AD-A099 084 UNCLASSIFIED	BERGER AS National Apr 81	SOCIATES DAM INSPI	INC H	ARRISBUI PROGRAM	RG PA • LAKE	KIMBERL	Y DAMP DACW	NDI NUM -31-81-	F/6 13 BER -C-0013 NL	5/13 ETC (U)	
AD AQ ¹ HOCKU				/ Ea							
	EN DATE FILME 6 - 8 DTIC										
											•

PREFACE

This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

1

PHASE I REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITIONS AND RECOMMENDATIONS

Name of Dam:	LAKE KIMBERLY DAM
State & State No.:	PENNSYLVANIA, 50-062
County:	PERRY
Stream:	TRIBUTARY TO SHERMAN CREEK
Date of Inspection:	November 4, 1980

Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in poor condition.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small and the hazard classification is significant. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of the 100 year flood to one-half the Probable Maximum Flood (PMF). The recommended SDF for this structure is the 100 year flood. The spillway does not have the capacity for passing the 100 year flood without overtopping the dam. The spillway, therefore, is considered to be inadequate, but not seriously inadequate.

The following recommendations are presented for immediate action by the owner:

- 1. That, to preclude the necessity of a detailed hydrologic and hydraulic study, the crest be made uniform to an elevation of at least one foot above the principal spillway elevation. This work should be done under the direction of a professional engineer experienced in the design and construction of dams.
- 2. That the upstream and downstream slopes be cleared of all trees, brush and weeds and that the slopes be maintained on a regular basis.
- 3. That provisions be made for upstream closure of the drawdown pipe in case of an emergency.
- 4. That the slough on the downstream slope be repaired and reseeded under the direction of an engineer experienced in the design and construction of dams.

LAKE KIMBERLY DAM NDI NO. PA-00949 DER NO. 50-062

HOWARD V. LIGHTNER PERRY COUNTY

- 5. That the 10-inch outlet pipe be extended and the slope repaired and that an adequate rock protected plunge pool be provided. This work should be done under the direction of an engineer.
- 6. That the obstruction be removed from the drop inlet pipe.
- 7. That the upstream slope be protected from wave action erosion.
- 8. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
- 9. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

SUBMITTED BY:

APPROVED BY:

BERGER ASSOCIATES, INC. HARRISBURG, PENNSYLVANIA

DATE: April 3, 1981

AMES W. PECK

Colonel, Corps of Engineers District Engineer

DATE: 22 APR81

Accession For T2 NTIS GRA&L DTIC TAB Unannounced Justification 50 By Distribution/ Availability Codes Av. 11 and/or Special Dist

TABLE OF CONTENTS

1

Į

		rage
SECTION 1	- PROJECT INFORMATION	
1.1	GENERAL	1
1.2	DESCRIPTION OF PROJECT	1
1.3	PERTINENT DATA	2
SECTION 2	- ENGINEERING DATA	
2.1	DESIGN	5
2.2	CONSTRUCTION	5
2.3	OPERATION	5
2.4	EVALUATION	5
SECTION 3	- VISUAL INSPECTION	
3.1	FINDINGS	7
3.2	EVALUATION	8
SECTION 4	- OPERATIONAL PROCEDURES	
4.1	PROCEDURES	9
4.2	MAINTENANCE OF DAM	9
4.3	MAINTENANCE OF OPERATING FACILITIES	9
4.4	WARNING SYSTEM	9
4.5	FVALUATION	9
SECTION 5	- HYDROLOGY/HYDRAULICS	
5.1	EVALUATION OF FEATURES	10
SECTION 6	- STRUCTURAL STABILITY	
6.1	EVALUATION OF STRUCTURAL STABILITY	12
SECTION 7	- ASSESSMENT AND RECOMMENDATIONS	
71	DAM ASSESSMENT	14
7.2	RECOMMENDATIONS	14
APPEN	NDIX A - CHECK LIST OF VISUAL INSPECTION	REPORT
APPEN	NDIX C - PHOTOGRAPHS	
APPEN	VDIX D - HYDROLOGY AND HYDRAULIC CALCULAT	TIONS .

APPENDIX E - PLATES

APPENDIX F - GEOLOGIC REPORT

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

LAKE KIMBERLY DAM

NDI NO. PA-00949 DER NO. 50-062

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States.

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

- A. Description of Dam and Appurtenances
 - Note: Design data for this dam does not exist. It was estimated from the U.S.G.S. Quadrangle sheet that normal pool elevation is 645. This elevation was used as the top of the overflow pipe of the principal spillway.

Lake Kimberly Dam is an earthfill dam constructed along a curved centerline. The length of the embankment is about 600 feet and its height is a maximum of 16 feet above the streambed. The principal outlet is an 8-inch vertical drop inlet pipe located on the upstream slope which discharges through a 10-inch pipe near the toe of the downstream slope. An emergency spillway located in the left abutment, consists of a 35 foot wide grass covered channel. The reservoir can be lowered through a 4-inch drawdown pipe which has a downstream valve control. The present low point in the dam crest profile is at the same elevation as the emergency spillway elevation.

B. Location:

Southwest Madison Township, Perry County U.S.G.S. Quadrangle - Andersonburg, Pa. - Control Latitude 40°-20.6', Longitude 77°-25.7' Appendix E, Plates I & II

-1-

с.	Size Classification:	Small: Height - 16 feet Storage - 51 acre-feet
D.	Hazard Classification:	Significant (refer to Section 3.1.E.)
E.	<u>Ownership</u> :	Mr. Howard V. Lightner Box 248 Loysville, PA 17047

F. <u>Purpose</u>: Recreation

G. Design and Construction History

The structure was designed and constructed by Mr. Styninger, Newport, Pennsylvania. Some assistance for the design was provided by the Soil Conservation Service. The dam was constructed around 1970.

H. Normal Operating Procedures

All normal inflow is discharged through the 8-inch vertical standpipe. The owner stated that the valve on the four inch drawdown pipe is opened during periods of heavy precipitation and when the pool level reaches the emergency spillway crest elevation.

1.3 PERTINENT DATA

Α.	<u>Drainage Area</u> (square miles)	
	Computed for this report:	0.18
в.	Discharge at Dam Site (cubic feet per second) See Appendix D for hydraulic calculations.	
	Maximum known flood (estimated from records of U.S.G.S. gage on nearby Bixler Run, June, 1972)	128
	Outlet works at pool Elev. 645.0	0.5
	Outlet works at low pool Elev. 635.0	0.3
	Emergency spillway capacity at pool Elev. 645.2	0.0
	Principal spillway capacity at pool Elev. 645.2	1.7
c.	Elevation (feet above mean sea level)	
	Top of dam (low point)	645.2

Principal spil	lway (standpipe)	645.0	
Emergency spil	lway crest	645.2	
Upstream porta	1 invert (estimated)	632	
Downstream por	tal invert	628.7	
Streambed at d	ownstream toe of dam (estimate)	629	
Reservoir (mil	es)		
Length of norm	al pool (Elev. 645.0)	0.4	
Length of maxim	mum pool (Elev. 645.2)	0.4	
Storage (acre-	feet)		
Spillway crest	(Elev. 645.0)	50	
Top of dam (El	ev. 645.2)	51	
Reservoir Surface (acres)			
Spillway crest (Elev. 645.0) 6.6			
Top of dam (Elev. 645.2) 6.7			
Dam			
Refer to Plate plan and secti	s A-I, A-II and A-III in Appendix A f on.	or schematic	
Type:	Earthfill.		
Length:	600 feet.		
Height:	16 feet.		
Top Width:	Design - Unknown; Survey - 7 feet.		
Side Slopes:	DesignSurveyUpstreamUnknownIrregulDownstreamUnknown3.2H to	ved ar 1V	
Zoning:	Unknown.		
Cutoff:	Trench excavated to a maximum depth feet and backfilled with impervious	of about 5 material.	
Grouting:	None.		

D.

E.

F.

G.

5

-3-

Outlet Facilities H.

I.

ļ

il da

	Туре:	4-inch pipe.
	Control:	4-inch valve located at downstream toe.
	Location:	Between right abutment and center of dam.
Ι.	Spillway	
	Emergency:	
	Туре:	Uncontrolled, sod lined, broad crested weir and channel. The upstream channel slope is 4.7 percent. The downstream channel has about a 2.0 percent slope.
	Width:	35' on bottom with side slope of 2.7H to 1V on right.
	Crest Elevation:	645.2
	Location:	Left abutment.
	Principal:	
	Type:	Uncontrolled, 8-inch diameter, vertical pipe, drop inlet with 10-inch diameter outlet pipe.
	Crest Elevation:	645
	Location:	Near center of dam.
J.	Regulating Out	lets

See Section 1.3.H. above.

-4-

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Engineering design data for Lake Kimberly Dam does not exist. The owner stated that design drawings were not prepared for the facilities. It is unknown what the original design dam crest plevation was.

2.2 CONSTRUCTION

Mr. Styninger, Newport, Pennsylvania, was the contractor/designer for this project. Construction took place around 1970. Records of construction do not exist. Mr. Howard Lightner, the owner, stated that a trench was excavated along the centerline of the dam. Depth of the trench was estimated at five feet, except over a section to the right of the 4-inch drawdown pipe. In this area, limestone was encountered close to the surface.

Mr. Lightner indicated that the borrow material was obtained from the reservoir area and that the most impervious material was used for backfilling the trench. He also stated that a sheepsfoot roller was used for compaction.

The area of the reservoir and dam was a swampy area prior to construction of the embankment.

2.3 OPERATION

Records of operation are not maintained by the owner. Within one or two weeks after construction was completed, a slough occurred on the downstream slope in the area indicated on Plate A-I. This condition has not been improved nor repaired.

Records of maximum pool elevations are not maintained. The owner stated that during the Agnes storm (June, 1972), the emergency spillway discharged about 1.5 feet of water. Most of the embankment was overtopped at that time without significant damage.

2.4 EVALUATION

A. Availability

Engineering design and construction data do not exist.

B. Adequacy

Because of the lack of engineering data, the assessment of the dam is based on the results of the visual inspection.

C. Operating Records

0

Operating records have not been maintained.

D. Post Construction Changes

There is no information that post construction changes have been made at these facilities.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

A. General

The general appearance of Lake Kimberly Dam is poor. The low point of the dam crest is at the same elevation as the emergency spillway crest. The upstream slope has been eroded by wave action and a large slough has occurred on the downstream slope. Heavy brush growth in the slough area prevented close observation. The embankment was built across a marshy field and areas of the downstream toe are still marshy. Seepage on the downstream slope was not detected. The outlet of the principal spillway has eroded a portion of the embankment at its point of termination.

The visual inspection check list and sketches of the general plan and profile of the dam, as surveyed during the inspection, are presented in Appendix A of this report. Photographs of the facilities taken during the inspection are reproduced in Appendix C.

Mr. Howard Lightner accompanied the inspectors on the day of inspection.

B. Embankment

The centerline of the dam was constructed along a curved alignment in its center section, with short tangents at both abutments (Photograph No. 1, Page iv). The crest averages about 7 feet in width. Its surface is grass covered except for a bare bike trail.

The upstream slope has been eroded by wave action and is rather steep above the normal pool elevation over most of its length (Section Sta. 3+20, Plate A-III). Cattails and other weeds are growing at the normal pool elevation on the slope.

The downstream slope, near the left and right abutments, is flat and in good condition with a good grass mat protection, except where the bike trail has killed the grass. The center portion of the downstream slope is overgrown with trees, briars and brush (Photograph No. 4). In this area a 50 foot long slope failure was observed (Photographs No. 8 and 9 and Plate A-III, Appendix A). The owner stated that this slough occurred one or two weeks after construction was completed. Repairs were never made. Heavy brush in this area prevented close observation. Seepage was not detected during the inspection. The pool level was several feet below normal at that time. A woodchuck hole is located in this slough area.

The immediate area beyond the downstream toe of the center portion of the dam is wet and swampy over a considerable length. According to the owner, this area was swampy prior to construction of the dam. There were no indications of seepage on the embankment.

C. Appurtenant Structures

The principal spillway is an 8-inch drop inlet pipe located on the upstream slope. The 8-inch diameter pipe was obstructed with a plastic container. This obstruction should be removed. This vertical pipe is connected to a 10-inch horizontal discharge pipe which discharges above the downstream toe in a small eroded plunge pool (Photograph No. 7). The embankment at this location has been eroded to a near vertical slope. It appears that a section of the pipe has been broken off.

The emergency spillway is located in the left abutment and consists of a grassed earth channel with an irregular cross section (Photograph No. 2). The survey indicates that the emergency spillway crest is at about the same elevation as the low point of the dam crest.

A 4-inch drawdown pipe is located near the center of the dam. This pipe has no control on the upstream end. Flow is controlled at the downstream toe where a valve is located in a buried barrel. The valve was opened during the inspection and is in good operating condition. The owner stated that the valve is opened several times a year when the pool level rises more than several inches above the normal pool level.

D. Reservoir Area

The slopes around the reservoir are flat to moderate with woodlands on the right side and open fields on the left side. The banks are stable and sedimentation due to erosion does not appear to be a problem.

E. Downstream Channel

The downstream channel enters into Sherman Creek about 700 feet downstream from the dam. The immediate downstream channel is not defined through the swampy area. Two homes are located within 500 feet downstream from the dam within the flood plain. A potential hazard to life exists downstream if the dam fails, however possible loss of lives would be less than a few. The hazard category is therefore considered to be "Significant."

3.2 EVALUATION

The overall evaluation of the facilities indicates that Lake Kimberly Dam is in poor condition. The growth of trees, brush and weeds should be removed, and the upstream slope should be protected from wave action. The crest profile is irregular and should be brought to a uniform elevation higher than the emergency spillway elevation in order to prevent overtopping. The downstream slope should be repaired where the slough has occurred and where the outlet pipe has eroded the embankment. The outlet pipe should be extended beyond the downstream toe of the embankment, and a rock protected plunge pool should be constructed at the end of the outlet pipe.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

Lake Kimberly Dam was constructed for recreational use and as a reservoir for fire protection. Maintenance procedures are very limited and there are no operational procedures other than the opening of the valve on the 4-inch drawdown pipe during periods of heavy rainfall.

4.2 MAINTENANCE OF DAM

The inspection indicates that there is no maintenance performed on the embankment. Trees, brush and weed growth is not controlled. Sloughs and erosion of the embankment have not been repaired.

4.3 MAINTENANCE OF OPERATING FACILITIES

The drawdown facility is operated several times a year. There are, however, no procedures for greasing and maintaining the valve.

4.4 WARNING SYSTEM

There is no formally organized surveillance and downstream warning system in existence at the present time.

4.5 EVALUATION

The operational procedures for Lake Kimberly Dam are minimal. It is recommended that a program be developed for regular maintenance of the dam, which should include the removal of weeds, brush and trees, and the greasing and operation of the drawdown valve on a regular basis. The slough on the downstream slope should be repaired. The outlet discharge condition should also be repaired. A formal surveillance plan and downstream warning system should be developed for implementation during periods of heavy or prolonged precipitation.

SECTION 5 - HYDROLOGY/HYDRAULICS

5.1 EVALUATION OF FEATURES

A. Design Data

Hydrologic and hydraulic analyses do not exist.

B. Experience Data

There are no records of flood levels at Lake Kimberly Dam. It was reported that the June, 1972, flood produced a flow in the emergency spillway about 1.5 feet deep. This flood overtopped the dam. Based on records of the U.S.G.S. stream gage on Bixler Run at nearby Loysville, Pennsylvania, this flood (June, 1972) produced an inflow to Lake Kimberly Dam estimated to be 128 cfs.

C. Visual Observations

It was noted that the 3" drop inlet pipe was obstructed with a plastic container. There has been considerable erosion at the down-stream end of the principal spillway discharge pipe. It was also noted that the emergency spillway crest was the same elevation as the low point in the embankment.

No other conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily during a flood event until the dam is overtopped.

D. Overtopping Potential

Lake Kimberly Dam has a total storage capacity of 51 acre-feet and the overall height is 16 feet above the streambed. These dimensions indicate a size classification of "small." The hazard classification for this dam is "Significant" (see Section 3.1.E.).

The Spillway Design Flood (SDF) for a dam having the above classifications should be in the range of the 100 year flood to one-half the Probable Maximum Flood (PMF). Because of the small downstream population and small size of the dam, the recommended SDF for this dam is the 100 year flood. The SDF peak inflow is 248 cfs (see Appendix D for hydraulic calculations).

Comparison of the estimated SDF peak inflow of 248 cfs with the estimated total discharge capacity of less than one cfs indicates that a potential for overtopping of the Lake Kimberly Dam exists.

An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the SDF without overtopping. The spillway-reservoir system passes the SDF with about 0.9 foot of overtopping based on the present low point in the crest profile. With the crest uniform at an elevation of 646, the project will pass the SDF with about 0.2 foot of overtopping.

E. Spillway Adequacy

1

Calculations show that the total spillway discharge capacity and reservoir storage capacity, based on the existing low point elevation for the dam profile, cannot pass the SDF without overtopping to a depth of about 0.9 feet (refer to Appendix D).

Since the total spillway discharge and reservoir storage capacity cannot pass the SDF without overtopping, and since the dam is not classified as high hazard, the spillway is considered to be inadequate, but not seriously inadequate.

The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

A. Visual Observations

1. Embankment

The visual inspection of Lake Kimberly Dam did not detect any signs of seepage through the embankment. The immediate downstream area is wet and swampy. This condition appears to have been in existence prior to construction. It was reported that a small limestone area was encountered close to the surface and to the right of the center portion of the dam.

A large slough and heave occurred shortly after construction was completed. The owner stated that no further movement has occurred since that time. Information indicating the cause of this slide is not available. Heavy growth of briar prevented close observation. The prosion of the downstream slope at the outlet of the 10-inch discharge pipe should be repaired. Wave action is receding the upstream slope. The crest of the dam has an irregular profile.

2. Appurtenant Structures

In order to repair the downstream slope at the outlet of the 10-inch pipe, it appears that the pipe will have to be extended. To prevent future erosion, a rock lined plunge pool is considered necessary.

B. Design and Construction Data

Design and construction data for this dam do not exist. The owner stated that a cutoff trench was excavated along the centerline of the dam, estimated at being as deep as five feet. This trench was shallow in the area where limestone was encountered.

C. Operating Records

Operating records for this dam have not been maintained by the owner.

D. Post Construction Changes

There are no indications that post construction modifications have been made to the dam or its appurtenant structures.

E. Seismic Stability

This dam is located in Seismic Zone 1, and it is considered that the static stability is sufficient to withstand minor earthquakeinduced dynamic forces. No studies or calculations have been made to confirm this assumption.

SECTION 7 - ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. <u>Safety</u>

The visual inspection indicates that Lake Kimberly Dam is in poor condition. Engineering design and construction data are not available for review. The dam was overtopped during the 1972 flood "Agnes" without apparent serious damage. A slough on the downstream slope indicates that an unstable condition existed shortly after construction was completed. The erosion at the outlet discharge point is of concern. Improved maintenance practices are required.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small and the hazard classification is significant. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of the 100 year flood to one-half the Probable Maximum Flood (PMF). The recommended SDF for this structure is the 100 year flood.

The hydrologic and hydraulic computations indicate that the combination of storage capacity and the discharge capacity of the spillway is insufficient to pass the recommended SDF without overtopping the dam. The spillway is therefore considered to be inadequate, but not seriously inadequate.

B. Adequacy of Information

The visual inspection is considered to be sufficiently adequate for making a reasonable assessment of this dam.

C. Urgency

The recommendations presented below should be implemented immediately.

D. Additional Studies

Additional studies are not required at this time if the top of dam is made uniform at the recommended elevation and other recommendations are implemented immediately.

7.2 RECOMMENDATIONS

In order to assure the continued satisfactory operation of this dam, the following recommendations are presented for immediate implementation by the owner:

- 1. That, to preclude the necessity of a detailed hydrologic and hydraulic study, the crest be made uniform to an elevation of at least one foot above the principal spillway elevation. This work should be done under the direction of a professional engineer experienced in the design and construction of dams.
- 2. That the upstream and downstream slopes be cleared of all trees, brush and weeds, and that the slopes be maintained on a regular basis.
- 3. That provisions be made for upstream closure of the drawdown pipe in case of an emergency.
- 4. That the slough on the downstream slope be repaired and reseeded under the direction of an engineer experienced in the design and construction of dams.
- 5. That the 10-inch outlet pipe be extended and the slope be repaired and that an adequate rock protected plunge pool be provided. This work should be done under the direction of an engineer.
- 6. That the obstruction be removed from the drop inlet.
- 7. That the upstream slope be protected from wave action erosion.
- 8. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
- 9. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

APPENDIX A

CHECK LIST OF VISUAL INSPECTION REPORT

ł

.

APPENDIX A

CHECK LIST

PHASE I	-	VISUAL	INSPECTION	REPORT

PA DER # 50-062	NDI NO. PA-00 949		
NAME OF DAM Lake Kimberly Dam I	HAZARD CATEGORY Significant		
LOCATION <u>Southwest Madison</u> TOWNSHIP Clo INSPECTION DATE <u>11/4/80</u> WEATHER Lig	Perry COUNTY, PENNSYLVANIA udy, ht rain TEMPERATURE 40-50°		
INSPECTORS: <u>R. Houseal (Recorder)</u> <u>H. Jongsma</u> <u>R. Shireman</u>	OWNER'S REPRESENTATIVE(s): Howard V. Lightner		
A. Bartlett (est. NORMAL POOL ELEVATION: <u>645.0 U.S.G.S.</u>)A	T TIME OF INSPECTION:		
BREAST ELEVAT!ON: <u>646.0 (estimated)</u>	POOL ELEVATION:642.7		
SPILLWAY ELEVATION: 645.2 TAILWATER ELEVATION:			
MAXIMUM RECORDED POOL ELEVATION: <u>June, 1972 (Agnes</u>) 1.5 feet in emergency spillway. Dam overtopped. GENERAL COMMENTS:			
Reservoir level appears to be 2.3 feet below normal pool.			
Embankment alignment is curved. No riprap on upstream or downstream slope. Erosion due to wave action is evident on upstream slope. Cattail growth covers about one-half of the upstream slope.			
Slope slump evident on downstream slopes - owner indicated that this slump occurred shortly after the completion of the dam during a heavy rain.			
Heavy brush, small trees and briar grow slope.	th on about one-half of downstream		

1

VISUAL INSPECTION EMBANKMENT

1

Ш.

·····	OBSE	RVATIONS AND REMARKS
A. SURFACE CRACK	KS Surface	cracks were not observed on the
	any cra	t the embankment. Unable to observe ticks on slopes due to growth of brush.
	leaves,	etc.
B. UNUSUAL MOVEM	IENT One are	a has been displaced forming a bench
BEYOND TOE	on the	downstream slope.
C. SLOUGHING OR	EROSION A major	slough or slope failure is evident
ABUTMENT SLOP	PES section	downstream slope. Refer to cross . Erosion is occurring due to wave
	action	on the upstream slope. Groundhog
D. ALIGNMENT OF	CREST:	cated in slumped area.
HORIZONTAL:	Horizon	tal alignment is curved.
VERITCAL:	Refer t	o profile for vertical information.
	(11ate	n 11)
E. RIPRAP FAILUR	RES No ripr	ap.
F. JUNCTION EMBA	NKMENT Abutmen	ts with natural ground appear to be
& ABUTMENT OR	sound.	
OF ILLING		
G SEEPAGE	The mid	dle third of the enhantment lies in
	an old	swamp. This area is now and has
	continu	ally been wet. Could not observe any
	specifi slope a	c seepage due to heavy growth on ind downstream of slope.
H. DRAINS	None.	
J. GAGES & RECOR	NORE None-	
K	·····	
K. LOVER (GROWIH) Crest - center.	grass covered - bare bike trail in Downstream slope - partial field
	grass,	partial brush, trees and briars.
	Upstrea	m slope - some grass and cattails,
		ah.

A-2

VISUAL INSPECTION OUTLET WORKS

	OBSERVATIONS AND REMARKS
A. INTAKE STRUCTURE	Vertical 8" diameter standpipe (steel).
B. OUTLET STRUCTURE	Horizontal 10" steel pipe. This pipe does not extend beyond the embankment slope. Erosion due to discharge is causing decay of the embank- ment in this area.
C. OUTLET CHANNEL	Outlet channel is ill defined. Discharge flows from 10" pipe through an irregular ditch then into the swampy area, then to Sherman Creek.
D. GATES	No gates - 4" pipe with valve is used to lower the reservoir when deemed necessary.
E. EMERGENCY GATE	None.
F. OPERATION & CONTROL	No formal control. Owner uses 4" pipe to control reservoir level during heavy precipitation.
G. BRIDGE (ACCESS)	None.

1

.

VISUAL INSPECTION SPILLWAY

ł

States and the states of the s

-

	OPECOVATIONS AND DEMARKS
	UDSERVATIONS AND REMARKS
A. APPROACH CHANNEL	Direct from reservoir at left side.
B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments	Grassed channel.
C. DISCHARGE CHANNEL:	Wide flat area with some weeds.
Lining	
Cracks Stilling Basin	
Juining Dasin	
D. BRIDGE & PIERS	None.
E. GATES & OPERATION	None.
EQUIPMENI	
F. CONTROL & HISTORY	Flow of about 1.5 fact during Agnes as
	stated by the owner.

A-4

VISUAL INSPECTION

.....

10 A

٦

	OBSERVATIONS AND REMARKS
INSTRUMENTATION	
Monumentation	None.
Observation Wells	None.
Weirs	None.
Piezometers	None.
Staff Gauge	None.
Other	None.
RESERVOIR	
Slopes	Moderate 10°-15°.
Sedimentation	None reported.
Watershed Description	Woodlands.
DOWNSTREAM CHANNEL	
Condition	Not defined.
Slopes	Flat.
Approximate Population	4 to 8 persons.
No. Homes	Two homes.

A-5

·····

Manual and an and a

angen i star angen i

Alexandre and the second s

APPENDIX B

CHECK LIST OF ENGINEERING DATA

APPENDIX B

1

Sail to.

CHECK LIST ENGINEERING DATA

PA DER # 50-062

1

NDI NO. PA-00 949

NAME OF DAM _____Lake Kimberly Dam

ITEM	REMARKS
AS-BUILT DRAWINGS	None.
REGIONAL VICINITY MAP	U.S.G.S. Quadrangle - Andersonburg, Pa. See Plate II, Appendix E
CONSTRUCTION HISTORY	Built and designed by Styninger, Newport, Pennsylvania, with some aid by S.C.S. Constructed in 1970.
GENERAL PLAN OF DAM	Not available.
TYPICAL SECTIONS OF DAM	Not available.
OUTLETS: PLAN DETAILS CONSTRAINTS DISCHARGE RATINGS	Not available.

ENGINEERING DATA

ITEM	REMARKS
RAINFALL & RESERVOIR RECORDS	No records.
DESIGN REPORTS	None.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None available.
MATEF.IALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD	One test pit excavated in swampy area. Filled with water. No records.
POST CONSTRUCTION SURVEYS OF DAM	llone.
BORROW SOURCES	From reservoir and side hill.

B-2

ENGINEERING DATA

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	None.
HIGH POOL RECORDS	No records.
POST CONSTRUCTION ENGINEERING STUDIES & REPORTS	None.
PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports:	None.
MAINTENANCE & OPERATION RECORDS	No records.
SPILLWAY PLAN, SECTIONS AND DETAILS	Not available.

1

.

.

.....

÷

ND1 NO. PA-00949

ENGINEERING DATA

ITEM	REMARKS
OPERATING EQUIPMENT, PLANS & DETAILS	No plans.
CONSTRUCTION RECORDS	No records.
PREVIOUS INSPECTION REPORTS & DEFICIENCIES	No reports.
MISCELLANEOUS	

ł

•

. .

۰.

.-1

۰.
NDI NO. PA-00949

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTERISTICS: Woodlands, some far	mland.
ELEVATIO	N :	
тор	NORMAL POOL & STORAGE CAPACITY: Elev. 645	.0 Acre-Feet 50
тор	FLOOD CONTROL POOL & STORAGE CAPACITY: Ele	v. 645.2 Acre-Feet 51
MAX	IMUM DESIGN POOL: _Elev646±	
тор	DAM: Elev. 645.2	
SPILLWAY	: PRINCIPAL	EMERGENCY
a.	Elevation 645	645.2
b.	Type Drop inlet	Uncontrolled, sod lined, broad crested weir
с.	Width 8" diameter	35'
d.	length	
0.	Los dien Spilleurs Neer conter of der	loft abutmunt
е.	Location spiriover Addr Center of dam	
t.	Number and Type of Gates <u>None</u>	None
OUTLET W	ORICS:	
a.	Type <u>4" pipe</u>	
b.	Location Between center and right side	of dam
с.	Entrance inverts, 632:	
đ .	Exit inverts 628.7	
e .	Encremency drawdown facilities 4" valve	on pipe
HAD DE L	FURITORI GAL GARS:	
et .	Lype None	
ł•.	Location	
ι.	Records	
мдари н	мом ратка (ма отвения а. 1 efs	

. .

.-t.

F Γ

APPENDIX C

PHOTOGRAPHS

. .

ç

APPENDIX C

ومقاربه المراجع الأراب

EMERGENCY SPILLWAY AND LEFT ABUTMENT - NO. 2

BICYCLE TRACK ON DOWNSTREAM SLOPE - NO. 3

PA-00949 Plate C-II

BRUSH & TREES ON DOWNSTREAM SLOPE - NO. 4

CATTAILS ON UPSTREAM SLOPE - NO. 5

PA-00949 Plate C-III

A. BAAR

• •

8-INCH OUTLET PIPE - NO. 6

END OF OUTLET PIPE - NO. 7 NOTE: ERODED AND STEEP EMBANKMENT

PA-00949 Plate C-IV

Boules and Board and Altrates

ĺ.

OVERGROWN SLOUGH AREA - NO. 8

SLOUGH AND TREE AT TOE - NO. 9

PA-00949 Plate C-V

DOWNSTREAM AREA - NO. 10

Shrifton Bartstone

RESERVOIR AREA - NO. 11

PA-00949 Plate C-VI APPENDIX D

•

HYDROLOGY AND HYDRAULIC CALCULATIONS

APPENDIX D

SUMMARY DESCRIPTION OF FLOOD HYDROGRAPH PACKAGE (HEC-1) DAM SAFETY VERSION

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

BYDATE	AKE KIMBERLY DA	SHEET NO. 2 OF PROJECT D0590
EMBANKMEN	T RATING	
Q=CL.	4 ³¹ 2	C = 2.7 (KMG HOER
AT ELEV 645.	6	
2.7×	$50 \times (.2)^{13} = 12$	
2,7×	33 × (.2)" = 8	2 · 20 Crs
AT ELEV 64		
2,7×,	$7 \times (.05)^{1.5} = 17$	
2,7 * 1	$SO \times (.25)^{1.5} =$	
2.7 K -	$SA \times (A)^{1/5} = 3A$	
2.7 ×	50 x (15) "5: 8	
2.7 ×	$(7 \times (.05)^{1.5} : 1$	5 = 123 CFS
ATELEV 646	, 2	
2.7 ×	12 * (.15) "" = 2	
2,7 ×	5 x (.05) 15: -	
2.7 ×	8 x (.05) "	
2.7 × 2	5 × (.2) 15 = 6	
2.7 × 1	2 × (.05) 1.5 -	
2.7 × 5	0 x (.15) "5: 8	
2.7×5	C x (18) = 97	
2.7 × 5	$50 \times (.7)^{15}$ 79	
2.7 × 5	$70 \times (.35)^{15} = 28$	
	50 x (.75) - 7	2 - 228 (+ 5
A/ ELEV 640	$() \times (A \varepsilon)^{1/5} = I n$	
2.7*	$l_{0} \times ($	
.), 7 x	$15 \times (3)^{15} = 7$	
2.7 ×	25 x (.4) "5 = 17	
2.7 x	50 x (12) "5 = 12	
2,7 ×	17 x (1) "" : 1	
27 *	25 × (.25) 15 : 8	
2.7 ×	50 x (45) 15: 41	
27 X	50 x (.75) 15: 88	
2.7 K	50 x (1.1) "5 = 156	
27 ×	50 x (1) 135	
2.7 ×	$50 \times (.65)^{-1} = 71$	
2.7 ×	50 × (+45) 1 = 41	

ę

BY RUS	DATE 1/14/21	BERGER ASSO	CIATES	SHEET NO.	A of !
SUBJECT	LAN	(E KIMBERLY	DAM	_ PKOJECT	00,70
-	EMBANKMENT	RATINC	((ONT.)		
	AT ELEV (4 >			
	2 7 >	(12 × (95) 15 1	30		
	2 7 1	10 1 (2)"	14		
	2.7.7	1 1 1 (2)	29		
	2 7 >	x 20 1 (.9) 10 1	59		
	2,7	x 50 x (.7) 15 :	79		
	27 י 7 2	x sox (.s) ' .	48		
	2)	X 45 X (.45)"	20		
	2 7 4	x 25 x (.4)' **	17		
	2 7 ,	x 25 + (.50)12	28		
	27,	x 25 x (.75)":	44		
	2.7 *	50 × (.95)	125		
	27 *	(50 x (1.25)"52	189		
	2.7 ×	(50 × (1.6) 5:	173		
	2.7 >	x so x (1.5) ^{1.5} =	248		
	27	x 50 x (1.15)"5:	166		
	2.7)	× 50 × (.95)".5:	125		
	2 7 *	(35 × (.4) 1.5 =	24	2 = 1522	CFS
				,	1
				• • •	

Ģ

BY DATE 1/12/ BERGER ASSOCIATES CHKD BY DATE SUBJECT AFT MUNICIPAN

SHEET NO OF PROJECT UP 90

DISCHALGE THE COURS SCIEL MAINS

A set of the set of the

e de la de la de la della de la della d

. <u>.</u> .

Sec. 2 Contract Ca

(1.1.6.1)

the set of the set of

per a strand a chart to the

S = ((25 - (29))/(25) + (2 - (2 - 2))/(2) + (2 - (2 - 2))/(2) + (2 - (2 - 2))/(2) + (2 - 2))/(2) + (2 - 2)/(2) +

BY AUT			BERGER ASSO	CIATES	SHEET NO. 7 OF Ja-
CHKD BY	DATE			- · . · .	PROJECT 40590
SUBJECT		LAKU	KIMBERLY	UAM	

MITTATUAL KNOWN FLOOD AT DAMSITE

IT WAS REPORTED THAT THE MAXIMUM KNOWN FLOOD WE TAPE KIMPERLY DAY. PASSED THE WATER LEVEL WAS REMERLY DO TEACH AN ELEVATION ABOUT 1.6 - 2 - 5 1970 20 THE THE EMBANEMENT, FROM THE CHARGE DET THE EMBANEMENT, FROM THE CHARGE DET THE CONVERTS STIMATED 1.6 - 1000 CONVERTS IN JUNE 1972, 1000 CED A DISCHARGE OF ABOUT 1030 CFS. 2000 CHARGE DET THE US.G.S. CAGING 2000 CHARGE NOT ATARBY LOYSTICE. 1.6 - 100 CHARGE NOT ATARBY LOYSTICE. 1.6 - 100 CHARGE DE ABOUT 1000 CFS. 1.6 - 100 CHARGE DE ATARBY LOYSTICE. 1.6 - 100 CHARGE DE ATARBY CONSTRUCT. 1.6 - 100 CHARGE DE ATABBY CONSTRUCT. 1.6 - 100 CHARGE DE ATAB

. S. . C.

A 24 BUGGGGGGGGGGGGG ANDRE STORAGE 51 ACACHECT ANDRE STORAGE 16 FEET T 25 SUMMERS ATION 15 SMALL

Stand Stand State Street The March

COMPANY MARKEL SCATED SCAR THE CONTRACT MANNEL CONTRACTORY

A AND AND ALL AN CERCH ICOOD A AND ALL AND AND AND AND ADDRATE USE A AN AND A AND AND AND ADDRAFT AND AND A AND AND AND AND AND ADDRAFT ADDRAFT A AND AND AND AND AND ADDRAFT ADDRAFT A AND AND AND AND AND ADDRAFT ADDRAFT A AND AND AND AND ADDRAFT ADDRAFT A AND AND ADDRAFT ADDRAFT ADDRAFT A AND ADDRAFT ADDRAFT ADDRAFT ADDRAFT ADDRAFT ADDRAFT A AND ADDRAFT ADDRAFT ADDRAFT ADDRAFT ADDRAFT A AND ADDRAFT ADDRAFT

BY <u>RLS</u> CHKD. BY SUBJECT	5DATE // <i>19/\$1</i> DATELA	BERGER ASSOCIATES	SHEET NO. 8 OF 12- PROJECT D0590 M
	100 YEAR	FLOOD	
	REF: "HYD AGNO ARMI	ROLOGIC STUDY, TO ES", NORTH ATLANTIC Y, CORPS OF ENGINE	ROPICAL STORM DIVISION, U.S. EPS.
	LAKE KIM	BERLY D.A. = 0.18	3 SQ, MI.
	(110.21) cm = 1.9	
	LOG (Qm) =	Cm + 0.75 LOG (A)	
	=	1.9 + 0.75 LOG (.18)	
	:	- 1.3415	
	(FIG.2	2) C5 · . 36	
	$S = C_S =$.05 LOC (A)	
	: .36 -	.05 LOG (.18)	
	= .397		
	(F1C.	23) ShEW = +.4=	
	STAND	ARS DIVIATE - 2.650	256
	100(a(P))	: LOC (QA) + K(P,g) 5	
		- 1.3415 + (2.65056) 397)
		2.3938	
	$Q_{I} = 1$	248 CF5	

G

BY_ R15 DATE 1/19/31	BERGER ASSOCIATES	SH
CHKD. BY DATE		PR
SUBJECT	LAKE KINBEPLY	

100 YR FLOOD (CONT.)

TOTAL RAINFALL (FROM TP-40)

DURATION	DEFTH
(HR.)	(111)
, 5	2.22
1	2.76
2	3.39
3	3.73
6	4.57
12	5.38
24	6.28

REET NO. 9 OF 12.

BY BLS	DATE 2/2/.81	BERGER ASSOCIATES	SHEET NO. 1. OF 12
CHKD. BY	DATE		PROJECT PROJECT
SUBJECT		LAKE KIMBERLI DAM	

SCS PARAMETERS

(6455

5016	TYPE	:	KLINES VILLE		(PREDOMINANT)	D
			WEIKERT	γ		\mathcal{D}
			ALGLICHTS	ξ	(SMALL AMOUNTS)	C
			CALVIII			^

USE: CLASS 0

COVER: FOREST LAND, SOME FARMLAND

CN = 33

LAC :

L: 4000 ' Y: 85'/4000 + 100% = 2.125% S: (1000/CM) -10

116 = (L)° · (C+1)°.7 1900 × (Y)°.5 = .60 MR

Q100 = 244 Crs = 248 crs

BY RLS DATE 2/3/8/	BERGER ASSOCIATES	SHEET NO. 11 OF
CHKD. BY DATE	LAKE KIMBERLY DAM	PROJECT DO 590
JUJICI		

SPILLWAY CAPACITY CURVE (EXISTING)

and the second second

ł

BY <u>BLS</u> DATE 2/3/8/	BERGER ASSOCIATES	SHEET NO. 12 OF 12
CHKD. BY DATE		PROJECT DO 590
SUBJECT	LAKE KIMBERLY DAM	····

SPILLWAY CAPACITY CURVE

(IM PROVED)

DISCHARGE - CFS

.

HYDROLO	OGY AND DATA	HYDRAULIC / BASE	ANALYSIS				
NAME OF DAM: <u>Lake Kimberly Dam</u> RIVER BASIN: <u>Susquehanna</u> PROBABLE MAXIMUM PRECIPITATION (PMP) = 23.2 INCHES/24 HOURS ⁽⁹⁾							
STATION		2	3	4			
STATION DESCRIPTION	LAKE KIMBERLY	LAKE KIMBERLY DAM					
DRAINAGE AREA (SQUARE MILES)	.18						
CUMULATIVE DRAINAGE AREA (SQUARE MILE)	.18	.18					
ADJUST MENT ADJUST MENT ADJUST MENT ADJUST MENT ARAINAGE AREA (%) AREA (%)							
$\begin{array}{c} F \\ F $	18 .50/2.1 .74 .38 1.44						
CREST LENGTH (FT.) FREEBOARD (FT.) DISCHARGE COEFFICIENT EXPONENT		EMERGENCY 35 0 2.7 1.5	PRINCIPAL 8" Dia. .2 .6 				
ELEVATION		645.2	645	 			
NORMAL POOL 645	6.6 16.5						
NORMAL POOL ⁽⁷⁾	50						
$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ &$	0						

đ

- (1) <u>Hydrometeorological Report 33</u> (Figure 1), U.S. Army, Corps of Engineers, 1956.
- (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.
- (3)_{Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).}
- (4) Snyder's Coefficients.
- $(5)_L$ = Length of longest water course from outlet to basin divide.

L_{ca} = Length of water course from outlet to point opposite the centroid of drainage area.

(6) Planimetered area encompased by contour upstream of dam.

(7)_{PennDER} files.

(8) Computed by conic method.

(9) Hydrometeorological Report No. 40, U.S. Army Corps of Engineers, 1965.

•	DAM SAFELY VENSION		JULT 19	78 .								
63	LAST HUDIFICATION	01	APR 80									
	*************	****	*******	**								
	1	A1	LA	VE KINBER	ILY DAK	****	TRIBU	TARY TO S	SHERMAN (CREEK		
•	2	Ĥ2	SO	UTHUEST M	ADISON	TWP++ FER	RY COUNT	iy, pa.				
	3	A3	ND	I # FA-00)747	FA DER	\$ 50-62					
	4	B	300	0	15	0	0	0	0	0	-4	0
~	5	B1	5									
	6	J	1	1	1							
A	7	Jİ	1									
	8	ĸ		1					1			
	9	K1		INF	FLOW HY	Drograph						
A .	10	ň	.	2	•18							
•	11	0	96									
	12	01	.01	•01	.01	.01	.02	.02	•02	.02	.02	.02
•	13	01	.02	.02	.02	.02	.02	.02	.02	.02	•02	.02
•	14	01	•02	.02	.02	.02	+02	.03	.03	.03	.03	.03
	15	10	•03	.04	+04	.04	•05	•Vù	•06	•06	•07	.03
0	16	- 01	•08	.08	•08	•10	+13	•19	• 35	1.70	.52	.20
•	1/	- U1	•1/	.12	•09	.03	.03	•08	.0/	.07	.05	.06
	18	01	+05	.04	104	+04	+04	.03	.03	.03	•03	.03
0	19	01	.02	+02	.02	+02	.02	.02	+02	.02	.02	.02
•	20	01	102	.02	+02	+02	.02	•02	•02	•02	•92	.02
	21	- UI - T	•02	•02	•01	•01	•01	.01		07		
•	22	1		10					-1	-03		
-	23	WI WI	. 1 5	+GV	1							
	24 ·	Ň	-1+3	03	2				•			
	2J 2L	N K1	7	4 20	CEDUATE	POUTTEC			*			
	20	- V1 - V1		ηL-	SEVADIN	1001110						
	27	- 1 - 11	1			Ţ			50	-1		
.	20	- YA	445	645.6	646	646.7	646.5	647	50	1		
	30	Y5	045	24	149	269	670	1672				
- \	31	\$A	0	6.6	16.5		•.•					
	32	\$F	622.2	645	660							
	33	55	645	0.0	••••							
•	34	\$0	645.2									
9	35	ĸ	99									
	1			PREVIEW	OF SED	UENCE OF	STREAM I	ETWORK (CALCULAT	ONS		
	-											
•					RUNDEF	HYDROGRA	APH AT		1			
					ROUTE	HYEROGRAF	H TO		2			
					END OF	NETWORK						
0	1*********	****	******	***								
•	FLOOD HYDROGRAFH F	ACKA	IGE (HEC	-1)								
	DAN SAFETY VERSION	l	JULY 1	978								
	LAST MODIFICATIL	IN C	1 AFR 8	0								
· .	<i>▲₹₳₽₽₽₽₹₫₫₩₽₩₽₽₽₽</i> ₽	****	******	***								
	DIN LATER DI INTI	10										
Ø	TINC 104124 01/02/0	/7. 57										
	11024 10:30:	134										
0								,				
			14	KE KINAFI	NY NAM	1111	TRIOG	TARY TO P	SHERKLU	CREEK		
			SC	UTHUEST I	HADISON	TUP. PF	KRY COUN	TY, PA.	COLOURA			
-			NO	I # PA-0	0949	PA DER	\$ 50-62					

P.

I

0	JOB SFECIFICATION NO NHR NMIN IDAY ING IMIN METRO IPLT IPRT NOTAN 300 0 15 0 0 0 0 -4 0
•	JOFER NWT LROFT TRACE 5 0 0 5
	MULTI-FLAN ANALYSES TO BE FERFORMED NFLAN= 1 NRTIO= 1 LRTIO= 1
9	RTICS= 1.00
	******** ********** ******* ***********
3	SUB-AREA RUNGFF COMFUTATION
	INFLOW HYDROGRAFH Istaq Icohp Iecoh Itafe JFLT JFRT Inake Istage Iauto 1 0 0 0 0 1 0 0
3	HYDRUGRAPH DATA IHYDG IUHG TAREA SKAP TREDA TRESPC RATIO ISHDU ISAME LOCAL 0 2 .18 0.00 .18 0.00 0.000 0 0 0
	LOSS DATA
9	LROPT STRKR DLTKR RTIDL ERAIN STRKS RTIOK STRTL CASIL ALSHX RTIAP 0 0.00 0.00 1.00 0.00 0.00 1.00 -1.00 -83.00 0.00 0.00
•	CURVE ND = -83.00 WETHESS = -1.00 EFFECT CN = 83.00 Unit hydrografh data
0	TC= 0.00 LAG= .60
9	RECESSION DATA STRTQ= -1.50 QRCSN=05 RTIOR= 2.00
0	O END-OF-FERIOD FLOW MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q KO.DA HR.MN FERIOD RAIN EXCS LOSS COMF
•	SUM 5.28 4.35 1.93 210 (160.)(111.)(49.)(59.
9 .	********* ********* ******** **********
9	HYDROGRAPH ROUTING
•	RESERVOIR ROUTING
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	QLOSS CLOSS AVG IRES ISAME IOPT IPMP LSTR 0.0 0.000 0.00 1 0 0 0 0
0	

Stand and

F

ť

	STAGE	645.00	645.60	646.00	646.20	646.	50 647	.00		
3 ·	FLOW	0.00	24.00	149.00	269.00	670.	00 1672	.00		
2	SURFACE AREA)= 0.	7.	17.						
•	CAPACIT	r= 0.	50,	218,						
9	ELEVATIO	1 ≈ 622.	645,	660.						
9			CREL 645.0	SFWID 0.0	COGW E) 0.0 ((PW ELEVL).0 0.0	. COQL) 0.0	CAREA 1 0.0	EXFL 0.0	
3					TOPEL 645.2	DAM D4 COOD 0.0	NTA EXPD DAHWI 0.0 ((D).		
3	PEAK OUTFLOW	19 229,	AT TIME 1	2.75 HOUR	5					
2		*****	*1	****	**	******	282	******	******	***
9	1	የም ጥ ውጥና የጥዮም	•			*******	₩ .19 ₩ .	*****	******	
))		PEAK FLOW AN	ID STORAGE (Flo	IEND OF PE DUS IN CUB AREA	RIOD) SUMMA IC FEET PER IN SQUARE M	RY FOR MUL SECOND (C ILES (SQUA	TIPLE PLAN- USIC HETERS RE NILONETE	RATIO ECON PER SECON RS)	OHIC COMPUTATI D)	ONS
3	OPERATION	STATION	AREA I	PLAN RATI	0 1	RATIO	S APFLIED T	O FLOWS		
. 	HYDROGRAPH A1	T 1 (.18 .47)	1 (é	244. (.91)(
2	ROUTED TO	2	.18 .47)	1 (6	229 . (48)(
3	1				SUNK	ARY OF DAM	SAFETY ANAL	YSIS		
	FLAN 1	•••••	•••• ELE STO OUT	VATION RASE FLOW	INITIAL V; 644.9 50 0	ALUE SF 3 ,	PILLWAY CRES 645.00 50. 0.	ST TOP	CF DAM 645.20 51. 8.	
•		RAT C Pa	IO HAXI IF RESER IF N.S.	MUN N IVOIR Gelev ov	Naximun Depth Ver Dan	KAXIMUN Storage AC-F1	MAXIMUM Dutflow CFS	DURATION OVER TOP HOURS	TIME OF MAX CUTFLOW HOURS	TIME OF FAILURE HOURS
)	EDI ENUCIMIE	1.0 SED.	0 648	5.13	•93	58.	229.	13+75	12.75	0.00

in the second

•	•	-	NØ	NHR N	MIN I	IDAY	IHA I	KIN KE	TRC I	IPLT I	PRT NS	TAN
						JOB	SFECIFI	CATION				
•	•		S	OUTHWEST	HADISON 0949	TWP., FEI FA DER	RRY COUN	TY, FA.				
. 1	۰. به ۲		Ĺ	AKE KIMBE	RLY DAM	****	TRIBU	TARY TO S	SHERMAN	CREEK		
+ -												
· •	TIME# 10.32	2.22.										•
	RIN DATES DI 201	7/19 .										
	LAST HODIFICA ************************************	I I UN 01 # * * * * * *	i APR (*****	50 \$* * \$								
•	DAM SAFETY VERSI	ION	JULY	1978								
·	1#####################################	(****** * {	***** (F - CHE)	(** * 2-1.)								
. 🐌												
•	and the second s				END OF	NETWORK			*			
Ð					RUNCEF	HYDROGRA	EH AT		1			
-	1			FREVIEW	I OF SEQ	JENCE OF	STREAM N	ETWORK C	ALCULAT	IUNS		
	35	ĸ	99	P. 6. 171 - 4								
•	33	\$\$ 40	645 444									
	31 32	\$A \$E	0 622.2	645	10.5 660							
3	30	Y5	0	4	26	180	625	1703				
-	28 29	¥1 ¥4	1 645	645.6	646	646.2	646.5	647	50	-1		
۲	27	Y		NE.	9711497 <i>1</i>	1			-			
-	25 26	К К1	1	2 RF	SERVOIR	ROUTING			1			
9	∠s 24	X	-1.5	05	2							
	22	1		. 40					-1	-83		
	20 21	01 01	•02 •02	.02 .02	.02 .01	.02 .01	.02 .01	.02 .01	•02	•02	.02	,(
-	19	Di	.02	.02	.02	.02	,02	.02	•02	.02	.02	•0
	17	01 11	.17	.12	.09	.08	.08	.08	•07 •03	.07 .03	.06	
-	15 16	01	.03	•04	.04	.10	.13	•19	.UO .35	•03 1•70	•07 •52	.0
	14	01	.02	.02	.02	.02	.02	.03	•03	.03	.03	.0
•	12 13	01 01	•01 •02	.01 .02	.01 .02	.01 .02	.02 .02	.02 .02	•02 •02	02ء، 02	.02 .02	0. 0
A	11	0	96	~				**			•=	_
	9	К1 В		1Kl 2	LOW HY. .19	DROGRAPH						
	8	K	1	1					1			
	6	J	1	1	1							
	4 5	B B1	<i>3</i> 00 5	0	12	Ø	0	0	0	0	-4	
٤.	3	A3	NE	I 4 PA-00	949	PA DER	\$ 50-62		~		,	
	1 2	A1 A2	LA SC	NE NIKBER NUTHWEST M	ILY DAM IADISON '	XXXX TWP., PER	TRIBUI RY COUNI	ARY TO S IY, PA.	HERMAN	CREEK		
•	100111001110011 10011110011100111	1242214	****	11		•						

•			JOPER 5	NUT LROPT O O	TRACE O			5
0								
Ð		RTIOS=	HULTI-FI NFL	LAN ANALYSES TO BE LAN= 1 KRTIO= 1 LR	TFERFORMED TIO= 1			
9								
0		*****	********	********	*****	**** *	*******	
•			SUB-	AREA RUNOFF COMPU	TATION			
0	·		INFLOW HYDROGRA	1PH				
6			ISTAQ ICOMP 1 0	IECON ITAPE O O	JPLT JFRT 0 0	INAKE ISTAGE 1 0	IAUTO O	
0		IHYDG I O	UHG TAREA SNI 2 .18 0.0	HYDROGRAPH DATA Ap trsda trspo 20 .19 0.00	RATIO ISN 0.000 -	OW ISAME LO O O	CAL O	
8		LROPT STRKR	DLTKR RTIOL F	LOSS DATA ERAIN STRKS RT	TOK STRTL	CNSTL ALSMX	RTIMP	
۲	ب	CURVE ND =	-83.00 WEINESS =	= -1.00 FFFFCT	-1.00 - 1.00 - 0.00 -	83.00 0.00	0.00	
Ø								
-	•		TC=	0.00 LAG= .6	60 18			
0			STRTO= -1.5	RECESSION DATA 50 GRCSN=	05 RTIGR= 2	.00		
0	0 Mg.da	HR.KN PERIOD RI	AIN EXCS LOSS	END-CF-PERIOD FL Comp Q M	DW ID.DA HR.KN Pi	ERIOD RAIN	EXCS LOSS	COMP Q
0								
_						SUN 6.28	4.35 1.93	2107.
æ					```	(160.7(J7+00)
æ		*******	********	*********	*****	****	*******	
•				HYDROGRAPH ROUTI	NG			
e	•							
0								
÷			151AU ICOMP 2 1	IECUN ITAFE 0 0	JFLI JFRT 0 0	INAME ISTAGE 1 0	DTUAL O	
Ø		QLOSS 0.0	CLDSS AVG 0.000 0.00	RUUTING DATA IRES ISAME 1 0	IOPT IPMP 0 0	LSTR O		
í,	•		NSTPS NSTOL 1 0	LAG ANSKK O 0.000	X TSK 0.000 0.000	STORA ISFRAT 501		
-								

the Association

*. **

~	STAGE	645.00	645.60 646	.00 646	6.20 64	6.50 6	47.00		•
8	FLOW	0.00	4.00 26	.00 180	.00 62	5.00 17	03.00		
•	SURFACE AREA	= 0.	7.	17,					
6	CAPACITY	= 0.	50. 2	18.					
0	ELEVATION	= 622+	645. 6	60.					
3	•		CREL SPWI 645.0 0.	D CORW 0 0.0	EXPW ELE	COQL 0.0 0.0	CAREA 0.0	EXFL 0.0	1
	8	·	· · · ·	TOPE 646.	DAM El Codd .0 0.0	DATA Expd dah 0.0	WID O.	. <i>•</i>	
6	PEAK OUTFLOW I	S 235. A	T TIME 12.50 H	OURS					
9	•							:	
	1	******	*******	**	********	**	*******	*****	****
6	•							· ·	
€) (*)	P	EAK FLOU AND	STORAGE (END OF FLOWS IN AR	PERIOD) SU CUBIC FEET I EA IN SQUARI	MMARY FOR M Per Second E Hiles (SQ)	JLTIPLE PLAN (CUBIC METEF JARE KILOMET	K-RATIO ECO. SE PER SECO. TERS)	NUMIC COHPUTAT ND)	IONS
•					RAT	IOS APPLIED	TO FLOWS		
S .	OPERATION	STATION	AREA PLAN R	ATIO 1 1.00				• •	•
•	HYDROGRAPH AT	1 (.18 1 .47) (244. 6.91)(. •				• • • • •
•	ROUTED TO	2 (.18 1 .47) (235, 6,65)(•	
\$	1			SUI	MHARY OF DAI	1 SAFETY AN	NLYSIS	• • • •	
9 3	PLAN 1.		ELEVATION Storage Outflow	INITIAL 644	VALUE .73 50. 0.	5PILLWAY CRE 645.00 50. 0.	EST TOP	CF DAM 646.00 57. 26.	
1 D		RATIO OF SOF	MAXIMUM RESERVOIR W.S.ELEV	MAXINUM Depth Over dan	HAXIMUM Storage AC-FT	MAXIKUM Outflow CFS	DURATION OVER TOP HOURS	TIME OF HAX CUTFLOW HOURS	TIME OF FAILURE HOURS
•	EOI ENCOUNTERE	1.00 ED.	646.24	•24	59.	235.	3. 25	12.50	0.00

Ь

APPENDIX E

.

PLATES

APPENDIX E

APPENDIX F

· •

4

6

GEOLOGIC REPORT

APPENDIX F

GEOLOGIC REPORT

BEDROCK - DAM AND RESERVOIR

The dam and reservoir are located within the Silurian Age Bloomsburg Formation. This formation consists of brownish and some grayishred shale, siltstone and sandstone with local lenses of olive-gray sandstone, localized thin impure limestone and a conglomerate belonging to the Bridgeport member near the middle.

STRUCTURE

A second seco

The dam lies within the Ridge and Valley Provience. The Bloomsburg Formation is a formation of intermediate competency and the axis of major folds and faults trend $N55^{\circ}-65^{\circ}E$ with dip between 50° and 55° and a plung ranging from 5°-10°. There are two general joint orientations, one $N50^{\circ}-40^{\circ}E$, parallel to the strike of the bedding and the other $N20^{\circ}-40^{\circ}W$ or at right angles to the general strike.

OVERBURDEN

The overburden in this area consists of a residual soils or asaprolite with the possibility of alluvial sediments resulting from the proximity of Sherman Creek.

AQUIFER CHARACTERISTICS

The Bloomsburg Formation has little primary or secondary porosity or permeability. Its ability to transmit or store water is related to the degree of fracturing and the amount of weathering these fractures have undergone. The median water yield for this formation is 13 gpm with a range of 1-100 gpm. It is considered to have a "fair" water yielding potential. Subsurface seepage shoul' be of little concern, but depends on the localized lithology.

DISCUSSION

There are no available construction plans for this dam. However, the Bloomsburg Formation does provide a good foundation base.

SOURCES OF INFORMATION

- Johnson, H.E., 1970. Groundwater Resources of the Loysville and Mifflintown Quadrangle in South Central Pennsylvania: Pennsylvania Geological Survey W-27.
- McGlade, W.G., et. al., 1972. Engineering Characteristics of the Rocks of Pennsylvania: Pennsylvania Geological Survey EG-1.

LEGEND

*

SЬ

Bloomsburg Formation
