AD-A098 807 GEORGE WASHINGTON UNIV WASHINGTON D C PROGRAM IN LOG-=ETC F/6 12/1
NUMERICAL METHODS FOR TRANSIENT SOLUTIONS OF MACHINE REPAIR PRO==ETC(U)
JAN 81 H ARSHAM:, A R BALANA,» D GROSS NOOD1U4~=75=-C=0729
UNCLASSIFIED SER N
[ E




2

[l

iz pis

E—4
N
o
N
O

-
mw
o

CFFEEER
=
N
N

g
E
==
s
[«

r
r
3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




THE

GEORGE
WASHINGTON
UNIVERSITY

ADAO988O07

m 13980 1

N E ;
STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC |
MMUNITY LEADERSHIP TECH
NOLOGY FRONT|SSS|CGN

¥ SCHOOL OF ENGINEERING
» AND APPLIED SCIENCE




T R T N A g e ey Y Siau . sttt S P
. N B e T B BT L TR T i o2 thibe C i T e

NUMERICAL METHODS FOR TRANSIENT SOLUTIONS
OF MACHINE REPAIR PROBLEMS

by
Hossein Arsham

Arturo R. Balana
Donald Gross

Serial T-436
5 January 1981

" DTIC

ELECTER
~ MAY 13198t

v

. s

E .

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public
sale and release; its distribgtion is unlimited.

815 12 g3

AR e S R S



SECURITY CLASSIFICATION QF THIS PAGE (When Date Entered)

' REPONT DOCUMENTATION PAGE BEP O O o

2, GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

AD-AC%8 g0
8. TYPE OF REPORT & PERIQOD COVERED

JJUNERTCAL YETHODS FOR JRANSLENT JOLUTLONS -
f, L \ oF gAcumE BEPATR PROBLEMS, [~~~ CIENTIFIC vepts

.m,'w‘. e o o

SPNRE 23
-
P-l
{
&
(V%]
[-

NUMSER

7
8. CONTRA Ev‘#o GRANT NUM 'y‘ Ree) 1

@a NA#L4-7 ~75-c-p729)
3

T. AYTHOR(e)

e —
10. PROGIAU € EMENT PROJECT, TASK
REA I WO K UNIT NUMBERS

$. PERFORMING ORGANIZ..
THE GEORGE WASHINGTON UNIVERSITY
PROGRAM IN LOGISIICS
WASHINGTON, DC 20052

%Y. CONTROLLING OFFICE NAME AND ADDRESS

OFFICE OF NAVAL RESEARCH

CODE 434

ARLINGTON, VA 22217
I WMONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 15. SECURITY CLASS. (of this report)

NONE
[ 18e DECL ASSIFICAT! WNGR
SC“LWL!«CA 1ON/ DOWNGRADING

P ———————
16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION UNLIMITED.

17. OISTRIBUTION STATEMENT (of the sbatrect entered in Block 20, i1 different from Repo t)

;
!
¥
4
i

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continve on reverse side if necessary and identify by block number)

FINITE SOURCE QUEUES
MACHINE REPAIR PROBLEMS
| TRANSIENT QUEUES

\

20, nwncv (Continue on reveras side If y and identity by block number)

This paper reviews and compares three numerical methods of computing
transient probabil’ties of finite Markovian queues (particularly the
machine repair problem). A brief review of each methnd i1s followed by a
numerical example cf a moderate size machine repair problem (two-stage
cyclic queue).

. DD 35 W73  woirtion oF 1 nov e 1s oBsOLETE NONE
8/N 0102-014- 6601 |
BECUNITY CLASHIFICATION OF THIS PAGE Dota

JCG3

oL 337




THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in logistics

3
% Abstract
: of Accession For
: Serial T-436 NTIS - GRAxl )ifﬁ—-
i 5 January 1981 DTIC TAB 0
Unannounced O
Justificatio ‘
i e
B
E By.
i | Distribution/
NUMERICAL METHODS FOR TRANSIENT SOLUTIONS AVailab111t§~E~z—-=:==
OF MACHINE REPAIR PROBLEMS oy codes |
b Avail and/op
ist
by Special
- Hossein Arsham P
i Arturo R. Balana
- Donald Gross

This paper reviews and compares three numerical methods of com~
puting transient probabilities of finite Markovian queues (particularly
the machine repair problem). A brief review of each method is followed
by a numerical example of a moderate size machine repair problem (two-
stage cyclic queue),

Research Supported by

Contract NO0014-75-C-0729 ’
Project NR 347 020 i
Office of Naval Research ;

S it st A AR A e i S p TR SIG YT AR R L A TS




i
d

y
&

oY, . e -

e T ot .

TRV

P

A e T

O A Tacty "N

I -

THE GEORGE WASHINGTON UNIVFRSITY.
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics

NUMERICAL METHODS FOR TRANSIENT SOLUTIONS
OF MACHINE REPAIR PROBLEMS
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1. Introduction

The classic machine repair problem with spares is a typical
example of a finite state space queueing problem and consists of a fixed
number of identical machines of which initially M a-e operating and Y
are gspares. The M machines are in parallel and are independent. When
one fails, it is instantaneously replaced by a spare if a spare is
available; if not. less than M machines will operate until a repaired
machine becomes aviilable. Simultaneously, the failed machine goes

instantaneously into a repair facility.

1.1 Assumptions and Problem Statement
The following assumptions are made concerning the machine repair
example.

(a) The system failure rate is proportional to the number of

operating machines.

(b) Each ma:hine has exponential failure time with mean 1/X .




(c) There are ¢ parallel servers in the repair facility.
(d) Each server has exponential service time with mean 1/u .

Thus, the machine repair problem is Markovian and the states of this
Markov process can be described by a single number i , where i rep-

resents the number of machines in the repair station. The intensity

matrix of this wrocess is given by
i -
: -Ao Ao 0 cee 0
M —Al-ul Al 0 0
L _1° My <Ay Ay 0
i ¢ =
:

Uty

5 MA , (0<i<y)
¢ . )‘i = { (M-i+Y)A , (Y < i < Y+M)
b 0 s, (12> YR
L ip, (0zgice) ]
ui = . ‘

cu, ({2c)

For this problem, steady state solutions in closed form are readily at-
tainable [see, for example, Gross and Harris (1974)].

1.2 Transient Solutions

It is desired to find the transient solutions for the machine re-
pair problem. (N = M+¥+1) , the inten-

If the problem has N states

sity matrix provides N equations

m() = @) - Q, (1)

where lI(t) is a N = MY+l component vector whose elements are

"1(t) , the unconditional probability that the system is in state i at
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time t , and I'(t) a vector of derivatives of ﬂi(t) . Finding solu-

tions in closed form [see, for example, Marlow (1978)] is extremely dif-
ficult and in most cases impossible (unless M+Y i3 very small).
However, a variety of procedures is available which can yield numerical
solutions to the differential equations. In this paper we will discuss
several of these numerical procedures and attempt to apply each proce-

dure to a machine repair problem with the following parameters:

M=4 , number of machines initially operating
Y=1 , number of spares

c=2 , number of service channels

A=.15 , machine failure rate

¥y=.5 , service rate.

Under the assumptions mentioned in the preceding section one can obtain
the following initialized first order system of differential equationms.

Assuming at t=0 all machines are up:

r}é(:f' -%O(cf' TTI .6

ni(t) nl(t) .5
ﬂé(t) m,(t)
wg(t) ma(t)

nz(t) 114(1:)

ﬂg(t)- Trb(t)i 0

with initial value JI(0) = [1,0,0,0,0,0] .

2. Randomization Techniques

The randomization procedures give a method of calculating the
transition probability matrix P(t) , i.e., the order (MtY+l) square
matrix whose elemeits are pij(t) , the probability that the system is

in state j at tire t given that it started in state 1 (0 < i,j <
M+Y) . From P(t) , by using the initial probability vector TI(0) ,

-3 -




fi(t) can be calculated from TI(t) = L(0)P(t) . We denote the (i,})th

element of Q by qij , and define a scalar £ as

B = max la; ) - (2)
1

Now define a wmatiix P with elements as

pij
P =~ {p,} = I+3Q
i] g
where I 1is an identity matrix having the same order as Q .

The matrix P i1s stochastic, and it has been shown [see Cohen
(1969)] that the elements of P(t) can be obtained by

© . n.n
-Bt gt" (n)
pg(t) =e ] ——p, (3)
ij n=0 ™ ij
where pig) is the (i,j)th element of matrix P raised to the nth

power. This method is called randomization because it can be inter-
preted as a discrete time Markov chain with transition probabilities

pij and transition time generated by a Poisson process at rate B .

To compute pij(t) involves raising the matrix P to the ntk
power for n=0,1,2,... . The numerical procedure truncates n at some

appropriate value, say m , so

-8t mil Bntn (n)

Pyy(E) = e Tar Piy YRy (4)

where Rm is the arror due to truncation.

2,1 Barzily and Gross Method

Barzily and Gross (1979) proposed a criterion to truncate n
such that for a given €>0 , the smallest m is chosen such that the
error Rm obeys

T-436
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e—Bt m~1 (Bt)n

n=0 n!

R < 1-
m =

1A
m

(5)

Their paper shows that such an m exists. For a machine repair problem

with parameters M=Y =C=1 and ¢ = 1073

, the result of applying
this criterion has been shown to be quite satisfactory, in fact accurate
up to the second decimal place. A complete description of the Barzily-
Gross method together with the study of the transien~ effects and the
speed of convergence to steady state for machine repair problems can be
found in the above cited reference. The algorithm has been coded in
FORTRAN to run on the IBM 3031 computer, under the program name WONG.

The following section is a brief description of program WONG.

2.2 Program WONG

WONG, a FORTRAN code originally designed to find ihe spares in-
ventory level and number of repair channels necessary to guarantee a
prespecified service level for a machine repair problem, inciuded in it
a program to provide transient solutions for the systum state probabil-
ities., This portion of the program was separated from the original and
updated to stand alone as a provider of transient solutions to machine
repair problems. Input requirements for program WONG are given in
Appendix 1. Results of applying program WONG to the sample problem of

Section 1.2 are given in Section 5.

3. The QUE Package

Grassmann and Servranckx (1979) developed a FORTRAN based package
for finding transient solutions for moderate sized queueing networks (up
to ten state variables). The method adopted in this package is in fact
based on the randomization procedure discussed in the preceding sections.
The truncation cricveria are somewhat different and are described in the
following section. We have adopted the sample probler of Section 1.2 to
the specifications of this package and the results are presented, along
with those of program WONG, in Section 5.

-5~
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Grassmann (1977) has also shown that the truncation error, Rm R

can be bounded with reasonable accuracy; that is,

m-1 -
R < 1- 7 B0 T e . (6)
no= n=0 n}

For small Bt , che sum in the RHS of (6) can easilv be evaluated for

fixed m , and thus m can be determined such that Rm will be below

a prescribed value € > 0 , as was done by Barzily and Gross (1979). For
large Bt one can approximate the Poisson distribution by the normal

distribution. In the QUE package, m is set equal to
m = Bt +4Bc +5. (7

Using Poisson tables for Bt < 20 , or normal tables otherwise this

procedure guarantees that such an m yields an Rm less than 10m4 .

3.1 Formulation of the Sample Problem
for the QUE Package

To solve the machine repair problem by using the QUE package,
one must formulat~ the problem to fit the network structure input
requirements. The output statistics are then obtained from the program.

One way of formulating the problem to fit the QUE package requirements is

Operating units ] Repait
Spares inventory facility

V

shown in Figure 1.

Y

—

&
-~

Figure l.--Formulation of the sample
machine repair problem for
the QUE package.




It is necessary to define state variables aud event descriptions

together with type, conditions, net effect, and rate parameters. These :

; T-436
{

are shown in Table 1.

TABLE 1

i ' THE EVENT DESCRIPTION OF THE PROBLEM FOR THE QUE PROGRAM

Events Type Rate Conldition Net Effect

1. Arrival into repair
station

a. when no machine

is in repair

station 1 .6 X1=0 (+1)
b. when there are

some machines
in the repair

station 1 .75 - .15X1 1<x1<4 (+1)
2. Service: when only i
E - one repairman is i
3 busy 1 .5 X1=1 (-1)
3 3. Service: when both
3 repairmen are busy 1 ) 1 2<XLZ5 (-1)
I.

The state variable is described by X1 number of machines in

repair station, G < X1 < 5.

; Each event has a rate function which associates the rate of each
P transition with the starting state. The rate functior may be constant or
u; a function of the state variable. Types of events are classified as type
¥, one, having finite rate event, or as type two, having infinite rate
event. The state space of the system is defined by general conditions
represented by linear inequalities involving the state variables. The
net effect is the value of the state variable after the event occurs and
is determined by in-:rementing or decrementing the valuc by a constant
4 prior to the event's occurrence. A more detailed explunation can be

found in Grassmann and Servanckx (1979). Appendix 2 shuws the QUE pro-

gram input requirements for the sample problem.

f . -7- !




4. Numerical Integration Methods

Numerical integration methods can be employed to solve a system

of ordinary differential equations described by

—yi(tﬂ _fl(yl.---,yp;tﬂ
yé(t) fz(yl,...,yp;t)

Y'(tr = . = = f(y,t) (8)
Lyp(t)- pr(yl,"°:yp;t)-

with known initial value Y(to) . The standard techaiques are generally

variations of either Runge-Kutta (R-K) or predictor-corrector (p-c) methods.
Runge—-Rutta methods are based on formulas that approximate the
Taylor series solutions

2 .
yi(eh) =y (0 + byl + 3yt + L+ B wr

i=1,...p . These methods use approximations for the second and higher-

order derivatives. Euler's method is a special R-K method, with k=1 .
These methods have been used by several authors [e.g., Bookbinder and

Martell (1979), Grissmann (1977), Liitschwager and Ames (1975) and Neuts

(1975)) to find transient solutions in queueing systems.

The predictur-corrector methods require information about several
previous points in order to evaluate the next point. These methods in-
volve using one formula to predict the next Y(t) value, followed by the
application of a more accurate corrector formula. Un'ike the R-K
methods, p-c methods are not self-starting; hence, they use the R-K
method to obtain the first Y(t) value.

Predictor-ccrrector methods can provide an estimate of the local

truncation error at each step in the calculations, in contrast to the R-K

methods, which cannot obtain such an estimate.
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Predictoc-corrector methods include Milne's method, Hamming's
method, and Adams' methods. Methods based on the Adams formulas have

performed very well in test problems [cee Hull, Enright, Fellen, and

Sedgwick (1972)] even for nonstiffl systems or when function evaluations
are relatively expensive. Hull et al. also concluced that R-K methous

are not competitive, although fourth or fifth order methods are best for
problems in which function evaluations are not very expensive and accura-

¢y requirements are not very stringent.

Predictor- corrector methods have been used by Ashour and Jha (1973)

for queueing problems.

A variety of routines is available for solving a system of ordi-
nary differential equations. They include RKGS, DRKGS (fourth order R-K
formulas), HPCG, DHPCG, HPCL, DHPCL (Hamming's Methods), all from the IBM
Scientific Subro'itine Package [IBM (1968)]; and DVERK (Verner's fifth and
sixth order R-K formulas) and DVOGER (Gear's Method) in the International
Mathematical and Statistical Libraries (IMSL) package [IMSL (Ed. 6)]. One
routine based on extrapolation methods is DREBS, also in the IMSL
package, which uses the Bulvisch-Stoer method.

4.1 Gear's Algorithm

C. W. Gear (1971a, 1971b) proposed a variable-order integration
method based on Adams' predictor-corrector formulas of orders ome through
seven. It uses an order one formula to start and, for this reason, must

start with very small step size when the error tolerance is stringent.

Gear's algorithm includes a special approach for dealing with
stiff differential equations.

lA stiff system of ordinary differential equations is character-
ized by the property that the ratio of the largest to the smallest
eigenvalue is much greater than one.
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The Adame' formulas fall under two general categories--open and

closed formulas. The Adams-Bashforth pth order formulas (open formula)

can be written as

P
+h } B.y' ., (9)
K=1 K’ n-K

yn = Yn-1

where vy = Y(ti) » £y = ih , y; = f(yi,ti) . The order of the method

is one less than the order of the truncation error per step. The Adams-

Moulton pth order formulas (closed formulas) can be written as

p-1
= % ]
yn,m Yn-1 + BOhf<yn,m—1’tn) +h KZI Bﬁyn-K ) (10)

The coefficients BK and Bi are given by Henrici (1962). Equation (9)

is used as the first approximation in Equation (10). Thus (9) is used as
the predictor eqtation and (10) as the corrector equation. Whenever (10)

corverges (as is true when h is small and f is smooth), the trunca-

tion error introdiced at the nth integration step is

A, WP P 0wt (K)

o+l , where y

is the kt#h derivative of

y , and C:+1 are constants [see Henrici (1962)].

The predictor equation (9) is equivalent to fitting a pth degree
polynomial through the known quantitites Yo-1° hy;_l, cees hy&_

p
For more details of the algorithm, see Gear (1971a, 1971b).

4.2 DVOGER Subroutine

DVOGER is a FORTRAN routine based on Gear's alnorithm designed to
solve a set of first order ordinary differential equations. The algo-
rithm chooses the nrder of approximation such that the step size is in-
creased, thereby decreasing the solution time. The option of using a
particular method is done through a switch variable (MTH). Results of
using DVOGER on the sample problem are also given in section 5. Appendix
3 shows the input and programming requirements for exercising DVOGER.

-10 -
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5. Conclusions and Numerical Results

We have nresented three numerical methods in computing the tran-
sient probabilities for finite Markovian queues. Transient probabilities
often provide a realistic picture of actual queueing systems, and some-
times it is desirable to know how fast they converge to steady state
[Barzily and Gross (1979)].

The methods considered in this paper fall into two categories,
namely, randomization and predictor-corrector numerical integration. In
general these methods give reasonably accurate results for a moderate
sized problem. Table 2 shows the output of these programs for
t=1,3,5,7,9,12. The QUE package and DVOGER show almost equal results,

while program WONG deviates from the other two by at most 3><10.4 , Which
is reasonably compatible.

In terms of set~up effort, program WONG gives the least degree of
difficulty since it was written primarily for machine repair problem.
The biggest concern with respect to the QUE program was the huge core
storage requirement, which exceeds the current daytime capacity of 384K
bytes of the IBM 3031 at the GWU Center for Academic and Administrative
Computing. Future modification by redimensioning is suggested. In using
DVOGER, one must carefully choose applicable parameter values, as in the
step size. Total running times of the programs are 2,35 seconds for pro-
gram QUE, 6.13 seconds for program WONG, and 162.62 ceconds for DVOGER.
The reason for the length of the latter is that with step size fixed at

1X10-4 » DVOGER mst be called 120,000 times to integrate for each time

point from t=0 to> t=12 . There is a need to explore further the best
options of DVOGER to find those which might reduce running time consider-
ably.

- 11 -
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TABLE 2

PROGRAM OUTPUT OF WONG, QUE, DVOGER FOR THE TRANSIENT SOLUTION
OF A MACHINE REPAIR PROBLEM WITH PARAMETERS M=4, Y=1, C=2,
A=.15, u=.5 and 1(0)=(1,0,0,0,0,0) AT t=1,3,5,7,9,12

Time Program m,(t) m,(r) m,(¢) T4(t) LACY ws(t)

1 WONG .6235 .2946 .0708 .0096 .0007 .0000
QUE .6237 .2949  .0709 .0097 .0007  .0000
DVOGYR .6237 .2949 .0709 .0097 .0007 .0000

3 WONG .3944  .3686 .1722 .0536 .0099 .0008
QUE .3945 .3688 .1723 .0536 .0099 .0008
DVOGER .3945 .3688 .1723 .0536 .0099 .0008

5 WONG .3331 .3663 .2005 .0781 .0192 .0022
, QUE .3333 ,3665 .2006 .0782 .0192 .0022
é DVOGER .3333  .3665 .2006 .0782 .0192 .0022

7 WONG .3119 .3618 .2091 .0886  .0244 .0033
QUE .3122 .3620 .2093 .0887 .0244  .0033
DVOGER .3122 .3621 .2093 .0887 .0244 .0033

9  WONG .3038 .3595 .2123 .0931 .0269 .0038
QUE .3039 .3597 .2124 .0932 .0269 .0038
DVOGER .3039  .3597 .2124 .0932 .0269 .0038 1

i 12 WONG .2995 .3580 .2138 .0955 .0283 .0042
QUE .2997 .3582 .2140 .0956 .0284  .0042
DVOGER .2997 .3582 .2140 .0956 .0284 .0042
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APPENDIX 1: PROGRAM WONG
R A. Input Requirements
4
TABLE Al.l
PARAMETER CARD INPUT
L Columns Format Input Name Explanation
1-5 15 M Number of machines initially operating
; 6-10 I5 1C Number of service channels
11-15 15 IY Number of spares
16-27 Fl12.7 RLAM Machine failure rate (Poisson mean)
28-39 F12.) RMU Service rate (Poisson mean)
40-49 F10.¢ EPS Tolerance value
]
TABLE Al.2
TIME INPUT
Colurns Format Input Name Explanation*

1-7 F7.3 TDEL Time T

[ *Time at which transient probability is

: required is format free, but it must be coded
gtarting from column one, and a separate card
is required for every time desired.

B. Numerical Example Input

We shall illustrate the use of program WONG on the sample problem

given in Section 1.2, The cards for the sample problem, with € = 10-3

- 13 -
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and t = 3,5 are shown in Figure Al.l. The output obtained for this prob-

lem is tabulated in Table Al.3.

Card Type Card Image
Job // STANDARD JOB CARD
JCL // EXEC F@RT2
JCL //[F@RT .SYSIN DD *

Program Deck

[Program WONG deck]

T-436

JCL //G$.SYSIN DD *

Parameter 4 2 1 .15 .5 .001

Time «
Time

JCL !/

Figure Al.l--Card input program WONG for sample
problem.

TABLE Al.3

THE OUTPUT OF PROGRAM WONG
FOR THE SAMPLE PROBLEM*

m(t)

il Tt M) my(e)  my(e)  m(r) ms(t)

{ .3944  .3686 .1722 .05%  .0099  .0008
J 5 |.3331  .3663 .2005 .0781 .0192 .0022

o *Note: the initial distribution of the system is
assumed to be no(O)-l, ﬂi(O)-O, i>1.

e i - Lt s . ————
.
i

- 14 -
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1. hern Ry Y A AT

APPENDIX 2: PROGRAM QUE

A. Input Deck Format Specification

TABLE A2.1

INPUT DECK FORMAT FOR PROGRAM QUE

1. Problem title card:
Function: rfor documentation only

Columns Format Field descriptiocn

1-80 20A4 Problem title

2. Problem specification card:
Function: describes the number of state variables, number of
events, and the number of general system conditions

Columns Format Field description
1-2 12 Number of state variables

3-4 12 Number of events

5-6 12 Number of state space restrictions

3. Maximum vector card (one card for each state variable--for
machine repair problems only one is required)
Function: to describe the highest possible valu= of each state
variable (a maximum of ten state variables)

Columns Format Field description
1-2 12 Maximum value of state variable 1 ;
4. Event title cards (one for each event) ‘

Function: for documentation purposes only

Columns Format Fileld description

1-80 20A4 Event title
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TABLE A2.1--continued

5. Event specification card (one for each event)
Function: indicates type of event and the rate of this event
Columns Forma* Field description _
11 Print flag for transitions (1 = Yes)
I1 Event type (1 for machine repair problem)
11 Number of specific conditions (0 for machine repair
problem)
4 I1 Flag for new minima and maxima of the state variable
(1 = Yes)
5~10 F6.2 Rate of this event
11-12 I2 State variable on which rate depends (if zero, rate

is a constant)

13-18 F6.2 Increase of rate

6.

New maxima and minima vector card (one for each event)
Function: resets the maximum and minimum values for the state
variable

Columns Format Field description

1-2 12 New maximum for state variable X1

3-4 12 New minimum for state variable X1
7. Net effect rard

Function: defines the function f(x) which converts the starting
state into the target state

Columns Format Field description
1-3 13 Net effect for state variable X1
8. Trailer card

Function: delimiter card used to indicate the end of events
section of the system's input. The first four bytes of the
record must contain the string "END"

Columns Format Field descriptior
1-4 Ab Control field (value is "END")
5-80 1944 Ignored

- 16 -




T-436
TABLE A2, l--continued
9. Probability specification card
Function: gives the number of nonzero initial probabilities _

s (only the nonzero ones need to be entered) 3

Columns Formet Field description

1-2 12 Number of nonzero initial probabilities

3-8 F6.2 The starting time of the system i

10. Initial probability card :
| Function: specified initial probability and the state to which .
R it pertains (one for each state variable-~onl;’ one required for J
; machine repair problem)

» Columns Format Field description
. 1-6 F6.5  Initial probability
7-8 12 State variable X1

11. Time specirication card
Function: to indicate the time for which transient solutions are
required, to indicate what measures are to be printed, and to
give a criterion whether or not to continue calculating the
times on the following card

Columns Format Field description
L]
1 11 Number of times for which solutions are required
- (5 or less)
§ . 2 11 Print flag; if value is 1, joint distributions are
» printed
3 11 Print flag; 1if value is 1, marginal distributions
L are printed
i ; 4 I1 Print flag; if value is 1, expectations are printed
; 11 If value is 1, other cards follow (having the same

format as this one)
6-11 F6.5 Stopping criterion (accuracy desired)
12, Time card

Function: gives each time (a maximum of five) for which results
4 are desired

- 17 -




TABLE A2.1--continued

Columns Format Field description
F5.2 First time tl
6-10 F5.2 Second time t2

. - .
. . .
L4 . .

the times tl,tz,... must be input in increasing order of magnitude

B. Numerical Exauple Input

Input data for the sample machine repair probiem is shown in Table
A2.2.

TABLE A2.2

INPUT CARDS FOR PROGRAM QUE

Card

Type Card Imput

TRANSIENT SOLUTION FOR MACHINE KEPAIR PROBLEM
010400

05

ARRIVAL INTO REPAIR STN: (A) NO MACHINE
1101000.60

€000

001

ARRIVAL INTO REPAIR STN: (B) 1 MACHIWE
1101000.7501-00.15

0401

001

SERVICE WHEN ONE REPAIRMAN IS IDLE
1101000. 50

0’01

-0l

W N -

e A R R - Y R R - .
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TABLE A2.2--continued

! == - ==
; g;;i Card Input

4 SERVICE WHEN BOTH REPAIRMEN ARE BUSY

5 1101001.00

6 0502

7 -01

8 END OF EVENT SECTION

9 01000.00

10  1.000000

11 41111.0001

12 10.2500.5000.7501.00
11  41111.0001

12 01.2501.5001.7502.00
11  41111.0001

12 02.2502.5002.7503.00
11  41111.0001

12 03.2503.5003.7504.00
11  41111.0001

12 04.2504.5004.7505.00
11 41111.0001

12 05.2505.5005.7506.00
11 41111.0001

12 06.2506.5006.7507.00
11 £1111.0001

12 07.2507.5007.7508.00
11  41111.0001

12 0&.2508.5008.7509.00
11 41111.0001

12 09.2509.5009.7510.00
11  41111,0001

12 10.2510.5010.7511.00
11  47111.0001

12 11.2511.5011.7512.00
11 00000

- 19 -
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APPENDIX 3: DVOGER SUBROUTINE

A. Input and Options

This sec.ion discusses the input requirements for DVOGER. Since

DVOGER is a library subroutine, one must write a computer program in

order to use it. The édvantage is in the flexibility of inputting the

parameter values, as well as in the choice of output variables, frequency

of printing the solutions, and so forth.

The input structure is as follows.

1.

Job and JCL cards. See Section B for the standard and job

contr)l language cards.

Main program. The main or the calling program is to be
writtear in FORTRAN. The proper dimensioning of arrays, the
input mode of parameter values, the number of calls to DVOGER,
and the frequency of printing the solutior. must be determined
by the user. Moreover, an external subrontine DFUN is to be
written by the user to compute functional values F(y,t) or
the Jacobian of F(y,t) .

The parameters needed for the main program include:

N = number of first order differential equations
| = order of Jacobian (M=N)
T = initial value of independent variable (e.g., time)
MITH = method indicator
0, predictor-corrector (Adams) method

1, variable-order method, suitable for stiff
- systems (partial derivatives provided by user)

2, variable~order method (partial derivatives com-
puted by numerical differencing)

AL e ke
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Y(1,N) = an input array of initial solutions at T ; array
Y is to be declared 8xN

YMAX(N) = an input array of maximum abtsoiute value of solu-
tion

HMIN = smallest step size allowable
HMAX = maximum step size allowable

H = step size to be attempted on the next step; this
is to be used if it does not cause a larger error
than requested

-1, repeat the last step with a new H

0, initialize the integration (for first call to
DVOGER)

1, take a new step continuing from the last

JSTART =

EPS = maximum error criterion such that the single step
error estimates divided by YMAX(I) are less than
EPS in norm.

The call to DVOGER is done by the statement,

CALL DVOGER (DFUN, Y, T, N, MTH, MAXDER, JSTART, H, HMIN,
HMAX, EPS, YMAX, ERROR, WK, IER).

3. Subroutine DFUN, DFUN is user-supplied and is to be declared
by an EXTERNAL DFUN statement in the main »nr calling program.
DFUN gpecifies the problem for DVOGER. It provides the system

of equations and the Jacobian. The parameters include:

YP(1,N} = vector of solution TP
TP = present time
M = order of Jacobian
0, DFUN computes F(YP,TP)
IND = {1, DFUN computes Jacobian of F evaluated at
(YP,TP)

YP 1is to be declared as an 8xN array.

B. Numerical Exam le Input

We shall illustrate the solution of the sample problem using the

DVOGER subroutine. The structure of a single job run is as follows.

- 21 -
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(c)
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Job and JCL cards

// STANDARD JOB CARD

// EXEC F@RG?2

//FORT,SYSIN DD *

[Main Program and Subroutine]

//G@.SYSLIB DD

// DD DSN=GWU.IMSL6 ,LM@D.D,DISP=SHR
// DD DSN=GWU.IMSL6.LMyD.S,DISP=SHR
//G@.SYSIN DD *

Figure A3.1 shows the main program and subroutine DFUN, and the
input and our options, where the transient solutions are re-

quired for times T=1,2, and 3 .

Program Output. The step size h was flixed at 0.0001 by
specifying HMAX=HMIN=H=0.0001 . The method used was the
predictor-corrector method based on the Adams formulas
(MTH=0) . The output of transient solutions was printed out

at every time increment of .0l starting at t=0 to t=3 .

~7
The error tolerance was set at 10 .

The program below was written for this specific problem, although
a more general program can be written to handle any pcoblem with arbi-
trary parameter values.

The authors have not tested this subroutine for options which give
minimum execution time, as this was not the purpose here.
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DIMENSION YP(8,10),PC10,10),Y(8,10), Y“AX(IO) DYC10)
DIMENSION vVK(Il'O ?O) E:QR’)H(IL)) C(10)
DOUBLE PRECISTON YP

T W ey :ww-mm -
A
- . 2

DOUBLE PRECISION C,D,E,H.P, T, Y,Rl ,BNN,EDS EUP,EDHN,ENY L, D1 ,D2,

* ENQ2 , ENQ 3, Hi{ AX (HMIN (iNEad (HOLD, TOLD, YHAY,
* ERROR, RACUM, WK , XK, ZERO ,HALF ONF ,ONEP D 4
EXTERNAL DF N »
KK=0
'; ' N=6
§ M=6
T=0.000
Y(1,6)=0.0D0
Y(1,5)=0.000
Y(1,4)=0.000
Y(1,3)=0.000
Y(1,2)=0.000
Y1, 1)=1,000
YMAX(1)=1.0D0
YMAX(2)=1.0[0
YMAX(3)=1.0U0
YMAX(4)=1.0DV
YMAX(5)=1.000
YMAX(6)=1.0DO0
JSTART=0
IND=0
MTH=0
' HMAX=1 .0D~-4
HMIN=1,00-4
" H=1.00-4
EPS=1.0D-7
WRITE(6,100)
100 FORMAT( 07,9, #T7, 12X.'P0',12X #P14,12X,4P2%,12X,7P3”,
* 12X,7P4%,12X,7P5%)
WRITE(6,200) T,Y(1,1),Y(1,2),¥(1,3),Y(1.4),Y(1,5),Y(1,6)
00 10 K=1,30000 ‘
CALL DVOGER(DFUN,Y,T,N,MTH,MAXDER,JSTART H,H4IN,H"AX, EPS,
* YMAX,ERROR WK, IER)
3 KK=KK+I-
|  IF(KK.NE.100) GUTO 250
S WRITE(6,200) T,Y(1,13,Y(1,2),Y(1,3),Y(1,4),Y(1,5),Y(1;6)
d 200 FORHAl('O'.7(2X F10.8))
250 CONTINUE
IND=0
MTH=0
IF(MTH.NE. 1) GOTO 10
PN(I,1)==06 -
PN(1,2)=.5
PH( 1 43)=0,0

G L T

o, s
- -

il By

Figure A3.1--Program listing to call DVOGER for the machine repair
problem, t=l,2 and 3 .
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Pit(1,4)=0,9 : 1
Pv(Cl,%)=0,0
Pn{1,6)=0,0
Pi(2,1)=,6
Pr(2,2)==-1,1
Pi(2,3)=1.0
Pr(2,4)=0,0
Pi(2,)=0.0
Pi(2,6)=0.0 :
Pid(3,1)=0.0 '
Pi(3,2)=.6 , -
Pw(3,3)==1,45

p“‘(3’4)=l.(‘ A * f
Pw(3,5)=0,0

Pi(2,6)=0,0 . -

Pi(4,1)=0.0

Pi.(4,2)=0,0

P:.( 4,3)=.45

Pi(4,4)==1.3 ; :
Pu(4,5)=1.0 Hi

Pi1(4,6)=0.0
PH(5,1)=C.0
P (5,2)=0.C
PW(%,3)=0.0
PH(5,4)=,3
PH(5,5)==1.15 | 1

PW(5,6)=1.0
PH(6,1)=0.0
PW(56,2)=0.0
PH(64,3)=0,0
Pi(6,4)=0,0

Pi(6.6)==1.0 , , ﬂ
CONTINUE i
STop . ﬁ
END _ :

SUBROUTINE DFUN(YP,TP,™,DY,PH, IND)
DIMENSION PiH¢10,10),YP(8,19),DY(10) |
DCUBLE PRECISION YP.TP.DY.Py ,
1F(IND.EQ.0) GNTO 5 {
PACT, 1 )=—.6 | ¥
PH(1.2)=.5 |
Pi(1.3)=0.0

PW(1.4)=0.0

Pi(1,5)=0,0
Pi( 1,6)=0.0
PA(2,1)=.6

Pr(2,2)==1.1
PW(2,3)=1.0
PN(2,4)=0,0
PH(2,5)=0.0
Pr(2,6)=0,0
pﬂ(3.')=0.0
PH(3,2)=.6
PH(3,3)==1,45

Figure A3.1:-é;;¥iﬁu¢d
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.
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PH(4 2
Pn(4,3)
Ph(4,4)—
PN(4,5)=
Pw(4,6)
Pu(H, 1)
Pr(5,2)=0.,r.

PH(5,3)=0,0

PHW(5,4)=0.3

PH(5,5)==1.15

PH(5,6)=1.0

PW(6,1)=0.0

PHW(6,2)=0,0

PW(6,3)=0.0

PW(6,4)=0,0

Pri(6,5)=_15

PiN(6,6)==-1,0

GOTO 10

CONTINUE ’
DY(I)-—-.é*YP(l.I)+ 5%YP(1,2)

DY(2)=.6%YDP i1, 1)=1.1%YP(1,2)+YP(1,3)
DY(3)=.6*YP(l,2)*l.45*YP(1.3)+YP(1,4)
DY(4)=,45%xYP(1,3)=1.3*%YP(),4)+YP(1,5)
DY(5)=,3*YP(),4 )—I.IS*YP(l.bH’YP(I 6)
DY(6)=.15%xYP(1,5)-YP(1,6)

RETURN

END

nwaococecn
w

Figure A3.l--continued
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