

890660 V OV	TRIBUTARY BENTLEY CREEK. BRADFORD COUNTY PENNSYLVANIA LAKE ONDAWA DAM NDI ID NO. PA-517 DER ID NO. 8-28 TIM LEONARD ROD AND GUN CLUB
O O O O O O O O O O O O O O O O O O O	PENNSYLVANIA LAKE ONDAWA DAM NDI ID NO. PA-517 DER ID NO. 8-28 TIM LEONARD ROD AND GUN CLUB
AD AO C	LAKE ONDAWA DAM NDI ID NO. PA-517 DER ID NO. 8-28 TIM LEONARD ROD AND GUN CLUB
DTIC FILE COPY	Prepared By L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS EBENSBURG, PENNSYLVANIA 15931 MARK 31-81-C-C017 FOR DEPARTMENT OF THE ARMY BALTIMORE DISTRICT CORPS OF ENGINEERS BALTIMORE. MARYLAND 21203 Mus document has been approved for public reloase and sale; its distribution is unlimited. APRIL, 1981

uds., color 140 Woyroda t-in black an

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in detemining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

£

PREFACE

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

NAME OF DAM STATE LOCATED COUNTY LOCATED STREAM DATE OF INSPECTION COORDINATES Lake Ondawa Dam Pennsylvania Bradford Tributary to Bentley Creek October 22, 1980 and January 15, 1981 Lat: 41° 53.1' Long: 76° 42.5'

ASSESSMENT

The assessment of Lake Ondawa Dam is based upon visual observations made at the time of inspection, review of available records and data, hydraulic and hydrologic computations and past operational performance.

The Lake Ondawa Dam appears to be in fair condition and adequately maintained. The recently repaired spillway approach wingwalls and control section retaining walls indicate on-going maintenance at the structure. The concrete spillway channel appeared to be in fair condition. No major deficiencies were observed which would affect the discharge potential of the structure. No seepage was observed on the downstream face of the dam or along the toe of the structure. An erosion area was observed along the right edge of the spillway overflow section. Maintenance of the operating facilities is considered poor. The flip gate on the 6 inch drainline is not operated.

The Lake Ondawa Dam is a high hazard-small size dam. The recommended spillway design flood (SDF) for a dam of this size and classification is in the range of 1/2 PMF to PMF. Based on the downstream potential for loss of life, the Spillway Design Flood has been selected as the PMF. The spillway and reservoir are capable of controlling less than 10% of the PMF without overtopping the embankment. Based on criteria established by the Corps of Engineers, the spillway is termed seriously inadequate. The Lake Ondawa Dam is classified as an unsafe, non-emergency structure.

The following recommendations and remedial measures should be instituted immediately.

1. A detailed hydrologic and hydraulic analysis should be conducted by a registered professional engineer knowledgeable in dam design and construction to increase the spillway capacity.

2. It should be ascertained whether the upstream flip value on the 6 inch cast iron pipe drainline is capable of operation. If the flip gate is operable, it should be operated on a regular basis to

ii.

LAKE ONDAWA DAM PA 517

insure it functions for its intended use. If the upstream flip gate is not operable, it should be made operable or other provisions should be made for upstream closure of the pipe through the embankment.

3. The erosion observed along the right edge of the downstream face of the vertical masonry wall should be repaired as soon as possible.

4. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.

5. A regularly scheduled operations and maintenance program should be prepared and implemented to insure the continued safe operation of the structure.

6. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel. Particular attention should be paid to the condition of the masonry and its ability to support the earth embankment and any seepage that may develop.

SUBMITTED BY:

APPROVED BY:

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS AND ARCHITECTS

. Jeffrey Kinball, P.E.

JAMES W. PECK Colonel, Corps of Engineers District Engineer

Ð

21 APR81

Date

-

Mart Charles

Overview of Lake Ondawa Dam.

TABLE OF CONTENTS

		PAGE
SECT	ION 1 - PROJECT INFORMATION	1
1.1	General	1
1.2	Description of Project	1
1.3	Pertinent Data	3
SECT	ION 2 - ENGINEERING DATA	5
2.1	Design	5
2.2	Construction	5
2.3	Operation	5
2.4	Evaluation	5
SECT	ION 3 - VISUAL INSPECTION	6
3.1	Findings	6
3.2	Evaluation	7
SECT	ION 4 - OPERATIONAL PROCEDURES	8
4.1	Procedures	8
4.2	Maintenance of Dam	8
4.3	Maintenance of Operating Facilities	8
4.4	Warning System in Effect	8
4.5	Evaluation	8
SECT	ION 5 - HYDRAULICS AND HYDROLOGY	9
5.1	Evaluation of Features	9
5.2	Evaluation Assumptions	9
5.3	Summary of Overtopping analysis	10
5.4	Summary of Dam Breach Analysis	10
SECT	ION 6 - STRUCTURAL STABILITY	11
6.1	Evaluation of Structural Stability	11
SECT	ION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES	12
7.1	Dam Assessment	12
7.2	Recommendations/Remedial Measures	12

ł

in the second

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I APPENDIX C - PHOTOGRAPHS APPENDIX D - HYDROLOGY AND HYDRAULICS APPENDIX E - DRAWINGS APPENDIX F - GEOLOGY

PHASE I NATIONAL DAM INSPECTION PROGRAM

LAKE ONDAWA DAM NDI. I.D. NO. PA 517 DER I.D. NO. 8-28

SECTION 1 PROJECT INFORMATION

1.1 General.

a. <u>Authority</u>. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. The Lake Ondawa Dam is an earthfill dam, 50 feet long and 18 feet high. The crest width of the dam is approximately 28 feet. The upstream slope of the dam on either side of the spillway is approximately 2H:1V. The earthen embankment section is grass covered and no riprap exists on the upstream slope. The downstream slope of the dam consists of a near vertical masonry wall. A concrete corewall exists in the embankment.

The spillway for the Lake Ondawa Dam is located near the middle of the earthen embankment section and constitutes at least half of the embankment length. The spillway is rectangular shaped with a reinforced concrete crest. The broad crested control section is 21.6 feet wide and 23 feet long. The side walls for the spillway crest consist of concrete retaining walls and a masonry wall which supports a foot bridge that spans the spillway crest.

b. Location. The dam is located on a tributary to Bentley Creek, approximately 0.3 mile northwest of the Village of Big Pond, Springfield Township, Bradford County, Pennsylvania. The Lake Ondawa Dam can be located on the Bentley Creek, U.S.G.S. 7.5 minute quadrangle.

c. <u>Size Classification</u>. The Lake Ondawa Dam is a small size dam (18 feet high, 215 acre-feet).

d. <u>Hazard Classification</u>. Lake Ondawa Dam is a high hazard dam. Downstream conditions indicate that the loss of more than a few lives and property damage is probable should the structure fail. The Village of Big Pond is located approximately 0.3 mile southeast of the dam. e. <u>Ownership</u>. The Lake Ondawa Dam is owned by the Tim Leonard Rod & Gun Club, Inc. Correspondence should be addressed to:

> Mr. Thomas Calkins, III, President Tim Leonard Rod & Gun Club, Inc. 510 Elmira Street Troy, PA 16947 717/297-2115

f. <u>Purpose of Dam</u>. The dam was constructed for recreational purposes.

g. Design and Construction History. Based on information available in the PennDER files, it appears as though Lake Ondawa is a natural lake. Sometime prior to 1919 the original owner of the dam raised the pool level to operate a saw mill. No information was available regarding the operation of the saw mill. In 1910, the owner, at that time, attempted to breach the dam in order to turn the surrounding area into farmland. While breaching the dam, the owner hit bedrock and was unable to totally drain the reservoir. It was reported that approximately 15 acres of reservoir area remained after the attempted breach.

On September 23, 1929, an application was made to restore the structure. After application requirements were completed, reconstruction of the structure began in late 1929. Based on available information, it appears as though the dam was designed by Mr. Charles Leonard. The construction of the dam was completed in mid December, 1929, and the construction of the dam was completed by club members.

The original design of the dam (See Appendix E-2 and E-3) called for a masonry wall across the full length of the dam. The length of the dam was to be 50 feet. The spillway crest was to be 24 feet wide and 11 feet long. The spillway crest was to be constructed of reinforced concrete along the entire length of the spillway. The downstream face of the wall was to be near vertical and of masonry construction. The depth of the spillway was to be 3 feet. The core of the dam was constructed of earthfill. A 12 inch conrete corewall was constructed along the entire length of the dam. A 6 inch blowoff pipe was constructed through the embankment. At the upstream end of the 6 inch blowoff pipe a concrete structure was constructed with a flip gate to control discharge through the pipe.

Information contained in the September 19, 1920 application indicate that the original dam had been overtopped at times; but there had not been damage to the structure.

h. <u>Normal Operating Procedures</u>. No operations are presently conducted at the dam. The reservoir level is maintained at the spillway crest elevation. 1.3 Pertinent Data.

1

Sec. Sec.

a.	Drainage Area.	1.03 square miles
b.	Discharge at Dam Site (cfs).	
	Maximum flood at dam site Drainline capacity at normal pool Spillway capacity at top of dam Spillway capacity (Design)	Unknown Less than 10 255 324
c. an assum	Elevation (U.S.G.S. Datum) (feet). ed spillway crest elevation, 1568.0	- Field survey based on from U.S.G.S. quadrangle.
	Top of dam - low point Top of dam - design height Pool at time of inspection Spillway crest (assumed) Maximum pool - design surcharge Normal pool Upstream invert - 6" drainline Downstream invert - 6" drainline Maximum tailwater Toe of dam	1570.5 Unknown 1567.7 1568.0 Unknown 1568.0 Unknown 1553.4 Unknown 1552.4
d.	Reservoir (feet).	
	Length of maximum pool Length of normal pool	2700 2500
е.	<u>Storage (acre-feet)</u> . Normal pool (spillway crest) Top of dam	153 215
f.	Reservoir Surface (acres).	
	Top of dam Normal pool Spillway crest	26 23 23
g۰	Dam.	
	Type Length (including spillway) Height Top width Side slopes - upstream - downstream	Earthfill 50 feet 18 feet 28 feet 2H:1V Vertical

Zoning Impervious core

Cutoff Grout curtain

h. Reservoir Drain.

Type Length Closure

Access Regulating facilities

i. Spillway.

Type Length (crest) Crest elevation Upstream channel Downstream channel

4

None 12" concrete corewall Yes None

6" cast iron pipe Approximately 52 feet Flip gate on upstream end Presently, none Flip gate

> Broad crest 21.6 feet 1568.0 Lake (unrestricted) Bentlev Creek

SECTION 2 ENGINEERING DATA

2.1 <u>Design</u>. Review of available information in the files of the Commonwealth of Pennsylvania, Department of Environmental Resources, revealed that some correspondence, permit information, pictures and several design drawings were available for review. Mr. Thomas Calkins, Sr. and Mr. Theodore W. Calkins, Jr., accompanied the inspection team during the inspection. Both men are members of the Tim Leonard Rod & Gun Club, but neither member was able to provide any additional information.

2.2 <u>Construction</u>. No information exists regarding the construction of the dam other than the work was completed by members of the Tim Leonard Rod & Gun Club.

2.3 Operation. No operations are conducted at the dam.

2.4 Evaluation.

a. <u>Availability</u>. Engineering data were provided by PennDER, Bureau of Dams and Waterway Management. Two members of the Tim Leonard Rod & Gun Club were interviewed to obtain data relative to the maintenance of the dam.

b. <u>Adequacy</u>. This Phase I Report is based on the visual inspection and hydrologic and hydraulic analysis. Sufficient information exists to complete a Phase I Report.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

a. <u>General</u>. The onsite inspection of Lake Ondawa Dam was conducted by personnel of L. Robert Kimball and Associates on October 22, 1980 and January 15, 1981. Mr. Thomas Calkins, Sr., and Mr. Theodore Calkins, Jr. accompanied the inspection team during the October 22, 1980 inspection. The inspection consisted of:

- 1. Visual inspection of the retaining structure, abutments and toe.
- 2. Examination of the spillway facilities, exposed portion of any outlet works and other appurtenant works.
- 3. Observations affecting the runoff potential of the drainage basin.
- 4. Evaluation of the downstream area hazard potential.

b. Dam. The dam appeared to be in fair condition. From a brief survey conducted during the inspection, it was noted that the low spot on the top of dam existed adjacent to either edge of the spillway on the retaining walls. The earthen embankment section rises gently from the spillway to either abutment. \checkmark

It was observed that the spillway approach wingwalls and the walls of the spillway control section had recently been repaired. No cracks were observed on the spillway crest or adjacent retaining walls. The downstream face of the dam was observed to be a near vertical masonry wall. The masonry appeared to be in fair condition. A small erosion area was observed along the right edge of the masonry wall. The downstream face of the dam serves as the overflow section for the spillway. The 6" drainline outlet was observed at the base of the masonry wall. No flow was observed discharging from the pipe. No seepage was observed on the masonry wall or along the toe of the wall.

c. <u>Appurtenant Structures</u>. The spillway for the dam exists at mid-embankment. The concrete wingwalls were recently repaired and the concrete appeared to be in good condition. A minor amount of brush and debris was observed in the discharge channel for the spillway. The spillway crest appeared to be in good condition.

It was reported by members of the Tim Leonard Rod & Gun Club that the drainline had not been operated for many years. Neither member of the club who accompanied the inspection team had ever seen the drainline valve operated.

d. <u>Reservoir Area</u>. The watershed for the Lake Ondawa Dam is covered almost entirely with forested land. The reservoir slopes are relatively steep immediately adjacent to the reservoir. The reservoir slopes did not appear to be susceptible to landslides which would affect the storage volume of the reservoir or overtopping of the dam by displacing water.

e. <u>Downstream Channel</u>. The downstream channel for the Lake Ondawa Dam consists of Bentley Creek. The downstream channel is relatively narrow for a distance of approximately 0.3 mile, at which point discharges from Bentley Creek flow through Big Pond. Several homes (10 people) are located immediately adjacent to Bentley Creek at the outlet of the downstream channel for Lake Ondawa.

3.2 Evaluation. In general, the dam and appurtenant structures appeared to be in fair condition. It was reported by members of the Tim Leonard Rod & Gun Club, who accompanied the inspection team, that repairs were made recently to the concrete approach and retaining walls for the spillway. The drainline flip gate has not been operated in many years. The operation of the flip gate should be evaluated.

SECTION 4 OPERATIONAL PROCEDURES

4.1 <u>Procedures</u>. The normal operating procedure at the lake is to maintain the reservoir at the spillway crest elevation. The 6" drainline has not been operated in many years. Neither member of the Rod & Gun Club who accompanied the inspection team had ever remembered the drainline being operated.

4.2 <u>Maintenance of the Dam</u>. No planned maintenance schedule exists for the dam. Maintenance of the dam is performed by club members on an unscheduled, as-needed basis. Recent maintenance at the dam has consisted of the reconstruction of concrete approach and spillway retaining walls.

4.3 <u>Maintenance of Operating Facilities</u>. No maintenance of the operating facilities are conducted at the dam. No known date is associated with the last operation of the spillway drainline flip gate.

4.4 <u>Warning System in Effect</u>. There is no warning system in effect to warn downstream residents of large spillway discharges or imminent failure of the dam.

4.5 <u>Evaluation</u>. Maintenance of the dam is considered fair, and maintenance of the operating facilities is considered poor. No known date is associated with the last operation of the drainline flip gate.

An emergency action plan should be available for every dam in the high and significant category. Such plans should outline actions to be taken by the operator to minimize downstream affects of an emergency and should include an effective warning system. No emergency action plan has been developed, and the owner should develop such a plan.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

a. Design Data. Limited information relative to the hydraulic and hydrologic design were available. Information contained in the DER files suggests that the spillway was designed to have a crest length of 24 feet and a depth of 3 feet, which was considered as having a discharge capacity of 324 cubic feet per second. Information in the files suggest that the design capacity was sufficient to $pr \gamma$ vide for over 50% of the maximum expected flood.

b. <u>Experience Data</u>. No rainfall, runoff or reservoir level data were available. The spillway reportedly has functioned adequately in the past.

c. <u>Visual Observations</u>. The spillway appeared to be in fair condition and adequately maintained. Minor amounts of brush and debris were observed in the spillway discharge channel.

The low spot on the embankment crest was observed to exist adjacent to either spillway retaining wall. The spillway is a rectangular shaped structure. The control section was assumed to exhibit the properties of a broad crested weir.

d. <u>Overtopping Potential</u>. Overtopping notential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway.

The Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D.

5.2 <u>Evaluation Assumptions</u>. To enable us to complete the hydraulic and hydrologic analysis for this structure, it was necessary to make the following assumptions.

1. Pool elevation in the reservoir prior to the storm is at the spillway crest elevation, 1568.0.

2. The top of dam was considered the low spot elevation, 1570.5.

3. The spillway crest was assumed to be a constant elevation along its entire length.

4. The effect of the foot bridge which spans the spillway crest was neglected in the analysis.

5.3 <u>Summary of Overtopping Analysis</u>. Complete summary sheets for the computer output are presented in Appendix D.

Peak inflow (PMF)	4840	cfs
Spillway capacity	255	cfs

a. <u>Spillway Adequacy Rating</u>. The Spillway Design Flood (SDF) is based on the hazard and size classification of the dam. The recommended spillway design flood for a dam of this size and classification is in the range of 1/2 PMF to PMF. Based on the potential for loss of life, the spillway design flood has been selected as the PMF. Based on the following definition provided by the Corps of Engineers, the spillway is rated as seriously inadequate as a result of our hydrologic and hydraulic analysis.

Seriously inadequate - All high hazard dams not capable of passing 50% of the spillway design flood (PMF) and where there is a significant increase in the downstream hazard potential for loss of life due to dam failure.

The spillway and reservoir are capable of controlling approximately 10% of the PMF without overtopping the embankment.

5.4 <u>Summary of Dam Breach Analysis</u>. As the subject dam cannot satisfactorily pass 50% of the PMF (based on our analysis) it was necessary to perform the dam breach analysis and downstream routing of the flood wave. This analysis determined the degree of increased flooding due to dam failure. It was the judgement of the evaluating engineer that the dam was capable of sustaining a limited overtopping. The 3.45 feet of overtopping associated with the 1/2 PMF event was considered sufficient to cause failure of the structure due to the depth of flow and the duration of overtopping. A pool elevation of 15/3.5 feet was considered sufficient to cause failure of the dam due to overtopping. An overtopping depth of 3.0 feet was considered in our analysis.

The results of the dam breach analysis indicate that the downstream potential for loss of life and property damage is significantly increased from that which existed prior to failure. Three homes located along the stream would be damaged due to the flood wave associated with the simulated dam failure. Therefore, the spillway is rated as seriously inadequate. The dam is classified as an unsafe, non-emergency structure. Details of the downstream routing of the flood wave are included in Appendix D.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. <u>Visual Observations</u>. No visible deficiencies were observed during the inspection which denoted the need for emergency action. No erosion was observed on the embankment crest. No major erosion or seepage were observed on the downstream face of the dam or along the toe. No movement or misalignment suggesting settlement of the dam was observed.

The spillway appeared to be in fair condition and adequately maintained. No cracks were observed in the spillway channel. The approach wingwalls and channel retaining walls had recently been repaired. The downstream masonry face of the dam (spillway overflow section) appeared to be in fair condition. A small erosion channel was observed along the right edge of the wall.

b. Design and Construction Data. Limited information relative to the original design of the dam was available in the DER files. Two drawings relative to the original design appear in Appendix E. No construction data was available for review. It was noted in the DER correspondence file that the construction of the dam was completed by members of the Tim Leonard Rod & Gun Club.

c. Operating Records. No operating records exist for this dam.

d. <u>Post Construction Changes</u>. Based on information contained in the DER correspondence file, it appears as though the downstream masonry face of the dam was refaced sometime between 1935 and 1948. More recent modifications include the repair or reconstruction of concrete approach and spillway retaining walls.

The original design for the dam included the construction of a roadway traffic bridge across the spillway crest. Past inspection reports indicate that the bridge was removed during 1948. The existing foot bridge which spans the crest was constructed since 1948, but no date is associated with the construction period.

e. <u>Seismic Stability</u>. The dam is located in seismic zone 1. No seismic stability analyses have been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake loading. Since no signs of instability were noted during the inspection, the Lake Ondawa Dam is assumed to be safe for earthquake loading.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The dam appeared to be in fair condition and adequately maintained. No seepage was observed during the inspection, although past inspection reports show a history of seepage especially around the 6 inch blow-off pipe. The concrete paving on the spillway crest appeared to be in fair condition and adequately maintained. No major deterioration of the concrete was observed. It was noted that the approach wingwalls and control section channel walls had recently been repaired or reconstructed. The concrete for the approach and retaining walls appeared to be in good condition.

The downstream face of the dam (spillway overflow section) appeared to be in fair condition. The near vertical masonry wall did not show any signs of extreme erosion. A small erosion area was noted to the right of the overflow section.

The visual observations, review of available data, hydrologic and hydraulic calculations and past operational performance indicate that the Lake Ondawa Dam and Reservoir is capable of controlling less than 10% of the PMF. The spillway is termed seriously inadequate. The dam is classified as an unsafe, non-emergency structure.

b. <u>Adeqacy of Information</u>. Sufficient information is available to complete a Phase I Report.

c. <u>Urgency</u>. The recommendations suggested below should be implemented as soon as possible.

d. <u>Necessity for Further Investigation</u>. In order to accomplish some of the recommendations/remedial measures outlined below, further investigations will be required by a professional engineer knowledgeable in dam design and analysis.

7.2 Recommendations/Remedial Measures.

1. A detailed hydrologic and hydraulic analysis should be conducted by a registered professional engineer knowledgeable in dam design and construction to increase the spillway capacity.

• 2. It should be ascertained whether the upstream flip valve on the 6 inch cast iron pipe drainline is capable of operation. If the flip gate is operable, it should be operated on a regular basis to insure it functions for its intended use. If the upstream flip gate is not operable, it should be made operable or other provisions should be made for upstream closure of the pipe through the embankment.

3. The erosion observed along the right edge of the downstream face of the vertical masonry wall should be repaired as soon as possible.

4. A warning system should be developed to warn downstream residents of large spillway discharges or imminent failure of the dam.

5. A regularly scheduled operations and maintenance program should be prepared and implemented to insure the continued safe operation of the structure.

6. A safety inspection program should be implemented with inspections at regular intervals by qualified personnel. Particular attention should be paid to the condition of the masonry and its ability to support the earth embankment and any seepage that may develop.

APPENDIX A CHECKLIST, VISUAL INSPECTION, PHASE I

CHECK LIST VISUAL INSPECTION PHASE I

ŀ.

1

	STATE Pennsylvania ID# 517	HAZARD CATEGORY H1gh	TEMPERATURE 35°
• FUENCE •	NTY <u>Bradford</u>		THER <u>Clear and cold</u> .
	NAME OF DAM Lake Ondawa Dam COU	TYPE OF DAM Farthfill 0.1980	DATE(s) INSPECTION January 15, 1981 WEA

TAILWATER AT TIME OF INSPECTION None M.S.L. _____M.S.L. POOL ELEVATION AT TIME OF INSPECTION 1567.7

INSPECTION PERSONNEL:

Jeffrey Kimball, P.F L. Robert Kimball and Associates	T. McConnell - L. Robert Kimball and Associates	r. Thomas Calkins, Sr Tim Leonard Rod & Gun Club	r, Theordore W. Calkins, Jr. = Tim Leonard Rod & Gun Club	0.T. McConnell
Jeffrey Kimball, P.F 1	T. McConnell - L. Robert 1	r. Thomas Calkins, Sr T	r. Theordore W. Calkins, J	

... RECORDER

MENT
IBANK
Ξ

)

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	None noted.	
SURFACE CRACKS	•	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None noted.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Erosion observed along the right edge of the downstream face of the vertical masonry wall [spillway overflow section].	Should be repaired.
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Appears to be all right.	
RIPRAP FAILURES	None.	

1

EMBANKMENT

.-2.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION	Not excessive.	
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	An erosion area was observed along the right edge of the downstream face of the dam [spillway overflow section].	The erosion should be repaired.
ANY NOTICEABLE SEEPAGE	None.	
STAFF GAUGE AND RECORDER	None.	
DRAINS	None.	

CONCRETE/MASONRY DAMS

100 C 100

3

<u>, - 1</u>

VISUAL EXAMINATION OF	OBSFRVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	Not applicable.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Not applicable.	
DRAINS	Not applicable.	
WATER PASSAGES	Not applicable.	
FOUNDATION	Not applicable.	

CONCRETE/MASONRY DAMS

1.111

18

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Not applicable.	
STRUCTURAL CRACKING	Not applicable.	
VERTICAL AND HORIZONTAL ALIGNMENT	Not applicable.	
STNIOL HTILONOM	Not applicable.	
CONSTRUCTION JOINTS	Not applicable.	
STAFF GAUGE OR RECORDER	Not applicable.	

OUTLET WORKS

ç

. - 2

VISUAL EXAMINATION OF	OBS ERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Not applicable.	
INTAKE STRUCTURE	Not observed. Flip gate control on intake. See Appendix F.	If the gate is not operable it should be repaired or some other means should be developed to provide
OUTLET STRUCTURE	Not applicable.	upstream closure for the draft line 6 inch drainline outlets on the downstream face of the dam.
OUTLET CHANNEL	Unobstructed.	
EMERGENCY GATE	6" flip gate.	The gate has not been operated in the recent past.

UNCATED SPILLWAY

ļ

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Concrete appears to be in fair condition. No excessive deterioration of the channel was observed.	
APPROACH CHANNEL	Unrestricted.	
DISCHARGE CHANNEL	Minor amounts of brush and debris in the discharge channel.	
BRIDGE AND PIERS	A small foot bridge spans the spillway crest.	

A-7

CATED SPILLWAY

......

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	Not applicable.	
APPROACH CHANNEL	Not applicable.	
DISCHARGE CHANNEL	Not applicable.	
BRIDCE AND PIERS	Not applicable.	
CATES AND OPERATION EQUIPMENT	Not applicable.	

DOWNSTREAM CHANNEL

ļ

1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	The spillway discharge channel for the Lake Ondawa Dam consists of Bentley Creek. The channel is relatively steep and no major obstructions consists which would inhibit discharges through the channel.	
SLOPES	Appear to be stable.	
APPROXIMATE NO. OF HOMES AND POPULATION	Several homes are located at the outlet of Bentley Creek at the Village of Big Pond. The population of the affected homes is estimated at 10 people. The homes are located approximately 0.3 mile downstream of the dam.	A downstream warning system is recommended.

RESERVOIR

1

UTCHAT EVAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ALDOLD TOWITING	Moderate to steep hut appear to be stable.	
SLOPES		
	Unknown.	
SEDIMENTATION		

INSTRUMENTATION

A Contraction

.

VISUAL EXAMINATION OF	0BSERVATI ONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETEKS	None.	
OTHER	None.	

APPENDIX B CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION, PHASE I

	CHECK LIST ENGINEEKING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I	NAME OF DAM <u>Lake Ondawa Dam</u> ID# <u>PA_517</u>
LTEM	KŀMAKKS	
S-BUILT DRAWINGS	None.	
GEGIUNAL VICINITY MAP	U.S.G.S. 7.5 minute Bentey Creek quadra	ingle.
ONSTRUCTION HISTORY	Limited information available in the D	k files.
YPICAL SECTIONS OF DAM	See Appendix E.	
NITLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS AINFALL/RESERVOIR RECORDS	See Appendix E. See Appendix E. See Appendix E. None.	

4 Ohner

TTEM	REMARKS
DESIGN REPORTS	ljnknown.
GEOLOCY REPORTS	IJnknown.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPACE STUDIES	None. Limited information available in DER files. None.
MATERIALS INVESTIGATIONS BORING RECORDS LABURATORY FIELD	None.
POST-CONSTRUCTION SURVEYS OF DAM	None known to have occurred. Unknown,
BORROW SOURCES	

B-2

В

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	No major modifications are known to have occurred.
HICH POOL RECORDS	None.
POST CONSTRUCTION ENCINEERING STUDLES AND REPORTS	None known to exist.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Unknown.
MAINTENANCE OPERATION RECORDS	None.

B-3

ITEM	RFMARKS
	See Appendix E.
SPILLWAY PLAN	
SECTIONS	
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	See Appendix F.

ing Blackers - Addres

-

B-4

l

APPENDIX C PHOTOGRAPHS

1

LAKE ONDAWA DAM PA 517

Sheet 1

Front

(1)	Upper	left	-	Spillway approach, upstream face of the embankment section and right abutment.
(2)	Upper	right	-	View of upstream face of embankment section and the left abutment area. Note the bridge which spans the spillway crest.
(3) (4)	Lower Lower	left right	-	Spillway crest. View of the downstream face of the spillway overflow.

Back

Ch. x

- (5) Upper left Right abutment of the spillway overflow. Note the erosion along the bank and the erosion at the contact of the masonry wall and the natural earthen embankment.
- (6) Upper right Downstream exposure.

C-2

APPENDIX D HYDROLOGY AND HYDRAULICS

.

APPENDIX D HYDROLOGY AND HYDRAULICS

<u>Methodology</u>. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Investigation), September, 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analysis is presented below.

1. <u>Precipitation</u>. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 33" prepared by the U.S. Weather Bureau.

The index rainfall may be reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. <u>Inflow Hydrograph</u>. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
Ct	Coefficient representing variations of watershed	From Corps of Engineers*
L	Length of main stream channel miles	From U.S.G.S. 7.5 minute topgraphic
Lca	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
Ср	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic

*Developed by the Corps of Engineers on a regional basis for Pennsylvania.

3. <u>Routing</u>. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input, and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

4. <u>Dam Overtopping</u>. Using given percentages of the PMF, the computer program will calculate the percentage of the PMF, which can be controlled by the reservoir and spillway without the dam overtopping.

5. Dam Breach and Downstream Routing. The computer program is equipped to determine the increase in downstream flooding due to failure of the dam caused by overtopping. This is accomplished by routing both the pre-failure peak flow and the peak flow through the breach (calculated by the computer with given input assumptions) at a given point in time and determining the water depth in the downstream channel. Channel cross-sections taken from U.S.G.S. 7.5 minute topographic maps were used in the downstream flood wave routing. Pre and post failure water depths are calculated at locations where crosssections are input.

HYDROLOGY AND HYDRAULICS ANALYSIS DATA BASE

NAME OF DAM: Lake Ondawa Dam PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.2 (0.97) = 21.53 inches 2 STATION 1 3 Station Description Lake Ondawa Drainage Area (square miles) 1.03 Cumulative Drainage Area (square miles) 1.03 Adjustment of PMF for Drainage Area $(%)^{(1)}$ 6 hours 117 12 hours 127 24 hours 136 48 hours 143 72 hours 145 Snyder Hydrograph Parameters Zone (2)Cp (3) 11 0.62 Ct (3) 1.50 L (miles) $\binom{4}{4}$ Lca (miles) $\binom{4}{4}$ tp = Ct(LxLca) 0.3 hrs. 1.0 0.2 0.93 Spillway Data Crest Length (ft) 21.6 Freeboard (ft) 2.5 Discharge Coefficient 3.2 1.5 Exponent (1)Hydrometeorological Report 40 (Figure 1), United States Weather Bureau and U.S. Army Corps of Engineers, 1965. (2)Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's coefficients (C_p and C_t). (3)Snyder's Coefficients. (4)L=Length of longest water course from outlet to basin divide. Lca=Length of water course from outlet to point opposite the centroid of drainage area.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

 DRAINAGE AREA CHARACTERISTICS:
 1.03 sq.ml.

 ELEVATION TOP NORMAL POOL (STORAGE CAPACITY):
 1568 [153 ac-ft]

 ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY):
 1570.5 [215 ac-ft]

 ELEVATION MAXIMUM DESIGN POOL:
 Unknown

 ELEVATION TOP DAM:
 1570.5 [10w spot]

SPILLWAY CREST:

а.	Flevation	1568.0			
ь.	Type	Broad crest			
0.	Wideb	Crest length=21.6 feet			
с. а	Length	23 feet			
<u>a</u>	Location Spillover	Mid-embankment			
f.	Number and Type of Gates	None			

OUTLET WORKS:

2	Time	One 6	, ''	diameter	cast	iron	pipe	with	flip	gate	
a .	LVDE		_								-

ь.	Location	Upstream_slope
с.	Entrance inverts	Unknown
d.	Exit inverts	1553.4
e.	Emergency drawdown	facilities6" diameter CIP

HYDROMETEOROLOGICAL GAUGES:

a.	Туре	None
Ъ.	Location	None
c.	Records	None

MAXIMUM NON-DAMAGING DISCHARGE:

NAT NA	NE AND CHERNA
NUM	INER
CONSULTING ENGINEERS & ARCHITECTS FREMENING PENNEVIVANIA	SHEET NO OF
	,
	• • • • • • . .
E - E	
· · · · · · · · · · · · · · · · · · ·	
ه ۲۰۰۰ و و در مراجع	en e
the second s	
	· · · · · · · · · · · · · · · · · · ·
	Ξ 2 Ξ Ξ Ξ + 1
۲	
FROM THE COULD ET LO DU	ie i e i
ایٹ (الای پالا) - اللای و راپار میں اثر قرر راپا ا	· · · · ·
7023 SN - 220 01AAR AL 72 /	
	■ E= + · · · · · · ·
. co = = y/c3	"Zo Marman Jarra A Ma
Y = 20 (23 - , 53.3 ALIT	
3	
AT ELEV FOU AREA = 3	- <u>-</u>
AT ELEV. ADD ADER + 59 5	
07 JF JXM 15 V 5135 244	

-5

<u>~</u>н

 Σ NAME NUMBER ____ PL - 517 L. ROBERT KIMBALL & ASSOCIATES SHEET NO. _____ OF ___ 5 CONSULTING ENGINEERS & ARCHITECTS BY 071 DATE 3/81 PENNSYLVANIA ---- EBENSBURG EREACH ANALYSIS THE PME ANALYSIS INDICATES THE DAM IS CLELTOPDED BY 3.45 FEET DURING THE 12 PMF. THE DEPIN OF OVERTING AND OJENTION IS CONSIDERED SUFFICIENT TO CAUSE FAILURE OF THE STRICTURE. FROM TO, ON ALE 3 OF 5 15-3.5 V 570.5 1568.0 <u>ن</u> ا <u>΄.</u>Ξ - *1555.*0' - 20' BRWID = 20 = 0.5 0.5 PMF UTILIZED Z ELBM = 1555.0 FOR BREACH ANALYSIS. TFAIL = ZHRS WSEL = 1568.0 FAILEL = 1573.5 NOTE: BRWID & E_BM SELECTED BASED ON ONTA CONTAINED IN DER. FILES (INSPECTION REPORT, DATED 7.5-29) WHICH DESCRIBED EXISTING BREACH CREATED BY THE OWNER IN AN A TEMPT TO DRAIN THE RESERVOIR. OTHER WEDRMATION CONTAINED IN THE FILES INDICATED THE BOTTOM OF THE BREACH WAS 0~ BEDROCK.

254	NAME
	NUMBER PA - 517
CONSULTING ENGINEERS & ARCHITECTS	SHEET NO. 5_0F_5_
EBENSBURG PENNSYLVANIA	BY DATE 3/3/
REACH CROSS-SECTIONS	BASED ON DATA OBTAINED
FROM U.S.G.S. T.S MIN. Q	JA0.
DIERBANC MANNING'S 7	n = 0.06 Assumed
STREAMBED MANNINGS	n = 0.05 Assume 0
Note:	
THE INCOME OF RUL	PUR STORTER AT
THE OUTLET OF A N	ALZOW CHANNEL (ZERCH I)
DOWNSTREAM OF THE	DAM THE VILLAGE
AUG AT THE EDGE	SE A SELATIVELY WIDE
FLOJO PLAIN (REACH	2).
BENCH No. 1 MODELS	THE FLOW THROUGH
THE NARROW CONNE-	REAM CHANNEL AND
REACH NJ. 2 WAS PR.	UNDED TO MODEL FLOWS
THEOLGH THE YILLAGE	•

	•								-	-			-	~	-	-	_**008	• مير	 Vipelin) H	•_					-
27				.	3					-											-		– – –	, [
!													•		•										
t t					:	•	•								1										
	F Lawa Dam 1	Þ					90.0	en•n			1-	1578													
	THE PM	5			~4		145		1		-1568	2205													
	RATIOS OF AFETY OF FSERVOIR	-					143			•		15/3													
	6 USING SIS UF S GH THE R	D					136			-	•	15/2 565	1600												
	ERTOPPIN LC ANALY EU THROU	5					127			~	•	255 255	1580												
	F DAM UV HIYDRAUL	1	- <u>-</u>				117	6		UGH ONDA		1570	15 70.5												
- 60 - 8	ALYSIS 0	о.	*		٦	FLOW	21.53	0+62	6 7 7	THRO		1569	1568												·
E FREC JULY 197 APR 80	AN HYI	887	5 0•		0	N1	-	66.0	~ -	L	•	156 0	1548	510.5	66										
JROGRAPH PACKAG FY VERSION 3DIFICATION 01 ************************************	444	5 6 -	1		¥	2:	Ε α. •	- 3)	< ¥	Υ.	1,	4 S - 1	<u> </u>	105 .	¥	•									
FLOC 471 DAM 7E LAST M		e in .	• •		80	6	11	13	12	91	18	20	52	24	5 2										
																1			-						

n-10

1.1

UN DALE 0131212 MANTARIS OF DAM OFFENDING UNING ATTERS OF THE DAM MANTARIS OF DAM OFFENDING HAVEN A DAM MANTARIS OFFENDING ATTERS AND A DAM MANTARIS OF DAM OFFENDING ATTERS OF A DAM MANTARIS OF DAM OFFENDING ATTERS OFFENDING MANTARIS OFFENDING MANTARIS OFFENDIN	HARROW WORKAN HARROW HARROW HARROW HARROW HUDDD HYDROGRAPH PACKAGE (HEC-1) Am Safety Version July 1978 Last Modification ol Apr 80 Hastereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee			
MANYARA OF OM OVERTOPING UNING ANTIGO OF HE PHE HANYARA OF ONM OVERTOPING UNING ANTIGO OF HE PHE HANYARA OF PHE ADUED THADWAH THE REFERENCE I (HALL) MANYARA OF HE ADUED THADWAH THE REFERENCE I (HALL) MANYARA OF HE ADUED THAD WERE ANY THAD THAD ANY ANTIGO OF HE IN MANYARA MALTI-PLAN ANLYSES TO BE REFERENCE MALTI-PLAN ANTY ANTY AND	UN DATE* @1/03/05. Time* 09.35.26.			
No MMIN LAN LAN MMIN LAN MAIN LAN MAIN LAN	ANALYSIS OF DAM OVERTOPP Hydrologic-hydraulic Ana Ratios of PMF Routed Thr	ING USING RATIOS OF THE PMF LYSIS OF SAFETY OF LAKE ONDAWA OUGH THE RESERVOIR (PA-517)	DAM	
MULTI-PLAN MALYEES TO BE PERFORMED RFT0309 .10 .50 1.00 NUMARY ANALYEES TO BE PERFORMED NUMARY ANALYEES TO BE PERFORMED SUB-AREA RUNOFF COMPUTATION INFLOM INFLOM ISTA ICOMP IECON ITAPE UPER INAME ISTAGE TAUTO INFLOM INFLOM INFLOM INFLOM ISTA ICOMP IECON ITAPE UPER INAME ISTAGE TAUTO INFLOM INFLOM INFLOM INFLOM INFLOM INFLOM INFLOM INFLA INTO	NQ NHR NMIN IDAY 288 0 15 0 JOPER 5	UB SPECIFICATION IHR IMIN METRC IPLT 0 0 0 0 NWT LROPT TRACE 0 0 0	IPRT NSTAN 0 0	
INFLOW SUB-AREA RUNGF COMPUTATION INFLOW ISTA ISTA ISTA ISTA ISTA INFO ISCON INFO ISCON INFO ISCON INFO ISON INFO INFO INFO ISON INFO INSEN INFO INFO INFO INFO INFO INFO INFO INFO INFO INFO	MULTI-PLAN NPLAN RTiqê#/ •0\$ •10 •50	ANALYSES TO BE PERFORMED = 1 NRTIO= 4 LRTIO= 1 1.00		
Istra Icom IECON Itage JULY Istra Istra Istra INAME I	SUBAR INFLOW	EA RUNDEF COMPUTATION		
IHYDG IUHG TAREA SMAP IHSDA RATIO ISMU ISAME LOCAL 1 1 1 1.03 1.00 0.00 0 1 0 SPFE PMS RECLP DATA R48 R12 R96 SPFE PMS 117.00 127.00 136.00 143.00 145.00 0.00 0 0 0 0 0 0 0 0 0 0 1 117.00 127.00 136.00 145.00 0.00 0 0 0 137.00 136.00 145.00 0.00 0 0 0 0 143.00 145.00 0.00 0 0 0 0 145.00 145.00 0.00 0 0 0 0 145.00 145.00 0.00 0 0 0 0 0 0 0 0 0 0	ISTAG ICOMP I I 0	ECON ITAPE JPLT JPRT 0 0 0 0 0	INAME ISTAGE TAUTO 1 0 0	
SPFE PMS Recip Data R12 R96 0.00 21.53 117.00 127.00 136.00 145.00 0.00 1.60 127.00 136.00 143.00 145.00 0.00 0.00 0 0.00 21.53 117.00 127.00 136.00 145.00 0.00 1.60 127.00 127.00 136.00 143.00 145.00 0.00 0 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0 0.00 0.00 1.00 1.00 1.00 0.00 UNIT HYDROGRAPH DATA 1.00 1.00 1.00 0.00 0.000	14706 1046 148EA SNAP 1 1 1.03 0.00	HYDROGRAPH DATA THSDA TRSPC RATIO ISNOW 1.03 1.00 0.000 0	I SAME LOCAL	
LKUPFI STRKR DLTKH RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX RTIMP 0 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.	SPFE PMS K6 0.00 21-53 117.00	PRECIP DATA Riz R24 R48 R72 127.00 136.00 143.00 145.00	R96 0.00	
UNIT HYDROGRAPH DATA	LKUPF SFRKR DLTKN RTIOL ERA 0 0.00 0.00 1.00 1.00 0.	LOSS DATA IN STRKS RTIOK STRTL CN U0 0.00 1.00 1.00	57L ALSMX "RTIMP •05 0•00 0•00	
	ς Σ	IT HYDROGRAPH DATA	,	

,

,

				÷						
	96. 5.		•			, , , , , , , , , , , , , , , , , , ,	-			
IVALS	.3 VOL# 1.00 129. 7.	•							: • • •	•
1= 0 RTIOR= 2.00 AND R= 3.46 INTER	•93 MOURS• CP# •6 231• 173• 13• 9•				۱	•				
3 CP* .62 NIJ Recession Data Orcsn*05 And PP Are TC* 4.27	0RDINATES, LAG= 403- 309- 23- 17-							-		
TP= .9 5 5 STR10= -1.50 4 GIVEN SNYDER CP /	21 END-OF-PER10D 348. 435. 40. 30.					•				
.RK COEFFICLENTS FROM	UNIT HY DROGRAPH 54. 192. 72. 64.			: -	•					
OXIMATE CLA										

1

A COLUMN

HIPBOGGRAMM ROLLING ROLIE THROUGH ONLANA ISTA ICOP ICOP ICON INFE PPT INME ISTAGE TIUPO ISTA ICOP ICOP ICON INFE PT INME ISTAGE TIUPO ISTA ISTA ICOP ICON INFE PATA BARE ISTAGE ISTA ICOP ISTAGE INFO PLOM 0.00 1571.00 1571.00 1571.00 1577.00 FLOM 0.00 63.00 1571.00 1571.00 1577.00 ISTA 0.00 63.00 1571.00 1573.00 1577.00 ISTA 0.00 63.00 1571.00 1573.00 1577.00 ISTA 0.00 63.00 1571.00 1573.00 1573.00 1574.00 FLOM 0.00 63.00 1573.00 1573.00 1573.00 1574.00 ISTA 0.00 63.00 1573.00 1573.00 1573.00 1573.00 ISTA 0.00 63.00 1573.00 1573.00 1573.00 ISTA 0.00 63.00 1573.00 1573.00 1573.00 ISTA 0.00 1573.00 1573.00 1573.00 ISTA 0.00 1573.00 1573.00 1573.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ISTA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		*******	***		******	*	*******	****	
ROUE FINOURA ISTAGE INLAR ISTAGE INLAR ISTAGE INLAR ISTAGE ISTAGE INLING ISTAGE ISTAGE INLIG BOLOND ISTAGE INLAR BOLOND ISTAGE INLAR BOLOND ISTAGE INLAR BOLOND ISTAGE INLING BOLOND ISTAGE INLAR STAGE INTRODUCTION ISTAGE INTO INTRODUCTION ISTAGE INTRODUCTION ISTAGE INTRODUCTION ISTAGE INTRODUCTION ISTAGE INTO INTRODUCTION ISTAGE INTRODUCTION ISTAGE INTO INTO INTO INTO INTRODUCTION ISTAGE INTO INTO INTO INTO INTO INTO INTO INTO					HYDROGRAPH R	JOUT ING			
Isita Isita <th< th=""><th></th><th></th><th>ROUTE THROUGH</th><th>1 ONDAWA</th><th></th><th></th><th></th><th></th><th></th></th<>			ROUTE THROUGH	1 ONDAWA					
QL055 CL055 AVG ROUTING GATA IPHP LT 0.00 0.000 0.000 0.000 0.000 154.60 LT NSTAE 155.00 1570.00 1571.50 1573.60 1574.60 1574.60 FLOM 0.00 0.500 1571.50 1573.60 1574.60 1574.60 FLOM 0.00 0.500 1570.00 1573.60 1574.60 1574.60 FLOM 0.00 0.500 1570.00 1573.60 1574.60 1574.60 FLOM 0.00 0.500 1570.00 1573.60 1574.60 1574.60 FLOM 0.00 0.500 1573.60 1574.60 1574.60 1574.60 SIME REA 0.1 233.00 1574.60 1574.60 1574.60 SUMACE AREA 0.1 211. 1379. 213. 1371.00 CAPACITY 0.1 1510.1 1590. 1600. 0.00 CARCITY 1340. 1590. 1600. 0.00 0.00 LEWATION 1540. 1590. 1600. 0.00 0.00 LEEVATION 1540.0 1590. 1500. 0.00 0.00 LIDRE 0.00 <			151	NO ICOMP	IECON ITAP U	E JPLT 0 0	JPRT INAL 0	4E 15TAGE 1AUTO 1 0 0 0	
NSTR NSTR LAG MSTR LAG MSTR STRAT SIACE 1348-00 1595-00 1571-00 1571-00 1571-00 1574-00 1574-00 FLOW 0.00 0.500 1571-00 1571-00 1571-00 1574-00 1574-00 FLOW 0.00 0.59-00 155-00 235-00 1572-00 1574-00 4159-00 SUPFACE 0. 233 213 311 1370 2135-100 4113-00 SUPFACE 0. 133 213 1310 1370 2135-100 4113-00 SUPFACE 0. 133 213 1310 1370 2135-100 4113-00 SUPFACE 0. 13310 2135-100 2137-100 2137-100 2137-100 2137-100 2135-100 4113-00 CAPACITY 0. 1310 213 1310 2104 213-10 2137-100 2137-100 2137-100 2137-100 2137-100 2137-100 2137-100 213			0*0 0*0	55 AVG 00-00	ROUTING D JRES ISAM L	0,41,4 16 10,00 1 0	gmg I 0	LSTR 0	-
STAGE 1546-00 1595-00 1571-00 1572-00 1572-00 1574-00 1574.00 1570.00 1570.00			NSTE	ss nstol	LAG AMSK 0 U.OO	X 0.00 0	TSK STO 0.000 -156	44 [5PRAT	
FLOW 0:00 65:00 75:00 55:40 125:400 2405:40 SUBFACE AREA: 0: 23: 26: 31: 31: 31: CAPACITY: 0: 195: 21: 31: 1370. 2205:00 4415:00 CAPACITY: 0: 195: 21: 31: 1379. 31: 31: CAPACITY: 0: 195: 21: 1370. 1370. 200.00 4415:00 ELEVATION: 154:0: 15711. 1590. 1600. 0:00 0:0 0:0 ELEVATION: 154:0: 0:0 0:0 0:0 0:0 0:0 150:5: 0:0 0:0 0:0 0:0 0:0 0:0	ŠTAGE	1568.00	1569•00	1570.00	1574.50	1572.00	1573.00	1574.00 1576.00	
SURFACE AREA 0. 23. 26. 31. 31. CAACITY- 0. 153. 213. 511. 1379. CAACITY- 1540. 1510. 1500. 1600. ELEVATION- 1540. 1511. 1580. 1600. CARE 5PMID COOM EXPM ELEVI COOL CAREA EVEL 1960.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	FLON	00*0	65.00	185.00	255.00	565.00	1325+00	2205-00 4415-00	
CAPACITY- 0. 133. 215. 511. 1379. ELEVATION- 1540. 1540. 1540. 1600. CREL SPUID COON EXPN ELEV. COOL CAREA EPL 1960.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SURFACE AR	tea- 0.	23.	26.	37.	51.			
ELEVATION- 1348. 1548. 1540. 1600. CREL SPUID COOM EXPM ELEVL COOL CAREA EXPL 1968.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100FL COUD EXPD DAMMID 1970.5 0.0 0.0 0.0 0.0	CAPACI	TV- 0.	153.	215.	511. 13	.79.			
ELEVATION- 1546. 1510. 1580. 1600. CREL 5PWID COOM EXPW ELEVL COOL CAREA EXPL 1960.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				: ; ; ; ;	1	3 7 7 8	*		
CREL SPWID COOM EXPM ELEVL Cool CAREA EXPL 13660.0 0.0	ÉLËVATİ	ON- 1548.	1568.	1571.	1580. 16	.00			
· DAN DATA TOPEL COUD EXPD DAMUD 1570.5 0.0 0.0 0.0			CREL 1968+0	5PW10 C	00W EXPW 0+0	ELEVL CO	0. CAREA	ExpL 0.0	
					. 0 TOPEL COU 1570.5 0.	AM DATA ID EXPD 1 0 0.0	0.		•
								· · ·	
								1 8 9 1	
								• • •	
							·		
									:

		:		ł	1	•	1				,		
				1	1	·	;						
									-				-,
S								,					
OMPUTATIO				1 - 					i 1	ĸ			
NUNC C				ı			•	•					
ID ECON	UWS												
PLAN-RAT ETERS PER METERS	160 10 F1 AT10 4 1.00	4839. 137.0311	4418. 125.0911										
11PLE 1 JBIC MI Re kii (5 APPL 3 R/	20.	3016										
DR MUL	RAT 10 RAT 10	24. 68•	210			·							
SUMMARY F(I PER SEC(Ake miles	KATTU 2	484 13.701(276. 7.801(
 PERTOUT CUBIC FEE TN SQU 	ATTO 1 • 05	242. 6.851(123.										
E (END UF FLOWS IN	PLAN R		~					×					
NO STORAG	AREA	1.03	1•03 2•67]										
IK FLOW A	ATION		5										
PEA	s	1 A T											
	OPERATION	нургосгарн	ROUTED TO										

Lange Hard

		-
	-	
ME OF	I LURE JOURS	0•00 0•00
	TIME OF TI MAX OUTFLOW FA. HOURS HI	42-25 42-00
VID AT LON	OVER TOP MA HOURS	0.00 1.50 1.75 10.00
	MAXIMUM OUTFLOW CFS	123. 276. 2165.
•	MAX IMUM STORAGE AC-FT	189. 217.
	MAXIMUM DEPTH OVER DAM	0.00 0.10
OUTFLOW	MAXIMUM Reservoir W.S.ELEV	1569°48 1570°60 1573,95
	RATIO OF PMF	• 00 • 10 • • 00
	·	

D-15_

											•					•		+ .			•														-		1
								•													•														•		
		о Э					ł						;						-						1458										•		
MA IN L	441 4-411)								60.40				•	-1	4415								1		1498 2	, , ,				1436	-						
imort ditte a	HALL ONDA	c			T			145						-1568 -126	2205						1			0.06	252	-	-			0.085 450	0.0					-	
HOVA 12 18	TUPPING TO F	-					1	143						1573	1325	8			1673 6	1580				005	1500	1540				002	1480	•					
101 I. 16	ALVO OT	5						1 16					-	1472	202	50.5	1600		1 4 4 4	8061 1564			1	1560	057	047		-	•	1500	1 /00	•		•			
	TOUL THE	2						171				AWA	-	4201291	547	36.7	1580		~	~ ~	•		-	1041	1520	1520		1	•	1435	1460						
१०५ मध्य स	Soume of the P	ί	-	-			1.03	111		2.0		KUUGH UN		1570	185	26	1570.5		1565	1555				40.	002	275		,		90 • 00 •	1200						
1.278 80 ***** RATIOS OF	PLAN 1 A	с т		-	. 0	INFLOW	1	21.53	1 N . 67	5 05	1 2	ROUTE THE		1 1560	0 45	0 23	8 1568	10	un c			REACH 1		1 1 1 1 1 1	0 1540	0 1500	1 4	KEALT 2	1	6 • 05	0 1440						
891 F	∧ ∧	19 Z BI	1.			K1	T	- ⊢	0 - 1		¥	K]	- 1	71 76 158		8	SE 154	\$5 1 56	\$01570.		у. х 1	κ ι .	≻ 2	41 44		Y7 26	¥ 1	i >	. 1	Υ6 • 0	Y7 850	ō. ¥					
JERSTOG LETCATIOG																																					
AM TAFETT LASE MON BBBBBBBBB	~ ~	4	r ,	0~	- ac	; o	10	1:			15	16	11	81	00	16	22	23	24	< 7 4 7 4 7	27	28	29	2	1.6	33	40		16	38	0.4	14					
<u> </u>																•																	-				

Ę

4/2					–			[7		
	•					í				:		1		
ı			. 1	. .	:				•				•	
					:			1						
		•			;			1						
			: ,	1 · · ·				1						
	•					ł					d MI 00			
• · ·	1 1 1	· •	T AN 0			ł		u o			RT 0	·		
		:	S		:			TSTA		30	ALSMX 0.00			
		Σ-	1 PR T 0	:				NAME 1	I SA	4 D 2 D	1L 05			
		15146A 141 14-517	۲ 0		***			1 0	NUNS	R72 • UU	e NS			
		UNUN UNUA H IP	4	MED	* * *			JPR	- 0 0	145	TK11			
		R ANU ILAKE BREAC	IETRC 0 RACE 0	ERFOR 0* 1		TION		PLT U	RAT I 0.00	00•64 43•00	λ Υ	٩		
		E RVOI PING SND		0 8E P LKTI	*	MPUTA		т 	A1A 15PC • 00	• • • • • • • • • • • • • • • • • • •	8110 1.40	IAU H		
		HE RES VERTOF ASSUME	LERCE	5ES TG	* *	JFF CO		I TAPE 0		136-	DATA INKS	NGRAF		
		JGH TH TO OV AN 2 J	J SPEC HHR NWI ONIO	ANALYS 2 NKI	*	N RUNC		NO:	100000 1450/ 1.03	PREC1 812 27+00	1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	нурғ		
		THRUU 5 DUE H. PLJ	ີວັ ີ ≻ ລ ແທ	PLAN -		3-AREJ		IEC	NAP 00	8 0 10	EHAIN U.U	UND		
		UUTED 111060 BREACI	10A Jove	N N N	*	SUE		U O	50	117.6	0L 0L			
		PMF R CUND UMES	41 N 1 S	Ī	* *			9-	1.U3	РМS 1.53	¥ T			
		S UF I TREAM 1 ASSI	Ż	• 50	*			151	۰ ۲	у Шо	01_TKR 0.00			
EC=1) 1978 1978		RATIO DOWNS PLAN	NHR O	05=			FLOW		, N	SPF 0.0	80			
66 66 10 10 10 10 10 10 10 10 10 10 10 10 10			0 N () 8 8	k l l	*		2 1		ну <u>р</u> б 1		518 0.			
PACKA PACKA N 0 ***	n9. 35.		~		***				-		R0P1 U			
RAPH RAPH FRS [U 1CA1]	2.17.				* *						ب.			
YDROG ETY V MUDIF	↓TF# 8 MF#]													
000 -	N DA							•						
• • • • •	R							1						

•

/c					5						-				1			
		96. 5.										 	,					
* * *	ALS	-1 -1		-			-	ar na shi an						4		•	·	
	2.00 3.46 INTERV 45. CP# .63	173.	·				- - - - - - - - - - - - - - - - - - -	•		1 1 2 3 3 3 3	6 							
NIA= U	15 RIIOR= 4.27 AND R= - 43 HOUG	11. 231.				1				·		·						
ζ₽= •6 <i>2</i>	LESSIUN DATA UKCSN= U TP ARE TC= DINATES- 146	23.								.•								
1µ= .43	HE -1.50 SNYDER CP AN	30.							•	•								
	SIRIUS FROM GIVEN	404 404 404				, 1		•		• • •								
	OEFFICIENTS	192. 54.										;						
	WATE CLARK C	54.													-			
	APPROXIN			1	ŀ		:			4				,			, , ,	

		REACH 1									
			151AÚ 3	1 CUMP	IECON 0	ITAPE 0	JPLT 0	184L 0	INAME IST	AGE TAUTO 0 0	
		0°0 01055	CL055 0.000	AV6 0.00	ALL PLAN ROUT IRES	IS HAVE SU ING DATA ISAME 1	AME 1.0P.T 0	0 (Wd 1		STR 0	
			NSTPS 1	NSTEL 0	L A G	AMSKK U • U0U	0.000 ×	15K U-000	STURA ISP	RAT 0	•
MAL DEPTH C	HANNEL KO	UT 1 NG			•						
(T)NO	0N(2)	(E)NO	ELNVI	ELMAX	RLNTH	SEL					
										-	
CR055 0 260	SECTION 	COORDINAT UU 200.U UO 275.0	ESSTA+ U 152U+U Ú 1520-Ŭ(ELEV•STA U 250.00	*ELEVET u 1>UU-UU 0 1540-UU	C _ 252,00	1498.00	258+00	1498.00		
TORAGE	0.00	•	80	1•03	2.01		3.32	4.95	6.9	2 9.21	11.83
14•78 126•36	18.06	22.5	2	28.87	37+12	् द	7.26	59+30	73.2	2 89+04	106.76
JTFLOW	00*00	177.3	3 V.	29 • 08	1723.36	3241	3.33	5385.47	8211.3	1 11798.72	16217.00
36.92 351.35	7622.92	32644 .3	.114 . E	15.98	53183.52	1069	7.86	89113.10 -	5.719E11	2 143873.33	88.117971
STAGE STAGE	1498.00	1500.2	1 151	02.42	1504.63	1506	5 . 8 4	1509•05	1511.2	14:6151 9	1515.68
00.046	1520.11	1522.3	2 15,	24+53	1526 . 74	1521	8.95	91•1641	1533.3	7 1535.58	1537.79
FLOW 535.03	0.00	117.3	з 1.	80 * 67	1/23.36	3241	¥•33	14.6863	8211.3	1 11 798.12	1621/•00
951.35 2	7622.92	32644.3	3 411	15.98	53183.52	6901	7•86	89113•10	113917.4	2 1438/3.33	179411.88

.....

Ċ,

								• •						I		
								, t		254.61	1042.18	921544.55 1	6063667.79 6	1462.31	1496 • 58	1 22.24.2159
•			1 A U E				:	; ; ;	1	14.602	950.43	691196•62	17.146.4424	1458.45	1443.16	24.144.62
•			and Tabur I I And		JUKA I APRAT				14.35.eBU	154.461	860.90	06.018444	4 2 7 H 1 H 7 • 2 3	142.6241	7/0671	495820.30
			- :	-	н. 1967 - 1967 1967 - 1967				047 DC	119.54	112.38	UJ•244466	en•feeulke	145201	1446.12	11-249-10
			Live o	HAVE SAFT HELATA LOAME LOBE	AM1.8 8 4 4000 - 14 1000		51 L 8500		•4£41 00+049	R 3 • 5 4	12.449	208442.44	61-1676676	144H.44	1482.841	96.*, 998(IC
	-		11 C - 41 U	ALL FLAND ROUTE	• • •		kt NTH 1404 - 0		4+EttVETC JU 1440+00 JÚ 1440-00	08.64	79•66¢	112390.79	1401210012	1445.20	1006101	117380-99
			1 1 6 8	65 67 64 60	vs nathe 1 o		1 ELMAX U 1560.0		TA+FLEV+ST/ U+U - 500+1 Ú+U - 1700+1	61.42	518.41	04.541.40	75853.42	1441.84	20°9741	09416659
•		14. 4. 11 2	151	41 025 C1 0	1.52		UNI3) EINN 1435-1		.00kDINATES5 30 300-00 146	10.20	443.30	9720.31	866735.7 22	1438.42	1472 . 63	4120.31
					-	TH CHANNEL RUL	0040, 0040 (2)ND (1)N		RUSS SECTION C 0.00 1500.0 850.00 1440.5	0,• 00	314.31	0.00	1506289.92	1435.00	1469-21	00*0
						HORMAL DEPT	ē.		C	STORAGE	1134.43	0UTFLUW 192064.95	819658.27	STAGE	1465.19	¥ F u M

1 : 4

t.	•	1 1	:	•			- 		-		•			4 4 4	•	
	11ME OF FAILURE HOURS	40.50		TIME OF FALURE HOURS	0.00										,	
UF UAM 70.50 215. 255.	TIME OF MAR UUTFLOW HOURS	42+50	DE DAN 70.50 2154 255	TIME OF MAX OUTFLOW HOURS	41.00			a second and second and second and								
1 1 UP (EURATION ÖVER TOP HUURS	4.33	T T 09 6	DURATION OVER TOP HOURS	<i>či • i</i>	F	TIME	42.50		T I ME HOURS	41.00	4	I JME HOUAS	42.50	ŧ	1 I ME
PILLWAY CRES 1568.00 153.	MAX F MUM (NIFE DW CFS	3457.	PTLLWAY CRES 1568.00 153. 0.	MAX1MUM OUTFLOW CFS	2165.	SIATION	MAX1MUM 51466+61	1507.0	STATION	MAX1MUM 51AGE +F T	1505.3	STATION	MAXIMUM SIAGENEE	1436.2	STATION.	MUM I X M
VALUL 5 00 3.	MAX I MUM S TURAGE AC+F I	308.	VALUE S UU 3.	MAX I MUM SI URAGE AC -F I	5 î î .	AN 1	MAX [MUM F LUM+CF S	3443.	AN 2	MAX1MUM FLUW CFS	2110.	AN J	MAX MUM FLUW CFS	3421+	AN Z	MUM XAM
111114 1568 • 15	MAXIMUN DFPTH UVER DAM	3 • 38	INITIAL 1568-	MAX1MUM DEPTH OVER DAM	3.45	P.	HAT IU	• 50	٦d	RATIO	• 50	h	HA110	•	1 d	
ELEVATION STORAGE OUTFLUW	MAX1MUM RESERVUIR W.S.ELEV	88°673'	ELEVATION STURAGE OUTFLOW	"MAXIMUH Reservoir W.S.ELEV	1573.95	•			-							
	KALLO OF PMF	• 50	•	RATIO UF PMF	• 50			•		•						
PLAN I	,		PLAN 2				•						١			
			•				- - 				: ;	•	(,		

APPENDIX E DRAWINGS

and the second second

0

.

Ę 30 €-El. 1215' TTTTT AMER <u>, ; ; ;</u> Wall octoss full length of dam 1 1/2 bars space 1 12" spaced 24" L 11' ٠ All Concrete 1:2.4 nusture • Section on E Scale 1"= 3'
Ç. 30 > N) × 9" space ! 12" Detail of Spillway spaced 24" ar 11' 00000000 00000 000000 0000 0000 Paving upstream from core >12 Core wall full length of dam Earth fill well tamped ¢ ale 1" - 3 E 2

APPENDIX F GEOLOGY

The Party Contraction of the Party of the Pa

وللمراجع المراجع

General Geology

The Lake Ondawa Dam is located in the (Glaciated) Low Plateaus of the Appalachian Plateaus Province. Topographically, the area is deeply dissected leaving only remnants of the plateau surface. It was once covered by the Wisconsin glacier of Pleistocene time which left behind glacial drift or outwash. The glacial lake and stream deposits are the most productive water-bearing materials in the area. The bedrock underlying the dam consists of sandstones, shales, and graywackes of the Susquehanna Group of Upper Devonian Age. This group is divided into three formations, the Oswayo Formation (youngest), the Catskill Formation, and the Marine Beds (oldest) which include the "Chemung" and "Portage" beds. The Big Pond Dam lies on the Chemung side of the Catskill/Chemung contact.

These strata strike to the northeast and dip toward the southeast in the study area. This is due to the dam being located on the northwest limb of the Blossburg Syncline, which is the common flank of the Wellsboro Anticline. The geologic structure is typical of the Plateaus province, which has a series of well-defined folds trending northeast-southwest. There is no known faulting in this area.

GEOLOGIC MAP OF AREA AROUND POMEROY MEMORIAL RESERVOIR DAM, SUGAR CREEK DAM AND LAKE ONDAWA DAM

SCALE 1:250,000

DEVONIAN

UPPER

CENTRAL AND EASTERN PE

One Oswayo Formation Response and greensk group for enreduce groups and substance with some while and suffryed encourses being includes red while which her me more memory continued. Relation to type Ourspond proved

Catskill Formation Christian of a brannish mates and sand some making only and greensile sand cone traggers named Eth Maintain Homestan, Stohula, and Delaware River in the cay

Marine books Gray to drive books, whiles, granuackes and sundannes contains. "Chamma bols and Porton" bods michains. Rocket, Brether, Harvell, and Terminers, Rock Tally Istnesstone at base

, 04 j

Susquehanna Group

VANIA

Rashed interns "Chemiunos Catakill, contaot, at. Second. Pennsylvania, Survey County reports, barbs on "Chemiung" side of line.

F-2

