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Abstract. The well known algorithm of David A. luffman for finding minimum redundancy codes has found

many diverse applications, and in recent years it has been extended in a variety of ways. The purpose of this
note is to discuss a simple algebraic approach that seems to fit essentially all of the applications of luffman's
method that are presently known.
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fluffinan's Algorithm via Algebra

The well known algorithm of David A. Hluffmnan 151 for finding minimum redundancy codes has found

many diverse applications, and in recent years it has been extended in a variety or ways [1,2,3,4,6,7,81.

The purpose of this note is to discuss a simple algebraic approach that scems to fit essentially all of the

applications of flulfinan's method that are presently known. Thel idvas to be presented are slight extensions

and corrections of the results in [81.
We consider a linearly ordered set A on which a binary operator has been defined satisfying the( following

five axioms:
AO (increasing p~roperty). a < a ob.

Al (Commutative law). a ob -boa.

A2 (Cousin law). (a o b) o(c od) (a oc) - (b od).

A3 (Preservation of order). If a < It then an o r bet c.

A4 (Associative inequality). If a < c then (a b) r)c < a ( b 0 c).

G iven element, a,.,a,, C A, not necessarily distinc t, an expression onl la,, a,, I is a formula that

Computes another elemuent of A be applying the binary operation i I times and using each a, exactly

once. For example, the commutative law AlI states that both of' the possible vxprc.-oons on {(I, h} have the

s.mie value, and the cousin law A2 states that two p~articular expressions on fin, b, c, d) are equal. Expressions

are essentially binary trees having {aI,..a,,)} as "leaves".

HIuffmnan's algorithm forms ani expression onl { a,, I in the' following way: If ?iI , let a, and a,
be the smallest and second-sinallest elements; replace a, and a, by (at a ) aind repeat the cmsut tioul on

the renlaining n I elements, until eventually n I

For example, suppose A consists of the noinegative integers, and let a h 2(a ib). It is easy to

check that axiorns AO A4 hold. fluniman's algorithmn applied to the elemients 11,3,5,7, 91 will produce the

expression

Note that we have

5 .2 2 7 2 1 1.2' j 3 2:' 9 .2 116;

Ii the case of this particular operation the value is a, .2'-, where 1, is the "level" at %A hich a appearn in the

formutla, i.e., the depth of parenthesis nesting w hen parenthIieses siurrond v. ath Ii is, of thle hi nary operation.

When a binary operator satislmes the coninit at ive and cousin laws A\ I aiid A 2, (tit, valuie o. alny expression

On (a,, .. a,, depends only oi the a, and their levels I,, Ii ot her wciids, any two expiressions tin which

each a, appears on a given level 1, will be equal We' cart prove this by using teri iologi' fromt Fainily trees:

If' '(a o )' appears tin somte formnula we ca.n say that at and h atre lrotlihirs antd ((n , ) is tleir father. Two
ve.'i .fts (a aii t a, onl the Samli level Ii sont' express. tt are el lrit h r, iio hers, or I lii y a.ri, cou1siniis (lIt heir fathers

are hro t hers), or they are seconid couisins (their fathInrs are tonsills), ot c .We cani trutsforiti th li tx pression

to ali equivalent one, using Al and A2 until it and it, are briothers; for if aI andI n are k-tb iotisins and

k 1, the axiomns chtange cousins with brothers, while if k- - I tiii I raitsfoniauitoil for ortder k I will

tiake' their fathers into brothers amid one- tmore stcp will complits' the jolt No% let I, andt E' be t'xlr"ssions

ill (a, i.a,, 'for which the levels 1, V, agrev for all IIf it I., clearly A' I,. Ot herwiew It contains

sne operationi (a, o a, ) . Since 1, 1,, we call t ran sform E' to a it vxplrf'ssttin F"' E'i i, I i (1, and a,

'1h is paper is dedicated to Marsh all II all, Jr., ont thle ott usiotr of Itis riutit n'i ' it friti . . i
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are brothers. Replacing (a, o a,) by a new symbol in E and E" yields an expression ill n- 1 elements

having corresponding level numbers equal, hence E -E".
The main feature of lluffman's algorithm is that it produces an expression of minimum value, from

among all expressions on the given elements (a,,... a,,}, whenever axioms AO-A4 hold. We can prove this
by starting with any expression E and transforming it into expressions of equal or lesser value until we obtain
the result of fluffman's construction. First we let a, be the smallest of (a,,..., a,,}. If 1, < max(ll,.. .)

(i.e., if a, is not at the deepest level of E), let ak be an element at the deepest level; then some ancestor of
ak is at the same le%A as a,, and we can transform E into E' E where a, is a brother of this ancestor.

One of the nephews of a, in E' is ak or an ancestor of ak; call it z. The other nephew, call it y, is not.

Since y has been computed from one or more elements greater than or equal to a,, we have a, < y by axiom
AO. Thus (a, oz)oy < a, o(xoy); replacing (a, o(xoy)) by ((a, oz)oy) in E' yields anl expression E" < E',

because of axiom A3. Furthermore a, has moved to a deeper level in E", while aA is still at the same level,

which is still maximum among all levels. After repeating this transfornation enough times, a, will appear

at the deepest level. The same process can now be repeated with respect to the second-smallest element, aj,

this time using a, instead of ak in the argument. Finally, with both a, and a, on the same level, we can

make them brothers, and E has been reduced to an expression E" contairing (a, o a). Replacing a, and

ai by (a, o a,), we can repeat the process until the desir d lluffman-expression has been reached.

It is not clear that axiom AO is necessary for the validity of this result; however, lhffiman's construction

leads to trees of comparatively little interest if axiom AO is violated, so there seems to be little harm in

assuming AO. It can be shown that axioms AO -A4 do not imply the law

ifx < y then ((z o a) o b) o y < ((y ) a) o b) ox,

although this seems but a mild extension of A4. Thus, if we are faced with an expression like ((emb)c(cd))oe

where e is the smallest element, we cannot simply exchange e with d, say, in an attenpt to move e to the

deepest level; the argument in the previous paragraph used AO to conclude that c o d -' e, so that c could

be exchanged with (c o d) via A4.
The fact that lluffman's algorithm produces the minimum expression on {a ,..., a. } does not obviously

imply luffman's original theorem that the minimum value of )_ a,1, is olt ainled, when t he (, are nonnegative

real numbers and the operation a o b is simply a -f b. For whenever a ) b is associative, Al expressions on

{a,,...,a,,} are equal. Previous papers about abstractions of Iluffman's method have thrv'fo worked with

two separate operations, one for the values that control the construction of" the expression and the other for

the evaluation function that is to be minimized. However, it is possible to deduce I luffilan's theorem without

this extra apparatus, by defining a suitable nonassociatlve operator that works with pairs of numbers instead

of single reals.

Let A be the set of ordered pairs (a, a') of nonnegative real numbers, ordered lexicographically so that

(a, a') K (b, b') if a < b or a - b and a' K b'. The operation

(a,a')o(b,b') (a I b, a I b I a' I b') (I)

is easily seen to satisfy AO Al. Therefore, the result of Iluffiman's construction applied to given pairs

{(a,,a' ),..., {(a,,, ,,)} is an expression of minimum value. It is not hard to se that the value of any such

expression with respect to this operator is the pair

(a, 4 -.. -f a,,, a,l, -... a,,I,,fa', .. I aj,

where each 1, is the level of (a,, a',) as before. Since the first component is indep(end.iit of' the 1,, Iuffmuarn's

construction does indeed minimize a, l.
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Another interesting operation on pairs is

(a, a') o (b, b') = (max(a, b) + 1, a'(a > b) - b'(b > a)), (2)

where '(a > b)' is I or 0 according as a > b or a < 6. This operation also satisfies AO- A4; for example,
when verifying A2 we have

((a, a') o (b, b;)) o ((c, c') o (d, d'))

(max(a, b, c, d) -i 2, a'(a > b, c, d) + b(b > a, c, d) -- c'(c > a, b, d) I d'(d > a, b, c)),

which is symmetrical in the four arguments. Huffman's construction produces the expression of minimal
value, which in this case is the minimum value of

(max (a) + jZ{ , + 1, max (a,-I t,)

It is interesting to search for additional operations that satisfy AO- A4, since each or these corresponds
to a minimization algorithm. The quadruple operation

(a,a',aa",a ..) o (b,bI',bV,b"') (a - Ib, a' -- b', a - b I a" b", -b' I a' b") (3)

illustrates another possibility: the optimum in this case is

(Ma,, , Za,1, + Ea,', Ea'1, I Za7),

so we minimize the 'weighted path length' _ a,l, and - among all trees for which this is minimum we
minimize another weighted path length E Zal,.

At first glance, operations (1), (2), (3) may seem very tricky or mysterious or both. Actu;lly there is a
fairly simple way to account for all of them: tile function

aob-z(a I-b) (4)

satisfies AO A4 for all x > 1, over the nonnegative reals. Operation (1) corresponds to the multiplier x -.
I -+- , where the pairs (a, a') correspond to polynomials a I a' ( in (, modulo (2. Operation (3) i2, similar
but with x I I- c2 . Operation (2) corresponds to large values of z; it records the degree and leading
coefficient of a polynomial in z so that (a, a') 4 * O(x" -). '"The author has been unable to construct
an operation that -orresponds to minimization of max(l ,...,1l,) over all expressions that ininimize >2 a,l,;
it seems that such an operation might exist, possibly a very simple one, because S'hwartz 191 showed that

a variant of [{uffman's algorithm does this. 'he arguments of Parker 181, that isomorphic versions of (1)
account for essentially all operations satisfying AO A4, are incomplete, but it doe appear that all of tile
useful operations are strongly related to (41).

When aob -- a jb, the formula >f , a,1, can be rewritten q ,<< , whvre {s, ...... , S } is the
set of subexpressions of a given expression. For example, in the expression (((, I a-,) a:t) j (a, I j:)), we
have 3a 1  -j 3aq 4-2a3 - 2a., -2a,, (a, I a.2 ) I ((a, I a2) I a:,) I (a, I a5) I (((a, I a,) Ia, ) j (2, 1 a.)). II

and Tucker 141 proved that the sum of the first k subexpressions formed by Ihllmian's algorilbim is less than
or equal to the sum of any k subexpressions built up successively starting with {aI. } amd replacing
a, and a) by a, + a,. Glassey and Karp [Il showed that this has extensive cospti',ncs, for it implivs that
lulTmnan's algorithm minimizes not only >l. ...... s. hut also ),', -.... f(s) for any rthoucr,'i:.ing concave
function J. T'hese facts can be put into our algebraic framework in the following way.
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Let * be an associative, commutative operator over A, satisfying the following operations:

Bl. (aob) o(cod)- (aoc)*(bod).

B2. If a < b then a e c < b * c.

B3. If a < c then (aob).c < a.(b oc).

We can no% sh,)w, by mimicking tile previous proof in a straightforward way, that hlulurian's procedure has

the following slrong property: Suppose that tihe first k steps of Iliffinma's algorithin have reduced the initial

elements {a ... , , ) to the elements { .,..., a,, }, and consider any other k-step process that o 'ains

{a a....a,, j by repeatedly choosing two elements Ia,,a. } and replacing them lv (a, a). Then

~~a'1e...ea,, .k 1. .. .ta, A .

'f'his generalizes our previous result, which was the spetial case k - n I. The himia of fill and Tucker

follows by defining a o b as in (1) and taking (a, a') * (b, b') (a b,a' i b'). We can let a. a bwhen

a o b has the form (4).

It is easy to see that the sibexpressions produced by Iluffman'rrs algorithm ire irdoecr,. isirig: If we
numbher the s 's in the order they are created, we have sl -. . -I s,. I. Jain ;m ,.crw'n 101 has

exploited this ,o ;how that fluTiman's procedure can be carried out in lii ar tino,, if m, :lsiruv. that the

inputs are given in order a, -.. - a,.: After k steps, the remiainiog P k eleneis a ill lbt" {u....a.

and {s ,... '} , for some < n and j K k; initially t j k 0. 'lhien the sirallst renlrlinlir eleinlelt

is s, if : ni, otherwise it is min(|z, I I.s,); if it is a, , we increase 1 by I1,,othlierwis,, ,' izcreas, by I.

The second -sil allest element is then found in the saine way, using a, if j ' k. I.'iadly s, is ctriprited

and k is increased by 1.

Consider die behavior of this proedure in the case of operit ion (3), whel a.. ........ allot

I < a, K. 2. Then s . 2, so the coniparison of (a, j I , j I a, , t'"I ) to (S. , S 'S ... (an be basd

entirely or, the first components a, anId s,, where we regard a, i;s sniler thn. i In ca.'e of e(Ilrality.

The particufar valies of a', a", a, Ii a nto efTect on tile algorithi w. It foillows tiat va.il I. ccuiiwe 's vfliciint

procedure can be used on the singleton elenten ts ai K( .. a ,, instead "of th, (u11ad fruphs of (3), With tie
tie-breaking rule that z: f l should be preferred to .-, in rase of equality; %%' obtain a *l rV I.re' (i '., ail

expression) that minintii/s NK a,.. I.urthrrmore, aniorg all binary trees t itt obtainI It i m uii l" 1r1ior aoh I'

this owii also miliilizes i a,, for all choices I '-_ a1 , 2. ( i'i 1ca a t' a I t ,1 f 11 ip

Schwartz in! 191.) 'l'his saime binlary tree also attajus th, lexicographic minimim of

a: 0, a, .I,'

because var I ecuwten s algorithm will produce the idut ical tree w fir'ii op'rrtiot (4) is uset with r I C,

for all stillcieitly small (, and wr have > a,( I ( )' L ', j i .i, i (
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