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NOTATION
surface area of the whole probe face = 28,581 cm2
side surface area of the copper face = 6.02 cm2

constant used in determining the radiation heat flux
specific heat of air

specific heat of water

particle diameter

electromotive force in millivolts

monochromatic emissive power of an ideal black body

heat transfer coefficient for the interior surface of
the probe

heat transfer coefficient for the outside surface of
the probe

radiative heat transfer coefficient

total heat transfer coefficient

thermal conductivity

length of the probe = 34.9 mm

mass flow rate of air

mass flow rate of water

Nusselt number

heat transferred to the coolant air

heat gained through the side of the probe
radiation heat flux

total heat gained by the probe face

heat transferred to the coolant water




SP

“bed

NOTATION {(Continued)

silica sand particle size designation
SP-1: dp=733 um
SP-2: ap =1030 um

inlet temperature of the coolant air

outlet temperature of the coolant air

bed temperature

temperature of the copper face of the probe
temperature of the zinc selenide window
inlet temperature of the coolant water
outlet temperature of the coolant water
overall heat transfer coefficient of the side of the probe
fluidizing velocity of the hot bed

minimum fluidization velocity

bed emissivity

wavelength

Stefan-Boltzmann constant

X1

Al

-
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1. ABSTRACT

The effect of particle size on the radiative component of
heat transfer in high temperature fluidized beds is examined. One
radiometer probe is used to measure both the total and radiative
components of heat flux. Two sizes of silica sand particles are
tested at bed temperatures of 200 to 750°C. The radiation heat
flux, percentage of total heat flux due to radiation, total heat
transfer coefficient, radiative heat transfer coefficient, and bed
emissivity are the parameters considered.

The radiative heat flux does not vary with particie size, and
the values obtained agree with those of previous studies. The per-
centage of total heat transfer due to radiation is found to be sig-
nificant for bed temperatures greater than 400°C and increases with
increasing particle size. At 750°C, the radiative component is 20
percent of the total heat flux for the small particles and 30 per-
cent for the larger particies.

The smaller particles have a larger total heat transfer coef-
ficient than the large particles at all bed temperatures. When the
fluidizing velocity is increased, the total heat transfer coeffic-
ient decreases for both particle sizes. The radiative heat transfer
coefficient has the same values for both particle types at all bed
temperatures.

The emissivity of the bed is larger for the large particles at

all temperatures but always remains less than one. The small
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particles reach a maximum emissivity of 0.98 at 460°C while the
maximum emissivity of the larger particles is 0.98 at 500°C. At

750°C the emissivities of the small and large particles are 0.75

and 0.80, respectively.




2. INTRODUCTION

Fluidized beds have been used in a wide range of industrial
applications to include power generation, thermal cracking of heavy
hydrocarbons, gasification of o0il shale and coal, drying of gran-
ular materials, heat treatment of metals, heating and cooling of
gases and granular solids, and the coating of metal surfaces with
plastics.

The particular application for which this research work was
conducted is the combustion of coal for power production. The use
of fluidized beds is particularly important in the combustion of
bituminous coal having a high sulfur content. Combustion of bitum-
inous coal using a fluidized bed allows the use of an abundant
resource which was previously restricted due to the atmospheric
pollution it causes when burned. By using an additive such as
limestone or dolomite in the fluidized bed, the sulfur dioxide
produced during combustion can be retained in the combustor,
greatly reducing the amount of sulfur dioxide released to the at-
mosphere. The reaction of the sulfur dioxide with the limestone
also helps minimize corrosion of the boiler system within the bed.
The steam generated in the boiler is then used to drive turbines
for electrical power generation [13].

In addition to the advantages mentioned above, fluidized beds
are highly desirable for power generation because of their high

rate of heat transfer and their extremely high thermal conductivity
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(up to one hundred times that of silver) [12]. They also produce a
uniform temperature which can be easily controlled.

Many variables affect the heat transfer rate in a fluidized
bed. These include the velocity and thermal conductivity of the
gas, the size and density of the solid particles and the geometric
properties of the bed and the heat exchanger [12]. Further, many
of these properties are interrelated thus making analysis of the
heat transfer more complicated. However, the physical means by
which the heat transfer takes nlace at the heat exchanger surface

can be described by the operation of four mechanisms:

1. Heat transfer through a thin film of gas. The
thickness of the film can vary depending on whether
a gas bubble is near the surface or the emulsion is
uniform and close to the surface.

2. Heat transfer through direct contact of the solid
particles with the exchanger surface accompanied by
frequent replaceirent of the particles at the surface.

3. Unsteady-state absorption of heat by fresh emulsion
which is swept up to and then away from the surface.

4. Steady-state conduction through an emulsion layer
which is only replaced occasionally by fresh emulsion
from the core of the bed or by bubbles rising along

the surface.

Mechanisms 1 and 2 operate in parallel, followed by either mechanism

3 or 4 or a combination of the two [12]. Thrroughout the interactions
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of these mechanisms, heat transfer takes place by conduction, con-
vection, and radiation. The significance of the radiation mode in
the total heat transfer process within fluidized beds has been the
subject of much discussion.

The purpose of this study is to examine the significance of
the radiation mode within the entire heat transfer process and to
determine the effect of particle size on radiation. This is ac-
complished by measuring both the radiative and total heat fluxes
transmitted to a radiometer probe immersed in a fluidized bed of

silica sand.

3. BACKGROUND
L. J. Jolley performed one of the first high temperature heat
transfer experiments in 1949, He assumed that for temperatures
greater than 100°C, the total heat flux was composed of both a

radiative and non-radiative part.

qtot = qrad * qnon-rad

He measured the total heat transfer by lowering a cylindrical metal
block of either copper or aluminum into a fluidized bed. He removed
the block from the bed after 20-30 seconds and immediately immersed
it in water in a calorimeter. He maintained the bed temperature in
a range of 800 to 1000°C by the combustion of coke. The radiative
component of heat transfer was determined by assuming black body

radiation from the bed to the metal block which was maintained at

5
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an average temperature of 100°C.

Qg = oEged - (100 + 273)ﬂ

The non-radiative component was estimated by recording the cooling
rate of a metal block at 100°C in a fluidized bed at room tempera-
ture. Jolley then linearly extrapolated his results for high temp-
eratures. The sum of these radiative and non-radiative components
seemed to agree with the total heat transfer measurements [9].

In 1964, Kharchenko and Makhorin conducted heat transfer ex-
periments using a fluidized bed of clay or sand and a spherical
copper probe, six centimeters in diameter. The bed temperature
ranged up to 1050°C and was controlled by burning natural gas.
Their results yielded a linear relationship between the bed temper-
ature and the maximum heat transfer coefficient. For radiation to
contribute significantly to the total heat transfer, they believed
that it should have caused the total heat transfer coefficient to
vary as the third power of the bed temperature. Since it did not,
they concluded that radiative heat transfer between the bed and the
submerged probe was not significant, even at high temperatures [10].

In 1968, I1'chenko et al. used two radiometer probes to deter-
mine the radiative component of heat transfer in fluidized beds with
temperatures up to 1700°K. One probe measured the total heat flux
while the other measured only the radiant flux. Sand, chamotte,
fused magnesite, corundum, and zirconium dioxide particles were

used for the experiments. They found that the total heat flux was
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linearly dependent on bed temperature for all the particle sizes
.tested except for corundum at temperatures greater than 1500°K.

The radiant heat flux was found to be less than that calculated for
an ideal black body at the same temperature. They concluded that
this difference between the experimental and calculated values of
radiant heat flux was due to two simultaneously acting factors:

the bed emissivity was less than one and the particles were being
cooled at the probe surface [8].

Also in 1968, Szekely and Fisher performed experiments in
which they tried to attain purely radiant heat transfer for source
temperatures as low as 600°K. In these experiments, they trans-
mitted heat through a transparent wall while maintaining the wall
at the bulk bed temperature. They used particles of iron shot,
silicon carbide, and porous alumina with bed temperatures to 650°K.
By comparing the radiant heat transfer coefficients determined from
their experiments with the bed to wall heat transfer coefficients
reported in literature, they concluded that the radiation contribu-
tion to total heat transfer was negligible for wall temperatures on
the order of 600 to 700°K. They used an analytical analysis to
estimate the relative importance of radiative heat transfer for
temperatures greater than those used in their experimental work.

In addition to radiation, they considered conduction through the
gas into the solid particles. They found that radiant heat trans-
fer increases with increasing source temperature and particle resi-

dence time. In analyzing the effects of particle size, they




determined that the ratio of radiant to convective heat flux tends
to increase with decreasing particle size for particle diameters
less than 200 microns. However, for larger particle diameters, the
ratio increased with increasing particle size. This was explained
by the fact that small particles attain thermal equilibrium rapidly,
and the final approach to equilibrium is faster for the radiant
transfer mechanism. Finally, they concluded it was an oversimpli-
fication to consider the radiative and convective heat transfer
modes independently [15].

In 1970, Botterill and Sealey further analyzed the results of
I11'chenko et al. They determined that when the radiation component
is neglected, the limiting factor for heat transfer is the thermal
conductivity of the gas. The convective component of heat transfer
was found to remain fairly constant and showed no increase at
higher bed temperatures even though the conductivity of the air
increased with increasing air temperature. Since the overall heat
transfer coefficient also continued to increase, they concluded that
at higher temperatures some heat is transferred by radiation "at the
expense” of convection, and the two mechanisms are not simply addi-
tive [6].

Baskakov and Goldobin also investigated the experimental re-
sults of I1'chenko in 1970. They calculated the temperature of the
glass surface of the radiant heat flux probe inside the fluidized
bed and found tnat the temperature at the center of the glass sur-

face was virtually the same as the bed temperature. They concluded
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that I1'chenko's experiment had not determined the radiant component
of heat transfer from the bed to the body which it heats, but in-
stead had determined the total radiation of the bed without consid-
ering the temperature reduction in the particles pressed to the
body's surface as compared to the actual temperature of the bed [1].
Baskakov and Goldobin also conducted their own experiments to
determine the radiative component of the total heat transfer coef-
ficient. These experiments involved the determination of heat
transfer coefficients, O, for a "black" stainless steel ball with
an emissivity of 0.8 and % h for a "white" sphere of the same size
and material but coated with silver and having an emissivity of
0.02 to 0.07. They assumed that radiation had little effect on the
conductive-convective component of heat transfer. Then considering
the fact that the radiation on the "white" sphere is almost totally
reflected, they concluded that the difference %" S yields the
radiative component of the heat transfer coefficient. They also
developed a "packet" model which considered the total heat transfer
from the bed to the wall to be composed of both conductive-convec-
tive and radiative heat transfer when the wall is in contact with
the particles of the packet but to be composed of only radiative
heat transfer when the wall is in contact with a bubble. In com-
paring the calculations based on their packet model to the radia-
tive component determined experimentally using the "black" and
"white" spheres, they found that, although not in exact agreement,

their results did show better agreement than the other models [1].
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In 1972, Yoshida et al. extended their previous model of heat

transfer to high temperature conditions. In their packet model,
when bubbles cover the surface of the heat exchanger, heat is trans-
ferred by radiation from the inner surface of the bubbles to the
surface of the heat exchanger. When the heat exchanger surface is
covered by the emulsjon, heat is transferred by conduction. The
radiant heat transfer inside an emulsion element is taken into ac-
count by the effective thermal conductivity of the emulsion. They
found that the contribution of radiant heat transfer was negligible
when compared with that due to conduction for operating tempera-
tures less than 1200°C and concluded that the radiant heat transfer
was not significant [19].

Vedamurthy and Sastri performed a similar analysis in 1973,
based upon a gas film emulsion packet model. Their results contra-
dicted those of Yoshida et al. For a bed temperature of 900°C,
they found radiation to comprise 13 to 30 percent of the total heat
flux. The radiative heat transfer coefficient increased with in-
creasing fluidizing velocity while the conductive coefficient de-
creased. The combined effect decreased the total heat transfer co-
efficient. The increaase in the radiative component was attributed
to an increase in the area of gas film exposed to bubbles with in-
creasing bed velocity. The conductive coefficient varied linearly

with bed temperature while the radiative and total heat transfer

coefficients were nonlinear especially at higher temperatures [18].




Based on their previous experiments with steel spheres of dif-
ferent emissivities, Baskakov et al. stated in 1973 that the fluid-
ized particles close to the heat transfer surface were cooled by
the heat exchange with the surface so that the radiant heat flux
from these particles to the surface was less than if they were at
bed temperature. By taking measurements from a flat quartz glass
immersed within a fluidized bed, they found that the effective emis-
sivity of the fluidized bed in contact with the glass surface area
was dependent upon both the surface temperature of the glass and the
bed temperature. It was also noted that the larger the particle
size, the greater the percentage of total heat transferred by radi-
ation, although the absolute quantity of heat transferred by radia-
tion was not dependent on particle size or fluidizing velocity for
the range of bed temperatures examined [2].

In 1976, Bhattacharya and Harrison performed a theoretical
analysis using a packet model similar to that of Vedamurthy and
Sastri. The only difference was that they treated the emulsion
phase as both an absorbing and emitting medium. In comparing their
calculated ratio of the average radiative to overall heat transfer
coefficient as a function of surface temperature with Baskakov's
experimental results, they found that their values were signifi-
cantly higher than his. This discrepancy was attributed to the
different emissivities used in the two studies (¢ =0.8 Baskakov,
€=1.0 this study). They stated that the surface temperatures of

the probes used in the experiments and the emissivities of the heat
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transfer surfaces were very important. Furthermore, the radiative
and conductive heat fluxes could not be evaluated senarately. They
found that increasing either the conductive or radiative components
of heat transfer had the effect of suppressing the other [5].

Also in 1976, Thring developed three models of heat transfer,
similar to those of Bhattacharya and Harrison and Vedamurthy and
Sastri. 1In all three models, the convective heat transfer coeffic-
jent decreased with increasing wall temperature while the radiative
coefficient increased with temperature. Thring noted differences
between the predictions of his models and those of Bhattacharya and
Harrison and Vedamurthy and Sastri. In order to explain these dif-
ferences, he conducted an experimental analysis using all of these
models. After comparing the results, he concluded that the model
used makes a significant difference (on the order of a factor of
two) in the predicted value of the radiative coefficient obtained
between a fluidized bed and a heat transfer surface. However, ali
models predicted the total heat transfer coefficient within a
reasonable range [16].

In 1976, Baskakov et al. conducted an experimental analysis to
determine the radiative component of heat transfer using the Stefan-
Boltzmann equation. Their analysis studied the cooling effect which
a surface such as a radiometer probe had on the particles which came
into contact with it. This emissivity was lower than the actual
emissivity of the bed, and to account for this, they used the temp-

erature of the core of the bed to represent the temperature of the
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radiating particles. They concluded that total heat transfer could
be determined by addition of the conduction-convection and radia-

tion components. Their results further showed that the cooling of

particles at the radiometer surface did have a significant effect
on the radiative heat transfer component [3].

In 1978, Basu studied the effect of the combustion of coal on
heat transfer to a surface immersed in a fluidized bed and the con-
tribution made by radiation to the overall heat transfer. He used
a theoretical method based on the single particle model to predict
the effect of combustion. This model concentrates on single par-
ticles which are swept to the heat transfer surface and return back
to the bed after a brief period of heat exchange with the wall. To
determine the radiative component and the total heat transfer, Basu
used two identical copper tubes positioned at identical locations
within a fluidized bed of sand and pulverized coal. The tube used
to measure the radiative heat transfer was covered with a coaxial
transparent silica tube to minimize conduction and make radiation
the primary mode of heat transfer. The other plain tube measured
the total heat transfer. The total heat transfer coefficient was ]
found to increase with increasing carbon content in the bed except 1
when the carbon particles were much larger than the inert bed ma-
terial. Also, the radiation heat flux was found to be 5 to 10 per- ]
cent of the total heat flux for bed temperatures of 800 to 900°C [4]

Kolar et al., in 1979, used the alternate slab method of Gabor

to examine the radiative component of heat transfer in a high
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temperature fluidized bed. The alternate slab method assumes that
the bed is composed of alternate vertical slabs of gas and solids.
The bed and heat transfer surfaces are assumed to be gray bodies,
and the gas is radiatively transparent. The temperatures of succes-
sive slabs are then calculated starting at the heat transfer sur-
face. Calculations at an individual time step continue through
successive slabs until the temperature differs from the core bed
temperature by a very small amount. The radiative and total heat
transfer coefficients can then be determined. After comparing the
results of this model with previous studies and experimental results,
Kolar et al. concluded that the alternate slab method generally over- ;
estimated the radiation component and the average heat transfer coef- ’
ficients but within reasonable limits and agreed very well at high
bed and heat transfer surface temperatures. They further concluded
that the radiative percentage of total heat transfer was signifi-
cant for large particle diameters and high heat transfer surface and
bed temperatures. The radiative component varied directly with these
values but was found to be more sensitive to the surface temperature
than the bed temperature [11].

In summary, it is apparent that the uncertainty about the rel-
ative importance of radiation in high temperature fluidized beds
still exists, although most of the later studies indicate that the

contribution of the radiative component is significant. The value

of the radiative component of the total heat heat flux does vary

appreciably for different studies. Table 1 summarizes the results
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of some of these studies. The major differences are the result of
the experimental method or theoretical model used in the analysis.
There are three basic categories of theoretical models used in cal-
culating the radiative heat transfer component. The first assumes
black body radiation from the bed. The second category calculates
the radiation between the phases (emulsion-void) and the heat ex-
changer surface, while the third considers the radiation exchange
between a single particle and the heat exchanger surface. Since in
the first category, radiation is treated separately from conduction,
it is difficult to determine the relative impurtance of radiation.
For the two other categories, solutions are difficult to obtain
unless critical assumptions are made and, of course, the final re-
sults are dependent upon the validity of the assumption. Experi-
mental studies also have difficult problems to resolve, such as the
degree to which the surface temperature of the probe or the emissiv-
ity of the heat transfer surface affects the radiation component of
total heat flux. Also the nonadditive nature of the radiative and
conductive components of heat transfer has not been treated consis-
tently. The mechanism of heat transfer in high temperature fluidized
beds requires much additional experimental and theoretical work before
it can be fully understood.

This study will investigate only one aspect of this heat
transfer mechanism. [t will attempt to determine the effect of
particle size on the radiative component of heat transfer in fluid-

ized beds.
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4. EXPERIMENTAL METHOD

A. Experimental Analysis

There are basically two methods used to determine the radiative
component of heat transfer in high temperature fluidized beds. One
of these methods employs small spherical metal probes with different
surface emissivities. Essentially, the difference in heat transfer
between a black surface and a white one is considered to be the rad-
iative component. The major disadvantages of this method can be

summarized as follows:

1. Emissivity of a surface is difficult to determine and
is usually a function of temperature. Even if it is
determined accurately, the scoring action of the par-
ticles changes the emissivity, usually causing it to
increase.

2. The surface temperatures of the small spherical probes
submerged in the bed continuously rise during the ex-
periment, thus reducing the net radiation by increasing
re-radiation. Due to this phenomenon, the conductivity
of the gas increases simultaneously with the probe
temperature, and hence the total heat transfer coeffic-
jent also increases. As a result, experiments which
use these types of probes obtain low percentages of

radiation, as shown in Table 1.

The other method used to measure the radiation component employs

17




a transparent surface and a sensor to detect the radiation. The

major disadvantages of this radiometer method are:

1.

Most of the probes used previously have not been
cooled properly. Baskakov and Goldobin investigated
the experimental results of I1'chenko et al. who had
used a probe of this kind. Calculations for the con-
ditions of the experiments showed that the temperature
at the center of the glass virtually did not differ
from the bed temperature. They concluded that what
had been determined in these experiments was not the
radiant component of heat transfer but the total
radiation of the bed since no reduction in the temp-
erature of the particles had occurred at the glass
surface. Experiments using this type of probe such

as those of Il'chenko et al. and Botterill et al.
predict high percentages of radiation as shown in
Table 1.

In radiometer probes, quariz windows have been used to
transmit the radiation onto the sensor. The trans-
mittance band for quartz is approximately 0.15 to 3.5
um. In this band range only a small portion of the
radiation is transmitted. The percentage of transmis-
sion through a quartz window for radiation from a black
body source is shown in Figure 1 as a function of source

temperature. Less than 50 percent of the radiation will
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be transmitted for a bed temperature of 1100°K, assum-
ing a transmittance of one for the window. As a re-
sult, the sensitivity and accuracy of the probe are
limited.

3. Another disadvantage of the quartz window is its Tow
thermal conductivity. Due to this lower conductivity
and the thinness of the windows used in previous ex-
periments, the center temperatures of the windows were

high because of poor cooling from the sides.

The radiometer probe method is selected for use in this study.
The disadvantages of this method are eliminated by proper cooling
of the window and choosing a window material with a long range of
transmittance and a high thermal conductivity. Also by designing
a probe with a special geometry, both the radiation component and
the total heat transfer are measured simultaneously at the same

location in the bed.

B. Description of the Probe

A radiometer probe is designed to measure the radiative and
total heat flux inside a fluidized bed. A detailed drawing of the
probe used in this study is shown in Figure 2. The face of the
probe is made of a copper ring with a radiatively transparent window
at the center. The rest of the probe is made of brass.

Selection of the window material is dependent upon the temper-

ature it will be exposed to and also on its transmittance in the
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temperature range of the experiments. The monochromatic emissivity
of a black body as a function of wavelength and temperature is given

by Planck as:

Clx's
< -1
o AT “
where |
A = wavelength, um ‘
T = temperature, °K
¢, = 3.783 x 10° wun?/m? |
c, = 1.4387 x 10* un°K '

A plot of EbA as a function of wavelength and temperature is given
in Figure 3. It can be seen that at high temperatures most of the
radiation is concentrated in the short wavelength band and at low {
temperatures in the Tong wavelength band.

Total emittance for each temperature range can be found by
integrating the corresponding distribution curve. If we want a
material for the window which can transmit 90 percent of the total :
emittance, assuming that it does not transmit the 5 percent at both
the long and the short wavelengths, we can define the range of
wavelengths required for transmittance from the window. This is
shown in Figure 4. A window which transmits radiation from 1.71

to 11.34 um is good for 1100°K, but it won't transmit all the radia-

tion at 700°K since the required transmittance there is 2.69-17.85um.
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A 1ist of the materials considered for the window is given in

Table 2. Some materials are hygroscopic, some toxic, and for some
the wavelength range is not appropriate. The best suitable window
materials are Irtran 4 and 6. Irtran 4 (ZnSe) is chosen for this
study since it is commercially available.

The normal spectral transmittance of Irtran 4 is shown in Fig-
ure 5 for various thicknesses and temperatures. It is seen that
Irtran 4 transmits radiation between 0.5 and 20 um which is good
for the entire range of the hot bed experiments. This is a major
advantage of the zinc selenide window over the quartz window which
only transmits a small part of the radiation.

Another advantage of the zinc selenide window is its high
thermal conductivity (k=13 W/m°K at 54°C) which 1s approximately
nine times that of quartz (k=1.4 W/m°K). Thus the cooling of the
window will be more effective, and a more uniform temperature distri-
bution will be obtained. This in turn, eliminates the problems
associated with poorly cooled windows as discussed previously.

Two zinc selenide windows are used in the probe as shown in
Figure 2. They have a diameter of 25.4 mm and a thickness of 3.0 mm.
The window inside the probe is used as a cover for the cavity which
includes the heat flow transducer. Coolant air comes from one side
of the probe in a 6.35 mm 0.D. tube, passes between the zinc selenide
windows, and exits on the other side in another 6.35 mm tube.

The heat flow transducer is 19 mm in diameter and 2 mm thick.

[t functions according to the theory and principle of a simple
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thermopile. An instrument operating on these principles provides a
direct readout in millivolts proportional to the heat flux. The
transducer consists of an insulating wafer with a series of thermo-
couples consisting of thermoelement combinations such that consec-
utive thermoelectric junctions fall on opposite sides of the wafer.
This assembly is bonded to a heat sink to assure heat flow through
the sensor. Heat is received on the exposed surface of the wafer
and conducted through to the heat sink. Thus a temperature drop is
developed across the wafer and is measured directly by each junction
combination embodied along the wafer. Since the differential thermo-
couples are connected electrically in series, the voltages produced
by each set of junctions are additive, thereby amplifying the sig- '1

nal in direct proportion to the number of junctions. The temper-

ature drop across the wafer, and thus the output signal, is directly

proportional to the heat flux. Vith the proper choice of materials, H
behavior of the sensor is such that a linear relationship is ob- ﬂ
tained between the heat flux and the thermopile output over the ¥

normal operating temperature range of the thermopile {-45°C to 200°C).

A thermocouple is attached to the thermopile to assure that the temp-
erature does not exceed the operating limits.

Coolant water enters the radiometer probe throuah a £.35 mm
copper tube, fills a small cylindrical hole, then qoes through four
2.38 mm channels to a cylindrical annulus. and then leaves the probe
through annther copper tube. The thermopile <its on a 7.075 mm *thick

hrass wafer which ig cooled by the circyulating water “he aclant

AR}
o




water acts as a heat sink for the thermopile, and a heat balance
on the coolant water and air gives the total heat flux from the
bed to the probe. The radiation heat flux is measured from the

output of the thermopile after it has been properly calibrated.

C. Description of the Hot Bed Facility

A detailed drawing of the hot bed facility is shown in Figure
6. The high bed temperatures required for this experiment are
achieved by burning Number 2 fuel 0il in a combustion chamber before !
the bed. The hot gases coming from the combustion chamber (3), go
through the distributor plate (5), through the bed (6), and then
are either sent directly to the atmosphere (11) or go to a gquench ¥y

box (8), cycylone (9), and through a fan (10) to the atmosphere (12)

depending upon the amount of particles present in the gases.

The major components of the hot bed facility are described

below:
No. on Fig. 6
1 Air Supply: Compressed air is supplied from two
compressors, each with a capacity of 850 m3/hr at
6 bars of pressure.
2 Fuel Supply: Number 2 fuel oil is pumped to the

facility from a storage tank outside the building.
The pump which delivers the fuel 0il to the com-

bustion chamber has a capacity of 35 ¢/hr.
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3 Combustion Chamber: The combustion chamber

has an outside diameter of 50.8 cm and a

10.16 cm Lite-wate-35 refractory lining. It i
is equipped with an excess air burner, ignition
transformer, and flame detector to provide safe
combustion.

4 Hot Gas Plenum: The outside diameter of the

plenum is 76.2 cm with 5.08 cm of mineral fibre

block insulation and 10.16 cm of Lite-wate 35
refractory lining.

5 Distributor Plate: The distributor plate is

made of sixty 1.27 cm stainless steel bolts
bolted on a 1.90 cm thick stainless steel plate
in a hexagonal pattern. The hot gases coming
from the combustion chamber pass through a

6.35 mm concentric blind hole in the stem of
the bolt and then go to the bed through three
4.76 mm horizontal radial holes, 120 degrees
apart in the head of the bolt.

6 Test Section: The outside diameter of the test
section is 76.2 cm and the inside diameter is
45.7 cm. The test section has the same type
refractory as the gas plenum. It has two doors
and five 7.62 cm diameter pipes which provide

access for instrumentation and maintenance. The
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test section is 304.8 cm in height measured

from the distributor plate to the inlet of
the quench box.

7 Discharge Section: The discharge section has

the same diameter as the test section. There
is a cap on top of the section for discharging
the hot gases to the atmosphere if the temper- '

ature inside the guench box should exceed

315°C.
8 Quench Box: Two nozzles inside the quench box {
spray cooling water on the hot gases. The quench ¢ %

box is lined with refractory and can handle temp-

eratures up to 315°C.

9 Cyclone: The cyclone is used to remove any par-
ticles contained in the hot gases before the
gases are discharged to the atmosphere.

10 Fan: A special fan is installed for high temp-
erature operation to induce forced draft. It
is designed to operate at temperatures up to

315°C.

A control panel provides instrumentation and adjustment devices
to monitor and control the gas temperatures and pressure in the

plenum and the temperature in the quench box. A schematic diagram

of the control panel and the air and fuel Tines is shown in Figure 7.
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The total air flow rate is measured by a hotwire probe mounted
on a venturimeter. The linear output which is proportional to the
flow rate is fed to a datalogger along with the rest of the thermo-

couples.

D. Calibration of the Probe

The radiometer probe is calibrated using an ideal black body
so that when it is placed in the fluidized bed, the amount of radi-
ant heat flux incident on the probe face at the various bed temper-
atures can be measureu.

First, a flat copper plate covered with candleblack is used
as the ideal black surface. A thermocouple attached to the surface
of the plate measures its temperature. Results using this method
prove to be inconsistent. The higher temperatures used in the cali-
bration (500 to 800°C) cause the copper plate to oxidize, removing
the candleblack surface and thus reducing both the emissivity of the
plate and the radiation heat flux.

A cavity made from copper (Figure 8) is used to correct the
problem caused by oxidation and to provide a thermal emittance closer
to one. The actual emissivity of the cavity is calculated to be
0.991. The cavity is fastened together using brass screws and has
a thermocouple mounted at the center of each interior face.

During calibration, the cavity is placed inside an oven and is
heated to a temperature of 800°C. The probe is placed as close to

the front of the cavity as possible without touching it, and the
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probe window is centered on the cavity opening. The temperature
variation of the interior faces is on the order of 10 to 15°C from
the average temperature of all faces at a given data point. The
coolant water and coolant air for the probe are turned on for the
calibration so that conditions are similar to those which occur
when the probe is placed in the hot fluidized bed.

The electromotive force (emf) readings of the thermopile and
the corresponding temperature of the cavity are recorded for temp-
eratures from 100°C to 800°C. Using the temperature of the back
face, the ideal black body radiation heat flux of the cavity is
calculated from the Stefan-Boltzmann equation. Then a best curve
fit of the emf readings versus black body radiation heat flux is
determined. This best curve fit is linear, as shown in Figure 9,

and the calibration is of the form:

qY.=C‘Ef (2)

When the probe is placed in the fluidized bed and the radiation

heat flux is determined using this relationship, the radiation flux
measured is greater than that anticipated for low temperatures and,
in some cases, is greater than that for an ideal black body at the

same temperature. For corresponding bed and black body temperature
readings, the emf readings of the probe in the bed are consistently
larger than those obtained during calibration. The temperatures of
the window and the copper face during calibration are significantly

cooler than when the probe is placed in the hot bed. Therefore, to
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calibrate the probe for use in the hot bed, the additional radiant
heat flux incident on the thermopile due to the higher window and
copper face temperatures and the higher brass body temperature must
be accounted for. Test runs using the probe with the solid copper
face (Figure 10) are utilized to determine the effect of these
higher temperatures on the thermopile reading. Since there is no
window, the copper face and the brass body surrounding the thermo-
pile are the only sources of radiation. When these are considered,
the emf readings should be approximately zero for calibration of
the thermopile to no-radiation conditions.

For different bed and copper surface temperatures, the addi-
tional emf output due to the higher temperatures of the copper face

and the brass body of the probe is found to be:

ol

=W
BE 4q = T+ 2-0 (3)

where C is defined by equation (2)

The first term in equation (3) is the emf increase due to the in-
crease in the temperature of the copper face and the second term
accounts for the emf increase due to the increase in temperature
of the probe body.

The final calibration for the probe with the zinc selenide

window is:

Ee=E - &t
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Ee=E-—2%4. 2.0 (4)

where TSwd is the surface temperature of the window, E is the emf

output of the thermopile and Ef is the corrected emf output which

will be used in equation (2) to calculate the radiative heat flux.
In the test runs with the solid copper face, resulting values
of Ef are in the range of -0.9 to +0.9 millivolts for bed temper-
atures of 530 to 770°C and copper face temperatures of 100 to 140°C.
This produces an error of zero to four percent in values of 9, for

both particle types tested.

E. Heat Balance on the Probe '

A heat balance is made on the probe to determine the total heat
transferred to it. The inlet and outlet temperatures of the coolant
air and coolant water for the probe are measured by thermocouples
and the volumetric flow rates of each are measured by flowmeters.
The specific heats, densities, and mass flow rates of the air and
water for these conditions are then determined, and the heat trans-

ferred to each is calculated as follows:

for air:  q =mCy (T3 ~T,.) (5)

for water:  q hwcpw (Two-Twi) (6)

The side of the probe is insulated with fiberfrax insulation

and is enclosed within a stainless steel cylinder. Possible heat
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gain through the side of the probe must be determined. The overall

heat transfer coefficient for the side of the probe is:

o ro o
A_O (_]_) + AO in(ﬁ-)ss + En(F{)inS £n(T‘T)br +L (7)
Ai hj 2nlL k h0

SS ins kbr

with the dimensions and material properties given in Figure 11.
The heat transfer coefficient for the outside surface hgy is assumed
to be approximately equal to that for the copper surface of the

probe face:

(8)

=
(=]
n
I
—lo
o
' +
—

where A = 28.581 cm? is the surface area of the whole probe face.
Calculation of the heat transfer coefficient for the interior sur-
face hi is based upon the Taminar flow of the coolant water within

the water outlet tube:

Nu = — h o368 [7]
w
and
4.364k
h, = —N (9)
j dh

where kw is the conductivity of the coolant water determined at its

average temperature (Twi4-Tw0)/2, and dh =9,6 mm is the hydraulic
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diameter of the tube. The total heat gained through the side of

the probe due to conduction and convection is:

Gg = AU (Ty=T,) (10)

where qg is on the order of 6-8 percent o* the total heat gained

by the probe for the SP-1 particles and 7.5-9 percent for the SP-2

particles.
Now the total heat gained only from the probe face can be

found:

A =93 * 9, - 9 (11)

The total heat flux incident of the probe face is equal to qt/A.

When the probe is placed inside the hot fluidized bed, approximately

3.175 mm of the insulation is blown .way, exposing the side edge of

the copper face. The total heat flux is adjusted to account for
heat gained through this additional surface area As. Therefore,

the total heat heat flux becomes qt/(A+As)'

F. Properties of the Sand Particles

Size Analysis

Two sizes of silica sand particles are used in this study.

A sieve analysis is conducted on a 2000 gram sample of each particie
type both prior to firing in the fluidized bed and upon completion

of the test. The weight mean particle diameter is determined using

the relation:
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i = —1 (12)

where x is the weight fraction of the particles in each size inter-
val within the sample, and dpi is the average particle diameter for
each size interval [12].

Figure 12 shows the size distribution and average particle
diameter of the small particles (SP-1) prior to firing. The size
distribution after firing has a similar profile with a mean par-
ticle diameter of 733 um. The SP-1 particles are spherical in
shape and are processed such that the majority of particles lie ‘i
in a narrow size range as shown in Figure 12. ’i

The size distribution and average particle diameter of the >
Targer particles (SP-2) prior to firing are shown in Figure 13.
On completion of testing, a similar size distribution exists with
a mean particle diameter of 1030 um. The SP-2 particles are sub- 1
angular in shape. Spherical silica sand particles are not avail- ‘3

able in this large size range. These particles ar- well-graded

having a wide distribution of sizes within the range shown in
Figure 13. !
Other Propenties
The minimum fluidization velocities of both particle types [
measured in a cold fluidized bed with a cross sectional area of

62.1 cm2 are:

- o
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T ~ .-a-=!?f—~1‘

Type SP-1: V

mf 0.365 m/sec

Type SP-2: V 0.682 m/sec

mf

The other physical properties are the same for both types of

silica sand. These include:

1}

dersity: p = 2650 kg/m3 i

N

conductivity: k = 1.87 W/m°K ¢

specific heat: Cp = 845 J/kg°K

G. Collection of Data

Six sets of test data are recorded for use in the analysis
and determination of final results. Four are compiled using the
probe with the zinc selenide window; three with the SP-1 particles
and one with the SP-2 particles. The two final sets, one for each
particle type, are made using the probe with the solid copper face
as shown in Figure 10.

The probe is placed in the test section as shown in Figure 14
with its face 12.7 cm from the side of the bed. The particles are
then put into the test section, and the static bed height is meas-
ured. The static bed height for all test runs in this study is
47.5 cm. The coolant air and coolant water to the probe are turned
on before igniting the bed, and their flow rates are recorded. The

bed is then fluidized and combustion initiated. The temperature of
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the bed and the rate at which the bed temperature increases are

controlled by the fuel-air mixture supplied to the combustion

chamber. The total air flow rate is now recorded along with the
pressure drop within the combustion chamber and the pressure drops
at three locations within the fluidized bed; 2.5, 29.0, and 59.0
cm above the distributor plate. Additional pressure drop readings
are taken anytime the total air flow into the combustion chamber {
and fluidized bed is varied.

The datalogger is used to record temperature and emf readings
at critical Tocations in the test setup. These include: the bed
temperatures 18.6 and 20.3 cm above the distributor plate, the '1
inlet temperature of air supplied to the combustion chamber, the
temperature inside the combustion chamber; and inside the probe:
the temperature of the copper face, the window temperature, the
inlet and outlet temperatures of both the coolant air and the 1
coolant water, and the thermopile emf output. These readings are

recorded at reqgular two or four minute intervals throughout the

test run. Additional readings are also taken at critical points
by activating the manual record mechanism of the datalogger. jl

The bed temperature is normally allowed to increase at a

steady rate, but is held constant at selected temperatures (norm-
ally 500 to 700°C at 50 degree intervals) to record steady state
readings. While holding the bed temperature constant, the air ;
flow to the bed is varied to determine its effect on probe readings.

The maximum bed temperature reading is 760°C.
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Detailed results of the experiments for the 5P-1 and SP-,
particies are recorded in Tables 3 and 4 for the probe with the
zinc selenide window and in Tables 5 anda 6 for the probe with the

solid copper face.

5. RESULTS AND DISCUSSION

The SP-1 and SP-2 particles are both analyzed under similar
conditions. The data from six separate test runs which is used in
the following analysis is compiled as discussed in Section 4.G,
Collection of Data. The data is taken for bed temperatures Tb of
200 to 760°C with values of 35 to 155°C for Tw and 30 to 220°C for

T The range of fluidizing velocities used is 0.57 to 3.11 m/sec

wd®

for the SP-1 particles and 1.50 to 4.83 m/sec for the SP-2 particles.

The detailed data for all test runs is recorded in Tables 3 through
6.

The effects of particle size on radiation heat flux q,., per-
centage of total heat flux due to radiation, total heat transfer
coefficient ht’ radiative heat transfer coefficient h ., and bed

emissivity are now studied.

A. Radiation Heat Flux

The radiation heat flux is calculated using equation (2) with
Ef determined from equation (4). Figures 15 and 16 show the radia-
tion heat flux at all bed temperatures and fluidizing velocities

for the SP-1 and SP-2 particles, respectively. The radiation heat
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15 percent of the total heat flux until the bhed temrperatire rea: P
560°C for the SP-1 particles, while for the larger “F-0 pars: "o
this percentage is reached at a temperature of 340 7 The jwvoent.
age of the total heat flux due to radiation for hed temperi® ve-
300 to 750°C are: 6-20 percent for the SP-2 particlec sna 4= e
cent for the SP-2 particles.

These findings compare favorably with the theoreti gl reo
tions of Szekely and Fisher [15] who noted that the percentaae -

total heat flux due to radiation increases with increacing ;art - v
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velocity is increased. Figures 23 and 24 at constant bed temper-
atures of 697°C and 751°C illustrate this. This phenomenon can be
explained by the packet model of heat transfer in fluidized beds.
When the bed velocity is increased, the probe face is exposed to
more bubbles. While the total heat transferred to the probe face
decreases, the amount t asferred by radiation through the bubbles
increases, accounting for the increase in percent radiation. This

trend was not apparent in the larger SP-2 particles where at a

constant bed temperature for all fluidizing velocities, the percent
radiation appears to remain constant. This is shown in Figure 25
at a bed temperature of 600°C. ¥

It is not very meaningful to compare the percsntages of total
heat flux due to radiation found in this study with the results of
other reports due to the differing methods used to determine the
radiative component and the different sizes and types of particles
used. This study, as discussed in Section 4.A, Experimental Anal-
ysis, attempted to correct procedural and analytical shortcomings
noted in previous investigations. In general, the values of 20 to
30 percent for percentage of total heat flux due to radiation found
in this study are midway between the extremes found by previous

analyses (see Table 1).

C. Total Heat Transfer Coefficient ht

The total heat transfer coefficient is determined from the

relation:




(13)

It increases s5r. jually with increasing bed temperatures for both
particle types. The total heat transfer coefficient for the smal-
ler SP-1 particles (Figure 26) is larger than that for the SP-2
parcicles (Figure 27) for all bed temperatures. The sand particles
have a large heat capacity and the heat transfer takes place pri-
marily at the contact points of the particles with the probe sur-
face. Since the smaller particles have a larger number of contact
points per unit of surface area, they produce a larger total heat
flux and thus have a larger ht‘

The increase of ht with bed temperature is more clearly illus-
trated with data taken at a constant fluidizing velocity. Figure
28 at V=1.26 m/sec and Figure 29 at V=2.0 m/sec for the SP-1 par-
ticles show that at constant fluidizing velocity ht increases with
increasing bed temperature. The same result is shown in Figures 30
and 31 at V=2.5 and 3.9 m/sec for the SP-2 particles.

The total heat transfer coefficient decreases very slightly as
the excess velocity (V-me) is increased for the SP-1 particles.
Figure 32 which contains data taken at all bed temperatures for
varying fluidizing velocities illustrates this. This can be ex-
plained using the packet model. Increasing the fluidizing velocity
also increases the number of bubbles. When the probe face is ex-
posed to more bubbles, the radiative heat flux increases while the

amount of time that the probe face is exposed to the emulsion phase
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decreases. However, most of the total heat transfer occurs through
the conductive-convective mechanism during contact with the emul-
sion phase. Therefore the conductive-convective component de-
creases with increasing fluidizing velocity, and, in turn, the
total heat transfer coefficient also decreases. This same trend

is not as readily apparent in the data taken for the SP-2 particles
(Figure 33) where the total heat transfer coefficient seems to
remain relatively constant for all velocities used in this study.

The relationship discussed in the preceding paragraph is more
readily visible when comparing ht to the fluidizing velocity at a
constant bed temperature. Figures 34 and 35 for bed temperatures
of 610 and 751°C for the SP-1 particles show the decrease in ht
with increasing fluidizing velocity. At constant _ed temperatures,
it becomes apparent that ht also decreases with increasing fluid-
izing velocity for the SP-2 particles, which was not apparent in
Figure 33 for all data. Figures 36 and 37 for bed temperatures of
600 and 755°C illustrate a gradual decrease in ht for the SP-2
particles.

The total heat transfer coefficient at a bed temperature of
750°C is approximately 350 W/m2°C for the SP-1 particles (733 um)
and 260 N/m2°C for the SP-2 particles (1030 um). The decrease in
ht with increasing particle size and the linear variation with bed
temperature noted in this study agree with the findings of
Kharchenko and Makhorin [10]. The same trend for h, noted by

Vedamurthy and Sastri [18] is seen in this study, even though their
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analysis was conducted with a particle size of 500 um and a bed temp-

erature range of 800 to 1100°C. The total heat transfer coeffic-
ient varies linearly in both cases and increases gradually with
bed temperature. Vedamurthy and Sastri's results yield values of
hy (225 W/m2°c at 800°C) which are smaller than those measured by
this study. Kharchenko and Makhorin [10] found h, =300 W/me°C for
a particle size of 710 um and a bed temperature of 500°C. This is
equal to the value found for ht for the SP-1 particles in this
study (Figure 26). Thring's [16] packet and spherical particle
models predict ht= 400 w/m2°C for a particle size of 780 um and

b= 750°C as compared to the value of 350 W/m2°C for the SP-1 par- t
ticles in this study. Kolar et al. [11] predicted ht= 210 w/m2°C
for 1000 um diameter particles at Tb= 750°C which compares wecll
with the value found for the SP-2 particles in this study (Figure
27).

The variation of the total heat transfer coefficient with
fluidizing velocity as shown in Figures 34 through 37 follows the
same trend as found by Vedamurthy and Sastri and by Kolar. Both
of these studies also found that the total heat transfer coefficient,
after initially increasing with fluidizing velocity, reached a maxi-
mum value and then gradually decreased as the velocity continued to

increase.

D. Radiative Heat Transfer Coefficient

The radiative heat transfer coefficient is found using the
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relation:

h o= —t (14)

It increases lineariy with increasing bed temperature and has the
same values at all bed femperatures for both particle types tested
as shown in Figures 38 and 39. This trend is to be expected since
the radiative heat flux for both particie types is also approxi-
mately the same for all bed temperatures, as was noted in Section
5.A.

Vedamurthy and Sastri [18] noted the same trend for the radi-
ative heat transfer coefficient in their study. Extrapolating the
results of this study into their temperature range yields values of
hr on the same order as their findings. In their study, hr also
varies linearly for bed temperatures less than 900°C and has a

value of 75 to 80 W/m2°C for Tb==800°C.

E. Bed Emissivity

An apparent bed emissivity is calculated using the Stefan-
Boltzmann equation and assuming that the emissivity of the probe

face is one:
_ r
€bed ~ (15)
(o]

Figures 40 and 41 show the variation of bed emissivity with bed

temperature for the SP-1 and SP-2 particles, respectively. The
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bed emissivity reaches a maximum value at a bed temperature of
460°C for the SP-1 particles and 500°C for the SP-2 particles and
then begins to decrease gradually for both types. The SP-2 par-
ticles have a larger emissivity than the SP-1 particles at all

bed temperatures; however, the emissivity, in both cases, always
remains less than one. I1'chenko et al. [8] also predicted that
the bed emissivity was less than one when they found their experi-
mental values for radiative heat flux were less than the calcu-
lated black body values. Thring [16] and Vedamurthy and Sastri
[18], on the other hand, assumed that the bed emissivity was very
close to that of a black body and used €hed 1 in their analyses.
The experimental results of this study support I1'chenko's predic-

tion.

F. Error Analysis

The accuracy of the results obtained in this study is deter-
mined by calculating the standard deviation from the mean for each
of the following parameters: radiation heat flux, percentage of
the total heat flux due to radiation, total heat transfer coeffic-
ient and radiative heat transfer coefficient. Two data points at
the same fluidizing velocity and bed temperature are found and then
the mean value of the parameter and the standard deviation are
calculated. This procedure is repeated for several combinations
of bed temperature and fluidizing velocity for each parameter. The

largest deviation and the average deviation from the mean for each
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parameter for each particle type are determined. The following

A}

results are obtained:

Maximum Average
Deviation (%) Deviation (%)
SP-1 Particles
! q, 3.0 1.1
! % Radiation 5.4 1.6
ht 7.6 3.7
hy _ 3.6 1.3
SP-2 Particles
ar 1.1 0.6
% Radiation 1.8 1.3
: ht 2.0 1.0
5 4 hr 0.8 l 0.6

The datalogger used to record temperature and emf readings at
critical points in the test setup rounds off readings to the near-
est tenth producing a maximum error of 0.05°C or 0.05 mv. This
accuracy in reading the emf output of the thermopile results in
a maximum error of 90 w/m2 for q.-

The flowmeters used to measure the flow of the coolant air
and water to the probe have a + 2.0 percent accuracy and the K-type

thermocouples used are accurate to within + 2.2°C.

6. CONCLUSIONS
The radiation heat flux, percentage of total heat flux due to

radiation, total heat transfer coefficient, radiative heat transfer
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coefficient, and bed emissivity for two sizes of silica sand par-
ticles are studied in order to determine the effect of particle
size on the radiative component of heat transfer in high temper-
ature fluidized beds.

Radiation is found to be a significant part of the overall
heat transfer process in high temperature fluidized beds. Ffor
both particle sizes tested, the radiative component becomes sig-
nificant for bed temperatures greater than 400°C. This study
cefines "significant" to mean at least 10 percent of the total
heat flux. The percentage of total heat transfer due to radiation
for the large narticles is greater than that for the small par-
ticles at all bed temperatures. Therefore, the radiative compon-
ent of total heat transfer becomes significant at lower bed temp-
eratures for the large particles. At a bed temperature of 750°C,
the radiative component is 30 percent of the total heat flux for
the larger SP-2 particles and 20 percent for the SP-1 particles.

While the percentage of total heat transfer due to radiation
varies with particle size, the absolute quantity of radiant heat
flux does not. The radiation heat flux is found to be approxi-
mately the same for both particle sizes tested at all bed temper-
atures.

The total heat transfer coefficient increases gradually with
increasing bed temperature for both particle types. After initially
increasing with fluidizing velocity, hy reaches a maximum value and

then slowly decreases as the velocity continues to increase. The
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radiative heat transfer coefficient increases linearly with bed
temperature and is independent of particle size, having the same
value for both particle types at all bed temperatures.

The bed emissivity increases with bed temperature and after
reaching a maximum value slowly decreases for both particle types.
The larger particles have a higher emissivity than the small par-

ticles at all bed temperatures; however, the emissivity for both

particle types remains in the 0.7 to 0.8 range at high temperatures.

The significant contribution that radiative heat transfer
makes in the overall heat transfer process in high temperature
fluidized beds cannot be neglected. Analytical models for heat
transfer in high temperature fluidized bed combustors must include
not only the conduction-convection mechanism but the radiation
mechanism as well.

This study has determined the significance of radiation in
high temperature fluidized beds using only two sizes of silica
sand particles. Future studies should investigate the effect other
size particles would have on radiation, particularly much larger
sizes (3000 um). Different types of materials such as silicon
carbide, fused magnesite, corundum, etc. could also be used to
determine their effect on the radiative component. A high temper-
ature fluidized bed in which coal is actually being combusted could

also be analyzed to determine the effect carbon particles have on

radiation.
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Figure 3 Monochromatic emissive power of a black body as a
function of wavelength and temperature
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NOHMAL SPECTRAL TRANSMITTANCE

o.9

0.0 - - ‘
Qs a8 08 2 . s 8 o 20 <0

WAVELENGT™, um
Figure 5 Normal spectral transmittance of zinc selenide 117]
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COPPER THICKNESS 9.5 mm

DIAMETER 25.4 mm |

/R'?G.Z mm

THERMOCOUPLE LEADS

Figure 8 The black cavity used for calibration of
the probe
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BRASS
—-— L=34.9mm ————
_ L _
i m
i N g E
: N\ Vool
N\ 7| 782
8 ‘% WATER OUTLET —»
/70 i '

STAINLESS STEEL

Insulation

ri= 30.0 mm

ro= 34.9 mm s
k =0.0502 W/mC

Stainless Steel
r; =34.9 mm
ro = 36.5 mm .
k=16.27 W/mC

2

Ap = 2mrocl = 30.04 cm

A = 2nry, L = 59.21 cn?

Figure 11 Dimensions and conductivities of probe
materials
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