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FURTHER STUDIES ON

NONLINEAR ADAPTIVE OPTICS

by:

A. Elcl, J. Nagel and D. Rogovin

Science Applications, Inc.
1200 Prospect Street

La Jolla, California 92038

Abstract: This work examines interband transitions near the bandedge, alkali type

ious embedded in dielectrics, and two-photon resonances in three-level systems

for the purpose of four-wave mixing and phase conjugation at the iodine laser

frequency. It also examines the time-dependent properties of unstable resonators

with a saturable gain medium. The third order susceptibility and the conjugate

reflectivity of semiconductors are calculated. Near the band edge the

reflectivity is enhanced. The unstable-resonator field is represented in terms

of a series of empty resonator modes, and a set of first order in time
differential equations for the exapansion coefficients is achieved. There is a

stable solution and a bistable one, with self-sustaining pulsations.,
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I. STATEMENT OF WORK

a. Examine non-linear materials, particularly liquids and gasses for

candidates for high efficiency, degenerate, four-wave mixing media for use with

an Iodine (I*) laser. Several such candidates are:

1. Nd-YAG

2. 1*

3. Two-photon resonant dyes

4. Two-Photon resonant metal vapor

5. Excited state alkalai metal

b. Consider the above materials and such others that may arise in tne

study, or be suggested by the Air Force Weapons Laboratory.

c. Consider systems that might emulate a potential non-linear medium

at a frequency that is experimentally attainable, i.e., a D.F. frequency.

d. Modeling of the media selected will be developed in conjunction

with experiments at the Air Force Weapons Laboratory.

* be. Analyze the effects of transverse mode competition in unstable

' Iresonator lasers using Lamb Theory of the Active medium and actual unstable

resonator mode functions.
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II. NONLINEAR ADAPTIVE OPTICS SUMARY

The results of our work on nonlinear adaptive optics are given in two

papers: "Novel Approaches to Nonlinear Adaptive Optics at 1.31u", which will be
published in the Proceedings of the International Conference on Lasers '80, New

Orleans, and in "Four-Wave Mixing Near the Band Edge", which is submitted for
publication. These papers are reproduced in this report as Appendices 1 and 2.

We examined two-photon resonances for the purpose of four-wave mixing

and found that the third-order susceptibility is typically two orders of

magnitude iess than what is practically desired. We therefore searched for

alternative means, particularly for phase conjugation at the iodine laser

wavelength, 1.3p.

An alternative method uses the interband transitions near the band

edge. We found that the reflectivity for conjugate waves is resonantly enhanced
neat- the band edge. If the frequency of the light is near the band edge, large,

third-order susceptibilities and reflectivities are obtained. To match 1.3i, a

particularaly promising material turns out to be (Gax Inl_x)As, which is a

semiconductor compound with a direct band gap at the center of the Brilloin zone.
Th size of the gap can be varied by changing the alloy composition. It is

therefore possible to match the band gap and the iodine laser frequency as

closely as desired. The reflectivity, as it turns out, has a simple Lorentz
factor near the band elge, which leads to the resonant enhancement. When

x - 0.6, the (GaxIni.) As band gap approximately matches 1. 3 p. The third order

* susceptibility is then about 10- 6 esu, which is a substantial amount.

The calculations we have performed are sufficiently general so that

they can be adapted to other semiconductors.

We also considered another method tr, match 1.3v with a single Photon

resonance of a nonlinear medium. Foreign atoms embedded in solids or liquids
strongly interact with their surroundings and therefore, t"e relative spacinq of

4 their atomic levels can be drastically altered. By choosing the proper solid or
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liquid, and a foreign atom, it is possible to match 1.3p with an atomic

transition. For this purpose we have considered alkali ions embedded in solid

dielectrics. A promising system like this has an additional advantage. Most of

the absorption at 1.3-p is due to the Na' themselves. By controlling the number

of Na' in the sample, it is possible to have a system which can easily be

saturated at 1.31.
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III. TRANSVERSE MODE COMPETITION IN GAIN DRIVEN UNSTABLE RESONATORS

The analysis, calculations, results and discussion are presented in

Appendix 3, which is a preprint of a paper submitted to the Journal of the

Optical Society of America. Below we summarize the results of the project.

The calculation hinges on the expansion of the field in an unstable

resonator with a saturable gain medium in terms of a series of empty resonator
modes. Substitution into the Maxwell equations yields, after some reductions, a

set of first order differential equations for the time dependence of the
expansion coefficients. The diffraction losses are included in a natural way and

the results are physically transparent.

The equations are coupled together by overlap integrals involving the

empty resonator modes and the nonlinear, field dependent susceptibility. The
integrals range over longitudinal and transverse coordinates, and hence are quite

complicated. However, if the empty resonator modes are assumed to be known in
advance and can be stored on disc, the calculation is much easier than the
numerical evaluation of the nonlinear Fresnel-Kirchoff transform. The necessary

accuracy for the evaluation was determined, and it was found that the grid size
requirements for the longitudinal integration were two orders of magnitude less

stringent than for the transverse integration.

Calculations were carried out for M = 2 cavities with Neq = 6.5 and

Neq = 7.02. These two values of equivalent Fresnel number were chosen because
they are the locations of a peak and a crossing point of the eigenvalue versus
equivalent Fresnel number plot. The lowest loss empty resonator modes for the
Neq = 6.5 cavity is well separated from the others, and thus we expected that
this mode would dominate the laser operation. In the calculations this indeed

occurred, with about 95% of the energy concentrated in the lowest l'ss modes.
The higher order modes were found to affect strongly the output coupling,

frequency pulling, and linewidth of the laser, but not the distribution of

energy.

i>. III-
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By contrast, for the Neq = 7.02 cavity the two lowest loss modes have

equal losses, and the posibility of unstable behavior was considered. Bistable

operation was found to occur in a small region of pumping strenqths, with stable

solutions on either side of this region. In the region of small gain both modes

were found to be oscillatory, and above the bistable regime one of the lowest

loss modes was suppressed. In the region of bistability itself, self-sustaining

pulsations were found to occur for most initial conditions of the laser system.

The iterative solution of the equations of motion did not converge to a stable

point in these cases, but to a well defined limit cycle. This type of behavior

is well known in laser systems and is a result of nonlinearity. This is the

first demonstration of nonlinear oscillations arising from competition between

transverse modes.

The formulation of the equations of motion of unstable laser resonators

in Lamb Theory form has been shown to be useful both qualitatively and

quantitatively. Physically, the idea of expressing the laser energy distribution

as a superposition of empty resonator modes is appealing. Bistable behavior and

self-sustaining pulsations result naturally from this model. The numerical

results are expected to be most accurate when one of the modes manages to

suppress all the others. Quantities such as frequency pulling, laser linewidth,

and output coupling are given, as well as the stable distribution of radiation in

the cavity.
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NOVEL APPROACHES TO NONLINEAR ADAPTIVE OPTICS AT 1.3u

A. Elqi and D. Rogovin

Science Applications, Inc.,1200 Prospect Street,La Jolla, CA 92038

.bstract

In gases degenerate four-wave mixing at 1.3u poses unusual difficulties due to the
lack of suitable systems. However, nonlinear adaptive optics at these wavelengths appears
to be quite promising in solids.

introduction

Recent advances in the technology of the chemically pumped atomic iodine laser have
generated an interest in the resonantly enhanced phase conjugation via degenerate four-
wave mixing at 1.3u. Previous studies have shown that the reflectivity of the conjugate
waves is sensitive to frequency detuning from an allowed atomic or molecular transition.
For instance, the r T.ectivity for NH3 is essentially zero a few wavenumbers from an
allowed transition. The fact that one needs to work near an allowed transition limits
drastically the number and type of materials one can use as conjugators at l.3u.Unfortun-
ately, there do not appear to be any known gases which are suitable for resonant
degenerate four-wave mixing at 1.3u, at least not in thermal equilibrium. Althouqh
resonant 1.3u-transitions do occur between some excited states in atomic gases, their short
T times as well as the additional difficulties due to maintaining the medium in a
s~ecified nonequilibriuzh state make their use impractical. Two-photon resonances and the
use of neutral iodine are also impractical as discussed below.However, there are solid-
state systems which are quite promising; particularly the following two:

(1) The semiconductor alloy (Ga In 1 )As with x - 0.6,
(2) Atomic or molecular impuritfes -xembedded in solid dielectrics.

The following two sections are devoted to the discussion of these two systems. In the
remainder of this introduction we discuss briefly the limitations of the use of two-photon
resonance and neutral atomic iodine.

To examine the two-photon resonant enhancement of degenerate four-wave mixing in gases,
we consider the three-level configurations depicted in Fig. 1. In Conficuration A, levels
0 and 2 are not coupled by radiative transitions and w0 # wl # w , but 2w = w -w • if
the atom or the molecule is initially i ts ground state, then the third-order suScepti-
bility at (d is approximately given by 2)

()M) (2A')-zN1W1 1 lel (wo-wi)(w-wo+iT)-2(w-wl+i7 )-'(2w-w0-w1+iY) 1. (1)

Typically,Y ~ 2x10 rad.sec at 1 torr (3) and u u 1 Debye. Let w - 1 eV and
2w 0wo+wi , then at one torr, 12 1o

Ix (wl 6x0 esul.(w ) -w I I (w )2 +4Y 2 3/2 (2)

2

. FIG.i. Two-photon resonance in three-level systems.
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The overall Irequency factor in Eq.(2) is on the order ?5)unitv if u is sianificantiv
different from w . To achieve useful reflectivities, lI should b& o,the order of
10 "esu or larger. To increase the right hand side of (2) to 10 esu requires
ww w oww0, in which case single photon transitions are important and Eq.(1) does not
apply. Besides, in that case one has found a system whose level structure matches iodine.

In Configuration B , levels 0 and 2, and 1 and 2 are coupled by dipole transitions;
0 and 1 are not. In this case we assume that 2w= wo- wi; then. at one torr,

Ix 3) (6xl0-14esul.(wo -wJ )2( wo+ wi)-2 (3)

This is also about two orders of magnitude smaller than the minimum value needed.
The impracticality of neutral iodine comes

from the fact that the lasing levels of atomic
iodine are Tjpled by magnetic dipole

transitions . Since magnetic dipole
transition rates are smaller than electric 2dipole transition rates by a factor of (v/c) 2 ,

the corresponding susceptibilities are related by

3) 4 3(
M(W),f (v/c) 4  E)(")(4

Since (v/c)l -30 for outer electrons, it is
clear that one caninot achieve useful reflectivities
using atomic iodine. I EG

use of (Ga In1  )As

When w matches the band gap of a direct gap 2
semiconductor, the four-wave mLxing is resonantly
enhanced. One can exploit this fact for phase
conju-tion at 1.3u using (Ga xIn )As alloys. V 1,2
They are direct gap materials an -fhe 7ig of the
band gap depends on the composition x. ' To a dood
approximation one can write

EG(x,T)=g0 (T)4gI(T)x+g2 (T)x 2 (5)

At T=300K, g =0.36eV, g =0 77 eV and a2 =0.31eV.
It is theref re possibli to make the direct
gap as close to 1.3u as desired, either from FIG.2. The band structure.
above or from below, by a judicious choice of
the composition, and thus resonantly enhance x(
Further fine tuning is provided by temperature since a's are temperature dependent. 3

In order to obtain an estimate of the conjugate wave reflectivity, we calculate NI
using the band structure shown in Fio.2 for (Ga In ,As. To simplify the calculation we
assume that (a) all waves are polarized in the 1-diction; (b) condtuction and valence
electrons have the same lifetime -Y; (c) the dipole moment is given by

cv -ie(m0EG -p cv (k=0) (6)

where m is the bare electron mass, c is the hich freauencv dielectric constant and C
is the ?nterband momentum operator; )intraband transitions are negligible and only
those interband transitions which are near the band ap as shown in Fig.2 need be taken
into account; and finally (e) band energies are parabolic:

2 2 2m2 for v--1,2

E ) (E,/2).( 2k 2!2mz), E (k)=-(EG/2)-(A2k 2 '2m ) , m for v=, 7

X( - is given by (see Ref.2)

(3) -3 4  
L 21 2

:dk V [f(Ev)-f(E )][4(Lvc-L ( ' L Lvl 2
) i2)-(L -L

cv V c vccv y cv1 cv vc
(8)

P° 1-2
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where L -(M-E +E ,+iy) "
, f(E )-[+exp8(En-E )1l 8-(k T) -1 , and E is the Fermi

energy. (3 x-caR b separated .ato a temperatun-depenie&t and a teanerature-dependent
part. The integrals for the temperature-independent part can be evaluated exactly.
Designating the result as x63) , one finds

(X3W)({X0 ( (VA)-l [l+(2n_/ w)+(iY/A-)+(a_+iy)(Mw/2+jy/4)-l

-(l+[+)_I[I+2SI+(Xw+iy)- +(iy/&)+(-A-iy) (Xw/2+iy/4)_l,

where (2 W )1 u mm) 3/2(m+mv) - 3 /2 , Q .[(E -4(w)2Y2]1/2 and S+-(EG!(W)++ .whr XO(r cv 'Ev G G

For small detuning from EG , IEG- WI/EG"<1, the + terms in (9) can be neglected and

0 (3)(W} = XO(-&3/2 )- (A -iy). (10)

In particular,

(3)1/2 +212i×3 (w)l = 2)0( 
1 /2  /2X[EG-X+ E )22-1/2 (11)

Thus, I(3 ) 1 rises sharply when w increases above the band qap as shown in ig.? 3)
The teaperature-dependent part of the susceptibility, which we designate as X

cannot be integrated explicitly, although an approximate form for IE -wlI<<E ca be
obtained readily. At thermal equilibrium,Ef is nearly in the middle Rf the g~p and thus
Ef << EG . Using this fact, one finds

r (m62mv)- 3/2 exp[(E G /2-E (12)

Idy y 6[(y 2+EGw)22 -2 (exp[-6mvy 2(m+mv)-l]+exp[-Smzmvy 2ml(m+.mv)-l}

15(1+i) (kBT)7/2[e-(EG/2 "Ef) e-S(EG/2+Ef)J10 2!_

(V -2- 
1  x 3 )  4 3/2X3y [ ( BG-)( )2 +y2 2

l cv14(mt+mv) 1/2(2mtmv)_ i 2(m.m)\

2611/2 In obtainina (12), we neolectel (E.-(w) ory which appear together with y inthe
numerator, and also used the fact that v<
E or Xw. It is clear from (12) that

()7/2 -(SE/2(3) 1/! (3);,(kBT/Y) e- G/ 2  
(13)

t (3)
and s 5 t(u is extremely small compared
to X due to te exnentia factor. For

1 (263/2) all intents, X = " (3)
We can now estima~e x . Let us consider

10- a particular composition with x=0.6 at

I T=300K, for which E =0.95 eV and thus matches
l.3Lu. The other parimeters areF ,I0, m.0.1m0,
m .0.6m andl, =10 Debye. T e finiie
lOfetim for eictrons and holes arises
mainly from phonon sytteri~ys and is on the
order of t=H/ 10" -10- sec. Usina
thTI valuer one fids that at l.3 u,

I0-, I ri.#10 - 4x10 - esu. These are extremely
promisino values.

-. 0 -4.0 -2.0 0 2.0 4.0 6.0 Since both object and con'uoate waves are
6damped in a lossy medium, the reflectivit,

also depends on absorption even when oumv
waves are assumed to bl2,ndamped. The ref-

FIG.3. The third-order susceptibility lectivity is oiven by
--1 as a function of the frequency

detuning =(E G- W)/.

1-3
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n-licsinUCcoCLC + asin~il,

le?- 16ir2, 2r47r I T Xj(3), (14)

4T 2,
where t is the length of the nonlinear mixing region, n0 is the index of the refraction,

I and I are the intensities of the two counterpropagatina pump wavgjq a is the absorption
clefficiint. At room temperatures a can be written approximately as

a.I a0-a(EG-X) for Xw<EG

a 2 _ ME G  for d>EG  (15)
where a fl 3x103 cm-, a ]14 cmeV1 and m2 =6xl0 3 cm1 *V 1 "2 . It is clear that
absorption will be high Ind ?g will 6usually be in the absoiptive regime, i.e.1 will
usiallyibe imaginary. Let 1x I10 esu and 11=I2-1 MW/cm , then Ic1-260 cm .% is about
10 cm . .hen is imaginary n is independent of t and is given by

n=IK 12/(2a)2 = 2x10- 2- 2% (16)

This corresponds to a reasonably efficient phase conjucation.

impurities embedded in solid dielectrics

It is clear from the above discussion that if tb¢r linewidths were smaller, solids would
be extremely efficient for f E.w ve mixing. One approach for achieving narrow linewidths
in solids is to use discreteA xit couple weakly to phonons compared to continuum states
of the energy bands. For examole, when an atom or an ion is embedded -n a dielectric,
the lifetimes of the low lyina states are usually on the order of 10 sec. On3i can also
use the fact the atomic energy levels are reduced approximately by a factor c , Where
co is the static dielectric constant, to tune some atomic transition frequencies to 1.3u
by choosing e appropriately.

For the sate of concreteness we consider alkali type ions embedded in semiconductors
and insulators in the followino. However, the basic idea can be extended to neutral atoms
and other types of ions in hiahlv degenerate solids or qlasses. Also, the system whose
discrete states are to be used need not be an ion or atom; it could equally well bq a
defect in the solid.

The discrete energy levels of an alkali ion can be approximated by
1e)

En - EG - R(Z-Z'+1) 2e2(n-)-2 (17)

where R is the Rydberg energy, Z is the nuclear charge, Z' is the number of electrons,
n is an integer and a is the quantum defect. The energy levels are measured from the
edge of the valence bands. For resonant tuning we require l.3u-Kw-0.95eVEnEn , for

Ssome n'>n. Thus,

0 (Z-Z'+l)2 [(n-6)2 - (n'- )2 (18)

One way to proceed is to choose a specific atom or ion, as well as a particular transition
* and then solve for c

E 0 - 38(Z-Z'+l)ln..IKlln-' -i (n'n) 1/2 (n+n"-2) 1/2 (19)

Below we list the values of co given by Ea. (19) for a number of ions.(8)

I1
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n n. E 0

Na+: Z-Z' 1-2, A-1.4 1 2 12

1 * 19

2 3 12

2 * 13

Al... Z-Z'+1-4, A-0.9 1 2 68

1 152

pP+: Z-ZV+16, A-0.7 1 2 99

1 M 76

As static dielectric constants qo, all of these are reasonable values. In small gap mater-
ials (Eo 0.2eV) c0 is usually large. For insulator and hich gap materials co  is onthe orde? Of 1 0.

At first glance, it may seem that there would be strona absorption in small gap materi-
als like PbSe or PbTe alloys, since )w>E and thus they would have negligible reflec-
tivity. However, leV is so large compared tR the gaps of these materials that the tran-
sition would fall onto very hiqh conduction bands. By a slight adjustment of the composi-
tion, the relative position of these bands can be altered and absorption decreased. Eo
can also be adjusted by varyinc the alloy composition.

The numbers for NaT are quite close to pure Si and CdS. Si has c 11.8. CdS
is an insulator and has E =2.4eV. CdS has an added advantage in that abs~rption at 1.3
would only be due to the ipurity sites themselves, and hence these transitions can be
saturated for sufficiently low impurity densities.

We acknowledge the support of AFOSR for this work.
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FOUR-WAVE MIXING AND PHASE CONJUGATION NEAR THE BAND EDGE

By

A. Elci and 0. Rogovin

Science Applications, Inc.
1200 Prospect Street
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(I

ABSTRACT

We discuss degenerate four-wave mixing and phase conjugation

•near the band edge of direct gap semiconductors and show that

* .the reflectivity for conjugate waves is resonantly enhanced

.* in the vicinity of the band edge. We also compare the quantum

mechanical results with the classical Orude model.

2
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I. INTRODUCTION

There is presently a considerable body of work on phase conjugation

via degenerate four-wave mixing in semiconductors. (1-6) It has been moti-

vated partly by the availability of a variety of frequency ranges, and partly

by the relatively high efficiencies observed in these materials. This paper,

too, is concerned with degenerate four-wave mixing. We consider a direct

gap semiconductor and calculate the contribution of interband transitions

near the band edge to the third order susceptibility X( = W + W -

We also consider the absorption coefficient a in the semiconductor in order

to obtain a realistic expression for the conjugate wave reflectivity n.

There are two reasons for the interest in a band-edge mechanism

for four-wave mixing. First, X(3) is resonantly enhanced as l1w increases

;o EG, the band gap. As a result, n is also enhanced despite increased

absorption (which adversely affects phase conjugation7'8). Second, a band-

edge mechanism offers a greater potential for frequency tunability, since in

many semiconductor compounds such as Ga lx (InAs) x, Cd -x(HgTe) x, PblIx (SnSe) x,

etc., EG can be continuously varied by changing composition.
(9 )

A number of authors have discussed band-edge mechenisms for four-

wave mixing. (1,3,6) Among these, R. K. Jain, et al., (13) have considered

a mechanism which is similar to what we have in mind. They imagine creation

of an electron-hole plasma in the semiconductor and use a Drude model to

calculate X In this paper, however, we perform a density matrix cal-

0i culation to provide a more precise picture of the frequency dependence of

a

2-2

2 ~ e A



X(3) and . Also, our results apply to frequencies that are lower than EG '

A detailed comparison of our results with those of Ref. 1 is given in Section V.

Finally, we also note that M. A. Khan, et al.,(4) have studied a case in which

X13 ) is resonant for hw \ EG because of a nonparabolic band structure. This

nonlinear process is quite different than the one taken up here.(1 0) Here,

we are concerned with an ordinary and direct electron-field coupling via

interband transitions.

In Section II, we describe the band structure used in the calculation.

It is a simplified version of the band structure of III-V compounds, chosen with

the phase conjugation of iodine laser beams in mind. In Section III we give

the general results for a two-component plasma in the semiconductor. In Sec-

tion IV, the general results are specialized to small perturbations from

thermal equilibrium. Finally, in Section VI, we discuss the reflectivity of

a spacific direct gap semiconductor, Ga lx(InAs) x '

The main result of our work is that the reflectivity of conjugate

waves has a resonance in the vicinity of the band edge. The precise position

of the resonance depends parametrically on the sample thickness. The resonance

shifts to lower frequencies for thicker samples, as one might expect from the

P depletion of the pump waves. If the depletion of the pump waves are negligible,

as when the semiconductor is saturated, then the reflectivity is nearly constant

above the band edge and decreases rapidly below it, independently of the sample

thickness.

p
4
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II. BAND MODEL

To be definite, we assume a band structure as shown in Fig. 1,

which is typical of III-V compounds. It has one light hole band, two

heavy hole bands which are degenerate, and one conduction band. To

simplify the calculation we also assume that the bands are parabolic:

E/2 (k) 2+ (1a)E()=(EG/2) +(T 2k2/2mc*) (a

Ev (k) - (EG/ 2) T(i2k2/2mv*), (v=1,2,3) , (Ib)

where the m*'s are the appropriate effective masses near the center of the

Brillouin Zone. For the calculation one also needs the dipole matrix element

for the interband transitions. It is related to the more familiar interband

momentum matrix element by the following relations:

-12

= - i=mof ,HJ (2b)

iefim- 1 -12 ( (2c)
cv = / c_E V)

Here z is the high frequency dielectric constant, m0 is the bare electon

mass, and H is the one-electron crystal Hamiltonian. The factor c1

in (2a) comes from high frequency screening of electrons and renormalizes

the bare electronic charge. Since our concern is with the band edge, the

4
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right hand side of (2c) need be evaluated only at k=O. cv can be taken

as constant.

We are interested in those situations in which the semiconductor

is either at room temperature or at a temperature which is not too low

relative to room temperature. At these temperatures the absorption edge

is smoothly broadened to frequencies which are considerably below the

band edge, due to interactions among electrons, holes and phonons. To

take into account this broadening, we assign average linewidths Yc and yv

to electron and hole states, respectively. This procedure should be

adequate to describe the actual situation for intermediate and room tem-

peratures. However, for lower temperatures, there are well defined discrete

excitonic peaks and one must take the discrete nature of these peaks into

account. This requires considerable modification of the calculation and

is reserved for another publication. Here we confine ourselves to the

regime in which discrete excitonic peaks are not observable.

2
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III. THIRD ORDER SUSCEPTIBILITY, ABSORPTION AND REFLECTIVITY

The geometry of degenerate four-wave mixing is shown in Fig. 2.

We assume that all four waves are linearly polarized in the z-direction

and actually calculate X(3 )  (W = W + W - W). Since absorption is importantZZZZ

for phase conjugation, we also calculate the frequency-dependent absorption

coefficient a(w) under the same assumptions. A density matrix calculation

gives the following expressions for x(3 ) and a (see Ref. 8 and Footnote 11):

-- 3

(3) v2F B d -2r3 114[(V - f(E)](a

)( [(Yc +yV) 2(Ycyv) 1 (L vc-Lcv )(IL LVC 2 + IL cvI 2)
-I 1i-I2 L2 '

+ (4tw+iYc+iYv )(2?w+iy c  (2w+iyv) I (Lv 2L)

t Mnw 2 (c,2EG)-1 3 1lzv 2 fdI(Ev)--(Ec)]  (3b)

v=1 vcv BZ

X 11 L cv2 + JLvc12l

where n : = is the index of refraction, and

Lnn.= [hw En(t) + En'(r) + iY]n (4a)

66- " nn- = (¥n+ n-)12, (4b)

f(En) [1 +exps(En()_-Efn1 B (k BT) (4c)

E fc for n~c

E fn ' Efh for n=v=1,2,3 (4d

2-6
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In (4c,d), Efn are Fermi energies for electrons and holes, assumed to be

distinct in order to include those situations in which absorption at 1W

significantly affects band populations.
(12)

One can let the upper limit of k go to infinity to simplify the

integrals. We do not expect much error resulting from this procedure since

as k--, the integrands decrease rapidly for parabolic bands. However, the

situation is quite different for nonparabolic bands. For instance, the

integrals for Kane's two-band model(13) diverge if one lets the upper limit

of k go to infinity; therefore, they must be evaluated for a finite

Brillouin Zone.

x(3) and a consist of two types of terms,

X3) = (K + t), (5a)
v=1

3
a L 0Au+ A) (5b)

v=1 v v

where Ky0 and Av are temperature independent, and Kt and Avt are temperature

dependent. This separation is effected by writing the population factor as

f(Ev) - f(Ec) 1 - [1-:(Ev) + f(Ec)] (6)

- [1 + exp 3 (-Ev-Efh)]1+E1+expS(Ec-Efc)]
1 .

The integrals for K° and A° can be evaluated by contour integration (seev v

the appendix) and one finds

" !2-7
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K0  (27)_1 -3 m 3/ 2 1 ZV4 2Y2 (YY1(,vAy.1 (7a)
V v C 2- 1

+~ ~ [+ic v .r]y(A-Y Y )_ 1(4tw+2iyC )_ 1+("iw+2iy)-1]
1][ 2v1 -1_(4wi )-I]

and

Ao  24nwm 3/ 2 1wz i2 -I GcEY[A]+2(1Mw-E)1/2 (7b)
v v Cv G- G)

where

m m*m*(m*+m*) - I , (7c)

c v c vI, = ~ ) + y,2v]1/2  ,(d
and

= 2+ + (EG-±+i) (7e)

The temperature-dependent terms cannot be evaluated explicitly

for arbitrary temperature. We write them in terms of Fermi-Dirac integrals

of the dimensionless form

Fm (j;a) f dy (y2+a)-m +c. exp . (8)
m(0)

Let us define

= (EG iYcv)/Iw , (9a)

c = exp (EG/2-Efc) , (9b)

c2 = exp3 (EG/2 -Efh) , (9c)

b = (mv/m) S'MW , (9d)

b2 = (mv/m ) 31 (9e)

2-8
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Kt and At are then given by

V v

K -T2. 3' Y 1 (2m v3/2 (1hw)l/ 2 1IZ 4  (10a)

2 {Im[F 2(j; -I) + F 2 (J*+)

j=l 1

+ i (-Yc/w)[F 2(j *-l) -F 20;C+l)]

cv222

&+ (Y PQ~~wRe i( 1)F 0 (j; r-I) + i( *+1)F 0( j;c*+l)

+F(YY/21w) e f w+iey +o conjugae [F(j;+ ) 2

C v i 21cs + + si I2 ,i lla) F

and

t • 2 3/ (~ 2  -1 22)I/2
(10b)

At 4wnCIZL(2m /n)3  (T-,cE) 1  ±ImEF (j;,-l) + Fl~(i1 +1)].U (l+b)

Finally, the reflectivity for conjugate waves in degenerate

four-wave mixing is given by (7,3W

2 2
* = Sinr~z1 17cos,,Z + at sin Zj (Ila)

where

2 -•)-/2(lic

12

12 are the intensities of the two counterpropagating pump waves. We note

that (Ila) is derived under the assumption that the conjugate and signal

* 2-9



waves are depleted but the pump waves are not. When the depletion of the

pump waves is also taken into account, as seen from Fig. 2, the constant

pump amplitudes A1 and A2 are replaced by

A1(x) = A1(Z) exp [-(Z-x)a/2] , (lid)

A2(x) = A2(o) exp (-ax/2) , (lie)

and thus the product

Al(x)Ax) A(Z)A2(o) exp (-az/2) (llf)

is independent of position. I< becomes

<1 = 167 2Jc-2 lEll12)i21x(3)exp (-o/2)

Above the band edge a is usually on the order of 10 cm- . All four

waves can be severely depleted and one should use (11g). The use of

(lib) should be restricted to frequencies that are lower than the band

edge. There is still significant absorption at these frequencies,

however, due to the broadening of the absorption edge.

21
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IV. MODERATE EXCITATIONS

In order to obtain efficient phase conjugation, one would

naturally seek a situation in which absorption at liw is as low as possible.

We now take this to be the case and assume that electron and hole popula-

tions are not perturbed significantly from their equilibrium forms. We

note in passing that this assumption contrasts with the premise of Ref. I

in which Jain and Klein imagine creation of a dense electron-hole plasma

in the semiconductor. In their case, it would be more appropriate to assign

a separate Fermi energy to each component of the plasma, since each ther-

malizes separately before the interband transitions can take over and bring

thetwo components into a common thermal equilibrium.(12)

At the thermal equilibrium, there is one common Fermi energy:

Ef = Efc = -Efh (12a)

Ef is nearly in the middle of the band gap, given by

Ef = (kBT/2)Zn 1+E (m*/ m* )3/2] . (12b)

B L v V C ..

One can therefore set

cI = c2 = exp (3EG/2) >,1 (13)

for band gaps on the order of 0.5-1 eV and for room temperatures. Also,

the integrand ir, (8) contributes mostly in the vicinity of y:O and

Fn (j;a) (2cj amb.(Tf 7(+) (14)
m * -2

2-11
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To simplify the 
following discussion, 

we further assume 
that

c =  y and focus our attention 
on the vicinity of 

the band edge, by

which we mean JEG-iWI/EG
< I

In the vicinity of 
the band edge (7a) 

yields

+3/2  2-1/2 (15a)

0 2
v

v

where (15b)

= ( E G !tw ) /
I

b

and 3 3 /2  1 3/2, Z 4  (15c)

(2-T ' ^ v mv  cv

From (7b), one has (16a)

~~ [§772 11/2,(1)
v

V

where (16b)
2o  1 n /2 2 )1 m3/2.1'1 v cZ 2

Similarly, the use of (14) in the vicinity of the band edge yields

,2 -2
.* = xt +l)(i+i(lC+~1t -

and (17b)

A t : t(1+ 2 )-2(1 

b

2-12
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where

xt  2(i'1)(2a)3/' 3 Yexp('BE/2)1":lz[ m*)/2+(*)3/2] (17c)

and

t 4n(2)l 1/2 (cEG1YW 7I 2exp(-BEG/2) "jjcvI2 M*3/2+M*3/2] (17d)
V

We can now compare temperature-dependent and temperature-independent

terms. From (15c), (16b), (17c) and (17d), one finds

IXt/XoI -, (2 )(kBT/") 3/2 exp (-BEG/2) (18a)

and

lat/aol u (2Tr)(Tw/2T-y) 3/2 exp (-aEG/2) (1Bb)

Due to the exponential terms, the temperature-dependent terms are clearly

negligible either for room temperatures under thermal equilibrium conditions,

or for small perturbations from thermal equilibrium. For lower temperatures

they decrease further, exponentially. For all intents and purposes, X(3 ) and

a are given by the temperature-independent terms under moderate excitations

as long as the band gap is not too small.

I
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Neglecting the temperature-dependent terms,

a = O  - 6]1/2 (19a)

= %o[/.§+ 6-112 (19b)

Rex (3 ) = (xo/% )(1+62 )-1/2 a (19c)

= 2axoc3[L4 +0 4-1 , (19d)

and

Imx(3 ) (xo/O )(1+62)1/2 a3  (19e)

n (2X0/a0)
5[0 + 4]-1 (19f)

Finally one needs I×(3)1 for the reflectivity:

Ix(3) 1= v- Xo(I+62)-I/4( '+62 + 6)-I  (19g)

Fig. 3 shows Ix(3)I/(/2Xo) as a function of 6 (EG-hw)y-, the

frequency detuning per linewidth. Below the band gap, 6>>1 and

Ix( = 2X0 (26
3 2  (20a)

which should be compared with

Ca 0 (25)
"  (20b)

!2t 1
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in the same region. Thus, IX (3)1 decreases faster compared to a for

6> 1. Above the band gap, 6< o, 161>>l, and

Ix (31 = xo(2)1/2(20c)

wl~ich has the same 6-dependence as a.
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V. COMPARISON WITH DRUDE MODEL

We can compare our expression for X( 3) with that of Jain and

Klein(1). Their expression for X() obtained from a Drude model, is

(3)= nce2 rn*c*(8rm* w 3)-1  (21)

Here T is the lifetime for electrons and holes, c* is the total absorption

coefficient, (n*ct*) designates the fraction of the absorptio7 which corre-

sponds to an actual electron-hole pair creation (i.e., n*a* corresponds to

our a), and m* is the reduced mass of an electron and a hole: m* =
eh eh

m* mh + mX)-I  (3) is real and describes an adiabatic response of

the system. It corresponds to our ReX (3 ). Our expression for X(3) has

an additional part which is imaginary. Im X(3) describes those processes in

which at least one real transition occurs. Such processes can either put

energy into the system or extract energy from the system. Note that above

the band edge, 6<0 and 161>>I. One therefore has a>>o0, and (19f)

simplifies to

I m x( 3 ) = (20 / o )a (22)

Thus, above the band edge ImX(3 ) is proportional to the absorption coef-

ficient, having the same functional dependence on the frequency detuning

(EG- w) as a. This is consistent with having at least one real transition

occur.

. b2-16
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To compare X D)and ReX we make the following approximations.

The ratio of the sums over the dipole moments can be estimated as

( m 3/1 1 4)( M 3/2 ,z 2) -1 z 2(2a
v v v vi (23a)

Using (2c), one has

111z 2 e 2 IP z1 2 (m2n 2 E 2 ) (23b)

The momentum matrix element is related to the electron and hole masses

near the band edge (see Ref. 12):

Iz (2(m2G)1

iP 11 (M E F (2m*h)1 (24)

With these approximations and also using y = ('h/T), one finds

ReX 3 ) ( /2)[(1-EG)2 + Y2]-1/2 n-4x(3) (25)

Thus, as far as the frequency dependence is concerned, the two expressions

differ only by the square root of a Lorentz factor. The other factor n-4

arises from tw sources. One is that we are taking into account the short

wavelength screening and treating electrons as particles each wiLh an

effective charge e/v 
= e/n, as in (2a). This contributes a factor n-

2

in (25). The remaining n 2 factor comes from the difference between the

way we count the number of photons and the way it is done in Ref. 1. We

I
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use the standard expansion for the electric field operator such that

(see Ref. 14),

with

bxv, (26b)

where X designates the modes, i is the unit polarization vector, V is

the volume, and , and k, are related by

WX = (c/n)k X (26c)

For a single coherent mode at w,

(4)1 fdK<j2>= : Lbth b> 2 hN , (27)

where N is the average number of photons in this mode. Thus, the photon

current density is

cK2 = -wt2 (28)

For complex field amplitudes,

jy= c<r' * (8i n - (29)

This expression for j differs from the corresponding one in Ref. 1 in

2 4 (3)
that (29) has an extra n 2 factor. Finally, if we write out n- XD 3D

n-4X(3) (c/n)(e 2/)(Tc,)(8tm h  
3 -' (30)

0 eh
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we see that n"4 factor helps to renormalize both the charge and the

speed of light.

It is interesting that the presence of n 4 somewhat compensates

for the Lorentz factor in (25) and makes Rex (3 ) and X (3) comparable, since

usually n2  10-20 for semiconductors.

I2 ,
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VI. REFLECTIVITY FOR Ga1 x(InAs) x

We now consider a specific semiconductor: Gal- (InAs) x with

x = 0.4 for which the band gap is EG : 0.95 eV. This coice is motivated
by the fact that X0 2= CEG1 z 1.3 urm, which coincides with the wave-

length of high energy iodine lasers. There has been a practical interest

in obtaining phase conjugation at the iodine wavelength. To the authors'

knowledge there is no gaseous or atomic system which matches this wave-

length and which might be used for resonant enhancement of the conjugation

process. Neutral iodine itself cannot be used, since the lasing transition

is a magnetic dipole transition. A semiconductor such as Gal x(InAs) x is

thereforea natural choice for phase conjugation at X = 1.3 Pm.

The remaining parameters for our sample are , = 10, mc 
= m*

0.1 m

01mand rn* = m* 0.6 m0 (see Ref. 15). A typical lifetime is Tr (Tn/y)

10"1 sec - . Thus,

m* = m*m*(M*+m*)1  0.09 M (31a)
eh c I c 1 0o

and

e (2m*h E, 10 Debye, (31b)

where we used (23b) and (24). Setting EG r in (15c) and (16b) yields

Xo = 3 x 106 esu and a 0 1.2 x 10 cm- . The value of -o, which corre-

sponds to the value of ot at the exact band edge i = (EG-.)/y=O, is in4reasonable agreement with the experimentally observed value for GaAs (see

2-20

-



page 61 of Ref. 15). Further, let 1 11 2=1MW/cm2, then from (lb), JIKJ

1.1 x 10 cm-1 , which is comparable to but less than a. Two comments are

in order. The first is that Ix (3) and hence 1<1 are quite sensitive to

the linewidth. For example, for T = 10-12 sec - 1, one finds a0  4 x 103 cm"1,

X0= 10-7 esu and ki - 36 cm-1. The second is that the parameter of (llc),

which actually determines the reflectivity, is usually an imaginary quantity.

For imaginary , (11a) simplifies to

nIK 2(2a) - 2  (32)

Thus, if the pump waves are not depleted and - = 10-1 sec -1, one has from

(32) and (11b) that n z 0.22 = 22%, which is a reasonably efficient phase

conjugation.

The frequency-detuning dependence of n as given by (32) can be

written out as

n= 0o(14 2)' /2 I+2- exp [- 0 (/+Y-6)1/2] , (33a)

where

o2 2EG 2 ( 2 ?2 c 2 4 n6 Y- l(Z ' m3/ 2Kz v I4 )2 (Z m3 / 2 ,''v }2)-2113b

0. G v cv , (cv 1123b

v V

and

S= 'ao 33c)

We used (11g) to obtain (33a). The parameter co may be called the optical

thickness of the sample. If one wants to ignore the pump depletion, one car

2-21
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let Po -* 0 in (33a), which would then revert to the form that is obtained

from (11b). Figure 4 shows (n/n ) vs 6 for various Po" Above the band

edge,

Sno ) : 2[-(462)-l]exp (-po0 /61). (34a)

Thus, when the pump waves are undepleted, n has an upper limit which is

2n0 for frequency detunings that are large relative to the linewidth. For

2the specific semiconductor above and for II = 12 1 1 MW/cm and T : 10 1 sec,

2n° : .44 = 44%. Similarly, below the band edge,

(n/no) (262)-I exp (-Oo/VT-), (34b)

which decreases rapidly with increasing 5.

It is clear that the optimum place for phase conjugation is in

the vicinity of the band edge. When the pump depletion is taken into

account, there is more structure in the reflectivity as a function of the

frequency detuning. Also, the reflectivity decreases as tw - EG increases

above the band edge. The reflectivity generally peaks in the vicinity of

the band edge. The position of the peak is given by a fifth order equation

which is obtained by setting the derivative of (n/n ) with respect to

equal to zero:

y + y - (4/c 0 (35a)

where

y3(/i+7 * - 5)I/2 (35b)

* d, 2-22
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There is at least one root of Eq. (3i, say y0, which is real and

positive. The left-hand side can be expanded as

y5 + y - (4/p ) = (y-yo)g(y) , (36a)

g(y) = y4 + yoy3 + YO2y2 + YO3y + Y°4 + (36b)

The constant coefficients of g are all real and positive; therefore, the

roots of g = 0 are all complex. This can be seen as follows. If there

were another real root, it would have to be negative. Let y, be raal and

positive. For y, > yo,

g(-yl) = (yl3 + Yo2yl)(y-Yo ) + y04 + 1>0 (36c)

Similarly for y, <yo '

g(-yl) = (yo3 + yy 1 2)(yo-Yl) + y1
4 + 1>0. (36d)

g is always positive for a real y and g=O can have only complex roots.

Thus, there is only one peak in the reflectivity. As o increases, the

peak shifts to larger 5. It follows that if the semiconductor is saturated,

the optimum place for phase conjugation is slightly above the band edge,

and if there is significant absorption at 4, the place to be is slightly

below the band edge.
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APPENDIX

For the convenience of the reader, we explicitly display the

contour integrations which yield (7a) and (7b). After the angular

integrations are performed, one obtains four types of integrals which

can be written as

1 1(A) = LOdy y 2(Y? 2+A-2 (y 2+A*)- 1 (A-1)

I (A,B) =f+dy y 2(y 2A)- I(y 2+B-l (y 24B*)l (A-2)

14(A,B) = f +dy y 2 [(y2+A) 2 + B 21- (A-4)

The integrand of I Ican be written as

=2y+)2y+*- A(A-A*)-2 (y2+A)1l A*A ) 2 (Y2+A*)1l (A-5)

-(A-A*)- y 2(y 2A-

An integration by parts gives

f dy y 2(y 2+A)-2 = 2-1f +0dy(y 2 A) 1 (A-6)

Thus,

I (A) =2-1(AA) 2r(+* +'d(Y A- 0 dy(y 2+A*)- 1 (A-7)
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Let A a e2 , where a is real and positive and < s There are

two distin~ct roots for y24 A m0, wiich are Yo a expi (0+j) and y

a exp li(,+ T]). Closing the contour in the upper half,

fC dy (y2+A)4l (iT/a) exp (-io) (A-8)

Using (A-8) in (A-7), one finds that

=(i/2)(1A*/IAI)(21IA+~A*)-
3/2

The integrand of 12 can be written as

2222 2- -1

y(y 2+AY' (y 2+6)- (y2+8*)- = A(A-B)-(A-B*)- (y 2+A)- (A-10)

-B(B-A) 1I(B-B*)tI y 2 4BY'I - B(*A-(*B- y2B)-

Now use (A-8):

12(A, + B*1(1+B*/1BJ)(AB-AlB*)-1(2B +A8*)-1/2}(-1

1 /
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In (A-3), an integration by parts yields

1 3(A) =2- Ldy (y +A)-
1  (A- 12)

= (7r/2)(+A*/jA)(2AHA+A*Y-
1/2

Finally, the integrand of (A-4) can be written as

Y2[( y2 +A) 2+8 T I = (i12B) [(A-iB)(y 2+A-iB)-i - (A+iB)(y 2+A~iB)-l] (A-13)

where A and B are real. Now using (A-8) yields

14(A,B) =(/.1)A+ /+"A

Let z2 (4ir2 )- (2m /1h 2) 3/. Using (A-7), (A-11), (A-12) and (A-14),

one finds

f d (2-r) 3 Lv~~Lv(W l(Tiu+E G+iY C) (A-15a)

f dt(2r) -3 L~()K() 2 = z0 o I(E G -?- i Y ) ,(A-15b)

fdf( 27)- Lv~wicv~w o2 = 2(E G+T +'Yc EG.'nw+'if ) ,(A-15c)

f dr(2-7)~ -3 (W)IL~ (M) 2 =zoI (E G-h..iy CvEG4 ,+ i -f) ,(A-15d)

fd(21r3LVC1 a 3 (E G +w+ i Y cv) ,(A-15e)

fd(7-3Lv ]2 z zoI,(EG-I'w-iycv) ,(A-l5f)

f d(2) 3 ~c(,j22= z I (E -In'- (A19

f d ( 27)-3 1L~c(,) 12 = zo 14 (E G + w,Y cv) .(A-15h)

Collecting all of these together gives (7a) and (7b),
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FIGURE CAPTIONS

FIGURE 1. Model band structure.

FIGURE 2. The geometry of four-wave mixing. A3 and A4 are the

amplitudes of the conjugate and signal waves,

respectively. A1and A2 are the amplitudes of the

pump waves.

FIGURE 3. IX 3 (W = w+W-W) as a function of the frequency

detuning per linewidth.

FIGURE 4. The reflectivity of conjugate waves as a function of

the frequency detuning for various optical thicknesses.
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THE USE OF EXPANSIONS IN

UNSTABLE RESONATOR MODES

TO CHARACTERIZE NONLINEAR GAIN SYSTEMS

by

J. Nagel and 0. Rogovin
Science Applications, Inc.

1200 Prosoect Street
La Jolla, California 92038

ABSTRACT: A series expansion in empty resonator modes is used to approximate the

field in a cavity filled with a nonlinear gain medium. The time dependence of

the expansion coefficients may be obtained using Maxwell's equations and

orthoqonality pronerties of the modes. The equations are solved numerically to

determine the solutions in the vicinity of the stable point. The effects of

changing the number of modes and the acuracy of the overlap integral are

examined. The results are found to be most reliable for cavities where all modes

but one are nearly suppressed and stable operation is possible. Self-sustainina

pulsations between transverse modes and bistability were discovered for some

conditions.
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I. INTRODUCTION

In order to describe the time dependent properties of lasers it is

natural to construct a set of first order equations of motion. The Maxwell

equations for the laser fields are second order in both time and space

derivatiies and are therefore very difficult to work with directly. If one

assumes that the fields may be represented by a time dependent expansion in free

space modes, the spatial variations of the fields can be separated by inserting

this expansion into the nonlinear Maxwell equations. Using orthogonality

properties of the modes, and neglecting second order effects, there results a set

of first order differential equations for the expansion coefficients of the laser
fipld(1, 2).

The free space modes are plane waves, which does not lead to much error

for lasers with stable cavities or Fabry-Perot resonators. However, high energy

systems often include unstable resonator cavities (3 ,4 ) because of their larqe

mode volumes, excellent discrimination, and efficient output coupling. The modes

of these cavities are quite different from plane waves, and may be obtained by

solving the Fresnel-Kirchoff linear integral equation( 5 -8). For such cavities

expansions in empty resonator modes can be used to describe the spatial

variations of the fields, and time dependent behavior may be treated in the usual

way with a set of first order time differential equations for the expansion
(9)i

coefficients

The careful treatment of the saturable gain problem for cw operated

unstable resonators involves a nonlinear integral equation with a volume rather

than a surface integral. In practice this approach proves to be intractible.

Consequently, the equations of motion resulting from the use of expansions in

unstable resonator modes should be useful for stable operation as well as for

time dependent properties. In this oaoer the time dependent behavior in the

vicinity of the stable point is examined.
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In Section II the equations of motion for cylindrically symmetric

homogeneously broadened lasers are developed with explicit expressions for the

normalization and overlap integrals. The resulting equations of motion are in

the form of Lamb Theory I), and are in a sufficiently general form to include

*both transverse and longitudinal degrees of freedom. The numerical evaluation of

the overlap integrals is outlined in Section 11. Fast Hankel transforms were

used to generate the unstable resonator modes in the interior of the cavity, and

the volume integral was calculated with Simpson's rule. In Section IV, the

stable solutions to the equations of motion are described, and the use of these

soluti, ; to calculate output couplings, frequency pulling effects, power

fluctuations, and line broadening is discussed. The time dependent behavior in

the vicinity of the stable point is treated by expressing the equations of motion

in this region in the simpler Van der Pol form. In Section V, numerical results

are given. An M = 2 cavity was used, with values of Neq at both a peak and a

crossing point of the X! vs. Neq curve. An examination of the accuracy of the

overlap integrals and the necessary number of modes was made. It was found that
for some situations the solutions of the equations of motion did not stabilize,

and self-sustaining pulsations between transverse modes appeared, a phenomenon

which cannot be explained by geometric optics descriptions. When one mode did

achieve dominance, the energy distribution of the cavity was little affected by

nonlinear gain, although the frequency pulling, output coupling, and linewidths

were changed considerably from their empty resonator values. Finally, we

conclude with a brief discussion of the use of expansions in unstable resonator

modes to describe nonlinear systems.

rr
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II. EXPANSION IN EMPTY RESONATOR MODES

The empty resonator modes are eigenvalue solutions to the

Fresnel-Kirchoff integral equation I0 12). The kernel to this linear,

homogeneous equation is non-hermitian and consequently the eigenvalue solutions

do not form a complete set !13 ). The solutions are orthogonal(14 ) and may be usedII
to approximate an arbitrary function using a series expansion with overlap

integrals to compute the expansion coefficients. The accuracy of this

approximation is, in general, limited due to the non-completeness of the empty

resonator modes. However, the specific function we wish to represent is the

distribution of radiation on a cavity with a nonlinear gain medium and it is well

known that this distribution is not very much different from the lowest loss

empty resonator mode( 15- 18 ). Therefore, one might expect an expansion in emotv

resonator modes to give reasonable results for the nonlinear problem. A

relatively small number of terms in the series will be required, by contrast with

a fourier series expansion of the transverse spatial dependence, which has a

large number of terms due to the effects of edge diffraction. Since the

difficulty of solution increases with n3 where n is the number of terms in the

series approximation, one is led to consider the use of empty resonator modes to

describe nonlinear gain systems.

The electric field of an empty unstable resonator may be expressed as

the following expansion in empty resonator modes:

E(,t) bn q Unq (r,z)e e iq (la)
nnq

n qr,~ iknZq(L/2-z) n q eik nzq L/2-z)

U n~q(r,z) a aFn~ ~ ~ - a B (1b)

In Eq. (1) aF and aB are forward and backward amplitudes, n labels the radial,

the azimuthal and q the longitudinal degrees of freedom. The cavity is asssumed
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to be cylindrical with equal mirrors. The amplitudes are related to the slowly

varying mirror amplitude V(x) by:

L~7N ~ e-i NLx2 /z AI -iN(M;L-z)y2 /z

a nlq(x,z) = (+i) Z+1 2TN -L e-i x2/ ydye TI M- - y2/

L Z ZdeI

X JZ(27NLxy/z) nlq(y) , (2a)

a nl, Z) = (-i)' 27TN he +i7NLx 2/z jl ydye+ irN(M-Iz+L-z)y2/Z

X JZ(27NLxy/z) ,nIq (y). (2b)

Here x and y are radial coordinates normalized to the mirror radius, M is the

cavity magnification, N is the q dependent cavity Fresnel number, and tnkqx is

the usual solutinn to the Fresnel-Kirchoff integral equation, a slowly varying

function in the geometric optics limit. Both forward and backward amplitudes

have been explicitly included because aF # aB* for lossy modes.

The knzq and wnzq in Eq. (1) are complex quantities, determined by the

eigenvalues of the Fresnel-Kirchoff integral equation. Each mode in Eq. (1)

satisfies Maxwell's equations in the axial approximation with the mirror boundary

conditions Ei mirror = 0. Since ,)nq has a positive imaginary part for all lossy

modes, the radiation in the cavity decays with time. The complex part of knZQ

compensates for the decrease in the magnitude of aF as a wave propagates across

the cavity in the forward direction. As a result Eq. (1) is symmetric under

spatial inversion. If some radiation is introduced into the cavity, and enouch

time passes to form the mode patterns, the initial direction of the radiation

launched into the cavity is forgotten. The radiation distribution is spatially

symmetric abotit the midpoint of the cavity, and exponentially decreasing in time.

3-5

..".. L



To account for time dependent properties in a more realistic manner,

the expansion coefficients bnkq are assumed to be slowly varying functions of

time. Since bnzq is complex, the e iwnzqt term can be absorbed as follows:

iiw nt ie@ . (t )

bnqe inq t Ynq(t)e ,n9q (3)

where Yfn~q and entq are real functions of t to be determined, and the

instantaneous frequency of the mode is enkq*

The resulting expansion is substituted into the wave equation for the

cavity,

I2 1 d12 d2  P(E) (4)

where P is a complex function of the quasi-linear form P = g(E)E. On the left

side, the usual axial aporoximation (19 ) is made which consists of neglecting

second derivatives of aFB with respect to z. Neglecting also second derivatives

with respect to time, and taking into account that the amplitudes aF,B satisfy

(2 - 2 iknZq d)aFB 0 (5)

the left side of Eq. (4) is:

o(2 - k c2 ) - q n~q zU (r z)e i ' (6),. "n~q- kn q Yn;q n~q n n9.q''

where Un q(r,z) is the spatial part of the mode, given by Eq. (1b).
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Next, two further approximations are made which are consistent with the

neglect of second order effects:

2 c 2 w - k c) (7a)enzq knqC (n~q knzqC

enkq inZq ' w iniq (7b)

Here w is a real frequency equal to -rqc/L, where q is the longitudinal mode

number.

The right side of Eq. (4) is a complicated nonlinear function, and for

many cases the linear gain is large. For behavior near the stable point,

saturation is a factor, and " g(E)c. Then the right side of Eq. (4) is small

to first order, and may be replaced by

2
W2 g(E)E. (8)

E 0C

Next, multiply both sides of the resulting equation by

aBn'Z'Q' e -iz' ' e ,kn Zq, (z-L/2) e-ie n,9,q, (9)" aB ee

and integrate over all x,r,z, taking into account the orthogonality properties of

the empty resonator modes. Define the normalization matrix W and the

polarization matrix P by:

W n''q', nkq = <anz'q' eiknZq(Z-L/2) Uniq ei (Z- V v S (lOa)

n''qnz aBnt q  ik'',ZL2

Pn'Z'q',nZq = <aB 'q'e ikn i q(z-/2)(E)U n9 q ei( ' v'v (lOb)
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where < > v represents an average over the cavity volume. The matrices W and P

are diagonal in . for most reasonable functions g(E).

The complex form for knZqC is

k n cqCcw+ + ir c (11)

where aneq is a diffractive frequency shift, rnZq the diffractive loss, and both

a and rc are << w. Finally, the cavity equations reduce to the followinq simple

rate equations:

rq c Im (W-1 y)nq , (12a)
nzq + Crn~q 'Ynzq wo Im

Yn Zq 0 n-q - 6 w) = - Re(W-IPy) 1 q (12b)nin q Bnnq
0

Explicit forms for the normalization matrix W and te polarization

matrix P are given below. The orthogonality relation between transverse modes uf

the same longitudinal wave is given by:

<aBn'Zq Fn' i(k n' - k Xq)(z-L/2) e i (- IKaB q8 'z' a~nzq e 'k~zq knq-''

6nn,5, I ydye -iTN(M-m l)y2 n'Z'q(y),nq(y) (13)
0

where niq is the Fresnel-Kirchoff solution.
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The rapidly oscillating quadratic term in the integrand results from

the opposite curvatures of the forward and backward waves. In order to evaluate

the interior amplitudes aF and aB using the Fresnel-Kirchoff solutions, it proves

convenient to define the following auxilliary functions in Hankel transform

space:

Fn1q (Q) H [e-i7N(M-I )y 2, (14a)

0 ng q (Q) H einrN(M1 1)y2 nZq , (14b)

where Onzq = 0 outside the mirror, for x > 1. The Hankel transformed interior

amplitudes are given by EQ. (22). The integral in Eq. (13) in terms of these

auxilliary functions .s:

nn' f8 f QdQ 0B "(Q) OF (Q) (15
0

Using Eqs. (2), (10), (14), and (15), it is easy to derive the following form for

the W matrix:

nS n - Tn (16)
n'zq,, nnq 'Z n'q', n2q n'Z q, nkq (1

I)
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where

s n1 L dze i(kn 2 q - knkq)(Z-L/
2)

Sn't'q', n~q = C of  z

X 0! QdQe-i1(N-N')ZQ 2/LNN' n'k'q'(Q) 0F nlq( 0) (17a)o B F 0'(1a

T q n - I rL dze i~k7 + knZq)(Z-L/
2)

Tn'z'q', nzq o'

.X QdOe -i7(N+N')zQ2/LNN't n%'q (17b)
0

For large q, it is an extremely good approximation to set T = 0 because of the

rapidly oscillating z dependence of the integrand. When this is done, the theory

is identical to that of reference (9). Note that for q' = q, N' = N and

Eq. (17a) reduces to Eq. (15) due to the orthogonality prooerties of the empty

resonator modes.

The evaluation of the P matrices depends on the specific form for the
nonlinear susceptibility. In general, the calculation involves complicated

overlap integrals. The homogeneous broadening form for the nonlinear

susceptibility is used here,

g(E) = ig°  o c/,.) (1+IE' 2)-  (18)

where !E2 has been normalized to the saturation intensity, and go is the linear

gain. Couplings between modes of different z are neglected, as well as couplings
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between different longitudinal modes. Interference between forward and backward

waves is expected to be significant for unstable cavities(20 ). The frequency
dependence for g(E) is not specified, since the laser linewidth is assumed to be

set by the cavity and not the medium.

As in Eq. (16) for W, the integral for P splits into two terms.
However the term analogous to T in Eq. (17b) is no longer negligible because
nonlinear coupling between forward and backward waves leads to a slowly varying

component of the z-integral and hence a non-zero contribution to the integral.

After some calculation, the effective P matrix is found to be

Pn'Z'q', nkq 5ZZ,6 aq' ig 0  E c/ L ° 1L dze( n '  Iq - nkq)(
z-L/2)

X 0ofl1ydya Bn'l'q'(Y,z ) fnlq(Y,z )  
(19)

Here the 7's are the losses as in Eq. (11), and f is given by:

a - a -  A )aTi (20)
_B(y2z) i i= e  .(z-L/2) (12

-AiB_ 2JEy e aF(

where

iyje i(ei-e (aFi *j e )(z-L/2)A :A 1 + yiyje a
~i~j

Bi ,je -(' i + )(z-L/2)
aB B aj (21a)

e (7i-F.)(z-L/2) *i (21b)

B 21 Z Yijje a aB
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Here the indices ij are shorthand for the mode indices nkq. Setting B = 0 in

Eq. (20) is equivalent to neglecting the effects of interference between forward

and backward waves.

I
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III. EVALUATION OF OVERLAP INTEGRAL

The solutions to the Fresnel-Kirchoff integral equation may be obtained

by well known methods( 5 "8 ). The empty resonator modes and eigenvalues used here

were calculated using the Butts-Avizonis asymptotic method, with the following

general form(8) substituted for their F(x,t) function:

F(x,t) = K = -ie -i t(l+ x2 )  k (2tx) , (22)

K111 .Z- t z+ (ix) i 2x)(2
k=O 

k

where t = TrNM, and K[.] is the Fresnel-Kirchoff integral transform. The mirror

amplitude ¢ is given in terms of the basis functions by

N
4(x) = I + Z a Fn (x) (23)

n=1 n

Here an is obtained by finding the roots of a Nth - order polynomial and

Fn(x) :F(x/M 2n,t/M nl )  , (24)

where Mn =k M The eigenvalues and eigenvectors for the six lowest loss

modes for both the Neq = 6.5 and Neq = 7.02 M = 2 resonator were obtained and

stored on disc and used as data for the mode mixing calculation. Only the Z = 0

case was treated. The losses and shifts for these modes are obtainable from the

eigenvalues and are given in Table I.

Next the auxilliary functions 4 n~q(Q), 4 Bnlq(Q) in Q-space defined by

Eq. (15) are calculated using the Fast Hankel Transform (FHT) algorithm(2 1),

which approximates the Hankel transform by a finite transform. Since the

interior values of the amplitudes are determined from the Fresnel-Kirchoff

solution by the application of a finite Hankel transform, the PHT is particularly
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appropriate for this application. The conditions for the accuracy of the FHT are

well known(21), and lead to the following mesh for x and Q space:

xn= Xoec
an

Qn =  Qo
e n

= 1/43 (25)

x0 e-

Q0  SX0

where is the highest spatial frequency component considered, chosen here to be

2.5 NFRESNEL, the lowest truncation point is less than 1/4 of the highest spatial

frequency, and M = 512 is the number of points in the mesh.

Once F(Q) and tB(Q) are known, the Hankel transformed interior

amplitudes are simply:

±iQz/NL
aFB(Qz) = e ±F,(Q (26)

The transverse spatial dependence of the interior amplitudes is found by again

Hankel transforming Eq. (26). For each interior point z, the amplitude is given

as an M-vector. Finally f(x,z) is determined from Eq. (20) and the double

integral in Eq. (19) is evaluated using the trapezoidal rule. It is only

necessary to integrate halfway across the cavity due to the symmetry of the

problem.

The number of points in the z axis grid does not have to be very large.

Numerical solutions of the nonlinear integral equation assume that the nonlinear

gain is concentrated on a small number of thin slabs, and free space propagation

F 3-15
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is used in the intervals between the slabs. Free space propagation is given by

Eq. (26), and it may easily be seen that the use of the trapezoidal rule with

nslab points in the z grid is just as accurate as the evaluation of the nonlinear

Fresnel-Kirchoff integral transform using the same number of thin slabs. The

single thin slab approximation has been used extensively for low loss

cavities( 15 -1 7 ), and has gives reasonable results in this regime. Consequently,

a relatively small number of gain slabs should be sufficient to describe the

radiation in more lossy cavities. For the present calculation we used

5 < nslab < 45, and making the grid finer did not change the results

significantly, (see Figure 5).

. 3-16
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IV. SOLUTIONS

CW laser operation may be adequately described by the stable solution

to the equations of motion. The time dependence of the fields in the innediate

vicinity of the stable point specifies such quantities as the frequency

fluctuation, power fluctuation, and the field spectrum. Consequently, we first

consider the stable solutions to Eq. (12).

The determination of the stable point involves solving a set of

coupled, nonlinear equations. This was done in the present case by setting

'i = 0, rewriting the equations in the form x = f(x), then using iteration,

xj+ 1 = f(xj). This nonlinear mapping can lead to limit cycles or chaotic behvior

rather than a stable point in some cases' 22 ). The stable solutions to the

resulting n complex equations give the n Yi's, the n-i relative phases 6 -1

and the transverse frequency shift Lw, for a total of 2n real variables. Only

the relative phases may be determined because the nonlinear term contains E in

the form IE12, which is invariant to overall phase translations. The frequency

shift L is the lockei value of the transverse frequencies, and is related to the

phases by i " :

It may seem surprising that the frequencies should lock together, since

the transverse frequencies are often spaced further apart than the longitudinal

frequency separation c/2L, and the susceptibility is purely imaginary, at each

point in space. However, an effective nonlinear index of refraction arises from

the coupling of edge diffracted rays in the center of the cavity. Due to the

complicated phase dependence of the individual modes, the overlap integrals in

* Eq. (12) are not purely imaginary, even though the susceptibility is. The

overlap integral coupling between modes is non-local in nature, and this tvDe of

coupling can lead to frequency-pulling effects even if the index of refraction is

locally linear. Since changing the relative phases changes !E2 and therefore

affects the overlap integrals, transverse mode locking can occur.

A 3-17
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This type of mode locking is different from the case where longitudinal

mode frequency differences lock together leading to the formation of pulses 2 )

For unstable cavities, the transverse frequencies are spread so irregularly that

it is difficult for population pulsations at the frequency differences to appear.

If there is coupling between a number of different longitudinal modes, a case can

be envisioned where all the transverse modes of each longitudinal mode lock

together, and the differences between longitudinal frequencies then lock together

by the usual means.

Once the stable solution for Yi and ei is obtained, the mirror

amplitude is given by (x) = Z Yie' 0i~i(x) and the locked frequency of the

transverse modes by w + Lw. The output coupling for the stable solution may be

determined from the effective eigenvalue, defined by

<f K f > (27)eff = < > '

where t is the converged mirror amplitude, the brackets represent a mirror

average, and K is the linear Fresnel-Kirchoff integral transform which propaqates

the solution once across the empty cavity. Using the expansion of in empty

resonator modes and orthogonality properties, one finds

Z~iyi 2e2 ie i 2

eff = 2,, ? 2-i (23)

i y 2

where 'i are the eigenvalues of the empty resonator modes. The losses are given

by I - eff,

To study the fluctuations about the stable Doint, a set of Langevin

equations may be formed by adding random noise terms on the right side of

Eq. (12). Alternatively, Eq. (12) may be used to write down the Fokker-Plank

equation for the systemn2 3 ). Due to the complicated nature of the right hand
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side of Eq. (12), neither of these approaches is useful unless one is able to

solve the resulting equations numerically.

Here we take another approach which is approximate, yet provides

qualitative insight into the behavior of the system as well as yielding useful
numerical predictions. The equations of motion, Eq. (12), in the vicinity of the
stable point are approximated by a simpler form which may be treated

analytically, that of a Van der Pol oscillator(2):

i = fi - iji'(j2  (29a)

Here and are symmetric, and the relative phases are assumed to be fixed. The
Oti, 'i, 3ij, and ij parameters were chosen by numerically evaluating i and :i

using Eq. (12) for a large number of randomly chosen Yi in the immediate
vicinity of the stable point, and then least squares fitting to the form Eq. (?91

with the restrictions that yi = 0 and i = , + .1w at the stable point.

The Fokker-Plank method is used here, and the noise terms added on the
right hand side of Eq. (29) are assumed to be Markovian:

<n.(t) n,(t')>t 0 S(t-t') (30a)

(n r(t) n,(t') >= R ;(t-t') . 30b)

This assumption leads to flat spectra for the power fluctuations, frequencv
fluctuations, and field. To obtain more realistic oredictions for the snect-a3
behavior or these quantities, a Langevin equation treatment should be used.
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The next approximation is to consider only the amplitude noise term,

Eq. (30a). By neglecting phase fluctuations, the Fokker-Plank equation can be

solved trivially since Eq. (29a) may be derived from a potential. Amplitude

fluctuations will lead to frequency shifts through Eq. (29b), which is assumed to

react instantaneously to small amplitude fluctuations.

With these assumptions, the solution to the Fokker-Plank equation is

P(Yl... n) = N- 1 exp I(2cy2 - Y2By2)/2D(, (31)

where y is the vector yi2, is the vector (xi, 3 is the matrix Bij, and N is a

normalization constant. Eq. (31) can be used to obtain estimates for the power

fluctuations by assuming that all of the amplitudes except the largest is fixed

at its stable value, and finding the point where P drops 1/2 of its value at the

stable point. The FWHM of the power fluctuations is approximately:

AI/I 1 4 , (32)

where yI is the largest mode amplitude.

To obtain a rough estimate for the frequency broadening due to

amplitude fluctuations, only those fluctuations which maintain the frequency

locking of the modes are assumed to be relevent. The locked frequency itself is

buffeted about by these fluctuations. This assumption enormously simplifies the

calculations and is expected to give reasonable results for the frequency

broadening. In fact, results for the field spectrum E(w) obtained using this

method agreed well with a more exact calculation made for the cases of 1, 2, and

3 modes. Requiring ji - w to be a single constant determines a point in Y2 space

through Eq. (2gb), and the multidimenional distribution P in Eq. (31) is then

reduced to a one-dimensional dependence on ei w = 6w:

P(5Iw) = N - exp -2' - uilB'u)/2D (33)
X
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Here p and a are the matrices pij and Bij, a is the vector oti, and i is the

vector ei - w - ai = - o-i. The broadening is obtained by determining

the full width at half maximum of P(&w), and is easily seen to be:

Bp= 1D)2(34)
50 ).

i,j i

It is necessary to give some value for D in order to obtain numerical

results. The noise term arises from spontaneous emissions, so one expects D to

be small for large coherent intensities and large if the lifetime of the upper

laser state is small. Also, D should be directly proportional to the number of

atoms in the upper laser state. To determine D, one calculates the total energy

stored in a Van der Pol oscillator driven by a random noise term, nY(tV 2 4 ). The

total energy is obtained in terms of the power spectrum of ny (t), Wny(w). When

this energy is set equal to the energy in the cavity due to spontaneous emission,

Wny is determined and D is then obtained from
nD : W (35)

where w is the laser frequency. The result, taking into account the particular

definitions of the Yi's and the fact that Eq. (29) was obtained from a

calculation which used the dimensionless time x = ct/2L, is:

2 3N
o 2= 3N2 (36)

D t 2 LNI s 2
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Here D is dimensionless, as are a, B, and x, N2 is the number density of the

upper laser state, t2 is the lifetime of the upper laser state, L is the cavity

length, N the cavity Fresnel number, and Is is the saturation intensity. With

the above relation for D, the power fluctuation and frequency broadening may be

estimated.

34
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V. RESULTS

The main purpose of the calculations was to examine the usefulness of

the idea of expressing the field of a loaded unstable resonator as a

superposition of empty resonator modes. In all cases, coupling between

transverse modes only was considered. Since only one longitudinal mode was

present, this corresponds to what is usually referred to as single mode

operation. By gradually increasing the number of transverse modes until the

resulting spatial distributions and frequencies of the stable solutions

converged, it was found that a relatively small number of modes were needed for

an accurate description. In addition both the transverse and the longitudinal

accuracy of the overlap integral was varied, with grid density increasing until

the results converged. Finally, an examination of the behavior in the vicinity

of the stable point was examined by using fits to Eq. (29). From these, the

Dower and frequency fluctuations were estimated.

Two separate sets of calculations were made for cavities with M = 2,

with Neq = 6.5 or 7.02. On the plot of eigenvalues versus equivalent Fresnel

number Neq for an M = 2 resonator, there is a peak at Neq = 6.5 and a minimum at

Neq = 7.02. At the peaks, which occur near half inteoral values of Neq, the

lowest loss mode is well separated from the other modes. By contrast, the

minimums occur near integral values of Neq and result from the crossing of two

separate empty resonator modes having the same loss. The two sets of conditions

should pretty well characterize the response of an M = 2 cavity to a nonlinear

gain medium. The magnitudes and phases of the eigenvalues for the Neq = 6.5 and

Neq = 7.02 empty resonator modes are given in Table I.

First, the dependence of the stable solution on gain was examined. The

results for the Neq = 6.5 three mode cavity, with a very coarse integration

mesh nslab = 5 are shown on Figure 1 in the form of a plot of the area-averaged

mirror intensity vs. gain. Three modes were included because the second and

third states have equal losses and thus should be considered together. As

expected, the lowest loss mode has the largest coefficient, although as gain

increases the coefficients of the lossy modes become somewhat larger. Also shown
32
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on Figure I are the geometric optics area-averaged mirror intensities obtained by

solving the Rigrod equations for the cavity, with couplings between forward and

backward waves included (13 ,25 ). Note that the threshold for the geometric optics

case occurs at goL = 1.39, corresponding to the geometric optics eigenvalue

I = M 1 = .5. The threshold for the three-mode solution with full transverse

field variation occured at the lower value goL = .93, corresponding to the

eigenvalue of the lowest loss mode J1! = .627. All three modes are less lossy

than the geometric optics predictions because diffraction couples radiation from

the edges back into the center of the cavity.

The geometric optics calculation results in a larger average intensity

than is found in the more careful three-mode treatment. One reason for this is

that as gain increases, the lossy modes become excited and therefore output

coupling increases. On the other hand, output coupling remains independent of

gain for geometric optics, and therefore one expects larger fields in thi, case.

Also, the area averaging weights the edge region disproportionately, where the

geometric optics wave is markedly larger than the lossy modes. In any case, the

geometric optics results give qualitatively reasc,3able predictions, as long as

there actually is a stable solution to the problem.

As gain is increased further, oscillations eventually appear in the

three-mode solution and the iteration does not converge, even though the

geometric optics problem has stable solutions for arbitrary gain. This behavior

is much more obvious for the Neq - 7.02 cavity, where there are two modes of

equal loss competing for gain. For this cavity a large number of calculations

were made for the two mode problem with nslab = 10 at different levels of gain.

Since these two modes have equal losses, the problem cannot be further

simplified. To check that two modes were enough, calculations were done for

various gains with 3, 4, and 6 modes, and the results were found to be

qualitatively the same as for the two mode problem, because all the higher order

modes had small coefficients.

3-24

X



0 

4-) Q)

o 0

4o 0.

0- "

II 0.
0

°) - a)

S- c

o t

.,- 4J (

cu =

.-

4-

3-25

1W

- .



At least one stable solution was found for each linear gain. The

converged values of Y, and Y2 for goL < 8 are given in Figure 2. Near threshold,

Y1 is largest. As gain is increased, Y2 increases continuously, and near goL = 6

Y2 suddenly becomes the dominant mode. Above this point, and at least until

goL = 150, 'Y1 is nearly suppressed. In the region 5.7 < goL < 6 two separate

stable solutions were found, implying the existence of bistable operation for

this cavity. It is interesting to note that for unstable cavities, a locally

nonlinear index of refraction(2 6 ) is not needed in order for bistability to

occur. The discontinuity in the solutions near goL = 6 was not found for the

Neq = 6.5 cavity and is typical of bistable systems. The discontinuity is also

evident in the mirror averaged intensities as gain is increased or decreased

through the bistable regime. It is expected that there is a regime of stationary

solutions which joins the two branches of stable solutions, but are unstable to

small perturbations. Our algorithm was not designed to obtain these types of

solutions.

In addition to stable solutions, self-sustaining pulsations were

discovered in the region of bistability. For some initial conditions, the

interative procedure did not converge to a stable point but to a limit cycle.

Limit cycles for goL = 6 and goL = 7 are displayed in Figures 3 and 4. Similar

limit cycles were also found for the four mode problem, so the phenomenon is not

a result of the two mode restriction. The existence of a limit cycle implies

that periodic self-sustaining pulsations between the two lowest loss modes occurs

as the solution traverses the limit cycle. It is interesting that either a

stable solhtion or pulsating behavior can occur for the same cavity at a specific

gain, depending on the initial conditions.

As gain is increased, the effective coupling between modes increases.

For small gains, both modes can oscillate at the same time, but as coupling is

increased, a point is reached where one mode is suddenly suppressed. This

evidently occurs near goL = 6. For larger gains, the solution with both modes

oscillating is not stable and this is precisely where we find the limit cycles

representing periodic pulsations between the two modes. Both modes are trying to

oscillate at once, and the strong coupling leads to instability.
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Figure 2. The stable solutions for the amplitudes of the lowest loss modes
of the N eq = 7.02 cavity for g L < 8. Two stable solutions were

found in the region near g0L 6.
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Next, the integration accuracy and the effects of including more modes

into the calculation were examined. Figure 5 plots the mirror amplitude (x)

for a cavity with Neq = 6.5 with the number of longitudinal integration points

set at nslab = 5, 15, 25, and 45. Also given in Table II are the amplitudes and

phases for various integration meshes. Evidently, increasing the accuracy from

nslab = 15 leads to little noticeable change in the results. As expected from

previous thin slab calculations where as little as one slab was used, great

accuracy of integration in the longitudinal direction is not needed. For all of

these calculations 512 transverse points were used. These are not spread

uniformly, but are concentrated near the center of the cavity due to the

exponential Gardiner transformation used in the FHT algorithm(16l. This number

of points was adequate to treat the transverse field dependence of cavities with

N 1 0.

It was expected that a small number of modes would be necessary to

describe the nonlinear behavior, and indeed for most cases three to four modes

gave essentially the same results as six modes. Table III gives the amplitudes

and phases for both cavities considered at qgL = 5 with the number of modes

increased from 1 to 6. The modes are ordered according to loss, and it is

evident that the more lossy modes have smaller amplitudes. For the Neq = 6.5

cavity, the lowest loss mode is by far the largest with about 94% of the energy.

The Y5 parameter for Neq = 6.5 appears to be quite large, however this represents

only about 3% of the energy. For the Neq = 7.02 cavity, the first mode has 59%

and the second 36% of the energy, more evenly distributed since the couoling is

not quite strong enough at goL = 5 to suppress either of the lowest loss modes.

To demonstrate the effect of gain on the distribution of the cavity

radiation, Figures 6 and 7 compare the six mode goL = 5 result for 4 with the

empty resonator goL = 0 results. The radiation in the Neq = 6.5 cavity, with 94%

of the energy in the lowest loss mode, is little affected by the gain. The main

difference between the curves is that the distribution in the saturable gain

medium is more strongly suppressed near the mirror edge. The bumps and valleys

of the ci-ves match quite well, showing indeed that the empty resonator modes

l give a good description of loaded cavity behavior. On the other hand, the
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Table II. Amplitudes, relative phases, and frequency shift for the six mode

N = 6.50 cavity for a range of z-integration grids.
eq

n slab z

5 15 25 35 45

'I 1.532 1.350 1.364 1.359 1.359

¥2 0.214 0.127 0.118 0.121 0.121

0.105 0.130 0.141 0.142 0.141

Y 0.089 0.068 0.061 0.064 0.064

5 0.291 0.266 0.265 0.265 0.266

0.062 0.020 0.021 0.020 0.019

e2e 148.52 160.14 170.67 168.38 168.03

ae3-e 1  -120.39 -98.33 -105.31 -103.87 -103.77

S4-e I  150.15 131.58 132.75 131.98 131.70

e5 -e 1  -88.39 -86.08 -85.20 -85.26 -85.26

e 5-rI -114.47 -106.64 -109.33 -111.25 -110.50

'4(c/2L) -0.222 -0.223 -0.208 -0.209 -0.209

4
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Neq = 7.02 solution exhibits significant deviations from the empty resonator mode

as expected since the two lowest loss modes are of equal importance. Evidently

the empty resonator modes best characterize loaded cavities when a single mode

absorbs most of the energy.

Next, the effect of nonlinear gain on frequency pulling and output

couplings was considered. These quantities are determined by cavity geometry and

diffractive effects for empty resonators. The frequency shift of the Neq = 6.5

cavity with goL = 5 was Aw= -.20 c/2L, and the Neq = 7.02 cavity was frequency

shifted a much larger value A = -.51c/2L. In the first case the frequency

pulling is much larger than the empty resonator diffractive frequency shift found

in Table I. The large frequency shift for the Neq = 7.02 case, equivalent to 1/2

of the longitudinal spacing, is typical for cavities operating near a crossing of

eigenvalues. It is apparent that the saturable gain medium can affect frequency

pulling at least as much as diffraction.

The effective output couplings for the two cases, given by Eq. (24),

were 72.8% for the Neq = 6.5 cavity, and 66.3% for the Neq = 7.02 cavity. By

comparison, the geometric optics loss in both cases is 75%. Note that the

Neq = 7.02 cavity has losses determined almost entirely by the two crossed modes

with 64% losses. On the other hand, the Neq = 6.5 lowest loss is only 61%, while

the effective loaded cavity losses are 73%. Couoling to the higher order modes

greatly increases the losses in this case, and it is not understood why a similar

effect does not occur for the two mode Neq = 7.02 cavity.

To determine the fits to the Van der Pol form in the vicinity of the

stable points, Yi's were varied randomly in a region within 1% of their stable

values, and the phases i were kept fixed. For each set of amplitudes chosen

this way, the i and i were calculated using the overlap integral procedure. A

large number of these points enabled the a, B, 0 parameters to be determined

by least squares fitting.
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For this procedure to give reasonable results, the amplitudes of the

modes should vary less than 1% from their stable point values when noise

fluctuations are allowed for. From Eq. (32) it can be seen that in order for the

amplitude fluctuations to be less than 1%, 0 must be less than 104. D is

determined from laser parameters by Eq. (36), and using some typical parameters

y = 10.6

N2  = 6.0 Torr

t2  = 2.2 x 10' sec

N = 8.67 
(37)

is  I watt - cm"2

L = 100 cm

results in the value D = 1.34 x 10-9, which implies fluctuations much less than
1%.

Consider first the case of only two competing modes. The fitted

parameters for the two cases at g0L = 5 are given in Table 6. The stability

analysis of two mode operation involves the effective gain parameters 01, and

2', and the coupling constant C defined by(2):

I = I - 812a2/22

c2  = C2 - B21 1/511 (38)

C = 12 21/ 11 22

For the Neq = 6.5 cavity, the parameters in Eq. (38) are given by

C = 2.23 x 10-3 , a1 ' = .307, and c2' = .212. Since C<1, linear stability

analysis implies the existence of a stable point with both modes oscillating at

m. 3-36
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YI 1.526 and Y2 = .170. This is the stable point that is actually found. On

the other hand, the Neq = 7.02 cavity has C = 4.43, czt' a -.520, and c2 ' - .?49.

This is strong coupling, and the two possible stable solutions each have one mode

totally suppressed. The actual solution found has both modes oscillating with

YI = .832 and Y 2 
= .771. According to linear stability analysis, this solution,

though stationary, is not stable with respect to small perturbations. The fact

that our solution is indeed stable indicates that the fit to the Van der Pol form

has limited usefulness when both modes are oscillating. For larger gains, one of

the Neq = 7.02 modes was indeed suppressed and the Van der Pol fits were

consistent.

The Neq = 6.5 cavity with go!. = 5 appears to be well described by the

Van der Pol fit in the vicinity of the stable point. The parameters for the 1,
2, 3, and 4 mode calculations for this case are given in Table 6. With D chosen

as D = 10- 9 power fluctuations are found to be of magnitude SI/I n 10-4 .

The linewidths are given by the F.W.H.M. values of the P(5w) curves,

and may be found directly from Eq. (31). The results for both the linewidths and

frequency pulling are given in Table V. Increasing the number of modes

considerably changes the single mode results, even though over 90% of the energy

is concentrated in the lowest loss mode. The frequency broadening effects do not

change much as the number of modes becomes greater than 1, indicating that a

description with just a few modes gives reasonably consistent results. Note that

The frequency broadening effects considered here arise from amplitude

fluctuations and mode couplings, not phase fluctuations.

3-37

a..-.



m r- m '

Ln Lf qA

00 t~ .0 4O zr M

CO 0 C' 0 D 4 l

m~ a% m4.N 0 LO 1. Ln c 0
u - cc 0 '0 0'.CDC0 o -

C)lo 1.9 01 (7! 1-:C'J

CA C\Ij 0C) 0 0 CD\J
L9C1: I cr I

C7 K 0O ON' %0 ON 0) t.0 r~- 1-0
cu m c 4.0 00 co c C') 0 (

C) 0~ r 00 00 r 0000-
C= C= C= C= C; CI -4

S.-

I4

C ei w~

00 ~ ~ r-10 c tD L C D

ll 1.: C'i lo 4. L 0 1,
C) C LAo co 0) C'J

S- 1. -C a% - -

0L) CN LO C) ~ . C ) M 00

E C> 0~ C) cI- Cj - C) 00 1.

-0LO m aN -0 co 0d r- LA

(n0 C") MI 0 0 C) O

.00)l C\ 94 .- 0 1 r. L ,'I- 40 - 1.9 0 17 4.0
S.. - ) C".C.DI

,a 'a



Table V. Frequency pulling and frequency broadening, in units of

c/2L, for the N eq = 6.50 cavity. The shift is determined

by the stable solution, and the broadening by the time

dependent behavior in the vicinity of the stable point under

the influence of a random noise term.

Pulling -Aw(c/2L) Broadening Aw(c/2L)

n = 1 -.072 4.39 x 10-6

n = 2 -.022 33.24 x 10-6

n = 3 -.023 20.32 x 10-6

n = 4 -.018 21.45 x 10-6

3-39

4.-.-.



VI. CONCLUSIONS

The use of series expansions in empty resonator modes to describe

lasers with nonlinear gain media has been examined. The method hinges on the

evaluation of the overlap integrals, which involve double integrals over

longitudinal and transverse dimensions. It has been found that ten or twenty

grid points give reasonable results for the longitudinal integration, while a

much larger number of points are needed for the transverse integrations. This is

in accordance with thin slab approximations, which have been shown to give good

results for a relatively small number of slabs.

Even though the overlap integrals are difficult, this method is still

faster than direct solution of the nonlinear integral equation. Assuming that

the empty resonator modes are known in advance, the overlap integrals for one

iteration involve nmodes x Ntransverse x Nslab complex additions. By contrast,

one iteration of the nonlinear integral equation involves 3 x Nslab fast hankel

transforms, or 6 x Nslab x Ntransverse x log2(4Ntransverse) complex

multiplications, and an equivalent number of complex additions. Since

multiplications are about ten times more time consuming than additions and

nmodes % 3, it is evident that the series expansion approach using overlap

integrals can be much more numerically efficient than direct solution of the

nonlinear integral equation. Provided the series approach also gives results

equivalent to the more exact integral equation method, a significant increase in

efficiency may be achieved together with more direct physical interpretation of

the solutions.

The rdsults appear to be best for cavities operating far from the

crossing points of the eigenvalue plot. In this regime, the lowest loss mode is

well separated and the series expansion gives reasonable results with the largest

part of the energy is concentrated in only one mode. A three or four mode

description was sufficient to characterize the response of the resonator to a

nonlinear gain medium, and the radiation pattern was qualitatively and

quantitatively quite similar to that of the empty resonator mode. By contrast,

the effective output coupling, frequency pulling, and linewidth varied
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considerably from the empty resonator results. The nonlinear effects of the

additional lossy modes are to increase the output coupling and to both broaden

and shift the laser frequency.

In general, the solution to an equation with a nonlinear source term

cannot be expressed as a linear superposition of solutions to the homogeneous

equation. Only when one of the resulting expansion coefficients is much larger

than the others should the series expansion be considered as a numerically

accurate solution to the nonlinear problem. If one is interested mostly in

quantitative results, the method of using series expansions in empty resonator

modes should be used only if one mode dominates.

However, the series expansion approach can always be used to

characterize the qualitatiave behavior of high energy systems. In particular,

this approach is the lowest level of approximation at which pulsations,

bistability, and chaotic behavior involving competition between transverse modes

can be expected to occur. The geometric optics approximation cannot lead to this

type of unstable behavior, and the nonlinear integral equation is not applicable

in the region of chaos or pulsations. Consequently, the equations of motion of

the laser using series expansions in empty resonator modes may be the best

available way to characterize such systems.

We have not considered here pulsed mode operation, or frequency

dependent gain. Pulsed operation may be treated by allowing the expansion

coefficients to have a slowly varying z dependence, which adds a z derivative to

the equations of motion (9 . More complicated time dependence may be treated by

directly solving the equations of motion rather than simply determining the

stable points. Frequency dependent gain complicates the problem because the

equations are no longer first order in time derivatives. These difficulties have

been resolved for lasers with stable cavities (27 ) and therefore the same methods

should be applicable for unstable resonator cavities.
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