(zv)'3[t (m)]z « 5 L (Efwmiv_ ) (A-15f)
‘ cv “0°3' G cv’ ? !
20 13 2 _ A
fak(am L ()] = 2 1Bty ) (A-15g)
! ’ Jak(2m) 3L ()17 = 21, (Egthu,y,) (A-15h)
} .
. Collecting all of these together gives (7a) and (7b).
-
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FIGURE CAPTIONS

Model band structure.

The geometry of four-wave mixing. A3 and A4 are the
amplitudes of the conjugate and signal waves,
respectively. Aland A2 are the amplitudes of the

pump waves.

[x(3)(w = wtw-w)| as a function of the frequency

detuning per linewidth.

The reflectivity of conjugate waves as a function of

the frequency detuning for various optical thicknesses.
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THE USE OF EXPANSIONS IN
UNSTABLE RESONATOR MODES
TO CHARACTERIZE NONLINEAR GAIN SYSTEMS

by

J. Nagel and D. Rogovin
Science Applications, Inc.
1200 Prospect Street
La Jolla, California 92038

ABSTRACT: A series expansion in empty resonator modes is used to approximate the
field in a cavity filled with a nonlinear gain medium. The time dependence of
the expansion coefficients may be obtained using Maxwell's equations and
orthogonality pronerties of the modes. The equations are solved numericallv to
determine the solutions in the vicinity of the stable point., The effects of
changing the number of modes and the acuracy of the overlap integral are
examined. The results are found to be most reliable for cavities where all modes
but one are nearly suppressed and stable operation is possible. Self-sustaining
pulsations between transverse modes and bistability were discovered for some
conditions.

3-1




I. INTRODUCTION

In order to describe the time dependent properties of lasers it is
natural to construct a set of first order equations of motion. The Maxwell
equations for the laser fields are second order in both time and space
derivatives and are therefore very difficult to work with directly. If one
assumes that the fields may be represented by a time dependent expansion in free
space modes, the spatial variations of the fields can be separated by inserting
this expansion into the nonlinear Maxwell equations. Using orthogonality
properties of the modes, and neglecting second order effects, there results a set

of first order differential equations for the expansion coefficients of the laser
Fierg(1,2),

The free space modes are plane waves, which does not lead to much error
for lasers with stable cavities or Fabry-Perot resonators. However, high energy
systems often include unstable resonator cavities(3’4) because of their Jlarge
mode volumes, excellent discrimination, and efficient output coupling. The modes
of these cavities are quite different from plane waves, and mav be obtained by
solving the Fresnel-Kirchoff linear integral equation(S'S). For such cavities
expansions in empty resonator modes can be used to describe the spatial
variations of the fields, and time dependent behavior may be treated in the usual
way with a set of first order time differential equations for the expansion
coefficients(g\.

The careful treatment of the saturable gain problem for cw operated
unstable resonators involves a nonlinear integral equation with a volume rather
than a surface integral. In practice this approach proves to be intractible.
Consequently, the equations of motion resulting from the use of expansions in
unstable resonator modes should be useful for stable operation as well as for

time dependent properties. In this paper the time dependent behavior in the
vicinity of the stable point is examined.




In Section II the equations of motion for cylindrically symmetric
homogeneously broadened lasers are developed with explicit expressions for the
normalization and overlap integrals. The resulting equations of motion are 1in
the form of Lamb Theory(l), and are in a sufficiently general form to include

p both transverse and longitudinal degrees of freedom. The numerical evaluation of
the overlap integrals is outlined in Section III. Fast Hankel transforms were
used to generate the unstable resonator modes in the interior of the cavity, and
the volume integral was calculated with Simpson's rule, In Section 1V, the
stable solutions to the equations of motion are described, and the use of these
solutir 5 to calculate output couplings, frequency pulling effects, power
fluctuutions, and line broadening is discussed. The time dependent behavior in !
the vicinity of the stable point is treated by expressing the equations of motion
in this region in the simpler Van der Pol form. In Section V, numerical results
are given. An M = 2 cavity was used, with values of Neq at both a peak and a
crossing point of the Al vs. Neq curve., An examination of the accuracy of the
overlap integrals and the necessary number of modes was made. [t was found that
for some situations the solutions of the equations of motion did not stabilize,
and self-sustaining pulsations between transverse modes appeared, a phenomenon
which cannot be explained by geometric optics descriptions. When one mode did
achieve dominance, the energy distribution of the cavity was little affected by
nonlinear gain, although the frequency pulling, output coupling, and linewidths
were changed considerably from their empty resonator values. Finally, we
conclude with a brief discussion of the use of expansions in unstable resonator
modes to describe nonlinear systems.




II. EXPANSION IN EMPTY RESONATOR MODES

The empty resonator modes are eigenvalue solutions to the
Fresnel-Kirchoff integral equation(lo'IZ). The kernel to this 1linear,
homogeneous equation is non-hermitian and consequently the eigenvalue solutions
do not form a complete set(13). The solutions are orthogona1(14) and may be used
to approximate an arbitrary function using a series expansion with overlap
integrals to compute the expansion coefficients. The accuracy of this
approximation is, in general, limited due to the non-compieteness of the empty
resonator modes. However, the specific function we wish to represent is the
distribution of radiation on a cavity with a nonlinear gain medium and it is well
known that this distribution 1is not very much different from the lowest loss
empty resonator mode(ls‘ls). Therefore, one might expect an expansion in empty
resonator modes to give reasonable results for the nonlinear problem, A
relatively small number of terms in the series will be required, by contrast with
a fourier series expansion of the transverse spatial dependence, which has a
targe number of terms due to the effects of edge diffraction. Since the
difficulty of solution increases with n3 where n is the number of terms in the
series approximation, one is led to consider the use of empty resonator modes to
describe nonlinear gain systems.

The electric field of an empty unstable resonator may be expressed as
the following expansion in empty resonator modes:

(F.t) ( ) i3y 'iwnqqt (12)
E(ryt) =T b U r,z)e e v . la)
niq niq "niq

ikngq(L/2-2)

_ ( neq _ . nig
Unlq(r,z) = Jap (r,z)e a e

In Eq. (1) af and ag are forward and backward amplitudes, n labels the radial, ¢
the azimuthal and q the longitudinal degrees of freedom. The cavity is asssumed
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; to be cylindrical with equal mirrors. The amplitudes are related to the slowly
[ varying mirror amplitude ¢(x) by:

2, e 32

aF"Qq(x,z) - (+i)l+12nN % - iTNLXS/2 § ydyé-1ﬂN(M-'L z)y“/z

X J,(2mNLxy/2) "9y, (2a)
ng 41, L Nz b i zel-2)y )z

ag 9(x,z) = (-1) 2N = e o ydye

X JQ(ZTNny/Z) énzq (y). (2b)

Here x and y are radial coordinates normalizea to the mirror radius, M is the
' cavity magnification, N is the q dependent cavity Fresnel number, and ¢"%G(x) is
{ the usual solutinn to the Fresnel-Kirchoff integral equation, a slowly varying
' function in the geometric optics limit. Both forward and backward amplitudes
have been explicitly included because ag # aB* for lossy modes.

The kniq and “neq in Eq. (1) are complex quantities, determined by the
eigenvalues of the Fresnel-Kirchoff integral equation. Each mode in Eq. (1)
satisfies Maxwell's equations in the axial approximation with the mirror boundary

conditions E;mirror = (0. Since w has a positive imaginary part for all lossy

n
modes, the radiation in the cavit:qdecays with time. The complex part of kniq
. compensates for the decrease in the magnitude of 3 as a wave propagates across
- the cavity in the forward direction. As a result Eq. (1) is symmetric under
' spatial inversion. If some radiation is introduced into the cavity, and enough
time passes to form the mode patterns, the initial direction of the radiation
launched into the cavity is forgotten. The radiation distribution is spatially

symmetric abaut the midpoint of the cavity, and exponentially decreasing in time.
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To account for time dependent properties in a more realistic manner,
the expansion coefficients bnzq are assumed to be slowly varying functions of
time. Since anq is complex, the e“"ngqt term can be absorbed as follows:

jw , .t
b ,.e niq -——Pyn

ntq (tye ™I, (3)

9

where Yneq and en.q are real functions of t to be determined, and the
instantaneous frequency of the mode is éngq‘

The resulting expansion is substituted into the wave equation for the
cavity,

2 2
2 1 d .14 P(E) (4)
- = = E = —

where P is a complex function of the gquasi-linear form P = g(E)E. On the left
side, the usual axial approximation(lg) is made which consists of neglecting
second derivatives of ar g with respect to z. Neglecting also second derivatives
with respect to time, and taking into account that the amplitudes 3 g satisfy

=23 5: d -
(.; P2k a—;)aF,B—O , (5)

the left side of Eq. (4) is:

¥: 2 NN S I it (g
%(e nqg k nlqC ) \niq 2 9niq Ynlq $Ln£q(r’z)e . ()

where Un;q(r,z) is the spatial part of the mode, given by Eq. (1b).




Next, two further approximations are made which are consistent with the
neglect of second order effects:

k ,.C) (7a)

®ngq Yn2q ¥ ¥ Yngq

Here w is a real frequency equal to 7gc/L, where g is the longitudinal mode
number,

The right side of Eq. (4) is a complicated nonlinear function, and for
many cases the linear gain 1is large. For behavior near the stable point,
saturation is a factor, and v ~ g(E)c. Then the right side of Eq. (4) is small
to first order, and may be replaced by

- = g(E)E. (8)

Next, multiply both sides of the resulting equation by

1gtat 10,0 ik tptmt z-L/2 -ig 1glml
aBn 2'q omithy e N'2'q (z-1/2) o g q (9)

and integrate over all x,r,z, taking into account the orthogonality properties of
the empty resonator modes. Define the normalization matrix W and the
polarization matrix P by:

n'Q'q' iknlzlql(z-L/z)

- ntg 1@-2)y
wn|£.q.’ nLq <aB e U e >V » (103)
tg) il .k 191 |(Z'L/2) :
% g -2 )
Prigiqrneg =<3 ce A a(E"9 e RS (10n)
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where < >, represents an average over the cavity volume. The matrices W and P
are diagonal in % for most reasonable functions g(E).

The complex form for kngqc is

k. c=uw+ anq + irnlqc , (11)

where anq is a diffractive frequency shift, anq the diffractive loss, and both
g and Tc are <<w. Finally, the cavity equations reduce to the following simple
rate equations:

w -1
* = Im W PY) (lza)
Ynlq + Crngq Ynlq 2—5_; ( niq
: _ =W -1
Ynlq (enlq - Bnlq - w) = ?E; Re(w PY)an . (12b)

Explicit forms for the normalization matrix W and U.e polarization
matrix P are given below. The orthogonality relation between transverse modes of
the same longitudinal wave is given by:

i(knlllq - kniq)(Z-L/z)ei(l-R')w > -

n‘2'q . nq
<aB v

aF e

. '1 2 ] ]
1 -i7N(M-M"1)y© n'2'q, | ng
8ontSag J‘ ydye ¢ (y)o (¥

where 40 is the Fresnel-Kirchoff solution.

3-8




The rapidly oscillating quadratic term in the integrand results from
the opposite curvatures of the forward and backward waves. In order to evaluate
the interior amplitudes ap and ag using the Fresnel-Kirchoff solutions, it proves
convenient to define the following auxilliary functions in Hankel transform
space:

— T — e T

: 2
¢Fn£q (Q) = H [e-1nN(M-1)y ¢nzq] , (142)

. -1 2
¢Bnzq (Q) = H [?1WN(M -l)y ¢nlq] , (14b)

where ¢M%8 = 0 outside the mirror, for x > 1. The Hankel transformed interior
amplitudes are given by Eq. (22). The integral in Eq. (12) in terms of these
auxilliary functions .is:

o ro! 9 \
St Sgg0 S 000 0" T8 o™ (@) (15)

Using Egqs. (2), (10), (14), and (15), it is easy to derive the following form for
the W matrix:

Vs

= £ -
wn'2'q', neqg L' l n'e'q', nig T

nlzqu, nzq‘ * (16)




where

1(k 19 -k )(Z‘L/Z)
Sn|£|q|, nigq = ‘lL' ofL dze n't'q niq
0 -iw(N-N')zQZ/LNN' n'2'q' nLq
X o7 odge og' =9 (Q) 0" 0, (17a)
i(k 1gt + kK )(Z-L/Z)
Torgigr. niq " T of dze 4 M
: ' 2 1 (P ”

0

For large g, it is an extremely good approximation to set T = 0 because of the
rapidly oscillating z dependence of the integrand. When this is done, the theory
js identical to that of reference (9). Note that for q' =g, N' =N and
Eq. (17a) reduces to Eq. (15) due to the orthogonality prooerties of the empty
resonator modes,

The evaluation of the P matrices depends on the specific form for the
nonlinear susceptibility. In general, the calculation involves complicated
overlap integrals. The homogeneous broadening form for the nonlinear
susceptibility is used here,

2.\ -
) 1

g(E) = g, e, c/w (1+]E} , (18)

where !Ef2 has been normalized to the saturation intensity, and 9 js the linear
gain. Couplings between modes of different ¢ are neglected, as well as couplings




between different longitudinal modes. Interference between forward and backward
waves is expected to be significant for unstable cavities(zo). The frequency
dependence for g(E) is not specified, since the laser linewidth is assumed to be
set by the cavity and not the medium,

As in Eq. (16) for W, the integral for P splits into two terms.
However the term analogous to T in Eq. (17b) is no longer negligible bhecause
nonlinear coupling between forward and backward waves leads to a slowly varying
component of the z-integral and hence a non-zero contribution to the integral.
After some calculation, the effective P matrix is found to be

L (rn'IL'q"rnzq)(z'L/z)

Prieiq’, neg Sp208qqr 195 € C/ul (1 dze

X o lyavag M (y,2) £1%9y,0) (19)

Here the I''s are the losses as in Eq. (11), and f is given by:

i s
f1 - a F(.ysz) <1 - A - AZ'BZ i > (20)
(.Y’Z) /AZ-BZ ZIZY 81“18 11(Z-L/2)3FTZ
i i
where
1(81-8 ) s (F1+?.)(2-L/2)
A=1+ % vy.v.e (a.' a. Y e
A B F F
1,
. =+ T)(z-L/2)
LN i J
tagage ) , (21a)
-i{9,-8.) (r.-T.)(z-L/2) , .
B=2l £ y.v.e L PO a1 g [ (21b)
., 1] F B
1,]
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_ ' Here the indices i,j are shorthand for the mode indices n2q. Setting B =0 in
; Eq. (20) is equivalent to neglecting the effects of interference between forward -

and backward waves.
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III. EVALUATION OF OVERLAP INTEGRAL

The solutions to the Fresnel-Kirchoff inteqral equation may be obtained
by well known methods(s'e). The empty resonator modes and eigenvalues used here
were calculated using the Butts-Avizonis asymptotic method, with the following
general form(8) substituted for their F(x,t) function:

12
Fix,t) = k(1] = -i%e IO ® (kg e (22)
k=0

where t = 7NM, and K[.] is the Fresnel-Kirchoff integral transform. The mirror
amplitude ¢ is given in terms of the basis functions by

N
o(x) = 1 + I a F (x) . (23)

Here a, is obtained by finding the roots of a Nth - order polynomial and

. 2
Fa(x) = FOem e ), (24)

where M = % M2k, The eigenvalues and eigenvectors for the six lowest Tloss
modes for both the Neqg = 6.5 and Neq = 7.02 M = 2 resonator were obtained and
stored on disc and used as data for the mode mixing calculation. Only the & =0
case was treated. The losses and shifts for these modes are obtainahle from the
eigenvalues and are given in Table I.

Next the auxilliary functions ¢Fn£q(0)’ ¢B"Qq(Q) in Q-space defined by
Eq. (15) are calculated using the Fast Hankel Transform (FHT) algorithm(21),
which approximates the Hankel transform by a finite transform. Since the
interior values of the amplitudes are determined from the Fresnel-Kirchoff
solution by the application of a finite Hankel transform, the FHT is particularly
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appropriate for this application. The conditions for the accuracy of the FHT are
well known(21), and lead to the following mesh for x and Q space:

X = xoean

Q, = Q,e™"

a = 1/48 (25)
Xg = e-aM

Qg = 8%, )

where 8 is the highest spatial frequency component considered, chosen here to be
2.5 NepesneLs the Towest truncation point {is less than 1/4 of the highest spatial
frequency, and M = 512 is the number of points in the mesh.

Once ¢F(Q) and éB(Q) are known, the Hankel transformed interior
amplitudes are simply:

vionl
o +i=Q"z/NL

3 g(Q2) = vp (@ . (26)

The transverse spatial dependence of the interior amplitudes is found by again
Hankel transforming Eq. (26). For each interior point z, the amplitude is given
as an M-vector. Finally f(x,z) is determined from Egq. (20) and the double
integral in Eq. (19) is evaluated using the trapezoidal rule. It 1is only
necessary to integrate halfway across the cavity due to the symmetry of the
problem.

The number of points in the z axis grid does nct have to be very large.
Numerical solutions of the nonlinear integral equation assume that the nonlinear
gain is concentrated on a small number of thin slabs, and free space propagation




is used in the intervals between the slabs. Free space propagation is given bv
Eq. (26), and it may easily be seen that the use of the trapezoidal rule with
Ng1ap POints in the z grid is just as accurate as the evaluation of the nonlinear
Fresnel-Kirchoff integral transform using the same number of thin slabs, The
single thin slab approximation has been used extensively for low loss
cavities(15‘17’, and has gives reasonahie results in this regime. Consequently,
a relatively small number of gain slabs should be sufficient to describe the
radiation in more lossy cavities., For the present calculation we wused

5 < Ng1ay < 45, and making the grid finer did not change the results

significantly, (see Figure 5).




IV. SOLUTIONS

CW Taser operation may be adequately described by the stable solution
to the equations of motion. The time dependence of the fields in the immediate
vicinity of the stable point specifies such quantities as the frequency
fluctuation, power fluctuation, and the field spectrum. Consequently, we first
consider the stable solutions to Eq. (12).

The determination of the stable point involves solving a set of
coupled, nonlinear equations. This was done in the present case by setting
%i = 0, rewriting the equations in the form x = f(x), then using iteration,
Xj41 = f(xj). This nonlinear mapping can lead to limit cycles or chaotic behvior
rather than a stable point in some cases(zz). The stable solutions to the
resulting n complex equations give the n Y;'s, the n-1 relative phases &; - 5, j,
and the transverse frequency shift &w, for a total of 2n real variables. Only
the relative phases may be determined because the nonlinear term contains E in
the form fEIZ, which is invariant to overall phase translations. The frequency
shift tw is the Tockei value of the transverse frequencies, and is related to the
phases by §; - w = lu,

It may seem surprising that the frequencies should lock together, since
the transverse frequencies are often spaced further apart than the longitudinal
frequency separation ¢/2L, and the susceptibility is purely imaginary, at each
point in space. However, an effective nonlinear index of refraction arises from
the coupling of edge diffracted rays in the center of the cavity. Due to the
complicated phase dependence of the individual modes, the overlap integrals in
Eq. (12) are not purely imaginary, even though the susceptibility is. The
overlap integral coupling between modes is non-local in nature, and this type oF
coupling can lead to frequency-pulling effects even if the index of refraction is
Incally linear. Since changing the relative phases changes ?6{2 and therefore
affects the overlap integrals, transverse mode locking can occur.

JOR RV




This type of mode locking is different from the case where longitudinal
mode frequency differences lock together leading to the formation of pulses(z).
For unstable cavities, the transverse frequencies are spread so irregularly that
it is difficult for population pulsations at the frequency differences to appear.
If there is coupling between a number of different Tongitudinal modes, a case can
be envisioned where all the transverse modes of each longitudinal mode lock
together, and the differences between longitudinal frequencies then lock together
by the usual means.

Once the stable solution for Y; and ei is abtained, the mirror

amplitude is given by o(x) = Z_Yie‘ei¢i(x) and the locked frequency of the
i

transverse modes by w + &w. The output coupling for the stable solution may be

determined from the effective eigenvalue, defined by

LD (27)
eff {99 D> ?

where » is the converged mirror amplitude, the brackets represent a mirror
average, and K is the linear Fresnel-Kirchoff integral transform which propagates
the solution once across the empty cavity. Using the expansion of % in empty
resonator modes and orthogonality properties, one finds

= v.2e21b'

Thsy i, 2
i (T
s

eff (23)

€1

where ; are the eigenvalues of the empty resonator modes. The Tosses are given
by 1 - 3aps 2
y feffl .

To study the fluctuations about the stable point, a set of Langevin
equations may be formed by adding random noise terms on the right side of
Eq. (12). Alternatively, Eg. (12) may be used to write down the Fokker-Plank
equation for the system(23). Due to the complicated nature of the right hand
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side of Eg. (12), neither of these approaches is useful unless one is able to
solve the resulting equations numerically.

Here we take another approach which is approximate, yet provides
qualitative insight into the behavior of the system as well as yielding usefu?
numerical predictions. The equations of motion, Eq. (12), in the vicinity of the
stable point are approximated by a simpler form which may be treated
analytically, that of a Van der Pol osci]lator(z):

:{1. =,y - LB .y.v.2 (29a)

1 : 1
1 JTJ J

Ds:Ys {29b)

Here and are symmetric, and the relative phases are assumed to be fixed. The
¥y, %, 344, and 245 parameters were chosen by numerically evaluating ¥; and 3
using Eq. (12) for a 1large number of randomly chosen ¥; in the immediate
vicinity of the stable point, and then least squares fitting to the form Eq. (29}

with the restrictions that v; = 0 and 3; = w + M at the stable point.

The Fokker-Plank method is used here, and the noise terms added on the
right hand side of Eg. (29) are assumed to be Markovian;

¢n,(t) n (£') D=0 2(t-t") (30a)

nglt) ng(t') 5= R 3(t-t") 130b)

This assumption leads to flat spectra for the power fluctuations, fraguency
fluctuations, and field. To obtain more realistic predictions for the speciral
behavior or these guantities, a Langevin equation treatment should be used.




The next approximation is to consider only the amplitude noise term,
Eq. (30a). By neglecting phase fluctuations, the Fokker-Plank equation can be
e solved trivially since Eq. (29a) may be derived from a potential. Amplitude
fluctuations will lead to frequency shifts through Eq. (29b), which is assumed to
react instantaneously to small amplitude fluctuations.

With these assumptions, the solution to the Fokker-Plank equation is

P(yl...yn) = N°! exp {(Zayz - yzsyz)/ZD} , (31)

2 2

is the vector v;%, 1s the vector a;, 8 is the matrix Bij: and N is a

normalization constant. Eq. (31) can be used to obtain estimates for the power

where vy

fluctuations by assuming that all of the amplitudes except the largest is fixed
at its stable value, and finding the point where P drops 1/2 of its value at the
stable point. The FWHM of the power fluctuations is approximately:

BI/T ~ 23y, /vy m\/B'Dl”Z , (32)
Y181

where Y1 is the largest mode amplitude.

To obtain a rough estimate for the frequency broadening due to

* amplitude fluctuations, only those fluctuations which maintain the fregquency
locking of the modes are assumed to be relevent. The locked frequency itself is

buffeted about by these fluctuations. This assumption enormously simplifies the

‘ calculations and is expected to give reasonable results for the frequency
broadening. In fact, results for the field spectrum E{w) obtained using this

method agreed well with a more exact calculation made for the cases of 1, 2, and

3 modes. Requiring éi - w to be a single constant determines a point in ¥2 space

through Eq. (29b), and the multidimenional distribution P in Eq. (31) is then

Y reduced to a one-dimensional dependence on 8; - w = dw:

i

1

i ( - - \
Plsw) = N1 exp ’(-?uc' S - e lae 1u)/ZD ;. (33)

3-20




Here o and g are the matrices Pij and 81j, o is the vector a;, and u is the 1
vector éi - w - 03 = & - 0. The broadening is obtained by determining "
. the full width at half maximum of P(Sw), and is easily seen to be:

801n2
b =4/ 1, - : (34)
z (o Lo l)i'

i, J

;4 It is necessary to give some value for D in order to obtain numerical
' results. The noise term arises from spontaneous emissions, so one expects D to
be small for large coherent intensities and large if the lifetime of the upper
- laser state is small. Also, D should be directly proportional to the number of
1 atoms in the upper laser state. To determine D, one calculates the total energy
stored in a Van der Pol oscillator driven by a random noise term, nY(t)(Zd). The
total energy is obtained in terms of the power spectrum of nY(t), wny(w). When
this energy is set equal to the energy in the cavity due to spontaneous emission,
wnY is determined and D is then obtained from

D=1W_ (w (35)

ny 2) ’

where w, is the laser frequency. The result, taking into account the particular

definitions of the vy;.o and the fact that Eq. (29) was obtained from a

calculation which used the dimensionless time x = c¢t/2L, is: i
; : ﬁzw 3N i
D=2t , (36)

4n tZLNIs




Here D is dimensionless, as are o, B, and x, Np is the number density of the
upper laser state, t, is the Tifetime of the upper laser state, L is the cavity
length, N the cavity Fresnel number, and I is the saturation intensity. With

the above relation for D, the power fluctuation and frequency broadening may be
estimated.
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V. RESULTS

The main purpose of the calculations was to examine the usefulness of
the idea of expressing the field of a loaded unstable resonator as a
superposition of empty resonator modes. In all cases, coupling between
transverse modes only was considered. Since only one longitudinal mode was
present, this corresponds to what is wusually referred to as single mode
operation, By gradually increasing the number of transverse modes until the
resulting spatial distributions and frequencies of the stable solutions
converged, it was found that a relatively small number of modes were needed for
an accurate description., In addition both the transverse and the longitudinal
accuracy of the overlap integral was varied, with grid density increasing until
the results converged. Finally, an examination of the behavior in the vicinity
of the stable point was examined by using fits to Eq. (29). From these, the
power and frequency fluctuations were estimated.

Two separate sets of calculations were made for cavities with M = 2,
with Negq = 6.5 or 7.02. On the plot of eigenvalues versus eguivalent Fresnel
number Neg for an M = 2 resonator, there is a peak at Neq = 6.5 and a minimum at
Neq = 7.02. At the peaks, which occur near half integral values of Neg, the
lowest loss mode is well separated from the other modes. By contrast, the
minimums occur near integral values of Neq and result from the crossing of two
separate empty resonator modes having the same loss. The two sets of conditions
should pretty well characterize the response of an M = 2 cavity to a nonlinear
gain medium., The magnitudes and phases of the eigenvalues for the Neq = 6.5 and
Neq = 7.02 empty resonator modes are given in Table I.

First, the dependence of the stable solution on gain was examined. The
results for the Neq = 6.5 three mode cavity, with a very coarse integration
mesh n¢y,n = 5 are shown on Figure 1 in the form of a plot of the area-averaged
mirror intensity vs. gain. Three modes were included because the second and
third states have equal 1losses and thus should be considered together. As
expected, the 1lowest loss mode has the largest coefficient, although as gain
increases the coefficients of the lossy modes become somewhat larger. Also shown
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on Figure 1 are the geometric optics area-averaged mirror intensities obtained by
solving the Rigrod equations for the cavity, with couplings between forward and
backward waves inc)uded(13'25). Note that the threshold for the geometric optics
case occurs at g,L = 1.39, corresponding to the geometric optics eigenvalue
] = Ml .5. The threshold for the three-mode solution with full transverse
field variation occured at the lower value g, L = .93, corresponding to the
eigenvalue of the lowest loss mode || = .627. A1l three modes are less lossy
than the geometric optics predictions because diffraction couples radiation from
the edges back into the center of the cavity.

The geometric optics calculation resuits in a larger average intensity
than is found in the more careful three-mode treatment. One reason for this is
that as gain increases, the lossy modes become excited and therefore output
coupling increases. On the other hand, output coupling remains independent of
gain for geometric optics, and therefore one expects larger fields in thi- case.
Also, the area averaging weights the edge region disproportionately, where the
geometric optics wave is markedly larger than the lossy modes. In any case, the
geometric optics results give qualitatively reascuable predictions, as long as
there actually is a stable solution to the problem,

As gain is increased further, oscillations eventually appear in the
three-mode solution and the iteration does not converge, even though the
geometric optics problem has stable solutions for arbitrary gain. This behavior
is much more obvious for the Neq = 7.02 cavity, where there are two modes of
equal loss competing for gain. For this cavity a large number of calculations
were made for the two mode problem with Ngyab = lo_at different levels of gain.
Since these two modes have equal 1losses, the problem cannct be further
simplified. To check that two modes were enough, calculations were done for
various ogains with 3, 4, and 6 modes, and the results were found to be
qualitatively the same as for the two mode problem, because all the higher order
modes had small coefficients.
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At Teast one stable solution was found for each linear gain. The
converged values of Y; and Yo for g,L < 8 are given in Figure 2. Near threshold,
Y1 is largest. As gain is increased, Y, increases continuously, and near 9ol = 6
Yp suddenly becomes the dominant mode. Above this point, and at least until
9ol = 150, Y 1is nearly suppressed. In the region 5.7 < 9ol < 6 two separate
stable solutions were found, implying the existence of bistable operation for
this cavity. It is interesting to note that for unstable cavities, a locally
nonlinear index of refraction(zs) is not needed in order for bistability to
occur. The discontinuity in the solutions near goL = 6 was not found for the
Neq = 6.5 cavity and is typical of bistable systems. The discontinuity is also
evident in the mirror averaged intensities as gain is increased or decreased
through the bistable regime. It is expected that there is a regime of stationary
solutions which joins the two branches of stable solutions, but are unstable to
small perturbations. Our algorithm was not designed to obtain these types of
solutions.

In addition to stable solutions, self-sustaining pulsations were
discovered in the region of bistability. For some initial conditions, the
interative procedure did not converge to a stable point but to a limit cycle.
Limit cycles for g,L = 6 and g,L = 7 are displayed in Figures 3 and 4. Similar
1imit cycles were also found for the four mode problem, so the phenomenon is not
a result of the two mode restriction., The existence of a limit cycle implies
that periodic self-sustaining pulsations between the two lowest loss modes occurs
as the solution traverses the 1imit cycle. It 1is interesting that either a
stable solution or pulsating behavior can occur for the same cavity at a specific
gain, depending on the initial conditions,

As gain is increased, the effective coupling between modes increases.
For small gains, both modes can oscillate at the same time, but as coupling is
increased, a point is reached where one mode is suddenly suppressed. This
evidently occurs near g,L = 6. For larger gains, the solution with both modes
oscillating is not stable and this is precisely where we find the limit cycles
representing periodic pulsations between the two modes. Both modes are trying to
oscillate at once, and the strong coupling leads to instability.
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X Y Figure 2. The stable solutions for the amplitudes of the lowest loss modes

of the Neq = 7.02 cavity for goL < 8. Two stable solutions were
found in the region near goL = 6.
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Figure 3. A 1imit cycle repr.. nting scif-sustaining pulsations for the
two mode Neq = 7.02 cavity at goL = 6.0.
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Figure 4. A limit cycle representing self-sustaining pulsations for the

two mode Neq = 7,02 cavity at gOL = 7.0.




Next, the integration accuracy and the effects of including more modes
into the calculation were examined. Figure 5 plots the mirror amplitude (x)
for a cavity with Neq = 6.5 with the number of longitudinal integration points
set at ngy,, = 5, 15, 25, and 45. Also given in Table II are the amplitudes and
phases for various integration meshes. Evidently, increasing the accuracy from
Nglab = 15 leads to little noticeable change in the results. As expected from
previous thin slab calculations where as little as one slab was used, great
accuracy of integration in the longitudinal direction is not needed. For all of
these calculations 512 transverse points were used. These are not spread
uniformly, but are concentrated near the center of the cavity due to the
exponential Gardiner transformation used in the FHT algorithm(ls’. This number
of points was adequate to treat the transverse field dependence of cavities with
N -~ 10.

It was expected that a small number of modes would be necessary to
describe the nonlinear behavior, and indeed for most cases three to four modes
gave essentially the same results as six modes. Table III gives the amplitudes
and phases for both cavities considered at qoL =5 with the number of modes
increased from 1 to 6. The modes are ordered according to loss, and it is
evident that the more lossy modes have smaller amplitudes. For the Neg = 6.5
cavity, the lowest loss mode is by far the largest with about 94% of the energy.
The Yg parameter for Neg = 6.5 appears to be quite large, however this represents
only about 3% of the energy. For the Neq = 7.02 cavity, the first mode has 59%
and the second 36% of the energy, more evenly distributed since the coupling is
not quite strong enough at g,L = 5 to suppress either of the lowest loss modes.

To demonstrate the effect of gain on the distribution of the cavity
radiation, Figures 6 and 7 compare the six mode g,L = 5 result for (¢ with the
empty resonator g,L = 0 results. The radiation in the Neq = 6.5 cavity, with 94%
of the energy in the lowest loss mode, is little affected by the gain. The main
difference between the curves is that the distribution in the saturable gain
medium is more strongly suppressed near the mirror edge. The bumps and valleys
of the civves match quite well, showing indeed that the empty resonator modes
give a good description of loaded cavity behavior. O0On the other hand, the
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Table II. Amplitudes, relative phases, and frequency shift for the six mode
Neq = 6.50 cavity for a range of z-integration grids.
Nstab 2
15 25 35 45
! ¥q 1.532 1.350 1.364 1.359 1.359
% Y, 0.214 0.127 0.118 0.121 0.121
i
} Y, 0.105 0.130 0.141 ; 0.142 0.141
Ya 0.089 0.068 0.061 | 0.064 0.064
' Vg 0.291 0.266 0.265 0.265 0.266
|
| e 0.062 0.020 0.021 i 0.020 0.019
% 8,-21 148.52 160.14 170.67 168.38 168.03
83-84 -120.39 -98.,33 -105.31 -103.87 -103.77
84721 150.15 131.58 132.75 131.98 131.70
8c-9 -88.39 -86.08 -85.20 -85.26 -85.26
8g-%4 -114.47 -106.64 -109.33 -111.25 -110.50
2w(c/2L) -0.222 -0.223 -0.208 -0.209 -0.209
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Figure 5. Plots of the mirror amplitudes !¢{x) for the six mode Neg = 6.5
gOL = 5 cavity with 5, 15, 25, and 45 points in the z-interpolation
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Figure 6. The six mode mirror amplitude '¢(x) for the Neq = 6.5
gOL = 5 cavity with 45 points in the z-integration grid is

compared with the Towest loss mode of the corresponding
empty resonator (dotted line).
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Neq = 7.02 solution exhibits significant deviations from the empty resonator mode
as expected since the two lowest loss modes are of equal importance. Evidently
the empty resonator modes best characterize loaded cavities when a single mode
absorbs most of the energy.

Next, the effect of nonlinear gain on frequency pulling and output
couplings was considered. These quantities are determined by cavity geometry and
diffractive effects for empty resonators. The frequency shift of the Neq = 6.5
cavity with g)L = 5 was &w= -.20 c/2L, and the Neq = 7.02 cavity was frequency
shifted a much larger value &w = -,51¢/2L., In the first case the frequency
pulling is much larger than the empty resonator diffractive frequency shift found
in Table I. The large frequency shift for the Neq = 7.02 case, equivalent to 1/2
of the longitudinal spacing, is typical for cavities operating near a crossing of
eigenvalues. It is apparent that the saturable gain medium can affect frequency
pulling at least as much as diffraction.

The effective output couplings for the two cases, given by Eq. (24),
were 72.8% for the Neg = 6.5 cavity, and 66.3% for the Neq = 7.02 cavity. By
comparison, the geometric optics loss in both cases is 75%. Note that the
Neq = 7.02 cavity has losses determined almost entirely by the two crossed modes
with 64% losses. On the other hand, the Neq = 6.5 lowest loss is only 61%, while
the effective loaded cavity losses are 73%. Coupling to the higher order modes
greatly increases the losses in this case, and it is not understood why a similar
effect does not occur for the two mode Neq = 7.02 cavity.

To determine the fits to the Van der Pol form in the vicinity of the
stable points, Y;'s were varied randomly in a region within 1% of their stable
values, and the phases ; were kept fixed. For each set of amplitudes chosen
this way, the ?1 and éi were calculated using the overlap integral procedure. A
large number of these points enabled the &, 8, o, ¢ parameters to be determined
by least squares fitting.
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For this procedure to give reasonable results, the amplitudes of the
modes should vary less than 1% from their stable point values when noise
fluctuations are allowed for. From Eq. (32) it can be seen that in order for the
amplitude fluctuations to be less than 1%, D must be less than 104, D s
determined from laser parameters by Eq. (36), and using some typical parameters

Y = 10.6
N2 = 6,0 Torr
t, = 2.2 x 10'4 sec
(37)
N = 8.67
Is = 1 watt - cm‘2
L = 100 cm

results in the value D = 1.34 x 10'9, which implies fluctuations much less than
1%.

Consider first the case of only two competing modes. The fitted
parameters for the two cases at g,L = 5 are given in Table 6. The stability
analysis of two mode operation involves the effective gain parameters %q' and
a5', and the coupling constant C defined by(z):

1T % 7 Bp%/3y
= ap - By /8y (38)
3129217811822

For the Neq =6.5 cavity, the parameters in Eq. (38) are given by
C=223x1073, x'=.37, and o =.212, Since (<1, linear stability
analysis implies the existence of a stable point with both modes oscillating at




Yy ® 1.526 and Yp = .170. This is the stable point that is actually found. On
the other hand, the Neq = 7.02 cavity has C = 4,43, o' = -.520, and 02' - .249,
This is strong coupling, and the two possible stable solutions each have one mode
totally suppressed. The actual solution found has both modes oscilliating with
Yy = .832 and Y, = .771. According to linear stability analysis, this solution,
though stationary, is not stable with respect to small perturbations. The fact
that our solution is indeed stable indicates that the fit to the Van der Pol form
has limited usefulness when both modes are oscillating. For larger gains, one of
the Neq = 7.02 modes was indeed suppressed and the Van der Pol fits were
consistent.

The Neg = 6.5 cavity with g,.. = 5 appears to be well described by the
Van der Pol fit in the vicinity of the stable point. The parameters for the 1,
2, 3, and 4 mode calculations for this case are given in Table 6. With D chosen
as 0 = 1079 power fluctuations are found to be of magnitude &I/1 ~ 1074,

The linewidths are given by the F.W.H.M. values of the P(§w) curves,
and may be found directly from Eq. (31). The results for both the linewidths and
frequency pulling are given in Table V. Increasing the number of modes
considerably changes the single mode results, even though over 90% of the energy
is concentrated in the lowest loss mode. The frequency broadening effects do not
change much as the number of modes becomes greater than 1, indicating that a
description with just a few modes gives reasonably consistent results. Note that
The frequency broadening effects considered here arise from amplitude
fluctuations and mode couplings, not phase fluctuations.
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Table V. Frequency pulling and frequency broadening, in units of
c/2L, for the Neq = 6.50 cavity. The shift is determined
by the stable solution, and the broadening by the time
dependent behavior in the vicinity of the stable point under
the influence of a random noise term.

| Pulling Aw(c/2L) Broadening Aw(c/2L)
n=1 -.072 4.39 x 107° 4
n=2 -.022 33.24 x 1070 |
n=3 -.023 20.32 x 107°
n=4 -.018 21.45 x 1078
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VI. CONCLUSIONS

The use of series expansions in empty resonator modes to describe
lasers with nonlinear gain media has been examined. The method hinges on the
evaluation of the overlap integrals, which involve double integrals over
longitudinal and transverse dimensions. It has been found that ten or twenty
grid points give reasonable results for the Jongitudinal integration, while a
much larger number of points are needed for the transverse integrations. This is
in accordance with thin slab approximations, which have been shown to give good
results for a relatively small number of slabs.

Even though the overlap integrals are difficult, this method s still
faster than direct solution of the nonlinear integral equation. Assuming that
the empty resonator modes are known in advance, the overlap integrals for one
iteration involve np. 4. X Ntransverse X Ng1ap COmplex additions. By contrast,
one iteration of the nonlinear integral equation involves 3 x N¢y,, fast hankel
transforms, or 6 x Ng1ah X Nipansverse X 1092(4Nirancyerse) complex
multiplications, and an equivalent number of complex additions. Since
multiplications are about ten times more time consuming than additions and
Nmodes 3, it is evident that the series expansion approach using overlap
integrals can be much more numerically efficient than direct solution of the
nonlinear integral equation, Provided the series approach also gives results
equivalent to the more exact integral equation method, a significant increase in
efficiency may be achieved together with more direct physical interpretation of
the solutions.

The results appear to be best for cavities operating far from the
crossing points of the eigenvalue plot. In this regime, the lowest loss mode is
well separated and the series expansion gives reasonable results with the largest
part of the energy is concentrated in only one mode. A three or four mode
description was sufficient to characterize the response of the resonator to a
nonlinear gain medium, and the radiation pattern was qualitatively and
quantitatively quite similar to that of the empty resonator mode. By contrast,
the effective output coupling, frequency pulling, and linewidth varied
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considerably from the empty resonator results. The nonlinear effects of the
additional lossy modes are to increase the output coupling and to both broaden
A and shift the laser frequency.

In general, the solution to an equation with a nonlinear source term
cannot be expressed as a linear superposition of solutions to the homogeneous
equation. Only when one of the resulting expansion coefficients is much larger
than the others should the series expansion be considered as a numerically
accurate solution to the nonlinear problem. 1If one is interested mostly in
quantitative results, the method of using series expansions in empty resonator
modes should be used only if one mode dominates.

However, the series expansion approach can always be used to

characterize the qualitatiave behavior of high energy systems. In particular,

| this approach is the Tlowest 1level of approximation at which pulsations,

i bistability, and chaotic behavior involving competition between transverse modes

can be expected to occur. The geometric optics approximation cannot lead to this

type of unstable behavior, and the nonlinear integral equation is not applicable

in the region of chaos or pulsations. Consequently, the equations of motion of

the laser using series expansions in empty resonator modes may be the best
available way to characterize such systems.

We have not considered here pulsed mode operation, or frequency
dependent gain. Pulsed operation may be treated by allowing the expansion
coefficients to have a slowly varying z dependence, which adds a z derivative to
the equations of motion(g‘. More complicated time dependence may be treated by
directly solving the equations of motion rather than simply determining the
’ stable points. Frequency dependent gain complicates the problem because the
. b equations are no longer first order in time derivatives. These difficulties have

' been resolved for lasers with stable cavities(27) and therefore the same methods
should be applicable for unstable resonator cavities.

"'
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