

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Design Flood is based on the estimated Probable Maximum Flood (greatest reasonably possible storm runoff) for the region, or fractions thereof. The Spillway Design Flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

Breach analyses are performed, when necessary, to provide data to assess the potential for downstream damage and possible loss of life. The results are based on specific theoretical scenarios peculiar to the analysis of a particular dam and are not applicable to other related studies such as those conducted under the Federal Flood Insurance Program.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

ABSTRACT

Beaver Pond Dam: NDI I. D. No. PA-00408

<u>Owner</u> :	Eckman Lumber Company
State Located:	Pennsylvania (PennDER I.D. No. 52-13)
County Located:	Pike
Stream:	Dingmans Creek
Inspection Date:	13 November 1980
Inspection Team:	GAI Consultants, Inc. 570 Beatty Road Monroeville, Pennsylvania 15146

Based on a visual inspection, operational history, and hydrologic/ hydraulic analysis, the dam is considered to be in good condition.

The size classification of the facility is small and the hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. Since the facility is classified near the lower bounds of the small category, the SDF is considered to be the 1/2 PMF. Results of hydrologic and hydraulic analyses indicate the facility will pass and/or store approximately 40 percent of the PMF prior to embankment overtopping at the low area in the embankment crest (elevation 1177.4). Breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream Gamage and potential for loss of life. Thus, based on screening criteria provided by the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

It is recommended that the owner immediately:

a. Develop a formal emergency warning system to notify downstream residents should hazardous embankment conditions develop. Included in the plan should be provisions for aroundthe-clock surveillance of the facility during periods of unusually heavy precipitation.

 $\mathbf{a} \in I_{1 \rightarrow 1}$

b. Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to more accurately assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate. Beaver Pond Dam: NDI I.D. No. PA-00408

c. Have the embankment and adjacent abutment areas accurately surveyed and infill any low areas to restore the crest to the design elevation of 1177.5 feet.

d. Repair all areas of deterioration in the concrete surfaces of the spillway and spillway apron, and rearrange any displaced riprap in the discharge channel.

e. Remove the potentially obstructing debris lodged in the spillway forebay.

f. Remove all the trees, their root systems, and brush from the crest, upstream and downstream embankment slopes. This operation should be conducted under the guidance of a soils engineer experienced in the design and construction of earth dams.

g. Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

GAI Consultants, Inc.

markly Ull Block Bernard M. Mihalein, P.E.

Approved by:

JAMES W. PECK Colonel, Corps of Engineers District Engineer

Date 30 MARCH 1981

Date 15APK81

TABLE OF CONTENTS

Pag	<u>e</u>
PREFACE	i
ABSTRACT	i
OVERVIEW PHOTOGRAPH	V
TABLE OF CONTENTS	v
SECTION 1 - GENERAL INFORMATION	1
1.0 Authority	1
1.1 Purpose	1
1.2 Description of Project	1 2
SECTION 2 - ENGINEERING DATA	5
2 Design	5
2.2 Construction Records	6
2.3 Operational Records	6
2.4 Other Investigations	6
$2.5 \text{Evaluation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
SECTION 3 - VISUAL INSPECTION	7
3.1 Observations	7
$3.2 \text{Evaluation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3
SECTION 4 - OPERATIONAL PROCEDURES	9
4.1 Normal Operating Procedure	9
4.2 Maintenance of Dam	9
4.4 Warning System	9
$4.5 \text{Evaluation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION	0
5 1 Design Data	n
5.2 Experience Data	ŏ
5.3 Visual Observations	0
5.4 Method of Analysis	0
5.5 Summary of Analysis. \ldots \ldots \ldots \ldots 1	0
5.6 Spillway Adequacy	3
SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY 1	4
6.1 Visual Observations	4
6.2 Design and Construction Techniques 1	4
6.3 Past Performance	4
	5
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR	<i>c</i>
REMEDIAL MEASURES	D
7.1 Dam Assessment	6
/.2 Kecommengations/kemedial Measures	0

March 1974

TABLE OF CONTENTS

APPENDIX A - VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

APPENDIX B - ENGINEERING DATA CHECKLIST

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGIC AND HYDRAULIC ANALYSES

APPENDIX E - FIGURES

APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM BEAVER POND DAM NDI # PA-00408, PENNDER # 52-13

SECTION I GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

1:1 Purpose.

e.

The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Beaver Pond Dam is an earth embankment approximately 14 feet high and 395 feet long, including spillway. The facility is provided with an uncontrolled, rectangular shaped, concrete chute channel spillway located at the right abutment. The spillway is equipped with an ogee-type weir, 110 feet in length. The outlet works consist of a 36-inch diameter reinforced concrete pipe that discharges at the downstream embankment toe near the left sidewall of the spillway. Flow through the pipe is manually controlled by a 36-inch diameter sluice gate located at the inlet.

b. Location. Beaver Pond Dam is located on Dingmans Creek in Delaware Township, Pike County, Pennsylvania. The facility is located approximately two miles east of the community of Edgemere, Pennsylvania, and less than three miles northwest of the town of Holy Trinity (off Legislative Route 51006). The dam reservoir and watershed are contained within the Edgemere and Lake Maskenozha, Pennsylvania-New Jersey, 7.5 minute U.S.G.S. topographic quadrangles (see Figure 1, Appendix E). The coordinates of the dam are N41° 15.1' and W74° 56.9'.

c. <u>Size Classification</u>. Small (14 feet high, approximately 150 acre-feet storage capacity at the top of dam).

- d. Hazard Classification. High (see Section 3.1.e).
 - Ownership. Eckman Lumber Company R. D. #3 Lehighton, Pennsylvania 18235

Attention: John Eckman, President

f. <u>Purpose</u>. Recreation.

g. <u>Historical Data</u>. Detailed correspondence from PennDER files indicate that Beaver Pond Dam was originally constructed prior to 1913 and was used for water power. The original dam was an earth and rock structure 10 feet high and only 70 feet long. By 1950, remedial measures to control seepage and correct damage from overtopping had resulted in a facility with a concrete spillway and an embankment length of about 200 feet. During the flood of August 1955, however, the dam was once again severely damaged and it was decided by the owner to reconstruct the entire facility.

In 1955, Edward C. Hess Associates, Inc., civil engineers of Stroudsburg, Pennsylvania, designed the present facility. The new dam was designed as a 350-foot long earth embankment (field measured at 395 feet) with a 110-foot concrete spillway. This facility was completed in 1956-1957 and has since functioned without any significant problems.

1.3 Pertinent Data.

- a. Drainage Area (square miles). 7.0
- b. Discharge at Dam Site

Discharge Capacity of Outlet Conduit - Discharge curves are not available.

Discharge Capacity of Spillway at Maximum Pool \cong 5100 cfs (see Appendix D, Sheet 10).

c. <u>Elevations (feet above mean sea Level)</u>. The following elevations were obtained from available drawings and through field measurements based on the elevation of normal pool at approximately 1172.0 feet as indicated in Figure 1 (see Appendix D, Sheet 1).

Top of Dam

Maximum Design Pool Maximum Pool of Record Normal Pool Spillway Crest Upstream Inlet Invert Downstream Outlet Invert Streambed at Dam Centerline Maximum Tailwater

d. Reservoir Length (feet).

rop of	Dam	2650
Normal	Pool	2500

1177.5 (design). 1177.4 (field). Not known. Not known. 1172.0 (assumed datum). 1172.0. 1165.0 (design). 1164.6 (design). 1163.1 (field). 1164.6 (estimated). Not known.

e.	<u>Storage (acre-feet)</u> .	
	Top of Dam Normal Pool	150 61
f.	Reservoir Surface (acres).	
	Top of Dam Normal Pool	20 13
g.	Dam.	
	Туре	Earth.
	Length	285 feet (excluding spill- way).
	Height	14 feet (field measured; embankment crest to down- stream embankment toe).
	Top Width	Varies; two feet minimum at left abutment to 10 feet maximum near spillway.
	Upstream Slope	2H:1V.
	Downstream Slope	Varies; 6.5H:lV minimum to 3H:lV maximum.
	Zoning	Homogeneous earth embank- ment with a rock covered upstream slope (see Fig- ure 3).
	Impervious Core	Homogeneous earth section.
	Cutoff	Impervious cutoff as shown in Figure 3.
	Grout Curtain	Not known.
h.	Diversion Canal and Regulating Tunnels.	None.
i.	Outlet Works.	•
	Туре	Concrete intake tower with Rodney Hunt Series 208 rising stem operator and 36-inch diameter sluice gate.

.

1

C D

C

Outlet Conduit

Conduit Length

j. <u>Spillway</u>.

Туре

Crest Elevation

Crest Length

Closure and Regulating Facilities

Access

36-inch diameter reinforced concrete pipe encased in concrete.

55 feet, sluice gate to outlet endwall.

Uncontrolled, rectangular shaped, concrete chute channel with an ogee-type weir.

1172.0 feet.

110 feet.

(

Manually controlled upstream of embankment centerline via 36-inch diameter sluice gate located at the inlet. The gate is housed at the base of a reinforced concrete riser situated along the upstream embankment toe.

The riser is not accessible by foot from the embankment crest.

SECTION 2

ENGINEERING DATA

2.1 Design.

a. <u>Design Data Availability and Sources</u>. No formal design reports or calculations are available. No information pertaining to the design of the original dam is available in the PennDER files; but, information about the present facility is contained in the above files in the form of two drawings, dated 1955 (see Figures 2 and 3, Appendix E). In addition, these files contain the state construction permit application reports, dated 1955 and 1956, which contain brief descriptions of the design aspects of the present facility.

b. Design Features.

1. Embankment. Details of the basic embankment design are presented in Figures 2 and 3. As indicated, the present facility was constructed atop the existing earth embankment (see Figure 3, Section E-E). Specific design features are obscure since much of the embankment, as viewed by the inspection team, differed somewhat, in dimension and cross-section from that shown in Figure 3. The renovated embankment constructed in 1956, was designed with 2H:1V upstream and downstream slopes and an eight-foot minimum embankment crest width. The embankment crest, observed by the inspection team, varied in width from ten feet near the left spillway sidewall to two feet near the left abutment. The downstream face has an irregular slope varying from 6.5H:1V to 3H:1V. The steepest downstream embankment slope coincides with the broadest section of the embankment crest near the left sidewall of the spillway. An impervious clay cutoff is apparent in the available drawings and is discussed in the state permit reports.

2. Appurtenant Structures.

a) <u>Spillway</u>. Design features of the spillway are presented in Figures 2 and 3. As indicated, the spillway is an uncontrolled, rectangular shaped, concrete chute channel with an ogee-type weir located at the right abutment. The length of the spillway crest is 110 feet. The structure is tied into the embankment on both sides with 18-inch thick concrete key walls that are reportedly carried to impervious foundation material. The spillway was designed to discharge over a 12-inch thick grouted stone apron. At the end of the apron, an 18-inch thick curtain wall is carried down to a suitable impervious foundation material. The discharge channel downstream of the curtain wall was to be protected with randomly dumped stone.

b) <u>Outlet Conduit</u>. Design features of the outlet conduit are presented in Figure 3. As indicated, the outlet conduit is a 36-inch diameter reinforced concrete pipe with the inlet located at the base of the reinforced concrete riser and the outlet at the downstream toe of the embankment immediately adjacent the left sidewall of the spillway. The concrete riser is situated on the upstream side of the embankment adjacent to the spillway. Flow through the outlet is controlled by means of a 36-inch diameter sluice gate located at the inlet. The gate is manually operated from atop the riser structure.

c. <u>Specific Design Data and Criteria</u>. Available design data is limited primarily to the information contained in the 1955 and 1956 state permit application reports and provided in Figures 2 and 3. No information relative to specific design procedures or applied construction techniques was obtained.

2.2 Construction Records.

No formal construction records are available for the original facility built prior to 1913, or for the present facility built in 1956-1957. PennDER files contain photographs and correspondence accumulated during the years of construction; however, there is no information pertaining to specific construction aspects or techniques such as compaction procedures.

2.3 Operational Records.

No records of the day-to-day operation of this facility are available.

2.4 Other Investigations

Formal state inspection reports for both the original and the present facilities are contained in PennDER files for the years 1919, 1950, 1960, and 1965.

2.5 Evaluation.

The available data, coupled with the information obtained during the visual inspection, are considered adequate to make a reasonable Phase I assessment of the facility.

SECTION 3

VISUAL INSPECTION

3.1 Observations.

a. <u>General</u>. The general appearance of the facility suggests it to be in good condition.

b. <u>Embankment</u>. Observations made during the visual inspection indicate the embankment is in good condition. No seepage through the downstream face of the dam or indications of embankment instability were noted during the field inspection. Some minor deficiencies were observed which will require the remedial attention. These include:

1. Low area in the right abutment (1.1-foot below the design top of the dam) beyond the apparent end of the embankment.

2. Low area in the left abutment (0.4-foot).

3. The entire upstream embankment face is heavily overgrown with weeds, brush, and trees up to six inches in diameter.

4. The downstream embankment face in the vicinity of the spillway is covered with brush and small trees.

c. Appurtenant Structures.

1. <u>Spillway</u>. The condition of the spillway is considered to be good (see Photographs 8, 9, and 11). A large stump and a section of a boat dock were observed lodged in the spillway forebay. Moderate scaling and a few minor spalls were observed over the ogee crest. The spillway sidewalls exhibit only minor cracking. An apron is constructed downstream of the spillway with an approximate 15 percent grade. The apron shows signs of distress and requires remedial attention to protect it from further deterioration (see Photograph 11). Water action has displaced some of the random rock dumped adjacent to the curtain wall.

2. <u>Outlet Works</u>. The visible parts of the outlet works (intake structure and discharge structure) were found to be in good condition. The concrete intake structure is located approximately 25 feet upstream of the crest of the dam and was inaccessible by foot at the time of inspection (see Photographs 5 and 6). The control valve mechanism was not operated during the inspection; however, the owner stated that the gate was operated about two years ago.

d. <u>Reservoir Area</u>. The general area surrounding the reservoir is comprised of moderate to steep slopes that are heavily forested (see Photographs 1 and 2). No signs of slope distress were observed.

e. <u>Downstream Channel</u>. The spillway discharges into Dingmans Creek, a steeply sloped braided stream set in a narrow valley between steep, heavily wooded side slopes. The potential hazard area is located approximately 500 feet downstream of the dam where Dingmans Creek parallels Legislative Route 51006. Several small business establishments are located along the left bank of the stream. Many residences are located along both banks of Dingmans Creek for the next mile. Due to their close proximity to the streambed, approximately 15 homes and as many as 50 persons could be affected in this area by the floodwaters associated with an embankment breach. Consequently, the hazard classification is considered to be high.

3.2 Evaluation.

The overall condition of the facility is considered to be good. Low areas were noted at or near both embankment-abutment junctions. These levels should be verified by an accurate survey and remedial measures implemented. The operability of the sluice gate should be verified. Efforts should also be made to clear embankment overgrowth from both the upstream and downstream slopes. Some concrete deterioration is evident in the spillway and spillway apron which should be repaired along with the rearrangement of displaced riprap observed in the discharge channel. In addition, potential obstructions to free spillway discharge such as the large stump and boat dock section observed in the spillway forebay should be removed.

SECTION 4

OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure.

The facility is essentially self-regulating. That is, excess inflow discharges automatically over the spillway and is directed downstream. Normally, the outlet conduit is closed. No formal operations manual is available.

4.2 Maintenance of Dam.

No formal maintenance program exists for the dam. The owner stated that responsibility for maintenance of the facility was transferred to Pocono Mountain Lake Estates in exchange for shoreline property and use of the lake.

4.3 Maintenance of Operating Facilities.

The only operable appurtenance associated with the facility is the manually controlled sluice gate at the inlet of the outlet conduit. Regular maintenance is not performed and no maintenance manual is available.

4.4 Warning System.

There is no formal warning system for the facility.

4.5 Evaluation.

No formal operations or maintenance manuals are available for the facility, but are recommended to ensure proper future care and operation. In addition, a formal warning system should be developed and incorporated into any such manuals.

SECTION 5

HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data.

No formal design reports or calculations are available. A state permit application report for the reconstruction of the dam, dated 1955, indicates that the spillway was designed with a discharge capacity of about 5,370 cfs, based on a spillway opening 110 feet long and 5.5 feet deep (as-built), using 3.78 as the coefficient of discharge. The design capacity exceeded 1955 state requirements and was subsequently approved.

5.2 Experience Data.

Records of reservoir levels and/or spillway discharges are not available.

5.3 Visual Observations.

On the date of inspection, no conditions were observed that would indicate the spillway could not function satisfactorily during a flood event, within the limits of its design capacity.

5.4 Method of Analysis.

The facility has been analyzed in accordance with the procedures and guidelines established by the U. S. Army, Corps of Engineers, Baltimore District, for Phase I hydrologic and hydraulic evaluations. The analysis has been performed utilizing a modified version of the HEC-1 program developed by the U. S. Army, Corps of Engineers, Hydrologic Engineering Center, Davis, California. Analytical capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis.

a. <u>Spillway Design Flood (SDF)</u>. In accordance with the procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I Investigations, the Spillway Design Flood (SDF) for Beaver Pond Dam ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. This classification is based on the relative size of the dam (small) and the potential hazard of dam failure to downstream developments (high). Since the facility is classified near the lower bounds of the small category, the SDF is considered to be the 1/2 PMF.

b. <u>Results of Analysis</u>. Beaver Pond Dam was evaluated under normal operating conditions. That is, the reservoir was initially at its normal pool or spillway elevation of approximately 1172.0 feet, with the spillway weir discharging freely. The outlet conduit was assumed to be non-functional for the purpose of analysis, since the flow capacity of this conduit is not such that it would significantly increase the total discharge capabilities of the dam and reservoir. The spillway consists of an uncontrolled, rectangular shaped, concrete chute channel with discharges regulated by a concrete ogee-type weir.

Lake Rene Dam and Marcel Lake Dam, located upstream of Beaver Pond Dam, were considered in this analysis to determine their effects on Beaver Pond Dam. They also were evaluated under normal operating conditions. That is, the reservoirs were initially at normal pool; the spillways were assumed to be discharging freely; and, the outlet conduits were assumed to be closed. The outflow from Lake Rene Dam was routed directly into Marcel Lake, and the total outflow from Marcel Lake Dam was routed directly into Beaver Pond. All pertinent engineering calculations relative to the evaluation of Beaver Pond Dam, including those pertaining to the upstream facilities, are included in Appendix D.

Overtopping analysis (using the modified HEC-1 computer program) indcated that the discharge/storage capacity of Beaver Pond Dam can accommodate only about 40 percent of the PMF prior to overtopping of the low area in the embankment crest (elevation 1177.4). It is also noted that under events of 0.3 PMF magnitude or greater, discharge would occur around the right abutment, and under events of 0.37 PMF magnitude or greater, discharge would occur around both the left and right abutments (Appendix D, Sheet 13; Summary Input/ Output Sheets, Sheet K; Appendix A, "Pro-file of Dam Crest from Field Survey"). The upstream facilities, Lake Rene Dam and Marcel Lake Dam, can accommodate about 70 percent and 38 percent of the PMF, respectively, prior to embankment overtopping. Under 1/2 PMF (SDF) conditions, the Beaver Pond Dam embankment would be inundated for about 3.0 hours, by depths of up to 0.7 feet above the low area in the embankment crest (Summary Input/Output Sheets, Sheets J and K). Since the SDF for Beaver Pond Dam is the 1/2 PMF, it can be concluded that the dam has a high potential for overtopping, and thus, for breaching under floods of 1/2 PMF magnitude or less.

As Beaver Pond Dam cannot safely accommodate a flood of at least 1/2 PMF magnitude, the possibility of embankment failure under floods of 1/2 PMF intensity or less was investigated (in accordance with Corps directive ETL-1110-2-234). Several possible alternatives were examined, since it is difficult, if not impossible, to determine exactly how or if a specific dam will fail. The major concern of the breaching analysis is with the impact of the various breach discharges on increasing downstream water surface elevations above those to be expected if breaching did not occur.

The modified HEC-1 computer program was used for the breaching analysis, with the assumption that the breaching of an earth dam would commence once the low area in the embankment crest was overtopped. (It was assumed that the discharge around the left and right abutments alone, which would occur prior to the overtopping of the main embankment, would not ultimately lead to the failure of the dam.) Also, in routing the outflows downstream, the channel bed was assumed to be initially dry.

Five breach models were analyzed for Beaver Pond Dam. Two sets of breach geometry were evaluated for each of two failure times (Appendix D, Sheet 18). The two sets of breach sections chosen were considered to be the minimum and maximum probable failure sections. The two failure times (total time for each breach section to reach its final dimensions) under which the two breach sections were investigated were assumed to be a rapid time (0.5 hours) and a prolonged time (3.0 hours), so that a range of this most sensitive variable might be examined. In addition, an average possible set of breach conditions was analyzed, with a failure time of 1.0 hours.

The peak breach outflows (resulting from 0.43 PMF conditions) at Beaver Pond Dam ranged from about 5,570 cfs for the minimum section - maximum fail time scheme to about 8,700 cfs for the maximum section - minimum fail time scheme. The peak outflow resulting from the average breach scheme was about 6,170 cfs, compared to the non-breach 0.43 PMF peak outflow of approximately 5,540 cfs (Appendix D, Sheet 20).

The principal center of damage investigated is at Section 1 (see Figure 1), approximately 500 feet downstream from Beaver Pond Dam, where several small businesses and residences are located. Within this reach, the 0.43 PMF non-breach outflows resulted in a peak water surface elevation of about 2.1 feet above the damage level of the structures. However, the water surface elevations resulting from the breach models were as much as 3.0 feet above the damage level of the structures, representing increases of up to 0.9 feet (Appendix D, Sheet 20).

The consequences of dam failure can better be envisioned if not only the increase in the height of the floodwave is considered, but, also the great increase in momentum of the larger and probably swifter moving volume of water. In addition, there is the possibility of a failure section larger than those analyzed, which could result from a total or partial failure of the spillway weir itself, which could result in even higher downstream water surface elevations.

From this analysis, it is concluded that the failure of Beaver Pond Dam is quite possible, and would most likely lead to increased property damage and possibly to loss of life in the downstream region.

5.6 Spillway Adequacy.

 As presented previously, Beaver Pond Dam can accommodate only about 40 percent of the PMF prior to embankment overtopping. Should an event of this magnitude or greater occur, the dam would be overtopped and could possibly fail, endangering downstream residents and increasing the potential for loss of life in the downstream regions. Therefore, the spillway is considered to be seriously inadequate.

SECTION 6

EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. <u>Embankment</u>. Based on visual observations, the embankment appeared to be in good condition. A few minor deficiencies were noted at the time of inspection which will require remedial attention. They are:

1. Low areas approximately one-foot below the design crest elevation occur in both the left and right abutments. An accurate survey is recommended and the areas should be regraded consistent with the design top of dam elevation.

2. The roots of trees growing on the dam may increase the seepage potential through the embankment and uprooting of the trees by high winds could cause substantial volume of the embankment material to be displaced. Hence, the trees and their root systems should be removed.

b. Appurtenant Structures.

1. <u>Spillway</u>. The spillway is in good condition with only minor spalling and cracking being observed on the ogee structure and sidewalls. Minor deterioration of the spillway apron was evident which will require patching or grouting. Displaced riprap observed in the discharge channel should be rearranged to provide for maximum erosion protection.

2. <u>Outlet Works</u>. The outlet works appears to be in good condition. No concrete deterioration or corrosion of the valve operator was evident.

6.2 Design and Construction Techniques.

No design or construction records are available with the exception of construction drawings and a few dated photographs contained in PennDER files. A state inspection report, dated July 1956, indicated that construction had been completed in accordance with the plans and specifications.

6.3 Past Performance.

No formal records of past performance are available from the owner; however, information contained in PennDER files suggest that the reconstructed facility has performed satisfactorily since its completion.

6.4 <u>Seismic Stability</u>.

المريكات

The dam is located in Seismic Zone No. 1 and thus, may be subject to minor earthquake induced dynamic forces. As the overall static stability of the embankment appears adequate, it is believed that the facility can withstand minor earthquake induced dynamic forcs. However, no calculations and/or investigations were performed to confirm this opinion.

SECTION 7

ASSESSMENT AND RECOMMENDATION FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The results of this evaluation indicate the facility is in good condition.

The size classification of the facility is small and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood for the facility ranges between the 1/2 PMF (Probable Maximum Flood) to the This classification is based on the relative size of the PMF. facility (small) and the potential hazard of dam failure to downstream developments (high). Since the facility is classified near the lower bounds of the small category, the SDF is considered to be the 1/2 PMF. Hydraulic and hydrologic analyses indicate the facility will pass and/or store approximately 40 percent of the PMF prior to embankment overtopping at the low area in the embankment crest (elevation 1177.4). Breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

b. <u>Adequacy of Information</u>. The available information is considered adequate to make an accurate Phase I assessment of the facility.

c. <u>Urgency</u>. The recommendations listed below should be implemented immediately.

d. <u>Necessity for Additional Investigations</u>. Additional investigations are currently deemed necessary to more accurately assess the adequacy of the spillway.

7.2 Recommendations/Remedial Measures.

a. Develop a formal emergency warning system to notify downstream residents should hazardous embankment conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

b. Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to more accurately assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate. c. Have the embankment and immediate abutment areas accurately surveyed and infill any low areas to restore the crest to the design elevation of 1177.5 feet.

d. Repair all areas of deterioration in the concrete surfaces of the spillway and spillway apron, and rearrange any displaced riprap in the discharge channel.

Comparing the second reading the

FILL ST

A REAL PROPERTY AND A REAL

14. 194 e. Remove the potentially obstructing debris lodged in the spillway forebay.

f. Remove all the trees, their root systems, and brush from the crest, upstream and downstream embankment slopes. This operation should be conducted under the guidance of a soils engineer experienced in the design and construction of earth dams.

g. Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

APPENDIX A

and the second states of the

فرجار والمراجع

No.4-Displayers

.

VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

COUNTY <u>Pike</u> HAZARD CATEGORY <u>High</u> TEMPERATURE 50° 0 12:00 noon	OTHERS		PAGE 1 OF 8
CHECK LIST VISUAL INSPECTION PHASE 1 STATE Pennsylvania PENNDER # 52-13 SIZE Small	WEATHER CLEAR M.S.L. 1172.1 feet M.S.L. N/A M.S.L. M.S.L. OWNER REPRESENTATIVES	None	
NAME OF DAM Beaver Pond Dam NDI # PA - 00408 TYPE OF DAM Earth	DATE(S) INSPECTION 13 November 1980 POOL ELEVATION AT TIME OF INSPECTION TAILWATER AT TIME OF INSPECTION INSPECTION PERSONNEL	B. M. Mihalcin D. J. Spaeder K. H. Khilji	RECORDED BY B. M. Mihalcin

- •

.

EMBANKMENT

item	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA · 00408
SURFACE CRACKS	None observed. Embankment crest and downstream embankment slope are primarily grass covered. Many small trees (less than 12 inches in diameter) line the embankment crest on both sides, partially obscuring its view.
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.
SLOUGHING OR ERO- SION OF EMBANK- MENT AND ABUTMENT SLOPES	None observed.
VERTICAL AND HORI- ZONTAL ALIGNMENT OF THE CREST	Horizontal - Curved alignment. Vertical - see "Profile of Dam Crest from Field Survey," Appendix A.
RIPRAP FAILURES	None observed. Riprap is hard, well graded sandstone extending to the top of the dam. Excellent condition.
JUNCTION OF EMBANK- MENT AND ABUT- MENT, SPILLWAY AND DAM	Good condition at spillway. Cutoff walls evident. No erosion at abutments, but survey indicates abutments are low just beyond embankment contacts.

.

PAGE 2 OF 8

EMBANKMENT

4

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA 00408
DAMP AREAS IRREGULAR VEGETA- TION (LUSH OR DEAD PLANTS)	None observed.
ANY NOTICEABLE SEEPAGE	None observed.
STAFF GAGE AND RECORDER	None.
DRAINS	None observed.
MISCELLANEOUS	Trees and brush have overgrown both slopes and the crest particularly adjacent to the spillway. Trees and root systems should be removed.
	PAGE 3 OF 8

. . x. .

OUTLET WORKS

AGR. 4.1.

3

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA- 00408
INTAKE STRUMEURE	Intake tower (concrete) located within reservoir at left end of spillway. Not accessible by foot but appears to be in good condition.
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	Outlet conduit is 36-inch diameter reinforced concrete pipe. Outlet end is slightly damaged but pipe appears in good condition.
OUTLET STRUCTURE	Concrete pipe extends through an endwall attached to the left spillway sidewall. Concrete is in good condition.
OUTLET CHANNEL	Natural channel, possibly lined with rock. Private bridge about 175 feet downstream of spillway will obstruct high discharges. Bridge will probably fail.
GATE(S) AND OPERA- TIONAL EQUIPMENT	Rodney Hunt operator located atop intake tower. Inaccessible, but appears to be in good condition.

PAGE 4 OF 8

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA · 00408	
TYPE AND CONDITION	Uncontrolled, rectangular shaped, concrete chute channel with an ogee-type weir. Overall condition is good.	
APPROACH CHANNEL	Rock lined approach. One large stump and a section of boat dock were lodged in forebay. Should be removed.	······································
SPILLWAY CHANNEL AND SIDEWALLS	Spillway weir is in good condition. Spillway apron shows some cracking (holes in slab) near right sidewall, but generally good condition. Spillway sidewalls exhibit only minor cracking.	
STILLING BASIN PLUNGE POOL	None. Flow discharges into boulder strewn channel.	
DISCHARGE CHANNEL	Spillway discharges into natural stream. Toe of spillway is protected by concrete endwall. Some riprap appears to be displaced. Should be re-arranged.	
BRIDGE AND PIERS EMERGENCY GATES	None.	
	DAGE KOFA	1 -

EMERGENCY SPILLWAY

1

こう しんちんない しん

A REAL PROPERTY OF A REAL PROPER

A STREET BARRIER

Į

A TAN . H. A

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS N	DI# PA -	00408
TYPE AND CONDITION	N/A.		
APPROACH CHANNEL	М/А.		
OUTLET STRUCTURE	N/A.		
DISCHARGE CHANNEL	N/A.		
			PAGE 6 OF 8

INSTRUMENTATION

in ton w

.

.-1

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDIN PA . 00408
MONUMENTATION SURVEYS	None observed.	
OBSERVATION WELLS	None observed.	
WEIRS	None observed.	
PIEZOMETERS	Nc.ne observed.	
OTHERS		

PAGE 7 OF 8

RESERVOIR AREA AND DOWNSTREAM CHANNEL

4

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA- 00408
SLOPES: RESERVOIR	Moderate to steep reservoir slopes. Heavily wooded.
SEDIMENTATION	None observed.
DOWNSTREAM CHAN- NEL (OBSTRUCTIONS, DEBRIS, ETC.)	Private bridge about 175 feet downstream of spillway will obstruct large discharges but will probably fail.
SLOPES: CHANNEL VALLEY	Steep, narrow and heavily wooded.
APPROXIMATE NUMBER OF HOMES AND POPULATION	Many homes (≈ 15) located along downstream channel between Beaver Pond Dam and Nyce Lake. Two commercial buildings are also located within 500 feet of the dam. It is estimated that as mary as 50 persons could be affected by the floodwaters resulting from an embankment breach.

PAGE 8 OF 8

BEAVER POND DAM GENERAL PLAN-FIELD INSPECTION NOTES

and the second second

46 1242

K. 20 X 20 TO THE INCH. 7 X 10 INCHES KEUFFEL & ESSER CO. MAR IN 14
APPENDIX B

ENGINEERING DATA CHECKLIST

3

CHECK LIST ENGINEERING DATA PHASE I

-

1 (1) ×

٠ŧ

NAME OF DAM Beaver Pond Dam

PERSONS INTERVIEWED Via phone: John Eckman, President PERSONS INTERVIEWED Via phone: John Eckman, President AND TITLE R. D. #3 AND TITLE Regional vicinity Regional vicinity See Figure 1, Appendix E. MAP Constructed in 1956-57 for Camp Massad CONSTRUCTION Constructed by Litz Construction of Ea Pailor Constructed by Litz Construction of Fa Available Drawings Available from PennDER fi Two drawings available from PennDER fi See Figure 3, Appendix E. TYPICAL DAM See Figure 3, Appendix E. OUTLETS: Construct 3, Appendix E.	REMARKS
REGIONAL VICINITY See Figure 1, Appendix E. MAP See Figure 1, Appendix E. MAP Constructed in 1956-57 for Camp Massad CONSTRUCTION Constructed by Edward G. Hess Associates, Construction of Ea HISTORY Constructed by Litz Construction of Ea Available from PennDER fi Two drawings available from PennDER fi Available DRAWINGS Owner also has set of these drawings. TYPICAL DAM See Figure 3, Appendix E. OUTLETS: Constructor 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	kman, President Lumber Co. (Owner) 13 Con, PA 18235
CONSTRUCTIONConstructed in 1956-57 for Camp Massad Designed by Edward G. Hess Associates, Construction of Ea Construction of Ea Construction of Ea Two drawings available from PennDER fi Owner also has set of these drawings.AVAILABLE DRAWINGSTwo drawings available from PennDER fi Owner also has set of these drawings.TYPICAL DAM SECTIONSSee Figure 3, Appendix E.OUTLETS:Construct 3, Appendix E.	dix E.
Two drawings available from PennDER fi AVAILABLE DRAWINGS Owner also has set of these drawings. AVAILABLE DRAWINGS Owner also has set of these drawings. TYPICAL DAM See Figure 3, Appendix E. SECTIONS ContleTS: OUTLETS: ContleTS:	5-57 for Camp Massad on Eckman Lumber Co. property. G. Hess Associates, Inc., of Stroudsburg, Pennsylvania. & Construction of East Stroudsburg.
TYPICAL DAM See Figure 3, Appendix E. SECTIONS See Figure 3, Appendix E. OUTLETS: Contract 3 and 3 Amondia F	able from PennDER files; see Figures 2 and 3 of report. Of these drawings.
OUTLETS: 600 Figure 2 and 3 Amondiv F	ldix E.
PLAN DETAILS DISCHARGE RATINGS	3, Appendix E.

PAGE 1 UP 5

•

CHECK LIST ENGINEERING DATA PHASE I

-

3

(CONTINUED)	ITEM REMARKS	SPILLWAY: PLAN SECTION DETAILS DETAILS	OPERATING EQUIP. MENT PLANS AND DETAILS DETAILS	DESIGN REPORTS None available.	GEOLOGY REPORTS None.	SIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	MATERIAL INVESTIGATIONS: BORING RECORDS BORING Y TESTING
	NDI# PA · 00408						- -

LAGE 2 OL

NDI# PA · 00408 **ENGINEERING DATA** None other than PennDER inspections. (CONTINUED) CHECK LIST REMARKS None indicated. Not known. Not known. None. None. POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS **MONITORING SYSTEMS** POST CONSTRUCTION HIGH POOL RECORDS **BORROW SOURCES** MODIFICATIONS DAM SURVEYS ITEM

1. 1. (2)

-

PAGE 3 OF 5

CHECK LIST ENGINEERING DATA

PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA · 00408
PRIOR ACCIDENTS OR FAILURES	None since re-construction in 1956-57.
MAINTENANCE: RECORDS MANUAL	None. See "miscellaneous" below.
OPERATION: RECORDS MANUAL	None.
OPERATIONAL PROCEDURES	Self-regulating. Facility has been drawn down on occasion. Latest drawdown about two years ago to repair docks.
WARNING SYSTEM AND/OR COMMUNICATION FACILITIES	None.
MISCELLANEOUS	Owner (Eckman Lumber Co.) has agreement (in deed) with Pocono Mountain Lake Estates. Development agreed to maintain dam for use of lake and sale of part of shoreline.

PAGE 4 OF 5

GAI CONSULTANTS, INC.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

NDI ID # <u>PA-00408</u> PENNDER ID # <u>52-13</u>

SIZE OF DRAINAGE AREA: 7.0 square miles.

ELEVATION TOP NORMAL POOL: ______STORAGE CAPACITY: 61 acre-feet.

ELEVATION TOP FLOOD CONTROL POOL: _____ STORAGE CAPACITY: _____

ELEVATION MAXIMUM DESIGN POOL: _____STORAGE CAPACITY: _____

ELEVATION TOP DAM: ______STORAGE CAPACITY: ______

SPILLWAY DATA

CREST ELEVATION: 1172.0 feet.

TYPE: Uncontrolled, rectangular shaped, concrete chute channel with ogee-type weir.

CREST LENGTH: _____110 feet

CHANNEL LENGTH: _____N/A

SPILLOVER LOCATION: _____Right abutment.

NUMBER AND TYPE OF GATES: None.

OUTLET WORKS

TYPE: Rodney Hunt 36-inch diameter sluice gate.

LOCATION: Upstream toe at left sidewall of spillway.

ENTRANCE INVERTS: 1165.0 feet (design).

HYDROMETEOROLOGICAL GAGES

TYPE:	None.
LOCATION:	
RECORDS:	-
MAXIMUM NO	N-DAMAGING DISCHARGE:Unknown.

.

PAGE 5 OF 5

APPENDIX C PHOTOGRAPHS

4

BEAVER POND DAM PHOTOGRAPH KEY MAP

Ċ

œ

APPENDIX D

HYDROLOGIC AND HYDRAULIC ANALYSES

PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

a. Development of an inflow hydrograph(s) to the reservoir.

b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.

c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), time(s) of occurrence the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequences resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

a. Development of an inflow hydrograph(s) to the reservoir.

b. Routing of the inflow hydrograph(s) through the reservoir.

c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.

d. Routing of the failure hydrograph(s) to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevation(s) of failure hydrograph(s) for each location.

D-1

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME OF DAM: BEAVER POND DAM PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.0 INCHES/24 HOURS ⁽¹⁾

-	

STATION	1	2	3
STATION DESCRIPTION	LAKE RENE DAM	MARCEL LAKE DAM	BEAVER POND DAM
DRAINAGE AREA (SQUARE MILES)	1.6	2.7	2.7
CUMULATIVE DRAINAGE AREA (SQUARE MILES)	1.6	4.3	7.0
ADJUSTMENT OF PMF FOR DRAINAGE AREA LOCATION (%)	Zone l	Zone l	Zone l
6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS	111 123 133 142 -	111 123 133 142	111 123 133 142
SNYDER HYDROGRAPH PARAMETERS			
ZONE (2) C _p (3)	1 0.45	1 0.45	1 0.45
C _t (3)	1.23	1.23	1.23
L (MILES) (4) L _{ca} (MILES) (4)	2.5 1.2	2.7 1.2	3.3 1.4
$t_p = C_t (L \cdot L_{ca})^{0.3}$ (HOURS)	1.71	1.75	1.95
SPILLWAY DATA (5)			
CREST LENGTH (FEET) FREEBOARD (FEET)	55 5.0	60 5.5	110 5.4

(1) HYDROMETEOROLOGICAL REPORT 33, U.S. ARMY CORPS OF ENGINEERS, 1956.

(2) HYDROLOGIC ZONE DEFINED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT, FOR

DETERMINATION OF SNYDER COEFFICIENTS (C_p AND C_t).

(3) SNYDER COEFFICIENTS

- (4) L = LENGTH OF LONGEST WATERCOURSE FROM DAM TO BASIN DIVIDEL_{Ca} = LENGTH OF LONGEST WATERCOURSE FROM DAM TO POINT OPPOSITE BASIN CENTROID.
- (5) SPILLWAY DATA RELATING TO LAKE RENE DAM AND MARCEL LAKE DAM OBTAINED FROM PHASE I INSPECTION REPORT, MARCEL LAKE DAM (SEE NOTE 3, SHEET 14 OF 20).

D-2

	DAM SAFETY INSPECTION	
	BEAVER POND DAM	
BY27.5	DATE PROJ. NO80- 238 - 408	CONSULTANTS, INC.
CHKD. 8Y	DATE <u>3 4 8/</u> SHEET NO. / OF <u>20</u>	Engineers • Geologists • Planners – Environmental Specialists

DAM STATISTICS

HEIGHT OF DAM = 14 FT (FIELD MEASURED: TOP OF DAM TO D.S. OURET INVERT; "TOP OF DAM" HERE AND ON ALL SUBSCIDLENT CALCULATIONS DHEETS REFERES TO THE LOW AREA IN THE EMBANKMENT CREST.)

NORMAL POOL STORAGE CAPACITY = 20 × 10° GALLONS = 61.4 AC-FT (SCE NOTE 1)

MAXIMUM POOL STORAGE CARACITY = 149.8 AS-FT (@ TOP OF ZAM)

DRAMAGE AREA :

(PLANMETERED ON USGS 7.5' TOPO QUADS - EDGEMERE, AND LAKE MASKENDZHA, PA)

(SHEET 4)

SEE NOTE 2)

ELEVATIONS:

TOP OF DAM (DESIGN)	= 1177.5	(FIC 3 SEE NOTE 2)
TOP OF DAM (FIELD)	= 1177.4	
NORMAL POOL	= 11720	(SEE NOTE 2)
SPILLWAY CREST	= 1172.0	(FIG 3 ; SEE NOTE 2)
(PSTREAM INLET INVERT (DEDGN)	∠ /165.0	(FIG 3; SEE NOTE 2)
DOWNSTROSAM OUTLET INVEST (DESIGN)	= 1164.6	(FIG 3; SIEF NOTE 2)
DOWNSTREM OUTLET INVERT (FIELD)	= 1163.1	,
STREAMBED @ DAM CENTERLINE	= 1164.6	(ESTIMATED FROM FIG. 3

SUBJECTDA	M SAFETY INSPECTION	
	BEAVER POND DAM	
8Y DATE	E PROJ. NO 80- 238-408	CONSULTANTS, INC.
CHKD. BY DATE	E OF SHEET NO OF	Engineers • Geologists • Planners Innvironmental Specialists

NOTE 1: OBTAINED FROM "REPORT WON THE APPLICATION OF MASSAD CAMPS, INC., FOR THE RECONSTRUCTION OF A DAM ACROSS DINGMANS CREEK, IN DELAURE TOWNSHIP, PARE COUNTY;" NOVEMBER, 1955; FOUND IN PELIN DER FILES.

NOTE 2: "E DESIGN DRAWINGS ARE BASED IN A NORMAL POL OR SPILLWAY ELEVATION OF <u>99.4</u> FEET. THE J.G. TOPO JUAD FOR EDGEMERE, PA, INDICATES THE NORMAL POOL ELEVATION AS SOMEWHERE BETWEEN <u>1160.0</u> AND <u>1180.0</u>. IF WILL BE ASSUMED THAT THE JPILLWAY CREST IS AT SLEVATION <u>72.3</u>, AND THUS <u>1072.6</u> FEET (OR 11720-99.4) JULL BE ADDED TO ALL THE ELEVATIONS INDICATED ON THE DESKN DRAWINGS. (THE JALLE <u>172</u> LASS ASSUMED, IN ORDER TO BEST MARCH THE RESULTS OF THE FIELD JURVEY WITH THE CONTOURS ON THE JSGS TOTO MAD. IF S NOTED THAT THE ELEVATIONS USED IN THIS ANALYSIS ARE CONSIDERED ESTIMATES, AND ARE NOT NECESSARILY ACCURATE.)

DAM CLASSIFICATION

DAM SIZE: SMALL

(REF. 1, TABLE 1)

HAZARD CLASSIF KATTON: HIGH

(FIELD OBSERVATION) (ROF 1, TABLE 3)

REQUIRED SDF: 'SPMIF TO PMF

HYDROGRAPH PARAMETERS

FOR LOCAL SUB-DASW:

LENGTH OF LONGEST WATERCOURSE: L= 3.3 MILES

BINT OF BASIN CONTROL : LOA = 1.4 MILLES

(MEASURED ON USGS TOPO QUAD: EDGEMERE, ALD LAKE MASKENOZHA, DA)

C= 1.33 (JUDPLED BY C.O.E., ZONE 1, Cp = J.45 DELAWARE RIVER BASIN)

LADERS STANDARD LAG:

 $t_p = C_e (2.2c_n)^{\circ 3} = 1.93 (3.3 \times 0.4)^{\circ 3} = 0.15 + 0.00RS$

(<u>MOTE</u>: HIDROGRAPH JARIABLES USED HERE ARE DEFINED IN REF. 2, IN SECTION ENTITLED "SNITDER SYNTHETIC UNIT HYDROGRAPH")

RESERVOIR CAPACITY

REZENDIR SURFACE AREAS :

C. SEN C. AREA (SA) E NORMAL POOL (EL 11720) = <u>13</u> ACOSS SA C. EL 1180 = <u>23</u> ACRES SA C. EL 1200 = <u>72</u> ACRES

(USGS TOTO QUARS : EDEFASTE + LAKE MASURNOT-

	DAM SAFET	Y INSPECTION	Í
	BEAVER F	CND DAM	ł
BY	DATE	proj. no <u>80-238 - 408 _</u>	[
СНКD. ВУ <u>Д.</u> С	DATE	SHEET NO. 4 OF 20	ŧ

Engineers • Geologists • Planners Environmental Specialists

S.A. @ TOP OF DAM (EL. 1177.4) = 19.8 ACRES

(BY LINEAR INTERPOLATION)

IT IS ASSUMED THAT THE MODIFIED PRISMOIDAL RELATIONSHIP ADEQUATELY MODELS THE RESERVOIR SURFACE AREA -STORAGE RELATIONSHIP:

(Rose 14, p. 15)

 $\Delta V_{1-2} = \frac{h}{3} \left(A_1 + A_2 + \sqrt{A_1 \cdot A_2} \right)$

WHERE

 $D = \Delta V_{1-2} = INCREMENTAL HEAD RETWEEN ELEVATIONS 1+2, IN AC-FT,$ h = ELEVATION 1 - ELEVATION 2, IN FT,A, = SA. @ ELEVATION 1, IN ACRES, $A_0 = S.A. @ ELEVATION 2, IN ACRES.$

IT IS ALSO ASSUMED THAT THE SURFACE AREA VARIES LINEARLY BETWEEN THE ELEVATIONS INDICATED ADDVE.

1165.0 0 - 0* (****) 1172.0 13 - 61.4 1174.0 15.5 28.5 89.7 1176.0 18.0 33.5 123.4	UME
(174.0 13 - 61.4' 1174.0 15.5 28.5 89.9 1176.0 18.0 33.5 123.4	•
174.0 15.5 28.5 89.9 1176.0 18.0 33.5 123.4	۸
1176.0 18.0 33.5 123.4	
(DAM) 1774 19.8 36.4 149.8	
1173.0 20.5 12.1 161.9	
1130.0 23 43.5 225.4	
11820 27.9 50.8 256.2	
1185.0 35.3 94.6 350.8	

ELEVATION - STORAGE RELATIONSHIP:

EERO-STORAGE ELEVATION AND NORMAL POOL STIRAGE CAMACITY FROM SMEET 1.

• • • • • •

SUBJECT	DAM SAFETY	INSPECTION
	BEAVER PO	IND DAM
BY	DATE	proj. no. <u>80-238-408</u>
СНКD. ВУ	DATE <u>3.4-81</u>	SHEET NO. 5 OF 30

Engineers • Geologists • Planners Environmental Specialists

PMP CALCULATIONS

APPROXIMATE RAINFALL INDEX = <u>22.0</u> INCHES (CORRESPONDING TO A DURATION OF <u>24</u> HOURS AND A DRAINAGE AREA OF <u>200</u> SQUARE MILES)

(REF. 3, FIG. 1)

DETTTH-AREA- DURATION ZONE 1 (REF. 3, FIG. 1)

ASSUME DATA CORRESPONDING TO A 10-SQUARE MILE AREA MAY DE APALIED TO THIS <u>2.7</u> SQUARE MILE BASIN:

DURATION (HRS)	PERCENT OF INDE	X RAINFALL
6	///	
12	123	
24	133	
48	142	(REF. 3, FIG. 2)

HOP BROOK FACTOR (ADJUSTMENT FOR BASIN SHAPE AND FOR THE LEDER LIKELIHOOD OF A JEVERE STORM CENTERING OVER A SMALL BASIN) FOR A DRAINAGE AREA OF 2.7 SQUARE MILES IS 0.80.

(Rer 4, p 48)

WITH A CONCRETE OBGE - TYPE WEIR, AS SKETCHED ABOVE.

the second s

SUBJECT	DAM SAFETY INSPECTION					
BEAVER POND DAM						
BY DJJ	DATE	PROJ. NO. <u>80-238-408</u>				
CHKD. BY DLA	DATE	SHEET NO OF	Engineei Environn			

Engineers • Geologists • Planners Environmental Specialists

DISCHARGE CAN BE ESTIMATED BY THE EQUATION

 $Q = QH^{3/2}$ (REF 4, p. 373)

WHERE Q = DISCHARGE, IN CAS, C = COSFFICIENT OF DISCHARGE, L = LENGTH OF WEIR CREST = 110 FT, H = HEAD, IN FT.

THE DESIGN HEAD, HO, IS ASSUMED TO DE <u>S.S</u> FEET, OR TO THE TOP OF THE SPILLWAY WINGWALLS. IT IS ASSUMED THAT THE RELATIONSHIPS IN REF. 4, pp. 372-382, CAN DE APPLIED TO THIS DEEE-TYPE WER. FOR A FOREBAT DEPTH OF <u>2.5</u> FEET,

$$\frac{P}{H_0} = \frac{2.5}{5.5} = 0.45$$

: C_0 = 3.78 (Ref. 4),p

REF 4 , p. 378 , FIG. 249)

AMROACH CHANNEL LASSES @ DESIGN HEAD DISCHARGE:

AMPROACH CHANNELLENGTH = 16.0 FT

APPROACH CHANNEL WITTH = 110 FT

AT EL. 1177.5 (DESIGN POOL),

AVERAGE ADDROACH CHANNEL DEDTH = 2.5+5.5 = 8.0 FT

FLOW AREA = 8.0 × 110 = 880 FT?

- INITIAL ESTIMATE OF DISCHARCE:

- AVERAGE VELOCITY IN APPROACH CHANNEL :

$$V_{A} = \frac{Q}{A} = \frac{5363}{880} = \frac{6.1}{6.1}$$
 FPS

- AVERAGE APPROACH VELOCITY HEAD:

$$h_{A} = \frac{V_{A}^{2}}{2g} = \frac{(6.1)^{2}}{64.4} = 0.58 \text{ FT}$$

- ASSUMING THAT THE APPROACH CHANNEL ENTRANCE LOSS = 0.1 h, (REF 4, p. 379)

- APPROACH CHANNEL FRICTION LOSS, h.F :

$$h_{F} = \left[\frac{V_{A} n}{1.486 R^{2/3}} \right]^{2} \times L_{c} \qquad (ReF 4, p. 379)$$

WHERE

WETTED PERIMETER:

AVG. AT. OF WINGWALL =
$$\frac{(1.0)(8.0) + (15.0)(\frac{8.0+0.5}{2})}{16.0} = \frac{4.5}{5}$$
 FT

.: ANG WETTED RERIMISTER = 2(4.5) + 110 = 119.0 FT

ANG. HYDRONUC ROTONUS = $R_{H} = \frac{A}{P} = \frac{880}{119} = \frac{7.4}{7.4}$ FT $\therefore h_{E} = \left[\frac{(6.1)(0.035)}{(1.4)^{2}5} \right]^{2} \times 16.0 = 0.02$ FT

: TOTAL APPROACH LOSS = 0.02 + 0.06 = 0.08 FT

	DAM SAFET	Y INSPECTION	
	BEAVER	POND DAM	
BY	DATE	PROJ. NO. <u>80-238-408</u>	CONSULTANTS, INC.
	DATE <u>3-4-81</u>	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists

ACTUAL EFFECTIVE HEAD : HE = J.J-0.08 = J.42 ET

SPILLWAY CAPACITY @ DESKIN HEAD = (3.78)(110)(5.40)^{3/2} = <u>50</u>47 CES

- FOR HEADS OTHER THAN DESIGN HEAD, THE APPROACH CHANNEL LOSSES WILL BE ASSUMED TO BE PROPORTIONAL TO THE LOSSES AT DESIGN HEAD:

$$h_{L} = \left(\frac{0.08}{5.5}\right)H$$

WHERE h_ = TOTAL APPROACH CHANN - LOSS, IN FT, H = RESERVOIR ELEMATION - 1178.0 FT.

EFFECTS OF HEAD OTHER THAN DESIGN HEAD:

As THE HEAD ON THE WIEIR DECOMES SMALL, DISCHARGE IS REDUCED DUPROPORTIONATELY, DUE TO THE ROUGHNESS AND THE CONTACT PRESSURE BETWEEN THE WATER AND THE WEIR SUBFACE. THUS, THE DISCHARGE COEFFICIENT (C) TAKES ON A LOWER WALLE THAN THAT OF DESIGNS HEAD. THE OPPOSITE TEEND OCCURS FOR HEADS GREATER THAN THAT OF DESIGNS. THEREFORE, THE DESIGNS DISCHARGE COEFFICIENT WILL BE MODIFIED APPROPRIATELT, ACCORDING TO FIS. 250, REF. 4.

SPILLWAY RATING CURVE :

(

	RIESERVOIR ELEVATION	н	HIHO	Ľ	8	APPROACH	EFFECTUE HEAD, HE	° Q
	(ET)	(ET)				<u>(FT)</u>	(FT)	(c#3)
	1172.0	0	0	_				0
	1173.0	1.0	0.18	0.85	3.21	0.01	0.99	350
	1174.0	20	0.36	0.89	3.36	0.03	1.97	1020
	1175.0	30	0.55	0.93	3.52	0.04	2.96	1970
	1176.0	4.0	0.73	0.96	3.63	0.06	3.94	3120
-	1177.0	5.0	0.91	0.99	3,74	0.07	4.93	4500
TOP) 1177.4	5.4	0.98	1.00	3.78	0.08	5.32	5100
	1177.5	5.5	1.00	1.00	3.78	0.08	5.42	5250
	1178.0	6.0	1.09	1.01	3.82	0.09	5.91	6040
	1179.0	7.0	1.27	1.03	3.89	0.10	6.90	7760
	1180.0	8.0	1.45	1.05	3.97	0.12	7,88	9660
	1181.0	9.0	1.64	1.07	4.04	0,13	8.87	11,740
	1182.0	10.0	1.82	1.07	4.04	0.15	9,85	13,740
	1183.0	/1.0	2.00	1.07	4.04	0.16	10,84	15,860
	1184.0	120	2.18	1.07	4.04	0.17	11.83	18,080
	1185,0	13.0	ə.36	1.07	4.04	0.19	12.81	20,380

$$\begin{array}{l} @ \ H_{0} = DESKN \ HEAD \leq S.S \ FT \\ @ \ S/C_{0} \ FROM \ Row \ H_{1} \ F(G. \ \partial SO_{p}. \ 378. \\ @ \ C_{0} \leq 3.78 \ ; \ C \leq 3.78 \ \times \ 5.6 \\ @ \ h_{2} \leq \left(\frac{9.98}{5.5}\right) H \ (SEE \ SHEET \ 9) \\ @ \ H_{E} = \ H - h_{1} \\ @ \ Q = CLH_{E}^{3/2} \ ; \ L = 110 \ FT \ ; \ (\ computed \ TO \ ANE-AREST \ 13 \ CFS \). \end{array}$$

	DAM SAFETY	INSPECTION	
	BEAVER	POND DAM	CONSULTANTS, INC.
CHKD. BY <u>DLB</u>	DATE <u>3-4-81</u>	SHEET NO// OFO	Engineers • Geologists • Planners Environmental Specialists

EMBANKMENT RATING CURVE

ASSUME THAT THE EMBANKMENT BEHAVES ESSENTIALLY AS A BROAD-CRESTED WEIR WHEN OVERTOPPING OCCURS. THUS, THE DISCHARGE CAN BE ESTIMATED BY THE RELATIONSHIP

WHERE	Q = DISCHARGE OVER EMBANKMENT, IN CFS,
	L = LENGTH OF EMDANISHENT OVERTOPPED, IN FT,
	H = HEAD, IN FT; IN THIS CASE IT IS THE AVERAGE
	"FLOW AREA WEIGHTED" HEAD ADOVE THE DAM,
	C = COEPFICIENT OF DISCHARGE, DEPENDENT UPON
	THE HEAD AND THE WEIR BREADTH.

.

LENGTH	or	EMBANKMER	17	INUNDATED
	NC	RESERVOIR	E	EVATION

4 1 1011 1000	ELEVATION (FT)	LENGTH (FT)
GROWD MEAR RIGHT ABUTMENT	1176.4	0
(TOP OF DAM)	1177.4	50
	1177.5	100
	1177.7	230
	1177.9	280
	1178.0	380
	1178.5	360
	1179.0	370
	11800	390
	1181.0	410
,	1182.0	430

(FROM FICED SURVET AND WESS TOPS QUAD - EDGEMERE, PA)

SUBJECT	DAM	SAFETY	INSPECTION	
		BEAVER	POND DAM	
BY	DATE	2-2-81	PROJ. NO	
CHKD. BY	DATE	3-4-81	SHEET NO OF	Engin Enviro

Engineers • Geologists • Planners Environmental Specialists

A SSUME THAT INOREMENTAL DISCHARGES OVER THE EMPANIMENT FOR SUCCESSUE RESERVOIR ELEVATIONS ARE APPROXIMATELY TRAPEZOIDAL IN CROSS-SECTIONAL FLOW AREA. THEN ANY INOREMENTAL AREA OF FROM CAN BE ESTIMATED AS Hi [(L,+L,)/2], WHERE L, = LENGTH OF OUESTOPPED EMBANIMENT AT HIGHER ELEVATIONS, L, = LENGTH AT LOWER BEEVATIONS, Hi = DIFFETENCE IN ELEVATIONS. THUS, THE TOTAL AVERNOE ¹FLOW AREA WEIGHTED" HEAD CAN BE ESTIMATED AS HW = (TOTAL FLOW AREA/LI).

EMBANKMENT RATING TABLE :

	RESERVOIR EZEVATION	۷,	43	INCREMENTAL HEAD, <u>HC</u>	MEREMENTAL	ATTER , AT	3 NEIGNTED NEAD, <u>Hw</u>	14. 1	@ (G G
	(F7)	(FT)	(57)	(==)	(FT?)	(قريم)	(FT)			(ces)
RT. AOUTAR	() /176.4	0		0	_		_		-	
TOD OF	1177.4	50	0	1.0	25	25	0.50	0.05	3,07	50
	1177.5	100	50	0.1	8	33	0.33	0.03	3.00	60
	1177.7	230	100	0.2	33	66	0.29	0.03	2.99	110
	1177.9	280	230	0.2	51	117	0.42	G.04	3.01	230
	1178.0	320	380	0.1	30	147	0.46	0.05	3.02	300
	11785	360	J 20	0.5	170	317	0.88	0.09	3.03	900
	1179.0	370	360	0.5	183	500	1.4	0.14	3.04	1860
	1180.0	390	370	1.0	380	880	2.3	0.23	3.08	4190
	1181.0	410	390	1.0	400	1280	3.1	0.31	3.09	6910
	1182.0	430	410	1.0	420	/700	4.0	0.40	3.09	10,630

$$O A_{i} = H_{i} \left[(L_{i}+L_{o})/\partial \right]$$

$$O H_{w} = A_{i}/L_{i}$$

$$O I = BREADTH OF COEST = 10 FT (ASSUMED AND. VALUE; FRED MEASURED).$$

$$O C = f(H, I); FROM REF 10, FIG 04.$$

$$O = CL_{i}H_{w}^{V_{0}} (TO ALGORET LO CFS)$$

- 1. Z - -

SUBJECT	DA	DAM SAFETY INSPECTION			
		BEAVER	POND	Dam	
BY	DATE	2-2-81	PROJ. NO.	<u> 80 - 238 - 408 </u>	
СНКО. ВҮ <u>Д</u> С	DATE	3-4-81	SHEET NO	<u>/3</u> _0F_ <u>20</u>	

Engineers • Geologists • Planners Environmental Specialists

TOTAL FACILITY RATING TABLE

Grome = Groneway + Generalistent

	RESERVOIR ELEVATION	9 SPILLWAY	GENOMKMENT	QTOTAL
	(====)	(c#5)	(0=5)	(c=s)
	1172.0	0		0
	1173.0	350	-	350
	1174.0	1020	-	1020
	/175.0	1970	-	1970
	1176.0	3120		3120
	1176.4	3670*	0	3670
	1177.0	4500	30 ^{*,**}	4530**
(TOP OF DAM)	1177.4	5100	SO	5150
	1177.5	5850	60	53K
	1177.7	5570*	110	5680
	1177.9	5880*	230	6110
	1178.0	6040	300	6340
	1178.5	6900 *	900	7800
	1179.0	7760	1860	9670
	1180.0	9660	4190	13,850
	/181.0	11,740	6910	18,650
	/1820	13,740	10,630	24,370

@ FROM SHOET 10.

3 FROM SHEET 12.

*- BY LINGAR INTERPOLATION

** - DISCHARGE AROUND THE ADUTHENTS INCLUDED FOR ELEVATIONS ADDVE 1176.4.

	DAM SAFET	Y INSPECTION
	BEAVER PO	ND DAM
BY	DATE	PROJ. NO. 80-238-408
СНКD. ВУ <u>Де</u>	DATE3:4-8/	SHEET NO OF

Engineers • Geologists • Planners Environmental Specialists

UPSTREAM DAMS:

1.) LAKE RENE DAM

- SUDER UNIT HYDROGRAPH PARAMETERS:

L = 2.5 MILES Lea = 1.2 MILES Cp = 0.45 Ce = 1.23 Cp = 1.23(25×1.2)²³= <u>1.71</u> HOURS

(SETE SHEET 3)

- PMP DATA - SEE SHEET 5.

- STORAGE - OUTFLOW RELATIONSHIP: (SEE NOTE 3)

ELEVATIONS (FT)	STAGE ADOUE NORMAL ROL (FT)	SURCHARGE STORAGE (AC-FT)	00000000000000000000000000000000000000
1860.0 (ASSUMED	v.) 0	0	0
1261.0	1	79	182
12620	ð	158	513
1263.0	3	237	943
1264.0	<u>۲</u>	316	1452
1265.0 (DAM) 5	395	2029
1266.0	6	474	5457
1267.0	7	S23	11,253

NOTE 3: OBTAINED FROM PADE I INSPECTION REPORT, NATIONAL DAM INSPECTION PROGRAM, MARCEL LAKE DAM, NDI-AA 00402, PA-DER 52-149, PREPARED BI O'BRIEN AND GERE; MARCH, 1979.

DAM SAFETY INSPECTION SUBJECT BEAVER POND DAM 755 DATE 7-3-81 PROJ. NO. 80-238-408 8Y CHKD. BY _____ DLB _____ DATE ______ SHEET NO. _____ OF ____O

Engineers • Geologists • Planners Environmental Specialists

2.) MARCEL LAKE DAM

- SNYDER UNIT HYDROGRAPH PARAMETERS:

L = 2.7 MILES $L_{CA} = 1.2 \text{ MILES}$ $C_{p} = 0.45$ $C_{\tau} = 1.23$ $T_{p} = 1.23 (2.7 \times 1.2)^{0.3} = 1.75 \text{ MOURS}$

(SEE SHEET 3)

- PMP DATA - SEE SHEET 5.

ELEVATION - STORAGE RELATIONSHIP: - COMPUTED INTERNALT IN THE HEC-I PROGRAM, VIA CONIC METHOD, RASED ON THE FOLLOWING SUPERCE AREA DATA (SEE NOTE 3):

Æ	LEVATION	SURFACE AREA
	(FT)	(ACRES)
	1215	0
(POOL	1231	27
	1240	37
	1260	78

- NORMAL BOL ELEVATION = 1331.0 - TOP OF DAM ELEVATION = 1236.5 (SEE NOTE 3)

SUBJECT		DA	M SAFETY	INSPECTION	
			BEAVER F	bnd Dam	
BY	255	DATE	2-3-81	PROJ. NO. 80-238-408	CONSULTANTS, INC.
СНКД. ВУ	DLB	DATE	3-4-81	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists

MARCEL LAKE DAM:

FACILITY RATING CURVE: (SEE NOTE 3)

	ELEVATION	OUTFLOW
	(FT)	(c=s)
(POOL)	1231.0	0
	1232.0	222
	1233.0	628
	12340	1154
	1235.0	1776
	1236.0	2482
(and)	1236.5	2863
	1237.5	4609
	1238.5	8120
	1239.5	12,964

(NOTE: IT IS ASSUMED IN THIS ANALYSIS THAT SILVER LAKE , A NATURAL LAKE WITHIN THE MARCEL LAKE WATERSHED, HAS NO IMPACT ON REDUCING THE DEAK INFLOW INTO MARCEL LAKE.)

46 1242

20 X 20 TO THE INCH+ X IN 1740 HES KEUPPEL & ESSER CO MANNIN YAA

Ч У

HEC-1 BREACHING ANALYSIS INPUT:

A LANDARA

	PLAN	BREACH BOTTOM WIDTH (FT)	MAX BREACH DEPTH (FT)	JECTON JIDE-JLOPES	BREACH TIME (HRS)	WSEL @ START OF FAILURE (FT)
Ø	MAN. CREACH SECTO	w, /0	12.4	1H:1V	0.5	1177.4
	MINS FAIL TIME					
0	MAX ORFACH SECT	on, 40	12.4	10:1	0.5	1177.4
	MIN. FAIL TIME					
3	MIN BREACH SR	TAN 10	12.4	1:1	3.0	1177.4
	MAX PAIL TIME	-				
\mathcal{Q}	MAX BREACH SE	570N 40	12.4	10:1	<i>3.0</i>	1177.4
	MAX. FAN. TIME					
G	AVERAGE POSSIBLE	F 20	12.4	1:1	1.0	1177.4
	CONDITIONS					

SUBJECT DAM	SAFETY INSPECTION	
BY DATE	2-27-81 PROJ. NO80-238-408	CONSULTANTS, INC.
CHKD. BY DLA DATE	3-4-81 SHEET NO. 19 OF 20	Engineers • Geologists • Planners Environmental Specialists

THE BREACH ASSUMPTIONS LISTED ON THE PRECEDING SHEET ARE DASED ON THE SUGGESTED RANGES PROVIDED DT THE C.O.E. (BALTIMORE DISTRICT), AND ON THE PHYSICAL CONSTRAINTS OF THE ZAM AND SURROUNDING TERROUND:

- DEPTH OF BREACH OPENING = 12.4 FT (TOP OF DAM TO MINIMUM RESERVOIR ELEVATION)

- LENGTH OF BREACHABLE EMBANKMENT S 285 FT (FIRED MEASURED)

- VALLEY BOTTOM WIDTH = <u>150</u> FT (FIELD OBSERVATION; THE SPILLWAY CREST IS <u>110</u> FT LONG, MAXIMUM BREACH BOTTOM WIDTH FOR HEC-1 INPUT = <u>40</u> FT.)

- VALLEY SIDE-SLOPES ADJACENT TO DAM:

RIGHT	SIDE:	10H:1V	(FRED SURVEY AND USGS TOPO
LEFT	SIDE :	IDH: IV	QUAD, EDGEMENE, PA)

BEAVER DAM DATA: (UNDER 0.43 PMF CONDITIONS)

ΡίΑΝ	VARIAQUE DRESACH DOTTOM WIDTH (FT)	АСТИАЦ МАХ. FLOW ДИRING FAIL ПМЕ (CFS)	CORRESPONDE TIME OF REAK (HRS)	INTERPOLATED CR NEC-1 ROUTED MAX. FLOW DURING FOIL TIME (CES)	(UPTESPOUDUG TIME OF REDK (HES)	ACTUAL PEAL FLOW DAM (CS)	ORTEGANS THE GE PEGK (HES)	ПМЕ ОГ ШІПАЦ ОКЕАЦИ (НЕS)
0	10	6490	42.17	6490	42.17	6490	42.17	41.67
Ī	40	8701	42.17	8701	42.17	8701	42.17	41.67
Ø	10	5579	42.28	JS78	42.33	5579	42.28	41.67
Ð	40	5761	42.44	5761	42.50	5761	42.44	41.67
5	20	6173	42.67	6173	42.67	6173	42.67	41.67

(NON-BREACH 0.43 PMF DEAK OUTFLOW = 5535 CFS)

DOWNSTREAM ROUTING DATA: (WOOR 0.43 PMIF CONDITIONS)

OUTH	DUT C SECTION 1	: 500 FT	D.S FROM DAM	1:	
PLAN	VARIABLE BREACH BOTTOM WIDTH (ET)	РЕДК FIOW (С=5)	CORRESPONDING W.S. EL. (PT)	W.S. EL. W/O BREACH (FT)	ELEWITTON DIFFETORICE (FT)
0	10	6433	1169.4	1169.1	+0.3
Ø	40	8645	,170.0	1169.1	+0.9
3	10	5579	1169.1	1169.1	0.0
Ø	40	5760	1169.2	1169.1	+0.1
G	20	6166	1169.3	1169.1	+0.7

(NOW - BREACH 0.43 PMF PEAK OUTFROW = 5533 CFJ)

* FROM JUMMARY INDUT /OUTDUT SASSTS, SHEET R.

NOTE: DAMAGE LEVEL OF NEARON STRUCTURES @ SECTION 1 = 1167 FT.

1. v.

2 4 7

2.70

SI	JB	IJ	E	c	Г]_	24		$\mathbf{\Sigma}$	L		ŝ	AF	=F		L.	Y		Ľ	R	عا	۶E	ΎΕ	50		Γι	0	N				-		(.] [[¹	
_				_					_								_		E	JE	<u> </u>	×	E	B		F	<u>,</u> 0	Ы	D		D)e	5	1		-				-		L			J				
8	Y	-	_	-		Z	v	J			_		D	A 7	E	-		J	-9	2-	81	,	_			P	RC)J.	NC	3.	_	_	to	- 1	23	8-	4	0	8	-				<u>)</u>	:0	NS	SUL	<u>.TA</u>	NTS,
С	H	<1	D.	E	IY	-	Z	24	Ĺ	,			D,	A 1	E	-		3.	-7	0-	81			_		s	HE	:E1	ΓN	0.	_		Ø		_ ()F _		2		-		Eng	gineer /ironm	s • enta	Ge al S	olo Spe	gisi	is • ists	Plann
											0.4 FMF						J SPMF	=										!	JME							*******				AGE IAUTO A	•	37H . 0	АТ -1	1 1267.00		00.16211 0		.5	
																	Ŭ																							151		1	idS I	66 . U(ň./c	Ċ	ř	
TOTAL VOLUME	29011.	1111		57.9	160.02	517.	661.		ulfas, ved das	2014	1473.	9.40	76.615	716.	844.	TAL VOLUME	65018.	1841.	10.50	11.007	1105.		JAL VOLUAR	2209	12.60	320.05	1075.		The united	130036.	3682.	21,00	533.42 1791	2209.		********				JPHT INAME	-	0 1 M I I	TSK STURA U.000 -1260.	1265.00 12		19 00.9202	195. 414.	145. 1264.	AAEA EXPI. 0.0 v.U
¢									÷							101						1	11							-							ور	I		1140	•	1011	X 000.	00		ŝ	-	12	3
22-MD	. 801	•		0.10	140.07	537.	66].		997-04-6 E			8.4	213.3	716.	4 D J	12-HUUR	226.		10.50	200.11	1105.		HDON-21		12.60	320.05	10/5.		011111-05	452.		. 21:00	533.42	2209.			H ROUTIN			TAPE	IG DATA	bane 1	M56K 0.000 U	1764.		.2681	316.	122.	1001 6.9
NUCH-N	266.	3		0.14	25.161	528.	.164		911111-76	155	10.	8.75	209.67	704.	864.	34-HUIR	444.	11.	10.12	\$0.101	1086.		24-6048		12.14	14.51	. 4401		9111111-75	887.	25.	- 20,64	81.120	2171.			HYDRUGRAF			LECON 1	RUNTIN	1 HES	6 9 6 9 7	1263.00		441.00	.111.	1263.	PW ELEV
E HOUR	181.	17			111.41	. 5/ 6	461.		41004-3		29.	5.87	149.10	501.	618.	4-HUUR	1762.	. 9F	16.1	140.JE	112.		N0001-4		8.81	223.65	.167		BIIDULA	2524.	.11		51.216	1544				RENE		1001	-	00°0	101.2N 0	041742		00.614	.841	1262.	1.0 U
HAK	1043.	11	•									•			,	PEAK	1738.	49.					PP AN		•				1120	3475.	98.					****		CUCH LAKE		191AU Benk		3 CLUSS J 0.000	N51P5	.1		00	. 61	1261.	0110
	: • • •			I NCHES	Ĩ	AC-FT	INDUS CU M			51		CINCHES		A C - F T	- PHOUS CU M			SWO	INCHES		THOUS CU M		3.1.7		INCHES	1	TT-TT THINK TT			CFS	CMS			LHOUS CH M		********		ROUTE TH				0 1		1260.00 1261		781 06*0	.0.	1260.	CAEL 1240.0
						I O DAL INFLOW		HYDROGRAPHS.		LAKE RENE																																		31 AGE			CAPACITY	ELEVATION	

States and the second second
	.				(TOTAL AND) STORE	
SUBJECT	DAM	SAFEIY	INSPE			
	DATE	DEAVER	FOND DA	SM - 778- 408		SULTANTS, INC.
		<u> </u>		C of R	Engineers • Geolo	ogists • Planners
		<u></u>	SHEET NO		Environmental Spe	ocialists
0.3PMF	O.4PMF	O.SPMF	0.6PMF	PMF	FARE TAUTN FARE TAUTN LUCAL	
TUFAL VULUME 29823. 844. 4-82 122.34 411. 501.	TUTAL V(LUNE 41055 1163. 1163. 164.41 168.41 565. 698.	Tural Wurne 52549. 1488. 1488. 124. 124.	TUTAL VULUME 04145. 1815. 10.36 263.13 884. 1090.	TUTAL VOLUME 11897. 1864. 1864. 1841. 1901.	JPRI INAME 16'	Н72 НУ6 6.00 0.00
72-HUUK 104. 3. 4.42 122.14 411. 507.	72-4008 143. 64. 64. 63. 164. 41 565. 698.	1 72-Hour 182. 5. 124. 215.56 724. 893.	72-HUUM 223. 6. 10.36 263.13 263.13 263.13	72-IIIIUR 148. 148. 148. 148. 158. 1541. 1541.	10000000000000000000000000000000000000	1 42.00
24-111114 204. 4. 15. 120.77 406. 500.	24-HUUR 282. 282. 85 8. 8. 8. 6.55 25 6.55 25 6.55 25 8. 6.55 25 8. 6.55	24-Hour 361. 10. 10. 212.95 212.95 215.	24-HUUR 440. 17: 10:24 259.99	24-HUUR 768. 27. 17.89. 451.74 1524. 1679.	HUNULF COM NU ITAPE 0 0 0 1480A TH 04 7,000 0-	НЕСІР ЦАТА R12 нд 1.00 133.0
6-Huuk 644. 17: 3.53 89.57 312.	6-MUUR 24. 24. 42.88 123.93 513.	6-1004R 10-73. 30- 10-21 10-21 10-21 531.	5-HOUK 1309. 37.51 1,51 1,51 1,51 1,53.34	6-HUUR 255. 1545. 13,35. 13,35. 1139.	SUN-AREA SUN-AREA SUAFHS 0 0 HT	11.00
PEAK 125. 21.	PEAN 1006. 28.	PEAK 1219- 31.	PEAK 1596. 45.	74 AK 1212 212 212	INFLON HT 15740 10 15740 10 16461, 16464	22.00 800.
(+5 (+5 (+5 (+5 (+5) (+5) (+5) (+5) (+5)	CTS CTS CTS CTS CTS CTS CTS CTS CTS CTS	CFS CMS FACHES HA RH RC-FT THOUS CU M	CF6 CK3 INCHES INCHES AC-F7 740U6 CU M	CFS CHS CHS CHS CHS AN AN AN AC-FT THOUD CU H	MARCEL LAKE IMTDG THHC	SVEE 57 THE PROGRAM 15
LAKE RENE OUTFLOW HYDROGRAPHS					• • • • • • • • • • • • • • • • • • •	THSPC CUMPUTED 1

خانان وترجد والكر

-

/	2 Y	চ্য চ্ৰ	I	DATE		BEA <u>7-9-8</u> -10-8		<u>z</u> 1	PONE PROJ. N SHEET	0 NO			. ລ.: 	0F_	4)C 	8	-		Engi	neer	rs •	CO Ge tal S	NSUI ologis Specia	_TAN ts • P lists	√TS, ²lanne	li ers
	÷			9	151. 215. 151.	45. 19.	•								O.4 PMF					O.SPMF						
CHREL ALSEY	00.0 .0.		2.UU 16.6U INTERVALS	CP= .45 VULE 1.1	367. 425. 310. 292. 170. 160.	57. 29. 28. 25. 15. 14.	•				11846 VULUME 65523.	1855.	159.28	1113.	DTAL VULUME 07363.	2474. 8.36	212.37	4841	PAPER VILLAND	109204	54.01	1504.	1855.			
THE STRFL	.00 1.00	ATA NTA= U	=HUILH 2() =H (IN / 0, 11	1.76 HUNHS,	115. 110. 17.			0 440	214946. 6148.73)		12-HUUK 1 228.		159.28	.6111	72-HOUR 7	9. 8.36	212.37	1484.	911114-CL	379.	10.45	1504.	1055.			
156 DATA Sturs ut	1 00.0	(DRUGKAPH D CP= .45	ESSIUN HAFA ICSN= TP ARE TC=	ES, I.AGE		r	5	1.035 C	2.39		24-HUUH 441.		150.37	1094.	24-HOUR 596.	11: 8.22	208.70	1459.		745.	10.27	260.87	1823.			
	0.00	UNIT HI	-1.50 AND	TAN LUHD ON	244. 212. 204.	3233	5	IN EXCS	.49 22.60 .35.)(574.		6-HUUH 1269.	36.	111.02	716.	6-HUUR 1692.	40. 5. 81	148.03	1035.	9 Holm - 4	2114.	7.28	185.04 1048.	1293.			
	00.1 0	Ŧ	STHFU= -	1 1 4 4 4 - 311 - 11+	195. 295.	557		RA	9) 9) 9)		1734.	44.	i		PEAK 2313.	7 9 7			-	2891.	. 7 4		;			
				T HEROGNAPH 94 FI	44. 91. 445. 419. 244. 249.	10. 12. 22. 21.	-				C+ 5	CMS		THOUS CU N	CF3	EMG SWCHES		THOUS CH M		(F5	INCHES	## #G-D#	- THUUS CU H			
			APPROXIMATE CLARK (42. 254.	42.						CAL INFLOW	TDROGRAPHS,	ARCEL LAKE.												

Ľ

بلينان خاط فالأطليقا والمرا

4.4

вү <u>275</u> снкд. вү <u>26</u>	_ DATE	BEAVER_ 9-81 10-01	POND D	am 80-738-4 E0F	08 [R En	ginee s • Geolog vironmental Spec	ULTANTS, IN gists • Planners cialísts
0.6 PMF	PMF	1AUT0	O.3PMF	0.4PMF	O.S PMF	Q6 PMF	PMF
TUTAL VIN-UME 1410- 1711- 120-55 1805- 1805- 2220-	747AL VULUME 214409. 20,90 539.90 539.92 3711.	•••• Ин Нүрноснарн Имаме (Втасе 1 маме (Втасе	TUTAL VOLUME 95344. 2700. 5.73 145.53 1313. 1620.	Fuffab VIIIUME 128414. 56.26. 77.7 196.91	TUTAL VOLUME 161754. 9.72 246.09 2228. 2748.	TUTAL YOLUME 195170. 5527 11.73 297.93 291.93	TUTAL VILUME 34295. 4353. 19.85 564.15 564.15
72-HUUN 455. 13. 12.54 314.55 314.55 314.55 314.55	72-HUHR 758. 21. 20.90 530.92 3008. 3711.		72-HUUH 131. 5:73 145.53 145.53 1313.	72-HI-UK 446. 13. 7.70 7.70 13.4	72-HUUH 562. 16. 246.89 2228. 2748.	72-HUUR 6/8. 19. 11.73 293.93 2689. 3316.	12-NUNR 1147. 1247. 124. 124. 544.15 544.15
40-000 25 212.25 212.25 212.25 212.25 212.25	24-MUUH 1491. 42. 20.54 521.75 2956. 3647.	HUGHAPHS ITH MAKCELL AVE JVL	24-Huite 652. 18. 5:04 143.22 1292. 1292.	24-HIUR 18.4 25. 7.6 7.6 7.6 7.6 7.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	24-HOUR 1106. 31. 2.57 243.04 2193. 2705.	24-HUUR 1434. 18. 11.55 293.31 2647. 3265.	34-14000 2259 2259 24 24 24 24 24 24 24 24 24 24 24 24 24
6-нинк 2537. 72. 12. 222. 158. 1552.	A-HUUK 4229. 120: 14.51 370.08 370.08 2097. 2097. 2587.	ATTERNE HELD	6-HUUH 1810. 51. 3.92 99.45 697. 1107.	6-Mull 2451. 2451. 245. 24.55 24.55 24.55 1415.	6-HUUR 3097. 88. 6.70 170.19 1536.	6-мснк 3747. 106. 8.11 205.90 1856. 2292.	
7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 1 8 7 8 1 8 1 8 1 8 1	PEAK 5781. - 164.		7249. 2249.	РЕРК 8060. 87.	· · · · · · · · · · · · · · · · · · ·	PEAK 4712. 133.	<i>т</i> яак 88.55. 251.
CYS CWS CWS CWS CWS CWS CWW CWW CWW CWW CW	CFS CFS CAS CAS CHES AM AM A THOUS CU M	NE LAKE RENE C	CT5 CT5 CT5 CT5 CT5 TACT7 TH(NIS CU H	CFS CNS Receies AC-FT THIBIS CU H	CFS CFS CFS AC-FT AC-FT	CFS CMS CMS CMS CMS CMS AC-FT AC-FT AC-FT AC-FT	
	1 ,		SUM OF MARCEL LAKE LOCAL INFIOW HYDROGRAPH AND LAKE RENE OUTFLOW	HYDROGRAPH.	1		

. . .

 1		255		DA ⁻			<u>ן </u>	3E -9	A\ 8/	EB	PC		[>.	مC م	<u>م</u>		38	}-	4	08				<u>ل</u>					SUL	TA] NT	S,	IN
IKD). BY		. <u>B</u>	DA	TE		3	-10	-8/	·	SHI	EETN	0.				0		2	2			E	ingin invirc	eer:	ent	- Gi al	eol Spi	ogisi ecial	ists	Pla	ne	rs
		1AUTU 0			1237.50 1230.50	4609,00 #120,00					· · · · · · · · · · · · · · · · · · ·			O.3 PMF			O 4 DME				1	O.SPMF				0.6 PMF					PMF		
		INAME ISTACE 1 0	LSTH U	570KA 15PRAT -12311	02,8651 6	0 2863.00		1	,	4E.A E.KPL 0.0 0.U	:	UTAL VULUNE 90552.	2564.	138.21	1538.	TUTAL VULUME	1473.	16.1	161,21	2084.	TUTAL VOLUME	- 26E+	50.9 11.410	2136.	FULAL VILLIAR	127654.	.citc 82.11	266.46	23563. 3169.	TUTAL VOLUME	320091	19.24	498.51
		144C 1	4M46 1	13K 0,000	1236;00	2482.00				CUOL CAN	DANVIO	2-660K T	 	138.21	1916	HUUH-CC	12.	16.1	167.21	2084.	72-HUUR	15.	56.9 16.12	2635.	12-4046	652.	11.20	286.44	1189.	72-HUNR	1111.	19.24	4409.
I KINTING	LAKE	APE JPL	101 101	156K 156K 2001	00.2551	1776.00				61.EVL 0.0	DAM DATA Dam Data Dig Expl	24-HUUR 1 620.	14. 5.36	136.21	1916.	24-HUUH	240	1.21	184.54 1665.	2054.	24-HUUR	30.	9.19	2598.	74-6010	1285.	21.11	242.44	1144.	24-1001	2193.	16.91	- + F - +
HYDROGHAPI	UGH MARCEL	JECUN 11 0	1 F241	1.AG AI	1234:00	00.9511	18.	-1556;	1260.	0.0 0.0	TUPEL (6-HUUR 1781.	50. 3.85	97.67 483.	1089.	6-HINUR		5.23	132.84	1479.	6-HUUR	1.8	6.62 164.20	- 1518.	80/11H-9	3708.	6.02	201.13	2206.	6-HUUR	1911	13.85	
	GRAPH THEO	1 CUMP	AVG 0.00	NSTDC B	00.662	628.UU	.16		1240.	P#10 CO		PE AK 2198.	62.			PEAK	.019				PEAR	110			PEAK	4706.				PEAK	- 8836. 250.	•	
	WITE TOTAL HYDRO	ISTAU Manue L	0*0 0*0 0*0 0*0	N51P3 1	1232,00 1	222.00	0. 27.		5. 1231.	CHEL 5 1231.0		CFS	CMS 2011	AC-FT	THOUS CU M		CN3	TACHES	AC-FT	THRUS CU M		52.	TACHES	THOUS CU H		5 4 L	5.44.0M1	X .	AC-31 PHOUS CU N		CHS CHS	INCHES	14-DW
	Ĩ				0011121 331400 .	FLUN 0.00	SUNFACE AREA=	CAPACITT=	ELEVATION= 121					MARCEL LAKE	OUTFLOW	HYDROGRAPHS																	

•.

UBJECT	275 225	U/f	Ari P : 7 -	<u>JAF L</u> JEAVE <u>2-8/</u> 10-8/	<u>B</u> P 	20ND DAM PROJ. NO0-738-4/08 HEET NO OF	Engineers • G	DNSULTANTS, II Seclogists • Planners Specialists
*	Lauru 0	Lucau 0	•	AX MTINP 0.00 0.00		VII	0.3PMF	0.4 PMF
•	JNANF ISTAGE	ISNUA ISANE U I	N12 R96 U.00 U.00	17L CNSTL ALS	ICH= 2.00 D H=18.52 INTERVA	HOUMS, CPE 45 268 300 326 190 190 111 105 111 105 111 105 111 105 111 111 111 105 111 111 111 105 111 111 111 105 111 105 115 115 115 115 115 115 115 115 115	FUCFAL VULUME 64941. 1812. 6412 155.53 1947.	141AL VULUMA 85109 2416. 2416. 241. 247. 249.
HPUTATION	1940 - 1940 1940 - 1940	MAIN NAIA A 145PC MATIU G 0.00 0.000	18 DATA 898 874 848 113.00 142.00 5 data	THE TICK STH THE STOCE STA 0.00 1.00 1. HUGHAPH BATA		NTES, IAG= 1.95 2. 2015 2. 2015 2. 117 2. 68 2. 68 2. 90 2. 90 3. 19 2. 5 2. 20 1. 17 1. 17 2. 19 2.	-HUUK 72-HUUK 437, 222, 137, 66, 60, 52,47 155,53 866, 1047, 1068, 1047,	1-HUIR 72-HUUK 582. 296. 16. 8. 8. 16. 8. 16. 163. 8. 18. 1155. 1149. 1423. 1449.
	TATION CONTRACT	HI 10 0.00 7.0	5 R6 R12 0 111.00 123.00	KTIUL EKAIN 5 1.00 0.00 UNIT HYD	11= 1.55 0= -1.50 AHCES N BNYVER CP AND 7	0-UF-PERIUU UKUIN 114 224 224 224 224 224 22 23 24 24 24 24 24 24 24 24 24 24	AK 6-HUUR 24 1. 1227. 6. 125. 107.37 107.37 150.	AK 6-HUNH 24 4. 1636. 2. 5.64 143.16 143.16 1011.
	151 AU 1(1)4	HTDG LUHG TAN	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	41444 - DLIKA 0.00 0.00	FICLENTS FROM GLVE	Г НУЛЯНІ GRAPH100 ЕМС 141 - 11 - 11 - 11 - 11 - 11 - 11 - 11	CFS PEI CFS 163 MCHES	CHS CHS CHS ACHES ACHES ACHES ACHI ACHI ACHI ACHI ACHI ACHI ACHI ACHI
11E AVER			THSPC COMPUTED BY THE	- 100 100 100 100 100 100 100 100 100 100	APPRUXIMATE CLARK CDEP	2699 2649 1554 1554 1554 1554 1554 1554 1554 15	CAL INFLOW	

Y	D.J.	<u>т</u> »LВ	~	 ()A1	TE		تلہ 27 ج	21 	9 - 0 -	81 81	E13		PRC SHE	ЕЕТ 01. I ГРС	2 NO.	یک 	80 	2= 2= 2_	22	0F		10 R	8			ینے gine viron	ers • ment	Ge al S		vists vists	AN F	ITS Plann	, IN Ierș	NC
C S PME					0.6 MIL			PMF	•			•				~	2 2 DMC	11110.0			140MF				OSPMF				O.6 PMF			PMF	• • •		
106636. 10.21 14.21 259.22	1469. 1412.	AL VOLUME	127963. 3624.	12.25	311.46	21/4.	SAL VILLAR	213271.	24.41	515.43 2525	3624.			Иденен	ME ISTAGE IAUTI	tutal Volume	154533.	5.70	144.89	2626.	TOTAL VOLUME	2005 20062	86°761	2864. 3533.	PLEAN VOLUME	1171	245.41 J605.	TUTAL VOLUME	315651,	11.65	1344 1348 1344	R TOTAL VULUNE	533362.	9 19.69 500.09	1347.
10. 10. 10.21	1469.	12-HUUR TUT		12.25	311.06	2174.	IT HINH-EI	741.	14.01	516.43	3624.	********		N INFLOW HYDRO	JPRT INAL	0 73-4008	1000	1. 13. 52 5.70	144.89	2127. 5. 2026.	R 72-HUUH	20.	.6 7.68 a 194.99	2864.	Super-Ct Stur	20. 	245.41	0UR 72-HOUR	59,	47 11.65	.92. 5340. 62. 5340.	UNH-21 UNH-10	648: 1652 101. 52	9.39 19.6	
21. 21. 10.03	1911.	24-4009		12.04	(1.406 1	21.17.	400H-12 H	. jest.	9 20.06	4 504.54	3561-	****	URUCRAPHS	H WZREAVER DAI	JAPE JPUT	0 0 1011-70 amin	201	164. 3.40 3.96 5.6	10.63 142.6	1478. 2095 1824. 2585	-HUR 24-HUU	114. 142	5.34 7.5	1994. 2820 2459. J475	010. 24-40	144 51.	.12 241.65 514. J550.	.01. 4379. 6-нийк 24-ні	61234 231		206.50 571 3036. 421	1.145. 34. 4-minu 34.	- 10468. 3 296.	1 10.61	
2045.	1014.	HUDH-9 4	2454.		214.71	1217	an 6-Mill'	9999	4. II.	4-166	2028		CUMBINE HT	HIDROGRAP	I TECON	0		106.	1.	•••	PEAK 6.	5107:		-	A673.	×e1_	27	JI PEAK	10064	1277	•	14.30		•	
CF6 2718 CMS 2718 LMCMES 77			CFS 3261			UUS CU N	14	CFS 543	CH SM0		AL-TA	*******		* INCEL LANE OUTFLO		BEAVER 2	6F6	5 X U		AC-FT FH005 CO M	1	C.48	INCHES	AC-FT AC-FT THOUS CU M	655	CAS INCHES	AC-FT	THOUS CU M		INCHES	AC-FT	THUUS CU H	CF8		
	,			,		L HI					Ā			CUMBINE MA		1			SUM OF BEAVEN	POND LOCAL INFLOW	HYDROGRAPH AND	MARCEL LAKE OUTFLOW	HVDROGRAPH						1						

*

							;				
					HYDROGR	ALTUDA HAV	2				
	¥	OUTE TOTAL	HYDROG	HAPH THR	UNCH BEAVE	SR DAM RES	ERVUIN				
		É	ISTA0 EAVER	ICUMP	IECUN	ITAPE	JPLT J	PRT INA	THE ISTAG	E IAUTU 00	-
		0;0 0;0	CLUSS 0.000	9 V G 0 1 U O	ROUT IRES 1	ING DATA Isame I	n Tupt	рмР 0	1.STI (
i		- 	84188 -1 1-	NSTDI.	LAG	AMSKK 0.0000 0	× 000	TSK STU 0006	HA ISPRA		1
87 AGE	1172.00	1173.00 1179.00	==	74.00 78.50	1175.00	1176.	00	76.40 81.00	1177.00 1182.40	1177.4	0 1177.50
FLON	0,00 6110;00	350,00 6340,00	10	20,00 00;00	1970.00 9620.00	3120. 13650.	00 1865	70.UU 50.UU	4530.UU 24370,UO	5150.0	0 5310.00
CAPACIT	π.,	19	•	.06	123.	150.	162.	205.	256.	156 .	
t LEVATIU	IN= 110.	1112	•	1174.	1176.	.1177.	1174.	.180.	1142.	. 1145	•
	+ - -	2481 172.1	48 - 20	0.0	104 EXF	u eneve	0.0 0.0	CAREA 0.0	EXPL 0.0		
	;	:			1177.4	DAM DA CUQD U.0	TA EXPU NAM: 0.0	(1 -			
											,
		40			2976z	1041	12-1001-21	11	52210.	1	
	~	INCHE	5 5	105.	84 1 05	29.	15.		4310.		
	١				100145	140.55	142.71 -		142.71	Ċ	3 DMF
OUTFLO	3	THOUS CI			1476.	2065.	2097. 2586.		2097.	5	
OGRAF	SHS			PEAK	6-HUUH	24-HUUH	72-HUUR	LOTAL	VOLUME		
		53	5.	5092.	4016.	1403.	712.	~	05157.		
		INCH	2		5. 14	7.46	7.57		,408c		
		-	Ĩ		135.56	189.48	192.36		192.36	40	PMF
		THOUS CU	: 	i	2456.	2784. 3433.	3486.		2826. 3486.)	
			i į	PEAK	6-HUUR	24-HUUR	72-8008	TOTAL	VOLUME		
		υŭ	+ 5	6509.	5064.	1769.	891.		158473.		
		INCH	1E 6		- 6113	0416	9.54		6,54	0.5	PMF
			-		170.92	238.75	242.35		242.35		
		THOUS CH	- 1		.1406	4326.	1664		.196.4		
		!		PEAK		24-11UUK	12-HUUR	TUTAL	VOLUME .		
		5		- 66BL	. 6116.	2135.	1083.	4	12004.	0.6	PMF
		LNCHE	2 10		0.13	11.35	11.52		11.52		
			Ţ		206.46	286,22	292.54		292.54 - 200		
		THOUS CU	- 1		.1416	5223.	5301.		5301.		
			v	PEAK	6-HUHR	24-HUUR	72-huuk	TUTAL	VOLUME		!
		55	5	102.	.462	102.	52.	n	.14511	-	MF
		11 24 1	5		19.61	19.22	19.50		19.50		
		A-DA	-		18915	1172					

				B	EAN	ER	P	OND	D	AM					
2;	<u> </u>	DATE		3-	9-81		PF	ROJ. N	0	80-238	- 4	<u>,</u>	Eng	ineers	Geologists Planner
8Y <u>7</u>	<u>)</u>	DATE		3-1	<u>o-81</u>	<u> </u>	SH	IEET M	10	OF	_/<		Envi	ronmer	ntal Specialists
1		3			e	ł			:						
									J				TIME UP Sailune Hours	0.00 0.00 0.00	0.00
St COND)	UNS Ratiu 5 1.00	3475. 98.4176	3279. 92.86)(5781. 103.7176	8855. 250.74)(8836. 250.201(5436, 153,92)f	14216. 402.563(14195.		_		te Of Diffelution Diffelution	. 50	2.0
TUTERS PER LIMETERS)	LIED TU FL Attu a .60	2085.	1596. 45.1911	3469. 98:22)(4712. 133.43)(4708. 113,3010	3261.	7900.	7899. 223.673(TUP OF DAM	1265.UU 395. 2029.	0N 11M 11 HAX 0 10	777	₩ ₩
DUAKE KI	ATIUS APPI 1 10 3 1 50 .	1738. 19.2110	1299.	2891. 81:85)(3885. 110.011	3872. 109:631(2718. 76.96)(6513. 184.44)(6509 184.31][ANALISIS	HEST	a	DURALI DVRALI DVRA T NUUH	00.0 00.0	
имами гол • Рем 2200 • А. Мацев (4 2 01 LVI	-) (9; ; 6] (1006. 28.473(2313. 65.461(306U. 86.65)(3031. 85:82){	2174.	5107. 144.62)(5092. 144.20){	IN SAPELY	SPILLWAY (1260.0	с 43 Потегом Се 5	725. 1006.	1296.
EUNIC FERT	4 1 01145	1043.	725. 20:52)(1734. 	2249. - 63.681(2198. • 62:25)(-	1631.46.18)(3/32. 105.683(3725. - 105.49)(~	11 IN D	VALUE	••• •••	MAAANUM S LURAGE AC-FT	197. 292.	
FLUNS IN FLUNS IN AF	FLAN		"		 ²	-	-			115	JAITIAL	1260	МАХ]МИМ ИЕРТН ЈУЕК DAM	00.0 00.0 00.0	
LUN AND STUNI	. AREA	r - 4.14)	E 1.60 .(4:14)	LL 2.10	tt	El. 4.30	ER 2.10 { - 6:99)	ŁН 7.00 {14,13}	EK 7.00 (- 18:13)			ELEVATION Stohage Hoteum	MAX 14114 Eservujik V. S. Flev	1762.49 1263:17 1263:17	
PLAR FI	SEATL	AT HEN	4 F M	AT NAHC	D MARC	MAKC	AT BEAV	0 684AV	b£AV		ı	,	AF10		
	UFERATION	нтриоснари	KOUTED TU	нтыноскарн	2 CUMBINE	NUTED TU	нтриоскари	2 COMBINE	нийтър Го	ত			¥ Ť	-	-
	_					,		•		RTOPPPIN	VLY5IS	AMARY:	ke rene dam		

SUBJECT	DA	M SAFET	Y TNSPECTIC	N	
		BEAVER	POND DAM		
BY	DATE		PROJ. NO	38-408	CONSULTANTS, INC.
СНКО. ВҮ <u></u>	_ DATE	<u>3-10-8/</u>	SHEET NOK	_ OF	Engineers • Geologists • Planners Environmental Specialists
		TIME OF Fallume Huurs 0,00 0,00 0,00 0,00 0,00		TIME OF FAILUME Huuks U.UU 0.00 0.00 0.00 0.00	
	UF DAM 236.50 309. 2863.	TINE OF MAX RUTFLUM HUIRS 42.67 42.59 42.59 42.17 42.00	115 DAM 17.40 150.	TIME UF MAX UUTFLUM HOURS 42.50 42.33 42.00 42.00 42.00	μ
	465T TOP	ULHATIUN UVER TUP UVER TUP UVUU UVUU UVUU UVUU UVUU UVUU UVUU U	E31 TUP 11	DUHATIUN OVER TUP HLURS 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 7
	8PJJ.L4AY CV 1231.00 144.0	MAXIMUM CUTFLUM CFS 2194. 3031. 3031. 3076. 6030.	SPILLWAY CH 1172.00 61.00	MAXIMUM 101114-LUM CF 5 3725 5092 19999 14199	S S S S S S S S S S S S S S S S S S S
	AL YALUE 31.00 144. U.	MAXIMUM Stoffic AC-FT 219. 212. 341. 342.	11. VALUE 12.00 61. 0.	MAXIMUM Silhage Ac-FT 112. 149. 163. 103.	
	1N175 12	MAXJMUM DEFTH DIEFTH DIE DIE DIE DIE DIE DIE DIE DIE DIE DIE	1 M E T 1 M E	MAAJMUH DEFTH UVER DAK UVER DAK 0.00 0.00 0.00	RTOPPI
	ELEVATION STORAGE UUTET.GM	MAKIMUM Keservuir M.S.Flfv 1235.60 1235.60 1237.09 1237.53	FLEVATION Storage Dute.	MAX17UH Reservuth R.S. Elf V 1175.96 1110.06	O VE
		A110 Put 960 960		A11C	
		LAKE LAKE DAM		BEAVER POND DAM	

i

SUBJECT	DAM	SAEI BEAV	ER	TNSPECTI	<u>on</u>		
BY2	255 DATE	3-9-81		PROJ. NO	338- 408		Stan Planners
СНКО. ВУ _	DLB DATE	3 • 10 - 81		SHEET NO	0F_ <u>R</u>	Environmental Specia	alists
WPUT SAME AS FOR OVERTOPPING AVALYSIS, UTH THE ADDITION OF BREACH CRITERIA GIVEN HERE.	U O O O			-Houk Tora vourte 3. 1541. 3. 1541. 3. 229.37 30. 350.	-+HUUK TUTA, VOLUNE 154. 4447 2.18. 7.18 7.18. 7.18 7.18. 5.14 613. 613. 956.	-HUUR TOTAL VULUME - 126. 93916. 26.99 8.99 8.99 228.30 1294. 1294. 1596. 1596.	72-HUUR TOTAL VULUME 481. 138400. 14. 138403. 14. 3919. 812.2 211.25 211.25 211.25 211.25 211.25 211.25 2151. 2351. 2351.
	Usia,	L I I	:	N and a	2 · · O 4 · · ·		16. 15.
S	4 41 3UM 60N 1RAG	86 PERI 68710=		4-MOUF 14. 11. 8.81 25.40 757. 934.	24-MUU 305 747 747	24-HUU 641 8.8 224.3 1271 1271	24-HC 24-HC 207 207 233
IALYS	LTSIS ++++ UH STUHW DUF SPECTFICAT LHR LMLN NMT LHUET 0 0	NALYSES TO I 6 NHTLU= 1	******	6-MOUR 2 1085. 11. 6.11 6.11 8.13 16.28 160.28	6-HUUR 909. 26. 25. 135.28 135.28 135.28	6-HUUN 1818. 151. 551. 159.13 159.13 1592.	6-HIIUR 2644. 75: 73: 145:29 1311. 1517.
UG AN	0N ACHING AMA ACHING AMA AND 48-110 1014 1104 1104 2014 2014 2014 2014 2	ILTL-FLAN A NPLAN=	•	PEAK 1444.	PEAK 1095. 31.	PEAK 2486. 70.	PEAK 3301. 91.
REACHIN 0.43 PMF	AFETE INSPECTA N 1AM 0440 HHE NUTE JIME 57P NUH NALM NUM NALM			(155 14005 14005 144 144 144	CF5 CM5 14CHF5 14CHF5 14CHF5 44 44 44 44 44 44 44 44 44 44 44 44 44	С. Р. Р. С. Р. Р. Р. С. Р. Р. Р. Р. С. Р. Р. Р. С. Р. Р. Р. Р. С. Р. Р. Р. С. Р.	
	0 147.4 147.4 147.4 147.5 147.	SOL 7 M		LAKE RENE	LAKE RENE OUTFLOW	MARCEL LAKE LOCAL INFLOW	MARCEL LAKE TOTAL INFLOW

SU	BJEC	т <u> </u>					Dł	<u> </u>	1	<u>S</u> Br	AF			YJ		<u>S</u>	PE D	<u>CT</u>	10	N							
вч	к.	 3Y	75 DL(3	-	DA DA	TE	-		<u>-9</u> -10	-8 -8	<u>/</u>		PF SH	10J.		·)	80- M	23	8-4	08 ?	_		Engine		ONS	
																			:								
															*******				10	566° talle l .00 1177.40	1 0 1				45EL FAILEL 2.00 1177.40	1 011	
JUTAL VULUME	124200. 1748. 7.95	202.02 1823.		-TUTAD VOLUME	2597.		1263.			TUTAL VOLUME 224063.	6345. 8.27	210.08	3807.					ALAN WAU	UOD EXPD DAM 0.0 - 0.0	BREACH DATA 1,8m tfatl m .00 .5u 1172	VER. PLAN 1; RAT				RREACH DATA ELEM TFAIL 2.00 .50 1173	AVER. PLAN 2. RAT	
HUUH-21	13. 13.	202.02		- 72-HUUK	916. 9.	0.10	1763.			12-0004	22. 1.27	210.08	1085				ERVUIR		TUPEL C	1.00 1165	ITATION BEA				рди 2 10.01 16,116	STATION NET	
24-HUUR	. 47 . 48 . 6	149.13		#100H-##	626. 1H.	8.63	11.41.	:1661		24-HOUH 1532.	₿. 4	206.85	3746.		******	NPH HUITINI	.R DAM HESI		1	8HW10 10.			7 HOUHS		84w11 40.		
HUUH-9	5.65	143:40		8-MUUK	1759.	6.06	151.89 872.	1076:		6-ни 4335.	121.	146.32	2651.		•••	нланатн	OUGH BEAVE		•			KS	FINK 42.1	-			IRK
PEAK	16			- AR34	2337.			•		5546.	151.						MGHAPH JHK				1	41.67 909	6490. AT 1				T A1 67 HIN
	CT3 CM3 fNCHE3			The second	CFS CHS	SUCHES INCHES		THUUS CU N		54.)	INCHES		THUUS CU M		****	:	KOUTE TOTAL HYDR					EGIN UAN FAILURE AT	FAK DUTFLOW 15				NECTN DAM FAILURF AT
	ARCEL LAKE	DUTFLOW		BEAVER POND	DCAL INFLOW					BEAVER POND	TOTAL INFLOW					AVER POND	TFLOWS			REACH PLANI	Э	1H	2				•

(<u>1</u>

SUBJECT BY72.J. СНКД. ВҮ2	DA	DAM SAI BEA TE TE	FETY VER F 8/	TNSPECT PROJ. NO SHEET NO	- <u>07</u> - 4	08	Engineers • Geologists • Planners Environmental Specialists
UAM BREACH DATA WSEL FAILEL Bunuid I blan Breach Data wsel Failel 10, 1.00 1165,00 3.00 1172,00 1177,40 Station Blaven, Plan 3, Hatio 1	BEGIN DAM FAILURE AT 41.67 HPURS PEAK OUTFLOW 18 5519. AT TIME 42.28 NOURS	DAM BREACH DATA	BRWID Z ELEM TEALE WALL WASE FALLEL 40. 10.00 1165.00 3.00 1173.00 1177.40 Stalion Beaver. Plam 4. Ratio 1 Begtm Dam Fallure at 41.67 Hours	PLAK QUIFLUW 15 5761. AT TIME 42.44 HOURB	UAM BREACH DATA 'STILL BREALD' Z ELBM TFAIL 'BSEL FAILEL' Rrwid' Z Elbm Tfail 'BSEL FAILEL 20, 1,00 1105,00 1177,40 Statium Ulaver, Plan 5, Ratio 1 Statium Ulaver, Plan 5, Ratio 1	PEGTW DAW FAILURE AT 41.67 HOURS PEAK OUT FILME 42.67 HOUPS	
(*	•		(4)		ଓ	

ومقتدفان ومستحدث والمتلال ويرودن ومعكوا فمحافظت والفيتا والمروح والمراسي ومنافع

and the second state of th

					B	E	<u> </u>	EF	3	P	01	4D		D	<u>a</u>	1				21	0	8	•]:					ار	TA
2X	<u>ĎLB</u>	DATE	-		-2. / <u>·5</u>	9-1 10 - 2	87-		•	Pi Si	RO. HEE	I. NI	0.		0		<u> </u>	0F			2		-		Er En	ngir Ivir	nee onr	rs ner	• C	Seo Sc	log xeci	ists iali	s • sts
T 1.1.W.	ACCHMULATEU Errir (AC=FT)	• • • • •							: <u>-</u>	• • •			:-		.			- -	::	 .	::		:-	<u>.</u>		6		•			• •	.0.	
AREACH FURMA VCH HYDROGRA	ACCUMULATED ERRUK (CFS)	0. 47.	236.	501.	645. 790.	932. 1065.	1187.	1385.	1516.	1572: -	1572.	1537.	1465.	1349.	1279.	1127	1051.	919.	851.	161	725.	725.	691.	601. 	592.	556.	460.	346.	205.	107.	- F	-150.	-182.
S NUKING P	EKHUR A	0.48	108	130.	144.	141.	122:	16	56.	. 61	-12.	-23.	.04-		-10.		-16.	- 12	-62.	-24.	. 82.		-22.	-24.	9	- 161-	-58.	-14.	- 48-		- 49.		- - -
L UP	COMPUTED BRFACH HYDRUGRAPH (CFS)	5247. 5279: 5123	5374.	5501.	5573. 5651:	5/13. 5819.	5909. 6002.	6097.	6289. * 195	6463.	658U. 6677.	6772:	. 569	7149.	7240.	7416.	7499.	7579. 7654	.1611	1814:	7957.		8116.	8163.	8251.	82921	8395.	H451.	8504. 8524.	1658	8638. 8674.	FDF3.	
A TIME INTERVAL Val (10 , 167 Hi Ream Calculation De-Penton Values	INTERPULATED BREACH Hydrughaph (CFS)	5241. 5325. 5404	5482	5639.	5796. - 3796.	5874. 5953.	6110.	6188. 4267	6345.	6502.	6580. 6664.	6149.	6917.	7086	7110.	-9621	7423.	1501:	7676.	1760.	792H.	- 8013	.4608	8134;	81/9. 8/15.	- 8256.	8337.	8317.	6418. K45k.	6449.	8539. 8579.	FA20.	HALO.
LUPED USING 11945 UNTER 1 FOR UNWNST	TIME FROM ALGINNING OF BREACH	0.000.0	029	6 4 0.	.059	. UBR	108	B11.	3	1911	.167 .176	981.	.206	. 225	.235	C 8 2 .	. 265	275	194 ·	. 304	• 12 • ·	- 111 -	. 151	141.	(91.	192	.412	.477	111.	151	191.	140	490
H HAS DEVE ALL USE A HIDROGRAPH	T 1 ME	41.667 41.676	41.695 - 105 - 1	41.716	41.725	41.745	41:765	41.784	1.404	41.824	41.833	[58.14	41.873	41.882	11.902	1.472	166.14	11.941	196.14	11.9.11	41.940	12.000	42.020	42.079	42.049	47.059	42.018	42.048	42.09H	42.118	42.127	42.147	47.157
E DAM RNEACH HYDROGRAP Mustream Calculations is table compares the t feakulate compares the t								9														:											

1971 - AU

SUBJECT				D/	AM SA	FET	YI	NSPE		71				
BY	2	<u>n</u>		DATE	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	<u> </u>	بن دي PRC	ND	10-2	-38	40	8		, <u>INC</u>
СНКД. ВҮ	, <u> </u>	DLE	3	DATE	3-10-	-81	SHE	ET NO(2	, OF _	R	_	Engineers • Geologists • Planne Environmental Specialists	ers
										12.17	5144,88 88036.71	1179.00		
•			1 AUTU 0					:	· ; ; ;	6,68 99,83	2843.40	1178.00	2843,40	
:			IbTAGE 0		, RT21	I SPRAT 0			00	2.U5 86.69	524.80 556.64	167.00	556.00	
:			INAME			STOHA -1.			1161.	; ;	75			
		UN DAN	0 1 447		ded I	TSK 0.000			0 1125.00	1.42	1049.80	1166.00	1049.00 50370.71	
•	UT LNG	1 0.5. +4	1140	SANE TA	a Ka	x x 0.00			0.1161.0(.94 62.96	19.70	175.00	19.10 19.10	
•	ин ни	500 F	1 APE	S HAVE	T.SAHE	AM5KK U. UGO		566 01000	1110.6	. ;	404	11		
•	HYDRUGH	SECTION 11	1+ CUN 0	ALL FLAN ROUT	ires 1	DAG -		RLNTH 540.	;ELEV•*ETC 0 1167.00 0 1180.00	.62	400.48	1164.00	11826.48	
		UT HAU 5	1 1004		9 A 6	NSTUL 0		F.1.MAX 1 1 80.0	.ELEV.STA 00 1104.00 00 1330.0	.19 42.62	201.78	163.00	101.19 1.10 1.10 1.10 1.10 1.10 1.10 1.1	
•		HEAVEN	151AU 1914-1		CL055 0.000	NSTPS 1		ELNV1 161.0	5==57A		1 24			
•		OITE FROM			0.0 0.0 0.0 0	1	T146	См(3) .08u0 1	60RDINATE 0 600.00	.18 33.73	63.37 18008.37	1162.00	1.000.1	
		<u></u> 1				:	ANNEL ROUT	(2) NU ,0350	50.01104 C	0.00 25.69	0.00	141.00	132.99	
-							AL DEPTH CH	QN(1) 0100	CR0S5 7 0.128	/IJRAGE	ITELON 12	STAGE 1		

HON

		·····		BE	AVER	POND	DAM	۱	. <u></u>				(]] :::				:		
۲ <u> </u>	7755	DA	TE		-81	PROJ. NO.	_80.	- 23	8-	40	8_				<u>co</u>	NSL	JLT/		<u>s, II</u>	4
IKD.	BY <u>JLB</u>	DA	TE		-81	SHEET NO	<u> </u>	(^{DF}	R			Engi Envir	ronme	• Ge ntai :	solog Spec	ists • ialists	e Piar i	ners	
	LAKE RENE DAM	ţ	j j	MARCEL LAKE DAM		i	BEAVER	DAM							SECTION 1	D.S. FROM	BEAVER DAM			
1		TINE OF FAILUKE HOURS	0.00		TIME OF Falluke Houks 0.uu		FAILURE FAILURE HOURS	41.67	41.67	41.67	41.67	41.61	0.00							
	UF UAM 265.00 395. 2029.	TIME UF MAX UUTFLOW MOURS	11.11	ЦГ ИАМ 36,50 309. 2863.	TIME OF MAX OUTFLOW Hours 42.33	F DAN 7.40 150.	TIME OF MAX OUTFLOW HOURS	42.17	43.17	42.28	42.44	42.67	42.17		•				:	
elen	10 ⁴	DUKATION Uven Tup Huurs	0.00	100	DHRATJUN UVER TOP NUURS 2.33	101 111 111	NER TOP I	. 12		1.17		.50	1.67	1 TIME	. 11.11	42.17	£2.3J	42.50-	42.67	
AN SAFETT ANA	SP1.LWAY CRE 1260,00 0.	RAXIMUN CUTFLOW CFS	1095.	3F1LL#AY CHE# 1231.00 144. 144.	414 14 14 14 14 14 14 14 14 14 14 14 14	PILLWAT CHEST 1172.00 61.	HAXIMUN D HAXIMUN D Intflum 0 CFS	6494.		5579.	5761.	61/13.	5535.	N MAXIMUN S STAGE,FT	1169.4		. 1169.1	1169.2	1169.3	
	VALUE .00 0.	NAXIAUN STURAGE AC-FT	201.	VALUL 00 0.	HAXINUN STURAGE AC-FT 317.	11 C C C C C C C C C C C C C C C C C C	MAXIMUM STURAGE AC-FT	152.		154.	.621	157.	154.	" MAXIMU		8645	5579	97en	P194.	
	1 M 1 1 1 A 1 1 2 6 0	MAKIMUM UEPTH Over Dan	0.00	1231. 1231.	NAKINUN Depth Dver dam .24	14114L V	NAX1MUM Nax1mum DVEP DAM	.10	80:		.14		.22	RATIO	£ H *	W .	.43		[4.	
	ELE VATION STURAGE OUTFLUA	MAXIMUM Reservuin W.S.Elev	1263.30	ELEVALLUN STORAGE ()U'LFLUM	MAXIMUM RESERVOIN W.S.FLEV 1236.74	CLEVAT LUN STORACE MATEL UN	MAX1MUP RFSERVIJIH W.S.FLEV	1177.50		1177.58	1177.54	117.51	1177.62	AN						
		44110 UF	•••		KATIU Of Phr		84110 0F Pat	.43	1	:			EACH	च	Θ	0	Ø	₽	ଏ	1
							REACH	Θ	0	۲	•	୭୭	NON-DR							

LIST OF REFERENCES

- "Recommended Guidelines for Safety Inspection of Dams," prepared by Department of the Army, Office of the Chief of Engineers, Washington, D. C. (Appendix D).
- 2. "Unit Hydrograph Concepts and Calculations," by the U. S. Army, Corps of Engineers, Baltimore District (L-519).

- 3. "Seasonal Variation of Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours," Hydrometeorological Report No. 33, prepared by J. T. Reidel, J. F. Appleby and R. W. Schloemer, Hydrologic Service Division, Hydrometeorological Section, U. S. Army, Corps of Engineers, Washington, D. C., April 1956.
- 4. <u>Design of Small Dams</u>, U. S. Department of the Interior, Bureau of Reclamation, Washington, D. C., 1973.
- 5. <u>Handbook of Hydraulics</u>, H. W. King, and E. F. Brater, McGraw-Hill, Inc., New York, 1963.
- 6. <u>Standard Handbook for Civil Engineers</u>, F. S. Merritt, McGraw-Hill, Inc., New York, 1963.
- 7. <u>Open-Channel Hydraulics</u>, V. T. Chow, McGraw-Hill, Inc., New York, 1959.
- 8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the Interior, United States Geological Survey, Washington, D. C., 1907.
- 9. "Probable Maximum Precipitation, Susquehanna River Drainage Above Harrisburg, Pennsylvania," Hydrometerological Report No. 40, prepared by H. V. Goodyear and J. T. Riedel, Hydrometeorological Branch Office of Hydrology, U. S. Weather Bureau, U. S. Department of Commerce, Washington, D. C., May, 1965.
- <u>Flood Hydrograph Package (HEC- 1) Dam Safety Version</u>, Hydrologic Engineering Center, U. S. Army, Corps of Engineers, Davis, California, July 1978.
- 11. "Simulation of Flow Through Broad Crest Navigation Dams with Radial Gates," R. W. Schmitt, U. S. Army, Corps of Engineers, Pittsburgh District.
- 12. "Hydraulics of Bridge Waterways," BPR, 1970, Discharge Coefficient Based on Criteria for Embankment Shaped Weirs, Figure 24, page 46.

- 13. <u>Applied Hydraulics in Engineering</u>, H. M. Morris and J. N. Wiggert, Virginia Polytechnic Institute and State University, 2nd Edition, The Ronald Press Company, New York, 1972.
- 14. <u>Standard Mathematical Tables</u>, 21st Edition, The Chemical Rubber Company, 1973, page 15.
- 15. <u>Engineering Field Manual</u>, U. S. Department of Agriculture, Soil Conservation Service, 2nd Edition, Washington, D. C., 1969.

- 16. Water Resources Engineering, R. K. Linsley and J. B. Franzini, McGraw-Hill, Inc., New York, 1972.
- 17. Engineering for Dams, Volume 2, W. P. Creager, J. D. Justin, J. Hinds, John Wiley & Sons, Inc., New York, 1964.
- 18. <u>Roughness Characteristics of Natural Channels</u>, H. H. Barnes, Jr., Geological Survey Water-Supply Paper 1849, Department of the Interior, United States Geological Survey, Arlington, Virginia, 1967.
- 19. "Hydraulic Charts for the Selection of Highway Culverts," Hydraulic Engineering Circular No. 5, Bureau of Public Roads, Washington, D. C., 1965.

APPENDIX E

FIGURES

.

LIST OF FIGURES

Figure	Description/Title												
1	Regional Vicinity and Watershed Boundary Map												
2	General Plan and Profile												
3	Details of Proposed Repairs												

States and a second state of the second states of the

.

APPENDIX F

ļ

GEOLOGY

Geology

Beaver Pond Dam is located in the glaciated Low Plateaus section of the Appalachian Plateaus physiographic province of eastern Pennsylvania. In this area, the Appalachian Plateaus province is characterized topographically by flat-topped, hummocky hills formed as a result of glaciation and subsequent stream dissection of nearly flat-lying strata. The Devonian age sedimentary rock strata in Pike County regionally strike N35°E and dip gently to the northwest. The Delaware River is the major drainage basin in the area. Major tributary streams intersect the Delaware River at right angles; whereas, smaller streams display a slightly more random tributary pattern. Both major and minor tributary stream systems are joint controlled and exhibit modified rectangular and trellis-type drainage patterns.

Structurally, the area containing Pike County lies on the south flank of a broad, asymmetrical synclinorium that plunges to the southwest. Superimposed on this broad structural basin are numerous anticlinal and synclinal folds characterized by planar limbs and narrow hinges. Due to prior glaciation, low relief and surficial soil cover, fold axes are difficult to trace.

The sedimentary rock sequences in the vicinity of the dam and reservoir are probably members of the Susquehanna Group of Upper Devonian age (see Geology Map). The sedimentological changes observed in the Catskill Formation indicate that the rate of sedimentation exceeded the rate of basin subsidence resulting in a facies change from marine to non-marine strata. On the accompanying geology map the delineation between the Middle and Upper Devonian age sedimentary rock sequences represents the Allegheny Front which separates the Valley and Ridge physiographic province from the Appalachian Plateaus physiographic province.

Approximately half of Pike County, including the dam site, is covered by a blanket of Wisconsin age (most recent) glacial drift which, based on the degree of weathering, was probably deposited during the Woodfordian stage. Valley bottoms are typically covered by recent alluvium and Woodfordian outwash of variable thickness, but typically less than 10 feet. These deposits are characteristically unconsolidated stratified sand and gravel usually with more gravel than sand and some small boulders. The direction of the Wisconsin ice advance, was from the northeast over the Catskill Mountains and from the north over the Appalachian Plateau. The terminal moraine resulting from the southern most advance of the Wisconsin ice sheet in this area is located in the southern portion of Monroe County which borders Pike County to the South.

References:

- Fletcher, F. W., Woodrow, D. L., "Geology and Economic Resources of the Pennsylvania Portion of the Milford and Port Jervis 15 minute U.S.G.S. Topographic Quadrangles," Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 223, 1970.
- Sevon, W. D., Berg, T. M., "Geology and Mineral Resources of the Skytop Quadrangle, Monroe and Pike Counties, Pennsylvania", Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 214A., 1978.
- Sevon, W., Personal Communication, Commonwealth of Pennsylvania Department of Environmental Resources, Harrisburg, December 3, 1980.

