AD=A099 103 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
HUFFMAN®S ALGORITHM VIA ALGEBRA, (V)
MAR 81 D E KNUTH

UNCLASSIFIED STAN=CS=81-841

\Lr‘ |IIIII|IIIIIIIIII|IIIII|IIIII|IIIIIIIIII

F/6 12/1
NOOO14=T6~C~0330
NL
E~Nd
End

b L7 e

N .

PYR FILE COPY

ADAO99103

\

i 4

\laldl -m “Report. NoE TAN-CS- 81 -841

i

K
/

Huffman’s Algorithm via Algebra-

f? & - e
by

B D%

: ”‘ , v O % %
/ Donald E.!(nuth W AR S \98\\% _}"

[e e T X A g
leu—%-c-assor N ~._:W\ >
/M/—-mcfw 2z vz N

B
o B auman

Resecarch sponsored by
National Science Foundation

and
Office of Naval Rescarch

Department of Computer Science

Stanford University
Stanford, CA 94305

S

= 44:,\\

S LELAND o

/'

e e g gty AUt e o g e s v o o o @ =

Huffman’s Algorithm via Algebra

Donald E. Knuth
Computer Science Department
Stanford University
Stanford, California 94305

Abstract. The well known algorithm of David A. Huffman for finding minimumn redundancy codes has found
many diverse applications, and in recent years it has been extended in a variety of ways. The purpose of this

note is to discuss a simple algebraic approach that seems to {it essentially all of the applications of Huffman’s

method that are presently known.

/ \“

This research was supported in part by National Science Foundation grant MOS-77-23738 and by Office of
Naval Research contract NOOOU4-76 C-0330. Reproduction in whole or 1 part s pennntted for any purpose

of the United States government.

e — ety

Huffinan’s Algorithm via Algebra

The well known algorithm of David A. Huffman (5] for finding minimum redundancy codes has found
many diverse applications, and in recent years it has been extended in a variety of ways [1,2,3,4,6,7,8].
The purpose of this note is to discuss a simple algebraic approach that scems to fit essentially all of the
applications of Huffman’s method that are presently known. The ideas to be presented are slight extensions
and corrections of the results in (8}.

We consider a linearly ordered set A on which a binary operator has been defined satisfying the following
five axioms:

A0 (Increasing property). a<aob.

Al (Commutative law). aob ::boa.

A2 (Cousin law). (aobyo{cod) - (aoc).(bod).
A3 (Preservation of order). If a < bthen aoec < boec.

A4 (Associstive inequality). If a < c then (a-b)oc < ao(boc).

Given element. a,....,a, € A, not necessarily distinct, an expression on {a,,...,a,} is a formula that
computes another element of A be applying the binary operation n 1 times and using ecach a, exactly
once. For example, the commutative law Al states that both of the possible expressions on {a, 8} have the
sume value, and the cousin law A2 states that two particular expressions on {a, b, ¢, d} are equal. Expressions
are essentially binary trees having {a,,...,a,} as “lecaves”.

luffman's algorithm forms an expression on {a;,...,a,} in the following way: If n > 1, 1let a. and q,
be the smallest and second-smallest elements; replace a, and a, by {(a, o a } and repeat the coustruction on
the remaining n 1 clements, until eventually n 1.

For example, suppose A consists of the nonnegative integers, and let a o b 2Aa 1 b). It is easy to
check that axioms A0 A4 hold. Hulfman’s algorithm applied to the clements {1,3,5,7,9} will produce the
expression

(BeT)o({103)09)) 118

Note that we have
5.29 4 7.2° 4 1-2% 1 3.2 1 9.2 116;

in the case of this particular operation the value is 3 a, 2", where [1s the “level” at which a appears in the
formula, ie, the depth of parenthesis nesting when parentheses surround each use of the binary operation.

When a binary operator satislies the commutative and cousin laws A1 and A2, the value o, any expression
on {a,...,a,} depends only on the a, and their levels [, in other woirds, any two expressions in which
each a, appears on a given level | will be equal We can prove this by using termmology from family trees:
It *(a o &) appears in some formula we can say that a and b are brothers and (a -+ b) s thoir father. Two
cleients a, and a, on the same level in some expression are either brothers, or they are cousins (their fathers
arc brothers), or they are second cousing (thewr fathers are cousins), cte. We can transform the expression
to an equivalent one using Al and A2 untd a and a, are brothers; for ff a and a are k-th cousins and
k 1, the axioms change cousins with brothers, while aff & - 1 the transformation for order & 1 will
make their fathers into brothers and one more step will complete the job. Now let I and I be exprossions
in {a;,...,a,} for which the levels {, U/ agree for alls 1[0 n 1, clearly 1£ &' Otherwise & contains

some operation (a, o a,). Since l, {,, we can transform &7 to an expression 127 1w which a, and a,

This paper is dedicated to Marshall Hall, Jr, on the occasion of his reticement from teacting.

2

are brothers. Replacing (a, 0 a,) by a new symbol in /£ and E” yields un expression in n -~ 1 elements
having corresponding level numbers equal, hence E = E".

The main feature of Huffman's algorithmn is that it produces an expression of minimum value, from
among all expressions on the given elements {a,,...,a,}, whenever axioms A0-A4 hold. We can prove this
by starting with any expression E and transforming it into expressions of equal or lesser value until we obtain
the result of Huffman’s construction. First we let a, be the smallest of {a,,...,a,}. If |, < max(l;,...,1,)
(i-e., if a, is not at the deepest level of E), let a) be an element at the deepest level; then some ancestor of
ax is at the same lev.) as a,, and we can transform F into E' = E where a, is a brother of this ancestor.
One of the nephews of a, in E’ is ay or an ancestor of ai; call it z. The other nephew, call it y, is not.
Since y has been computed from one or more elements greater than or ecqual to a,, we have a, < y by axiom
A0. Thus (a,0z)oy < a,o{Toy); replacing (g, o(zoy)) by ((a,0z)oy) in E' yields an expression £ < [,

because of axiom A3. Furthermore a, has moved to a decper level in E”

, while a; is still at the same level,
which is still maximum among all levels. After repeating this transformation enough times, a, will appear
at the deepest level. The same process can now be repeated with respect to the second-smallest element, a,,
this time using @, instead of ay in the argument. Finally, with both a, and e, on the same level, we can

make them brothers, and ¥ has been reduced to an expression £

contairing (a, o a,). Replacing a, and
a, by (a, 0 a,), we can repeat the process until the desir d Huffman-expression has been reached.

It is not clear that axiom AQ is necessary for the validity of this result; however, Hulfman’s construction
leads to trees of comparatively little interest if axiom AQ is violated, so there secems to be little harm in

assuming AO. It can be shown that axioms A0 -A4 do not imply the law
if z <y then ((zoa)ob)oy < ((yoa)ob)orx,

although this seems but 2 mild extension of A4. Thus, if we are faced with an expression like ((aob)e(cod))oe
where e is the smallest element, we cannot simmply exchange e with d, say, in an attempt to move e to the
deepest level; the argument in the previous paragraph used A0 to conclude that cod > e, so that ¢ could
be exchanged with (c o d) via A4.

The fact that Huffman’s algorithm produces the minimum expression on {a,,...,a..} does not obviously
imply Huffman’s original theorem that the minimum value of 3 a,{, is obtained, when the «, are nonnegative
real numbers and the operation a o b is simply a + b. For whenever a o b is associative, all expressions on
{ai,...,a,} are equal. Previous papers about abstractions of Huffrman's method have therefor worked with
two separate operations, one for the values that control the construction of the expression and the other for
the evaluation function that is to be minimized. However, it is possible to deduce Huffman’s theorem without
this extra apparatus, by defining a suitable nonassociative operator that works with pairs of numbers instead
of single reals.

Let A be the set of ordered pairs (@, a’) of nonnegative real numbers, ordered lexicographically so that
(a,a’) < (b,t)if @ < bora = band a’ < V. The operation

(a,a')o(bb) -(at b,at bia |V (1)

is easily seen to satisfy A0 A4. Therefore, the result of Huffman’s construction applied to given pairs
{(as,a}),...,{(an,2")} is an expression of minimum value. It is not hard to sce that the value of any such
expression with respect to this operator is the pair

(G]'{’ {’ ay , alll"{"" * a,,l,‘—} all * I a’,l)v

where each [, is the level of (a,,a’) as before. Since the first component is independent of the {,, Hufliman’s

construction does indeed minimize 3’ a,l,.

Another interesting operation on pairs is
(a,a') o (b,¥') = (max(a,b) + 1, a'(a > b) + b'(b > a)), 2

where ‘(a > b)’ is 1 or 0 according as @ > b or a < b. This operation also satislies A0--A4; for example,
when verifying A2 we have

((a,a") o (5,8)) o ((c, ') 0 (d,d")) =
(max(a,b,c,d)-| 2, a'(a > b,¢c,d) + b(b > a,c,d) -+ c'(c > a,b,d) | d(d > a,b, c),

which is symmetrical in the four arguments. Huffman’s construction produces the expression of minimal
value, which in this case is the minimum value of

max (a, +{ dla,+1, = max (g, - { .
(@S"(s b) Yodel et b = max (o, ,)})

It is interesting to search for additional operations that satisfy AQ- A4, since each of these corresponds
to a minimization algorithm. The quadruple operation

(a, al, all'al”) o (b, bl’ b”, blll) —_ (a ’F b’ al ‘_*_ b/ R a 7* b *7 a/l *7 b”, ;'l, * bl ‘ alll * b(ll) (3)
illustrates another possibility: the optimum in this case is

(Zav ’ Eaf » Za,l, + Zaﬁ': Zailr b Za:”),

so we minimize the ‘weighted path length’ 3" a,l, and - among all trees for which this is minimum - we
minimize another weighted path length Y a’l,.

At first glance, operations (1), (2], (3) may seem very tricky or mysterious or both. Actually there is a
fairly simple way to account for all of them: the function

aob.=z(a + b) (4)

satisfics AQ A4 for all x > 1, over the nonnegative reals. Operation (1) corresponds to the multiplier z -
I + ¢, where the pairs (a,a’) correspond to polynomials a } a'c in ¢, modulo 2. Operation (3) iz similar
but with © = 1 -{ €. Operation (2) corresponds to large values of z; it records the degree and leading
coefficient of a polynomial in z so that (a,a’) «» 270’ + O{z"). The author has been unable Lo construct
an operation that ~orresponds to minimization of max(ly,...,1,) over all expressions that minimize Y a,l,;
it seems that such an operation might exist, possibly a very simple one, because Schwartz 9] showed that
a variant of Huffman’s algorithm does this. The arguments of Parker (8], that isomorphic versions of (1)
account for essentially all opcrations satislying A0 A4, are incomplete, but it doe . appear that all of the
useful operations are strongly related to (4).

When aob =- a} b, the formula 7, <i<n a,l, can be rewritten)7, < < 8y where {s1,...,s, 1}isthe
sct of subexpressions of a given expression. For example, in the expression (((u, | as) a;\) { (ay ! n;_)), we
have 3a) { 3as+2a3-4 2a,1-2a;, (a; | ax) | ((oy a2}t aa) } (ay b as) | ({{ear 1 ax) b aa) | (a0t as)). Hu
and Tucker [1] proved that the sum of the first & subexpressions formed by Hullman's algorithm is less than
or equal to the sum of any k subexpressions built up successively starting with {ay,...,a.} and replacing
a, and a; by @, -}-a,. Glassey and Karp || showed that this bas extensive conseqnences, for it implies that

~

Hulfman’s algorithm minimizes not onl s, but also ¥ s,) for any nondecreasing concave
0t Lale e n K [

R I

function /. These facts can be put into our algebraic framework in the following way.

4

Let e be an associative, commutative operator over A, satisfying the following operations:

Bl. (aob)e(cod) — (aoc)e(bad).
! B2. fa<bthenaec< bec.
i B3. If a < cthen (avb)ec < ase(boc).

. We can now show, by mimicking the previous proof in a straightforward way, that Huffman's procedure has
the following sirong property: Suppose that the first & steps of Huffiman's algorithm have reduced the initial

elements {a,,...,n.,} to the elements {a),...,a’, ,}, and consider any other k-step process that of *ains

’

' o1 by repeatedly choosing two elements {a,,a,} and replacing them by (a, 0 a,). Then

" [

n n
<L aje---0a, . .

’
aye- - ed "

n

ot o A s s

This generalizes our previous result, which was the special case £ - n . The femma of Hu and Tucker
follows by defining ac b as in (1) and taking (a,a’}e(b,0') (a { b4’ t b'). Wecanlet aed a | b when
a o b has the form (4).

It is easy to see that the subexpressions produced by Huffman’s algorithm are nondecreasing: 1f we

mimber the s,'s in the order they are created, we have s, < .-~ s . Jan van Lecuwen 110] has
exploited this vo show that Huffman's procedure can be carried out wn linear titme, if we assnie that the
inputs are given in order ¢y < -+ v a,: After &k steps, the remaing o & clements will be {a, ..., e}
and {s,,...,s¢}, for some 1 < nand 5 < kjinitially 7 & 0. Then the smallest remamug eclement
is 5,,1f ¢ n, otherwise it is min{a, | 1, $,); il it is @, ; 4, we increase ¢ by |, otherwese we nerease) by t.

~

The second-smallest element is then found in the same way, using a, (, f > &k Finally s, is computed
and k is increased by 1.

Consider ihe behavior of this procedure in the case of operation (3), when a;y ~ - ~ o and

’ Rl

1< a) -0 20 Thea s > 2, so the comparison of (a,y,a], palna) to (s s S 0s) can be based

entirely on the first components a, ;) and s,, where we regard @, as smaller than 5 i case of equality.

"
'R

The particular values of a!, a”, @/ have no effect on the algorithm. It follows that van Lecuwen's efficient
procedure ¢an be used on the singleton elements a < -+ < a, instead of the quadruples of (3), wath the
tie-breaking rule that . should be preferred 1o s, in case of equality; we obtian a brary tree (e, an
expression) that minimizes) a.l,. Furthermore, among all binary trees that obtain the mmmmum of Mald,

this one also minimizes Y. @i, for all choices 1 <0 af < 2. (The special case o’ I for alt 1 was proved by

Schwartz in (9].) This same binary tree also attains the lexicographic minimum of

(ad,, Yatd, Yalt,),

because van Lecuwen's algorithm will produce the identical tree when operation (4) s nsed with 1} ¢,
for all suffciently small ¢, and we bave Ya, (0 +) a4 Y al, § Ma(¥)t -,
References

P CORCGlassey and R. M. Karp, “On the optimality of Hufliman trees,” SIAM . Appl. Math, 31 (1976),
368 478.

{21 Martin C. Golumbic, “Combinatoriat wmerging,” IPFE Trans. on Computers C-25 (1976), 11614 1167.

{31 1. C. Hu, Damel Kieitman, and Jeavne Ko Tamaki, "Bary trees optunum under vanous eriteria,”
SIAM J. Appl. Math, 37 (1979), 216 256,

[¢ e and A C Tucker, "Optunal computer search trees and vanable fenpth alphabetic codes,”

SIAM Lo Appl. Madh. 20 (1971), 518 532,

[s)
(6]
7
(8]
9}

(10)

David A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE 40
(1951), 1098-1101. _

F. K. Hwang, “Generalized Huffman trees,” SIAM J. Applied. Math. 37 (1979), 124-127.

Alon Itai, “Optimal alphabetic trees,” SIAM J. Computing 5 (1976), 9-18.

D. Stott Parker, Jr., “Conditions for optimality of the Huffman algorithm,” SIAM J. Computing 9
(1980), 470 -489.

Fugene §. Schwartz, “An optimum encoding with minimum longest code and total number of digits,”
Information anJd Control T (1964), 37-44.

J. van Lecuwen, “On the construction of Huffman trees,” Proc. 3rd Int. Colloq. Automata, lL.anguages,
and Programming, Edinburgh (July 1976), 382-410.

