AD-A099 059 UNCLASSIFIED	CORPS OF NATIONAL FE0 81	ENGINEERS DAM INSPECT	BALTIMORE	MD BALT M. LAKE	IMORE D QUINN	ISTRICI DAM (NO	DI ID N	F/G UMBER -	13/13 -ETC(U)	ì
ad a ad a 099059						3				
					2			22		

DELAWARE RIVER BASIN

TRIBUTARY OF MIDDLE CREEK, WAYNE COUNTY

PENNSYLVANIA

(E National Dur Inspection Program. LAKE QUINN DAM NDI ID APA-ØØ145 DER ID NUP 64-43 - MR. DATLD BEENON; SR. Delawar, Kiver Basin Micratary of middle Creek Name County. Pennsylvaria.

PHASE I INSPECTION REPORT .

NATIONAL DAM INSPECTION PROGRAM

12) 194

Prepared by

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203

Feb

States and a second data and a

409111

. / '

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

£

Sim For s Circs NDI ID No. PA-00145, DER ID No. 64-43

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

CONTENTS

Description

Page

SECTION	1	-	Project Information	1
SECTION	2	-	Engineering Data	7
SECTION	3	-	Visual Inspection	9
SECTION	4	-	Operational Procedures	13
SECTION	5	-	Hydrology and Hydraulics	15
SECTION	6	-	Structural Stability	20
SECTION	7	-	Assessment, Recommendations, and	
			Proposed Remedial Measures	23

APPENDICES

Appendix

<u>Title</u>

A	Checklist - Visual Inspection.
В	Checklist - Engineering Data.
С	Photographs.
D	Hydrology and Hydraulics.
E	Plates.
F	Geology.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Lake Quinn Dam
NDI ID No. PA-00145
DER ID No. 64-43
Small (12.2 Feet high; 305 acre-feet)
High
Mr. David Beynon, Sr. Rd 2, Lake Quinn Box 125 Waymart, PA 18472
Pennsylvania
Wayne
Tributary of Middle Creek
4 November 1980

 $-\chi$ The visual inspection and review of available design and construction information indicate that Lake Quinn Dam is in fair condition. Deficiencies noted during the inspection included the lack of functional drawdown facilities and minor seepage through the masonry near the right abutment.

11

Based on the size and hazard classification of the dam, the recommended Spillway Design Flood (SDF) varies between $\frac{1}{2}$ the Probable Maximum Flood (PMF) and the PMF. The $\frac{1}{2}$ PMF has been selected as the SDF due to the size of the dam and reservoir, and the downstream conditions. The hydrologic and hydraulic computations indicate that the combination of reservoir storage and spillway discharge capacity will pass only 3 percent of the PMF without overtopping the dam. Overtopping the dam could cause failure, which would lead to a significant increase in downstream loss of life and property damage. Therefore, the spillway for Lake Quinn Dam is considered to be seriously inadequate, and the dam is judged to be unsafe, non-emergency.

It is recommended that the owner immediately:

(1) Retain a qualified professional engineer to perform a detailed hydrologic and hydraulic study to further assess the discharge capacity of the spillway and develop remedial measures found necessary to provide adequate spillway capacity. This study should also include development of an adequate drawdown facility for the dam having positive upstream closure capability.

(2) Seal the existing sluiceway, unless rehabilitation is undertaken.

(3) Monitor, the seepage near the right abutment and take appropriate remedial action should the condition begin to worsen significantly.

(4) Remove trees and brush from the abutments, and the cable and wire from the upstream face.

(5) Develop formal surveillance and downstream emergency warning system for use during periods of heavy or prolonged precipitation.

ív

LAKE QUINN DAM

(6) Prepare an operation and maintenance manual or plan for use as a guide in the operation of the dam during normal and emergency conditions.

C

(7) Develop a schedule of regular inspections by a qualified engineer.

Approved by:

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers

anu - 1

DATE: JAMES W. PECK Colonel, Corps of Engineers District Engineer

OVERVIEW

LAKE QUINN DAM

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

LAKE QUINN DAM

NDI ID NO. PA 00145 DER ID NO. 64-43

SECTION 1 - PROJECT INFORMATION

1.1 General

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of non-Federal dams throughout the United States.

1

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

A. Description of Dam and Appurtenances

Note: The U.S.G.S. Quadrangle Sheet (Waymart, Pa.) indicates a reservoir elevation of 1352, which is used in this report as existing spillway crest elevation.

Lake Quinn Dam is an earthfill and dry stone masonry structure with an overflow spillway section and concrete cap. The overall dam length is approximately 150 feet and the low point of the dam's crest is 12.2 feet above the downstream toe. The spillway is an uncontrolled broad-crested weir having a length of 66 feet. There are no functional outlet facilities for the dam. The present spillway crest is 1 foot below top of dam.

Available records indicate that the dam was lengthened and reinforced by placing random fill on the upstream face at the masonry dam, sometime after 1946. A sluiceway (currently inoperable) was also constructed in the old millrace at that time. All normal inflow is discharged through the uncontrolled spillway at the present time.

B. Location: South Canaan Township, Wayne County U.S.G.S. Quadrangle - Waymart, Pa. Latitude 41⁰ 30.5', Longitude 75⁰ 25.6' Ref. Appendix E, Plates I & II

C. <u>Size Classification</u>: Small: Height - 12.2 feet Storage - 305 Acre-feet

D. Hazard Classification: High (Refer to Section 3.1.E)

E. <u>Ownership</u>: Mr. David Beynon, Sr. RD2 Lake Quinn Box 125 Waymart, PA 18472

F. Purpose: Recreation

G. <u>Design and Construction History</u>. No information on the original design and construction of the dam is known to exist. Sketches are available showing proposed work to be done in the late 1940's; however, it is not known specifically when this work was actually accomplished. Visual examination of the existing structure and available photographs indicate that, with some dimensional changes, the work proposed in 1946 was done sometime prior to 1965.

H. <u>Normal Operating Procedure</u>. The reservoir is normally caintained at the crest level of the uncontrolled spillway. Inflow occurring when the lake is at or above the spillway crest is discharged thru the uncontrolled spillway.

1.3 Pertiment Data:

A. Drainage Area (square miles)

From files:	4.7
Computed for this report:	9.7
Use:	9.7

B. Discharge at Damsite (cubic feet per second)

Maximum known flood Unknown Spillway at maximum pool (El. 1353.0) 200

C. Elevations (feet above mean sea level)

Note: Reservoir elevation of 1352.0 shown on Waymart, Pa. U.S.G.S. quad is used as spillway crest elevation.

Top of dam (low point)	1353.0
Top of dam (design)	Unknown
Spillway crest (current)	1352.0
Spillway crest (design)	Unknown
Streambed at toe	1340.8

D. <u>Reservoir Length (miles)</u>

	Spillway crest (El. 1352.0)	1.6
	Maximum pool (E1. 1353.0)	1.7
E.	Storage (acre-feet)	
	Spillway crest (El. 1352.0)	190
	Maximum pool (El. 1353.0)	305
F.	<u>Reservoir Surface (acres)</u>	
	Spillway crest (El. 1352.0)	104
	Maximum pool (E1. 1353.0)	125
G.	Dam	
	Note: Refer to plates in Appendix B plan and section	for
	Type: Dry stone masonry w/earthfill	upstream;

Type: Dry stone masonry w/earthtill upstream; concrete cap on crest.

Crest Length: 150 feet (incl. spillway)

Height: 12.2 feet (field measured; low pt.

to d/s toe)

Crest Width: 18.5' left of the spillway

7.4' between spillway and right abutment

Lá

Side Slopes:

Upstream: Vertical, upper 1.5' of left end and flat below this depth 1V:8H at spillway Downstream: Vertical

Zoning: Dry stone masonry w/earthfill upstream Cutoff: None reported; placed on bedrock Grouting: None reported.

H. Outlet Works: None

I. <u>Spillway</u>:

Type: Uncontrolled, rectangular concrete with broad crest Length: 66 feet Location: Middle of dam Low Flow Notch: None Approach Channel: Reservoir Downstream Channel: Bedrock bottom

SECTION 2

ENGINEERING DATA

2.1 Design

The available data for Lake Quinn Dam consist of files provided by the Pennsylvania Department of Environmental Resources (PennDER). Information available includes state inspection reports, various related correspondence, and three rough sketches dated April 1946 showing proposed improvements to the dam. No other plans or design details are known to exist.

2.2 Construction

No information is available on the original construction of the dam. Records indicate that the repairs planned in 1946 were eventually accomplished, although the specific date is unknown. This work included strengthening the masonry section by placing random earthfill on the upstream side and extending the dam to its present length. A battered masonry downstream face was also to have been added, but was apparently never constructed. PennDER inspection reports indicate that a clay blanket was placed on the upstream face in the early 1970's to stop leakage thru the dam.

2.3 Operation

No formal records of operation or maintenance exist. The owner lives near the left abutment of the dam and checks the dam regularly to determine if maintenance is necessary. The owner stated that, to his knowledge, the greatest spillway flows occurred during the 1955 and 1972 storm events, with

each causing a flow depth of approximately 2.5 feet over the dam and spillway. The most recent PennDER inspection report (4 October 1972) indicated that the dam was in satisfactory condition at that time.

2.4 Evaluation

a. Availability

All available written information and data was contained in the permit files provided by PennDER.

b. Adequacy

The available data, including that collected during the recent detailed visual inspection, are considered to be adequate to make a reasonable assessment of the dam. SECTION 3

VISUAL INSPECTION

3.1 Findings

A. General

The overall appearance of the dam is fair. The concrete cap on the dam and spillway is spalling and there are no facilities with which to draw down the lake. On the day of inspection, the pool was at its normal level with 0.1 feet of water flowing over the spillway (overflow section).

The visual inspection checklist and sketches of the general plan, profile, and section of the dam, as surveyed during the inspection, are presented in Appendix A. The survey datum is the reservoir elevation obtained from the U.S.G.S. Waymart, PA, quadrangle map. The owner, Mr. David Beynon Sr., was present during the inspection.

Photographs taken on the day of inspection are reproduced in Appendix C.

B. Stone Masonry and Embankment

Although there are some surface cracks and spalling of the 6"-10" thick concrete cap, no evidence of structural distress exists. The crest alignment, both horizontal and vertical, is good with no indications of movement. The downstream face of the dry-laid stone is in fair condition with

only a few stones missing. However, the old sluiceway has apparently been loosely filled with stone and timber and could be probed to a depth greater than 6 feet. The first 30 feet of the dam from the left abutment is battered at 3V: 1H with stone. The dam foundation is bedrock which is visible immediately downstream of the toe for the right two-thirds of the dam. This rock is thick bedded and in good condition.

The upstream earth embankment to the left of the spillway has a horizontal grass covered crest 8.6 feet wide. The upper 1.5 feet of the upstream face is a vertical wall of dry laid stone 2.5 feet wide. The portion of the upstream earth embankment adjacent to the spillway and right abutment is at the same elevation as spillway crest and slopes away from the stone masonry at IV:8H. Weeds are growing along the upstream side of crest and 4 to 8 inch diameter trees are growing at the embankment and abutment junctions. Two cables and one strand of barbed wire with a maximum height of three feet are supported on iron posts along the upstream limit of the crest.

Clear seepage is flowing at approximately 2 gpm from the downstream face about four feet below the crest and four feet to the right of the spillway. A pile of recently cut brush and small tree limbs obscures this area of the downstream face. Immediately downstream of the toe at the left end of the dam is an area of standing water. It is apparent from the type of vegetation that this area is usually wet. Inspection reports beginning in 1938 note that some seepage was observed at the right abutment and at the hillside on the left abutment. The area downstream of the toe of the overflow section is submerged by tailwater.

C. Appurtenant Structures

The spillway consists of a concrete capped overflow section of the dam 66 feet long, 7.4 feet wide and 1 foot deep. The concrete cap is 10 inches thick and has some spalling and surface erosion but no apparent structural defects. The approach channel is the reservoir with the bottom sloping at 1V:8H. Obstructions to flow are limited to the weeds and cables mentioned above. The downstream channel of the spillway consists of the vertical drop from the crest to the bedrock toe and a clear channel on bedrock for the full width of the spillway for the first 100 feet before narrowing to 10 feet wide. The channel immediately enters a shallow pond. The abandoned 2.5 foot high by 2.0 foot wide sluiceway in the left end of the dam is filled loosely with stones on the downstream side and is reportedly blocked on the upstream end by the stone masonry and earth embankment. No functional facility exists for drawing down the lake.

D. <u>Reservoir Area</u>:

About 25 per cent of the shoreline of the reservoir has residential development. The reservoir banks and the watershed are about 50% wooded and have flat to moderate slopes. The banks appear stable and major siltation is not expected.

E. Downstream Channel:

The downstream channel is tree lined with a flat slope. The first obstruction downstream is a road crossing about 1,500 feet downstream of the

dam. Approximately 4,000 feet from the dam another road crosses and one house is adjacent to the stream. Three more minor roads are crossed before reaching the Town of Varden 3.0 miles downstream of the dam. Four homes are located within the floodplain at this point. The proximity of these homes to the stream creates a high hazard to loss of life if the dam fails.

F. Evaluation

The visual inspection of Lake Quinn indicates that the dam and spillway are in fair condition. Maintenance is required to remove existing trees and brush from the embankment and abutments. Adequate drawdown facilities should be provided.

SECTION 4

OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure

The facility is essentially self-regulating. Excess inflow passes through the emergency spillway located in the center of the dam. Inflows in excess of the emergency spillway capacity will overtop the concrete capped dry stone masonry embankment. No formal operations manual exists.

4.2 Maintenance of Dam

The condition of the dam as observed by the inspection team was fair. Basic maintenance such as keeping the spillway clear, and repairing minor flood damage is performed by the owner. No formal maintenance manual exists.

4.3 Maintenance of Operating Facilities

See Section 4.2 above

4.4 Warning System

No formal warning system exists.

4.5 Evaluation

Routine maintenance of the facility should include removal of trees and brush. No means currently exist to lower the elevation of the lake if required for any repair to part of the structure. Formal manuals of maintenance and operation are also recommended to ensure that all needed maintenance is identified and performed regularly. In addition, a formal warning system for the protection of downstream inhabitants should be developed. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

SECTION 5

HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data

No formal design reports, calculations or miscellaneous design data are known to exist for the facility. However, in 1917 calculations were determined for the "equalizing effect" of Lake Quinn on a proposed change to a downstream structure. Data developed in that report was filed in Harrisburg, PA, April 19, 1917.

5.2 Experience Data

Records of reservoir levels and/or spillway discharges are not available. Discussion with the owner indicated that the dam had been overtopped by up to 2.5 feet during two previous flood events in October 1955 and June 1972. Other overtoppings are not known and are considered to be less significant than these events. No other records of past performance are known to exist.

5.3 Visual Observations

On the date of the inspection, no conditions were observed that would prevent the facility from operating within the capability of the structure.

5.4 Method of Analysis

The facility has been analyzed in accordance with procedures and guidelines established by the U.S. Army, Corps of Engineers, Baltimore District for Phase I hydrologic and hydraulic evaluations. This analysis has been performed using a modified version of the HEC-1 program developed by the U.S. Army Corps of Engineers, Hydrologic Engineering Center Davis, California. Capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis

a. <u>Spillway Design Flood (SDF)</u>. In accordance with the procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I Investigations, the SDF for Lake Quinn ranges between one-half the Probable Maximum Flood (PMF) and the full PMF. This classification is based on the relative size of the dam (small), and the potential hazard of dam failure to downstream development (High). Due to the small storage (approximately 300 ac-ft) and small dam height (12.2 feet) the SDF selected was the one-half PMF.

b. <u>Results of the Analysis</u>. Lake Quinn was evaluated under near normal operating conditions. The starting lake elevation was set at spillway crest, elevation 1352. The emergency spillway consists of a 1 foot deep notch, 66 feet in length, in the center portion of the dam. Flood hydrographs were developed and the following results were obtained:

Spillway Capacity at Top of Dam200 CFSPeak PMF Inflow16,440 CFS

The overtopping analysis (using HEC-1DB) indicated that the discharge/storage capacity of Lake Quinn can only accommodate 3% of the PMF. Under one-half PMF conditions, the dam is overtopped 30 hours to a maximum depth of 5.7 feet. Since the SDF for this dam is the one-half PMF, it can be concluded that Lake Quinn has a high potential for overtopping, and thus, for breaching under floods of less than SDF magnitude.

Included in this study was the effect of two upstream structures, Robinson Pond and Bronson Pond. These structures have been investigated in the Dam Safety Inspection program and have the following Pennsylvania DER numbers.

Robinson Pond	70-64-136
Bronson Pond	70-64-42

Flood routings for their subareas were used in this study as shown in Appendix D of this report.

The effect of Telshaw Pond, also located upstream, was considered to be insignificant for the purposes of this analysis.

To determine if the spillway is seriously inadequate, these conditions must be met:

(1) There is a high hazard to loss of life from large flows downstream of the dam.

(ii) The spillway is not capable of passing one-half PMF without overtopping the dam and causing failure.

(iii) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream of the dam from that which would exist just before overtopping failure.

Since Lake Quinn meets the first two conditions, a breach analysis was performed to determine whether the third condition is met.

The modified HEC-1 computer program was used for the breaching analysis. The computer program requires that the failure elevation be given to the model so that failure may commence. It was assumed that the dam could withstand up to 1.5 feet of overtopping for short durations. Therefore, the water surface elevation selected to cause failure would be elevation 1354.5.

Four breach models were analyzed under conditions that would approximate 1.5 feet of overtopping. The flood selected to cause breaching was 10% of the PMF. Of the four plans, Plan 1 was a non-breach analysis used to provide a means of direct comparison between failure and non-failure conditions at downstream locations for the same flood event. Failure times in the three remaining plans ranged were 0.33 hour (Plan 2), 1.00 hour (Plan 3), and 2.00 hours (Plan 4). Downstream damage elevations and locations are shown in Appendix D and E of this report. Page D-12 of Appendix D, provides peak outflows and changes in stage at the downstream damage centers and their

relationships between the four plans. As indicated in the table, failure conditions significantly increase the hazard to loss of life when compared to non-failure conditions. Breach geometry and location are also discussed in Appendix D.

5.6 Spillway Adequacy

Under existing conditions Lake Quinn can accommodate only 3% of the PMF. Should an event in excess of this occur, the dam would be overtopped and could possibly fail. Since the failure of this dam could lead to an increased hazard to loss of life or property damage at existing downstream residences, this spillway is considered seriously inadequate.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. <u>Visual Observations</u>

1. Embankment. Visual observations of the Lake Ouinn Dam indicate that the dam is in fair condition. The dam is a dry laid stone structure with an overflow spillway section and a random earth embankment upstream. The stone structure is 7.4 feet wide, has a 10-inch thick concrete cap, and has a vertical downstream face, except on the downstream left end. Additional stone for a length of 30 feet has been added to the downstream face of the dam at the left abutment. It is battered at a slope of 1H:3V. The upstream earth embankment to the left of the spillway has a horizontal crest 8.6 feet wide and a vertical upstream dry laid stone face approximately 1.5 feet high by 2.5 feet wide. The embankment crest upstream of the spillway and right abutment is at spillway elevation and slope away from the stone structure at an 8H:lV slope. Clear seepage estimated at 2 gpm was observed at the right abutment contact. At the left downstream toe, stagnant water was observed; it appeared from the vegetation that this area is usually wet. Inspection reports as early as 1938 mentioned that seepage was observed at the right abutment and from the hillside at the left abutment.

The base of the dam and right abutment are founded on bedrock of siltstone and shale. The left downstream abutment may have undergone some minor settlement or movement in the rock structure as evidenced by a crack in a patch of mortar. Brush has been dumped on the left downstream abutment and weeds are growing on it which prohibit a thorough inspection of this area.

2. <u>Appurtenant Structures</u>. The spillway is an overflow section of the dam, 66 feet long, 12 inches deep, and 7.4 feet wide. It is capped by a 10-inch thick concrete slab. Upstream of the spillway the earth embankment slopes away at 8H to 1V. An abandoned sluiceway 2.5 feet high by 2 feet wide was observed to exit near the left abutment. The sluiceway should be filled and grouted to prevent a possible collapse as the timbers in it are rotten.

b. Design and Construction Data

1. <u>Embankment</u>. There are no known design or construction data for this dam. The dam originally consisted of a vertical faced dry laid stone structure and had no upstream embankment. Timber planks were used on the upstream face for an impervious barrier. A few pictures dated from 1915 to the 1930's show that large capstones were placed on the crest of the dam and timber planking was placed on the spillway crest. Profile, cross section and plan view sketches of the dam are available for the changes proposed in 1946, some of which have been made. These sketches indicated that stone would be placed against the downstream dam face at a slope of 2H:3V; the crest would be capped with 6 inches of concrete; and an upstream embankment would be added with a 12 foot horizontal crest and an upstream slope of 2 1/3H:3V.

2. <u>Appurtemant Structures</u>. No design or construction data are known to exist other than the rough sketches mentioned above.

c. Operating Records. There are no records of operation.

d. <u>Post-Construction Changes</u>. Dam length was increased sometime between 1946 and 1965. An upstream earth embankment was added, and additional stone was laid at the left abutment. An upstream clay blanket was also added in the early 70's.

e. <u>Seismic Stability</u> The dam is located in Seismic Zone 1. Based on visual observations, the static stability of the dam is considered to be adequate. The seismic stability of the dam is therefore considered to be adequate.

SECTION 7

ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. <u>Safety</u>

The visual inspection and review of available design and construction information indicate that Lake Quinn Dam is in fair condition. Deficiencies noted during the inspection included the lack of functional drawdown facilities and minor seepage through the masonry near the right abutment.

The hydrologic and hydraulic computations indicate that the combination of reservoir storage and spillway discharge capacity will pass only 3 percent of the PMF without overtopping the dam. Therefore, in accordance with criteria outlined and evaluated in Section 5.5b, the spillway for Lake Quinn Dam is considered to be seriously inadequate, and the dam is judged to be unsafe, non-emergency.

B. Adequacy of Information

The available information contained in PennDER files, in conjunction with data collected during the visual inspection, are considered to be adequate for making a reasonable assessment of this dam.

C. Urgency

The recommendations presented below should be implemented immediately.

D. <u>Necessity for Additional Studies</u>

The results of this inspection indicate a need for additional studies to further assess the adequacy of the spillway and develop necessary plans for providing adequate spillway capacity.

7.2 RECOMMENDATIONS

It is recommended that the owner immediately:

A. Retain a qualified professional engineer to perform a detailed hydrologic and hydraulic study to further assess the discharge capacity of the spillway and develop remedial measures found necessary to provide adequate spillway capacity. This study should also include development of an adequate drawdown facility for the dam having positive upstream closure capability.

B. The existing sluiceway should be sealed, unless rehabilitation is undertaken.

C. The seepage, near the right abutment should be monitored and appropriate remedial action taken should the condition begin to worsen significantly.

D. Remove trees and brush from the abutments, and the cable and wire from the upstream face of the dam.

E. A formal surveillance and downstream emergency warning system should be developed for use during periods of heavy or prolonged precipitation.

F. An operation and maintenance manual or plan should be prepared for use as a guide in the operation of the dam during normal and emergency conditions.

G. A schedule of regular inspections by a qualified engineer should be developed.

APPENDIX A

CHECKLIST - VISUAL INSPECTION

Check List Visual Inspection Phase l

C

(

Ç

Temperature 50⁰ State Pennsylvania Weather Cloudy County Wayne Date(s) Inspection 4 Nov 80 Name Dam Lake Quinn Dam

Tailwater at Time at Inspection 1341.2 M.S.L. Pool Elevation at Time of Inspection 1352.1 M.S.L.

Inspection Personnel:

J. Blanco (C.O.E.)

E. Hecker (C.O.E.)

David Beynon, Sr., Owner

B. Cortright (C.O.E.

J. Evans (C.O.E.)

B. Cortright Recorder

STONE MASONRY AND EMBANIMENT

(

(

-

G

-

ATSOME EXMITENTION OF	OB SERVATIONS
CREST ALIGNMENT:	
 Horfzontal 	l. Horizontal - Good
2. Vertical	 Vertical - Good except for slight settlement at downstream side of left abutment
SURFACE CRACKS:	
Concrete	Concrete cap is cracked and spalling in several locations
Eabankment	D/S slope of earthfill was submerged. Crest good. No cracks observed.
STRUCTURAL CRACKING	None
HINCTION OF EMBANKMENT WITH:	
Abutments	Slight settlement of downstream side of left abutment; otherwise good.
Spillway	
THUSTAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None.
SLOPCHING OR EROSION OF FARAVEMENT AND ARUTMENT SLOPES	None.

.

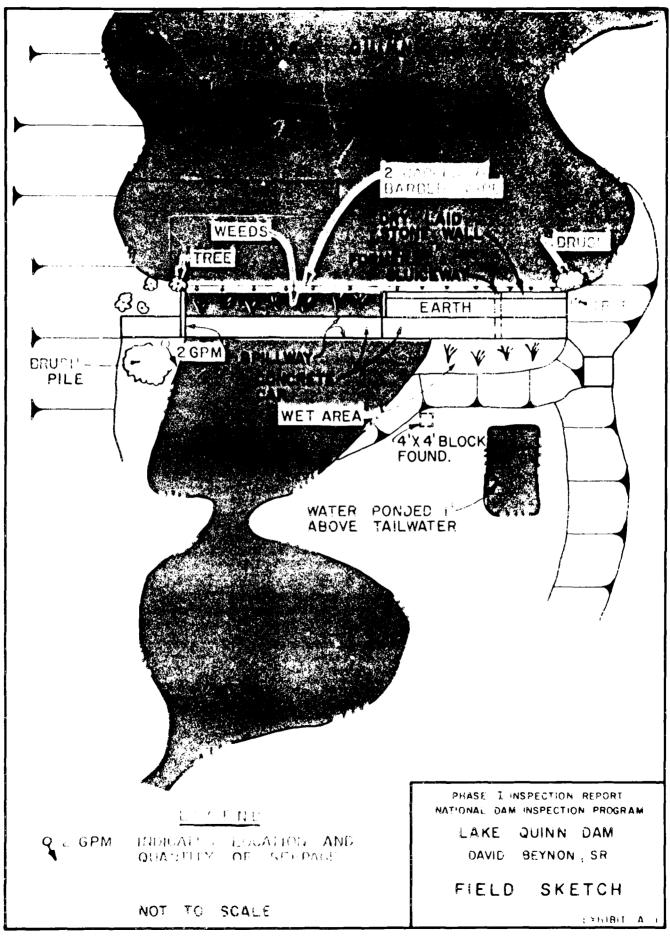
and a second of the second second

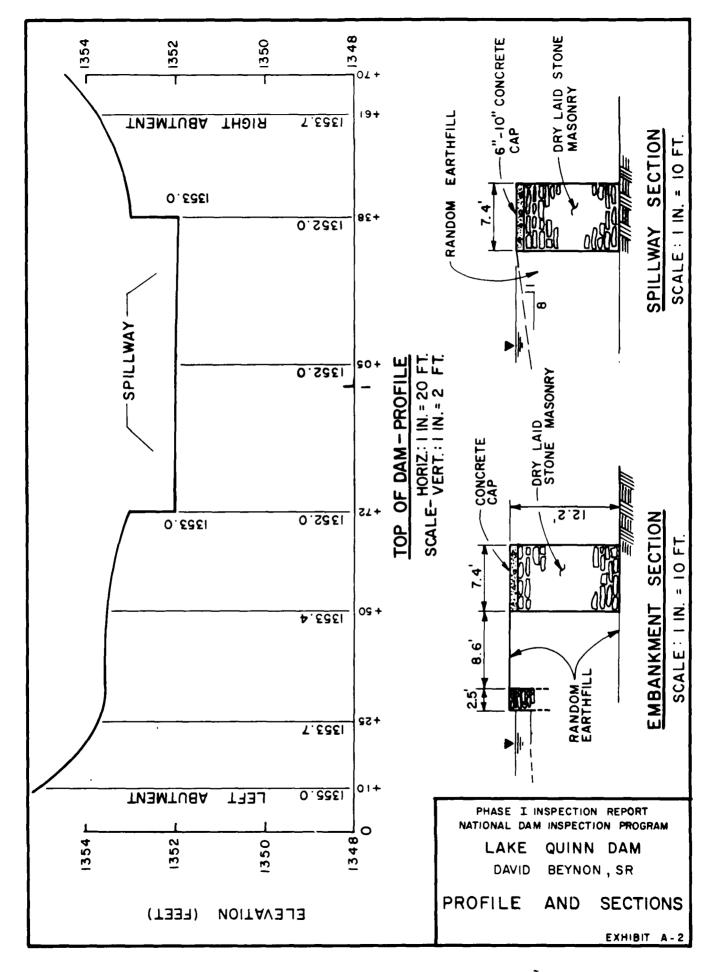
1.1

1

l	(
NO] i Volustos	Bedrock; exposed at the of spillway and right end and in downstream channel.
k i prad	Nn rîprap.
ANY NOTIFEABLE SEEPAGE	Approximately 2 gpm of clear water is flowing from d/s face; about 4 feet right of spillway and 4 feet below crest. A wet area exists about 7 feet d's of toe and 30 feet from the left abutment. Flow over spillway and tailwater obscured a portion of d/s face and toe.
STAFE GAGE & RECORDER	None.
" NSTRUMENTATION	None.
HISCFLIANFOUS	Trees at the right and left abutments. Weeds along u/s face. 2 cables & 1 strand harbed wire stretched across u/s face; supported on iron posts 1' & 3' above crest.
	The old sluiceway (2' x 2.5' high) is loosely filled with stones and timber; probed more than 5 feet from d/s face; no seepage.

R E S E R VO I R


.


VISUAL EAMINATION OF	OB SERVATIONS
SLupES	Flat to moderate; no potential for massive slide
S ED I MENTATION	Vone observel.

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS
CONDITION: Obstructions Jebris Other	Several road crossings before reaching the town of Varden.
SLOPES: Channe! Stilus	Flat Flat to 1V on 2H
APRIATE NULES OF SOME	One house - 4,000 feet downstream. Four homes in Warden 3.0 miles downstream.

ŧ

1.

APPENDIX B

- - -

CHECKLIST - ENGINEERING DATA

2012.27

	CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION PHASE I	NAME OF DAM Lake Quinn Dam NDI ID # PA 00145 DER ID # 64-43
ITEM	REMARKS	
As-Built Drawings	None.	
Regional Vicinity Map	U.S.G.S. Waymart Quadrangle - 7 ¹ / ₂ minute Quad Sheet. Plate E-Z.	te Quad Sheet. See Appendix E,
Construction History	Original Embankment completed prior to 1917. made since that time.	1917. Modifications have been
Typical Sections of Dam	None.	
Outlets - Plan Details Constraints Discharge Ratings	None.	
Rainfall/Reservoir Records	None.	
Design Reports	None.	
Geology Reports	None.	
	F	•

.

	-
IIB	REMARKS
Design Computations Hydrology & Hydrauiics Dam Stability Seepage Studies	In 1917 a report was filed to the state for a proposed change at a downstream structure, W.W. Kiser's Dam (File No. 64-46) 2.75 miles downstream of Lake Quinn Dam. This report included in its study the equalizing potential of Lake Quinn Dam on this downstream structure.
Materials Investigations Boring Records Laboratory Field	None.
Post-Construction Surveys of Dam	None.
Monitoring Systems	None.
Modifications	Dam lengthened and reinforced by placing random fill on upstream face, sluiceway constructed in old Millrace sometime after 1946 and before 1965.
High Pool Records	In 1955 and 1972 flows reached a depth of overtopping the embankment up to 2.5 feet.
Post-Construction Engineering Studies and Reports	Sometime between 1946 and 1965 modifications above were accomplished. A clay blanket was placed on the upstream face in early 1970's to stop leakage through the dam.
Prior Accidents or Failure of Dam Description Reports	None reported.

(

ŧ

ſ

F-2

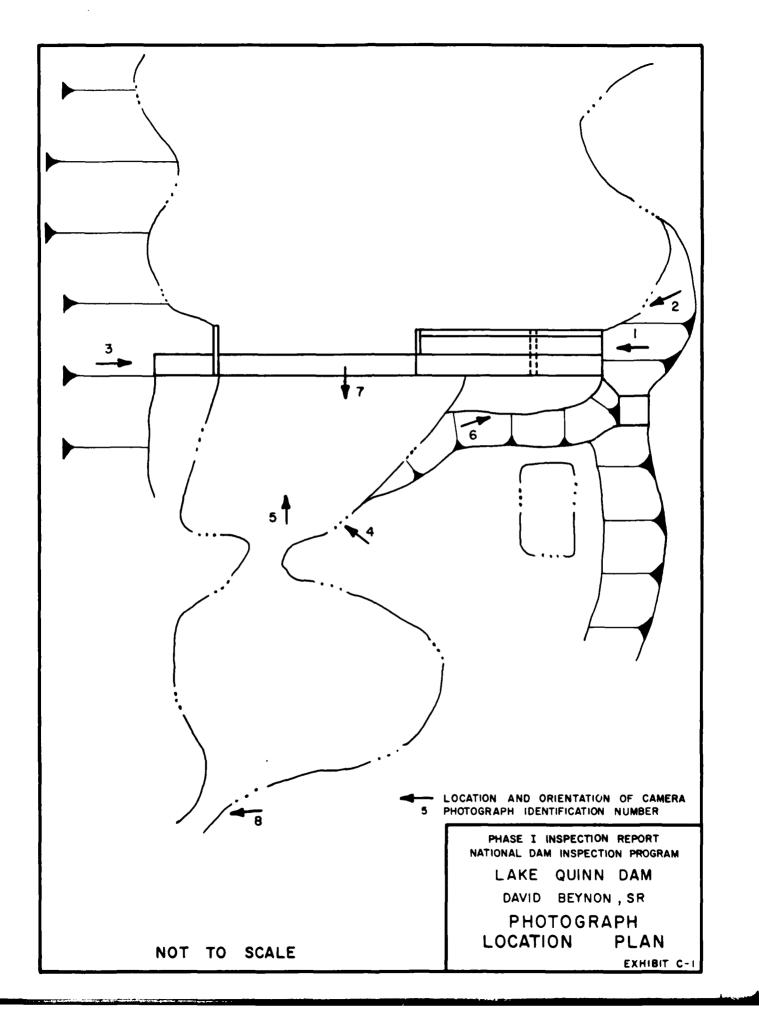
.,

ITM RMANKS Maintenance None. Maintenance None. Operation Sketch in Appendix A. Sections Sketch in Appendix A. Sections None. Details None. Operating Equipment None. Specifications None. Macellaneous None.
--

(

.

ĺ


.

ł

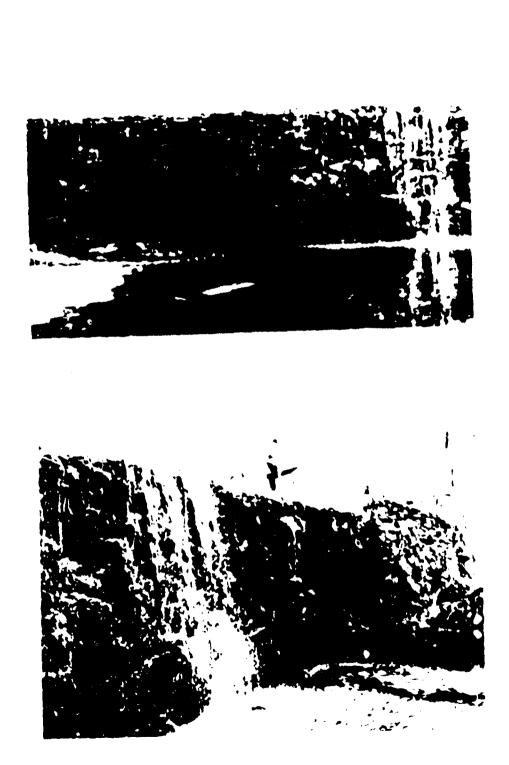
ļ

1

APPENDIX C PHOTOGRAPHS

1. Overview of Dama

2. (ps)eachas abhi abhracht.


3. Crest and fore abarment.

1

• • • • • •

4. Downstream face adjacent to right durness.

is a constraint the

APPENDIX D

.

HYDROLOGY AND HYDRAULICS

PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

a. Development of an inflow hydrograph(s) to the reservoir.

b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.

c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), time(s) of the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequence resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

a. Development of an inflow hydrograph(s) to the reservoir.

b. Routing of the inflow hydrograph(s) through the reservoir.

c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.

d. Routing of the failure hydrograph(s) to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevations of failure hydrographs for each location.

HYDROLOGY & HYDRAULIC ANALYSIS DATA BASE

NAME OF DAM: LAKE QUINN DAM

PROBABLE MAXIMUM PRECIPITATION (PMP) = 21.5 INCHES/24 HOURS ⁽¹⁾

OCRAWIEC	THUER UND		
STATION	1	2	3
STATION DESCRIPTION	RUBINSON POND AAM	BRONXON FOND DAM	ZAKE QUINN DAM
DRAINAGE AREA (SQUARE MILES)	050	2.38	6.86
CUMULATIVE DRAINAGE AREA (SQUARE MILES)	0.50	2.38	9.74
ADJUSTMENT OF PMF FOR (1) DRAINAGE AREA LOCATION (%)	Zone I	ZONE I	ZONE I
6 Hours 12 Hours 24 Hours 72 Hours	1 23 33 42	11 1 123 133 142	//// /23 /33 /42
SNYDER HYDROGRAPH PARAMETERS Zone (2) C (3) C (3) L ^t (MILES) (4) ^I 'ca (MILES (4) tp = C _t (L \cdot L _{ca}) 0.3 (HOURS)	1 0.45 1,23 1.04 0.52 1.02	1 0.45 1.23 2.72 1.33 1.85	1 0.45 7 23 7 55 1.89 2.35
SPILLWAY DATA		ROCK FILL DAM	
CREST LENGTH (FEET) FREEBOARD (FEET)	12 1.2	N/A N/A	(do 1.0

DELAWARE PILVER BASIN

(1) HYDROMETEOROLOGICAL REPORT - 33, U. S. Army Corps of Engineers, 1955.

(2) Hydrologic zone defined by Corps of Engineers, Baltimore District, For Determination of Snyder Coefficients $(C_p \text{ and } C_r)$.

(3) Snyder Coefficients

(4) L = Length of longest watercourse from dam to basin divide.
 L = Length of longest watercourse from dam to point opposite basin centroid.

BALTIMORE DISTRICT, CORPS OF ENGINEERS	PAGE
SUBJECT DAM SAFETY TAJSPECTION	
COMPUTATIONS LAFE GUINN	SHEET OF SHEETS
COMPUTED BY CHECKED BY	DATE
DAM CLASSIFICATION	
SIZE OF DAM - CMALL	
HAZARD - HIGH	
FEQUIPED SDE- YEFAE to	5 FULL ITAF
DAM STATISTICS	
HEIGHT OF LAM - STORAGE AT NORMAL POOL STORAGE AT TOP OF DAM DRAINAGE AREA MEDVE DAM	12.2 FT. - 190 AC-FT (FACA REUNDER) - 305 AC-FT FLES 15/TE - 9.74 mil ² (107AL)
ELEVATIONS *	
IOPOF DAM (LOW POINT) -	- 1353.0
NORMAL POOL - 1352	
SPILLWAY CREST - 1252	20
STREAM ZED AT CENTERLINE	OF LAM - 1940 H
HYLPOSPAPH THEAMETERS	
FILER BASIN - WELAWAR	RΞ.
$z_{ONE} - 1$	
JUNDERS COEFFICIELITS	-
Cp - 0.45	
CL- 1.23	
MEASURED HARAMETERS - 2	ETERMINE'S FROM U.S.G.S.
WAYMART, PA. QUADS	
ELA MATTINE, L= LENGTH OF THE LOA WATERCHED?	USET WATERCOURSE: L= 5.38mi
(* JAIANE TOTTAL & LCA - LENGTH OF THEL (* JAIANE TOTTAL (* JAIA	THE BASIN : LICA- 208mi
* ELEVATIONS ARE PETERENCES TO	
FA. GIVING LAKE ELEVATION AT SPILLWAY CHEST.	1252 AUGUNES TO BE AT

.....

-

۱

and the state of the

D-4

BALTIMORE DISTRIC	T. CORPS OF ENGINEERS		PAGE
	LATE QUINN	_ SHEET	- UF
COMPUTED BY		DATE	1,2 - 80

NOTE: 3 STRUCTURES ARE UPETREAM OF TAKE QUIAN MOBILISON POND AND BRONSON BUD ARE LARGE ENOUGH TO DIKLUDE STOMME EFFECTS. THE THRUE STRUCTURE, TELSHOW POND HAS I VERY SMALL HELDAT (LEIS THAN G FEET) BUD STOPAGE (LESS THIN DO AGAT). THERE FOR MISSION AND EXCAUSION POND WILL BE TAXLODED UPERSMON (ARE QUIAN, BUT TELSHOW FOND WILL BE IGNORED.)

> MEASURED PARAMETER: FOR UNKUNTROLLED AREA ABOVE LAKE QUINN

> > L= 4.55 mi

L= 1.89 mi

TOTAL BRAINAGE AREA IS 9.74 mi² UNCONTROLLES DRAINAGE AREA ABOVE LAKE QUINN' = 6.86 mi²

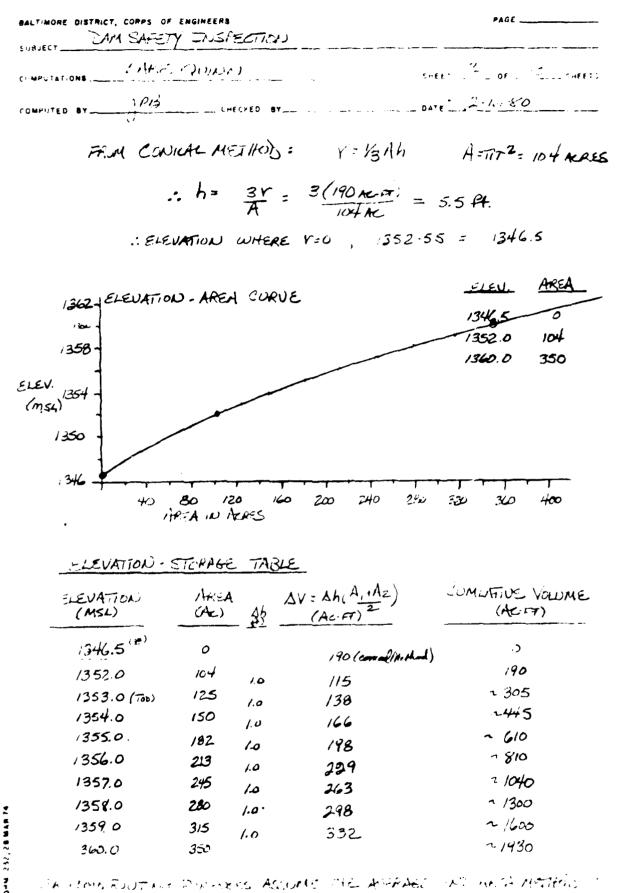
to = SNYDERS BASIN LAGTIME TO PEAK IN HOURS

FOR UNCONT

252,28 MAR

NACH FOUN

 $t_{p} = C_{t} (L L_{A})^{a3}$ = 1.23 (455(189))^{0.3} = 2.35 have


RESERVOIR CATACITY

-SURFACE AREA AT / DRMAL UML (STOUL 1352) - MAT ACKED * -SURFACE AREA AT ELEVATION 1360 - STON MCRES *

ASSUME CONICAL METTIOL AIPLIESTID FIND LOW POINT IN FOOL SELOW NORMAL FOOL

VOLUME AT NORMAL HOOL = 110 AC: FT. (FROM FEDNILER FILES)

A VALUED PLAINIMETERED OF MAYMART & MAKE ARIEL, M. JUNE SHEETS, WAYMART MATTING OF LING MEENER MUGEN.

(THELE TO ELEVATIONS ADDIE SILLANAN CREST (SEE C. (NOTE - ELEVATION 1345.5 IS ABOUE THE INVERT OF THE JAM , EL. 1340 B)

SUBJECT CAPPS OF ENGINEERS	PAGE
COMPUTATIONS	13 13 Junes
COMPUTED BY CHECKED BY DATE	

MAP (ALCULATIONS:

- APPROXIMATE RAINFALL TWDEX = 21.5 IAXITES (CORRESPONDING TO A DURATION OF 24 HOURS AND A DRAINAGE AREA OF EDD MIZ) - ALL JEASON ENVELUEE

- CEPTH-AFEA DURATION ZONE 1 : FROM HARDMET * 33 - ASSUME VALUES CORRESTANDING TO 10 mi * AREA MAY BE APPLIED TO THIS 9.74 mr² BASIN

JURATION (HRS)	PERCENT OF LUDEX PANIFALL
6	111
12	123
24	133
48	142

NOTE: HOP BROOK FACTOR IS INTERNALLY COMPUTED BITTHE HELDB PROGRAMI. FUR A DRAINABE AFEA LES. THAN 10 DUMPE MILLS THE MERTITMENT MENTION IN THE ALL MALE STMENT IS FOR EASING SHAFE AND SOME THE ASSET STRENT A LEVERE STOPM MENTERING SUMP. A SMALL SAMAD.

े में :

BASEL WITHE SMALL HEIGHT SF LAND SCOTHER) AND THE SMALL STORAGE AT LOW TOP OF DAM (~305 AC AT), THE SDF SELECTEL FOR A HIGH HARAFL AND SMALL STEE IS 1/2 PMF.

EMERGENXY SAILWAY CAPACITY:

NOTE: SPILLWAN IS IN CENTER OF EMBANKMENT. SEE FIELD SKETCH IN APPENDIX A CXHIBIT A-1

WILTH OF SPILLWAY IS " A W. + - MORTH NOTHE I FILL ON CLARK

BJECT DAM	HFETY -	TUSPECTI	ON		PAGE
	ILE G	נגעהני		SHEET	12, HEETS
NPUTED BY		CHECKED BY		DATE	
THE ANKNEWT	51,1 35 2 66'	F	EL. 1353 (750) EABADKHAST	i-	FILLWAY IS (6F) IN ENIGTH AND I FT SEEP.
: BRUAD			where hill	•	3
SPILLWAY R,	ATING	CURUE :		hefore a	WRIT MAR I DUER EMBANKAENT FICIENT = 2.85
SPILLWAY RI FOOL ELEVATION		CURDE :		hefore a	OUER EMBANKMENT
_	Н		Cen	hefore a	DUER EMBANKMENT
POOL ELEVATION (MSL)	Н	Q	C= L Roundled Q	hefore a	DUER EMBANKHENT
POLELEUATION (MSL) 1352	H (ft)	Q (CFS)	C= 1 RODALLEDQ (TS)	hefore a	OUER EMBANKAENT FRIENST = 2.85 ((ONTINGED)
FOOL ELE UATTON (MSL) 1352 1353	H (f4) 0	Q (CPC) 0	C= U RODAUSEDQ (YE) O	hefore a Neir Coeff	DUER EMBANKHENT FRIENST = 2.85 (('ONTINIDED) 14 Q Round
Pool ELEUATTON (MSL) 1352 1353 1354	H (f4) 0 1 2	9 (CFS) 0 187 532	(15) (15) (15) (20) (20) (20) (20) (20) (20) (20) (20	Hefore a WEIR COEFF	CIEDUER EMBANKAENT FICIENT = 2.85 ((ONTINIDED) If Q Round (F) (CFQ (CES)
FOOL ELE UATTON (MSL) 1352 1353	H (f4) 0 1 2 3	9 (CFC) 0 187 532 177	C= C From NED Q (YS) () (90	Before (NEIR COEFF BOLELEU. (MSL)	DUER EMBANKAENT FICIENST = 2.85 (:'ONTINUED) If Q ROUND (FT) (CFS (CFS)
FOL ELEUATION (MSL) /352 /353 /354 /355	H (f4) 0 1 2 3	9 (CFC) 0 187 532 177 1524	C= 0 FOUNDED Q (YE) (90 530 780	Before (NEIR COEFF BOLELEU. (MSL)	DUER EMBANKAENT FICIENST = 2.85 (('ONTINUED) 14 Q HOUND (FT) (CFS) (CFS)
Pool ELEUATTON (MSL) 1352 1353 1354 1355 1355 1356	H (f4) 0 1 2 3 7	9 (CFC) 0 187 532 177	(150) (155) (175) (175) (175) (175) (175) (1750)	Before (NEIR COEFF BOLELEU. (MSL)	DUER EMBANKAENT FICIENST = 2.85 (('ONTINUED) 14 Q HOUND (FT) (CFS) (CFS)
Pool ELEUATTON (MSL) /352 /353 /354 /355 /355 /355 /355 /356 /357 	H (f4) 0 1 2 3 7 3	9 (CPC) 0 187 532 177 1534 2102 2163 2163 2163 2163	C= 0 POUNED Q (YE) (90 530 780 (SO 200	Before (WEIR COEFF BOLELEU. (MSL)	DUER EMBANKAENT FICIENST = 2.85 (('ONTINUED) 14 Q HOUND (FT) (CFS) (CFS)
Pool ELEUATION (MSL) /352 /353 /354 /355 /356 /257 /257	H (ft) 0 1 2 3 + 5 0 7 0	9 (CFC) 0 187 532 177 1534 2102 2763 2163 2163 24825 4255	C= 0 POUNDED Q (YE) (90 530 780 130 2100 2100 2100 140 450 450 450	Before (WEIR COEFF BOLELEU. (MSL)	DUER EMBANKAENT FICIENST = 2.85 (('ONTINIDED) 14 Q ROUND (FT) (CFS) (CFS)

PROAD CREETED WEIR & OVERTOITING OCCURS. THE LISCHARGE CAN BE ESTIMATED BY :

$$Q = CLH_{w}^{m}$$

+ 0HU 232, 28 MAR 74

where: Q= DISCHARGE OVER ENBANKMENT, IN CPS

4 = LENGTH OF EMBANKMENT, FT

AU = WEIGHTED HEAD IN FEET, AUFRAGE FLOW AREA WEIGHTED APOLLE LOW POINT OF DAM

2 = CLEFT PIEAST OF IT CHAPTE

D-8

LTIMORE DISTRICT, CORPS OF ENGINEERS	PAGE
BJECT LAN GAFETY INSPECTION	
MPUTATIONS LAKE QUINN	SHEET C OF 13 SHEETS
MPUTED BY CHECKED BY	DATE 12-17-80
LENGTH OF EMBANKMENT INNON	DATES
13 PESERVOIR ELEVATION	<u>;</u>
RESERVOIR ELEVATION (MSL) 1352.0	EMBANKMENT LENGTH (A)
/353.0	0
1354.0	80
/355.0	100
1356.0	110
1357.0	115
1358.0 *	120
1359.0 *	120
1360.0 *	·

* 120 FT - MAXIMUM LENGTH OF EMBANKMENT TUS SOME ABUTMENT LENGTH C=285

RESERVOIR ELENATION (MSL)	L; (44)	Lz. (f+)	TACREMENTAL HEAD H. (F4)	D TAXREMENTAL FLOWARSA AL (A ²)	TOTAL RUNARA (FP) A:	D WEADING HEAD, (F1)	
1352.0	0	-	~	_	-	-	0
1353.0	0	0	1.0	0	0	0	c
13540	80	0	1.0	40	40	0.50	80
1355.0	100	80	1.0	90	130	1.30	421
1356.0	110	100	1.0	105	235	2.14	981
1357.0	115	110	10	112.5	347. 5 0	302	1720
13580	120	115	1.0	1175	4650	3.88	2613
1359.0	120	120	1.0	120	585.0	4.88	3686
1360.0	120	120	10	120	705.0	5 88	43:6
1370.0	120	120	10.0	200	1905.0	15.98	21640
() AL = H.[(L,+Lz)	12]					

ENBAUGHENT RATING TABLE

MADB FORM 232,26 MAR 74

 $\begin{array}{ccc} @ H_{\omega} = A_{\tau/L}, \\ \hline (3) & G = CL, H_{\omega}^{\nu_{2}} \end{array}$

с

D-9

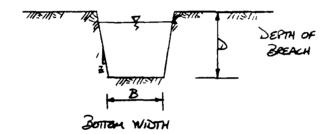
BALTIMURE DISTRICT, CORPS OF ENGINEERS	PAGE
COMPUTATIONS 141KE CONTAINS	
COMPUTED BY CHECKED BY	DATE 12 7-670

TUTTLE FACILITY FATING CUFUE

GTOTAL = QUP.L + GEARS

Reservoir.	Q SPILLWAY	Q EABANKAIGNT	9 TOTAL
ELEU. (F7)	(CFS)	(CFS)	(ers)
352.0	0	0	0
1353.0	190	0	190
1354.0	530	80	610
1355.0	980	420	1400
1356.0	1500	980	2480
1357.0	2100	1720	3320
1358.0	2760	2.610	5370
1359.0	3480	3670	7170
1360.0	4260	4810	9040
1370.0	14360	21640	36000

VALUE TO BE INPUT ON HEYS , ARD.


RECULTS OF THE OVERTOPPING ANALISIS FROM THE WERTOPPING ANALISIS THE FOLLOWING CURIE CAN HE 254 SECERURE ELEUATION 256 257 356 352 352 DRAWN. LOW IDINT OF DAM 1: 353.0 PANTS PLOTTED FROM PAGE 21/21 of THE OVERTOPPING ANALYSIS OF THIS APPENDIX. : THE JAM AND SPILLINAY CAN ALLOMMODATE A FLOOD UP TO 3% PMF PRIOR TO OVERTOPPING - TOU (3550) THE EMBANKMENT. 40 60 30 20 100 7, OF INF

BALTIMORE DISTRICT, CORPS OF ENGINEERS SUBJECT	PAGE
	SHEET_8 OF_13 SHEETS
COMPUTED BY CHECKED BY	DATE 12-22-80

SINCE THIS DAM IS A HIGH HAZARD, AND IT IS FELT THAT THE 50% PMF WOULD CAUSE FAILURE A BREACH ANALYSIS IS REQUIRED. THE BREACH ANALYSIS WOULD EXAMINE THE SIGNIFICANCE OF FAILURE AND NON-FAILURE CONDITIONS FOR ~ 10% PMF.

BREACH AWALYSIS:

TYPICAL BREACH SECTION

HST HISTORKAL EVENTS HAVE BEEN KNOWN TO OVERTOP THE EHBANKMENT BY AS MUCH AS 2.5 FEET. THIS OCCUREN DURING THE OCT. 1955 F. TIME 1972 EVENTS SINCE THE EMBANKMENT IS CONCRE CAPPED AND HAS A RUBLE STONE DOWNSTREAM FACE, IT WAS FELT THAT A 12 FOOT OF OVERTOPPING FOR A SHORT DURATION COULD BE WITHSTOOD. THEREFORE, FUR THE BREACHING AWALYSIS, 10% OF THE PMF WHULD BE APPROPRIATE FOR THIS AWALYSIS.

HECIAB INPUT PARAMETERS FOR BREACH ANALYSIS

FOUR PLANS WILL BE USED FOR A DIRECT COMPARISON OF Failure VS. NON-FAILURE CONDITIONS PARAMETERS ARE AS FOLLOWS.

8 MAR 74	PLAN NUMBER	BREACH BOTTOM WISTH (M)	FULL BREACH	SIDE SLOPES	TOTAL BREACH
32, 21	/		<u> </u>	on failure	
~ 2	Ĺ	66	9	0.5H : IV	0.33
0	з	66	9	0.54:IV	1.00
04	4	66	9	0.5H : IV	2.00
		D-11			

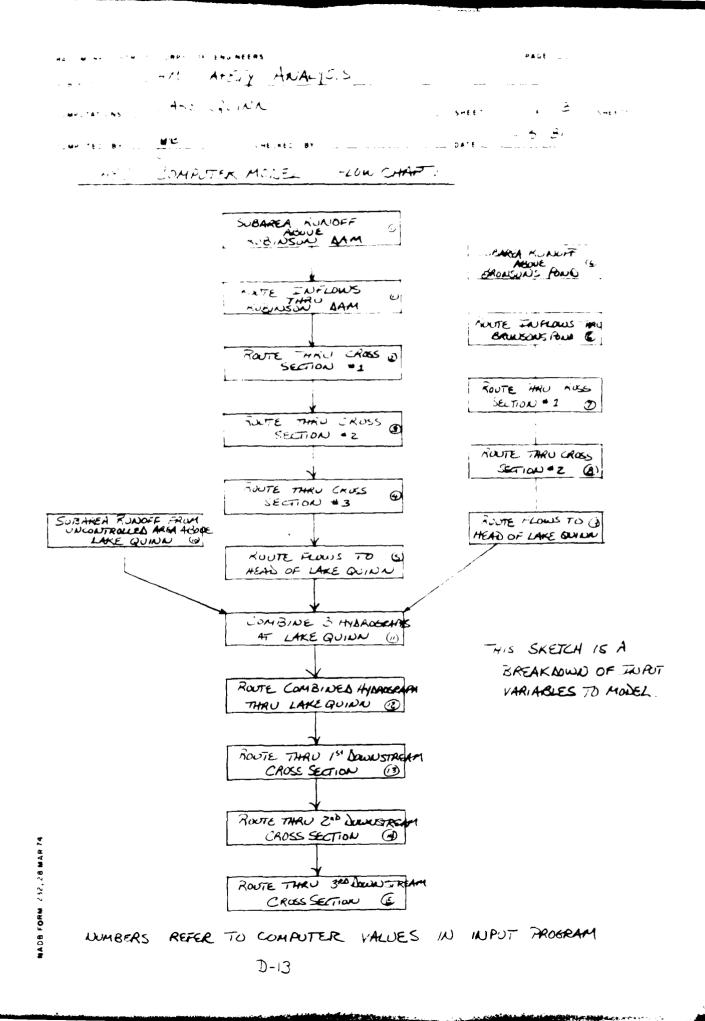
BALTIMORE DISTRICT, CORPS OF ENGINEERS SUBJECTAAMALYSIS	PA6E
	SHEET 7 OF 13 SHEETS
COMPUTED BY CHECKED BY	DATE 13 22-80

HELI-DB OUTPUT

€

(

MACR FORM 232, 28 MAR 74


RESULTS OF DAY BREACH ANALYSIS

AS NOTED FROM PAGE D-1, P-AN 1 IS FOR NON-FAILURE CONDITIONS.

PLAN	MAKIMUM DOTTLOW OVER JAM AND/OR		erm Samage Tec #1	CENTER #2		
NUMBER	THRU BREACH	STAGE (MSL)	FLOW (45)	(MSL)	FLOW (OR)	
/	//00	1323.4	1100	12341	1090	
2	7600	1331.6	7610	1234.9	5860	
3	6800	1330.4	6180	1239.4	5220	
4	5560	13296	5280	1238.9	4600	

DOWNSTREAM DAMAGE CENTER #2 - DAMAGE ELEN. AT 1332.0 DOWNSTREAM DAMAGE CENTER #2 - DAMAGE ELEN. AT 1238.0

FROM THE TABLE ABOUE, IT CAN BE SEEN THAT AT THE LOWER DOWNSTREAM DAMAGE CENTER #2; FAILURE SIGNIFICANTLY INCREASES UNWASTREAM HAZARD FOTENTIAL.

11- 240H -1" Ver Card CREES SELLEN MARKIMMEL LALE GUILD 1 A CUNSTREAM CH KNE ÷ LOKING DOWNSTREAM : 30' 124 11-20 101-15 are - 5Ph above TOD A Lake GUINN 1 10. 5 - Soo fly boundstricht of the 8 342 1350 0761 1352 THE H 136 -1348-36 . SUDAL T33- - 4017441313 752 · stor • • • • ÷ ÷

sreet

3

D-14

DIEIZHEN COMPONENTION

NO 340 - C. J. Die TZGEN - TU X TO PERMIN

Sheet 12,3 JOURSINEAN REFERRING MITTER MARTY 1,11042= 40 SCALE: I'VERT-4 FT. TOWNSTREAM IN TAIL AMASE CENTER #1 LAKE QUINN NOLYNSTE isw ABOUE 1333 ÷ 13361 1332 1328 1322 PLAN 2 - MAIHUN 1334 1330 320 1326 TSS-4000 PEAK WLATER SURPACE BRENGH GAN BALLING CION LONINCE DUNNETHEAM "Aune of WINGE 3 -03: THIS DAMAGE CENTER IS . 200 A. TOWNSIGEAM 304 male OF ZOFF. high by nighway culler Note D-15

DIETZGEN CORPORATION

NO 340 IL / DIETZGEN DWAFFI FREEK Press ride a fuller 1.1.1.1.1

DOUNSTREAM X- SECTION ANTICINITY THIS X-SECTION IS IN UNDERVISA. 0; ;; ; HSOC JOUNSTREAMON INNI I HORIZENTIN. VERTICAL 1) AMAGE GENTER * 2 WHER SURPACE ELEWATOR ALAND - BREACH CONDITION PER-LAKE QUANU CHE HLOOR HOUSE DIETZGEN CORPORATION MADE IN U.B.A. WATER SURFACE PEAK (CINATER HULER UN) (MILL PAUS DAN) VS IMMEDIATELY DOUNDSTRAINS LOOKING. DOWNYAREAM R, 200 DUNISTREAM OF DER # 10 C.4. 45 DERA GO HI.47 3 - 500 DOWNSTREAM CIF ŝ ADTE : THIS DAMAGE CENTER STAN ONT IS 15+ FLOOR HUSE -1230 15 -1236 +821 -1232 242 653 50 NOLLY (373 75W 30000 1331 61-4

NO 340 1012 DILTGEN GRAMMER RADER 10 × 10 MER MALE FLOH

105 1-113

1#####################################	XAGE (HEC-1) Y 1978								

23	A1 A2 IN	Lake Quin An Saftey		der NO. Ion progr		2-9-80				
3	<u> </u>	OVERTOPPIN					+++	^	- 2	^
	8 1 81	44 (5 (-	0	0 0	0	-3	0
ę	J .			0.00	0 E0	1.00				
8	11 0.1 K	01 0.10) 0.20 (1	0	0	0
9		UNOFF FROM						•		•
10 11	P	0 21,	0.50			142	0	¢	1	0
12	T	0 (•) ()	0	0	1.0	0.05	0	()
13 14	₩ 1.9 X -1			2						
15	ĸ	1 1	Ċ	· •	0	*	. 1	0	0	C
16 17	KI R Y	OUTING 201 0 (н инп ней 1	U SPILLM 0	0	0	0	0
18	Ý1	1 (42)					-1643	-1	Ó	0
19 20	741643 Y5	.0 16 43. 5 0 12.0					1650.0	1655.0		
	\$5	0 150	190	410						
23	\$E1627 \$\$1643		1644.2	2 1650.0	1655.0	1660.0				
24	\$D1644	.2			^	•		•	•	^
26	K K1 - 1	1 Downstream	i X-SECTI		•		BINSON	0	0	۲ ۲
27	¥.	0 (-	1	- ^	•			
29	¥1 ¥6 0.1	1 (07 0.0 5	,			0 230	0.0090	Ċ	0	0
ŝ	Y7 1	00 1639	142	1630	162	1625	175	1622	190	1622
32	¥7 1'	97 1625	207	1638	225	1638	1	0	0	0
2122224 245.227 8 2 8 3 8 3 5 3 7 8 8 9	Ķ1	ROUTE THE			stream (1	ross sect	ION (RO	BINSON		
in the second	Ý1	i d			ó	0	0			
36	Y6 0.							0	0 202	
38		00 163 10 1627				1627	192	1620	202	1620
39	K K1		i (On thru			OROSS SE	1 (CTION / 5		0	0
41	Ŷ	0 (13111 <u>EH</u> F	14000 30		(UB1nib(m))		
42 43	¥1 ¥6 0.					8000	0.027	^	^	0
44		07 0.05 00 1414				8200 1403	175	1400	0 178	1400
45 44		85 1405								
47	K K1	ROUTE	FLOWS TO		LAKE OU	0 INN (FRO	H ROBINS	SON)		
48 49	Y.	0 0			1	^	^			
	Y1 Y6 0.4	1 (07 0.05	0.07	1352	1380	4400	0.0109			
1 51		00 1380 10 1353) 500) 1360	700	1353	705	1352	905	1352
52 53	κ,	0 6	. () 0	0	0	1	0	0	0
54		UNOFF FROM				nsons pón	D O	0	1	n
50 56	P P	0 21.5					U.	U	1	U
57	Τ.		•	0 0			1.0	0.05	n	0
58 59	₩ 1.9 X -1	85 0.45 .5 -0.05)						
60	K Č	1 6	. (0		0	1	0	0	0
61 62	K) R Y	OUTING XPH				0	0	0	n	0
63	Ý1	1 () Č) Ō	Ó	Ó	~1403	-1	ò	Ő
50 51 52 53 55 55 55 55 55 55 55 55 55 55 55 55	¥41403 ¥5		23.0	1404.0 95.0	520.0		1415.0			
64	\$5	0 380	385	5 500	890	1490	5350			
68	\$F1382 \$\$1403	.0	1403.1	1405.0	1410.0	1415.0	1420.0			
Yo	5014 03	. 1								

C

(

(

1

LAKE QUINN OVERTONING ANALYSIS

ويعرك والجار عشراساك

11 17

Cost the state of the second

page 1/12

¥

1

1

1

1

(

K K1	1 R0	, TE FLOWS	THRU	0 St domn s	o Tream Cr	0 1738 220	ION (BRO	NSON)		
Y	0	0	0	1	1		_			
<u>¥1</u>	1	0	0	0	9	0	0			
¥6 ¥7	0.07	0.05	0.07 125	1393 1405	1411 136	200 1397	0.008	1393	180	1393
Y	186	1397	190	1403	230	1411	140	1373	100	13/3
ĸ	100	1377	170	1-02	2.50	1411	1			
ĥ	RÔ	UTE FLOŬS		nd downs	traen Cr		ION (BR	ONSON)		
Ϋ́.	Ő	0	0	1	1					
¥1	1	0	0	0	0	0	0			
¥6	0.07	0.05	0.07	1368	1400	3100	0.008	10/0	205	12/0
17 17	100	1400 1372	200 350	1380 1380	250 500	1373 1400	255	1368	285	1368
ĸ	290	13/2	3.00	1300		1-00	1			
ĥ	801	e flows t	ก หรุดก ้	¥F LAK F [°] Ω		rom brón	SON)			
Ŷ.	Ö	0	0	1	1					
Yi	1	0	0	0	0	0	0			
¥6	0.07	0.05	0.07	1357	1375	1000	0.011	1057	~~~	1057
17	100	1375 1359	106 340	1369 1369	240 356	1362 1375	280	1357	320	1357
¥7 K	323	10	340	1367	3.50	12/2	1	0	0	0
Ř1	RUN			IOLLED ÖR	•	rea abòv	e lake g	UINN	•	•
H	1	1	6.86	0	9.74	0	0	0	1	0
P	0	21.5	111	123	133	142				
T	0	0	0	0	0	0	1.0	0.05	0	0
Ĥ.	2.35		~							
X K	-1.5	-0.05	0	0	0	0	1			
ĥ1	ന്	MBINE 3 H	v	•	•	•		D HYD. T	HRILLAKE	
κ.	ĩ	12	0	0	0	0	1	0	0	0
K1	ROU	ting XPTF	's thru	LAKE	QUINN					
Y.	0	0	0	1	1	Q	0	<u> 0</u>	0	0
¥1		4050 0		1055	1051 0		-1352	-]	1000	1070 0
Y41 Y5	352.0 0	1353.0	1354.0	1355.0 1400	1356.0 2480	1357.0	1358.0 5370	1359.0 7170	1360.0 9040	1370.0 36000
\$5	ŏ		305	445	610	810	1040	1300		1930
\$E1	346.Š	1352	1353	1354	1355	1356	1357	1358	1359	1360
- \$\$1	352.0									
	353.0									
ĸ	99	DOCUTE	ນດເດຍ		CTDEAM	NETLINOV		TONC		

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

Runoff Hydrograph at	1
Route Hydrograph to	1
Route Hydrograph to	2
Route Hydrograph to	3
ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO RUNDEF HYDROGRAPH AT	456
ROUTE HYDROGRAPH TO	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8
Route Hydrograph to	9
Runoff Hydrograph at	10
Combine 3 Hydrographs at	11
Route Hydrograph to	12
END OF NETWORK	14

1 FLOOD HYDROGRAPH PACKAGE (NEC-1) DAM SAFETY VERSION JULY 1978 LAST MODIFICATION 01 APR 80 *****

RUN DATE: 81/03/04. TINE: 04.28.54,

, . .

LAKE DITINN DAM DER ND. 90-64-43 DAM SAFTEY INSPECTION PROGRAM 12-9-80 OVERTOPPING ANALYSIS *** PRELIMINARY ***

JOB SPECIFICATION												
NO	NHR	NMIN	IDAY	THR	INTN	HETRC	IPLT	IPPT	NSTAN			
144	0	20	0	0	0	0	0	-3	0			
		•	JOPER	NUT	LROPT	TRACE						
			5	0	0	0						

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN≈ 1 NRTIO= 6 LRTIO= 1 .10 .20 .30 .50 1.00

RTIOS= .01

********* ********* ******** ******** *********

SUB-AREA RUNOFF COMPUTATION

RUNOFF FROM DRAINAGE AREA ABOVE ROBINSON DAM

JPLT JPRT INAME ISTAGE IAUTO ISTAD ICOMP IECON ITAPE

HYDROGRAPH DATA SNAP TRSDA TRSPC 0.00 9.74 0.00 IUNG TAREA 1 ,50 RATIO ISNOW ISAME LOCAL 0.000 0 1 0 THYDG

PRECIP DATA SPFE PHS R6 R12 R24 R48 0.00 21.50 111.00 123.00 133.00 142.00 TRSPC COMPLITED BY THE PROGRAM IS .800 R72 R96 0.00 0.00

LROPT Ò

UNIT HYDROGRAPH DATA TP= 1.02 CP= .45 NTA= 0

UNIT	HYDROGRAPH	27 ENI	HOF-PERIOD	ORDINATES.	LAG=	1.03 HOURS,	(1 ⁾ = .45	VQL= 1.00	
21.	75,	128.	137.	115.	93.	75.	61.	49,	40,
32.	26.	21.	17.	14.	11.	9.	7.	6.	5.
4.	3.	٦.	2.	2.	1.	1.			

********* ******** ********* ******** *******

HYDROGRAPH ROUTING

ROLITING XPHE'S THRU ROBINSON DAM AND SPILLHAY

			01.055 0.0	1STA0 1 CLOSS 0.000	ICONF 1 AVC 0.00		1	APE 0 DATA AFE 1	JPLT 0 IOPT 0	JPRT 0 IPMP 0	Iname 1	ISTAGE 0 LSTR 0	IAUTO 0
				NSTPS 1	NSTOL			000 15KK	x 000,0	TSK 0.000	STORA -1643.	Isprat -1	
STACE	164	43.00	1643.50	16	44.20	1644.	50	1645	5.00	1646.0	0 1	50.00	1655.00
FLOW		0.00	12.00)	45,00	90.	00	390	0.00	1570.0	0 12	030.00	37000.00
CAPACI	TY=	0.	15	io.	190.	410.		660.	5	960. 			
ELEVATI	(IN=	1628.	164	13.	1644.	1650,		1655.	16	60.			
			CF 1643		WID 0,0	0.0	FXPU 0.0	FLEV O			REA 0.0	E XPL 0.0	

ARE JOINN

WERTOPPING ANALYSIS : mge_ 3/12

C. LANSING MARKED

3-19

State of the state

***************************************	**** **********
---	-----------------

HYDROGRAPH ROUTING

DOWNSTREAM Y-SECTION 230 FEET FROM DAM (ROBINSON)

	ISTAD 2	100MP 1	IFCON O ROUT	ITAPE O TING DATA	JPLT 0	. IPRT ()	Iname 1	istage 0	IAUTO O
220 JA 0.0	CL055 0.000	AVG 0.00	IRES 1	ISAME 1	10PT 0	IPHP 0		LSTR 0	
	NSTPS 1	NSTOL O	LAG 0	AMSKK 0.000	¥ 0.000	TSK 0.000	stora 0,	ISPRAT 0	

NORMAL DEPTH CHANNEL ROLLTING

ON(1)	QN(2)	ON(3)	ELNVT	ELMAX	RLNTH	SEL
.0700	.0500	.0700	1622.0	1638.0	230,	.00900

CROSS SECTION COORDINATES--STA.ELEV.STA.ELEV-ETC 100.00 1438.00 142.00 1630.00 162.00 1625.00 175.00 1622.00 190.00 1622.00 197.00 1625.00 207.00 1630.00 225.00 1638.00

STORAGE	0.00	.08 2.18	. 18 2.53	.31 2.90	.47 3.30	. /4 3.73	.84 4.19	1.06 4.67	1.31 5.19	1 57
OLITER ON	0.00	23, 99	116.74	248.65	451.16	736.24	1085.63	1501.21	1985.00	?≊> 2,10
	3162.58	3860, 47	4640.03	5504.64	6457.67	7502.42	8642.14	9880,03	11219.25	12662,89
STAGE	1622.00	1622.84	1623.68	1624.53	1625.37	1626.21	1627.05	1627.89	1628,74	1620.58
	1630.42	1631.26	1632.11	1632.95	1633.79	1634.63	1635.47	1636.32	1637,16	1638.01
F',OM	0,00	33.99	116.74	248.65	451.16	736.24	1085.63	1501.21	1985,00	5 256 10
FL.0 H	0,00	33,99	116.74	248.65	451.16	736.24	1085.63	1501.21	1985.00	2539,10
	3162,58	3860,47	4640.03	5504.64	6 4 57.67	7502.42	8642.14	9980.03	11219.25	12552,89
	********	÷	*******	*****		*********	ŧ	*******		

HYDROGRAPH ROLITING

ROUTE THRU THE __ 2ND_DOWNSTREAM_CROSS_SECTION (ROBINSON)

	ISTAO 3	ICOHP	IECON	ITAPE	JPLT	UPRT 0	INAME	ISTAGE	IAUTO
AL055 0,0	n 055 0,000	AVG 0.00	RÖU IRES 1	TING DATA ISAME 1	v.	IPMP 0	1	LSTR	()
	NSTPS 1	NSTEL	LAG	AMSKK 0.000		TSK 0,000	STORA 0,	ISPRAT 0	

NORMAL DEPTH CHANNEL ROLITING

			PN(3) .0700			L MAX 38.0	RI NTH 270.	.009	EL 200					AKE QUI	<u>uu</u>
	CROSS SEC		ORDINA	TES-	-STA.EL								OVER	TOPPING Proge	•
		1638,00 1627,00			627.80 633.60		00 1627. 00 1638.		92.00 10	520,00	202.00	1620.00		• •	12
STORACE),00 2,07		07 70	3	. 15 . 42	4.	25 21	5.0	34 38	. 49 6. 03	.64 7.04	.90 8.17	1.04 9.36	1.51
OF TTFL (1	<u>محدد</u> 1).00 9.97	?4. 3207.		87 4189		179. 5344		30 4 .9 6679.9		465.64 8203.65	663.98 9976.18	902.42 11857.43	1232.01 14007.32	1730,43 16394,04
STARE	1620 1629		1420. 1430.		1621 1631		1622. 1632.		1633.2		1624,74 1634,21	1625, 69 1635, 16	1626.63 1636.11	1627.58 1637.05	1628, 50 1639, 00
FL OS	1 <u>7389</u>	0.00 0.97	24. 3207.		87. 4129		179. 5344.		304.9 6679.8	8	465.64 8203.65	663,98 9926,18	902.42 11857.69	1232.01 1 4007.3 2	1730, 43 16384, 04

	********	F .		++++	+++		*******	H 1	******		
					HYTROG	RAPH ROUTING					
		ROUTE FL	Ohi thru) 3RD D	OWNSTREAM	CROSS SECTION	(ROBINSON)				
			ISTAQ 4	ICOMP 1	IECON	ITAPE JPLT		INAME ISTACE			
		QL055 0.0	CL.055 0.000	AVG 0.00	ROUT	ting dáta Isame Iopt 1 0	IPMP	LSTR			
			NSTPS 1	NSTEL 0		AMSKK X 0.000 0.000	TSK 9	stora isprat 0. (
NORMAL OF	PTH CHANNEL ROL	ITING									
	0N(1) 0N(2) .0700 .0500	DN(3) .0700 1	ELNVT 400.0		rl.nth 8200,	SEL .02700					
1	CROSS SECTION (100.00 1414.0 185.00 1405.0	0 120.00	1406.0	0 170.	00 1403.00	0 175.00 1400.	00 178.00	1400.00			
STORAGE	0.00 65,52	.57 84.33		1.46	2.6/ 123.62		6.66 165.16	10.99 186.77	17.31 208.94	29.68 231.68	47,28 254,98
OUTFLOW	0.00 2301,85	9,81 3982.01		35,97 55,41	81.21 6913.70		257.39 10564.23	424.36 12650.10	676.95 14906.96	1096.65 17333.74	1828, 20 19929, 80
STAGE	1400.00 1407.37	1400.74 1408.11		101.47 108.84	1402.2 1409.5		1403.68 1411.05	1404.42 1411.79	1405.16 1412.53	1405,89 1413,26	1406, 63 1414, 00
FLAN	0.00 2801.85	9.81 3982.01		35.97 855.41	81.2 6913.70		257.39 10564.28	424.36 12650.10	676.95 1 490 6.96	1096.65 17333.74	1828,20 19929,80
	****		******	++++	****		*******	• н	*******		
					HYDROGR	APH ROUTING					
		route f	ions to) head ()		aph Routing Inn (From Robi	NSON)				
		route f	LOWS TO ISTAD 5) Head o Icomp 1				NAME ISTAGE 1 0			
		aloss	ISTAO	ICOMP	F Lake Qu Iecon O Rout	INN (FROM ROBI ITAPE JPLT	PRT I				
		01.055 0.0	ISTAD 5 CLOSS	ICOMP 1 AVG	F LAKE QU IECON ROUT IRES	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT	IPRT II 0 IPHP 0	1 0 LSTR			
NORMAL DEP	TH CHANNEL ROLD	QL055 0.0	ISTAD 5 CLOSS 0.000 NSTPS	ICOMP 1 AVG 0.00 NSTDL	F Lake Qu Iecon Rout Ires 1 Lag	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X	JPRT II 0 IPHP 0 TSK S	I O LSTR O TORA ISPRAT			
a	N(1) ON(2)	QN(3)	ISTAD 5 CLOSS 0.000 NSTPS 1	ICOMP 1 AVG 0.00 NSTDL 0	F Lake QU Iecan Rout Ires 1 Lag 0	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X 0.000 0.000	JPRT II 0 IPHP 0 TSK S	I O LSTR O TORA ISPRAT		20100	
a		0L055 0.0 11NG	ISTAD 5 CLOSS 0.000 NSTPS 1	ICOMP 1 AVG 0.00 NSTDL 0	F Lake QU Iecan Rout Ires 1 Lag 0	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X 0.000 0.000	JPRT II 0 IPHP 0 TSK S	I O LSTR O TORA ISPRAT O. O	LAKE	AUNN XG ANALYS	5
م م	N(1) DN(2) 9700 .0500 ROSS SECTION CO	PLOSS 0.0 11NG 0N(3) E .0700 13 DORDINATES 0 500.00	ISTA0 5 CLOSS 0.000 NSTPS 1 5 5 2.0 5 5 2.0 1 5 5 2.0 1 5 5 2.0 1 5 5 2.0 1 5 5 2.0 1 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5	ICOMP 1 AVG 0.00 NSTDL 0 ELMAX 1380.0 ELEV.STA	F LAKE QU IECON O ROUT IRES 1 LAG 0 RLNTH 4400	INN (FROM ROBI ITAPE JPLT O O ING DATA ISAME IOPT 1 O AMSKK X 0.000 0.000 SEL 01090		I O LSTR O TORA ISPRAT O. O	LAKE (· · ·	5 15 .
م م	N(1) 2N(2) 0700 .0500 ROSS SECTION (1 100.00 1380.00	PLOSS 0.0 11NG 0N(3) E .0700 13 DORDINATES 0 500.00	ISTAD 5 CLOSS 0.000 NSTPS 1 52.0 1 52.0 1 360.00 1360.00	ICOMP 1 AVG 0.00 NSTDL 0 ELMAX 1380.0 ELEV.STA	F LAKE QU IECON O ROUT IRES 1 LAG 0 RLNTH 4400	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X 0.000 0.000 SEL 01090 C 705.00 1352.0 209.24		I O LSTR O TORA ISPRAT O. O	LAKE (S ANALYS	5155 756.54 2362.63
م د	N(1) ON(2) 0700 .0500 ROSS SECTION (1 100.00 1350.00 0.00 887.53 0.00	PLOSS 0.0 0.0 0N(3) E .0700 13 DORDINATES 0 500.00 0 1200.00 31.55	ISTAQ 5 CLOSS 0.000 NSTPS 1 SSTA.E 1360.00 1360.00 1360.00	ICOMP 1 AVG 0.00 NSTDL 0 ELMAX ISB0.0 ELEV.STA 1380.0 1400.0 75.42 59.26 92.66	F LAKE QU IECON 0 ROUT IRES 1 LAG 0 RUNTH 4400 1553.00 1353.00 1350.00 134.65	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000		1 0 LSTR 0 TORA ISPRAT 0. 0 352.00 403.04	LAKE (DUERTOPAN (200	5/12 632.12	756.54
D C STORAGE	N(1) ON(2) 0700 .0500 ROSS SECTION (1 100.00 1350.00 0.00 887.53 0.00	9L055 0.0 11NG 0N(3) E .0700 13 00RDINATES 0 500.00 0 1200.00 31.55 1025.11 1219.40	ISTA0 5 CLOSS 0.000 NSTPS 1 552.0 1360.00 1360.00 1360.00 110 14016 14016 1352	ICOMP 1 AVG 0.00 NSTDL 0 ELMAX ISB0.0 ELEV.STA 1380.0 1400.0 75.42 59.26 92.66	F LAKE QU IECON 0 ROUT IRES 1 LAG 0 RLNTH 44000 1353.00 1380.00 134.65 1320.00 9007.88	INN (FROM ROBI ITAPE JPLT 0 0 ING DATA ISAME IOPT 1 0 AMSKK X 0.000 0.000 SEL 01090 C 705.00 1352.0 209.24 1477.32 15858.67 220718.61 1357.89		1 0 LSTR 0 TORA ISPRAT 0. 0 352.00 403.04 1811.70 36846.88	LAKE (DUERTOPAN (240 514.29 1988.76 51453.36	632.12 632.12 632.12 2172.40 68427.94	756.54 2362.63 87767.64

3-21

*****-

ı.

1

Martine Cont

********* ********* ******* ********* ********

SUB-AREA RUNOFF COMPUTATION

RUNDEE FROM DRAINAGE AREA ABOVE BRONSONS POND

ISTAD ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO

HYDROGRAPH DATA IUHG TAREA SNAP TRSDA TRSP' RATIO ISNOW ISAME LOCAL 1 2.38 0.00 9.74 0.00 0.000 0 1 0 IHYDG 1

PRECIP DATA SPFE PMS R6 R12 R24 R48 R72 R96 0.00 21.50 111.00 123.00 133.00 142.00 0.00 0.00 TRSPC COMPLITED BY THE PROGRAM IS .800

LOSS DATA DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00 RTIMP STRKR LROPT 0.00 0.00 0

UNIT HYDROGRAPH DATA TP= 1.85 CP=.45 NTA= 0

RECESSION DATA STRTD= ~1.50 ORCSN= -.05 RTIOR= 2.00 APPRIXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER OP AND TP ARE TC= 5.85 AND R= 8.91 INTERVALS

	INIT HYDROGRA	PH 51 END-	OF-PERIOD	ORDINATES	LAG=	1.86 HOURS,		VOL= 1.00	_
24.	91.	184.	278.	347.	372.	352.	314.	281.	251.
- 224.	200.	179.	160.	143,	128.	114.	102.	<u>91</u> .	82.
73.	65.	58.	52.	47.	42.	37.	33.	30.	
- 24.	21.	19.	17.	15.	14.	12.	11.	10.	
- 8.	7.	6.	6.	5.	4,	4.	۹,	ځ.	3.
3.									

****** ********* ******* ********* *********

HYDROGRAPH ROLITING

ROUTING XPHF'S THRU BRONSONS POND

				ISTAQ	ICOMP	IECON	ITAPE	JPLT 0	JPRT ()	INAME 1	ISTAGE 0	0 UALITO 0
			220.10 0.0	CL.055	- AVG 0.00		ing dáta Isame 1	10PT 0	IPHP ()		LSTR 0	
				NSTPS 1	NSTDL 0	LAG	amskik 0,000	x 0.000	TSF 0.000	STORA -1403.	ISPRAT -1	
STAF	140	3.10	1403.20) 14	03.60	1404.00	14	05.00	1410.0	0 1	415.00	1420.00
FLOW		0.00	.5)	23.00	95.00	5/	20.00	5310.0	0 13	300.00	23500.00
CAPACI	TY=	0.	34	80.	385.	500.	890	, 14	190.	2320.		
ELEVATI	()N=	1382.	140	03.	1403.	1405.	1410	. 14	115.	1420.		
			- Ci 1403		WID 0.0					REA 0.0	EXPL 0.0	
								DATA				

DAN DATA COOD EXPD DANNID 0.0 0.0 0. TOPEL 1403.1

LAKE GUINN

OVERTOPPING ANALYS ...

********	*****	**** *******				******	••••	********				
	HYTIRDIGRAPH ROLITING											
RUITE FI	nus three	1ST DOM	NSTREAM		CTION (B	rons/in)						
	ISTAD	1COMP 1	TECON Q	ITAPE 0	PLT 0	UPRT 0	INAME 1	ISTARE 0	0 Tarilu			
QL (CS)	CLOSS	AVG	roli Ires	ting dati Isame	a Iopt	TPHP		LSTR				
0.0		0.00	1	1	0	0		0				
	nstps 1	NSTDL ()	LAG	amenar 0.000	0.000 X	TS¥ 0.000	stora 0.	Isprat 0				

NORMAL DEPTH CHANNEL ROUTING

00(1) 00(2) 00(3) FLNVT ELMAX RLNTH SEL .0700 .0500 .0700 1393.0 1411.0 200. .00800

CR055 SECTION COORDINATES—STA.ELEV.STA.ELEV.TTC 100.00 1411.00 125.00 1405.00 136.00 1397.00 140.00 1393.00 190.00 1393.00 186.00 1397.00 190.00 1402.00 230.00 1411.00

STORAGE	0.00	2.52	.37 2.84	3.17	. 78 3. 54	1.00 3.95	1.23 4.39	1.47 4.87	1.71 5.38	1.07
olite) on	0,00	97,40	309.72	610.77	991.07	1481.42	2062.78	2723.72	3462,41	4777 45
	5165,41	6134,72	7191.79	8333.24	9565.29	10908.94	12368.85	13950.25	15658,52	17490 92
STAGE	1393.00	1393, 95	1394.89	1395,84	1396.79	1397.74	1398.68	1399,63	1400,58	1401.52
	1402.47	1403, 42	1404.37	1405,32	1406.26	1407.21	1408.16	1409,11	1410,05	1411.00
FLOW	0.00	97,40	309.72	610.77	991.07	1481.42	2062.78	2723.72	3462,41	4777 4°
	5165.41	6134,72	7191.79	8333.24	9565.29	10908.94	12368.85	13950.25	15658,52	17490 99
	*********	+	********	*****	*****	********	H	*******		

ROUTE FLOWS THRU 2ND DOWNSTRACH CROSS SECTION (BRONSON)

	ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IALITO
0.0	CL 055 0.000	AVG 0.00	ROL	ting dăt <i>i</i> Isahe 1		IPHP 0		LSTR	v
	NSTPS 1	NSTEL 0	LAG	AMSKK 0.000	¥ 0.000	TSK 0.000	stora 0,	ISPRAT 0	

NORMAL DEPTH CHANNEL ROLITING

ON(1) .0700	ON(2)	ON(3)	ELNVT 1368.0	ELMAX	RLNTH 3100.	.00800			LAKE QUINN
1000			100010	140010	5100.				OVERTOFPING ANALYSIS
100.0	ECTION C 0 1400,00 0 1372.00	200.	00 1380.	00 250.0	00 1373.	00 255,	00 1368.00	285.00 1368.00	, mar "1/12

STORAGE	0.00	3.82	8.10	13.08	20.34	30.54	4 3.74	59,87	78,79	100.04
	124.21	150.71	179.72	211.27	245.33	281.92	321.03	362,67	406,82	453.51
OUTFLOW	0,00 †7698,99	190.22 22381.18	607.59 27775.99	1237.68 33910.87	2179.92 40822.46	3481.38 48546.65	5215.69 57118.60	7446,81	10258,71 76943,05	13661.16 88262.64
STAGE	1368,00	1369 68	1371.37	1373.05	1374,74	1376, 42	1378.11	1379, 79	1381,47	1393,14
	1384,34	1386,53	1388.21	1389,89	1391,58	1393, 26	1394.95	1796, 63	1398,70	1400,00
F1,0W	0,00 17688,99	190,77 22381,13	607,50 27775,99	1227, 60 1227, 60	2179.92 40822.44	3481, 39 48546, 65	5215,49 57118,60	7444.81	10258,71 76943,05	17641.14 88041.44

N 23

****	********		*******			*****	****	**	
RAUTE FLAMS	TO HEAD	OF LAPE	QUINN	(FROM BRI	(INS(IN)				
	0 4 721	TONF	IECON 0	ITAPE	JPL T	1999). 0	INAME 1	ISTAGE	IAUTO
			RO	ITING DAT	A	•	•	•	•
RL (1 95) (0, 0)	0,000 N (190	00.0	IRES 1	ISAME 1	10PT 0	IPHP 0		LSTR 0	
	NSTP9 1	NGTOL	L A G O		x 0.000	TSK 0,000	stora 0.	ISPRAT 0	

NORMAL LEPTH CHANNEL ROUTING

(

0N(1) 0N(2) 0N(2) ELNVT ELMAX RLNTH SEL .0700 .0500 .0700 1357.0 1375.0 1000. .01100

CR055 SECTION COOPDINATES--STA.ELEV.STA.ELEV.-ETC 100.00 1275.00 106.00 1369.00 240.00 1362.00 290.00 1357.00 320.00 1357.00 323.00 1359.00 340.00 1369.00 356.00 1275.00

Ω. Marke	0.00 21.17	97 75, 33	20,92	3.49 34,92	5.05 40.07	6.81 45,30	8,83 50,60	11.27	14,15 61,44	17.45. 66.,97
OLATE: UN	9605.0-	112.42	397, 95	820.5?	1396.78	2128.59	3132,45	4381,98	5864.00	7599.11
	0.00	11902.10	14504, 26	17490.76	20926.56	24673.53	28720,66	33059,28	37682.40	42584.24
STAGE	1357, (K) 1364, 47	1357,95 1367,42	1358,89 1368,37	1359,84 1369,30	1360, 79 1370, 26	1361.74 1371.21	$1362.68 \\ 1372.14$	$1363.63 \\ 1373.11$	1364 52 1374 05	1365.52 1375.00
(FL (N	0,00	112.82	393, 95	820,53	1396.78	2128.59	3132,45	4381.98	5864.00	7599.11
	9605 97	11902.10	14504, 26	17490,75	20924.56	24673.53	28720,64	33059,28	37682.40	42584.24

	1364.47	1367.4?	1368.37	1369.30	1370.26	1371.21	1372.14	1373.11	1374.05	1375.00
FL (W	0.00	112.42	393, 95	820,53	1396.78	2128.59	3132,45	4381.98	5864.00	7599.11
	9605,97	11900,10	1 4504, 26	17490,76	20924.56	24673.53	28720,64	33059,28	37682.40	42584.24

		*******	**1	+++++++	******	++++	********	***	******	
FL (N	0.00 9605.97	119.63 11902,10	393,95 1 4504, 26	820,53 17490,75		0108.59 24673.53	3132, 4 5 28720,64	4381,98 33059,28	5864.00 37682.40	7599.11 42584.24
	1 104.47	1361.47	1368.37	1369.3	13/0.26	1371.21	1372.14	1373.11	1374.05	1375.0

SUB-AREA RUNOFF COMPLITATION

RUNOFF FROM UNCONTROLLED DRAINAGE AREA ABOVE LAKE QUINN

ISTAN 10 ICOMP IECON ITAPE UPLT 0 JPRT INAME ISTAGE TAUTO

HYTROGRAPH DATA SNAP TRSDA TRSPC 0,00 9,74 0,00 THADC TING TAREA RATIN ISNOW ISAME LONAL 0.000 0 1 0 A. 84 1

LOSS DATA LROPT STRVE DUTKE RTIOL ERAIN STRVE RTION STRTL ONST. ALSHY 0 0.00 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00 RTINE 0.00

INIT HYDROGRAPH DATA TP= 2.35 CP= .45 NTA= 0

2-24

RECESSION DATA STRT0= -1.50 DRCSN= -1.05 PTIOR= 2.00 APPROVIMATE CLARE COFFETCIENTS FROM GIVEN SNYDER OF AND TP ARE TO= 7.53 AND R=11.00 INTERVALS

	{N] ⁺	HYDRIGPAPH	63 END-	-NF-PEPIND	ORDINATES.	LAG=	2.34 HOURS	(P= 45	V01 = 1.00	
40.		148.	301.	478	649,	780	8-1	854	797	770
HA.		<u>607.</u>	554.	506,	462.	422.	385	251	321	~~ ~
249.		244.	222.	204.	186.	170.	155.	142.	129	118
108.		96	9 0,	82.	75.	68.	62.	E 7	En.	40
- 43.		4 0.	34.	35	3 0 .	28	^	22	21	10
17.		16,	15.	13.	12.	i 1.	10.	`•`	P.	်စ္ပဲ
- 7.		۴.	۴.					•	•	•

LAVE QUINN WEATOPPING ANALYSI' Price B/12

	****	*****		******	++++	***	******		*****	****	++++	*****	
					(OMBINE	hydrograp	HS					
		COP	IBINE 3	hydrogra	APHS AT LA	KE QUIN	n Route	COMBI	NED HYD.	Thru La	ĸe		
				tstao 11	JCOMP 3	iecon O	ITAPE 0	JPLT 0	J ipr t O	INAME 1	ISTAGE 0	0 1 1 110	
	********		*****	++++	***	******		*****	+++++	+	******		
					HYDROGR	APH ROLD	TING						
	ROU	TING %PM	F18 THR	J LA	ke quinn								
			ISTAD 12	ICOMP 1	IECON 0 POUT	ITAPE 0 ING DATA	JPLT	J P rt 0	INAME 1	ISTAGE 0	IALITO 0		
		91.05 5 0,0	CLOSS 0.000	AVG 0.00	IRES 1	ISAME 1	IOPT 0	IPHP 0		LSTR 0			
			NSTPS 1	nstel 0	LAG 0	Amskk 0,000	¥ 0.000	TSK 0,000	STORA -1352.	ISPRAT -1			
STAGE	1352,00	1353.00	135	54.00	1355.00	135	56.00	1357.0	0 1	358.00	1359,00	1360.00	1370.00
FLOW	0,00	190,00	61	0.00	1400.00	248	80.00	3820.0	0 5	370.00	7170.00	9040.00	36000.00
CAPACIT	Υ= 0,	19	n.	305.	445.	<u>610.</u>	810) .	1040.	1300.	1600.	1930.	
ELEVATIO	N= 1347.	1353	2. 1	353.	1354.	1355.	1356	5.	1357.	1358.	1359.	1360.	

THE	SPUID	CO94	EXPH	ELEVL	C00L	CAREA	FYPL
1352.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TOPFL COOD D DAMUID 1353.0 0 0 0

STATION 12. PLAN 2. RATIO 1

LAKE QUINN

TYFATTOPPING AWALYSIS

A A A A A

2-25

!	********		******	******	****	******	***	*********
	peak flow a		(END OF PERIO LOWS IN CUBIC AREA IN		OND (CUBIC	HETERS PER		Computations
OPERATION	STATION	area	PLAN RATIO			LIED TO FL RATIO 4 .30		RATIO 6 1.00
hydrograph at	r 1 (.50 1.29)	1 14 (,39	. 138.)(3.91)(276. 7.81)(414. 11.72)(690. 19.54)(1380. 39.07)(
RALITED TO	1	,50 1,29)	t 3 (08		188. 5.32)(332. 9.41)(638. 18.06)(1303. 36.88)(
ROUTED TO	2,	.50 1.29)	1 3 (,08	i(1.20)(188. 5.34)(333. 9.43) (638. 18.08)(1302. 36.86) (
ROUTED TO	3,	.50 1.291	1 3 (.08		188. 5.33) (333. 9,44) (639. 18.09)(1301. 36.83)(
ROUTED TO	4.	.50 1.29)	1 3 (.08		185. 5.23) (326. 9,23) (617. 17,48)(1267. 35.87)(
ROUTED TO	5 (.50 1.29)	1 3 (.08		180. 5.11)(320. 9.07)(603. 17.09)(1241. 35.14)(
hydrigpaph at	Г 6 _.	2,38 6,16)	1 44 (1.25	44 2. 12.51)(884. 25.03)(1326. 37,54) (2210. 62.57)(44 20. 125.15)(
ROUTED TO	6,	2,38 6,16)	1 11 (.32		781. 22.12)(1198. 33,92)(2008. 56.85) (4019. 113.79)(
ROUTED TO	7	2.38 6.16)	1 11 (.32		780. 22.09)(1198. 33.92)(2008. 56.87)(4018. 113.78)(
ROUTED TO	8(2,38 6,16)	1 11 (.32		781. 22.10)(1196. 33,88) (2007. 56.82)(4017. 113.75)(
Routed to	9.(2,38 6,16)	1 11 (.32	358.)(10.13)(781. 22.12)(1196. 33.871(2006. 56.81)(4017. 113.74) (
hydrograph a'	r 10 _.	6.86 17.77)	1 114 (3.22		2273. 64.37) (3410. 96.56)(5683. 160. <i>9</i> 3) (11366. 321.85)(
3 COMBINED	11 (9,74 25,23)	1 119 (3.37		3162. 89.54) (4872. 137,961(8206. 232.36)(16 439. 465.49)(
RAIITED TO	12	9,74 25,23)	1 63 (1.79		2484. 70.33) (3903. 110.53)(6669. 188.881(14064. 398.24) (

AKE QUINN

MERTOPPING ANALYSIS

2-2.6

SUMMARY OF DAM SAFETY ANALYSIC

ł

•

PLAN 1		elevation Storage Outflow	INITIAL 1643 1		SPILLWAY CR 1643.00 150. 0.		2 0⊑ ∏AM 644.20 190. 45.		
	RATIO OF PMF	Maximum Reservoir H.S.ELEV	haxinun Depth Over Dan	MAXINIM STORAGE AC-FT	Haximim Outflow Ofs	Duration over top hours	TIME OF MAX OUTFLOW HOURS	time (F Failire Hours	ROBINSON FOR
	.01 .10 .20 .30 .50 1.00	1643.12 1644.14 1644.66 1644.90 1645.21 1645.77	0.00 0,00 .46 .70 1.01 1.57	154, 188, 208, 217, 228, 250,	3. 42. 188. 332. 638. 1303.	0.00 0.00 7.67 8.67 9.67 11.33	44.67 44.00 42.33 41.67 41.00 41.00	0,00 0,00 0,00 0,00 0,00 0,00	

PLAN 1 STATION 2

RATIO	MAXINUM	HAX [H] H	t the
	FLOW-OFS	STAGE, FT	Hours
.01 .10 .20 .50 1.00	3. 42. 188. 333. 638. 1302.	1622.1 1622.9 1624.1 1624.9 1625.9 1627.5	44.67 44.00 42.33 41.67 41.00 41.00

PLAN 1 STATION 3

RATIN	MAXIMUM	HAXININ	tine
	FLOW-CFS	STAGE FT	Hours
.01	3.	1620.1	44,67
.10	42.	1621.2	44,00
.20	188.	1622.9	42,22
.30	333.	1624.0	41,67
.50	639.	1625.6	41,00
1.00	1301.	1625.7	41,00

PLAN : STATION 4 MAXIMUM MAXIMUM TIME RATIO FLOW-CES STACE-FT HOURS

	L'Entre Charles	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
.01 .10	42.	1400.2	45.33 44.33
.20 .30	185. 326.	1403.2	42.67
.50 1.00	417. 1267.	1405.0 1406.1	41.67 41.33

PLAN 1 STATION 5

	aximum	NAXINUN	tthe
	ON+CES	STAGE FT	Hours
.01 .10 .20 .50 1.00	3. 42. 130. 320. 603. 1241.	1352.0 1352.1 1352.2 1352.4 1352.7 1353.5 SAFETY ANA	46.00 44.67 43.00 42.67 42.00 41.67

WERTOFAIDE ANALISE

The and the second second second second

(nge 11/12

3-27

and the second

PLAN :	ELEVATION STORAGE OUTFLOW	INITIAL VALUE 1403.00 380. 0.	SPILLWAY CREST 1403.00 380. 0.	TOP OF DAM 1403.10 385. 0.	

RATIO OF PMF	HAXINUH RESERVOIR W.S.ELEV	Haxihun Depth Over Dan	Maximum Storage AC-FT	Maximum Outflow CFS	DURATION OVER TOP HOURS	time of Max outflow Hours	TIME OF FAILURE HOURS	EF JNSON FOND
.01	1403, 39	. 29	403.	11.	12.00	47.33	0.00	
.10	1404, 62	1.52	477.	358.	31.33	43.33	0.00	
.20	1405, 27	2.17	521.	781.	32.33	42.67	0.00	
.30	1405, 71	2.61	555.	1198.	32.67	42.67	0.00	
.50	1406, 55	3.45	621.	2008.	33.00	42.67	0.00	
1.00	1408, 65	5.55	785.	4019.	33.33	42.67	0.00	

PL/	AN 1	STATION	7
RATIO	HAXINUH FLON+CFS	HAXIHUH STAGE,FT	TIME HOURS
.01 .10 .20 .50 1.00	11. 358. 780. 1198. 2008. 4018.	1393.1 1395.0 1396.3 1397.2 1398.6 1401.2	47.33 43.33 42.67 42.67 42.67 42.67

	PLAN	1	STATION	8	
RATIO		Maximum Low, CFS	HAXIHUN STAGE, FT	TIM HOUR	
.01 .10 .20 .30 .50		11. 358. 781. 1196. 2007. 4017.	1368.1 1370.4 1371.8 1372.9 1374.4 1376.9	47.6 43.3 43.0 42.6 42.6 42.6	13 10 17

PLAN 1 STATION 9

RATIO	HAXINUM	NAXINUN	tine
	FLONGCES	STAGE.FT	Hours
.01	11.	1357.1	47.67
.10	358.	1358.8	43.33
.20	781.	1359.8	43.00
.30	1196.	1360.5	42.67
.50	2006.	1361.6	42.67
1.00	4017.	1363.4	42.67
SUM	MARY OF DAM	SAFETY ANALY	SIS

PLAN 1	ELEVATION STORAGE OUTFLOW		VALUE 2.00 190. 0.	SPILLWAY CR 1352.00 190. 0.	1	0F DAM 353.00 305. 190.	
RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	haxinun Depth Over Dan	Maximum Storage AC-FT	NAXINUM OUTFLOW CFS	DURATION OVER TOP HOURS	time of Nax outflow Hours	TIME OF LAKE FAILURE QUINNS HOURS QUINNS
.01 .10 .20 .30 .50	1352,33 1354,61 1356,00 1357,05 1358,72 1361,86	0.00 1.61 3.00 4.05 5.72 8.86	228. 546. 811. 1054. 1517. 2545.	63. 1094. 2484. 3903. 6669. 14064.	0.00 8.67 12.67 23.33 30.00 31.33	46.33 44.67 44.33 44.00 44.00 43.67	$ \begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array} $
I HANNER HYTROGRAPH PACKAGE () DAM BAFETY VERGION ULL BAST MORTETICATION OF APP	₩EC-1) / 1978 / 80						ערייבי (אינייבי) אורי≓ (איניערי

1

OURRIDPHING ADA IS PAGE 12/12

والتقية بسيند والمتجاوين فالتعطي للعث

D-23

┇╷╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻╻ ┙╹	A1		ake quin	N DAM	der MO.	90-64-43					
5.10	A2 A3		SAFTEY FACHING			am <u>1</u> : Prelimi	2~19-90				
4	1945) 19	144					NAPY 51 0	• 0	0	-3	0
5	B1	5		0				0	Ó	0	Ó
6 7	ા ા (0.10	1	1							
8	ĸ	0	1	0	0		0	1	0	0	0
9 0	K1 M		off from 1	DRAINAG 0.50	F AREA A		Inson Dâm O	0	0	1	0
I	P	0	-	111			142	Ų	v	1	U
	T	0	0	()	0	0		1.0	0.05	0	0
	¥ 1	1.02	0.45 -0.05	2							
	Ŕ	1	1	ō		0	0	1	0	0	0
	K1					n dam ani	o spillma				
	¥ ¥1	0	0	0		1	0	-1643	0 -1	C C	0
	¥416			•	-			1650.0		x ,	,
	¥5	0		45,0				12030.0	37000.0		
	- \$5; - \$E3+3	י) ד דר					960				
	\$\$142	43.0			10.010	1000000	1.000				
	\$D164 #	44.?	2	^	~	•	^		^	^	0
	k!	- 20	INSTREAM	A-SECTI		EET FROM	DAM (RO	BINSON	C	0	()
	V	0		0		1					
	Y1 YA (0.07	0 0.05	0 0.07			230	0.0090	Û	0	0
	¥7 `	100	1638	142	1630		1625	175	1622	190	1622
	Y7	197	1625	207			1638		^	~	•
	KI	1 R	onite the	0 It the			noss sect	TON (R	() DRINSON ()	n	Ç
	γ	Ô	0	0	1	1					
	Y1 Y6 (1 0.07	0 0.05	0 0.07		-	0 270	0.0090	c	0	0
	γ ⁷	100		140		180	1627	192	1620	202	1620
	¥7	210		277	1633.6	323	1638				
	¥ K1	1	route fl	0 ПЦ ТНЯРЦ		() NGTREAN	CROSS SE	I N MOITCH	() (Mnewstrick	0	ć
	Ŷ	0	ō	0	1	1			op I week at		
	¥) ¥6 (1 0.07	0 0,05	0 0.07	•			0.027	0	0	0
	Ϋ́Υ `	100		120		170	8200 1403	175	1400	178	1400
	¥7	185	1405	246	1406	270	1414		• • • •	• •	
	K1 K1	1) הוראשה דח		LAKE OU	() INN (FRO	I N RORINK	SON)		
	Ŷ	0				1		11 100£01040			
	¥1	0.07	0.05					0.0109			
	- ¥6 (- ¥7	100						705	1352	905	1352
	Y 7	910	1353	1200	1360	1400	1380				
	К 141	0 RIM		0 DRATNOG		0 BANE BRAI	o NSONS PON	n I	0	٠	0
	×	1	1	2.38	0	9.74	0	ڻ ر	n	1	0
	P	ò		111					A 45	•	•
	ů.	0 1.85			0	0	0	1.0	٥.(بو	٥	0
	Y T	-1.5	-0.05								
	- k' -≱*1	pour	TING 7.PH				0	1	0	0	ć
	Ϋ́	- nuc		()	1		0	0	n	C	0
	¥!	:	()			0	0	-1403	-1	Ô.	0
	- ¥4 ¦.4 - √≂		1403.2	1403.6	- 1404,0 95,0	1405.0	1410.0 5210.0	13300 0	1420.0		
	50 57 (7	0	ે રંગ	285 1403.1	500	890 1410.0	1490	2320	20 00 1		

(

(

L

LAKE QUINN

۳.

ł

BREACH AWALYSIS. Prige Vio

1 29

and widey and

the second second

 1
 7
 0
 0
 0
 0
 1

 ROUTE
 FLOMS
 THRU
 1ST
 DOMNSTREAM
 CROSS
 SECTION
 (BRONSON)

 0
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 K1 Y16777 K1 Y16777 K1 Y16777 K1 PT 1 1 0 0 0 1393 1411 200 0. 1405 136 1397 1402 230 1411 10000STRAEM CROSS SECTION 0.07 100 $\begin{array}{c} .05\\ 1411\\ 1397\\ ROUTE FLOWS TH\\ 0 & 0\\ 0 & 0\\ 1 & 1 & 0\\ 0 & 0\\ 1 & 1 & 0\\ 0 & 0\\ 1 & 1 & 0\\ 0 & 0\\ 1 & 1 & 0\\ 1$ (BRONSON) 0 1400 250 500 0 (FROM 1 0 3100 1373 1400 0.008 255 () BRON::ON) LAKE QUINN (FROM 1 1 1357 1375 1 1369 240 1 1369 356 1 0 0 LED DRAINAGE AREA 0 9,74 123 133 0 0 0 0 1000 0.011 1362 280 13 1375 1 A ABOVE LAKE DUINN Õ 0 1.0 0.05 0 1 ROUTE COMBINED HYD. THRU LAKE
 K1
 ROUTING

 Y
 0

 Y1
 1

 Y41352.0
 135

 Y5
 0

 \$5
 0

 \$5
 0

 \$51352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$61352.0
 \$135

 \$135
 \$66

 \$136
 \$66

 \$137
 \$100

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1

 \$1
 \$1
 0 1357.0 2820 810 1356 -1 1359.0 7170 1300 1358 -1352 1358.0 5370 1040 1357 1360.0 9040 1600 1359 1370.0 1930 1360 3 1400 3 1354.5 1354.5 1354.5 1354.5 0 % SECTION 0.33 1353 1 0.33 1353 135 1.00 1353 135 2.00 1353 135 DOWNSTREAM CROSS 1344 1344 1344 0 0.5 0.5 0.5 13 FLOWS 0 0 0.05 1358 1344 14 FLOWS 1329 1329 1329 15 FLOWS HRU 1ST 0.07 115 286 HRU 2ND THRU (QUINN) - C-1 1358 157 308 0 1 CR0SS 1 0 1340 135 1344 15 1351 30 DOMNSTREAM 100 1343 1358 0.01 163 SECTION (QUINN) THRU 0 0.07 168 278 0 1 3RD DOWNSTREAM CRC 1 1 1 0 0 1319 1339 1332 193 1338 282 0 0 CROSS SECTION 3900 1329 1339 0 (GUINN) 0.0054 0.07 100 268 1 ROUTE 0 1 0.07 100 243 99 THRU 0.07 150 282 1230 1239 10500 1236 1245 ô 0,0085 205 0.05 1245 1235 202 325 1238.4

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

D - 30

LAKE QUINK ANNALACIE 2/10 page

ŧ

RUNOFF HYDROGRAPH AT ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO RUNOFF HYDROGRAPH TO ROUTE HYDROGRAPH TO RUNOFF HYDROGRAPH AT COMBINE 3 HYDROGRAPHS AT ROUTE HYDROGRAPH TO	11234566789 10112
RUNDEF HYDROGRAPH AT	10

1 FLOOD HYDROGRAPH PACKAGE (HEC-1) TAM SAFETY VERSION JULY 1978 LAST MODIFICATION 01 APR 80

RLN DATE: 81/03/04. TIME: 04.30.54.

LAKE QUINN DAM DER NO. 90-64-43 DAM SAFTEY INSPECTION PROGRAM 12-19-80 BREACHING ANALYSIS *** PRELIMINARY ***

				JOB SPEC	IFICATI	3N			
NO	NHR	NMIN	IDAY	IHR	IHIN	METRC	IPLT	IPRT	NSTAN
144	0	20	0	0	0	0	0	-3	0
			JOPER	NHT	LROPT	TRACE			
			5	0	0	0			

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 4 NRTIO= 1 LRTIO= 1

RTI0S= .10

********* ******** ******** ******** ********

DAM BREACH DATA

DAM BREACH DATA 7 ELEM TFAIL WSEL FAILEL .50 1344.00 .33 1353.00 1400.00 BRWID 66.

DAM BREACH DATA

DAN BREACH DATA Z ELBH TFAIL WSEL FAILEL .50 1344.00 .33 1353.00 1354.50 BRWID 66.

STATION 12, PLAN 2, RATIO 1

DAM BREACH DATA 7 ELBM TFAIL WSEL FAILEL .50 1344.00 1.00 1353.00 1354.50 BRWID 66.

STATION 12, PLAN 3, RATIO 1

DAM BREACH DATA Z ELBM TFAIL WSEL FAILEL .50 1344.00 2.00 1353.00 1354.50 BRWID 66.

STATION 12. PLAN 4. RATIO 1

LAKE QUINN BREACH AWALYSIS Mare 3/10

N-31

with the set in the set of the set of the set

					S HAVE SAME					
			.053 AVG 000 0.00	IRES 1	ing data Isame Io 1	PT IPMP 0 0	LȘTR O			
		N	stes nistdi. 1 o	LAG O	AMSKK 0,000 0.0	X TSK 00 0.000	stora isprat 0, 0			
NORMA: DE	PTH <u>Channe</u> , rou	TING								
	ON(1) ON(2) .0700 .0500	ON(3) ELI		RLNTH 3900, 1	SEL 00540			<u>L</u>	AKE QUI	N
		• • • • •		• • • • •				BRE	ACH AN	ALYSIS
	CRASS SECTIAN (100.00 1339.0 248.00 1329.0	0 168.00 10	32.00 193.0	NELEV-ETI 10 1129.00 10 1339.00	C 218.00 131	9.00 258.00	1319.00		page	4/10
STOPAGE	0.00	3.94 63.14	9,22 72,08	12.87 81.99	17.84 92.96	23.19 195.01		34,90 132,33	41.27 147.59	47,99 164,07
18 TE	=195°03	96.15 5366.33	307.92 7661.17	610, FO 9085, 35	1003.21 10650.32	1477.28 12366.50		2674,55 16285,50	2309, 24 18504, 02	4210,12
CTA/#	1319.00	1320, 58 1320, 58	1321.11 1331.42	1300,14 1300,69		1324, 24 1334, 79		1326.37 1326.89	(307,42 1337,95	1378,47 1339,00
FT ON	0.00 5197.03	96.05 6366.33	307,92 7661,17	612.59 9085.35	1003.21 10650,38	1477,28 12366,52		2674.55 16285.50	3399, 34 18504, 02	4210.12 20891.09

	R	DUTE FLOWS 1	thru 2ND DOM	INSTREAM CROS	,	(QUINN)				
				HYDROGRAPI	ROUTING					
	*********	н	*******	*****	+++++	********	H	*******		
FLOW	0,00 14733,78	246,67 17595,86	788,84 20678,93	1562.97 23979.86	2581.64 27497.20	3942,97 31229.08	5603.00 35174.10	7523.76 39331.19	9691.65 43699.55	12097,29 48278,65
et AGE	1340,00 1349,47	1340,95 1350,42	1341.89 1351.37	1342.84 1352.32	1343,79 1353,26	1344,74 1354,21	1345.68 1355.16	1346, 63 1356, 11	1347,58 1357,05	1348,53 1358,00
	14733.78	17595.84	20678.93	23979.86	27497.20	31229.08	35174.10	39331.19	43699.55	48278.65

PLT

0

JPRT

0

INAME ISTAGE

1

ITAPE

0

CR055_SECTION_COORDINATESSTA-ELEV-STA-ELEVETC 100.00_1358.00_115.00_1344.00_157.00_1343.00_163.00_1340.00_253.00_1340.00 265.00_1344.00_286.00_1351.00_308.00_1358.00										
FTOPAGE	0.00 2.99	, 20 3, 37	.41 3.76	. 43 4.15	.89 4.56	1.22 4.97	1.54 5.39	1.90 5.82	2.26	
00 اعت بل	0.00	246,67 7595 85	783.84	1562 97 19979 86		3947,97	5603,00 3517 4 ,10	7523.76	9691.65	

		NSTPS	NSTDL	LAG	AMSKK	X	TSK		
nepth ('Hanne' Politing	;								

ROUTE FLOWS THRU: 1ST DOWNSTREAM CROSS SECTION (DUITNO)

TCOMP

1

AVG

TECON

0

ON(2) 0N(3) ELNVT ELMAX RENTH .0700 1340.0 1358.0 100. DN(1) 100. .01000 .0700 0500

220,00

SEL.

ISTAD

14

ICOMP

1

TECON

0

0,000 0.0 0.00 1 1

NOPHA

ISTAD

13

********* HYDROGRAPH ROUTING

ITAPE

ALL PLANS HAVE SAME ROUTING DATA

IRES ISAME

0

£.

LATR

۵

INITO 0

IAUTO

0

Ô.

2.62 6.71

F

٩

ł.

12097.29

STORT OF SHEER ALLY

INAME ISTACE

1

. IPRT

IPHP

Ω

0

JPLT 0

TOPT

********	*****	****	**			*********		********	
		HYDROGRAPH ROUTING							
ROUTE FLOWS	THRU	ARD CRO	SS SECTIO	IQ) AC	UINN)				
	16 140 15	ICOMP 1	TECON 0	ITAPE 0	JPLT ()	JIPRT 0	INAME 1	ISTAGE 0	1 A 1170 0
				ns have : Ting dati					
QLOSS 0,0	CLOSS 0.000	AVG 0.00	IRES 1	ISANE 1	IOPT 0	IPHP 0		LSTP	
	NSTPS 1	NSTOL O	LAG 0	amski: 0.000	X 0.000	TSK 0.000	stora 0.	ISPRAT 0	

NORMAL DEPTH CHANNEL ROUTING

1

	(0N12)					
.0700	,0000	.0/00	1230.0	1245.0	10000.	.00000

CROSS SECTION COORDINATES--STA;ELEV.STA;ELEV--ETC 100.00 1245.00 150.00 1237.00 202.00 1236.00 205.00 1230.00 245.00 1230.00 248.00 1235.00 282.00 1238.40 325.00 1245.00

storage	0.00	7.69	15,55	23.58	31.77	40.13	48.65	57.65	68.35	82.70
	101.16	123.69	149,67	177.99	208.54	241.31	276.32	313.56	353.04	394.74
OUTFLOW	0.00	73.27	230.22	448. 28	717.92	1033.32	1390,45	1800,49	2277.55	2844.98
	3514.16	4306.98	5249.17	6334.72	7559.33	8927.16	10442,82	12111,15	13937.07	15925.54
STAGE	1230.00	1230.79	1231.58	1232.37	1233.16	1233 . 95	1234.74	1235.53	1236.32	1237.11
	1237.89	1238.68	1239,47	1240.26	1241.05	1241.84	1242.63	1243.42	1244.21	1245.00
FLOW	0.00	73.27	230.22	448.28	717.92	1033.32	1390.45	1800.49	2277.55	2844,98
	3514.16	4306.98	5249.17	6334.72	7559.33	8927.16	10442.82	12111.15	13937.07	15925,54

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC WETERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

Operation St	ation	area	PLAN RATIO 1 .10	ratios applied to flows
hydrograph at	1	.50 1.29)	1 138. (3.91)(2 138. (3.91)(3 138. (3.91)(4 138. (3.91)(
ROUTED TO	1 (.50 1.29}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

LARE OJ NU BREACH ANHUMELS Jage Slip

3-33

یر بُعدا9 8	2	.50 1.29)	1 2 (3 (4	42. 1.20)(42. 1.20)(42. 1.20)(42. 1.20)(Roijted to	9 (2.38 6.16)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Routen to	3(.50 1.29)	1 2 (3 (4	42. 1.20)(42. 1.20)(42. 1.20)(42. 1.20)(hydrograph at	10 ₍	6.86 17.77)	1 1137. (32.19)(2 1137. (32.19)(3 1137. (32.19)(4 1137. (32.19)(
ዋባኒባፑቲክ ፕቦ	4 (.50 1.29)	1 2 3 4	42. 1.19)(42. 1.19)(42. 1.19)(42. 1.19)(42. 1.19)(3 combined	11	9,74 25,23)	1 1485. (42.04)) 2 1485. (42.04)(3 1485. (42.04)(4 1485. (42.04)(
ROUTED TO	5 (.50 1.29)	1 2 (3 (4	42. 1.19)(42. 1.19)(42. 1.19)(42. 1.19)(42. 1.19)(Routen to	12	9.74 25.23)	1 1094. (30,99)(2 7794. (220,71)(3 6793. (192,35)(4 5559. (157,42)/
hydrograph at	۶ (2.38 6.16)	1 2 3 4	442. 12.51)(442. 12.51)(442. 12.51)(442. 12.51)(12.51)(ROLITED TO	13 (9.74 25.23)	1 1095. (31.00)(2 7690. (217.75)(3 6770. (191.71)(4 5553. (157.23)(
Rolited to	۴,	2.38 6.16)	1 2 3 (4	358. 10.13)(358. 10.13)(358. 10.13)(358. 10.13)(Routed to	14	9,74 25,23)	1 1095. (30,99)(2 7606. (215,38)(3 6173. (174,80)(4 5277. (149,44)(
rnijted to	7 (2.38 6.16)	1 2 3 4	358. 10.13)(358. 10.13)(358. 10.13)(358. 10.13)(Routen to	15 ₍	9,74 25,23)	1 1090. (30.88)(2 5860. (165.94)(3 5216. (147.71)(4 4604. (130.37)(
routed to	8 (2.388 6.16)	1 2 (3 (4 (358. 10.13)(358. 10.13)(358. 10.13)(358. 10.13)(358. 10.13)(Arce Quide

ARE QUIND REPEACH ANALISIU IMPE 6/10 ¥.

į

D-34

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	1		elevation Storage Outflow		AL VALUE 13.00 150. 0.	SPILLWAY (1643.(150)0 1),	0F DAM 644.20 190. 45.	\backslash	X Y
		RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	Naxinun Depth Over Dan	Naximun Storage AC-FT	Naxinun Outflon CFS	Duration Over top Hours	time of Nax outflow Hours	time of Failure Hours	,
		.10	1644.14	0.00	188.	42.	0.00	44.00	0.00	
Plân	2		ELEVATION STORAGE OUTFLOW	164	AL VALUE 43.00 150. 0.	SPILLWAY (1643.(150	0 1	OF DAN 644.20 190. 45.		
		Ratio OF Phf	MAXIMUM RESERVOIR H.S.ELEV	Maxinum Depth Over Dam	Naxinun Storage Ac-Ft	Haxinun Outflow CFS	Duration over top hours	tine of Hax outflow Hours	time of Failure Hours	FOR NEW
		.10	1644.14	0.00	188.	42.	0.00	44.00	0.00	> Davy
PLAN	3	••••••	elevation Storage Outflow	INITI/ 164	AL VALUE 13,00 150. 0.	SPILLWAY (1643.0 150 (1 00	OF DAM 644.20 190. 45.		
		RATIO OF PHF	MAXIMUM RESERVOIR N.S.ELEV	Maximum Depth Over Dam	Maximum Storage AC-FT	Naximum Outflow CFS	DURATION OVER TOP HOURS	time of Max outflow Hours	time of Failure Hours	
		.10	1644.14	0.00	188.	42.	0.00	44.00	0.00	
PLAN	4	•••••	elevation Storage Outflow		NL VALUE 13.00 150. 0.	SPILLWAY (1643.0 150 (0 1	OF DAM 644.20 190. 45.		
		RATIO OF PHF	MAXINUM RESERVOIR W.S.ELEV	Haximum Depth Over Dam	Haximum Storage AC-FT	Maximun Olitflow OFS	DURATION OVER TOP HOURS	time of Max quitflow Hours	TIME OF FAILURE HOURS	f :
		.10	1644.14	0.00	188.	42.	0.00	44.00	0.00	
	PL	AN 1	STATION	2	PL	LAN 1	STATION	3		
	RATIO	HAXIHUH Flow, CFS	HAXIHUN STAGE,FT	tine Hours	RATIO	Haxinun Flon,CFS	HAXIHUH STAGE+FT	TINE		
	. 10	42.	1622.9	44.00	.10	42.	1621.2	44.00		
	PL	AN 2	STATION	2	PL	.AN 2	STATION	3		
	RATIO	HAXINU FLOW-CFS	HAXINUM STAGE FT	tine Hours	RATIO	NAXIMUN FLON, CFS	NAXINUM STAGE, FT	TIME		
	.10		1622.9		. 10	42.	1621.2	44.00		
	PL	.an 3	STATION	2	PL	.AN 3	STATION	3		
	RATIO	MAXINU FLOW-CE	MAXIMUM Stage, FT	TINE HOURS	RATIO	MAXIMUM FLOW-CES	NAXININ STAGE FT	TINE		
			1622.9				1621.2			
	Pl	,an 4	STATION	2	PL	AN 4	STATION	3		
	RATIO	NAXINI Fi du cei	n naxinun 5 stage,ft	TINE	RAT 10	NAXIMUN Flow.ofs	MAXIMIN STAGELET	tine Hours ,	the second se	QU.NN
	.10	42					1621.2	44.00	BRGACH POQE	ANALYSI'- 7/10

initi

1

1.5

	r	ΡΙΔΑΝ 1		STATION	4		PLAN	3	STATION	Ę		
	RATIO	MAY	<u>im</u> im	MAXIMU	H TIHE		-					
	.10			1401				42.				
							ΡΙΔΝ	2	STATION	5		
	•			STATION MAXIMU			_	4 Haximum				
	RATIC		CFS		t hours	RATI		.0W+CFS				
	.10		4?.	1401.	6 44.3 3	•]	10	42.	1352.	1 44.67		
	ş	PIAN ?	ę	STATION	4		-		STATION			
	PATIO		inin VCES	HAXIMI STAGE F		RAT	10 FL	iaxinin Outoes	STAGE			
	.10		42.	1401.	6 44.33	.1	10	42.	1352.	.1 44.67		
	ş	PLAN 4	ę	STATION	4		PLAN	4	STATION	5		
	POTIO			MAXIMU STAGE, F			10 FL	iax incin . Oh , ces	MAXIML STAGE+F	n tine T hours		
	.10				6 44.33			42.	1352. M SAFETY AN	1 44.67		
PI AN	1				TNITIO							
	,		ŜT	TARAGE	36	30.		380.	ST TOP (14)	385.		X
			α	ITFLOW		0.		0.		0.		
		RATIO OF PHF	RESE	INUM RVOIR S.ELEV (naxinun Depth Iver Dan	Maximum Storage AC-FT	Maxii Cuttri CFS	LÕN		tine of Max outflow Hours	time of Failure Hours	,
		.10	140	4,62		477.	3	58.	31.33	43.33	0.00	
PLAN	2	• • • • • • • • •		EVATION IORAGE ITFLOW	INITIAL 1403. Se	VALUE .00 30. 0.	140	AY CRES 03.00 380. 0.	ST TOP (14	0F DAM 03.10 395. 0.		
		RATIO OF PMF	RESE	ININ RVOIR S.ELEV	Maximum Depth Over Dam	STORAGE	Maxii Outfi CF:	LON	Duration over top hours	time of Nax outflow Hours	TIME OF FAILURE HOURS	FF INTON FUNC NAM
		.10	140	04.62	1.52	477.	3	58.	31,33	43.33	0,00	
PI AN	3	• • • • • • • • •	S1	EVATION TORAGE ITFLOW	INITIAL 1403, 31	VALUE ,00 30, 0,	SPILLW 14	AY CRES 03.00 380. 0.		0F DAM 03.10 385. 0.		
		ratio OF Phf	RESE	CININ ERVOIR 5. ELEV	Maximum Depth Over Dam	Maxinun Storage AC-FT	Max I Outfi CF	LOW	DURATION OVER TOP HOURS	time of Max dutelow Hours	TIME OF FAILTIRE HOURT	
		.10	14(04.62	1.52	477.	3	58.	31.33	43.33	0.00	
PLAN	4	• • • • • • • • • •		LEVATION TORAGE TTELOW			SPILLW 14	AY CRES 03,00 380, 0,		0 F DAH 03.10 385. 0.		ANALISIS B/10
		RATIC OF PMF	RESI	rthin Frvntr 5. Elfv	Haxthin Depth Inver Dan	Haxihih Storage Ae-et	Maxi Nute CF	LOw	n Pation Over top Hours	time of Max outfelow Houre	TIME OF FAILURE HOURS	
		.10	140	04,62	1.52	477. U-26	3	58.	31,33	43.33	0.00	

*

Aller Aliche Anne Martin

PL	AN 1	STATION	7	PU	AN 3	STATION	8
RATIO	HAXINUM Flow, CFS	HAY IN M STACE . FT	TIME HOURS	RATIO	HAXINUN FLON, CFS		TINE Hours
.10	358.	1395.0	43.33	.10	358.	1370,4	43.33
የኒ	,AN 2	STATION	7	PL	AN 4	STATION	8
RATIO	HAXININ FLON-CES	MAXIMUM STAGE, FT	TIME	RATIO	HAXINUM FLON, CFS		tine Hours
. 10	358.	1395.0	43,33	.10	358.	1370.4	43, 33
Р	,an 3	STATION	7	PL	AN 1	STATION	9
RATIO	MAXIMUM FLOW-CES		TINE	RATIO	HAXINIM Flow-CFS	HAXIMUN STAGE.FT	TINE Hours
.10	358.	1395.0	43, 33	.10	358.	1358.8	43.33
PL	AN 4	STATION	7	PL	AN 2	STATION	9
PL RATIO	MAXIMUM	MAXIMUM	7 TIME HOURS	PLI RATIO	AN 2 MAXIMUN FLOW, CFS	MAXIMUM	9 Tine Hours
	MAXIMUM	MAXIMIM	TIME		HAXINUN	MAXIMUM	TINE
RATIO	HAXIMUM FLOW-CFS 358.	MAXIMUM STAGE, FT	TIME HOURS 43.33	RATIO .10	NAXIMUN Flow, CFS	MAXIMUM STACE, FT	TINE Hours 43.33
RATIO	MAXIMUM FLON-CFS 358. LAN 1 MAXIMIM	MAXIMUM STAGE,FT 1395.0 STATION MAXIMUM	TIME HOURS 43.33	RATIO .10	NAXIMUN FLOW, CFS 358,	MAXIMUM STACE.FT 1358.8 STATION MAXIMUM	TINE Hours 43.33
RATIO .10	MAXIMUM FLON-CFS 358. LAN 1 MAXIMIM	MAXIMUM STAGE,FT 1395.0 STATION MAXIMUM	TIME HOURS 43.33 8 TIME	RATIO .10 PL	NAXINUN Flow, CFS 358. An 3 Maxinun	MAXIMUM STACE.FT 1358.8 STATION MAXIMUM	TINE HOURS 43.33 9 TIME
RATIO .10 PI RATIO .10	MAXIMUM FLOW-CFS 358. LAN 1 MAXIMUM FLOW-CFS	MAXIMUM STAGE,FT 1395.0 STATION MAXIMUM STAGE,FT	TIME HOURS 43.33 8 TIME HOURS 43.33	RATIO .10 PLJ RATIO .10	Haxthun Floh,cFS 358, 38, 3 Maxthun Floh,cFS	HAXIMUM STACE.FT 1358.8 STATION MAXIMUM STACE.FT	TINE HOURS 43.33 9 TINE HOURS 43.33
RATIO .10 PI RATIO .10	MAXINUM FLON-CFS 358. LAN 1 MAXINUM FLON-CFS 358. LAN 2 MAXINUM	MAXIMUM STAGE,FT 1395.0 STATION MAXIMUM STAGE,FT 1370.4 STATION MAXIMUM	TIME HOURS 43.33 8 TIME HOURS 43.33	RATIO .10 PLJ RATIO .10	Maximum Flow, cFS 358, 358, An 3 Maximum Flow, cFS 358,	MAXIMUM STACE.FT 1358.8 STATION MAXIMUM STACE.FT 1358.8 STATION MAXIMUM	TINE HOURS 43.33 9 TINE HOURS 43.33

PLAN	1	elevation Storage Outflow	INITIAL 1353 3 1	VALUE .00 05. 90.	SPILLWAY CR 1352.00 190. 0,		0F DAM 353,00 305, 190,		(ATE QUILIN LAM
	RATIO OF PHF	Maximum Reservoir W.S.Flev	Maximum Depth Over Dam	Haxihum Storage AC-FT	Naximum Outflon CFS	DURATION OVER TOP HOURS	tine of Max outflow Hours	time of Faillire Hours	(LAM
	.10	1354.61	1.61	546.	1094.	9.00	44.67	0.00	
PLAN	2	ELEVATION STORAGE QUTFLOW			SPILLWAY (R 1352.00 190. 0.		0F DAH 353.00 305. 190.		
	RATIO OF PNF	NAXIMUM RESERVOIR W.S.ELEV	Maxinum Depth Over Dam	Haxihum Storage AC-FT	Maximum Outflon CFS	Duration Over top Hours	tine of Max outflow Hours	time of Failure Hours)
	. 10	1354.53	1.53	533.	7794,	5,33	44,00	43.67	
							Ax	F. 000	CAL

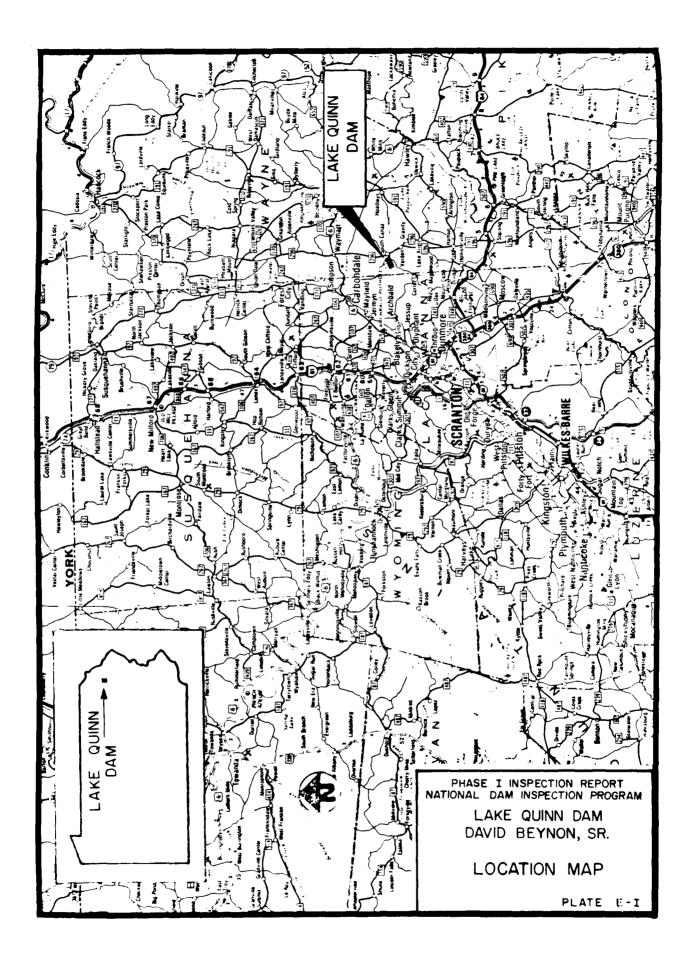
LAKE WOIDN PREACH ANALYSIS

ie 9/10

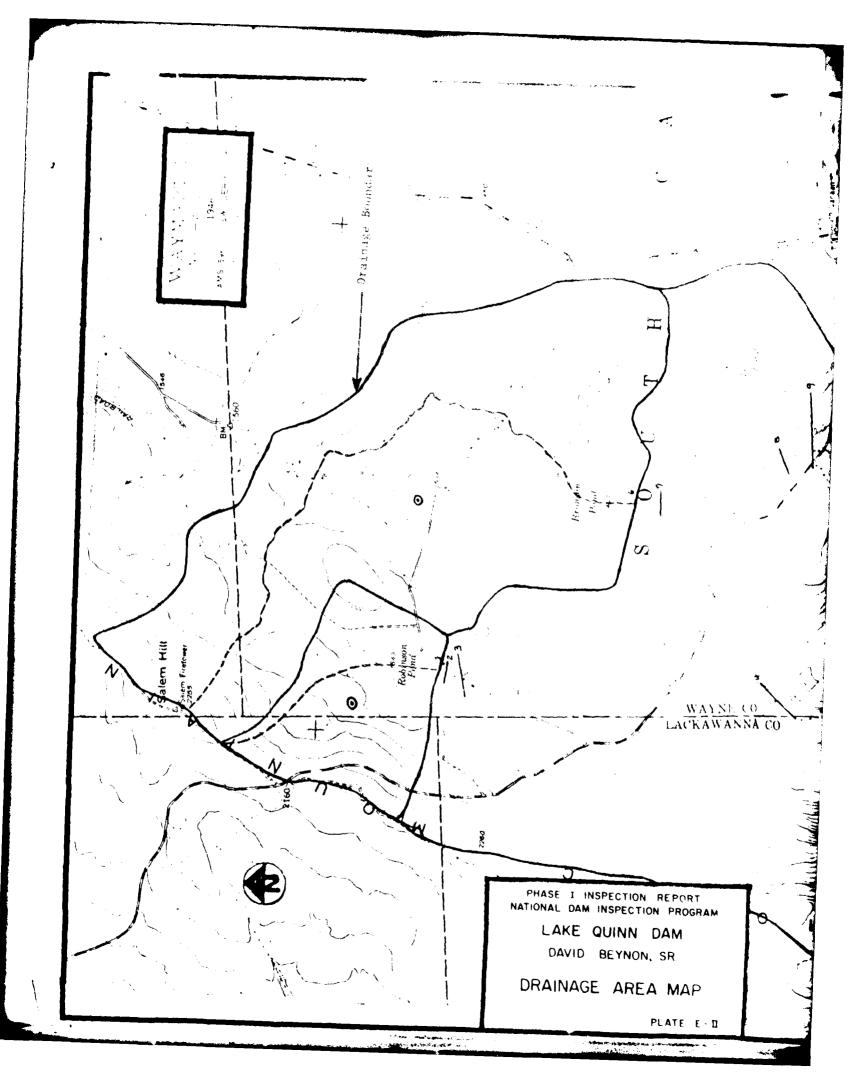
D-37

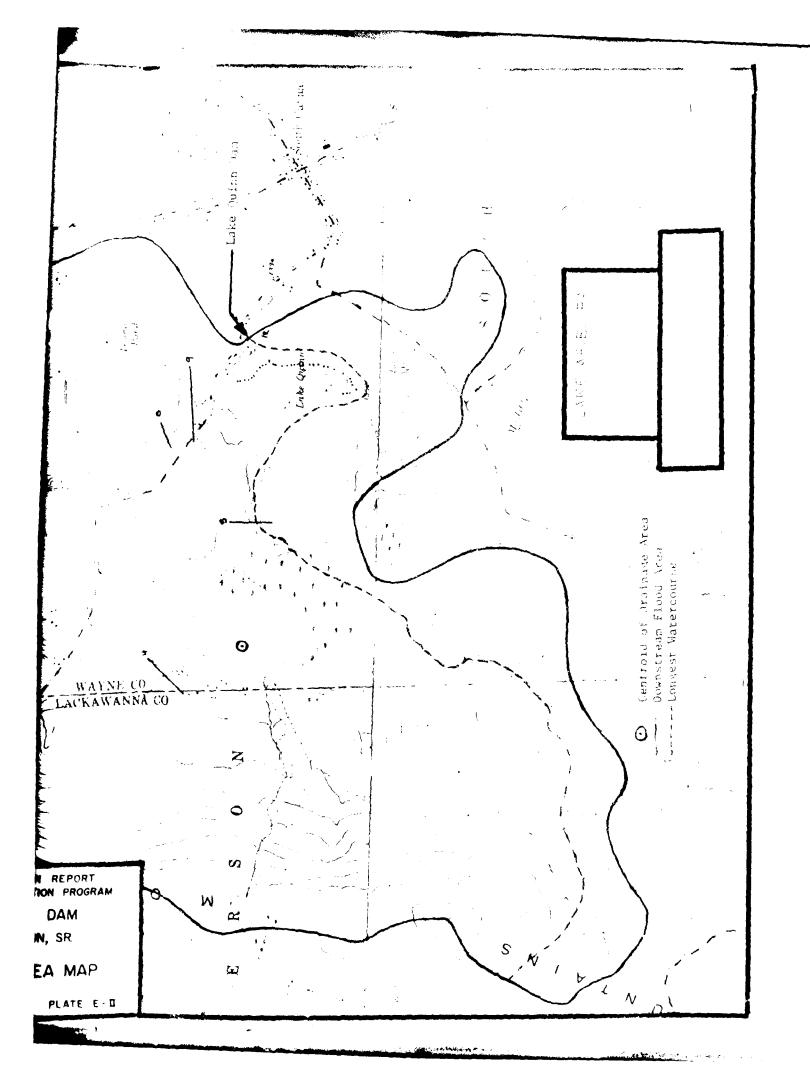
			FLEVATION STORAGE OUTFLOW		,00 05. 90.		2.00 190. 0.	1353.0 305 190		Litte
		RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	haxîmîn Depth rver dah	Maximum Storage AC-FT	Maxim Outfl CFS	ON ON	ER TOP MAX	ime of Outflow Hours	
		.10	1354,54	1.54	535.	67 9	3.	5.67	44,67	43.67
PLAN 4		••••	ELEVATION STORAGE MUTELOW				Y CREST 2.00 190. 0.	TOP OF D 1353.0 305 190	0 •	
		RATIO OF PMF	NAXIMIM RESERVOIR H.S.ELEV	Maximum Depth Jver Dam	Haxihim S'Orage Dr-Ft	MAXIM OUTFLI CFS	û¥ ûVi	er t 🐃 🛛 Max	ihe of Outflow Hours	TIME AS FAILING HOURS
		. 10	1354,56	1.54	E07	er.e	o, ,	6.54	45.67	43.67
	PL	AN 1	STATION	13		PLAN	13	STATION	14	
	RATIO	Maximu Flow-CF				RATIO	MAXIMUM FLOW-CFS			
	.10	1095	- 1342.3	44.67		. 10	6173.	1330.4	45.00	
	PL	,AN 2	STATION	13		PLAN	4	STATION	14	- TATION 14 =
	RATIO	haxihij Flow-CF				RATIO	Haxini, Flow, CFS			LOW DETREAM DAMAGE CENT
	.10	7690	. 1346.7	44,00		.10	5277.	1329.6	45.77	#1. DAMAGE
	PL	AN 3	STATION	13		PLAN	1	STATION	15	ELEU 332
	RATIO	MAXIMU FLON-CF				RATIO	HAXINUM Flow-ofs			
	.10	6770	. 1346.3	44.67		.10	1090.	1234, 1	45,0	ATION 15 =
	PL.	AN 4	STATION	13		PLAN	2	STATION	15	DOWNTAFERM ANK
	RATIO	HAXINI FLON, CF		TIME		RATIO	Haximin Flon, CFS			CENTER #2 "JAMAGE AT
	.10	5553	. 1345.7	45,67		.10	5860.	1239.9	44,67	ELEU. 238 0
	PĮ	AN 1	STATION	14		PLAN	3	STATION	15	
	RATIO	MAXINU FLOW-CF				RATIO	NAXINUN Flon-CFS			TECAIL : TOLAN 1 : NOW FAM
	.10	1095	. 1323.4	45,00		.10	5216.	1239.4	45.00	
	PL	AN 2	STATION	14		PLAN	4	STATION	15	AFE EFEACH CONDITIONS
	RATIO	HAXTHII FLOW-CE	n naxinin S stade ft			RATIO	MAXIMUN FLOW, CFS			
	. 10		. 1331.6			. 10		1238.9	-	
									AVE	ω_{0} (NN)

F,

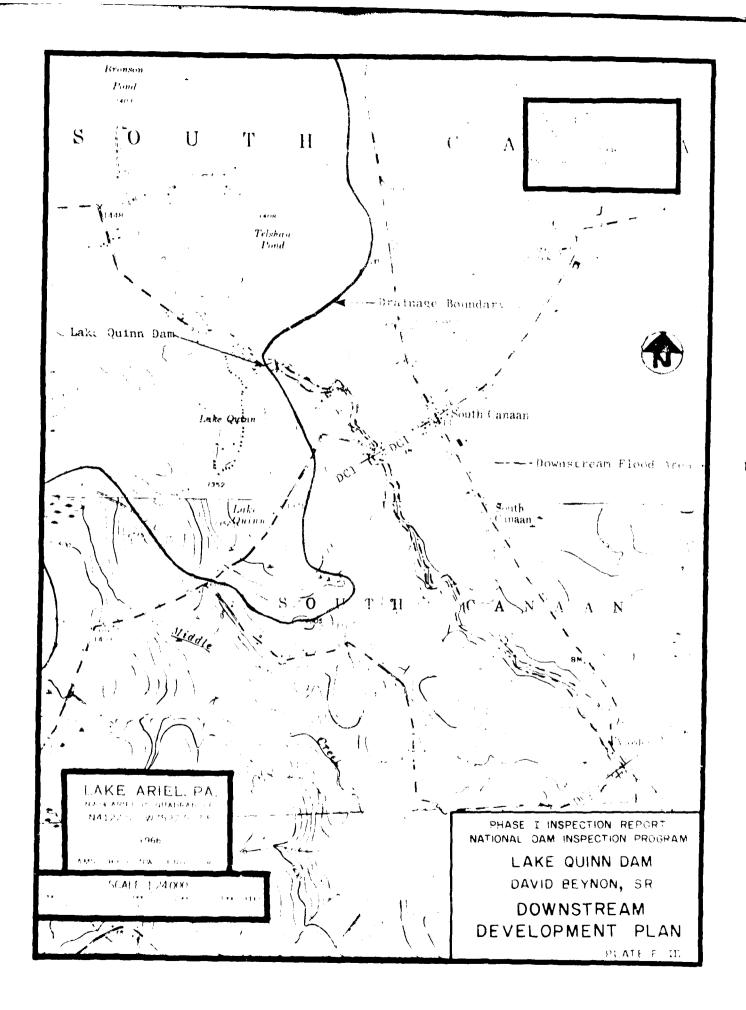

.

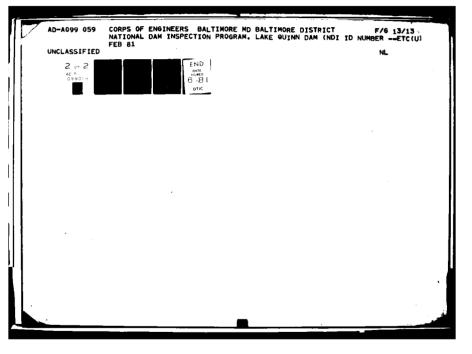
7-38


EREACH AWALYOUS Page 10/10


APPENDIX E PLATES

•




March 1

¥

APPENDIX F

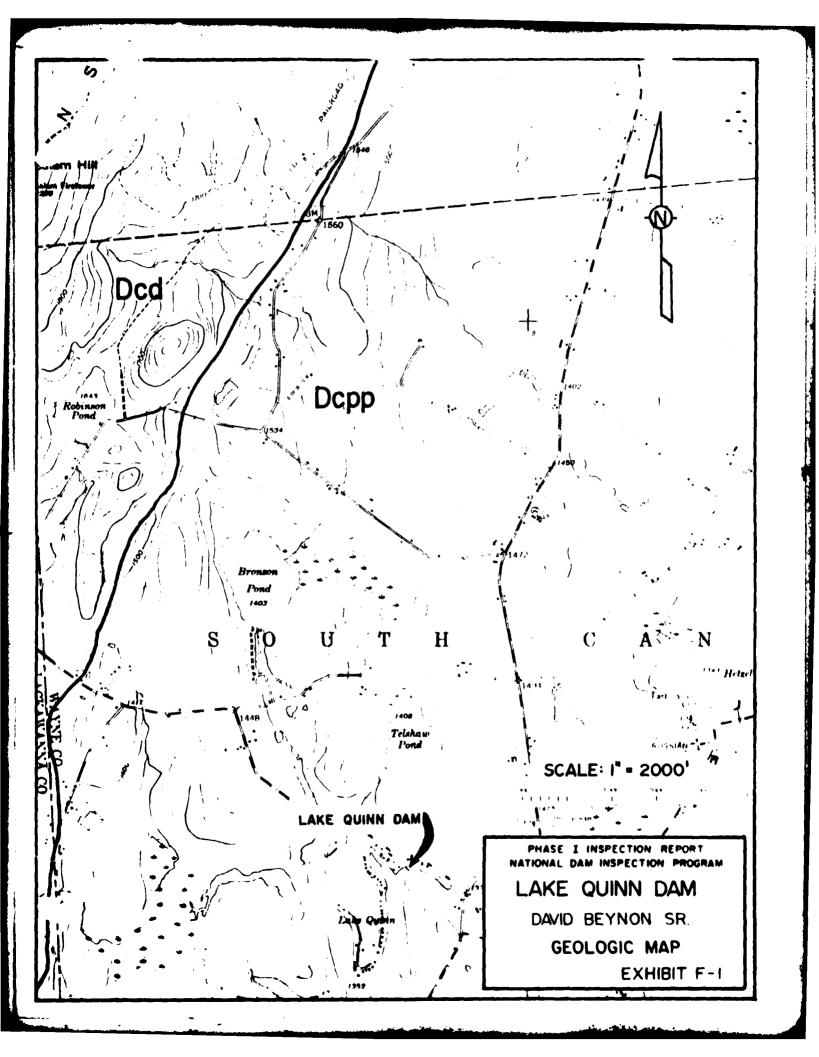
GEOLOGY

ator a start and a ca

LAKE QUINN DAM

GENERAL GEOLOGY

Bedrock at Lake Quinn is the Poplar Gap member of the Catskill Formation. It is medium-gray and light-olive-gray, fine- to coarse-grained sandstone and conglomerate with interbedded pale-red and grayish-red siltstone and shale. The rock is well bedded with sandstone and conglomerate thickly to very thickly bedded; shale and siltstone beds are medium to thick. The right abutment and base of the dam are of shale and sandstone of medium thickness. Joints and cleavage are well developed in thick-bedded rocks and are widely spaced; cleavage fractures are closely spaced. Fractures are open in surface exposures. Rock exposures are resistant to weathering. Fragments of sandstone and conglomerate are blocky and slabby, siltstone and shale fragments are platy, chippy and hackly.


Unconsolidated material overlying the bedrock surface may be thick. Water well drill records show 48 feet of glacial till in a domestic well near Lake Quinn. The unconsolidated material is sand and gravel with minor amounts of clay.

LEGEND

(Bedrock)

Dcd <u>CATSKILL FORMATION</u>, <u>DUNCANNON MEMBER</u> - Grayish-red sandstone, siltstone, and claystone in fining - upward cycles; conglomerate occurs at the base of some cycles.

Dcpp <u>CATSKILL FORMATION, PACKERTON MBR. THROUGH POPLAR GAP MBR</u> - Fine to medium-grained sandstones, well-indurated to quartzitic; sandstones grade upward into grayish-red siltstone and shales.

