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ABSTRACT

Difficulties arising from inherent inaccuracies in structural

modelling and from the high dimensionality of the dynamical system

force a re-examination of the problem of optimal control of large

flexible structures within the context of stochastic system theory.

In this report, the design of active structural control is formu-

lated as the mean-square optimal control of a linear mechanical

system with stochastic parameters. In practice, a complete prob-

abilistic description of modal parameters can never be provided,

and a suitable design approach must accept very limited a priori

data on parameter statistics. In consequence, we formulate the

mean square optimization problem using a complete probability

assignment induced by the available data through use of a maximum

entropy principle. Furthermore, it is proposed to acknowledge as

available the minimum set of a priori statistical data on parame-

ter variations which is needed to preserve any measure of model-

ling fidelity.

To fix ideas, we specifically address the problem of full

state feedback regulation of a linear structural system with

statistical variation only in the open loop frequencies. Examin-

ing the phenomenology of modal frequency uncertainties we discern

the so-called "modal decorrelation times" as the minimum data

required to preserve 2nd moment response characteristics at high

levels of uncertainty or for high order structural modes.

The decorrelation times are closely related to the damping

times of the parameter ensemble averaged modal response and their

reciprocals constitute fundamental, albeit unconventional,

measures of the variation of the modal frequencies about their

nominal or mean values. Choosing to acknowledge the decorrelation

times as the available data, the complete probability assignment

which is otherwise maximally unconstrained is a white parameter
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model in which the noise intensities are inversely proportional
to the decorrelation times. The mean-square optimization problem

therefore reduces to the solution of a stochastic Riccati equation

of a form arising from the state dependent noise problem.

Certain features of the stochastic Riccati equation are next

explored. It is shown that under weak restrictions a unique

positive semi-definite solution exists for all values of the

decorrelation times. Also, 2nd moment stability is guaranteed

for the closed-loop system. Thus, the need for design iteration

to ensure robustness with respect to stability is largely elimi-

nated within the proposed approach.

Furthermore, in the limit as all decorrelation times approach

zero (i.e., uncertainties in all modal frequencies increase with-

out bound), the solution of the stochastic Riccati equation yields

a rate feedback control law which is stable for all values of

modal frequencies or damping ratios. In the more typical case in

which low order structural modes are relatively well known while

modelling accuracy degrades for higher order modes, the stochastic

Riccati equation produces a control which approaches the asymp-

totic rate feedback form for high order modes and yet closely

resembles "high authority" deterministic plant design for the low

order, relatively well-known modes. These two regimes exist as

limiting qualitative features of a global control law for which

stochastic stability is guaranteed.

The above qualitative features permit a numerical scheme for

determination of the optimal gain matrix in which the computational

burden is mainly associated with the relatively well-known or
"coherent" modes. As long as the "coherent system" is of modest

dimension, the stochastic Riccati equation admits of practical

numerical treatment for systems of arbitrarily large order. Thus,

the proposed design approach eliminates the need for modal trunca-

tion with its attendant spillover instability problems.
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OPTIMAL REGULATION OF STRUCTURAL SYSTEMS
WITH UNCERTAIN PARAMETERS

1. INTRODUCTION

The advent of the Space Shuttle has prompted considerable

attention (1 ) to the design and control of large, lightweight

space platforms. Feasibility studies have identified very

stringent tolerances on figure and precision pointing require-
ments. (2,3,4)

In the face of severe mission requirements, vibration sup-

pression by purely passive structural damping may be inadequate

and active electronic control of the structure must be contem-

plated. Due to its significant influence on mission performance,

vehicle elasticity must be carefully accounted for, so that many

degrees of freedom are required in the system model. The high

dimensionality of the dynamic system renders classical control

design techniques excessively cumbersome. Thus, the more sys-

tematic approach of "modern" optimal control theory is preferable.

Application of modern control theory to the design of active

structural control faces two fundamental problems. In the first

place, control effectiveness provided by the optimum control-

ler and estimator gains is sensitive to errors in modelling plant

dynamics, i.e., slight variations in the model parameters and

errors in environment specification. This is the problem of
"robustness." Secondly, there is the difficulty posed by the

large dimension of the dynamical model that must be employed.

In particular, stability of the closed-loop system cannot be

guaranteed if dynamically significant modes are truncated from

the plant model. This is the well known problem of control and

observation "spillover". (5,6)
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If the computational difficulties were not Prohibitive, one

might attempt to circumvent the above problems by use of a very

accurate high-order plant model in a standard Linear-Quadratic

formulation. The analysis of high-order structural modes, how-

ever, is plagued by two essential difficulties.(7,8) First,

truncation of the infinite dimensional system to a finite--

dimensional system is always inherent to the finite-element

representation. The corresponding errors incurred tend to

accumulate with increasing frequency and the calculated mode

shapes and frequencies are known to be inaccurate for higher-

order modes, even for idealized systems. Secondly, and in

addition to mathematical modelling difficulties, the higher modal

frequencies and mode shapes are very sensitive to small details

of geometry, construction and material properties. Thus, in

considering structural response at sufficiently high frequency,

the relevant structural details may never be determined and

modelled with acceptable accuracy.

Note that if the system order did not pose a problem one

could deal with parameter errors within a traditional design

philosophy. First design the controller by some method, then

characterize robustness with respect to various system properties

by determining acceptable bounds on parameter variations. Recent

results(9) on the multivariable robustness issue greatly facili-

tate this process. Unfortunately, since the number of system

parameters whose variation must be considered increases rapidly

with the system order this approach would seem to entail great

complexity.

The difficulties posed by dimensionality and parameter sen-

sitivity stem, in part, from a reliance upon design methods which

implicitly assume complete information on system parameters. It

is felt that approaches which include measures of parameter uncer-

tainty as part of the control formulation offer significant theo-

retical advantage.
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A number of such controller design methods have been advanced

in the last several years, and comparative assessments are to be

found in References (10) and (11). A distinct philosophy with

regard to the modelling of parameter uncertainties is exemplified

by the guaranteed cost control method (1 2'13 ) which attempts to

bound the effects of uncertainties. Here the system parameters

are assumed to lie in a closed bounded region and a modified

Riccati equation is devised such that closed-loop system behavior

is acceptable for all values of the parameters within specified

limits. Recently this has been noted to produce large controller

gains and relatively large control effort with overdamped domi-

nant closed-loop poles. Although a special iterative procedure

has been devised to remedy this disadvantage, (13) the applicabil-

ity of this approach to systems having a large number of uncertain

parameters has not been demonstrated.

In any case, methods which assume parameter variations within

a limited range are basically non-statistical in character. A

more thorough-going approach would employ the general concepts of

stochastic optimal control, (14 - 18 ) allowing parameter probability

distributions of unbounded support. We refer specifically to the

concepts of dual control and related ideas as clarified by

Bar-Shalom and Tse. (1 6- 18 ) Within this general context, parameter

uncertainties are not necessarily accepted at their a priori

values; instead, a control is considered truely optimal when it

has a dual effect - i.e., when it not only affects the state of

the system but also reduces the uncertainty of the state.

Unfortunately, the formulation of adaptive control is a non-

linear stochastic control problem (1 8 ) and approximations are

usually needed to achieve a practical solution. One attractive

approximation replaces the actual system parameters by parameters

which are uncorrelated in time, thereby making identification
impossible and precluding probing action. Not only is the problem

3



rendered solvable but this approach is design conservative in the

sense that it bounds the deterioration in performance due to
(19)unknown parameters and allows us to obtain an inherent caution

in the control. (20)

Within the non-dual approximation and in addition to the well-

known state dependent noise formulation for continuous systems,(
21 ,22 )

much recent work has been directed to the discrete-time case. In

particular, the uncertainty threshold principle of Athans and

Ku(192 3 ) and recent results for the general multivaria'-le prob-

lem (24 ) provide valuable qualitative insight in the present prob-

lem. Clearly, the possibility of an uncertainty threshold is a

critically important issue for active vibration suppression.

Moreover, experience with the multivariable case (24 ) shows that

the presence of a large number of uncertain parameters can be the

source of prohibitive complexity.

The view espoused here is that a suitable design method must

not only be consistent with a non-dual approximation but must

incorporate very limited information on parameter statistics

thereby reducing the number of measures of parameter uncertainty

to a manageable level.

Actually, in the specific area of response estimation, the

issue raised by dimensionality and parameter uncertainty and the

need for a tractable description of parameter statistics have

been addressed, in part, by Statistical Energy Analysis. Moti-

vated by a concern with high frequency vibration and acoustical-

structural interaction, the development of SEA has been largely

concurrent with that of modern optimal control theory and has

given rise to an extensive literature (see References 25 and 26

for a general review of SEA procedures). Broadly speaking, SEA

attempts to formulate a "contracted" description of system

response consistent with the inherent uncertainties of

structural-acoustical modelling.
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In its simplest form, SEA divides a complex structure into

"subsystems" which are considered as repositories of vibrational

energy. Each subsystem consists of a group of "similar" energy

storage modes. Modes which play a significant role in transmis-

sion, dissipation and storage of energy and which have nearly

equal excitation, damping and coupling to other subsystems are

assigned to a particular group. Generally, subsystems are

associated with a particular frequency band and may be associated

with separate structural components. SEA achieves substantial

simplification by using the approximate result that power

flow between pairs of coupled modes is proportional to the dif-

ference in the average modal energies, (27,28) the constant of

proportionality being termed the "coupling loss factor." At this

juncture, the effect of randomness in the modal frequencies is

accounted for by averaging the coupling loss factors over appro-

priately defined statistics. In taking this most important step,

one typically renounces all knowledge of the relative modal

frequency locations within each subsystem, and assumes these to

be randomly distributed over the subsystem frequency band (the

assumption of modal disorder). In this manner, the SEA model

incorporates a degree of information regarding system parameters

which is commensurate with the limited information actually

available. Under these assumptions the over-all subsystem power

balance relations are the governing equations and these involve

only the average modal energies of the modes within each sub-

system. The average modal energiec thus constitute the basic

dynamical variables and all other measures of second-moment

response may be deduced from them. At high frequency, where

subsystems contain many modes and the uncertainties in modal

frequencies are large, the use of energy and power-flow variables

results in a drastic decrease in the number of measures required

to characterize the response with an accuracy consistent with the
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uncertainties in modal parameters. Most importantly, if suffi-

cient modal density exists, the total average energy of all modes

above a given frequency may be estimated via simple asymptotic

formulae and the problem of dimensionality is circumvented.

Although SEA displays many advantages in estimating high

frequency response, its use may be inappropriate at low frequen-

cies. First, the confidence intervals associated with the cal-

culated modal energies are inversely proportional to the number

of modes within the subsystems or, equivalently, directly pro-

portional to modal density. At low frequency, the system lacks
sufficient modal density to allow predictions with an

acceptable degree of certainty. Secondly, the assumption of

modal disorder, although it produces a simple model, is unsuit-

able at low frequency. This assumption would effectively discard

all the detailed and relatively accurate information describing

the low frequency modes. On the other hand, such information is

of great advantage in controller design and must not be ignored.

Although the specific procedures of SEA may not be directly

applicable, the underlying philosophy offers an attractive

approach to the present problem. In essence, the SEA approach

to response estimation is to incorporate incomplete system infor-

mation within the dynamical model by limiting consideration to

randomness in modal frequencies. Since it deals with performance

measures defined over the entire system ensemble, SEA incorporates

the effect of parameter uncertainties at a fundamental level. But

most importantly, this modeling approach has profound consequences

for the problem of dimensionality. In optimal regulation as in

response estimation, the "curse of dimensionality" is manifested

in the great mass of processing of fundamental data (of system

models presuming complete information) required for response cal-

culation or formulation of an optimal control policy. The example

of SEA intimates the possibility that by use of models which
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include limited system information, we may so arrange matters

that the processing required for control policy formulation may

be similarly limited.

Drawing inspiration from the essential ideas of SEA, this

report sets forth the basis of a formulation which, it is hoped,

will circumvent the difficulties faced by current design methods.

Section 2.1 formulates the problem of continuous time, full

state-feedback, linear optimal regulation of a structural system

with uncertain modal frequencies. Next, it is recognized that

the statistical model of parameter uncertainties must be derived

from severely limited data. In Section 2.2 we identify a minimal

data set (the modal "decorrelation times") which preserves certain

asymptotic properties of the open-loop system in the case of large

uncertainties or for high order modes. Choosing to acknowledge

only this data set, the statistical model which is otherwise max-

imally unconstrained is determined by use of an entropy principle.

In consequence we obtain a white parameter model depending on

relatively few measures of frequency uncertainty. Section 2.3

sets forth the solution for optimal linear regulation and a

special form of the stochastic Riccati equation arising from the

state-dependent noise problem is obtained. The section concludes

by summarizing the overall rationale of the proposed design

approach.

Section 3 examines the properties of solutions to the

stochastic Riccati equation. Specifically addressed are the

issues of closed-loop stochastic stability and the influence of

uncertainties on the effective dimensionality of the system. In

particular, it is found that the computational burden may be

reduced to that associated with the relatively few "well-known"

modes, permitting the use of high order models and largely elimi-

nating the need for modal truncation.

7



2. STOCHASTIC OPTIMAL CONTROL UNDER LIMITED PARAMETER

INFORMATION

2.1 Problem Statement

To begin formulation of the linear regulator problem it

is most suitable to write the equations of motion for the struc-

ture normal mode coordinates. The state-space form of these

equations may be written:

= Ax + Bu + w, t [toftl]

x(to) = (1)

A R2nx2n BeR 2nxZ k

where, for convenience, we restrict consideration to zero initial

state. Here x is the vector of modal coordinates and velocities

with its odd indexed elements representing modal displacements

and the adjacent even indexed elements giving the corresponding

modal velocities. With this convention and supposing that linear

gyroscopic terms may be neglected and that damping is propor-

tional, the dynamic matrix A assumes the form:

A = block-diag (2)
k=l,...,n -2 -2nkwk

where wk and nk are the k
th modal frequency and damping ratio.

To simplify the developments of this section and without loss

of generality we consider only the elastic modes of the system

8



so that all the wk are non-zero. Henceforth, we assume small but

non-zero structural damping, i.e.,

0 < ) k << 1

for all k.

Furthermore, all the odd numbered rows of the input matrix B

are zero:

0 0 . 0

b21 b22 ... b29
B (3)

0 0 ... 0

b4 1  b4 2  -- b4

where the non-zero elements are proportional to the normal mode

shapes at Z actuator locations.

w is a vector of white noise disturbance forces. Because
of the convention regarding our state space representation, the

intensity matrix, v, assumes the form:

Vkj = 0 ; k, j odd (4)

where this is assumed non-negative definite.

The control input vector, u, is assumed to arise from linear,

full state feedback:

u = -K(t) x (t) (5)

where K(t) is a time varying gain matrix.

9



The standard linear quadratic formulation, (29) assumes com-

plete and accurate knowledge of the system dynamics (A, B, V

precisely known) and seeks the K(t) which minimizes the quadratic

functional

J E[fl dt[xTRlx + uTR2 u1 a.(t o  12(6)

R 1 0 , R 2 > 0 b.

subject to the constraints imposed by (1). To fix ideas we

have not included terminal state weighting since this involves

only trivial modification of the following results.

As a further preliminary step, it is convenient to express

the above relations in the eigen-basis of the uncontrolled (K=O)

system. In view of the assumption of small damping we may sim-

plify this process by introducing the resonant approximation

for A:

A = block-diag Lk 2k (7)
k~l'''n -Wk -"kwk

so-called because the difference between damped and undamped

natural frequencies is neglected. The eigenvalues of (7) differ

from those of (2) by terms of second order in the damping, while

the eigenvectors differ by terms of first order. Within this

replacement, the eigenvector matrix of A is

4 block-diag (8)
k=l,...,n 

iWk _iWk1
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Defining:

and
AW (P AO diag(u)1 (i-n 1) ~-- a.

.. Wn(i-rqn ) ,n (-i-n n)

= I B  b.
(10)

SAKP c.

v _A @'-Iv-1H d.

H RA 14HRI e.

the optimal linear regulator problem, equations (1) through (6),

may be re-stated as:

t 1t1 H Hmin: J = E[f dt F [o + 1CR2KIFJ a.
K to1 2

K real a I - 0 , R 2 > 0 b.

= (W-c) c + W ft 0itl C.

o(t0 ) = 0 d.

where w is white noise with intensity matrix v.

Now, the inevitable errors in the finite element model induce

statistical variation in all the matrices defined in (10). How-

ever, to gain an analytical foothold on the problem, we begin by

consideration of the simplest possible case in which only the

open-loop eigenvalues (the u matrix) are subject to random varia-

tion. Note that whatever the modelling errors, the real parts of

w will be negative and small. Thus it is likely that the impact

of random fluctuation in the open-loop frequencies on closed-loop

performance will overshadow randomness in the damping terms.



Consequently, we further limit consideration to random Im(p).

Specifically, it is assumed:

= U + V(t) a.
Sdiag{ lW i-ll, l(-i-nl),..., n(i-nn),Wn (-i-Ijn )) b. o(12)

v(t) diag {i Im(k)6 k(t)} c.}
k=l,...,2n

where the wk" k=l.. .n are the nominal or mean values of the modal

frequencies. The 6k(t); k=l...2n are assumed real valued, zero-

mean and stationary random processes in time and are mutually

statistically independent and independent of the disturbance

noise w.

The above model is consistent with an SEA point of view.

The standard SEA formulation tacitly acknowledges that the

energetics of modal interactions are most sensitive to relative

frequency locations so that randomness in the frequencies is

usually emphasized.

Obviously, a general treatment would require that all matri-

ces be random. However, the above restrictions offer an appro-

priately simple point of departure and permit relatively easy

interpretation. Moreover, as will ultimately be seen, the very

special problem considered here still exhibits important features.

To include the effect of frequency uncertainties while retain-

ing the form of linear quadratic theory, we again employ (ll.a)

but extend the averaging operation over the parameter ensemble as

well as over the disturbance ensemble. Having done this, it is

advantageous to re-phrase (11) in terms of the co-state matrix,

0, of the associated deterministic plant regulation problem.

Then, within the above restrictions, the problem is to determine

a K (such that K is real) to minimize:

12



A--

t dt tr (13)
t

0

subject to the constraints

= E[p] a.

-P = (W + V(t)- ) H + + V(t)- K) b. (14)

+ a 1 + icH R 2

p(t1 ) = 0 C.

That this statement follows from (10) and (11) is shown by

defining p as in (14b,c), substituting the resulting expression for

(0 1 + K HR2K) into (11a) and performing the average over the

disturbance ensemble.

At this point, we note that solution of the variational

problem of (13) and (14) requires the evaluation of the ensemble

average of p. In general p satisfies an infinite dimensional

system of ordinary differential equations. Thus, for practical

use this system has to be closed at some finite stage. For this

purpose, general results are given by Kistner. (30) There appear

to be two situations in which the resulting moment equations are

tractable. In the first case, the Lie algebra generated by

(W -BK) and v is solvable (31 ) the greatest simplification being

obtained for an Abelian Lie algebra. The second case is that in

which v(t) is white. Since general conditions on the Lie algebra

generated by (p -8K) and v cannot be guaranteed, the strategy we

adopt here consists in replacing the actual statistics of v(t) by

an equivalent (in a sense to be discussed below) white noise model.

Then (13) together with a single, closed equation for - yield a

13



variational problem whose solution reduces to a special form of

the well-known state-dependent noise formulation.

The crux of the matter is the appropriate choice of an approx-

imate probability model for v(t). Before pursuing this topic,

we first state some preliminary results concerning system (llc,d)

and the solution of (14b).

Theorem 1

Suppose that v(t) is a stationary zero mean random matrix

process. Define an increment in the nonstationary process W by:

AA t 2  d ( ) ; t I ( 5
W(t1lt 2 ) = W(t2 )-W(t1 ) = f dT V(T) ; t2  t1  (15)

ti1

and assume that W(tl,t 2 ) is almost everywhere continuous in tl,t 2

and bounded for all finite t2-tl, and that increments of the form

(15) possess joint moments of all orders. Further, suppose that

<(t) is bounded and continuous. Then with p and a as defined by

(10) and the foregoing definitions:

A. The transition matrix, 4(t,f), for system (llc,d) is given by:

T)= 2 0k(t,T) ; t T a.
k=0

where

(t,x) = explii(t-T) + W(tr,t)J k b. (16)

k(tT) =t dTl I dT2"''ft dk

(kO)

x [0 (t,T)K(TI)4 o(Tit 2)"I(T2 )... o( k_, k) K(Tk) o(Tk,T)I c.

and where the integrations extend over the left semi-closed

intervals.

14



B. 0(t,T) is almost everywhere continuous and its first and
second moments are continuous and differentiable in both

arguments.

C. Eqs. (14b,c) possess the unique, positive semi-definite

solution:

tp(t) = flidT (t,T) ; t F(to tl (17)

t

where, for T 2 t, 6 < T-t:

H(t+S,t)p(t+6,T) (t+c,t) a.

4)~L,) Lib: I (18)
1P(TT)= 01 + KH(T)R 2 K(T) b.

D. i(t,T) A E[(t,T)]; t E [t0 ,t1 ] is continuous and differen-
tiable in t and T.

The proof is contained in Appendix 1. At this point, we

remark on the case in which W(t) is a matrix Wiener-Levy process.

Expressions (16) through (18) retain validity but the resulting

forms of averaged quantities are not implied by the It6

equation: (32)

d.(t) = (j -SK(t))C(t)dt + d,(t)C(t) + dw(t) (19)

but, insteaa are consistent with the It6 equations with the

Stratonovitjh correction: (33,34,35)

15



d (t) = ( -8K + 1) (t)dt + (t) d (t) + dw(t) 1
(20)

LIM E[W2 ( t  ]IJ
A40A

In other words, when evaluating response averages we consider

white v(t) as the limit of a band-limited process as the band-

width approaches infinity. This result is desirable from a

practical point of view, since parameter deviations actually

encountered are likely to be piecewise continuous (and may often

be random variables constant in time). Qualitative features of

second moment response which obtain for v(t) continuous should

be preserved when v(t) is replaced by some equivalent white

noise model. With v(t) piecewise continuous parameter uncer-

tainties of the form (12), it is easily seen from (16) that the

second moment response of the uncontrolled system is always

asymptotically stable. While this result is duplicated when (20)

is employed, (19) implies that second moment stability is

dependent upon the magnitude of the white noise intensity.

Thus, in the white noise case, use of (16) through (18) or,

equivalently, (20) is indicated.

2.2 Statistical Modelling of Uncertainties

As Eqs. (17) and (18) indicate, a complete specification of

the statistical structure of open-loop frequency deviations per-

mits explicit determination of p, so that the optimization scheme

is reduced to a problem in the calculus of variations. However,

complete data on parameter statistics never exists. In part this

arises from the impossibility of devising a scheme of empirical

inference sufficiently comprehensive to provide valid statistical

16
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estimates of all the characteristic functions of frequency uncer-

tainties. Further, there is the practical difficulty associated

with the number of statistical parameters that must enter into

the calculation of J. The number of statistical measures

(covariances and perhaps higher order moments) of parameter

uncertainty must perforce increase rapidly with the order of the

system. For a very large-order system, such as we consider here,

the sheer mass of uncertainty measures outdistances our ability

to enumerate them all.

This point is abundantly illustrated by the results of

Reference (24) wherein the stochastic optimal control problem

is solved for a general multi-variable discrete-time system with

white parameter uncertainties. The resulting Riccati-like equa-

tion requires, as elementary data, the covariances of several

fully populated random matrices. For each such matrix this
2 2entails specification of N (N +1) scalar covariances (N being

the system dimension). Clearly, for N large the difficulty of

interpreting the meaning and design significance of all these

parameters is insuperable.

Thus, in practice, it is necessary to synthesize insensitive

controllers given incomplete data on parameter statistics. As

in spectral analysis and related fields, a more or less compre-

hensive probability model must be reconstructed from severely

limited data in a manner which is consistent with the data at

hand and maximally unpresumptive with regard to unavailable data.

The successful principle enunciated by Jaynes (36,37) has immedi-

ate application here: the desired probability assignment is the

one which, under the constraints imposed by available data, can

be realized in the maximum number of ways or, equivalently,

maximizes the entropy of the underlying processes.
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With the above scheme for reconstructing parameter statis-

tics, it is clear that the resulting form of the optimization

problem (i.e., the form of p) depends critically upon the nature

of the available data. In practice it may be advantageous to

acknowledge as accessible a set of data which is even more

restricted than the data actually available but which, under the

maximum entropy principle, renders P tractable. In the follow-

ing we attempt to discern a data set which (1) is significant to

directly observable attributes of system response, (2) consti-

tutes a minimum set for the purpose of maximum entropy probability

assignments, and (3) simplifies caiculation of the parameter

ensemble averaged performance index.

First, since the characteristics of modal frequency uncertain-

ties are inherently associated with the uncontrolled system, let

us suppose that the available data is collected from measurements

performed on realizations of the uncontrolled system drawn from

the parameter ensemble. Such measurements ultimately entail

direct observation of the attributes of system response to

specified disturbances. For example, modal frequencies are

never directly measurable since they are derived quantities which

presuppose a dynamical model. Thus, we must imagine that the

available data consists of low-order statistics of the uncontrol-

led system response to the disturbance noise modelled above.

Since pra..tical exigencies would preclude estimation of higher

order ioments we may limit consideration to first and second-order

response moments. Clearly the expected value of the co-state

matrix must also be considered subject to direct observation,

particularly as its value for the uncontrolled system establishes

the fiducial level of quadratic cost.

With regard to these quantities, the following results are

easily obtained.
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Theorem 2

Consi der the uncontrolled system:

(+ V(t)) + w(t)

(20a)

with 0 fixed and iv and wv as defined previously. Define

increments of the nonstationary process 6 kC0,t):

W kk(tlt 2  ilm(p k)6 k(tlt 2 ) a.

Iktl~2  
6k(Olt2) 6k(Olt1 f fdr 6k(T) b. (1

with the log-characteristic functions:

Fk(uvtlft) i n E[exp[iu6k(tlt M (22)

and define the "modal decorrelation times", Tk:

T k (Ikml)) f fdT le kmU);O)

k~~k0 (23)

k =1,...,2n

where the I kare the associated reciprocal time constants.
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Further, assuming the same properties for the W k(t l~t2  as

in Theorem 1 then for all k; t E [t 0 t1]:

A. IE[ k(t)]I 2 = IEk1 2 e 2e k 0tt ~ e r Im ~t)t1 (24)

ftdi e 2Re~~k(tt-) + 2 e 2Re Wk(t-to)

~kk = kkl to + k

-~~1 ~ ~ kj V vkjft dT e(1Ik+1 j)(tT)P(mJTt+~Il~~)(5

k~j 0

+. -t ) k(Imjk ;t 0 C) +r (Imoj;t O't'

oj o

LIM IQ k Iv TT (26)

Itt0 !+01 j

where Q denotes the second moment matrix of ~

t
P- (- ) ,-

Q(t) =C (lkfl1dtr e 'k~' 3 T e tx)k(mkttJ

(k- j)

LIM ~' (a 9J(jl (T kTj) (28)

B.

l (mko0 12 <1 a.
-l } (29)

T k 1 >0 b.I

where the equalities hold if 6k(t) is zero almost everywhere for

all t.
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A-

Proof

Result (24) follows directly from averaging

t
[(t) = 4o(t,to)Co + f 0o(t,r)dw(T)

to

with 0 (t,!) given by (16b) and using definitions (21) and (22).
0

Similarly, a straight-forward evaluation of E[UHI yields (25),

while (26) follows by use of the Schwarz inequality. In view of

(17) and (18) with K=O:

F(t) = l dT 0Po(Tt)o 0 ( 1 ,t)
t

Averaging of this expression leads to (27) and (28).

Equation (29a) expresses an elementary property of the char-

acteristic function (3 8 ) while (29b) holds by definition (23).

Note that (29a) ensures second moment stability and the existence

of constant steady-state values of P and Q. Now if Sk(t) is zero

almost everywhere for all t, then 6m(tl~t2) also vanishes almost

surely for all tl,t 2. Then Fk vanishes and the equality of (29a)

holds, whence the integral of (23) is unbounded and the equality

of (29b) follows.
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As (24) shows, the mean response provides the magnitudes of

all characteristic functions. However, this is still an embarass-

ment of riches, and we must seek a still more restricted data set

which is largely independent of the detailed character of r

In this connection, (24) and part B of the theorem reveal an

important qualitative effect. Aside from small natural dissipa-

tion, the energy associated with the mean response of the kth

mode is proportional to le m,2 which tends to zero as t tends to

infinity. The gross effect of the frequency uncertainty is to

introduce a spurious damping (the "decrrelation damping") into

the mean response due to progressive decorrelation among indivi-

dual ensemble members. Of course, as (25a) implies, the modal

energy thus lost to the mean response serves to augment the

covariance. Thus, the mean response energy gives a measure of

the system information retained at any time subsequent to the

application of a known disturbance.

Now the ratio of the mean response energy to that predicted

by a deterministic model is the magnitude squared of the char-

acteristic function appearing on the right of (24). This ratio

is always less than unity and integrable so that any modal

frequency uncertainty renders Tk finite. Thus the decorrelation

times defined by (23) are the time scales over which a determi-

nistic model retains validity given known initial disturbances,

and appear to give natural measures of uncertainty.

To relate the Tk more directly to frequency statistics,

suppose, for example, that 6 is known to be a zero-mean Gaussian

random variable with standard deviation a. This corresponds to a

relative uncertainty in Im Pk with variance 02. Using (21)

through (23):
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A-

Tk f du exp[-(Imik) a T 2  2 (lmk)-0

or,

2

Ik -\/ o

and, in general we may estimate l/TkIm(1k) as the standard devia-

tion of the frequency deviation relative to its mean value.

Frequency uncertainties may be considered "small" when the Ik

are small or when the Tk encompass many periods of natural vibra-

tion. For the Ik sufficiently small, the modulation introduced

by the characteristic functions, exp(r k(Im(Llk);tot)), will be

overwhelmed by the attenuation due to natural damping. This

occurs when the Tk are much larger than the damping time scales,

i.e.:

Tk >> (ReJk)-I k = 1,...,2n (30)

In this regime, as can be seen from (24), (25) and (27); the

influence of frequency uncertainties is negligible and a deter-

ministic model of the plant may be used.

In the more interesting case in which (30) is not satisfied,

various qualitative features of Q and p may be deduced from (25)

and (27).

For this discussion and henceforth, we suppose that the

state vector is so arranged that

W 1  W 2 Wn
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and define, for convenience, the integer-valued function

N(k) E[1,2,...,n] such that

W N(k) = JImIk 1; k = 1,...,2n

Further, we impose various restrictions likely to be satisfied

in practice:

a. Ii12k- 2k-2 1/ Viki_ 1 non-increasing with increasing k

b. 0 f k  ; k

c. TkIImjkI monotone decreasing with increasing k,

1i e., Ik  > I k 1  ; "k

Condition (a) is satisfied in the usual case wherein modal

frequency separation (considered as a function of frequency) is

bounded by some finite power of the nominal modal frequency.

Condition (b) postulates an upper bound on the modal damping

coefficients. (c) states, in essence, that the uncertainty of

open-loop frequencies relative to nominal values increase for

the higher order modes. Actually, the degradation of accuracy

with increasing mode number need not be monotone, but condition

(c) nevertneless reflects the overall trend.
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Consider now the steady state behavior (t t 0 and tlt- in (25)

and (27), respectively) of the covariance and expected cost

matrices.

Corollary 1

Consider the model order, n, arbitrarily large. Assume con-

ditions (a) through (c) above and denote by Q(D) and -(D) the

results obtained under a deterministic model (f=0). Then for the

uncontrolled system in the steady state:

A. With K the smallest integer such that:
c

k + 21

WN(k C ) k  c (31)

c

then for k kc, j = k + 2:

_(D);:(D(Da.

kk jj kk ij

(32)

-(D)
______ < kj I b.-- -- < --(D) -- (D) b

QkkPjj Pkk Pjj

B. Similarly, there exists a smallest integer, k such thatcL
(32) holds for k kL and j c(k+2,...,k+2L).
C. Given c , Q > 0, there exists a ku > k sufficiently large

that:
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- ~u - . -.-

~'kk jJ

for k> 1% and all j # k.

Proof

We need consider only ;5 since the results for p follow

analogously. In the steady-state:

Q =v cf dT e(k +p)1 e )(mk
kj 'k3

k~j (33)

0kk vkk de 2R0

where the above integrals exist by condition (b).

Clearly the diagonal elements of i5 are unaffected by frequency

uncertainties and '5kadQk are identical. From (26):

jk;: IV kjI(TkTj)

while, by direct calculation:

-~(D) IV

kjk
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so that:

'kj/iQk) I < (TkTj) k+PjI

Ik' k±2Wm~m±1

where k=2m or 2m-l. In view of (31) and conditions (a) and (c),

(32) follows directly. Similarly, by virtue of (a) and (c), we

may determine a smallest integer, kc2 such that

Ik c2 +Pkc2-4

W N(kc2 ) - cIkc 2

and use (26) and direct calculation of (D)k to show (32) for
kj

k kc2, j e(k+2, k+4). Repetition of this argument proves the

assertion of part B.

Finally part C follows by use of (26), (28) and condition

(c). 0

Note that parts A and B did not give results for k even and

j odd or vice-versa. However in this case:

1;5 1= 0 Vkjl f 0 dT Ie rk(Im~k;O'T)+Fj (Im1j;0'T) )

kj (W N(k) '(j)o

!5 0 W ,Vkjl (Tk Tj)'

(39) adtesc

where the first line follows from Reimann's lemma and the sec

ond by the Schwarz inequality. Thus, from (26) we may estimate:
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W N (k) +WN (j)l

so that for k and j not both odd or even, iikj is negligible in

any case.

The Corollary shows that the main effect of frequency uncer-

tainties is to suppress cross-correlation among the open-loop

modes. Indeed, as part C reveals, the portions of Q and c cor-

responding to sufficiently high order modes tend to become

diagonalized under the decorrelating effect of uncertainties.

These results allow a division of the open-loop modes into

various qualitative regimes. An important line of demarcation

is provided by wc as defined by (31). We shall term the

quantity wc the coherence limit in frequency since it locates

the onset of reduced inter-modal correlation.

Suppose k and j exist such that wN(k)' w-a(j) < c" Then as

one sees from (33):

Ikjl kj

so that in this quasi-deterministic range frequency uncertainties

have little influence.

On the other hand, for modes much above the coherence limit,

frequency uncertainties tend to obliterate modal cross-correlation.

In this regime, as Corollary 1 shows, there exist k, j suffi-

ciently large that the correlation coefficient Qkj/Vkj is as

small as desired. We may say that:
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N(k) c

defines an incoherent range in which the open-loop modes are

uncorrelated, Q approximately diagonal and (from (25a)) inde-

pendent of parameter statistics.

Of course, the same general behavior can be deduced for

. In particular, the sub-block of p corresponding to modes in

the incoherent range is approximately diagonal and independent

of the Fk (Im(k); o,1); k=l...2n. Thus the specific form of

the Fk has no influence on that portion of the cost contributed

by the incoherent range, while the total cost is primarily depen-

dent on the location of the incoherence limit. We conclude that

most qualitative features of open-loop response are dictated by

the magnitudes of the Tk relative to the other time scales of

the problem.

At the very least, we must require that any approximating

probability model of the 6k(t) ; k=l... 2n should be capable of

duplicating the general behavior described above - in particular,

it should preserve the time scales of decorrelation damping,

provide a correct estimate of the coherence limit and satisfy

the bound given by (26) for the cross-correlations of high order

modes. This is possible only if the decorrelation times are

admitted as fundamental data.

Thus, henceforth, we propose to acknowledge only the

Tk (k=l... 2n) as the "available" data. At this point note that

in practice:

"12m , "2m-1 ; m = 1,... ,n
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so that:

6 2m(t) = 62m 1 (t) ; m 1,...,n

Since the simplest model requires use of the Tk (k=l...2n) only,

we shall acknowledge this relation only to the extent that:

T2m = T 2m- (34)

With this choice, it remains to construct a full probability

model which presumes as little as possible regarding the unavail-

able data. In other words, it is desired to determine the proba-

bility assignment which maximizes the entropy of the processes
6k(t), k=l... 2n subject to the constraints implied by (23) and

(34).

In general, the entropy functional to be maximized should be

defined on the joint probability distribution functional of the

processes 6k(t), k=l,...n for all t on the real line. To avoid

the use of such an unwieldy entity, we shall proceed heuristically

and define the maximum entropy probability assignment induced by

the decorrelation times as the set of all joint statistics of all

finite sets of increments (21) obtained from the solution of the

following problem in the limit as T and N tend to infinity:

"Under the Restrictions:

N k(Imk ;OmT/N) 2
(a) T Ie Tk a

m=l

with: T ,[ '- T 2m 1 ; M}I(,

30



(b) The increments 6k(tl,t2); tilt 2  0 are stationary

(c) 6k(tl~t2); tilt 2  0 are zero-mean and possess finite, non-

zero second moments for It2-t1l > 0

choose the joint distribution, F, of the increments

6 (Om ) ; k = 1,..., 2n ; m = 1,...,N (36)

so that the entropy:

H - dF in P

is maximized."

-where P denotes the probability density and it is seen that

the limit of the sum in (35) is the right side of (23).

Note that restrictions (a), (b) and (c) differ from the form

usually assumed for the available information in the problem of

determining the maximum entropy probability 
distribution. (36,37)

However, in the limit as N and then T approach infinity, the

solution is quite simple and intuitively plausible. Its deriva-

tion is contained in Appendix 2. Here we summarize the conclusion

as follows:
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Theorem 3

Assuming that the processes

6]-(Olt) 0 t  6 k(T)dT (37)

k=l,...,2n

possess finite, non-zero variances for all tE (O,) and stationary

increments, the maximum entropy probability assignment induced by

the data:

A- Fk(Im~k;O, ) 2

Tk _ (Imkik)- = f d.Ie

k = 1,...,n (38)

T2m T 2m-l ; m ,...,n

is the one under which the 6k(o,t); k=l,...,2n are independent

Wiener-Levy processes with intensities ik/lwN(k):

E[6k(O-t)] _ Itl
EN(k) (39)

I 2m I I2m-1 m 1 ,...,n

With the Tk as available data, the maximum entropy probability

model gives independent modal frequency uncertainties - a property

that was assumed in Section 2.1. Furthermore, this statistical

model satisfies the assumptions of Theorem 1 and those results may

be employed directly.
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Note that:

Fk(Im k; 0 , T) = -wN(k)Ik IT I

Substitution of this into (24), (25) and (27) shows that all the

qualitative features noted above for E[ 1k, Q and Q are preserved.

In this connection, it is convenient to compare the result

obtained for p under the above white parameter model with a-

computed under a complete statistical model having the same

decorrelation times. As a practical matter we must limit consid-

eration to the uncontrolled system. With this restriction,

suppose that, in reality, the open loop frequency deviations, 6k '
2

are normal random variables with variances uk Then by appli-

cation of (27), the steady state value of pkj(k~j) is found to be

S2 -2 G2 ) 2  * a
- = (G) A = l dT e N ( _ (k)'k+N(j)a + (1j+vk)T (39)Pkj 'kj = lkj 0

and the diagonal elements of p are unaffected by frequency uncer-

tainties and need not be considered further. Of particular con-

cern in this comparison is the behavior of p for large uncertain-

ties and/or high order modes (in view of conditions (a) and (c)).

Thus, consider the specific case:

V-2 2 -2 2

Then (39)a yields approximately:
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V11;(G) 2 lkj (40)(G _ _________(0 a
kj 2-2 2-2

k WN(k) j N(j)

Now the decorrelation times may be computed as:

T /-7 (ak N  -

Tk - k N(k)

so that for large ak s, the maximum entropy statistical model

yields:

-- -(w) A a (lkj
- kj Pkj (41)

k3j WN (k) 'k+wN (j) 'j

Comparison of (40)a and (41)a readily shows:

IT(G) -(w) (42) akj <- Pkj

where equality holds only if 0k N(k) = j N(j)"

Thus, at least in the present comparison, the maximum entropy

statistical model correctly models the suppressicn of off-diago-

nal elements of p due to frequency uncertainties. In fact, as

(42)a shows the model of Theorem 3 somewhat underestimates this

diagonalizing effect.

Most importantly, the 6k(t) are modelled as white noise so

that posterior learning is impossible and the stochastic control

problem is nondual. Although physically unrealistic, the white

parameter uncertainty model entails an extra degree of caution
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in the control and provides a worst case situation from the point

of view of parameter identification. Indeed the model may be used

to determine performance degradation due to parameter uncertainty

and to assess the need for identification and adaptive algorithms.

2.3 Determination of the Optimal Gain

Let us now resume consideration of the optimization problem.

Adopting the statistical model set forth in Theorem 3, we obtain:

Theorem 4

With the maximum entropy probability assignment induced by

the decorrelation times as given in Theorem 3 and K(t) bounded

and continuous in t E[t O,tl, p as defined in (14) is the unique,

positive semi-definite solution of

H--P(t) = ( -K(t) - ') P(t)

+ P(t) (W -BK(t) - I) (40)

+ I{ } + a + K H(t)R2
1 0(t)

Q(t I ) = 0

where

IA diag[w 1 21 W1 121 . . . WnI2nwnI2n] (41)

and where, for any square matrix, M:

{M}A diag(M llM22". ,M2n,2n] (42)
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Proof

With the statistical model of Theorem 3, W(tlft 2) as defined

in (21) satisfies the restrictions of Theorem 1 and the results

of this Theorem may be used. In particular, (18) yields:

)(t,t) = #H(t+6,t)'(t+6,T) (t+ 6 ,t) a.

(43)

(t+6,U) = H (Tt+6) 1 +rH (r)R 2 K(T) (T ,t+5) b

where 6-0. (16) shows that P(t + 6,t) depends upon 6k(tlt2)

only for tl,t 2 E (t, t + 6], while P(T, t + 6) depends upon

6k(tlit 2 ) only for tl1 t2 E (r, t + 61. Since these intervals

are disjoint and the increments of 6 k(O,t) are independent,

the ensemble average of (43a) becomes:

4)(t,T) = E[ H(t+6,t)T(t+6,T)c(t+6,t)] (44)

where

Now examine (16). Keeping in mind that (1) the 's appear-

ing in the integrals of (16c) are each dependent on increments

of the 6k(o,t) over mutually disjoint intervals, (2) that partial

sums of (16a) are almost everywhere convergent, and (3) the

k(ot) are Gaussian with variances (39), it is seen that the con-

tribution of k k(t + 6, t) to 4(t + 6, t) produces terms of

2 k=2
of order 6 on the right side of (44).

(44) may thus be written:
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X(t6) =E[(4 (t+6,t) -ft+6dp 0 (t+6,T )K(T0 1 )
o (Tlft))Ht

+ 0(62)

Similarly, using t'.e expression (16b) for the P0 s appearing

above, we have:

¥(t,T) = E[AHT (t+6,t)A] + 0(6 2

A = I + 06 + W(tt+6) + W2 (t,t+6) -t+ 6 dT 1K(T1 )=t 1

After expanding out, rearranging and dividing by 6:

--
I[ (ta-6,T) + 1 2 H-

(t E[W2(t,t+6)])HT(t+6,T)

1 2+ T(t+6,T)(6-<(t) + 2-E[W (t,t+6)])

1
+ iE[WH(tt+6)T(t+6,T)W(tt+6)] + 0(6)

Next use (21a) and Theorem 3 to evaluate the above averages,
a-then pass to the limit 640. Recalling that t (t,T) exists by

Theorem 1.D, we obtain:

a - H-

+ T (t,t) (W-8K(t) - ') + I{T(t,t)} (45a)

with I given as in (41). Also, (18b) yields directly:

T(T,t) = oI + K H(T)R 2 K(T) (45b)
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Finally, integration of all terms in (45) over T E [t,t 1 ] and

use of (17) gives (40).

The linearity of this equation guarantees the uniqueness of

the solution, and the positive-semidefiniteness of p(t) noted in

Theorem l.c implies the same property for p(t). 0

Under the maximum entropy statistical model we thus obtain
a modified Lyapunov equation for p which must be appended to the

variational problem (13) as a constraint. Clearly as the decor-

relation times approach infinity, the matrix I approaches zero

and (40) reduces to the familiar Lyapunov equation for a deter-

ministic plant.

With finite decorrelation times, the qualitative structure

of (40) should be noted. First, considering only the diagonal

elements of (40), we have

_d -H (K) H-}

+ {P} -{ K} + {1 1 +K HR 2 K}

Thus the terms arising from frequency uncertainties do not

appear explicitly and the diagonal elements of p depend on the

decorrelation times only through their dependence upon the off-

diagonal elements.

On the other hand, considering only off-diagonal elements,

(40) takes the form:

- (r-K' I) H +

+ a1 + KHR 2K
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The off-diagonal elements of P are directly influenced by the

uncertainty terms, but only through the matrix (T -8K - I). It

is easily shown that under the statistical model of Theorem 3,

the mean response (averaged over the parameter ensemble), [, is

given by

Consequently (p -8 - I) is the dynamic matrix of the "mean

system" and the term - 1 represents the effect of decorrelation

damping.

Thus, while the diagonal elements of p are not directly

affected by parameter uncertainties, the off-diagonal elements

are subject to the decorrelation damping of the mean system.

These features lead to the same suppression of off-diagonal ele-

ments of P (and U) as noted previously for the uncontrolled

system.

The problem outlined in (13) and (14) is now reduced to one

in the calculus of variations. With (13) and (40) we may pro-

ceed directly to obtain:

Theorem 5

Under conditions (40), the performance index:

t1
= f dt tr[Pv] (46)

t
0

is minimized for all v 2 0 if and only if:

w 1 p (47)

where P is the positive semi-definite, hermitian solution of
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H- +
_P = ([_ 1) H + P(_- I) +{

+ 1 -P0 2 P (48)

p (t I ) = 0

where

a 2 = R2 (49)

Proof

The necessary stationary conditions may be derived by intro-

ducing a multiplier matrix, Q, and requiring that the first

variation of

H = f dt tr[Pv + Q [p + ( 1_K- I)H
t0 

(50)

+ P(V-aK- I) + I{P} + I + K HR2K ]

with respect to independent variations in T and K vanish, impos-

ing also the terminal condition (40b). Vanishing of the first

variation with respect to T gives:

Q = (P-aK- I)Q + Q(1J-SK- I) + I{Q} 4 v

(51)
Q(t o ) = 0 1

which may be recognized as the equation determining the second

moment matrix. Equating to zero the first variation of (50)

with respect to K yields:

(R2K -BH )Q = 0

For this to hold for all v, (47) must follow. Finally, substi-

tution of (47) into (40) produces (48).
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To prove sufficiency of (47) and (48), first define:

A -l1 H-
K0  R2 1 PO

where P0 satisfies (48). In general, we may set

K K 0+ K- --- 'O

p = + Z

With this substitution, (40) becomes:

-z = (1- I-sK)Hz + z(1- I-8K) + I{z} + K R 2K

(52)
z(tl) = 0

Next, define q(t) by:

q = (1- 1-SK)q + q(P- I- K) + l{q}

(53)
q(to) =q 0 > 0

where, by construction, q > 0 on t £ [t t 1. Then, with (52) and

(53):

d [ZHR2q
- tr[zq] =-tr Rq] 0 ; V t Efto,tl], Z0 (54)

where the inequality is implied by q > 0, R2 > 0. From the ter-

minal condition on z:

(tr[zq]) = 0
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Combined with (54), this implies:

trlzq] 0 ; t eft 0 ,tl]

and since q > 0:

P -P 0 0 ; V t £[t 0It,], K0

Therefore, since v 0:

J (K) 2 :(Ko )

which shows that J is minimized with (47) and (48). 0

So far the requirement that K be real has not been mentioned.

But this condition is inconsequential in view of the following

result:

Corollary 2

Let p be any hermitian solution of the terminal value problem

(48). Then the matrix, P, of T expressed in the modal coordinate

basis:

A P-H- l (55)

is real and, consequently,

K = R2 1 BT P (56)

is real.

The elementary but laborious proof is given in Appendix 3.

As a consequence, subsequent theoretical developments may be

carried out within the eigen-basis of A, employing the complex
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equation (48). In numerical work, however, it is of obvious

advantage to present (48) in the original modal coordinate basis.

Use of (55), (48) and previous definitions gives:

-P = (A- f)TP + P(A- 1) + D[I,PI

R1  - R2BTp (57)

P(t I) + 0

where, for real P:

D[f,P] = blocd a g (58)k=l,...,n |2w k  kl2-+k~k2)0(8

This expression for D[I,P] serves to illustrate the relative

simplicity of the complex form given by (48).

2.4 Recapitulation of the Proposed Approach

In addressing the problem of optimal control of uncertain

structural systems in the preceding sections, we have developed

an approach which is an explicit expression of a general design

philosophy which differs significantly from the traditional view.

At this point it is well to contrast the proposed formulation

with conventional application of modern control theory and out-

line the ramifications of the new design strategy.

Such a comparison is depicted in general terms by Fig. 1.

Clearly, the traditional approach has a rich and diverse back-

ground, yet we must paint it with broad strokes in order to

reveal its essential premises.
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CONVENTIONAL ALTERNATE

PHILOSOPHY APPROACH

"TRUTH" MODEL: 1, ACKNOWLEDGE LIMITED

ASSUME ALL MODEL BUT SIGNIFICANT DATA

PARAMETERS ARE ON PARAMETER STATISTICS

PRECISELY KNOWN (VERY ACCURATE MODEL
NOT ESSENTIAL)

TRUNCATED MODELr
2. j"MAXIMALLY UNCONSTRAINED

STATISTICAL MODEL

[ CALCULATE OPTIMAL
GAINS 3. CALCULATE MEAN-SQUARE

OPTIMAL GAINS

USE "TRUTH" MODEL

TO CHECK FOR:
" SPILLOVER DESIGN GUARANTEES:

" PARAMETER SENSITIVITY STOCHASTIC STABILITY

i 
PARAMETER SENSITIVITY

MODELLING ADJUSTMENTS]

OR DESIGN CHANGES

Fig. 1. Stochastic optimal control under limited systay information.
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Thus, as indicated on the right of Fig. 1, the alternate

approach begins with a severely limited set of parameter data.

In practice, we are limited to the nominal or mean values of

system parameters and to statistical measures of the variation

about mean values. There is some latitude of choice with regard

to measures of parameter variation and it is expeditious to

acknowledge as available a data set which is also significant

to the overall fidelity -f the model.

Having identified a significant and limited data set which

we choose to acknowledge as available, a complete probability

model is still required for computation of the control law.

Consistency requires that we induce this complete probability

model uniquely from the acknowledged data. To do this we follow

the doctrine that the complete statistical assignment be consis-

tent with acknowledged data and maximally unconstrained other-

wise, i.e., we appeal to a maximum entropy principle. This

introduces an element of design conservatism since the statis-

tical "degrees of freedom" of the maximum entropy model are far

greater in number than under the actual parameter statistics.

Thus stability properties found under the maximum entropy model

are very likely to hold over the actual parameter ensemble.

At this stage (with specification of items 1 and 2 in Fig. 1)

we possess the "system model" employed by our alternate approach.

This model is necessarily of high dimension, as is the truth

model, but implicitly accounts for the substantial uncertainty

in high order modal parameters while requiring relatively little

elementary data as input.

With the complete probability model, we must compute the

control law based upon a performance measure defined on the

entire parameter ensemble. The simplest choice appears to be

the average of a quadratic criterion over the parameter ensemble
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since it pro:-des us with a straightforward mechanism whereby

almost sure stability may be guaranteed.

Under the restrictions of full-state feedback and uncertain-

ties only in the open-loop frequencies, the preceding sections

have given specific form to items 1 through 3 indicated by Fig. 1.

To recapitulate, we first attempted to identify a data set which

was significant to modelling fidelity by examining the phenome-

nology of frequency uncertainties as reflected in the mean response,

the covariance and the expected cost. As a result, we identified

the modal decorrelation times as the parameter data set that must

be acknowledged as available if the open-loop system second moment

response is to be adequately modelled. Indeed, various qualita-

tive features such as (1) the location of the "coherence limit,"

(2) the behavior of the portions of the expected cost matrix and

second moment matrix pertaining to modes in the "incoherent range,"

and (3) the gross effect of "decorrelation damping" depend explic-

itly upon the decorrelation times. Choosing to acknowledge only

these quantities as available data, we constructed a full proba-

bility model for frequency uncertainties which is otherwise maxi-

mally unconstrained. The resulting statistical model is an

equivalent white noise parameter model which permits formulation

of closed equations for the expected cost matrix and explicit

solution of the linear regulator problem.

One clear advantage to the present formulation is the rela-

tively small number of parameter statistical measures that must

be provided and their direct relationship to system characteris-

tics. Secondly, the white parameter model yields a non-dual

problem. Thus, while accepting frequency uncertainties at their

:1 ,r levels, the approach is consistent with the more general

context of stochastic optimal control.
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In addition, certain features arising from the specific form

of (48) are essential to the overall rationale and will be eluci-

dated in the sequel. To anticipate these results, it will be

shown that under weak restrictions, (48) possesses a unique posi-

tive semi-definite solution in the steady-state case for all

values of the decorrelation times. This precludes the existence

of an uncertainty threshold. Also, with the gain (47), second

moment stability is guaranteed for the closed-loop system. Thus

the need for design iteration to ensure robustness with respect

to stability is largely eliminated within the present approach.

Finally the form of the modified Riccati equation has impor-

tant implications for the dimensionality issue. We shall find

that by confronting parameter uncertainties directly, we shall

also greatly reduce the need for modal truncation with its

attendant spillover problems.
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3. LINEAR REGULATION UNDER MODAL FREQUENCY UNCERTAINTIES:
RAMIFICATIONS OF THE STOCHASTIC DESIGN APPROACH

3.1 Introduction

In the remainder of this report various ramifications of the

design approach outlined previously are investigated. Specifi-

cally, we resume consideration of linear full state feedback

regulation in the presence of open-loop frequency uncertainties

and develop the properties of solutions to the terminal value

problem (48).

First, we recapitulate the formulation and specify the

restrictions under which the work will proceed. It must be

noted that previous results retain validity if w k = 0 in (2) for

some k, i.e., if rigid body modes are explicitly recognized. In

the following the specification:

- r 0 2nx2n
C_ C (59)

0 e

n n n r + n e

will be assumed, where r is the dynamic matrix of nr rigid bodyrr

degrees of freedom:

0 1 R2nrX2
n

'0 r block-diag 0 0 R r (60)

and Le encompasses the elastiu odes:
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r4

e A diag{W (i-nl) W 1(-i-nl)'
e"-1 1 1 (i )}(1

ne ( n e ne n e (61)

0 < 1 < 02 < " < n
~e

although the results are readily generalized, we assume for

simplicity that all the wk are distinct. Further, non-zero

structural damping will be assumed for all elastic modes:

k > 0 ; k=l,.. ,n e  (62)

Consistently with (59), the matrix of inverse decorrelation

times now assumes the form:

0 e l (63)

e diag [wI1 ,1n , If 'n n n I2n e
Ie= 2'' e ne e e

with the Ik as defined in (38).

Under conditions (59) through (63), we consider the termi-

nal value problem arising from Theorem 5:
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Ai

- -- . ...

-p = Hmp + p Pm+ i{-} + l-P2P

m~f m 12 '2
(64)

p(t l ) = 0

where -M A

02 A R218H 
(6 5 )

0 (66)

2

Be

[0 0 1(67)
brll b rl

r

brn r ... b rn Z

and where a1 C C2nx2n is as defined by (10e) and (6b) and Be is

as defined by (10b), (8) and (3).

With the control gain:

= R2 1 H (68)

the second moment matrix of the closed loop system is determined

by:

H
Q = (L - 1)Q + Q( -_ ) + I{QJ + v

Q(to) = Q - 0 , v 0 (69)

where
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An

as (51) in the proof of Theorem 5 shows. Here, we assume that

the initial state is non-zero and statistically independent of

disturbance and parameter noise.

The next section reviews various concepts and results con-

cerned with stochastic stability. Sufficient conditions for the

existence and uniqueness of steady state solutions to (64) are

established in Sections 3.3 through 3.5. Much of this material

parallels corresponding developments in Refs. (40) and (41),

except that several restrictions previously stated can be

removed for the problem considered here. In addition, Section

3.5 achieves assurance of various stochastic measures of stabil-

known numerical procedures. Finally, the section concludes with

consideration of asymptotic properties for high uncertainty

levels and high order modes in Sections 3.7 through 3.9.

3.2 Stochastic Stability and Extended Lyapunov Equations

Preliminary results concerning the stability properties of

the closed-loop stochastic system (1) must be given. Any bound-

edness or convergence property used in deterministic system

theory can be translated for stochastic systems in different

ways, depending on the type of stochastic convergence one wishes

to consider.

The convergence of sample solutions of a stochastic dynamic

system of the form (1) to the null solution are most frequently

characterized by the following stability definitions:
(4 2 )

1. Almost sure exponential stability: The sample solutions

converge exponentially to zero as t tends to infinity with

probability one.

52



th
2. p moment exponential stability: With p a positive integer

and pl...p2n any set of non-negative integers such that

2n

I Pk = P
k=l

and for all initial states, the pth moments:

Pl p2  P2n
E[x 1  (t) x2  (t).. .x2n(t) I

converge exponentially to zero.

3. pth mean exponential stability: For p > 0 and all initial

states,

Eli I x(t) I 1P]

converges exponentially, where I I..- I denotes some vector

norm.

Clearly, pth moment exponential stability is useful as a

convergence property only if p is an even integer and, with p

even, definitions 2 and 3 are actually equivalent. Moreover,

for p > p > 0, pth mean exponential stability implies pth mean

exponential stability and almost sure stability.

Since the system performance is characterized by a quadratic

functional, it suffices for our purpose to consider only second

moment (or equivalently second mean) exponential stability. Obvi-

ously, for second moment exponential stability it is necessary

and sufficient that

lim Q(t) = 0 (70)
t-t +

o

for all Qo 0 0 and v = 0 in (69). If the system is second moment

stable then Q(t) with v 0 has a unique equilibrium value
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X lim Q(t) (71)
t-t t

o

which from (69) is the positive semi-definite solution of

o = X(X -_ )H + (c- 1)X + I{X} + v ]
".. (72)

v~ 0J

Particularly germane to the existence of steady-state solu-

tions of the stochastic Riccati equation (64) is the character

of solutions to the adjoint of (72):

0 = A(X - I) + ( - 1) HA + I{A} + S
sbo } (73)

(43)
Conditions previously given for the existence and

uniqueness of positive semi-definite solutions to stochastic

Lyapunov equations of the form (72) or (73) may be stated in

terms of equivalent coefficient matrices defined as follows:

Since Q is hermitian we may set up the vector

AH A (4Q = [Qill 2 Q12 Q2 2 ' 2 QI3'"" (74)

so that only the upper triangular portion of Q is used and

C Vector v is similarly defined on v in (69).

Then (69) may be written:
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A A
Q = AQ + v (75)

where A results from representation (74) and is termed the

"equivalent coefficient matrix of Q in [Q(_- I)H+(_- r)Q+I{QI . '"

To display its definition explicitly, we denote A in (75) by

HAQ[Q(X - 1) + ( - 1)Q + I{Q}]

Proceeding similarly for A, Equation (73) may be written:

o = A A(A(a - 1) + (CL - 1) A + I{A}]A + S

Clearly, from the above definitions:

A = AQ (76)

and a necessary and sufficient condition for second moment expo-

nential stability is that AQ (or equivalently AA) be asymptoti-

cally stable.
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The relations between the stability of AA and the character

of solutions of (72) and (73) may be illustrated by the follow-

ing two results. First we have:

Theorem 6

Consider (73) with S -> 0 (S 5 0). If

A[AO( - I) + (0- 1)HA + ItA}]

is asymptotically stable then there exists a unique positive

semi-definite (negative semi-definite, resp.) solution to (73).

Proof
S firt. or ay Fc C2n

Consider the case S ,- 0 first. For any ° c C define

Q(t) by (69) with v = 0, to = 0, and

Q A C H
0 c

so that Q is determined by

A A
Q = AQ~(77)

A AQ(0) = Qo

If AA is asymptotically stable, then so is AQ by virtue of (76).

Consequently (77) possesses the unique solutiont

A AQt A
Q(t) = e Qo
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with Q(t) positive semi-definite on [0, ).

Similarly, with AA asymptotically stable,

A A

0 = AA + S

has the unique solution:

A -ilA dt At
A A-A S= f e S

A o

With these results we have:

H AHA = o Ajt A
A o = tr{QoA} Q = fo dt Q (t)S

Furthermore, the inequalities:

AH A
Q (t)S tr{Q(t)S} _ XMIN{S}IIQ(t) 12 0 (78)

hold for t e [0, -) , where XI{M} denotes an eigenvalue of matrix

M and l... 112 denotes the spectral norm. Hence:

H

o A 0 o

and the assertion for S ? 0 is shown.
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For S 0, we may replace (78) by

AH A

Q ()S t{Q~)S 2nN S <Qt) 0

o A 0 0 V , 0 o 0

which completes the proof. 0

To a considerable extent, the converse of the above may be
-i shown:

Theorem 7

Suppose that (OL- 1) is asymptotically stable, S 2 0 and

(Ct- I,S ) is completely reconstructible. If (73) possesses a

positive definite solution, then

AA[A(ot - I) + (a _ 1I)HA + I{A}]

is asymptotically stable.

Proof

By Lemma 3.1 of Reference (44), complete reconstructibility

of (C- T,S ) implies that

fc dt e( 
t ) H Se

0
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is positive definite. With this condition and the remaining

assumed conditions, the stated conclusion follows by application

of Theorem 5-3 of Ref. (41).

3.3 The Time-Dependent Equation - Convergence to the
Steady-State

Here we investigate certain pruperties of (64) with a view

to establishi.ig conditions under which the solution approaches

a steady state valup as t tends to infinity.

The first preliminary result allows the problem to be

reduced to a consideration of the completely reconstructible

portion of the system.

Lemma 1

A. Under the conditions specified in Section 3.1, suppose

( mICY) is detectable. Then the state vector may be

rearranged to assume the form:

[ u^(79)

so that E contains the rigid body modes, u comprises

the unreconstructible subspace of om and (partitioning all

matrices accordingly):

~m jm I] ,A A A
um 0 -

m 0 m mu m i

(80)

where (ml is completely reconstructible and I is a

diagonal matrix comprising those entries of correspond-

ing to the reconstructible portion of the system.
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B. With all matrices partitioned in a manner consistent with

(79), and with conditions (65) and (66), the solution of

(64) exists, is positive semi-definite on (-', tl] and

assumes the form:

p =K 1(81)'0 00

where p is the solution to

A A A A A A A A AA A
dt p = - PH m m +  

-tp + 0 -PO2I

(82)

(t 0

where:

S= 8(83)

A L A 1AH

2 - BR2 B

The proof is contained in Appendix 4.

Now, upon consideration of (82), Theorem 6-5 of Reference

(41) yields:

Lemma 2

Consider (82) and (83) with (11 mol) completely recon-

structible. In addition to the conditions of Lemma 1, suppose

that:
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A A A A A

0 HA + A m + T{A} + a Aa2A
m 2
A A A A H

0 2 = CR2 1 (84)

A
R2 > 0 , al - 0

has a unique positive semi-definite solution, A., and that

A A A A A

AQ[(Ijm au2Ac) Q + Q(N-m -Y 2 Aw) + I{Q}]

is asymptotically stable. Then p(t) - 0 for all t !5 t 1 and:

A

lim p(t) = A. (85)

Further, with the reduction afforded by Lemma 1, conditions

for second moment stability can be simplified as follows:

Theorem 8

Under the assumptions of Lemma 2, and denoting the steady-

state solution of (64) by P; then both m -o 2 and:

AQ[(Wm -a 2 )Q + Q(im - 2 p) H + {Q}]

are asymptotically stable.
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The lengthy but elementary proof is relegated to Appendix 5.

From the above result and Lemma 2, the situation with respect

to convergence of T to a steady state solution and overall second

moment stability under the resulting steady state control law is

seen to hinge on the existence and uniqueness of a positive semi-

definite solution of (84) for which Q H(- 2A)Q+Q(-o2A)H+i{Q}

is asymptotically stable. This matter is addressed in the next

section.

3.4 The Time-Independent Equation: Existence and
Uniqueness of Solutions

Here we determine sufficient conditions for the validity of

the assumptions of Lemma 2. Specifically, we investigate the

conditions under which

AA A A A

0 = m A + AOm + I{A} + 01 -Ao 2 A

A A A A A A
A -l1H - A - (86)

02 = BR2
I BH ' m = - (T

A

R 2> 0, l>0

possesses a unique positive definite solution for which

Q (m-0 2 A)Q+Q(w m0 2 A) +f{Q}] is asymptotically stable.

Before proceeding, however, it is necessary to state various

preliminary results. The first of these concerns an elemenLary
(45)

property of positive semi-definite matrices

Lemma 3

Every sequence, {Xi}, of hermitian positive semi-definite

matrices bounded below (above, resp.) with (Xi+l-Xi) negative

semi-definite (positive semi-definite, resp.) for each i converges

to a positive semi-definite limit.
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The second result concerns the preservation of detectability

(Theorem 3.6(ii) of Reference (44)):
ii' Lemma 4

If M 0 and (A,M ) is detectable (reconstructible) then for

all Q - 0, N > 0 and any B and F the pair (A + BF,(M + Q + FHNF) )

is detectable (reconstructible).

Further, it is well to recall a basic result for quadratic

optimization of deterministically parametered systems (Theorem

12.2 of Reference (44)):

Lemma 5

Under previous definitions of m and 6, consider

A A A

m m 2  (87)

a2 2

with

S 0 ,R2 > 0

A A

B) stabilizable

(m  ) completely reconstructible

Then (87) has a unique positive definite solution, A ,, and

(m- G2A.) is asymptotically stable.

The final preliminary result illustrates the importance of

stabilizability and is indispensable to the main Theorem of this

section:
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Lemma 6

With 'm' L3, and o2 as previously defined and (i, S) stabi-

lizable, there exists a Y > 0 such that

A A A A A A A

AA[A( - -o 2 Y) + (V- 1 - 2 Y)H A + I{A}I

is asymptotically stable. If, in addition, the system possesses

no rigid body modes, Y may be chosen as any positive diagonal

matrix.

The proof is given in Appendix 6. With this lemma we are in

a position to demonstrate the main result.

Theorem 9

Assuming (0- ,ol ) detectable, adopt decomposition (79) and

define o 7 0, o2, 1 and i as in Lemma 1 so that, in particular,

m1 ) is completely reconstructible. Then, if (0, is

stabilizable:

A A A A A

0 M' H + A + -{PA } + ol -A2 A (88)

has one and only one positive definite solution, A., and:

A A A A A

Q[(m j 2 '%) Q  + Q(-m - 2 A0 2 ) H + i{Q}]

and Um-J 2 A are asymptotically stable.
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Proof

To show existence of a positive definiLe solution we define

an infinite sequence {A } by:

A A A A A

0 T.' + l + Aim + lm Ai + I{A i } -A i2A i  a.

A A

ii = LIm -G2Ai b.

A (89)
.L. + cHA. + I{E i }  T. c.11 11 1

Ai+ = A. + . d.

for each i. First, assume there exists a positive definite A.1
for which Ti is positive semi-definite. Then, rearranging (89a),

we have that Ai exists as a positive definite solution of

A A A-H F
0 m Ai + Ai  + s -Aiu2A i  a.

where

A A A 
(90)

s = Ti + GI + I{A i  0 b.
A

( P ) completely reconstructible c.
A A

(m') stabilizable d.

Note that X { m } t-1 so that the unstable subspace of pR MA XRv}
contains that of om and (90d) is implied by stabilizability of

A m
(i, B). Moreover (90c) is implied by Lemma 4 (setting

Q = Ti + T{Ai}). Conditions (90b,c,d) conform to the assumptions

of Lemma 5; whence, (Pm-2 Ai) is asymptotically stable.
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Rearranging (89a) once again, Ai is, by assumption, a posi-

tive definite solution of

A A

S A. (a - I) + (-a I)HA. + r{A.} + s1 1 1

where:

A A (91)

A A
sA T. + a1 + Aia2A i -0

A

(a - I, s ) completely reconstructible

The last condition follows from reconstructibility of ( )
1 >0,F Hmand application of Lemma 4 (setting N = R > 0, F Ai,

Q = T. 0 and B = -aR). Since, in addition, (a - 1) = mAi
is stable, Theorem 7 implies that

A

AA[Aui + aHA + I{A}]

is asymptotically stable.

Elimination of T. from (89a) and (89c) gives:
1

A A A

Ai+l' i + 1c Ai+l + I{Ai+lI + a1 + Ai2 Ai (92)

H
Since A[Aoei + aiHA + I{A}I is asymptotically stable, Ei and

A i+l are seen to be negative and positive semi-definite,
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respectively, by Theorem 6. Moreover reconstructibility of

(m implies (i, (01 + Aio 2 i + f{Ai+l}) ) reconstructible

so that:

H
Yit A A A ait

A fi+l 'I dt e [oI + Aio 2Ai + I{Ai+l}]e
0

is nonsingular. Manipulation of (89) yields:

A

T i+ 1 = o2Zi  (93)

and T i+ is therefore positive semi-definite.

Thus, in summary, under the assumption that A. > 0 exists
for which Ti in (89a) is positive semi-definite, it follows that

(Ai+ 1 -A i ) 0, Ai+ 1 > 0 and Ti+1  0. In other words:

A = lim A.

exists by Lemma 3. Since T. 0 this limit is a positive definite

solution of (88) for which A [(I - 2A)Q+Q( -A)H+{Q] is
Q m 21m 2o +{~]iasymptotically stable.

It remains to show that A° > 0 exists for which T 0. By

Lemma 6, a Y > 0 exists such that

A A A A A

AA[A(wm o 2 Y) + (Wm -o 2 Y) A + I{A}I
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is asymptotically stable, since ( a, 4) is stabilizable. Now a
W ? 0 can always be found such that:

A A A A A

[W -(a I + Y1m + -MY + r{Y} -Ya2Y)] 0 (94)

Also, let Z be the unique positive semi-definite solution of

A A A A A

0 = Z(-- - 2 Y) + (m - 2 Y) HZ + I{Z} + W (95)

in accordance with Theorem 6. Letting:

A =Y+ Z >0
0

(89a) becomes

A A A A A A

To = [W -(a1 + YW-m + VY + I{Y} -Ya 2Y)] + Za 2Z 0 (96)

Thus Ao > 0 and T0  0 and this completes the proof of existence.

To prove uniqueness, let A1 and A2 be any two distinct posi-

tive definite solutions of (88). With reasoning analogous to

that following (90) we may conclude that both --m -G2 A and

LIm -3 2 A2 are asymptotically stable by Lemma 5. Also, rearranging

(88) into a form analogous to (91), it is seen that
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'a I

Ai[A(m-a2A + ( 2eAfe A + IM] and

A[A(m -2A2 + (m - H A + [W] are asymptotically stable

by Theorem 7. Define:

A
Z = A2 -A (97)

Manipulation of (88) yields:

A A A A A A

Z(;m -° 2 A1 ) + (m - 2A HZ + I{Z} -Z 2 Z

A A A A A A (98)

0 =Z( m -a 2 A2 ) + (W m -a 2 A2 ) HZ + l{Z} +Za 2 Z

Since Za2 Z 0, Z is both positive and negative semi-definite by

Theorem 6 and hence Z = 0. 1

3.5 Existence and Uniqueness of Steady-State Solutions -

Closed-Loop Stability

With the foregoing developments we are now ready to determine

sufficient conditions for existence and uniqueness of steady state

solutions of (64). The preceding results may be combined and sum-

marized as follows:

Theorem 10

Consider:

- - -mp + p 1rn + { } + aI  - (2P 1

P(t ) = 0
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where:

-A-

A - (100)

a2 BR 2 B

and where 7, , 01 and R2 are as defined in Section 3.1.

If: 01 0 , R > 0 a.

(), B stabilizable b. (101)

G(, 01 ) detectable C.

then:

A. (99) has a unique positive semi-definite solution for all
t < t 1

LIM -B. t1 p (t) = A where A is the unique positive semi-definite

solution of

PM A + Alj + I{A} + -Ac 2A (102)

C. With K = R2 1HA, the closed loop system is second moment

exponentially stable and almost surely exponentially stable

for all I - 0.
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Proof

Part A has been shown in Lemma 1, and so we pass immediately

to Part B. First note that X f A {7} so that the unstable
R m -R_

subspace of pm is contained in that of . Then, condition (101c)

implies:

( OM' ) detectable

Thus we can employ the reconstructibility canonical form of the

system arising from decomposition (79). By Lemma 1, the positive

semi-definite solution of (99) can be reduced to the form

A

with P satisfying (82), where (1m' is completely reconstruct-

ible. Since the reconstructible subspace contains the unstable

subspace and (p, ) is stabilizable, (v, 3) is also stabilizable.

Thus the conditions of Theorem 9 a.e met and (84) has a unique

positive definite solution, A , and

A A A A A

Q [(HP - Aj )Q + Q( -2 A0 )H + I{Q}]

is asympototically stable. Then, by Lemma 2:

lim p (t) = A
t l
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Therefore, under conditions (101), we conclude that:

lim Q(t)= 1 (103)
t tC 10 0]

where A0 is the unique positive definite solution of (84).

Obviously, (103) is also a positive semi-definite solution

to (102), but it remains to show that (103) is the only such

solution. Partition all matrices in (102) in accordance with

(79); in particular set:

A A [ 1  A12] (104)
= 1A2  A 2

and use (80) and (83). Then the (2,2) sub-block of (102) may

be written:

0 = A -H {A0 muA2 + A22mu + Iu
(105)

AH H H -1 AH H
-(B A1 2 + 6 A 2 ) R(B 12 +  A2 )

Note that if A is positive semi-definite, so is A2. On the other

hand, it was shown in the proof of Theorem 8 that
-H [ l l-H -H

-'mu --Hmu TQ 2 IAA[ A + --
AQ21_ muQ2 + Q2 mu + VuQ2} or, equivalently, AA2 mu 2 + A2mu +

I fA 2 1] is asymptotically stable. Then from (105), Theorem 6 and

R > 0, A2 is negative semi-definite unless ( HA + BHA) van-

ishes, in which case A2 also vanishes. Thus, for A2 to be non-

negative, we must have:
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N =0

*2 0 a. } (106)

AI 2  0 b.

Under these conditions, the (1,2) sub-block of (102) assumes

the form:

A A
0 ~m - 2A1) lA 1mu

whence AI2 vanishes. Therefore, any positive semi-definite solu-

tion of (102) must assume the form:

A A I' I
But with this result, (102) reduces to (84) and (84) has been

shown to possess the unique positive definite solution A . Con-

sequently (103) is the unique positive semi-definite solution of

(102), which completes the proof of Part B.

Because of the result of Theorem 9, the assumptions of

Lemma 2 are fulfilled. Thus, with the steady state control gain

= 1 6HA,

(m K)Q + Q~m -3<) H + T{Q}]

is asymptotically stable by Therorem 8 and the conclusion of

Part C follows.
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The situation with respect to the existence and uniqueness of

steady state solutions to (99) is thus seen to be entirely analo-

gous to that of the ordinary Riccati equation for a deterministic

plant. Note that if the system lacks rigid body modes, stabiliza-

bility and detectability are assured so that (101a) form the only

ancillary conditions. In the general case, we require only that

the rigid body modes be controllable and reconstructible - condi-

tions readily imposed in practice.

In place of guaranteed stability for the nominal system which

results from the solution of the deterministic plant regulation

problem we here obtain the stronger assurance of second moment

stability. This is indirectly a consequence of the use of a mean-

quadratic performance criterion, i.e., existence of a mean-square

optimal control necessarily demands second moment stability.

Furthermore, due to the particular form of the uncertainties

considered, even stronger guarantees of stochastic stability may

be obtained. The following result:

Theorem 11

Assume the conditions of Theorem 10 and that p is the posi-

tive semi-definite solution to (102). Define:

S a 1 - 0 + lip) - Yf (107)

Then:

1 (108)

(N, S detectable

74



the proof of which is given in Appendix 7, leads to the conclu-

sion:

Theorem 12

With P the positive definite solution to (102) under the

conditions of Theorem 10, then ( -a 2T) is asymptotically stable

and the closed loop stochastic system is almost surely exponen-

tially stable and pth mean exponentially stable for all p > 0

and all values of the decorrelation times.

Proof

By rearrangement of (102), p is seen to exist as the posi-

tive semi-definite solution of

0 = C) + p P + S-0o20 ; S > 0 (109)

where (N, B) is stabilizable by assumption and (;i, S ) is

detectable by Theorem 11. Consequently (see Theorem 12.2 of

Reference (44)) (Ii -a 2 p) is asymptotically stable. Since, in

addition, the random portion of wj is skew-hermitian (see

Appendix 6) the remaining conclusions follow by application of

Criterion 6 of Reference (46).

Thus, the stochastic regulator design guarantees a very

considerable measure of stochastic stability.

3.6 Constant Gain Stochastic Design: Computational
Procedures

Because of the relative ease with which constant gain con-

trollers may be implemented, attention is henceforth restricted

to the steady state case. In the following, p denotes the

positive semi-definite solution to the steady state version of

(99):
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= -H- + o + + a

m = 1 2 i0

2 = SR2 1S

under the conditions of Theorem 10. In this section various con-

vergent iterative procedures for the numerical solution of (110)

are set forth.

The first method is suggested by Theorems 9 and 10:

Theorem 13

Using the decomposition of Lemma 1, choose Y > 0 such that:

A A A A A

A[A(wm -02Y) + ("m -02Y)HA + I{A}I

is asymptotically stable and define W > 0 and Z 0 so that:

A A A A A

[W -(a + Ym + -mY + /{Y} -Ya2Y)] - 0 (111)1 lm 0m 2

A A A A
( m -o2 ) + ( m -o 2 Y)HZ + I{Z} + W (112)

Then:

lim = (113)
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where:

- Pk+l Pk+l m 2k

+ 'jPk+l } + 1 + k 2 k (114)

[Y+Z 0]

Proof

With (80) through (83) from Lemma 1, induction on k from (114)

shows that

k [1

0 0

for all k 0. The sequence {Pk } is seen to be defined by rela-

tions (P9). Furthermore, (111), (112) and the choice for Y

ensure that T defined by (96) is positive semi-definite. Refer-0

ring to the proof of Theorem 9, this guarantees the convergence

of the sequence (89). Thus, sequence (114) converges to a posi-

tive semi-definite limit. By (103) this limit is the solution

of (110).

The above result corresponds to the Newton-Raphson method and

therefore exhibits quadratic convergence in a sufficiently small

neighborhood of the solution of (110). The primary difficulty

arises from solution of a stochastic Lyapunov equation on each

iteration. Also, of course, proper choice of the starting value

may occasion some inconvenience.
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Ambiguity in the starting value is removed in the following

method.

Theorem 14

lim P (115)

ktc

where the positive semi-definite sequence tpk} is defined by

0 == mk+l k+l m + I{k} + Y1 -k+l 2 k+l

=0 (116)

Proof

Using the representation of Lemma 1, (116) is seen to yield:

k 0 (117)

for all k 0. By substitution, the Ak are found to satisfy:

A A A A A

0 A +A I I + a A A
m k+1 k+l m I{Ak} + I -Ak+l2 k+1

A =0 ; Ak > 0 , Vk>0 I
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Now let:

be the positive semi-definite solution to (110) where A is the

positive definite solution of (88) and Wm -a 2 A is asymptotically

stable by Theorem 9. (88) and (116) may be manipulated to yield:

A A A A

(m- 0 2 A)(A-Ak+l) + (A-Ak+ )(m -G 2 A)

A A

+ T{A-A k  + (A-Ak+l)o 2 ( A- A k + )

Thus, by Lemma 12.1 of Reference (44), if A-Ak is positive semi-

definite then so is A-A k+ . Furthermore if Ak is positive defi-

nite, then because ( c, ) is completely reconstructible, so is

(Jm?(01 + I{Ak})2) by Lemma 4. Thus Lemma 5 is applicable to
(118) ~ , hne ^-

(118), whence jm-°2Ak+l is asymptotically stable. Manipulation

of (118) yields:

A A A A

0 = (Im - 2 A k+l)H (A k+l-Ak ) + (Ak+l -Ak)( m - 2Ak+l)

A A (120)
+ {A k-Ak_ I + (A k+l-Ak )a 2(A k+l-A k
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so that if (A k -A k-l) is positive semi-definite then (Ak+ 1 -Ak)

is also positive semi-definite. Thus, by Lemma 3, the sequence

Ak converges to A provided that A -A 0. But this is assured

by the choice A = 0 and by virtue of Lemma 5. Consequently, with

(117), the sequence { k} converges to the positive semi-definite

solution of (110). 11

This method may be termed the "perturbed weighting" method

since, in effect, it involves sequential modification of the state

weighting matrix, aI. Obviously, the problem of determining a

suitable starting value is eliminated. Moreover, each iteration

involves solution of the standard Riccati equation. On the other

hand, this method exhibits only linear convergence in contrast to

the quadratic convergence of the Newton method.

3.7 Asymptotic Properties for Large Uncertainties

Having determined that a unique positive semi-definite solu-

tion of (110) exists for all positive I, it is natural to enquire

what behavior P attains for large uncertainties, i.e., for very

small decorrelation times. In examining this question we are

mainly concerned with the resulting form of the control law for

the elastic modes. Thus, in the remainder of this report, it is

assumed that the system possesses no rigid body modes, i.e., that

= e , n = ne. This restriction permits a relatively straight-

forward development and, moreover, the qualitative form of the

results to be derived below is expected to hold even in the

presence of rigid body modes.

The principal effects of frequency uncertainty for small

values of the decorrelation times are connected with the distinct

character (noted after the proof of Theorem 4) of the diagonal

and off-diagonal portions of equation (110). Since we mean to

treat the diagonal and off-diagonal elements of p separately, it

is expeditious to introduce the notation:
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<M> M -{M} (121)

for any square matrix M. In addition, define:

* A 1 Relk + ((Re-k) 2 + {alk{02}k) ]  (122)

{p*} may be recognized as the solution for the diagonal portion

of T obtained from the diagonal portion of (110) with <T> ignored.

With these definitions, we first establish certain bounds on

{f} and <P> as follows:

Theorem 15

Under the conditions of Theorem 10, and with p the positive

semi-definite solution of (110) with 1i = _0

A. I ',I 2({al}k{c°l}J)

A<>k1 2 (123),\kj -I 7~+7j -(Ik+ij) I

B. Defining Bk A 102<>}k + {< >o

(124)
Ck {<P>c2<Q>}k

, if:

{ailk -Ck > 0 (125)
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then:

it{}k -p*}kl < ICk+Bk{p}k (126)
I Bk+2 P* }k{a2 }k- 2Reki

C. If (a2)kk 0, then:

2kk[r + Fk] (127)

r a (a. a a 2 (128)
£k I*+Pk (I+k) I

Proof

As a preliminary step, decompose each term of (110) into its

diagonal and off-diagonal elements to obtain:

0 = 2Re k{P}k + {Ol}k -{Pc 2 P}k a. (

_*<} (129)
0 <P>kj[-k+1+j - (Ik+Ij)] + <Ol1kj-<P 2b.

Now consider part A. Since 02 > 0, p G2p is positive semi-

definite. Consequently { a 2T} is non-negative and:

_< ({!5 2 }k{P P j) 0; k j (130a)
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Also, from (129a):

IP 02 P k 1 5fC l (130b)

since Rev' < 0. Then (130a) yields:

IKPo 2 P kj c' I (lk {aC5)1 (131)

Using this inequality in (l29b) and noting that because a 1  0,

~lkj' c (l} k{a 1} j)

we obtain (123).

With the above results, inequalities on {-P} may be shown,

starting with part B. Expand the quadratic term in (129a)

to get:

-p 2 }k+ Pk[B k - -kI + Ck {Oallk 0 (132)

with B k and C k as defined in (124). Defining:

A ={p} -.. {p*} (133)
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I
and using (132) with (122), we obtain for A:

Ak{o 2}k + [Bk+2{ *}k{ 2}k-
2Re klAk + Ck+{P*}k = 0 (134)

Solving (132) for {}k and (134) for Ak

}k 2[-'4J 0 a. } (135)

Ak [-ct!/-43 b.

CL 2 [Bk_ 2Re k a.

al = a + 2{p*}k b. (136)

= 1Fk [Ck+{P*}kBk] C.

where the same sign appears before the radical in both (135a)

and (135b). Suppose that the negative sign is to be taken in

(135). Then, (135a) implies:

2{p*}k c

or; rearranging:

0 + CL2-4[C k -{al} k]/{2} k
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But in view of condition (125), the right hand side above is

inherently positive, implying a contradiction. Therefore, the

positive signs must be chosen in (135).

Ak = + a.

= k -2ReI + 2 2}k b. (137)

1 [C k+{P*}kBk] - 0 c.{(32} k

Note that (132) may be rewritten:

0 = ('-{ 2 }{ a 2<P>}) H{ } + { (P-{Y2 }{ }-{o 2<T>})

+ {_} { 2 } + {ai}-{< >Y2< >}

Now, {_} exists as a positive-definite matrix, while

1 I } -{<T> 2<T>} is positive by assumption (125). Consequently
(W -{ 2 }{T} -{02<>}) is asymptotically stable, i.e., a is pos-

itive.

With this property, the inequalities:

1- ii < /l+x <_ 1 + L-L, x real82
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may be used in conjunction with (137) to obtain:

A E W , a (138)

With substitution of (137b,c) , the result (126) follows.

Part C. can be shown more easily. From (132):

{a 2}k{Qp}k > {aJI 1} ICkIM + {P}k[ B kI + 2Repl~k

{a2)k{P}k 2 < fJ} +{PIk[JBk + 2Re-ik (139)

where:

IkIM2 9#k 02kk0 2ZZJP~k1 M

Z~k m~dk 21m

and Ipk' denotes the upper bound given by (123). Note also

that:

42 lkIlM = IBkIM
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Consequently, the second inequality of (139) actually gives an

upper bound for H{} k -{p*}kI. From (139b):

1 I + RePk+/(/Bk IM+2Re +4{l}k{a2}k

{ }k k 2 kIM+ R 1k kRek)2}k]

so that:

1 -M!kM 2k -J{2l}k{12} ] (141){}k-{i*kI 2{O2}_k[I I B {°l 1k 2k /{j~f2k

Using:

-l+,x -0 , V x 0

in (141) and substituting expressions (140), the result (127) is

obtained. 5

Of the bounds given in Parts B. and C. , C. is the simpler

but does not apply for a2kk = 0. On the other hand (126) is

applicable for sufficiently high uncertainty levels and a 2kk 0

and gives a closer bound for small values of 2kk .

The presence of (Ik + Ij) in the denominator of (123) clearly

shows that one effect of frequency uncertainties is to suppress

the off-diagonal elements of the expected cost. In this connec-

tion, use of the above bounds easily leads to the following con-

clusions:
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Theorem 16

Assuming the conditions of Theorem 10 and introducing a posi-

tive scaling parameter, J, into I:

1J1 ; J > 0 , I > 0 (142)

then :

A. lim p =p*} (143)

with {p*} given by (122).

B. The control u = -KX, where

K K
1 a.

- I  . } (144)

K R2 1H{p* b.

is a rate feedback law, i.e., the odd indexed

columns of K vanish.

C. With K given by (144b), and i any diagonal matrix

with negative real part, the system:

= (v -BK) ; (tO,) = 6O (145)

is asymptotically stable.

88



Proof

A. It is clear that the bound given by (123) decreases mono-

tonically with increasing J. Hence:

rnlim kj>I 0 (146)
J-*CO k

Moreover, there exists a J sufficiently large that condi-

tion (125) is satisfied and the bound (126) may be em-

ployed. In view of (146), the limit of the right side of

(126) is zero. LI

B. From the definition (10e) of a and the form of D given by

(8), it is seen that:

(a)2m-1,2m-1 = (al)2m,2m ; m = 1,...,n (147a)

Similarly, from (10b), (8) and (49):

(a2)2m 1, 2n-1 = (02)2m,2m ; in = 1,...,n (147b)

Consequently, from (12b) and (122):

{P*}2m-1 = {*}2m ; m = 1,...,n (147c)

and K may be written:
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K = RlBT,-lH(P*}O
-l

2 2 (148)

-iT ____mR B x block-diag 2]
2m2mm=l,...,n 0J

Thus, since the odd rows of B vanish, the odd columns of

K also vanish. 0

C. Define:

Z > 0 , 0 0

Then, for the system (145):

d , H )H[Re _{p*}aR21IH{p*} ]{p* l
dt 2

< 0

since v < 0 and R2, {p*} > 0. Therefore, Z is a Lyapunov

function for (145) and the stated conclusion follows. 0

The stochastic Riccati equation does indeed have an asymptotic

solution, of a particularly simple form, in the limit as all decor-

relation times tend to zero. According to Parts B and C of the

above Theorem, the resulting rate feedback control law renders the

closed-loop system stable for all values of the open loop fre-

quencies. This feature appears to be a natural consequence of the

inclusion of parameter uncertainties as an intrinsic part of the

model and illustrates the qualitative principle: "If nothing is
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known regarding the open loop modal frequencies then the mean-

square optimal control is the control law which is inherently

dissipative under frequency uncertainties." Furthermore, Part C.

shows that the asymptotic form of the control also guarantees

stability in the face of uncertainties in the modal damping ratios.

Thus a greater degree of robustness has been obtained than was

originally sought.
3.8 Asymptotic Properties for High-Order Modes:

Incoherence and Decoupling

Theorem 16 pertains only to the case in which the decorrela-

tion times are all uniformly small. Analogous results are to be

expected when uncertainties in the low frequency modes are small

while modelling accuracy degenerates for modes of increasing

order. Supposing the modes to be arranged in order of increas-

ing nominal frequency, we anticipate that correlation between

distinct modes will be suppressed to a greater and greater

degree the higher are the orders of the modes involved. Simi-

larly, the expected cost matrix will become increasingly diago-

nalized toward the lower right hand corner and that portion cor-

responding to very high order and poorly known modes will approach

the asymptotic form (143).

To assess the degree to which off-diagonal elements of T are

reduced in magnitude, these must be scaled properly relative to

the corresponding diagonal elements. Thus, for the purpose of

the following development, we introduce the co-state correlationv

coefficient matrix, p:

v A L
P = (P}_ PI-p}' a.

so that. (149)

kj = Pkj//Pkkjj b.
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is clearly analogous to the state correlation coefficient formed

from the covariance and has similar properties.

With (149), and as a consequence of the bounds given in

Theorem 15, one obtains:

Theorem 17

Arrange modes in order of increasing nominal frequency and

suppose that n, the number of modes retained in the model, is

arbitrarily large. Considering only the reconstructible modes

partition the state vector thus:

(&C c C 
(150)

and define the corresponding partitions of and by:

PC PCI
S-H

PCI PI

r 1
I P I

Assume that the damping coefficients, nk are non-zero and

bounded for all k; that the input matrix, B, and the control

weighting matrix, R2, are bounded from above and from below,

respectively, and the following restrictions:
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1. Ik monotone increasing with increasing k
2. 2 F 2

2N(k) lkk 1 N(k) I Vk

where ai' 01 > 0

1-

3. _mm -wm) nondecreasing with m

Then, given E > 0, there exists an Nc sufficiently large that:

I k

I < C.VCijk

where {p*} is (143) evaluated for the "I" modes. Moreover, each
of the quantities on the left of (152) are bounded by monotoni-

cally decreasing functions of k.

The proof is given in Appendix 8.

Conditions (1) through (3) of the above Theorem demand par-
ticular note. Clearly, condition (1) demands that the decorrela-

tion times expressed as multiples of the corresponding natural
periods of vibration decrease with increasing modal order -

reflecting a general decline of modelling accuracy for the higher

order modes. Condition (2) assumes an "energy weighting" on the
state and represents a rather extreme assignment of cost for the

high order modes. Often in practice, displacements alone would

be included in the performance index, resulting in a more modest
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rate of increase of a kk with k. Finally, condition (3) requires

that the modal frequency separation considered as a function of

frequency be bounded from below by a constant, i.e., that modal

density decrease with increasing frequency. This condition is

also likely to hold in practice, at least above a certain frequency.

Inspection of Appendix 8 reveals that the rates of increase of

modal density and modal state weighting for which Theorem 17

retains validity are related. In particular, for mlkk increasing

as a power of less than two, the above results will hold and

will retain validity even when modal density increases with

increasing frequency. in any case, however, the Theorem as

stated is applicable to most situations of interest.

We may say, in view of (152), that the partitioning (150)

apportions the modes into "coherent" and "incoherent" systems.

This assignment of modes is uniquely defined by the maximum

tolerable correlation level, c, which may typically be set «<I.

Further, N cmay be termed the "coherence limit" associated with

the correlation level C. Thus the qualitative features of the

mean-square optimally controlled system are analogous to those

identified in section 2.2 for the uncontrolled system.

The coherence limit, N c(E:), (where we now display the func-

tional dependence upon c explicitly) may be estimated through

use of the bounds given by Theorem 15. However, useful and con-

venient results may be obtained with approximate forms of these

bounds. Very simply, if c is small, then for k Z 2N c M ~k may

be approximated by {P*1 k in evaluating I(v>kjI from (123). This

gives the following approximate determination of N C(P):
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-lo 4

2 ({al}2N j p* I 2N {p*})

(E) < CV (153)c( 2NcJN + lJ - (12N + 'J)I
CPN j-(2 C+IH

Furthermore if for k - 2N the damping is known to be small inc

the sense:

(Re--k)2 << {a1k[a2}k (154)

we have {p*} k (Y lkk/2kk) so that (153) becomes

2({l2N {c2}2N { al
1

j {G2 } j )

NC(el: ,P)2NJl ~ J'N c + j (12N + Ij) < E (155)

The above expressions (particularly (155)) reveal the depend-

ence of Nc (E) upon the various design parameters. Clearly if

higher control authority is demanded (i.e., {a2}k or {al} k  in-

creased) Nc (c) is increased. Most important, Nc((e) strongly

depends on the rate of increase of the reciprocal decorrelation

times, Ik' with k, and the more rapidly increasing are the Ik,

the smaller is Nc (E). In fact, the dependence of Ik upon k might

be chosen in an ad hoc fashion so as to achieve a desired coher-

ence limit.
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Obviously if e is sufficiently small, TCI is negligible so

that modal frequency uncertainties effectively decouple the

coherent and incoherent systems. Moreover, PI is approximately
{P*} as given by (143). Thus, for the incoherent system, (110)

naturally gives rise to a rate feedback control law which is

stable regardless of the values of modal frequencies or damping

ratios. For sufficiently large values of the reciprocal decor-

relation times and fixed e<<l, Nc (-) dirinishes to less than

unity; the whole system becomes incoherent and the entire control

law reduces to the asymptotic form given in Theorem 16.

The above properties can greatly simplify computation of the

control gain for system models of very high dimension. We first

note, without dwelling on the matter in any detail here, that the

expressions given in Theorem 15 or their approximate counterparts

may be used to bound the contributions of p and pI -{p*} to K.

These contributions decline with increasing Nc and are convergent

even as n tends to infinity.

Thus, under the assumptions of Theorem 17, the calculation of
may proceed as follows. First, using the bounds given in

Theorem 15, determine Nc sufficiently large that the magnitude of

all elements in the error:

R7 [aaH] 0 PCI(16-l H H

-CI I I

incurred in the approximation:

96



- H C 0

-1RH- H H H (157)

may be considered negligible. Then compute K from (157), deter-

mining Pc from I'

0 =-H - -++IcVc+ + - -- (158)
cm c c cm c ic c°2c c

by either of the methods of Section 3.6 and calculating {-*} from

(122).

(158) is the upper left sub-block of (110) when partitioned

in accordance with (150), and is a stochastic Riccati equation of

order 2Nc x 2N . If the number of coherent modes, Nc, is modest,

either the Newton method or the perturbed weighting method may be

employed at reasonable computational cost. The calculation of

since it proceeds from simple analytical expressions, entails

no computational burden whatsoever. Note that the error incurred

in PI t {P} is greatest on the upper left corner and diminishes

toward the lower right. Consequently, somewhat above the coherence

limit, as many modes as desired may be accommodated without incur-

ring significant computational effort.

We conclude that if the modeled uncertainties increase with

modal order and the number of coherent, relatively well known modes

is modest, the solution of the stochastic Riccati equation and the

control gain may be computed with satisfactory accuracy for systems

of arbitrary order.
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3.9 Efficient Computational Procedures for the Coherent
System

Let us retain the conditions of Theorem 17 and consider the

stochastic Riccati equation for the coherent system:

= PH +- - -

CMC c~m c C Ic -Pc 2cPc

P 2NcX2Nc

Here we explore the numerical treatment of (158) when the number

of coherent modes is too large to permit efficient application of

the methods of Section 3.6.

In this connection, the diagonalization effect of frequency

uncertainties noted previously suggests a novel iterative numeri-

cal technique:

0 0 C~m-{a2pkt P k+l + P k+l('Vm -°2pk'} + Ik+ I

+0a1 + 10 2Pk }HPk + Pk {a 2pkI -pk a2pk (159)

po = {p"}

where, for convenience, the "c" subscript has been dropped. The

rationale for (159) can be understood through examination of the

diagonal and off-diagonal portions separately:
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0 = (I - i {O2pk}) H(< k+l> + <(k+l> ( -' -{o2pk})

+ <(ji> + {O2Pk} H <k> + <Pk>{O2Pk} - ka2-Pk> a.

(160)

0 ( I -{o2Pk})H(Pk+l} + {Pk+l}(11 - { (21k6)

+ to1 } + 2Re{Pk}{o 2Pk} -{kO2pk} b.

where {P°} {P*} 1
~. (161)

< -o> =0
0J

At least for modes corresponding to the lower right entries of p,

the reciprocal decoi lation times will be relatively large. Thus

the presence of -hI _n the coefficient matrix of <Pk+l> in (160a)
suggests that <P > will be "small" in the sense

k+l
11<P k+lXI << I {k+l11 . Note that (P -hI -{o2Pk}1) is the eigen-

value matrix of the mean system evaluated to within a first order

perturbation in the control. Equation (160a) can thus be seen as

a perturbation approximation to <>for the mean system with its

decorrelation damping (- i).

If indeed I I<>I is small, the contribution of <k> to _k in

(160b) will also be "small" so that <Pk> provides a perturbation

on what would be Newton's method for determination of {p} in the

case <P> = 0. Obviously, to within the approximation that <Pk> is
negligible, (160) yields {1i} = {P = {P} since {p*) satisfies
(158) identically in the case <P> = 0.

The above reasoning motivates our use of the term "asymptotic

refinement" for the method of (159) since it represents a sequen-

tial correction, by simple substitutions, of the asymptotic solu-

tion given by Theorem 16.
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One clear advantage of (159) is that the coefficient matrices

of <P +> and {T,+. } in the Lyapunov equations which must be
kl

solved on each iteration are already diagonal. Thus, each ele-

ment of Pk+l is determined separately:

<_ (l>Zm+{a2Pk}<Pk>hm+<Pk>zm{2Pk}m-<ka2Pk>Zm

k+l/ _*+{2k}_7+{a2 k + ( +a.
z~ O2 k ZmO2 k m zk~j

(162)

{al }+2Re{ k}{}2Pk}{Pk2Pk} b.
{P + I£ -2Re(P. +{a 2Pk})"

Thus, when it does converge, the asymptotic refinement method

is considerably faster than the methods of Section 3.6 since,

apart from evaluations of the form (162) it requires only a few

matrix multiplications on each iteration. For consistency in

this approach, we must at least require:

_<l_m (al>£m-{P*}<a2>£m{P*}m)/ ({P*}{P*}m)
/P*} {P*} m  -- +{a2I£{p*£+{ } {P*} + (I +1m )

2m m k M) (163)

<< 1
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Apart from this rule of thumb, conditions for convergence of

(159) remain the object of further research. At present we can

only appeal to computational experience with specific cases of

which a detailed report will be given separately. As (163) would

suggest, (159) is usually convergent if the reciprocal decorrela-

tion times and the modal frequency differences are sufficiently

large. In fact, (159) is typically linearly convergent for all

I 0 if the modal density decreases rapidly enough with modal

order and a1 falls below some bound determined by the other con-

ditions of the problem.

In addition, numerical experience or inspection of (163) give

rise to the following conjecture. With the partitioning:

FPD PCD
C 

-H

PCD PCI
ciC (164)

2ND x2N D
PDEC

and with D fixed, there is an ND large enough (and comparable to

the order of the quasi-deterministic system which is not directly

affected by the decorrelation times) that the sequence

<Pk+l>im = [R H S of (162.a)] D

m = 2ND+I,.... 2NC , Z < M

(165)

{ k+l}Z = [R H S of (162.b)] D

Z = 2ND+l,..., 2NC
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is convergent. Here [..]pD denotes (...) evaluated with pD

fixed.

If true, this conjecture suggests the following scheme for

solution of (158) when Nc is large:

(1) To start: Set P CD' C = 0 in (164) and determine

PD by the methods of Section 3.6.

(2) With PD as determined previously, compute FCD and

P by use of (165).

(3) Given pCD and P as computed in step (2), calculate

CD from the upper left sub-block of (158) by either

of the methods of Section 3.6. Then return to

step (2) unless convergence is adequate.

Consequently, the generally convergent but more elaborate

Newton method or perturbed weighting method is applied to a rela-

tively low order stochastic Riccati equation. At the same time

the large order sub-blocks PCD and PCC are handled with the con-

ditionally convergent but much faster asymptotic refinement

method. Thus, although general conditions for the convergence

of this procedure remain a subject of further inquiry, it is seen

that the special form of the stochastic Riccati equation admits

the possibility of efficient numerical treatment for systems of

rather large order.
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4. SUMMARY AND CONCLUSIONS

This work has addressed two of the principal obstacles facing

the application of modern control theory to structural vibration

suppression: parameter uncertainties arising from the intrinsic

inaccuracies of structural modelling and difficulties in the form-

ulation of optimal control laws imposed by the large dimension of

the system.

At the outset, the need for a design method which takes full

advantage of the peculiarities of the system to be controlled in

providing a statistical treatment of a priori parameter uncertain-

ties was recognized. In addition, it was emphasized that a suit-

able method must employ limited data on parameter statistics,

thereby eliminating the need for a complete probability model and

reducing the number of required elementary measures of parameter

variation to a manageable level.

A basic inspiration has been the notion that by consistent use

of a system model incorporating limited parameter information one

can so arrange matters that the computation required for formula-

tion of an optimal control policy is correspondingly limited.

Thus it was hoped that the obstacles of uncertainty and dimension-

ality could both be circumvented by a single design methodology.

To render this initial development tractable, we limited con-

sideration to full state feedback regulation in the presence of

uncertainties in the open-loop modal frequencies. In addition,

the average of a standard quadratic functional over both disturb-

ance and parameter ensembles was chosen as the performance measure.

Within these restrictions, considerable progress in the direction

outlined above can now be claimed.

Chapter 2 set forth the essential ideas of a new approach.

This has been summarized in Section 2.4. To briefly recapitulate,

the minimum set of parameter statistical data needed to preserve
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any fidelity in the overall model was first sought. The control-

led or uncontrolled system was seen to be comprised of several more

or less distinct qualitative regimes delimited according to the

values of the "modal decorrelation times." These parameters con-

stitute new measures of parameter uncertainty and are essential to

an adequate description of second moment response. A measure of

design conservatism is then achieved by constructing a full proba-

bility model of frequency uncertainties which is unconstrained save

for prescribed values of the decorrelation times. The resulting

white parameter model allows formulation of statistically closed

equations determining the mean-square optimal control law.

At the close of Chapter 2, the problem was reduced to the solu-

tion of a stochastic Riccati equation which assumes the form of the

standard Riccati equation when all parameters are deterministic.

The specific properties of this modified Riccati equation were

developed in Chapter 3. First, the situation with regard to the

existence and uniqueness of steady-state control laws was found

to be entirely analogous to that of deterministic plant regulation.

Under the usual stabilizability and detectability restrictions,

unique steady state solutions were found to exist for all levels

of uncertainty in the modal frequencies - indicating the absence

of an uncertainty threshold. In addition, for such constant gain

controls, strong assurances of closed-loop stochastic stability

were found in Section 3.5.

The asymptotic properties of steady state solutions for large

uncertainties and high order modes were investigated - with

significant implications for the dimensionality issue. In the

limit as all uncertainties increase without bound the solution of

the stochastic Riccati equation (in the eigen-basis of the nominal

system matrix) reduces to a diagonal matrix whose elements are

independent of modal frequency statistics. This asymptotic solu-

tion gives rise to a velocity feedback control law which is stable
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regardless of the values of modal frequencies or damping ratios.

If all uncertainty levels are not small but do increase with

increasing modal order, the solution approaches the asymptotic

solution for high order modes but may resemble a deterministic

plant control for very low order, well-known modes. In other

words, an inherently robust velocity feedback control automati-

cally emerges for the poorly known high-order modes.

This feature greatly reduces dimensionality problems in the

solution of the stochastic Riccati equation as shown in Section

3.8. The convergent numerical procedures set forth in Section

3.6 need only be applied to the "coherent" portion of the system

which consists of relatively few well-known modes, while the

velocity feedback control for the high-order, "incoherent" portion

can be determined with negligible computational burden. Which

modes are to be included in the coherent system can be determined

in advance of any burdensome calculations according to the accu-

racy desired in the determination of the control gain. Finally,

even if the coherent system is inconveniently large, the computa-

tional schemes advanced in Section 3.9 show promise as efficient

means of solution. We conclude that the stochastic Riccati equa-

tion, which results from inclusion of parameter uncertainties in

the fundamental system model, is amenable to satisfactory numeri-

cal treatment for systems of arbitrary order. Detailed numerical

results illustrating the above features will be given separately.

Obviously, to be of practical value, this formulation must be

extended beyond the restrictive assumptions initially adopted.

First, more general types of parameter uncertainties must be

accommodated. Secondly and most importantly, the assumption of

full state feedback must be removed and the theory extended to

treat fixed-order dynamic compensation in the presence of parameter

uncertainties. These generalizations are the object of further

investigation.
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APPENDIX 1

Proof of Theorem 1

A. First, if W(tlft 2) is differentiable almost everywhere

then by direct substitution, it is seen that (16) satisfies:

[-i-(t,i) + V(t) -6K(t)]4 (t,T) (Al.I)

( , ) = I

almost everywhere and is the transition matrix of (11). If

W(t11 t2 ) is almost nowhere differentiable (see References 32, 21),
we must re-interpret (A1.1) as

do(t,T) = [7 -8K(t)]4(t,T)dt + dW(tO(t,T) (Al.2)

where dW(t) is the differential increment of W, where W now pos-

esses independent increments. (16) may be shown to be the solu-

tion of (Al.2) in the sense that

f b d (t,T) = P ab [-aK(t)] (t,T)dt (AI.3)
b ab

+ fb dW(t)O(t,T)
a

holds with probability 1 for all a,b.
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To be consistent with the assumed almost everywhere continu-

ity of W(t), we must take W(t) to be the limit of a band-limited

process as the total power approaches infinity. This requires

care in the definition of the stochastic integral:

G = fb dW(t)O(t,t) (AI.4)
a

appearing in (Al.3). Following Stratonovich (33 ,34 ) and Wong and

Zakai (3 5) , the proper definition of (Al.4) is found to be

(t V )+ (v l T)

G lim d [W(t )-W(t 2 (Al.5)= u \t+l 2(A.5

as MAX(t +l-t )-0, where ft} is a partition of [a,b]. With

this interpretation, (16) is seen to be the formal solution to

(19). Moreover, 0(t,T) has the Ito stochastic differential with

Stratonovich correction term of the form given in Eq. (20).

Next, the series of (16a) must be shown to be convergent.

Since v(t) is bounded and W(r,t) is almost everywhere bounded,

there exist finite MK,M W > 0 such that for all t cito ,tl ] ,

SC [t0 ,tJ:

It (t)II < M , I1(0(t,T)!! < MW

where . denotes any matrix norm. Then it may be shown:
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P k+l ki1 kck(tt) I K t-

so that:

I4+(t,t)I P.1 MW exp[MKMw(t-T)]

Therefore, the series (16a) is absolutely convergent and p(t,T)

exists and is bounded almost everywhere for all finite (t-').

B. Since K(t) is continuous and W(tl,t 2 ) is almost everywhere

continuous, each k(k = 0,...-) shares this property as is evident

4rom (16b,c). Furthermore (16a) is absolutely convergent, whence

0(t,T) is itself almost everywhere continuous in t and T. This

property immediately ensures continuity of the first and second

moments of 4(t,r). To show differentiability of the mean of 0(t,T)

we first average (16c) over the W ensemble. By virtue of (16b) it

is clear that each element of E[Ok(t,T)] is a functional of 8K(T

£ = l,...k and the joint characteristic function of W(TI't),

W(T2FT1)...W(T,Tk). But this characteristic function is differen-

tiable in all its arguments since increments (15) possess first-

order absolute moments. (38) Moreover the arguments corresponding

to W(TIgt), W(T 2 ,TI)...W(TTk) are proportional to (t-T 1 ), (1I-T 2)

(Tk-T) respectively. Hence, E[0k(t,T)] is a functional of con-

tinuous and differentiable functions of t,T. ..Tk' and consequently

E(O(t,T ) is continuous and differentiable. An analogous argument

shows this property with respect to second moments of 0(t,T).
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C. and D. Direct substitution of (17) and (18) shows these

expressions to be a formal solution of (14). The almost every-

where boundedness and continuity of 0(t,T) shown in the proof

of part A and the assumed continuity and boundedness of aK

ensure the same properties for P(t,T). Consequently expression

(17) exists, is bounded and continuous almost everywhere.

Substituting 6 = T-t in (18) gives

f(t,T) = H(T,t) [01 + K H(T)R 2 (T)]4(T,t) (Al.6)

Therefore, since a1 ' 0 and R2 > 0, I(t,T) is positive semi-

definite and so is p(t).

Interpreting (14) in the sense of (Al.2) and (Al.3), and

supposing that another solution distinct from (17) exists, we

find that the difference obeys the homogeneous form of (14b,c).

This has only the trivial solution, contrary to hypothesis and

it follows that solution (17) is unique.

Finally, from (18), each element of E[p(t,T)] - T(t,T) is

given in terms of the second moments of O(T,t). From part B. it

follows that (t,T) is a continuous and differentiable function

of t. 0
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APPENDIX 2

Proof of Theorem 3

Here we derive the result of Theorem 3. First consider the

discrete problem. The entropy may be defined using the joint

statistics of the increments:

kA 6 ( T T 1
X = 6k( -1) , ) (A2.1)

= ,...,N ; k = 1,...,2n

in place of increments (36). With

p 1 2n 1 2n
X1 ...XN (X-

denoting the joint density of increments (A2.1), where Xk s h
k

argument corresponding to Xk, we wish to determine the p 1 2nZ XI... N
which maximizes

~ .~1  2nH = -fdX ... d n p 1 2n Zn p 1 2n (A2.2)
1 X1... XN XI.. XN

subject to conditions (a), (b) and (c), with (35.a) re-written in

terms of the increments (A2.1).
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The constraints imposed by the available information are

seen to be independent of the joint statistics of any two
k

sequences X.; Z = 1,...N and X = 1,...N f-r k $ j. More-

over, H is maximized for k and X; j k independent. we

may conclude at once that

2n
p 1 2n = H p k k
XI'''XN k=l X1 ...XN

H E Z Hk (A2.3)
k

11k A -fdXk.. dXk P k---×N p "k N
SN .. X XN X.. XN

and it remains to determine each p k k to maximize Hk

separately.

Consider k fixed, and drop the k superscript. We may write:

Xl... XN X1 PX 2 " . XN
(A2.4)

r X2 ... XNIXI(X
2 . XNIXl)/Px2 ...XN(X2* ..XN)

introducing F as a new independent function embracing the statis-

tical dependence between X, and (X2,...,XN). Clearly r must

satisfy the constraints
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1dlF ~ 
(A2. 5)

fdX 2 -. dX N rp X2.. 1

Now we may append (A2.5) to the original problem and seek r,
k

p and p to maximize H .If, for the moment, condition (a)
X1 XV .. XN

is removed from consideration, it is easily seen that r = 1 maxi-

mizes the entropy. With this value, (35) may be written:

1 2 N12

N A1 ![1 + I JA2 2 = Tk/T (A2. 6)
m= 2

where

A IAfdXl p X1e iW kXl1

m (A2.7)

A2m =fd 2 -..dXNp X2. Ne

and T k/T ! 1 by (35b).

Since A 1 and A2m are characteristic functions

JA 1 1
2 , JA 2mI 2 E: (0, 1)
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so that there always exists a choice of p and p such

that (A2.6) is satisfied. Consequently, Hk is maximized under

all constraints by r = 1, and:

PXl'''XN = X1 PX 2... XN

But, by the stationary condition (b):

p X2 . . XN (x 2 "  XN ) = P 1**.. XN -l(X2*.XN)

• PX .. ._ 1X.

=p 1 (X2 )p (XN 3 - .XN)

Repetition of this argument (N-3) times shows that

N
p N1 P (X)
XPI''XN M=l 1 m

Since this choice maximizes the entropy, we conclude that

(A2.2) is maximized under conditions (35), (b) and (c) if the

k
for each k, X ; k = 1,...N are identically distributed. This

result holds for all N, T Tk, k = 1.. .2n.
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Beyond this point, further conditions for entropy maximiza-

tion need not be considered, because in the limits Nt- and Ttw,

(35) uniquely determines the statistical structure of the 6k(t).

Considering the limit Nt-, it is found that the 6k(tl),

t c(O, T) are mutually independent and possess independent

increments. Any increment 6k(tl,t2) may be expressed as the

limit of the sum of sub-increments defined over equally spaced,

disjoint intervals. The sub-increments are independent and by

conditions (b) and (c) are stationary and possess finite, non-

zero variances. Thus, the conditions of the Lyapunov central

limit theorem (3 8) hold and:

6k(tl,t 2 ) = N(O,k(tl,t 2 )) (A2.8)

k = 1 ,...,2n

where ak denotes the variance. Furthermore, that 6k(t) is zero

mean and its increments are stationary and independent suffice

to imply
(47 )

k2 (tt) = k!t2 -t1l (A2.9)

where the ak are positive constants.

With (A2.8) and (A2.9), (35) yields:

-2

1 I -eN(k)k] Tk 1
WN(k) k WN (k) k
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in the limit Nt-. This determines 6k uniquely. In the limit

Ttc-:

-k 
Tk k= 1,...,2n (A2. 10)

WN (k)

and (39) follows.
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APPENDIX 3

Proof of Corollary 2

First, it is advantageous to rearrange the state vector so

that modal coordinates are the first n states and modal velocities

are the second n states. In other words, perform the coordinate

transformations

X X, (A3.1)
Ee l E e

where the mth row (m ,...,n) of E is emT while the mth rowTr2m-l
of Ee is eTm where ei denotes the standard unit basis vector.

Under this transformation, the various matrices appearing in

(48) become:

o 0*

I ] J _ diag(w1 I2 W 21 41... )

1 s s(A3.2)
al = s* s* 1 Sl =  s ' s1 2  =  s1 2

a 2 2

C C
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where C is real. Consistent with the above partitionings, the

matrix of p under transformation (A3.1) may be written

p (A3.3)

P12 P2 2

so that:

[J{Pil) 0]
I{ = 0 (A3.4)

Using (A3.2), (A3.3) and (A3.4) we may expand (48) into its four

sub-blocks. Manipulation of these relations yields:

= (V- J)z+ l(-1 J) -Z CPlIP 2C + C z

1 z1(-J Z1 C 1 1  12 2 + 1  2

H H *

Z1 C 1I2 + P1 2C Z1  ZlC Zl -z1CP 11 + P1 1 C z2
(A3.5)

+ Z*C H~-~Cz2~ Pl2-P1*lc z1

z 1 (t I ) = 0
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-Z2 (v* - J)z 2 +- z 2 (V - J) + J{z 2 }

- 2 C p11i-p 11 C z 2 + z 2C z 2 + z 2C H 1 + p1CZ zCZ

(A3.6)
H H H H H +H H

+Z C p1  + p12 C z2 -zC z2 -zC p 2 - p1 C z + z1C z1

Z' (t) =0

where:

z H P
1j = 1'2 1l2

(A3. 7)

z2 Pll p2 2

From the homogeneity of (A3.5) and (A3.6) in z1and z2we conclude:

= = 0 ; t E-[t 0 ,t 1  (A3.8)

so that any hermitian solution of (48) assumes the form:

p = a.
p [p12 P*(A3.9)

H T b.Tc

pll Pl ' P12 ;18



Under transformation (A3.1), the definition (8) produces:

[i2 -iQJ (A3. 10)

4 diag(i-,i 1.. an

so that

- [~2~1Impllpl2IRe~ 11 ~ 1 2 ]21](A3.11)

This shows that P is real and, by virtue of (A3.9b,c) is

symmetric. 0
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APPENDIX 4

Proof of Lemma 1

A. With (Uma) detectable, the rigid body modes are neces-

sarily reconstructible. Furthermore since damping in all elastic

modes is assumed non-zero, only states corresponding to elastic

modes are contained in the unreconstructible subspace. Now

Pe- I e is diagonal and its non-zero elements distinct since the

W k' k = 1,...,ne were assumed distinct in Section 3.1. Thus the

unreconstructible subspace is spanned by a set of unit basis

vectors (in the eigen-basis of A) corresponding to the distinct

unreconstructible poles of 1e- I . With an analogous result for

the reconstructible subspace, it follows that the system equa-

tions may be put into a reconstructibility canonical form merely

by rearrangement of the state vector as in (79). The forms given

by (80) for P m and a then follow at once.

B. First we show that the solution to (64) exists. The right

side of (64a) is analytic in pkjV(k,j), whence p(T) is continu-

ously differentiable at T when p(T) exists. Hence p(T) also
(48)

exists on [T -c,T] for some E > 0 by analytic continuation

Then sirce P(tl) is given, p(t) exists on (--,tl].

Next, let q £ C2n be defined on (--,tl] by

q = (pm 2 p)q ; q(tl) = ql

2nfor any ql E C n  Differentiation yields:

d H- H
3(q pq) = [I{p} + 0 1 ]q
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so that:

t H
qH (t) (t)q(t) = fdT qH(T) [I{_(T)} + al]q(r)t

and it thus follows:

H -

(t)p(t)q(t) 0 , V t s t

Note that q(t) can be selected as any vector in C
2n because

q(t) = (t -t1 )ql and state transition matrix 0 is nonsingular.

Thus P(t) is positive semi-definite on (--,tl].

Finally we show that p reduces to the form given by (81) and

(82). Partition P in a manner consistent with (79):

P12] (A4.)
-"

[ 12 P

Then with (80) and (83a) the (1,2) and (2,2) sub-blocks of (64)

may be written:

121



- - -- ~ ' 1 H
1l2 1 m 12 + 12 1 mu - ~2 p1 2 + 2  ~u 2

-1 -lH- -1 H -
-102 BuR 2 1 Pl2 + u R2  ~u P2

- -H- - +1 I -H ~ R -1 H- (M.42)
= mu"2 "2"mu u 21 _122 P12 + P 2 ~ 21

_P [B 1fi H- R-1 H-P2 u 1' ~~2 + ~ 2  u 2]

p12(t1 ) =P 2 (tl) =0

It is seen from the above that P 12 and P 2 are continuously

differentiable at t = t 1 and, moreover, all derivatives vanish.

Thus by analytic continuation:

P12 = P2= 0 ; t ! t

and (81) is justified. Substitution of (81) into (64) produces

(82) as the only non-zero sub-block. 0
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APPENDIX 5

Proof of Theorem 8

First, note that by virtue of Lemma 2 the steady state solu-

tion, p, of (64) is given by

rA
P =0

I~O

Next define Q(t) by (69) with v = 0 and Q0 any positive semi-

definite matrix. Partitioning Q(t) consistently with (79):

Q121
Q H (A5.1)

1 2 Q2

and substituting this into (69) along with (80) and (83), one

obtains:

A A ^ A A A H A A

Q = (m - a 2A)Q + Q(im - o2 A) + I{Q}

-H A - H
Q12= (Im - 2A)Q12 + Q m2 mu uQ A R 2  au

(A5.2)
-H

Q2 = muQ2 + Q2 mu+

^ H ^ RIH
8 u R2 1H A Q1 2 -Q 1 2 A Su
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By assumption, A m -A)Q + Q(m-2A)H + I{QJJ is
asymptotically stable. Thus, from (A5.2a), Q converges expo-

nentially to zero and there exist real a ,Bo > 0 such that:

IIQ112  B e -cO (t-t0 ) (A5.3)

Note that the contribution of [{Q} to A- is of the form of
Q

a diagonal matrix, each diagonal element being either zero or

equal to one of the diagonal elements of T. Consequently:

XR [(m - 2 A)Q + Q(- -a A)H}

X fA-[( - A)Q Q( A)H +IIQ}]
R Q M 2 + m 02J

where A R{ I denotes the real part of the eigenvalue. Since,

by assumption the right side above is negative,
AA[(m -0 2A)Q + Q(m -a2A)H] is asymptotically stable; and this

implies that Pm -0 2A is asymptotically stable.

By the detectability assumption of Lemma 1 and the condition

of non-zero damping on all elastic modes, -Hmu is also asymptoti-

cally stable, whence (A5.2b) has the unique solution:

A A -H
(m-0 2 A) (t-t0 ) Qmu (t-t o )

QI2 = e Ql 2 (to) e~m

(Wm-O 2 A) (t-)^ A -1 H Pmu(t-)f tdT e Q A R 21  e

to R u
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The tabli A f -m A an-H

The stability of -a and mu ensures exponential convergence

to zero of the first term above. Moreover, the bound (A5.3) and
the stability of (11m - 2A) and pmu imply exponential convergence

for the second term as well. Therefore, there exist real and

positive l,1.6 such that:

-Nl(t-to)
IIQ12 1 12  6 1 e-c t t0 (A5.4)

Next we show that A 2 [uQ2 + Q-H + I{Q is asymptoti-
Q21muQ 2mu u 2

cally stable for all I 0. Consideru

- -H

Q2 =muQ2 + Q2wmu + Iu
(A5.5)

Q2 (to) Q2 0

for any herrmitian Q2o 0. Recalling that w mu W we have

from (A5.5):

d
- tr Q2 = 2 tr[(Re wU)Q2] ' 0

where the equality on the right holds only if I IQ2 12 = 0. More-

over, as (tr Q2 ] - 0 for t c[toco), tr Q2 is seen to converge

exponentially to zero as tt-. This implies exponential conver-

gence for iQ2 also since HI{Q 2 11 2 - tr Q2 " From (A5.5), Q2 (t)

satisfies

125



Qmu (t-to) mu (t-to)Q2 (t) = e Qoe

-H

+femu (tT )  -emu (t-T)

0 t d em lu{Q2 } e mt

Stability of -mu and exponential convergence of {Q2} imply

exponential convergence of Q2 (t) as defined by (A5.5). There-

fore AQ2[ muQ2 + Q2VHu + Iu{Q2}] is asymptotically stable.

Finally, from (25.2c) this property together with the norm

bound (A5.4) and implies asymptotic convergence of HQ 2 112

Combining the above results, one sees from (A5.1) that

LIM Q = 0
t-t ±ao

so that A Q m + Q ( m - 2 )H + I{Q}] is asymptotically

stable. 1
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APPENDIX 6

Proof of Lemma 6

To prove the first statement, consider:

0= j Y + YP + sI -Y a2 Y

(A6. 1)

S1 2: 0, (j, S completely reconstructible

The conditions on s1 and the assumed stabilizability of (VB)

ensure, by Lemma 5 that (A6.1) has a unique positive definite

solution and that (w -a2Y) is asymptotically stable.

Now, with the control gain R 2B Y, the reconstructible
statei, is given by:

= (P -o 2 Y) + Z Bk 6k(t)E (A6. 2)
k

where Bk is zero except for the (k,k) element which equals

iImJk. Clearly Bk is skew-hermitian. This fact, together with
kA A 46)

the stability of VI -o2 Y imply
(  that the null solution of

(A6.2) is Pth mean exponentially stable for any P (in particular,

P = 2). Since AA is the hermitian transpose of the equivalent

coefficient matrix of the second moment matrix of (A6.2), '. is

asymptotically stable.
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In view of the stability properties established above for

(A6.2) we can show the result for the case in which the system

lacks rigid body modes (i.e., 11 = Ve), by demonstrating the

asymptotic stability of P -02Y for Y positive and diagonal.

Thus, consider:

(A6.3)

for any o 0 and positive, diagonal Y. Defining

0

= Hy (A6.4)

we obtain by (A6.3):

H(Y ( H[Rew Y aY ](y (A6.5)

dt

The right side is negative for all C $ 0 since damping is

assumed non-zero for all elastic modes. Therefore £ is a

Lyapunov function for (A6.3) and u -a Y is asymptotically stable.2
By the argument following (A6.2), the asymptotic stability of AA

is established.
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APPENDIX 7

Proof of Theorem 11

First, (- Ip + I{T} - P) is shown to be negative definite.

Let W be a real diagonal matrix of zero-mean, statistically

independent, Gaussian random variables sur-.h that:

E[Wkk] = 1kk (A7.1)

Then, defining:

A -iWC- -iWC

(A7.2)

E 0

one obtains the identity:

- 1T + 1{-} - TI = -LIM 1 E[F] (A7. 3)

- f~ +I{~~*}- Th eO E2F1

Employing the reconstructibility decomposition afforded by

Lemma 1, F assumes the form

0 0
(A7.4)

^ iWE iWE

F=A -el A e
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where A is the positive definite solution to (88). Letting

SA WA and A for any 0, we have:

H = H[I -eiW e-iWE]

(A7. 5)

= 11112 - Ile-iWE 112

Since:

le I 2  II11 2 1 le 112

1 I'I 112

where the last line follows because iW is skew-hermitian, (A7.5)

yields:

H-
F 0 V 0

Thus r and therefore F is positive semi-definite for each reali-

zation of W over its statistical ensemble. Clearly E[r] is also

positive semi-definite and is of order c2 by definition. Conse-

quently, the right side of (A7.3) exists as a negative semi-

definite matrix. This suffices to show:

S 01 (A7.6)
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Next, rearranging (102), P is seen to be a positive semi-

definite solution of

0 = -H P + p W _p 02 P + S (A7.7)

Because XR{ } R 0 and P >- 0, (-H _ + P _w) is negative semi-

definite. Consequently:

S H _ + _ + P a2 p>0 (A7.8)

Finally, we show that detectability is preserved despite the

presence of the stochastic terms in (107). Denoting

(- p + 1{} - pI) by a and partitioning in accordance with (59),

one obtains

I0 re ]

a r(A7.9)
H
re e

by virtue of (63a). Denoting the "r" sub-block of a1 by alr' it

follows that (a + a) assumes the form

(al + 0) (oir , S) (A7.10)

i.e., the first 2 nr columns of (al + a) and of a are identical.

131



Now, with wr of the form (60), the necessary and sufficient

condition for complete reconstructibility of the rigid body modes

is (see p.45 of Reference (44)).

rank[ r,(01 + 1)r n r (A7.11)

where (a1 + c) denotes the "r" sub-block of (01 + O) , and is

merely Cr by (A7.10). Thus (A7.11), which becomes:

-H Hrank[ r nr  (A7.12)

is satisfied since (ij, a 1 was assumed detectable. Therefore

0j, S ) is detectable. 0
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APPENDIX 8

Proof of Theorem 17

The boundedness conditions on nk' B and R2 may be stated as:

bkj < a.

R2kk > r b. (A8.1)

fl k C.

where b, r, n and n are positive and the bkj are non-zero ele-
ments of B as given by (3). From (3), (8) and (A8.la,b) it

follows:

0 2 S(A8.2)2kk 4r W 2
N(k)

This, together with condition (2) of the Theorem and (123) yield:

IP>kj I < 1 4alN(k) wN(j) (A8.3)

k N(k) + IjwN(j)
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With use of (A8.2) and (A8.3), manipulation of (124a) produces:

B 2 s 2  ifk (A8.4)Ikl r 1k

Similarly, (124b) becomes:

i~l<4 -2 -2 2f2 (8
1 -ki: 1 W N(k)E k(8 5

where

2nf Z1 (A8. 6)

k- =l Ik WN(k) + I£N(£)

In view of conditions (1) and (3), fk possesses an upper

bound proportional to the Riemann zeta function, 1(s), with

s > 1. Therefore fk is convergent as nt- and, moreover, both

f and LIM f are monotone decreasing with increasing k. Con-
k n k
sequently, there exists an R sufficiently large that:

{oi}k -Ck > 0 a.

1 -
(A 8 .7 )

k b.1 rwN (k)
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for all k > 2N, and we may restrict attention, in the following

to the behavior of PCI and pI for Nc > N.

Condition (A8.7a) permits the use of part (b) of Theorem (15)

in the evaluation of an upper bound to 1T} k -{p,} k1' But first,

bounds must be determined for {P*} Note that (122) can be

written in the form:

-
0 ikk {1[-l + 'l+x]} am

{ReikI

(A8.8)
0l kka2kk > 0 

b.
- 2(Re lk

Obviously:

1 ikk{P*}k 2 , k, x 0
I Revk I

By virtue of (A8.2), (A8.ic) and condition (2) of the Theorem,

x decreases with k increasing. Consequently, as (A8.8a) reveals,

for given N there is an M > 1 such that:

{P*} k > 1 0la kk, V k > 2N
TM Re-k

In the following discussion, N is considered fixed with N < N so

that M is fixed. With this proviso, we have:
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12 -1 ]W N (k) 1
- ((A8. 

9)
V k > 2N

Using (A8.1), (A8.4), (A8.5), (A8.9) and conditions (1)
through (3) of the Theorem, (126) may be made to assume the

form:

I{1 k -{P*}k i  T M -1  - (A8.10)

1 1 b f k ]
1-r wN(k)

Since f k is monotone decreasing with k and in view of
(A8.7b), the right side of(A8.10) is a positive monotone de-

creasing function of k for k > 2N. Thus, given Z > 0, there is

an N such that:
c

1 (A8 iik
1 1{ { -{p*} -  Nc (A8.11)

In particular, let Ncl correspond to < 1 in (A8.11).

Then:

{ k - {P*}k(l -  > 0 ; k a Ncl (A8.12)
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Using this, (A8.3) yields:

S 2MT ) 4 cl 1 WN(k)wN(j)_

< >kjI < ( j 7-- )_ Ik W + IjWN(j)

0i j(A8.13)

k -> N cl

The right side of the above inequality is a positive, mono-

tone decreasing function of k for k > Ncl" Therefore, from

(A8.1) and (A8.13), it is possible to determine a N _ Ncl

such that both:

i1

{P*}k { *}kI  -< * , } k >- N c
and (A8. 14)

I(P>kj < E ; V j k - Nc

These relations suffice to show (152) directly. 0
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