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INTRODUCTION

1. The Nature of Nonlinear Acoustics.

It is a commonplace remark to say that the theory of acoustics is an
infinitesimal theory. The meaning here, of course, is that such quantities as
the changes in pressure, density and temperature, produced by a sound wave
are always small (i.e., infinitesimal) in comparison with the equilibrium values
of the same quantities. However, one cannot make the same comparison for
the displacement velocity of the hypothetical particle, since the theoretical
treatment of sound propagation presupposes a continuous medium that is at
re'st in equilibrium. It is customary, and sensible, therefore, to require that
the ratio of the particle velocity to the velocity of propagation of sound be
sufficiently small. The question is, how small is small?

The answer to this question will be the burden of much of this book.
To make a beginning, we first define the acoustic Mach number M as the ratio
of the maximum particle velocity to the local sound velocity. We then require
M<< I.

The significance of this definition, which parallels the more common
Mach number of aerodynamics, can be gathered by considering the case of a
plane harmonic wave in which the particle or displacement velocity u is
expressed by

u = 10 sil - (1)

where u0 is the amplitude of the displacement velocity and co the sound
velocity when the amplitude of the wave is infinitesimal.

The acoustic Mach number is then M = uo/cO. We now introduce the
fact that the change in pressure 5p associated with such a wave, is related
to the particle velocity by the expression 5p = pocou, where P0 is the mean
density of the medium. Then

u0  8Pmax
M - = o2 (2)

For a gas under pressure pO and with an equilibrium density p0 , the
sound propagation velocity is given by co = V/7Po/Po, where -y is the ratio of
specific heats.



The acoustic Mach number for a gas is therefore

M= 6Pmax

This ratio enters our problem in the following way. The -usual one-
dimensional wave equation for a particle displacement t

SC2 a2 (3)
at2  ax2

is in fact an approximation. The more accurate form (see Sec. 3.1) is

+ atI)• c2 = 2tax (4)

1+-Lax) Tt 2 0x" "X

Equations (3) and (4) are compatible only if at/ax is entirely negligible, or if
y = - 1. This latter is highly unlikely, although mathematical treatment of the
case is not without significance. [I] We shall concentrate our attention on
the first condition. In the case of the harmonic plane wave of Eq. (1), we can
integrate over time to obtain

t = -t0 CosW(t - 00

so that

(tomax = o M. (5)

Thus the condition that aý/ax be negligible compared with unity is equivalent
to the previously stated condition M << 1.

It might appear that we have answered our question, but in fact we
have not. For example, the sound of a jet engine at short range may be as
intense as 140dB re 0.0002 dyne/cm 2 , which corresponds to a value Mý-
1/1000, a number that seems to be very small indeed. Nevertheless, the total
effect of the factor [1 + (3a/3x)]fly will turn out to be quite considerable
in this case.

The reason for this curious development is that the effect of the pres-
ence of a finite value is cumulative and while the influence of this termlis.
only on the scale of I part in 1000 in a single wavelength, the wave will be
seriously distorted by the term in la3x after 1000 wavelengths.
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The distinction between Eqs. (3) and (4) is, of cc, urse the difference
between linear acoustics [Eq. (3)] and nonlinear acoustics [Eq. (4)].

It has been said that the mathematical analysis of physical problems is a
Y series of rearguard actions. After we admit that a situation exists, we first

suppose that it can be represented by a suitably chosen constant. When that
fails, we switch to a linear dependence, and it is only as a last resort that we
retreat to the use of nonlinear relations and nonlinear equations.

Only a few decades ago, nonlinear acoustics was little more than the
analysis of shock waves and large amplitude mechanical vibrations. Gradually,
however, more and more of acoustics has been examined for its nonlinear
aspects until today one can write a nonlinear supplement to virtually every
chapter of a text on acoustics and vibrations. This book might be regarded as
a compendium of such supplements.

Because of the large attention that has already been given elsewhere to
the topics of shock waves and nonlinear vibrations, these subjects will be
treated rather sparingly here, and the reader is referred to well-known texts
[2,3] for more detailed treatment.

2. Historical Aspects.

The reader who makes even a casual study of the earlier literature will
be astonished, not at the lack of references to nonlinear phenomena at dates
more than thirty years ago, but rather at the number of nonlinear processes
that were observed and described in the distant past, studies that have fre-
quently been neglected or forgotten until recently.

Aeroacoustics

Probably the oldest known nonlinear (acoustical) device is the Aeolian
harp. In 1650, Athanasius Kircher [4] wrote a description of this instrument,
but its existence goes back to early antiquity. In the Aeolian harp, a flow of
wind (Aeolus, Roman god of the wind) past a string or wire can set that string
in oscillation, and tradition has it that King David would set his harp so that
the wind at night would strike it and produce sound. The wind whistling
through tall grass or tree branches, the "singing" telephone wire and Lord
Rayleigh's fingers in the baths at Bath* are all examples of the same phenorn-
enon-the conversion of direct fluid flow to vibratory motion.

"*"Bath, January, 1884:

I find in the baths here that if the spread ringers be drawn pretty quickly through
the water (palm foremost is best) they are thrown into transverse vibration and strike
one another. This seems like the acolian string . ... " Rayleigh's Notebook. 151
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An early analytic treatment (1878) of this phenomenon was that of
Strouhal [6] who found experimentally that the frequency f is related to the
airspeed v and diameter of wire d by

f 2 0.185 v/d. (6)

If f corresponds to the natural frequency of the wire, a substantial reinforce-
ment of the vibration is obtained.

It was pointed out by Lord Rayleigh that the effect of the Aeolian harp
must be due to the forces set in motion by the vortices that are created by
the fluid flow past a solid cylinder. At very low speeds of flow the stream-
lines cling close to the cylinder on all sides, a behavior known as potential or
laminar flow (Fig. Ia). However, even for rather modest speeds of flow, the
stream lines break away from the cylinder in the rear (Fig. Ib). Helmholtz
[7] attributed the drag resistance of a cylinder to the apparent "surface of
discontinuity" AA'. Eddies or vortices are set up in this region (Fig. Ic). It
was noted by Benard [81 and Mallock [91 that these eddies detach them-
selves from the region of the cylinder and move along the stream lines, very
much as if they were small bits of matter caught up in the flow.

These vortices move off alternately from one side and the other. Their
theoretical description was supplied by von Karman in a pair of classical
papers [I 0] that resulted in the name ion Karmnai vortex- trail or street for
the phenomenon. For a distance between the vortices at one side R and
spacing of the two lines of vortices h, von Karman found the relation

!h

_ 0.28 . (7)

The fact that the vortices drop off first from one side of the cylinder
and then from the other results in a periodic force acting on the cylinder. The
longitudinal component of this force opposing the flow direction always has
the same sense, and contributes to'the drag resistance, but the transverse
component acts alternately in opposite directions, thus providing the stimulus
for the Aeolian tones.

It is also of interest that Rayleigh noted in his famous book [I ll that
the Strouhal number, Jd/i could depend on the shear viscosity r7 of the
medium only through the combination ri/pvd (p = fluid density) a combina-
tion that was later exploited by Reynolds [121 in describing the transition
from laminar to turbulent flow, and is hence known as the Reynolds'
numher.

A second sound source in fluid tlow is that due to edge tones, first
noted by Masson 1131 and Sondhauss 1141.

If air cmerging from a narrow slit falls on a sharp wedge of wood or
metal (Fig. 2), tones can be produced. Vortex trails pass out from the slit on
either side, and a second street of vortices are produced at the wedge tip.

4



(a)

(b)

(c)

F:igure I.-Fluid flow around a rigid circular cylinder; (a) potential or laminar flow;
(b) streamline breakaway with formation of surface of discontinuity AA'; (c) vortex
formation behind cylinder.
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air

da

Figure 2.-Vortex formation and generation of edge tone in airflow through

narrow slit onto facing wedge. -

Thcsc vortices apparently miust keep pace with the first set so that the dis-
tance d between slit and edge makes a kind of resonance distance.

Now the alternating nature of the detachment of vortices causes a
vibration of the edge piece just as was the case for the wire. Here again the
forces produced by the turbulent vortex street produce sound.

As early as 1877, Rayleigh had considered thc effect of a rigid sphere
undergoing periodic oscillations in a fluid, and showed that it would act in a
fashion similar to that of an acoustic dipole, which was defined by him as "the

limit of two equal opposite simple sources whose distance is diminished and

intensity increased without limit in such a manner that the product of thei
intensity and distance is the same as for two unit sources placed a unit(
distance apart." 11 5)

6
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Rayleigh also calculated the force exerted on the fluid by the oscillating
"sphere and observed that sound radiation occurred in the fluid flow past a
wire when the wire was not permitted to vibrate. [161

Thus the stage was set for the idea that sound generation from vortices
might not require the presence of a solid surface, but more than half a
century was to pass before it was stated directly by Yudin (1945) that he was
"obliged to suppose that the origin of the vortex noise lies in the variable
force acting on the medium." 117]

The next step was to regard turbulent motion of a fluid as a kind of
inhomogeneity. Now the mathematical theory of the scattering of sound
from small-scale inhomogeneities had been considered by Rayleigh. In this

development, Rayleigh wrote down the expression for the D'Alembertian of
the pressure,

CO at 7O2 p 2 (7

He collected all other terms on the right side of the equation. These included
terms dependent on the relative inhomogeneities in the sound velocity Ac/c 0
and the density Ap/p 0 of the medium, as well as other nonlinear terms in p
and its derivatives. Since Rayleigh was interested in the effectiveness of these
inhomogeneities in scattering an incident sound beam, he neglected the higher
order terms not associated with the inhomogeneities. His equation then

became

2Ac a 2PS (AP aps
C0  at2  FYPTOay

where p. is the pressure in the incident beam.

In 19S2, Lighthill pointed out that, in the absence of inhomogeneities,
the only terms remaining on the right side of Eq. (8) would be the higher

order terms for a homogeneous medium, i.e., the terms discarded by Ray-
leigh. This led Lighthill to the equation

o2 a2  Pj -c~5 1 2 (9)[-12p ayia} (Puiu/ + pi- c0p ) ii (9) t

an equation that has become fundamental in subsequent studies of vortex-
produced sound. (See Chapter 5 for identification of symbols and further
development.)

7
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Shock Waves

The history of the phenomenon of the shock wave begins with the
observation in 1742 by a Belgian named Robens [18] that piojectiles travel-
ing faster than sound experienced surprisingly high resistance, but important
progress waited upon improvement in experimental techniques.

In 1867 Poisson developed the schlieren method of sound visualization.
Basically, this method involves the focussing of a light beam on the objective

of a telescope or camera by means of a concave mirror. [191 If an opaque
screen is drawn over half the objective lens, the mirror will appear to be quite
dark. If the rays coming from the light source are disturbed by the presence
of density changes in the medium (due, for example, to the passage of a
shock wave), some additional light will bypass the screen and the mirror will
appear illuminated. (Many variants of this technique have been developed.

See A. B. Wood, [201 L. Bergmann [21 ] and Hargrove and Achyuthan. 1221)
T6pler used this technique to show that an electrical spark discharge

produced a compressed pulse in its neighborhood, while Mach and Gruess
[231 used the same experiment to establish the fact that this pulse moved
faster than sound and also that its speed increased with increase in the spark
intensity.

The so-called shadow method, in which the shadow of the compressed
regions of a spark induced pulse is photographed in the light produced by a
second spark, made it possible to produce excellent photographs of the shock
waves produced by a projectile in flight. [241

At this stage, the experimental results were well ahead of theory, but

Lord Rayleigh presented an analysis of shock waves in 1910 [251 and the
fundamental equations governing shock wave propagation were derived by
Rankine [26] and Hugoniot, [271 while the theory of shock thicknesses was
treated by Becker. [281

The problem of the "booms" resulting from the piling up of com-
pressional waves in front of a supersonic source was treated by Prandtl [291
and later by Dumond et al. [301 while a definitive analysis of the patterns of
such shocks at large distances waited until Whitham's work in 1952. [311

Finite-amplitude Waves

Lying between linear acoustics and shock waves is the subject of small
but finite amplitude waves. In 1808,Poisson [321 developed the form for the
particle velocity

u = fix - (CO + u) tj (10)

that accurately describes the effect of a finite displacement u on the effective
propagation speed of a given value of that velocity.

8
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Poisson did not pursue the implications of this equation but Stokes
1331 pointed out in 1848 that, since large values of u were propagated more
rapidly than small values, the wave becomes progressively distorted as it
travels through the medium, until ultimately a point is reached at which
au/ax becomes negatively infinite, indicating a discontinuity. It remained for
Earnshaw (1859) to produce an exact solution of Eq. (10), a solution that re-
mained, however, in implicit form. 1341 This relation of Earnshaw, which
will be treated in detail in Chapter 3, remained in implicit form until 1935
when it was solved explicitly by Fubini. [351 The Fubini solution itself re-
mained but little known for some years. The interesting history of this theory
and its frequent rediscovery have been reviewed by Blackstock. 136]

A somewhat more limited but practical solution of the finite amplitude
problem was developed by Riemann [371 in which the equation of motion
(10) was linearized by using the first order expression for t to determine
3t/ax and by expanding

att(I+ I+( l)+ax -1ax
This results in the production of a second harmonic component in the wave,
the amplitude of which proportional to the distance from the source.

None of the foregoing analysis took sound absorption into account. In
1931, Fay developed his theory of the 'almost stable wave." [38] The pro-
duction of second and higher harmonics as a wave progresses, due to the
nonlinear character of the acoustic wave equation, leading to the formation
of a shock in the inviscid case, is counterbalanced at the higher frequencies
(for most fluids, the absorption coefficient is proportional to the square of
the frequency). In the almost stable wave, the two processes very nearly
balance, so that the form of the distorted wave remains virtually constant.

Eckart [391 developed the perturbation analysis of the problem, and it
was shown by Goldberg [401 and others [411 that the various harmonics rise
to a maximum and then decay, a result confirmed experimentally by Krasil-
nikov et al. 1421

A somewhat different theoretical analysis was undertaken by Men-
dousse [431 who first noted the similarity between the acoustic equation and
Burgers' equation, a general solution of which is known (Hopf, [44) Cole
[45]). Khokhlov and coworkers [461 successfully carried out the analysis in
1962 and the work was continued by Blackstock, who also developed a
model for the transition from the Fubini model to the Fay model of non-
linear propagation. [471

Interaction of sound with sound.

One of the oldest observations in nonlinear acoustics was that made by
Sorge in 1745 [48] and independently reported by Tartini in 1754 [491 (the
latter claimed to have observed the effect as early as 1714). These two musi-

9
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cians found that the sounding of two musical tones of high intensity results in
the appearance of a lower tone, whose frequency is equal to the difference
between the two original tones. The sounds have come to be known as
"Tartini tones" or the Tartini pitch.

It was suggested by Lagrange [501 and later by Young 151) and
Chladni [52] that the effect was !he same as that of beats. The latter effect,
which is the (low-frequency) modulation resulting from the sounding of two
nearly similar tone;, is a linear phenomenon. It was argued that, as the beat
frequency increases, it goes over into a continuum tone, which is the differ-
ence frequency. These arguments found many supporters in the 19th century,
even though it became known that the signals had to be quite intense before a
difference tone could be observed, and that such a tone was a weak one,
whereas beats are very evident even at relatively low intensities.

The problem therefore hung on for more than 100 years, until Helm-
holtz undertook his study of what he called combination tones, [531 and
discovered the existence of a sum frequency as well as the difference fre-
quency.

Even Helmholtz's discovery met with opposition, some observers com-
pletely denying its existence. An argument also developed as to whether these
combination tones existed objectively, i.e., actual pressure waves propagating
through the air, or "subjectively, being due to the nonlinear response of the
ear." Helmholtz attributed the presence of the combination tones to non-
linearities within the ear, and modern research indicates the cochlea as the
most probable source of such a nonlinear response.

Nevertheless, Rucker and Edser [54] were able !o excite a tuning fork
at the sum frequency, thus identifying the interaction as ar, objective one-
i.e., actually occurring in the medium.*

In 1931, Lamb used a perturbation technique to consider the effect of
two different primary frequencies propagating through a medium to show the
existence of both sum and difference frequencies. His work was confirmed
experimentally by Thuras, Jenkins and O'Neil. [561

In 1950's, a controversy arose as to whether two sound beams inter-
secting at an arbitrary angle can produce sum and difference frequencies. The
issue is a cloudy one and the author is an interested party. It is clear that two
beams, traveling in the same direction, do produce sum and difference fre-
quencies in the medium. The further development of this controversy will be
treated in Chapter 9.

Radiation Pressure.

Three phenomena associated with the passage of intense sound beams
are radiation pressure, streaming and cavitation, and some remarks on the
history of each are in order.

*The issue is not a wholly settled one. See P. J. Westervelt, Proc. Symp. on Nonlinear
Acoustics, Birmingham, U. K., 1971, p. 6.

10
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When one attempts to determine the time average of the pressure at a
fixed point in a medium traversed by a sound wave, one finds that an asym-
metry has been produced by the fact that the hypothetical particle of the
medium is itself displaced from its rest position. For equal displacements
from the rest position, the first order density changes are the same, but the
second order changes differ. The following quotation from Poynting (1905)
gives an account of the situation:

"In sound waves there is at a reflecting surface a node-a point of no
motion but of varying pressure. If the variations of pressure from the undis-
turbed value were exactly proportional to the displacements of a parallel
layer near the surface, and if the displacements were exactly harmonic, then
the average pressure would be equal to the normal undisturbed value. But
consider a layer of air quite close to the surface. If it moves up a distance y
towards the surface, the pressure is increased. If it moves an equal distancey
away from the surfa,;e, the pressure is decreased, but by a slightly smaller

quantity. To illustrate this, take an extreme case and, for simplicity, suppose
that Boyle's law holds. If the layer advances half-way towards the reflecting
surface the pressure is doubled. If it moves an equal distance outwards from
its original position the pressure falls, but only by one-third of its original
value; and if we could suppose the layer to be moving harmonically, it is
obvious that the mean of the increased and diminished pressures would be
largely in excess of the normal value. Though we are not entitled to assume
the existence of the harmonic vibrations when we take into account the
second order of small quantities, yet this illustration gives the right idea. The
excess of pressure in the compressed half is greater than its defect in the

extension halt, and the net result is an average excess of pressure-a quantity
itself of second order on the reflecting surface. This excess in the compression
half of a wave train is connected with the extra speed which exists in that
half, and makes the crests of intense sound waves gain on the troughs." 1571

It is not surprising to learn that Lord Rayleigh made substantial con-
tributions to the theory of radiation pressure, defining a particular form that
bears his name (Chapter 6). More recently, Brillouin [581 pointed out the
tensor character of the pressure in the sound wave, and various aspects of the
phenomenon have been studied in detail by Borgnis [591 and Wester-
velt. [60]

Streaming.

In 1831, Michael Faraday [61] noted that currents of air were set up in
the neighborhood of vibrating plates-the first known observation of acoustic
streaming. In 1876, Dvorak [62] reported that when Kundt's tube was ex-
cited to vigorous oscillation, currents of air were observed. Near the walls of
the tube, this current flows from the loops to the nodes, with a return in the
inner part of the tube from the nodes to the loops.
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Once again, Lord Rayleigh put forth a fundamental theoretical explana-
tion. In particular, he noted that, while the phenomenon depended on the
viscosity of the fluid, it was one of second order, i.e., nonlinear. [63]

Rayleigh treated the problem of standing waves between parallel walls.
The successive generalization of the problem to cylinders of various types is
sketched in the review by Nyborg. [64]

In the 1920's. it was observed that a flow of fluid takes place in front
of a quartz crystal used as a transducer, and the name "quartz wind" was
attached to the phenomenon. The effect was observed by Meissner in liquids
in 1926. [65] In 1948, Eckart [39] published a theoretical account of
streaming in its relation with the so-called "bulk viscosity" of fluids, and for a
time it was thought that an independent method of measuring this quantity
had been determined. Subsequently, however, it was made clear that the
streaming was in fact proportional to the total acoustic absorption coefficient
in the fluid, so that what had been obtained was another method of meas-
uring this quantity. [661

Cavitation

The early history of cavitation research is marvelously summarized in
the opening lines of Rayleigh's paper (1917) "On the Pressure Developed in a
Liquid during the Collapse of a Spherical Cavity," lines that recall Poe's
opening to "The Cask of Amontillado." [68] although with less ominous
overtones:

"When reading 0. Reynold's description of the sounds emitted by
water in a kettle as it comes to the boil, and their explanation as due to the
partial or complete collapse of bubbles as they rise through cooler water, I
proposed to myself a further consideration of the problem thus presented;
but I had not gone far when I learned from Sir C. Parsons that he also was
interested in the same question in connexion with cavitation behind screw-
propellers, and that at his instigation Mr. S. Cook, on the basis of an investiga-
tion by Besant, had calculated the pressure developed when the collapse is
suddenly arrested by impact against a rigid concentric obstacle." [671

We thus learn that research in cavitation had a wholly non-acoustic
origin. Cavitation refers to the formation of holes in liquids, and it is a matter
of indifference whether the holes are produced by local heating in a kettle of
water, by the slashing of a propeller blade through the liquid, or by the
oscillation of liquid particles under the action of a sound beam. Nevertheless,
all three causes have strong interconnections and are of interest in acoustics.

Besant's calculation was made in 1859. 169] On the basis of it, it was
concluded that enormous pressure could be generated in the collapse of a
void existing inside an incompressible liquid. Thus, if bubbles are generated
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II
near a propeller surface, their ensuing collapse generates large forces that can
act on the blade and severely damage it. Hence cavitation is of great signifi-
cance in engineering work.

Lord Rayleigh's reference to Reynolds suggests two other aspects of
cavitation. Bubbles are developed in a heated liquid near its boiling point,
apparently due to the local concentratiorns of heat, with impurities often
playing the role of growth centers or nuclei. Cavitation therefore is of interest
in the study of the phenomenon of boiling. Also, the collapse of such bubbles
can be accompanied by noise.

For the acoustician, interest in cavitation divides between the origin of
holes and the forces and sounds produced by bubble collapse.

A great amount of experimental research was carried on in the period

1930-1950, by which time it became clear that cavitation could involve bub-
bles filled with air that was previously dissolved in the liquid or filled with the
vapor of the liquid itself. This second kind of cavitation was more difficult to
achieve and apparently depended on a number of extraneous factors, in-
eluding the purity of the liquid. In 1954, Galloway [701 estimated the
threshold for this type of cavitation in water at overpressures of 200 atm.

The presence of bubbles in a liquid causes appreciable scattering and
absorption, so that sound transmission through a bubbly medium will be
greatly impeded. Studies of this phenomenon were pursued by E. Meyer and
his associates. [711

One of the most difficult problems with regard to cavitation is the
determination of its onset. One technique is photographic, while another has
been the recording of sound produced by the cavitating bubbles.

The fundamental problem of cavitation has remained the determination
of the mechanism of bubble formation. Various theories of impurity seeds,
entrapped air, thermal spikes. cosmic rays have all been advanced, but the
picture remains unclear. As it says at the end of any research report, much
more work remains to be done.

13
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Chapter I

PRINCIPLES OF LINEAR ACOUSTICS

Since we have embarked on a text in which the world of vibrations and
acoustics is divided into the part that is linear and the part that is not, it
would be well to review first the part that is linear, which is supposed to be
familiar to the reader. Actually, only the topics that bear on the nonlinear
aspects of acoustics will be covered, and even here, the reader is encouraged if
not urged to seek the fuller accounts in the references and bibliography given
at the end of the chapter.

1.1 The Linear Oscillator.

The most familiar problem of vibratory motion is that of damped,
linear oscillations. We consider a one-dimensional system in which a particle
of mass in is attached to one end of a weightless spring of stiffness k.

If the particle undergoes a displacement t from its rest position, the
restoring force is expressed by -kt. If the damping force is given by Ri,
where • = d•!dt and R is some constant of the system, we have the equation

m= - (1.1)

To solve (1.1), we set t = A eXt. Then, substituting in (1.1 ), we obtain

X2m + XR + k = 0

or

-R + (R 2 -4,nk) 11 2  
(1.2)S=2mr"• 2m(12

Three cases can be distinguished here, depending on the relationship
between R2 and 4ink:

Case I. R 2 > 4ink (overdamped motion)

AI exp-Rt + -2

-R, R(x... ink - 1/2

+A2 expR2 k - \/2 (l.2a)
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18 NONLINEAR ACOUSTICS SEC 1.1

Case 2. R2 < --mk (Underdamped motion)

A1 exp -[ + iwnat + A 2 f - i~ nat (l.2b)

where wnat = (k/m - R 2/4m2)1/ 2 is the natural frequency of the system.

Case 3: Rz = 4rnk (critically damped motion)
A second solution is necessary here, in addition to exp (-Rt/2m). It can

easily be established that t exp (-Rt/2m) is such a solution, so that the
complete solution of (1. 1) in this case is

(A, +A2t) exp(-Rt/2m) .(1.2c)

If our particle is now subjected to a harmonic force, such as F0 cos ot,
the problem can be most easily solved by means of complex numbers. We
therefore use the form FOe1"t for the force (F 0 real), so that Eq. (1.1)
oecomes

r' + Ri + kt = FOeiwt (1.3)

I' If we use as our test solution • = Ae"'- (A complex), simple substitution
yields

(-mw2 + iR + k)A F0

or (1.4a)

F0  Foe-i

ikR + k - mnw2  IW2R 2 + (k - mI 2 )21 1/2

where

oaRtan k (1.4b)

k - w

Our complex solution for t then becomes

F0=: - - (1.4c)

[W2R2 + (k - mW2 )2 1 1/2

for which it is understood that the real part is the solution for the real case.

,I- 2- \
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Thus oscillations are forced at the frequency of the driving force. How-
ever, the amplitude of such oscillations will be small except in the neighbor-
hood of the frequency for which

d[2R2 + (k-mW2 )2 1 = 0.

This resonance condition yields the frequency for maximum displace-
ment, wd:

wd= ;; _ _L_ (1.5)

It is worth noting here that the use of the complex variable technique
relies on the principle of superposition-i.e., that if fl"(t) is a solution of a
given equation and f 2(t) is a second solution, then f aft + bf 2 is also a
solution. In particular, if a = J,b i, (fl f 2 real) Then the fact that f is a
solution guarantees that the real (fl) and imaginary (if 2 ) parts are also solu-
tions. The principle of superposition in turn requires that the governing equa-
tion be linear, so that this technique cannot be used for nonlinear problems
without special consideration.

In most of the problems with which we shall deal, it is of greater
interest to consider the displacement velocity i rather than the displacement
itself. If we form the time derivative of(1.3) and set g u, we have

mu" + Ri + ku = i.Foeiwt (1.6)

Proceeding as above, we try u = Aej't. Substitution in (1.6) then yields

[-w 2m+i wR+k]A = iwF0 .

or

Fo Foe'
A = 2] 1 f-2 (1.7a)

R + i Fo- R2 in -

with
k

tan4¢ = R (1.7b)

The maximum particle velocity is therefore obtained when the imagi-
nary part of the denominator of Eq. (1.7a) vanishes, i.e.,

2 k (1.8)

' mI
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This frequency is known as the resonance frequency, since it is the one
for which the displacement velocity is exactly in phase with the forcing term.
It should be noted that this was not the case when we considered displace-
ment. The maximum displacement [Eq. (1.4a)] occurs when wo = wd [Eq.
(1.5)] which is a lower frequency than wo..

1.2 The Vibrating String.

A second important problem of linear theory is that of the vibrating
string. If a string is attached to rigid supports and given a small displacement,
(Fig. I-Ia), the resultant restoring force will cause the string to vibrate.

T

x + dx

i. ..
L

Figure I-ia.-Displacement of a vibrating string under uniform tendon T.

The details of the situation are indicated in the enlarged Fig. 1-lb. The
string is assumed to be uniform, with a mass per unit length equal to a, the
magnitude of the tension in the string, T. is assumed to be constant, and all
displacements are small (/IL << 1, where L is the length of the string).

The force in the y direction at the left end of our string segment (at x)
is given by

Ty =
ax

while that at the right end (at x + dx) is

T' T + -dxS(ax, ax 2
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V T jr

TT.

T/ x

/4' T

vI

x x+dx 1

Figure I-lb.-Enlarged view of segment of string from Fig. lb.
Motion is restricted to xy piane.I i

so that the net restoring force on the element is

T -T =-T- dx. (1.9)

The mass of the length of string dx is odx, where a is the mass per unit
length of the string. Then the equation of motion becomes I

- T 2 dx = -dxt
ax2

or

T3- -- (.10)
x 2  t

This is the same equation as Eq. (3) of the INTRODUCTION if
C2o = Tio. Hence waves can propagate along the string with velocity c0 --

The general solution of Eq. (1.10) can be easily demonstrated to be

SAf(x - cOt)+Bg(x +cot) (1.11)

4 4
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since

A= f'(x- cot)(-co) + Bg'(x +cot)co

= ca Af'(x - cot) + coBg"(x + cot);

and

- 4f' + Bg' ,

-2- Al + Bg

so that

0x 2  2 Af + c2Bg"

which is exactly equal to •..
Equation (1.11) represents two transverse waves traveling in opposite

directions. It is an entirely general solution. The particular form that the
displacement of the string takes depends on the way the string is initially
plucked.

This initial plucking could lead to a complicated form for the solution,
and be a very difficult problem but for the principle of superposition, to
which we have already referred, and for the procedures of Fourier analysis.
So long as we are dealing with a linear equation, any linear combinations of
solutions will also be a solution. But virtually any physically realizable dis-
placement of the string can be decomposed by Fourier analysis into sinus-
oidal components, each one of which can be studied separately, with the final
answer represented by the sum of the Fourier components.

In the problem at hand, only the sine series will be needed, since the
end points of the string are fixed. Let us therefore took at the simplest
possible case, in which the initial displacement is given by a sinusoidal curve:

t(x, O) = to sin kx . (1.12)

If the length of the string is L, the condition that the ends of the string
are fixed yields

t(L,O) = 10 sinkL = 0, or kL nti, n 1,2,3 (..13)

ma.p". .
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The solution of(1.10) for this case is given by (1.11):

= Asink(x-c 0 t) + Bsink(x+cot) (1.14)

or

= (A + B) sin kx cos cot - (A - B) cos kx sin wt

with w = kco. Since t(O,t) 0 for all t, it follows that A = B. Then, recalling
(1.13) we obtain

= A + B =2A

or

A = o/2

Hence Eq. (1.14) becomes

t = to sin kx cos wt (1.15)

which corresponds to a standing wave. Finally, substitution of the boundary
condition (1. 13) leads to the result for the nth harmonic:

nirx
o= sin L cos not. (1.16)

1.3 Beats.

The "beating" of two oscillations of different frequencies is a linear
phenomenon. The two oscillations might be sound waves traveling in the
same direction, two oscillations superposed on a string or two separate vibra-
tors forcing a mechanical system. For simplicity, we assume the two oscilla-
tions to have the same initial phase. Then

A sin , 1 t (1.17)

t2 = mA sin W21

where wo2 > w!, and m lies between 0 and i, we shall further assume that the

I... , . i " . . .•...i ':i - -•• i. .' T ' ' • - • •
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difference between Wo and cw2 is small, and introduce the notation for the
difference (fl) and mean ('do) frequencies

w= CA2 - Wo

w = (I/2)(wo2 + wl)

Then, by simple trigonometry, the sum of the two displacements It +

t2 becomes

t = tI + t2 = Asin wlt + mAsinto2t
f~tfz (1. 18)

= A(l + m) sin nt0 t cos - A(l - m) cos oot sin

We restrict ourselves to two signals of equ2i amplitude, so that m (the
modulation index) = 1. A plo, of Eq. (1.18) in this case for w, = 101r, w2 =

121r is shown in Fig. 1-2.
The human ear hears the pulsations of sound in the vicinity of the

extremal values (ti) of cos nt/2 and therefore perceives a beat frequency 0Z,
which is also the diffcrence frequency.

1.4 Plane Waves, Nondissipative Case.

A number of features of linear acoustic waves will be used throughout
the book and will be summarized here.

In many problems, one uses the simplification of plane waves, in which
the wave fronts are plane surfaces traveling perpendicular to their surface. For
a harmonic wave traveling in the +x direction, the displacement velocity u -
at/at of the plane wave was given by Eq. (1) of the INTRODUCTION:

u= uo sin w(t~ - s)
= uo sin (Wt - kx)

with k = L/c, u0 = •o = wtO"

A common way of describing wave motion in the linear case is that of
the velocity potential. For irrotational motion (curl u = 0), there exists a
function 0 (r, t) for which the velocity displacement vector can be written

u = (1.20)

.-,- - -- - -. ,, f t .
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or, for plane waves, u = a301x. This quantity 0 is known as the velocity
potential.

The pressure due to the presence of an acoustic wave can be introduced
by considering a small volume element (Fig. 1-3a). At rest, the volume dV0 is
given by dV 0 = dxdydz.

If a disturbance now passes in the +x direction, the force exerted on
this element from the left will be pdA, where p is the total pressure at the
plane x.

In the plane x + dx, the corresponding pressure will be

p + -!x dx

and the force exerted by this pressure on the material that was in the original
element will be

- (p + L dx) dA

The net force on dV0 is then

pdA -pdA--dxdA -- -L-t' ax axd~
By Newton's equation of motion, we obtain

- dVo0  (podVo))

or

Pot= T.. (1.21)~x"

From Eq. (1 .20), this can be written in terms of the velocity potential:

ap a2

- = = P0 (1.22)

Integrating (1.22) with respect to x, we obtain

OP p + f(t) + const . (

i.,
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Since this relation must also hold in the absence of sound (when ao/at = 0), it

is clear that the function Aft) must vanish and that the constant must equal

-p0 , the negative of the equilibrium pressure. Hence

P P = - PO = excess pressure due to sound wave.(l.23)

The density changes can also be introduced by defining the condensation as
the fractional increase in the density:

s = p - P0 (1.24)
P0

If we refer to Fig. 1-3b, arid observe that the particle displacement at x is j,
while that at x t dx is Z + (at/ax) dx, we can see that the original volume
element dV0 is now distorted into the new volume

dV= dydz + dx + + -(x +

tdxdydz +

Since the mass of the element remains constant, we have

p0dV0 = pdV

or

p0dV 0 = pdV0 +

Finally,

p = .(1.25)

ax

The condensation s can then be written

S -(1.26)I + at ax "
aax

i -.- Ii•



28 NONLINEAR ACOUSTICS SEC 1.4

dy

PU pu + - dx

dx cdz
dxx

z (a)

z

+ dx

dx
x

Y (b)

Figure 1-3.-(a) Element of volume; (b) linear displacements in volume element.
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We also need the expression for the energy in the wave. Let us consider
a volume element AV. In the presence of the sound wave, the element will
have a displacement velocity i and condensation s.*

The energy of the volume element will be EAV, where E is the energy
per unit volume at time and position x (the energy density). This in turn can
be broken up into kinetic (Ek in) and potential (Epot) energy terms:

EAV = Ekin AV + Epot AV Pt AV f PedV. (1.27)
V

The sound velocity is related to the pressure through the isentropic equation

C2 32

c2 /ap (.8

For small changes in density, 5p = c26p, so that Pe = POc2s. Making use also
of the fact that dy/At' = - dp/pO or dV = - AVds, we can convert the
potential energy term as follows

- PedV = PO sds =I S
V0

and Eq. (1.22) becomes

"E'POf + _IP0C2S 2  (1.29)

We now define the intensity of a sound beam as the average rate of energy
flux across a unit area perpendicular to the direction of propagation of the
wave. If we write F as the mean energy density, then

I= cE. (1.30)

If we are dealing with a plane harmonic wave, such as is described by
Eq. (i) of the INTRODUCTION, then

S= io sin (wt - kx)

*These are the mean quantities for the element A V. As A V-- 0 these become identical
with the j and s introduced previously, as can be demonstrated by application of the
theorem of the mean.

i-A
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= - (.os (wt - kx) o- ocos (wt - kx)

= . cos (wt - kx) = tOc cos (ot - kx) (1.31)

p =poto sin (wot - kx) = pocuo sin (wot - kx)

s W sin (ot - kx) = kt 0 sin (ot - kx)

The energy density is given by

! ~ I0 sin 2 (ot + kx)
E potO sin 0- kx) + POc0 s20

(1.32)
"- O2 2 (wt- kx)

so that its mean value E is

Ssin2(cot - kx) dt = -P (133)

0

and
2

-pcPeO (1.34)
S0 =oo -oCo

where PeO is the pressure amplitude in the wave, equal to PoCoUo.

The set of Eqs. (! .31 ) can be repeated for the complex notation:

S= -idoe i(Lt - kx)

= _ oe'i(tt - kx)

s = -iktoei(wAt - kx) (1.35)

ei(wt - kx)

Pe--ipocojoe i(t ot- kx)

Pe = -i~c 0 ~ 0 e

.~m \
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where we are interested in the real portions only. Since E and I depend on the
squares of t and j, the complex form cannot be used in the simple product
form. However, a check with Eqs. (1.35) will show that the intensity is given
by the form

2 = pi (1.36)

where the asterisk denotes the complex conjugate.

1.5 Spherical and Cylindrical Waves.

The one-dimensional wave equation

a2 _ 02 a2_.

at 2  0X2

cited in the INTRODUCTION [Eq. (3)] is a special case of the more general
relation

v2t - (1.37a)

at
2

or, in terms of velocity potential,

2__ c 2 (1.37.b)
at 2

Here / is the vector displacement at the point r andV 2 is the differ-
ential operator div grad. Equation (1.37b) can easily be converted to Eq.
(1.37a) by taking its gradient

co2 2(7 )

at 2

which becomes

at2 
0

i-L
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or

a at -

whereupon simple integration produces Eq. (1.37a).

In the case of a spherical wave, the equivalent to Eq. (1.37b) can be
written as

I a2(rp) 1 1 (1.38)
r 3r 2  c2 at 2

which has the solution

If [, . (1.39)
rtcj

Similarly, for cylindrical waves, Eq. (1.37b) is replaced by

P TP P c2 a)t2

where p is the radial coordinate. For large values of p, this equation possesses
solutions of the form

f ttO

(1.41)

p 1 /2

This solution is valid whenever p is large compared with the acoustic wave-
length (kp >> 1).

1.6 Sound Absorption.

A great deal of attention has been devoted to the theory of sound
absorption in various media, and the reader is referred 0o the extensive treat-
ment given in Beyer and Letcher (1969), Chapters 4 and 5. Here we shall be
mainly interested in the simplest case, that of absorption due to viscosity.
The original theory was developed by Stokes more than 100 years ago. 1 I(

I .
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In the derivation here, we shall consider waves of infinitesimal ampli-
tude, so that products of first order quantities can be neglected.

We begin with the equation of continuity (or conservation of mass). If
we again consider a fixed volume element dxdydz (Fig. l-3a), the influx of
mass per second from the left will be pudydz while the outflow will be

Pu + (Pu) dx] dydz

so that the net mass increase in the volume will be

pudydz - PU + +L (pu) dx] dydz =- x (-U)dV

which is also equal to the rate of mass increase

ap
TdV.

iThe density p in the last equation is a mean value, just as the s in Eq. (1.29),
a value which the p of the previous equation approaches in the limit as dV -*
0.1

Hence

a ap
- Tx (pu) = -at (1.42)

The second equation is the equation of motion (conservation of momentum),
Eq. (1.21)

p -ap
ax " (1.21)

The third equation will be the first law of thermodynamics, or the conserva-
tion of energy. The first law can be written

AQ = dU -AW (1.43)

where AQ is the heat added (per mole) to the system of an infinitesimal
process, dU the corresponding increase in the internal energy of the system,
and AW the work done on the system during the process. In particular, we
use the equation under the adiabatic condition; that is, we assume that no

I A.%



34 AONLINEAR ACOUSTICS SEC 1.6

heat enters or leaves the system during the process. In ýuch a case, AQ = 0.
Furthermore, AW can be replaced by

AW = -pdV = M(p/p 2) dp (1.44)

where M is the gram molecular weight of the gas, while dU - CvdT, where
CV is the heat capacity per mole at constant volume.

In the general case, the fourth equation (the equation of state) is an
expression of the form

p = P(p,), k 1.45)

In the case of an ideal gas, p - pRT/M, where R is the gas constant (per
mole). In many cases, however, the more general form of Eq. (1.45) is atis-
factory.

Now let us suppose that a plane harmonic wave travels through the
medium in the +x direction. We shall write the expressions for the change in
the pressure (Pe), the condensation Is = (p - po)/pol, the change in tempera-
ture (0 = T - TO) and the velocity (u =) associated with this wave, all in
complex form

Pe = POeei(w•t - kx) 0 = Ooei(wt - kx)

(1.46)

s =Soei(A•t - kx) u = - kx)

We now substitute these values in (1.42), (1.21), (1.44), (1.46), neglect-
ing all products of small quantities. This results in the four equations

/a) u as 0~
(c) CvO = -s

axOt () -~ ax , Mp0 (1.47)

(b) -- = -- I ape (d) p ( PoS +1- 0

at PO ax \?_T 0  \a Tip

or, for the plane harmonic wave of Eq. (1.46),

iku - iws + 0 + 0 =0

iW.u + 0 P + 0 0

(1.48)

I I I . I. I I -I
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0 -L
"0aP)T pOs + Pe - 0 0 .

In order that (1.48) have a non-trivial solution, it is necessary that the deter-
minant of the coefficients of (1.48) vanish. This yields the following expres-
sion for the sound velocity co = w•k

2 (aIP) + Mu1
-c( p 0  (1.49)

For an ideal gas,

( •o

([apa) po =p_.R_
MV (1.50)

so that

2 P0 ( Z)=

All of the treatment thus far has assumed the absence of dissipation in
the medium. The presence of viscosity adds new force terms to the righthand
side of the equation of motion. In its most general form, the resultant equa-
tion of motion is known as the Stokes-Navier equation.1 2 1 For the one-
dimensional case, this equation can be written

dt ax +77 1) ax(1.51)

where 17 is the shear viscosity coefficient. The quantity 17' is known as the
second or bulk viscosity coefficient, and corresponds to the viscous drag that
would be experienced in a pure volume dilatation, in which no shearing
motions can occur.

The nature and value of i' forms one of the most interesting problems
in the historical development of ultrasonic wave propagation.1 3 1 Stokes as-
sumed that n'' was identically zero, and to a large extent, this assumption
marks the difference between classical and modern theories of ultrasonic
absorption and dispersion. We shall leave if in Eq. (1.51) so that it can be
used to cover both classical and modem theories.

i. -_ _ _

=1[" • - """"'-
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If we now make the linear approximation in Eq. (1.51), we obtain

au 1 ape J+r3)a2u
-- --- (l.51a)
at P O a.x PO ax2

or, for harmonic waves of frequency w,

i•U= .k Pe-P+]"0)

which now replaces Eqs. (1.21), (1.47b), and the second line of Eq. (1.48)
becomes

This leads to the result

[-02= +1 \7 + 'n (1.52)

The presence of the imaginary term on the right side of (1.52) makes k
complex. We therefore set k =k - ia, so that all the Eqs. (1.46) can be written
in the form

u u0 exp(- ax) exp i(wt - krx) , (1.53)

in which a is the amplitude absorption coefficient, while kc is the real wave
number, equal to wo divided by the phase velocity c.

The substitution k. - ia in Eq. (1.53) leads to the two equations

222
k2- 2 W oc0

(1.54)

-..

-. • •1 ,

4( 77! + 7?) w2i 
1
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2krar (3=

(4 2W2

In virtually all cases, k2 >> a 2 [and hence (471/3 + 17')2 c)2/p2 << C41 so
that, to an excellent approximation, we have

k,.

I (I.w3

kra =' T (155

2 \3J3 Poe0

Thus the ordinary propagation of a plane harmonic wave of infinitesimal
amplitude is non-dispersive. Experiment has shown that most fluids obey the
quadratic dependence of a on w, but the value of a is much larger than is
predicted under the Stokes assumption that -q' = 0. The keeping oft/', there-
fore, provides a mechanism for describing this additional absorption.

1.7 Relaxation Phenomena.

In the decisive equations of the previous section [(1.54), (1.55)], the
sound absorption coefficient is proportional to wj2 . In many gases and liq-
uids, however at is not proportional to w2 over a significant range of fre-
quencies. The reason for this behavior lies in the lag of the internal processes
in the medium behind the externally applied changes in pressure that derive
from the sound wave.

If we look back at Eq. (1 .47), we can see that (c) and (d) (the equation
of energy conservation and the equation of state) could have been combined
into a single relation involving only the pressure and the condensation:

Pe . (T)p CvP0 (1.56)
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The determinant of Eq. (1.48) could then have been written in 3 X 3
form. For an ideal gas, (1.56) reduces to

Pe= /7PoS = Po 0cos • (1.57)

Any process that removes energy from the sound beam and returns it at

an appreciably later time in the wave cycle causes a dissipation of the acoustic
energy, i.e., attenuation of the beam. This destroys the isentropic character of
the sound propagation (even though it may still be adiabatic) and properly
requires the use of irreversible thermodynamics for a rigorous description. We
shall not make such an exposition here, but only make a few explanatory
remarks and write down the resultant equations, the derivation of which can
be found in the literature.[ 4 ]

The analysis of these processes, which transfer energy from the transla-
tional mode of motion (the sound wave) to other modes such as vibration or
rotation of atoms or groups of atoms within the molecule, or to the potential
energy of some structural rearrangement (including chemical reactions and
electrolytic processes) is aimed at obtaining a time-dependent equation con-
necting the instantaneous values of the pressure and density that is often called
the "acoustic equation of state." This type of equation is known as a relaxa-
tion equation and the process is usually referred to as a relaxation process.
The rate of this relaxation is defined in terms of quantity known as the

relaxation time. This is a measure of the time required to complete some
specified reaction, subject to the condition that an appropriate set of thermo-
dynamic variables is held constant. It should be noted that there exists no
unique relaxation time for a given process, although the differences among
those defined for liquids are usually negligibly small.

In the simplest case, that of an ideal gas, in which one can still neglect
the changes in entropy that do occur, the acoustic equation of state takes the
form

Po'ps + Pos Pe + 1 Pe (1.58)
Co2 C

where c_., co are the values of the sound speed measured at very high and very
-low frequencies, respectively, and rp, is the relaxation time measured under
conditions of constant pressure and entropy. If we again introduce a har-
monic time dependence, Eq. (1.58) takes the form

( + tLc20S) pos + Pe (1.59)( 2,

I. .____ ____ __ I
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The quantity T,, is the relaxation time measured under conditions of con-
stant pressure and entropy. If we consider Eq. (1.59) at very low frequency,
it can be seen to reduce to Eq. (1.57), with the previously calculated expres-
sion for the absorption coefficient. A similar equation is also obtained at very
high frequency, except that the sound speed to be used in that case is c-.

For the general case, however, the expression for c will be quite dif-
ferent. If we write our three equations

iku - is = 0

i(- ) Pe =0 (1.60)

(I +icrps )P - + Pe = 0

and set the determinant of the coefficients equal to zero, we ultimately
obtain the expressions for the sound velocity c and the absorption coefficient
per unit wavelength p -X:

2 2o12 + • P2S 22 -

as Es. (.61) an we hallcontnt urseves ith akig us 1of6hes

c02 2 +627.

where the quantity c (c2 _ e2o)/C2 is known as the relaxation strength.

While more complicated expressions can be obtained for other specific
relaxation processes, the general structure of the final result remains the same
as Eqs. (1.61), and we shall content ourselves with making use of these

equations.

1.8 Radiation Field of a Piston Source. Diffraction.

In Section 1.5 we discussed the case of plane waves at some length,
while Section 1.6 gave a brief account of spherical and cylindrical waves.
Actual sound sources usually differ considerably from these idealized cases,



40 NONLINEAR ACOUSTICS SEC 1.8

the commonest being a flat plate of finite dimensions that vibrates perpendic-

ular to its plane (the plane piston). The next step in the case of linear
acoustics is the analysis of the radiation field from such a sound source,
whose dimensions are many times the wavelength of the radiation.

Such an analysis usually begins with the statement of Green's theorem.
Given two continuous functions with continuous first derivatives, in a region
bounded by the closed surfaces, we have

{(~V2 d 4' 2 V = {S (4i )dS (1.62)

where n is the inward drawn normal to the surface (Fig. 14).

P-1
ds @P

n P

Fig. 1-4. -Surface for Green's theorem. P, P' are inside and
outside the closed surface, respectively.

Now suppose that both 0 and ý are solutions of the wave equation
(1.37a), where the time dependence is assumed to be given by eý'tr. Then the
left-hand side of (1.62) vanishes, leaving

d- 0 .(1.63)

Since 0J is an arbitrary solution of the wave equation, it can be chosen
so as to provide a relatively simple solution of the boundary value problem at
hand. Such a function is known as the Green's function of the problem. Here
we shall use for ý the spherical wave solution of the wave equation: • =

•'- •: \p'

-. f~i
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erik'r/r. We must of course surround the point P by a small sphere so as to
avoid the singularity at r = 0. Then Eq. (1.63) becomes

J, _L/a i- ý s-eik.r) d2js-a• n -r r a

(1.64)

+ p 4±rp - 441p2 L 0
p an IP

where p is the radius of the small sphere centered at P. Now ap/an 1, so
that the last two terms in Eq. (1.64) become

¢,41rp2e-ikP (- L - 4,rpe-ikP 'p

and in the limit as p 0 0, Eq. (1.58) becomes

4- an 4 I dS (1.65)

Note that r is the distance from a surface point to the point P. If the point P

were outside the surface (e.g., p' in Fig. 1-4), the right-hand side of Eq. (1.65)
would be equal to zero, since the last two terms in Eq. (1.64) would not have
appeared.

Equation (1.65) can be further simplified by imposing on the function
€ an additional requirement such that one or the other of the integrals van-
ishes. This can be done, for example, by repeating the above derivation for a
point P' external to the surface S. Under such circumstances we get

I fe-lk.r . dS+. , a -lekr)0 = dS (1.66)
41r J r a' 41r an' r 7

It is, of course assumed that 0' vanishes sufficiently rapidly over the
remaining portions of the surface at r = ,, so that the integral over this surface
also vanishes. If we add Eqs. (1.65) and (1.66) and make use of the fact that
a/an' = -/an, we get

I f e-1kir (ao a~'l 5  I (~Iae-' d.r€)v r -..•]dS + 0)' a' ) [7-/S.
OP J T ni- Ti]" TVJ _ r

S
(1.67)

Jr
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[Since the integration in (1 .67) is carried out only over the surface S, we can
still measure r from the point P without encountering a singularity, so that r
is the same for both 0 and 0'.1 We shall now take S to be a plane perpendicu-
lar to the x axis. We can then take either 9 = p'or ao/3n' = ae/pan on the
surface.

(a) 0(-x,yz) = t0 (x,y,z). Then aekf an = - ao/an and we get

S S- Jf !:.k - dS (1.68)

(b) (a-x,y,z)/an = +a0'(x,y,z)/an. Then 0 0P' on the surface and
we have

f a ( .e-r
OP = a-n , a dS (1.69)

Case (a) [Eq. (1.68)] is the diffraction integral used by Rayleigh. It can be
thought of as representing the radiation field due to a distribution of simple
spherical wave sources over the plane surface S. The density of source distri-
bution is then 20. In the same way, case (b) represents the radiation field due
to a distribution of acoustic dipoles of density 2 (aO/an. Either equation can
be used for the determination of the radiation field in the positive half space,
provided that 30/3n or 0 is known on the bounding plane. While the form of
the integral is simple, the detailed computation of the field remains a compli-
cated one. In addition, the requirement that 30/an or P be known over the
boundary makes it necessary to introduce certain rather arbitrary simplifica-
tions in the boundary conditions in order to make solutions "iractical.

As an example of solutions of this type, we consider the problem of a
vibrating circular piston. To take care of the boundary condition, we further
assume that the plate is mounted in an infinite rigid wall or baffle. (In
practice, of course, the term "infinite" here usually means distances of a few
centimeters.) We therefore require the boundary conditions (Fig. 1-5):

i o= j oe'w p <ajan

-0 p>a .

This is the condition for the ideal plane piston of circular cross section. It is
obvious that such conditions are not fully obtained in practice. In the use of
an ordinary crystal or ceramic plate, for example, the edges are more or less
clamped, so that we may expect j0 to be smaller in these regions. The crystal
itself may vibrate more strongly on certain portions of its surface. Finally, no
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x

, y
1A L ~P

z, z
P

Figure 1-5.-Circular ring on the surface of plane piston in the xy plane.

baffle is either infinite or completely rigid. It is therefore a stroke of good
fortune that the results of the analysis that follows below have been quite
accurately confirmed.

As a first step in our analysis, we shall determine the value of the
intensity I along the axis of the piston.

Since 80/an = J0eSt for r # a, dS = 21rpdp, r2 p2 + z2 , Eq. (1.68)
becomes

J0a e-ikr
Op-- 0t t pdp.

(1.70)

I'.
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By simple integration, this results in the expression

o - - - e-ik1Z+ - eik (1.70)

By Eq. (1.23), the acoustic pressure Pe is then

Pe=- PO=- iopOceit ( e -ikz -a e-ikz) (1.71)

To find the intensity, we need the real part of Eq. (1.71)

6te Pe 7- -PociO cos ~9t - kN +)a' cos (wot - kz]

which can be transformed to

Re Pe =-2pj~cj 0  sin (2v~ T + z})sin 1W (Vl +a+z)]

(1.72)

so that

[= <(6ePe)•= 2p 0 c2 sin2.( +a - z) . (1.73)
Poc

where <- •> denotes the time average.
At large distances from the source, a2 /z2 << 1 and VZ+ a7 - z

a2/2z so that

I 2pc 2n2'ta (1.74)0 '- sin inz = 2--'

A graph of this function is given in Fig. 1-6, where z is plotted in units of
a2/X.

The location of the last maximum of this curve, at z = a2 /X, is usually
taken as the dividing line between the near field (Fresnel diffraction) and the
far field (Fraunhofer diffraction).

For the determination of the radiation field at points off the axis, other
analyses have been developed which yield approximate solutions in certain
specific cases. A particularly useful approximation (in audio acoustics) has

i.
-,-\
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1.0 -

0.5 -

0.5 1.0 1.5

Figure 1-6.-Axial intensity of harmonic plane piston.

been that of the far field (p << r) and low frequencies (kp << I)(see Fig.
1-7). The viriable r' in the figure is given by the relation

r12 r2 cos2 O + q 2  r 2 + p 2  2rpsinO costi.

I Psound
beam

r
r cos 0

plane of transducer
Figure 1-7.-Geometry for plane piston calculation.

- - - -- I.,~h.
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Under the approximations p << r and kp << 1, we expand the expression for
r'

r' = [r2 +p 2 - 2rpsinO cosf] 1/2 r - p sinO cos4i

Then (1.69) becomes

toe'° .w~ f e-kr
€ = 2er .Jfj-'• exp (ikp sin) cosO) pdpdki

or

toet wt eikr - a rf

21- r 0 pdpJ exp (ikp sinO cosiP) de

The integral over ip is the integral representation of the Bessel function of
order zero and is equal to 21rJO(kp sinO). Then

! - tOct("°t- kr)•

_ . .... k ) Jo (kp sinO) pk sinO pk sinO d(pk sinO)

rk2 sin 2 o

but f xJ 0 (dx) = xJ 1 (x), so that

a 2e(wt - k.r) 2J1 (ka sin8)
o- 2r /a sinO (1.75)

or

2j2 ei(wt - k'r) 2Jl(ka sin0)
Pc i&pOoa 0O 2r ka sinO (1.76)

A polar plot of 2J 1 (ka sin0)/ka sine -f(0) is shown in Fig. 1-8 for X • a and
forX = 2a.

Of particular interest are the side lobes. As the ratio X/a is decreased,
more and more of these lobes will appear. Thus, if an acoustic detector is
moved across the radiation field at some distance from the source, maxima
and minima of the intensity will be noted-the characteristic of a diffraction
pattern.

: 1_ .. . .

S .. .. ... .
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(a)

(b)

a: \ a b: 2a.

Figure 1-8. -Directivity of hannonic plane piston of radius a:
(a) wavelength X = a; (b) X. = 2a.

1.9 Refraction, Reflection and Scattering of Acoustic Waves.

As a sound beam passes from one medium to another, the beam will be
both reflected and refracted. For oblique incidence, the law of reflection is
the same as in optics, namely, the angle of incidence is equal to the angle of
reflection.*

The law of refraction is also the same. For transmission as shown in Fig.
1-9, coso 1 /cosO 2 = cl/c 2 where c1 , c2 are the velocities of sound in the two
media.

*Provided that we are dealing only with the case of longitudinal waves. When one

deals with a solid medium, where transverse waves may exist, mode conversion is possible
and the problem becomes complicated. See Beyer & Letcher, op. cit.. pp. 30ff.

I- AIL-
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medium 1

,02
medium 2

Figure 1-9.-Tranmnission of sound beam through interface.

The calculation of the amount of energy transmitted and reflected can
be performed simply for the case of normal incidence. We shall consider twonon-dissipative media (Fig. 1-10). The incident, reflected and transmitted

displacements are indicated.
As we pass from one medium to another, there are two continuity

conditions. First, the particle displacement must be the same in the two
media at the boundary. Otherwise there would either be holes or the occupa-
tion of the same point by two different bits of matter. The pressure must also
be continuous across the boundary; otherwise accelerations of the interface
would occur.

The first of these conditions yields the equation.

A1 + A 2 = B (1.77)

We now recall that the pressure in a plane wave is given by

Pe = pci = iwpct

Hence the second condition will be

iWpjC1(Ai - A 2 ) = iwP2 C2B

i. -.. "



SEC 1.9 PRINCIPLES OF LINEAR ACOUSTICS 49

In - A 1e(Ljt-klx)

tr - BSI(t t- k2 x)
•I

•re1I - A2 e'• ÷ klx)

medium 1 medium 2

x =0

Figure I-10.-Transinilton and reflection of a plane wave.

or

A, -A 2  -- B (1.78)

Solving for B and A 2 in terms of A ,we get

A PlCl P2C2 AA 2 =1~ , AI~
PlCl P2C2 (1.79)

2PlCi

B 2 A 1
PlC1 +P 2 C2

The power transmitted and reflected can also be determined. The initial

intensity I1 is given by

Iit= T ll a

-- ",-..r,. ' • - m~ q.•Jl•"!'J''lll•'l I E i l PI Iillll IIII
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so that the power transmission ratio T, defined as

T -"trans

I,

will be

2r P2 c2
T r=- (1.80)

Plcl

while the power reflection ratio R will be

2I
'refl f I- A

R/It e- = 1- I(1281), i-lt-_ - + r

These have been calculated without account of losses in the media. (For
an account of the more involved dissipation, see Lindsay, Mechanical Radia-
tion, McGraw-Hill, N. Y. 1960, pp. 77ff.)

We have already seen how a sound source, such as a plane piston, can
give rise to a diffractive radiation pattern. Similar results can be expected
when a sound wave encounters an obstacle. Obviously there are many
possible combinations (plane wave-rigid sphere, plane wave-soft cylinder,
spherical wave-soft cylinder, and so on). We shall consider only the first case
of scattering of plane waves by a rigid cylinder, following the presentation
given by Lindsay and referring the reader to his work for a more detailed
discussion of the problem.

We therefore consider a plane wave in a fluid incident on a rigid right
circular cylinder of radius a where axis is normal to the direction of propaga-
tion (Fig. 141 1).

When a plane wave encounters such an obstacle, we expect that some
signal will be deflected in all directions, and that the resultant pattern will
have cylindrical symmetry. The full wave equation (neglecting absorption and
adhering to the assumption of linearity) in the cylindrical coordinates r, 0, z
will be

___+ 1 _ 1 32€ a2+ (+.82
8r2  r r 2 a02  az 2  2

ro

i, L ;.j
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P (r, 8)

0

Figure I-11 .- Geometry for scattering from a circular cylinder.

In the usual way of solving this equation[5] we represent the solution in the
form of a product

0 (r, 0, z) = R(r)@(O)Z(z) . (1.83)

By the introduction of suitable integers m, 2, and use of the harmonic
wave dependence

0 c elwt, --= - w20,

Eq. (1.83) can be broken up into the three ordinary differential equations

d 2  +
-+ m 2E) = 0

d 2z

d7 + = 0 (1.84)

d~R idR+ (k 2~ R =0
dr2  r dr r2

we shall also introduce q 2 .k2 - 2.

S ---- 77
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The the first two equations have solutions of well known harmonic
form, while the third is Bessel's equation, the general solution of which is of
the form

R A= ,, (qr) + BNn (qr) (1.85)

Here Jn is the nth order Bessel function of the first kind:

00 ~21
J,,(x) = () /0(m + ( ) (1.86)

I-'-0
and Nn is the nth order Bessel function of the second kind (also called the
Neumann function).

This latter has a rather involved series form and has the disadvantage
that it becomes infinite at x = 0. It can be avoided by defining Bessel func-
tions of a third kind, usually known as Hankel functions:

H"t) ; J (x) + iVn(x)

(1.87)H = Jj (x) iAN (x).

The basic procedure to be followed in solving the scattering problem is
to expand the plane wave in a series of Bessel functions of the first kind and
to express the scattered wave in terms of Hankel functions. Application of
boundary conditions then will serve to produce the desired solution.

(i) Expansion of the plane wave.

We first represent the plane wave spatial dependence in the form (see
Fig. 1.11)

e-ikx = e-ikr cose = C,, (r) cos nO
n=0

Here the coefficients Cn(r) will be given by the integral

C(r) e-kr cos cosnOdo

CV. -<
OEM
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= 2(-l Y"J.(kr) n ; I

= J0 (kr) n 0

Hence the velocity potential for the plane wave will be

o#p = ApeAr- kx) =A. [J0(kr) + 2 (-1)" J. (kr)cos nO
nffif

(1.88)

(ii) Scattered wave.

To treat the scattered wave, we first note that the form of the scattered
wave should be proportional to e-ikr at large distances from the cylinder.
Now the asymptotic form of the Hankel functions for large argument x will
be given by

f=4')(x)~ 7TX 2n + I 1.9
" e 4

•:(x) F7- e• [- - -1

from which we can see that the function of the second kind, Ht (2) (x), is the
one to be used. (If we had used the time dependence e1-t, then H4l)(x)
would have been the appropriate form.) We therefore try the scattering form

¢s = ew•t- Bn (2 ) cos nO (1.90)
n-O

We must now apply the boundary condition that the particular velocity nor-
mal to the cylinder be zero at the surface of the cylinder, since the cylinder is
assumed to be rigid. That is,

arut raa =0 (1.91)

* ----- r--
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If Eqs. (1.88), (1.90) are substituted in Eq. (1.19) and the lengthy

mathematical manipulations are carried out, the following is obtained for the

pressure in the scattered wave:

Ps = = -PoApe"t [- i sin ' 0 e-i"0 HoH(2)(kr)

M•. (1 .92)

+ 2 E (- 1)" + 'sin Yne-Vn H,(2 )(kr) cos nO1n=1

or if kr >> 1

2 _(y -r k

= - kr) - i sin o0 e 4

( 1)n+l sin 4 cos n8

n=1

SpoAp0 A ei(4t-kr)1 p(O) (1.93)

Hence the scattered intensity will be

P•°A [!4s(0)I 2  (1.94)
inrw

The scattered intensity functionI ý,P (0)12 for two different cylinders is
given in Fig. 1-12.

From these relations it is clear that there is no shadow zone but that in

fact, the forward scattering reaches a maximum at 0 = 0. Also, as the fre-

quency increases, the number of maxima and minima also increases.

1.10 Surface Waves.

In addition to waves passing through the volume of a medium, there are
waves that are constrained to move mainly on the surface. We shall discuss
the most important of these briefly.

I, .- •,

~.\,
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X = 2ira

t

Figure I- 12.-Scattering of sound from solid cylinder of radius a for the wavelength
x = 2fra, 2,wa/5. Direction of incident beam is indicated by arrows.
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Waves on a liquid surface.

From classical hydrodynamics, the equation for the velocity potential
of a disturbance on the surface of liquid subject to gravity is

2I
at2 !Ia- (1.95)P9 F + P a + ): = .

I where the z direction is perpendicular to the free surface of the liquid. Here g
"is the acceleration due to gravity and a is the surface tension of the liquid.

We consider a plane wave traveling along the surface in the x direction,
exponentially damped in the z direction

Ae +kz cos (kx - wot) (z < 0) . (1.96)

If the medium is of some finite depth h, there will be a second solution

= Be-kz cos(kx- wot) (1.97)

and, by application of the boundary condition that the pressure be continuous,
we obtain the following expression for the relation for the velocity of the
surface wave

C2  k [ + .]tanh kh (.8

The resultant expression for 0 becomes

A cos (kx - wot) cosh k(z +h) . (1.99)

Two special cases are included here. If the wavelength is long (or the surface
tension low) the first term predominates and we have gravity waves. On the
other hand, at high frequency (or high surface tension) the second term is
dominant, and we have capillary waves.

One can also distinguish the results for shallow water, wherc tanh kh
kh, and deep water, where tanh kh I

shallow water

c2  gh + E k2  (1.100)P

!-p

Si .
• , , , I ~~i i I I I



SEC 1.10 PRINCIPLES OF LINEAR ACOUSTICS 57

deep water

2 g ko

c2 =( + . .101)

In the case of deep water, where we need consider only Eq. (1.96), it
can be seen that the displacement from equilibrium in the x and z direction
6x, 6z are both sinusoidal in time:

Ak L.

ox = - .k cos (kx- wt)

(1.102)
6z= Akek

=- sin (kx-- wt)(&)

so that individual fluid particle undergoes a circular motion. On the other
hand, the crests of the waves described by Eq. (1.102) will be narrow and the
troughs wide, so that the wave is spatially nonlinear.

If we consider the shallow water case (Eq. 1.99) the pressure of the cosh
k(h + z) term makes the displacements of different size in the x and z
directions, so that the particle motion becomes elliptical.

Waves on a solid surface.

In the case of surface waves on a solid surface, one also distinguishes
two types. In the Rayleigh waves, the motion of the particle in the solid is
similar to that of gravity waves, i.e., the particle undergoes displacements in
directions perpendicular and horizontal to the surface, but is damped expo-
nentially as one penetrates the medium. A visualization of a Rayleigh wave is
shown in Fig. 1-13.

Figure !-13.-Deformation of surface layers by a Rayleigh wave (after L. Kremer
and M. Hecki, Korperschall, Springer Verlag, Berlin/Heidelberg, 1967, p. 150).

.A_
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The velocity of propagation of a Rayleigh wave is an involved function
of the elastic properties of the medium, but is usually slightly smaller than
the propagation velocity of a shear wave in the unbounded medium. Figure
1-14 gives a plot of the ratio CR/Ct as a function of Poisson's ratio.

0O 0
oLV43

aw
4 I 20 0.30 a40

Figure 1-14.- Ratio q of the Rayleigh wave velocity cR to the shear wave velocity c¢ a a
function of the Poisson ratio v (after 1. Malecki, Physical Foundations of Technical
Acoustics (English translation, Pergamon Press, N.Y., 1969, p. 88)). j

If a tiansverse surface wave is propagated in layered material, so that all
the displacements are parallel to the surface, the wave is known as a Love
wave.
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Chapter 2

SOME SOURCES OF NONLINEAR OSCILLATIONS

In undertaking a study of nonlinear systems, one is confronted with the
wide variety and diverse character of the phenomena. To paraphrase
Toistoy,* the vibrations of linear systems are all alike, but each nonlinear
system is nonlinear in its own way. That is, the form of the partial differential
cquation governing the process, or the mutual variation of the parameters
involved may be quite different from one another.

The nonlinearity may occur in the source, in the medium, or even in
the detection system. In this chapter, we shall discuss relatively simple non-
line oscillations and several examples of nonlinear sources.

2.1 The Simple Pendulum.

The simple pendulum is a typical example of a nonlinear system which
gencrally receives an approximate linear treatment. The arrangement is shown
in Fig. 2-1. If a bob of mass m, suspended from the point P, is displaced
through the angle 0 and released, a restoring force -mg sin 0 is set up. This
force exerts a torque - mgQ sin 0 about the axis through the support point, so
that the equation of motion will be, in the absence of dissipation,

10 = -mgQ sin 0.

For a massless rod and a bob of concentrated mass, the moment of
inertia I about the point of suspension can be set equal to mQ2 . Then our
equation becomes

2 -g sin 0 (2.1)

The usual approximation is that of small angular displacements so that we can
set sin 0 ý- 0. Then Eq. (2.1) becomes identical with Eq. (1.1), and simple

*Leo Tolstoy, Anna Karenina, r. 1. A somewhat similar note has been soundled by
Werner Heisenberg: "it has been argued that every nonlinear problem is really individual,
that it requires individual methods, usually very compficated and difficult methods."

(Physics Today, Vol. 20, p. 27, May, 1967.)

60

4. )~§



SEC 2.1 SOME SOURCES OF NONLINEAR OSCILLATIONS 61

I

I I

mgI

I ' 1

I J

Figure 2-1.-Simple pendulum.

harmonic motion results, with the circular frequency w given by W = v'(V If
the pendulum is released from rest at an angular displacement 0O, then

0 = 0 cos Wt (2.2)

If the angle 0 exceeds 10 however, the approximation is no longer
satisfactory. While an effective solution can be obtained in terms of elliptic
integrals, [I) it is instructive for our purposes to include the next approxi-
mation in the series expansion of sin 0 = 0 - 03/3! + . . . and consider the
equation

o = + j03 (2.3)

which we shall write

o =-ao- b03  (2.3')

I .L
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To solve this equation, we employ an iteration technique. We first
substitute Eq. (2.2) in the second (hopefully small) term on the right side of
Eq. (2.3'). That is, we write

0 = -aO - bO3 coS3 wt

or since cos 3 wtt = (3/4) cos wot + (1/4) cos 3tot,

-aO - 3b8 ost9t-.b3 co s 3w . (2.4)

O ~~ -~-ow-4 0 oo
Thus our procedure has led to the linearization of the original equation. We

now attempt a new approximate solution

0 A1 cos wIt + A3 cos3i.t . (2.5)

Substitution of (2.5) in (2.4) yields

( o2At +aA1 + -4 costot +

(9L)2A 3 + aA 3 ÷ \\ cos+3ot 0.

Since cos ot and cos 3wt are linearly independent, we can equate the
separate coefficients to zero. Then

2 3b03 3+ b0

4A 440
(2.6)

A3 4 9w2 -a 32a + 27b02

Replacing the substitutions of (2.3'), namely, a g/Q w2 , b - g/6k
2/6, we see that

.2 l2 2 
(2.7)

o L8 (27
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This result was obtained by Daniel Bernoulli in 1747.

Of course, our method is still highly approximate. For example, Eq.
(2.5) will now be written

I
' ~bO•

O = 80 cos Wt + • cos 3wr (2.8)
32a + 27b02o

which would give an incorrect value of the displacement at t = 0 unless the
quantity 0 were redefined. One can, of course, make such a redefinition and
continue the iteration process.

€I

2.2 Nonlinear Springs.

In Section 1 .1 we discussed the free and forced oscillations of a linear
spring. We shall now treat the corresponding nonlinear cases.

Let us rewrite Eq. (1 .1) in a more general form i

t + R(j) +fl) = F(t) . (2.9) i

Here ftl) is the internal restoring force per unit mass, F(t) the corresponding
external forcing term and R(j) the dissipation term.

Some possible forms of ft) are sketched in Fig. 2-2. If (At) = kt, we
have the simple linear case. If f(t) = kt + bt 3 , b > 0 the restoring force will
always be greater in magnitude than in the linear case that corresponds to the
pendulum case just considered. Hence for free oscillations [F(t) = 01, the
frequency of vibration will be increased above the value in the linear case.
This situation is somewhat equivalent to a stiffer or "harder" spring. On the
other hand, if b < 0, as in the case of the simple pendulum, the frequency of

oscillation decreases and we have a spring with a lower effective stiffness, i.e.,
a "softer" sv ring.

Equation (2.9) covers a great number of different nonlinear cases, de-
pending on the form of terms R(j) and .t). Since this subject has been
treated very extensively in the literature (e.g., Stoker, 1950 [2]) we shall
only review those cases here that are of particular interest to us in nonlinear
acoustics.

t~
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2.3 Undamped Forced Oscillations with Nonlinear Restoring Force.

In this case R(Q) = 0. We shall first consider F(t) = F0 cos wt, f()
kt + ee 3 . Then

mn = -k- - F0 cos wt (2.10)

When F 0 = 0, this corresponds to a simple pendulum with small-amplitude I
frequency wo = k/m. Our first order solution will be

= A cost . (2.11)w

If this value of t, is substituted on the right side of (2.10), we next obtain

m• 2 = -/A cos wt + F0 cos wt - 4A3 cos3 t

or, using the trigonometric identity for cos 3 wt, we have for the second
approximation

t2 A3 -k A + cos wt - !4 cos 3wt (2.12)

Integration of (2.12) yields

tACoswt+ cos 3wt. (2.13)2  4m m 36 2

Equation (2.13) is subject to a number of limitations: e/m must be
small if we are to have a converging process; for other reasons, k/m, A, and
Fo/m also need to be small.

It would seem at this point that all we need do is proceed with further
iterations. However, there are difficulties lurking, as has been pointed out by
Duffing. 141 We can regard Eq. (2.13) as giving us the value of A for a fixed
value of w, or, of giving us w for prescribed values of A. Thus, let us suppose
that our solution for t2 must remain close to the original solution , =A4
cos wt. We therefore require

eA 3
= A1 cos (ot + "A3 cos 3wt

t2 m 4
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to be the same as

A =Acoswt

so far as the term in the frequency wo is concerned. Then

A2 A 3 A3 FO (2.14)
m 4 m m

or

W2 = k + A • 2 FO (2.14')

m 4 m MA

Let us pause a moment and consider the meaning of this relation by
rewriting Eq. (2.14) in parametric form:

M_eA

y 2 2- - 2)-A F- W2 k

Figure 2-3 gives the curve fory 1 in the case e >0. It'w, is very large,y 2 will
have a negative slope. The solution is then given by the point P 1.

We now consider decreasing values of w. The line for y 2 swings around
and ultimately takes a positive slope, the y intercept point being fixed at
-Fo/m. The magnitude of A increases as the solution point moves down the
curve y, to P2. But now consider the points P3 , P3. Here the solution has
two values. A plot of the possible values of A2 as a function of w is shown in
Fig. 2-4. It is evident from the figure that A,2 will pass through a maximum
and then decrease as w is reduced. When the frequency goes beyond Wcl,
however, the amplitude falls suddenly, by a jump, to a much lower value. The
amplitude then continues to decrease with decreasing w.

If we now reverse the situation and increase w, A2 will increase grad-
ually until W = �c2, at which point the amplitude jumps to a much larger
value.

Before continuing with our study, let us take a step back and redo the
above problem in a slightly different form. Following Stoker, we rewrite Eq.
(2.10) as

+ w~ - 2 - )t p3"o + F cos wt (2.15)

)$
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y

V1

Y2 (w very small)

N\

N- /

y2(w >> M)

Figure 2-3.-Parametric form of Eq. (2.14)w olid eu)e-y )

broken curves-Y2 for various w.
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A2I

F cg rc2 W

Figure 24.-Behavior of nonlinear spring.

where e = e/m and F0 = F/m.
We again make the first approximation

= A cos wt

and substitute on the right in Eq. (2.10)

2 + w2t2 =(- W 2 )A - -1O"

(2.16)

+ F cos Wt -. 3 cos 3Rt.

It should be clear here that the coefficient of cos wt on the right side of
(2.16) must vanish, since cos wt is a solution of the homogeneous equation
t2 + W22 = 0. We therefore obtain

W2  W 2 + la2 _F (2.17)

which is identical with Eq. (2.14'). Hence

t2 + W2J2 = - AAt43 cos3w.ot

4A
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It is evident that

= A 1 Ccos wot + Ccos 3wt

must be a solution of (2.16); for, adding the expressions for t2 and 22,
we obtain

"22A coswt - 9W2 Ccoswot

2 = o 2A 1 cos wt + Wo2 Ccos Wr
t2 =

W- cos w = - 8w2 C cos wt

or

cA 3
C3 2 M 32m

and

e.A3

2= A 1 cos wtt + EA-3 cos 3ot (2.18)

Equations (2.17) and (2.18) constitute the second approximation. It
should be noted that the second term on the right in (2.18) differs slightly
from that in the first attempt (2.13), because of the different levels of ap-
proximations involved.

The reason for introducing the second mode of solution above is that it
affords a consistent method for obtaining higher order approximations. If
(2.18) is substituted on the right side of Eq. (2.15), the new alignment on the
right leads to terms in w, 3wo, 5wo and higher orders. If we write these as

6 w 2 3 = P cos wt + Q cos 3tot + R cos 5ot (2.19)

P = P(A, w), etc.

Here P 0 0, for the same argument given after (2.16), which would
improve the approximations in w and A, etc.

[1.
- --- '-- D-.•t - -.. r. -i 1*
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2.4 Effect of Damping. Duffing's Equation.

Thus far, we have neglected the effect of damping, so that it is un-
realistic to close off the top of our curve in Fig. 2-4. If we have damping we
must also expect a phase difference between the impressed force and the
displacement. To take this into account, it is convenient to write the force in
the form F1 cos wt + F 2 sin wat, so that IFI = \IF,,!+ F2,2 and our differential
equation becomes

S+ rt + t + •t3 F1  cos wt + F 2 sin Wt , (2.20)

which is the complete form of Duffing's equation. As before, we assume such
quantities as r, F1 , F 2 to be small. We begin with the linear approximation

tI = A cos wt

and .substitute throughout (2.20), expand cos 3 wot and then neglect the terms
in 3wot for the time being, we obtain

(wo_ - W) -4 +_-3O = F,

II (2.21)
-Ar = F 2

By squaring and adding together the two equations in (2.21). we get

W2 - cW2) A+- '3) 2 + A 2c0 2r2 = F (2.22)

If we introduce the response function

S(,A) -- (w2- _02) A + -IPA

Then Eq. (2.22) becomes

S 2 (w,A) + A 2 wo2r2 = F2  (2.23)

This is the more general form of the frequency relation (2.17), since setting
r = 0 in (2.23) will recover that equation. We shall not continue the further
anlaysis of this situation, but instead reproduce the curves for damped and
undamped harmonic responses as given by Stoker [21 and reproduced in Figs.
2-5 a,b,c,d.

" I .• ---.
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Another manifestation of this nonlinear behavior is that reported by

Seed [31 for resonating quartz crystals. Seed obtained amplitude-frequency
response curves for AT and BT cut quartz crystals. These are shown in Figs.
2-5 ef. The resemblance of these to Figs. 2-5 cd can easily be seen.

2.5 Subharmonics.

Before completing our discussion of Duffing's equation, some comment
should be made about subharmonic responses. Again we shall follow Stoker,
treating only the case of the subharmonic w/3.

In the undamped linear system

+ = F cos wt

where w.o = co/n, we can get the solution

A cosE t (n an integer),
n

in addition to the solution at the frequency w. However, the presence of
damping will remove this essentially transient solution. Let us now look once
again at Eq. (2.20). As a special case, we shall look for oscillations of the
frequency wo13. We therefore form the Fourier series of the displacement. (It
can be shown that the term in sin (wit/3) vanishes and will be ontitted.) Then

C1 cos- - + A 1 cos ot + B1 sin wot (2.24)

Substitution of (2.24) in (2.20) with use of various trigonometric iden-
tities leads to the results

too -i) C +.•',3(C3+C2A+2AC2+2CB2) = 0

-tt 3-T+-Bc = o
(2.25)

(co2 _ co2) A +1 •(3+6C2AB + 3A 3 + 3 2)+ rtoB = F1

O-C- 3 + + + AB 2)

(o2 _2 - 2 + + -rcoA C F2

2 2 A + -L. .+ B 3
4. + 3 B .I
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These rather messy algebraic relations can be rearranged to yield

W2 =9 +.--L(C2-8 + ) (2.26)

where F 2 = F2 +F2 as before. This relation, which determines the value of
the subharmcnic amplitude IdC, is valid only if

r <3 2I0CFl (2.27)
32

i.e., the damping must be small if the subharmonics are to exist.
Figure 2-6, which is also from Stoker (p. 107), shows a plot of the

relation between the amplitude C of the subharmonic and the driving fre-
quency wo for the case of a hard nonlinear spring, without damping. [The
curve in the figure is for the case F -F1 in Eq. (2.26).]

I iI
C

.1
Figuze 2.6.-Amplitude C of subharmonic as a function of the driving frequency w
for the case of a hard, nonlineaz spring with damping (after Stoker, 121, p. 107).

!.
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Since this is the case for which 0 < 0, the relation between the driv..,,
frequency w and the natural frequency of the system must always be sucn-
that w < 3o0 for the subharmonic vibration w/3 to occur.

2.6 Nonlinear Strings.

Our linear treatment of the vibrating string of Section 1.2 involved
many simplifying assumptions, including uniform tension and small ampli-
tudes of oscillation. Le now consider the case in which these limitations
are removed. We shall a. :llow for the possibility of motion in three dimen-
sions, and indicate how damping can be introduced in the motion.

A string at rest has a length Q measured along the x axis. If the displace.
ments from the rest positicn at x are given by t, r/, 7, then the segment x will
have in general the length ds:

ax+ ax 7 J dx

or, in reduced notation,

ds2 =I l+ t,) 2 +7 + t(IX 2  (2.28)

The tension in the string at rest is T0 .To find the tension at any time for the
point that was at x when at rest. we use Hooke's law, writing

A

T To + YA(ds -x (2.29)

where Y = Young's modulus and A is the cross sectional area of the string.
From (2.28), (2.29) we then have

T = To + YA{(I + x)2+ix+2]1/2- I+} 7 (2.30)

We can now write down the formal expression for the equation of motion.
Th,,'- component of the tension will be

(X~t)I + tx) ,(231)

----------------------------- '-U
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so that the net force on the element shown in Fig. 2-7 in the x direction will
be

A-i T( I +-ax L dsjI yI

V+

ti + f~dx

I~7 ---. et

w zeta
- xi

Figuire 2-7. -Displacement of a string segment in Wiee dimnenSiOns.

so that

0 ttr (2.32)

where a is the mass of the string per unit length.
Since we are interested here in improving on the linear treatment, it is

appropriate to use approximate forms of Eq. (2.28) and (2.30):

ds + +~x +±2~x(2.33)

i A H
1' 1'

T + i, +d + j
T2

____ ____ ____ ____ ____ __ I
X . .. . ... d x . . .
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and Eq. (2.32) becomes

xl -, 7 " )} = o22

Carrying out the indicated operations, but keeping only the lowest combina-
tion for each of the displacements, we get the result

Ott - YAxx = (To - YA) x (2.34)

If we introduce the notation

c2 =o c2 = YA
co a o-

Eq. (2.34) takes the compact form2

2 XX=_L( 2- ) j (rqx2 + q'x) (2.35)

The corresponding equations for they and z directions, which are identical in
form with one another, can be obtained in this same manner, with only the
replacement of Eq. (2.31 ) by the form for the y component of T:

Tdy Thl dx etc
T -ýY- = DixLx, e tc.

ds Xds'

After simple transformations, one gets

•,-•2n -- ((.2-,02) L tx 2 + L 72
17t- 207 1 =x2'7 

.i

(2.36)

-Cxx =(C-2 - .2) a [ý~ +.L 'n + t. I

All of these relations have neglected the damping. Since we are mainly inter-
ested in the transverse vibration, we shall enter this in Eq. (2.36) by the "
addition of a damping term Rptt on the left hand side.

-, -7-.
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In order to solve the set (2.35ý, (2.36) it is convenient to make further

approximations. For wires, c2 >> co, and the longitudinal vibrations are well

below the resonance frequency for such vibrations. We can therefore neglect

•tt in (2.35) and rewrite the equation as

X X 2 ax

which can be solved in the form

S(n7x + t2) + fO'.•)
, = 2

= (rlJ 2 + 2)dx + xf(yz) +const.

0

By using the boundary conditions t(Ot) = •(Q,t) 0, we can establish

the constant and f(y,z), so that finally,

S ~2k
1 Jxx f(71x+ •) dx

(2.37)

(T2 ?1 + q2+) dX

We can therefore write Eqs. (2.36) (with account of damping) as

2 Q
20 '~ cQ 1(tix 2+ ) dX

11+ -i~ coxx = -le- ~ f~ d 17 (238
0

2 (2.38)
2 C 2 ,.q .dx

2"t +x (R•2 +~ XX2 dx (T

The solution of Eq. (2.38) is still a very complicated problem. Partial

solutions can be foundi in the literature. 15,61
We shall limit ourselves to the simplest example. Neglecting damping,

we assume a first order solution of the vibrating string as

rt? -- 0 sin cot sin 2X 0,.7,TXo•-o

i • ," .-
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Equation (2.37) can then be solved for Z:

0 2 2rx
- sin . ot sin . (2.39)

The first of Eqs. (2.38) in this case can now be written as

2 4
2 C1  3 .1 3rfl, - c0 uxx = - " ri - sin wt sin - (2.40)

22

and will yield a second order particular solution involving the third harmonic
in time.

Finally, the second equation of (2.38) remains " 0 as before. To this
level of approximation then, coupling exists between the longitudinal mode
and the already excited transverse mode, and the transverse mode develops
higher harmonics in its temporal variable.

As we have already emphasized, it is not the purpose of this book to
explore the entire field of vibrating systems, but only those which touch
upon the area of acoustics. It suffices to remark, therefore, that one of the
simplest of vibrating systems-the string-can easily become nonlinear in its
motions and thus produce harmonics of the original signal.

2.7 Nonlinearity in Membranes.

The nonlinear string is complex enough; the move to the two-
dimensional problem of the nonlinear membrane is that much worse. We shall
give only a very brief description, following the analysis of Chobot'v and
Binder. [7] The forces on a segment of an ,:ndamped circular membrane are
depicted in Fig. 2-8. The quantities Nr and N0 refer to the radial and tan-
gential stresses. The rest of the notation is self-explanatory.

The equations of motion that result from these forces are given by

I( au\N
a [(r + ph(r + u) I + 30 a2u
"7(r+u)Ncos J coso aCos 8

(2.41)

[-(r +u)Nrsin pph(r +u)) ( + au. 2w
C TK 2-

4. b

-------------------------------------------------------1
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0~ ~ ~ ~ + 0 " gt d

Figure 2-8.-Fotces on an element of a circular membrane
(after Chobotoy and Bendar, ( 7 p. 60).

In the case of a linear membrane, u = 0, Nr = const, sin 3 - w/ar

and cos 1 • 1. The second equation above becomes the linear form

(ra au pha~W (2.42)
3 'r N, a,2

I-'I-.
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Even to begin the solution of Eq. (2.41) requires a number of
approximations. If we consider the deformed length ds, it has the
approximate form (see Fig. 2-8)

d= [(I +au 2  21wV 1/2 [ 8 law 2 _ d
L\arI karr 2r-- l+T+'(a)

so that the radial strain e. is given approximately by

ds - dr au + )2w\r (2.43)
dr Tr +I(~r

This is a form that also is valid in the case of plates (see below).
By expressing Nr and No in terms of the radial strain er and the

tangential strain E. = u/r through Hooke's law, and making the
approximaticn of small angle 0, approximate differential equation can be
deduced. It is convenient to write these in non-dimensional form, measuring
lengths in terms of the fraction of the membrane radius a:

17= rna 1I

u u/a T (2.44)

w = w/a

and writing the initial strain e0 in the membrane in terms of the initial
stress NO:

e0 = (1- M) NO . (2.45)

We than have the equations

10I- A) +- a4 L - + - a Iv
an) [ai7 n 2 \3n7 /j

$2_ an 2w (au ii)

= eo(l +M)(,7+u)( +•) .-.. .

I w.

an*
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and

a-' ~i+" L 2  + - (l+w)e]

Ti a i7/1ai7  2\a770J

+ a2 aw a2au

a2i- - U- +2 + ( 2 +
[I i1 2 a77  77 011j

eo(1 + A)(7+u)(+ a-7)a2 (2.46)

These equations can be solved approximately by a perturbation technique,
done in [7], in powers of the square root of the initial strain e0:

u-eo1/2u +e ~u2 +c0
3 / 2u 3 + ...

I (2.47)

S= w1 + e0 w 2 + eo 3 2 w 3 +...

These quantities are now substituted in Eq. (2.45) and the Coefficients
of corresponding powers of eo 1 2 equation. It follows from this step that
u1 -0 from the first of these coefficients. The other equations are then

/u2 "2 1 (2wl.8

+17'- T00 P77 77 2  37, 2

(eo)" ? r��"277 (1 +2.) [

3 (2 u2  I t? a2 W

(e3/2). awl [-•n +. j 7' 1 + n

a? 37 2!a77)~ ) 7

tb

:a 2 •2



82 NONLINEAR ACOUSTICS SEC 2.7

)Wl[___2 1 law1 S \ 2,U 2  1];

22

= (1 +u)i 2 W 
(2.49)

3,2

If it is assumed that

uI = ctq(1)(I - ,12) (2.50)

where a = wo/ae1/ 2 and q(r) is a function of dimensionless time that is no
greater than unity, the equation for q becomes

d 2 + 6q + 03 (13+2l1p-4M 2 )q3 -0 (2.51)

dr2  5(l + p)

which is a Duffing equation for the fundamental mode of a circular mem-
brane [cf. Eq. (2.20)].

It can be shown from the solution of Eq. (2.51) that the ratio of the

nonlinear period T* to the linear period T is given by the form

T* 2K(k)

"" = [ + a2(13 + 217- 4IA2 ) ) 1/2 (2.52)

which is plotted vs. & = 0.3 in Fig. 2-9. Here K(k) is the complete elliptic

integral and
k2 = + 30(1 +2M)_ 1

L a~2(13 + 2 l-.4p2)

A corresponding analysis can be carried out for forced oscillations. An
example taken from 17) is shown in Fig. 2-10, when the resonance response
of a test membrane is plotted as a function of the sound pressure level in
front of the membrane. The solid curve is the expression obtained

theoretically.

2.8 Nonlinearity of Plates.

The vibration of plates brings into play one or more complicating
factors in the thickness dimension of the vibration. The starting point for such

I



SEC 2.8 SOME SOURCES OF NONLINEAR OSCI.LATIONS 83
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Figure 2-9. -Ratio of nonlinear period to linear period as a function of the nondimen-

sional displacement for vibration of a circular membrane in vacuum (fundamental mode)
(after Chobotov and Bender, (71 p. 64).
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Figure 2-10.-Relation between resonant amplitude response and inckleat (blocked
membrane) sound-pressure level (after Chobotov and Bendw, (71 p. 68).
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analysis is the expression for the total energy U of a plate under de-
formation. [81

u = .[v2w)2+-L2 e2] - 2(l-v)

X e2 + ' 2- _ \_ (2.53)
h2 x2 ay2  Eh

where D is the bending rigidity - Eh2

12(1 - P2)
E the modulus of elasticity,
v Poisson's ratio,
w deflection of plate in the Z direction,
e the first invariant of middle surface strains, =x + ey

1
e2 the second invariant of middle surface strains, = ex

au av aw aw
7xy =shearing strains of middle surface = Ty + T- + .~x y '

22
EX + I (aw) L + 1 a) 2  (2.54)' ex : a-x j~- ) r-fx Y • •ay/(.4

h thickness of plate. Note the correspondence of the expressions for
ex, ey with Eq. (2.43).

Arguing from the exact solutions for uniformly loaded plates [91
Berger neglected terms in Eq. (2.53) arising from the second strain in variant
e2 1101. From this assumption Berger immediately obtained the equations

a2 h2

(2.55)
v 4 w _ at2 V2 w =8D

D

where a is a normalized constant of integration and q is the intensity of the
uniform load.

The second of Eqs. (2.53) is a linear form for fixed a and can be solved
for w. Then substitution of w in the expression for e [Eq. (2.54)] gives a --

second linear form for u, v. 4."

-- ~. .. . '- " --. . " . . . . . . . .. -. / .. ,: .t •' " " - " . , •,
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In addition to this Berger approximation, a perturbation procedure,
similar to that used for membranes, has been developed by Chu and Her-
mann, [I I] and applied to a variety of problems by Wu and Vinson. (121

The nonlinearity of both plates and membranes is reflected in acoustics
by distortions produced in the transduction of sound waves by loudspeakers
and microphones. It is a matter of higtorical interest that the problems of
loudspeaker distortion led to a detaiied mathematical study of finite ampli-
tude wave propagation in horns by McLachlan in 1934, [131 and to some of
the earliest experimental work on such propagation in air by Thuras, Jenkins
and O'Neill in 1935. [14]

2.9 Tartiiu Tones.

That the ear, like the mechanical systems discussed earlier in this
chapter, could exhibit nonlinear characteristics has long been known, al-
though the associated phenomena were long misunderstood. While these
physiological phenomena have had little interconnection with the types of
nonlinearity that form the bulk of this book, reasonable completeness de-
mands a brief review of the subject. More detail can be found in the refer-
ences, especially in the historical note of Jones, [151 and in the reviews by
Wever and Lawrence [16] and by Tonndorf. [17]

At about the middle of the 1 8th century, a number of musicians ob-
served that when two musical tones of high intensity are sounded, one can
hear a lower tone whose frequency is equal to the difference of the two
original tones. Subsequently, other difference tones were discovered between
higher harmonics of the fundamentals present in each of the original notes.
All such difference tones are called Tartini tones or Tartini pitch after their
first discoverer.*

For the first 100 years after their discovery, these tones were thought
to be a high frequency beat phenomenon (recall Section 1.3). This would
have made the phenomenon a linear one. Helmholtz disposed of this idea by
reporting the existence of sum tones, whose frequencieý were the sum of the
two original tones. Today, all such sum and difference tones are called com-
bination tones. If h and Q are the fundamental frequencies of the original
tones, then the frequencies are given by

finn = mh ± 2n (2.56)

where m,n are positive integers or zero. Thus if n = 0, we have the possibility
of existence of ail harmonics from an intense, single-frequency source.

'There is some uncertainty as to which of several individuals fir't observed the phenom-
enon. A. T. Jones has assigned the honor to Tartini after a detailed study. 1151

I
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Experimental verification of the existence of these harmonics of an
originally pure tone is shown in Fig. 2-11 which is the electrical response, in

S~microvolts, of a cat's ear, resulting from a stimulation of the outer ear by a _

pure 1000-Hz tone of varying intensity. 116,181 Curve 1 is the response at
the fundamental frequency, which is linear to above incident intensities of
0.1 dyn/cm 2, but becomes nonlinear in that region. The curve labeled 2 is
the response at the second harmonic, and first becomes appreciable in the
region where the fundamental response is no longer linear. The other curves
indicate the response at selected higher harmonics. The reality of com-
bination tones in the middle ear is confirmed by the results of Fig. 2-12,
which gives the electrical responses of a guinea pig's ear to tones of 1000 and

1 2800 Hz. The various difference tones are shown in (a) and the summation

tones in (b).

to-

4LI

. / ,, |T

it i

OI01 0. 0 1 10 100

I *;

I I~~~I I. •I• IIU ]

Intensity, dynes per sq cm

Pigmr 2-1 1. -Reponse of a cat's eam With a pure tone of 1000 I~z. The numbers
on each curve indicate the harmoni (after Wever and Way (Ifl).
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Figure 2-12.--Difference and summation tone responses of an intact guinea pig ear pro-
duced by aerial stimulation at 1000 Hz and 2800 Hz. Functions are shown for puimarie"
(h,Q) and various combinations (after Wever and Lawrence, (16] p. 161).

Helmholtz recognized the fundamental nonlinearity of the problem,
and suggested that the source of the nonlinearity was the middle ear, in
particular, the eardrum mechanism and the joint between the malleus and
incus (hammer and anvil) bones (see Fig. 2-13). it is of interest that an
opposite viewpoint was taken by Riemann who maintained the essential lin-
earity of the middle ear.

The position of Helmholtz was a consequence of his theory of hearing.
Helmholtz arguedl that every individual frequency had a specific location of
action of the basilar membrane (which is part of the material dividing the two
fluid-f'lled portions of the cochlea). Thus there would be a resonance action
in the cochlea that leaves no room for the creation of combination
frequeiicies.

A great deal of research has been done on the response of separate
portions of the middle ear, as well as on the effect of actual removal of the
middle ear all the way to the stapes (anvil) (see Wever and Lawrence). The

-- h

A :E 10-.
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yestlS vestibqjlay nerve

0i°ac Anrve

Ettochian j
14 4

Figure 2-13.-Details of the human ear (Max Br6det, "Three Unpublished Drawings
of the Anatomy of the Human Ear," W. B. Saunders Co., Philadelphia, Penna.)

cavity
<J

conclusion is that the middle ear is a linear mechanism for the range of
pressures represented by sound waves.

It was therefore necessary to develop a nonlinear theory of the cochlea.
This work was pioneered by von Bekesy [see the review by Tonndorf
[171 (1970)], and the concepts of nonlinear hydrodynamics have provided
considerable insight into the action of the cochlea. According to these
theories, the fluid in the cochlea is stimulated into surface waves which are
strongest (naturally) near the surface that is formed by the basilar membrane.

The analogy to surface waves is indicated in Fig. 2-14.|
As pointed out by Tonndorf, surface waves are inherently nonlinear.

We forego a mathematical discussion at this point (see Chapter 11) but point
out that gravitational surface waves have narrow crests and broad troughs.

Down the middle of the cochlea is the membrane known as the helico-
trema. von Bekesy noted that the effects of stimulation of this membrane by
the sound pulse produces eddies in the cochlear fluid (Fig. 2-15). The com-
bined effect of all of these complications is therefore sufficient to account for
the existence of sum-and-diffcrence frequency stimulations of the brain when
two intensive sounds of different frequency impinge upon the inner ear.

-
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GRAVITATIONAL SURFACE WAVES
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Figure 2-14.-Gravitational surface waves (schematic): (a) in deep water; (b) in shallow
water of constant depth. Wave progression is from left to right, the dashed outline
occurring ?r/2 later than the solid one. Note the asymmetry of the waveform in both
cases. Individual fluid particles roll along their trochoidal closed orbits, clockwise in the
present graph (see arrows). Each orbit (see insert) is the vectorial resultant of two force
vectors acting at right angles to each other and being 900 apart in phase, with the vertical
vector leading the horizontal one. Note the exponential decline of orbital diameter with
depth in deep water (top); in shallow water (bottom) the decline is limited to the vertical
vectors giving the orbits an elliptical shape, even along the surface (from J. Tonndorf,
117J p. 581).

~v !-Ve'ope of
Jv. He-,,Coh fema

i --PfAhWoYs ot

Figure 2-15.-Schematic of von Bekesy's eddies. These eddies fill the space fully at low
frequencies, but shrink at high frequency. The particle velocity in the eddy is at first
proportional to the square of the amplitude but the dependence flattens at high intensi-
ties (from J. Tonndorf, (171 p. 586).
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CHAPTER 3

NONLINEAR PROPAGATION IN FLUIDS

3.1 Formulation of the Wave Equation, Lagrangima
and Eulerian Coordinates.

In Chapter 1, we de'iberately avoided the fact that an ambiguity can be
introduced in our elementary derivation of the wave equation. That is, we
have a choice, in describing the vibrations of a "particle," to refer to the
displacement of a single particle, which at rest lies at the point x = a, or to the
displacement of the particle which at any instant of time happens to be at the
point x. The first of these descriptions then describes the motion of a single
particle, while the second involves a succession of particles at a particular
point.

If we follow the specific particle, we are said to be operating in Lagran-
gian, or material, coordinates. We consider a fluid particle (Fig. 3-1) at rest at
the point a. Under the action of a harmonic wave, the particle will undergo
oscillations about this point. The instantaneous position of this particle will
be labeled x:

x = a + • . (3.1)

We therefore say that the displacement of the particle originally at a is t. The
quantity a defines the points along the "x " axis of our coordinate system, and
is a variable. The coordinates a,t are known as the Lagrangian coordinates.

We can then describe the particle velocity in these coordinates, uL(a,t),
a:

ax~u-1 a,t) at (3.2)

and the Lagrangian acceleration as

=L-2  (3.3)

at at 2

91



92 NONLINEAR ACOUSTICS SEC 3.1
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Figure 3-1 .- Displacemnents in Lagrangian and Eulerian coordinates.

On the other hand, if we concentrate on a particular point in the laboratory
system of coordinates, and specify the displacements at that point, we are [
said to be using the Eulerian, or spatial, coordinates.

t " . .. . . . . .. . ..

idi.t.nc"
, •. ,;.

I. --*. ... . ... ... . . ... .. . ... .. ..• .... .
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Any Lagrangian coordinate q" can easily be related to the Eulerian
coordinates by employing a series expansion [ I

qL (a,t) = qE(x,t) Iatat)=qE(x~t)xa
x=a+t(a't) xLa

(3.4)
+ as (x't) ~xr ..ax +..

x=a

where we have written out only the first two terms, which is usually suffi-
cient. Similarly, we could express the Eulerian coordinate qE in terms of the
Lagrangian

qE(x,t) = qL(at)L = qL(x,t) I

(3.5)

a a~x3qfL (a,t) t (a,t) +

la=x

It should be noted that the displacement • is common to both systems.
In the Lagrangian, it is to be understood as the displacement of the particle
originally located mt a, and is therefore a function of a and t. In Eulerian
coordinates, t is the instantaneous displacement of whatever particle is at the
coordinate x; t here is then a function of x and t.

As an example, we can write the Eulerian particle velocity uE as

uE uL (au~ +.

(3.6)

Now let us look at the dynamic situation. Figure 3-2 shows a small
element of fluid dadydz at rest. Let us suppose that a plane wave is traveling
to the right through the fluid, so that, at a given instant, the particles origi-
nally at rest at a will be displaced a distance t, while those ordinarily at rest at
a + da will be displaced a distance t + dt. Since these new boundaries of our
fluid element could also have been written as xL and xL + dxL, the displaced

! ' • := . ' .,..7•.=•..----- --
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Figure 3-2a.-Pressure gradients in Lagrangian eoordinates.

E EE+ (

dx

Figure 3-2b.-Rate of mass flow in Eulerian coordinates.

and distorted volume dV could also have been written dxdydz. (Since we
have supposed no fluid motion in the y and z directions, there is no need of
distinguishing between Lagrangian and Eulerian coordinates for them.) If we
now represent the density of the fluid at rest by p0 and that of the displaced
fluid (in the Lagrangian system) by p L, we must have

pL dxLdydz = Podadydz

I. .. . - - --.-- - -

Av
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since the total mass in the box must be the same in the two cases. We
therefore have

pL da

I

or, since xL = a + t, we have

p =L Pa (3.7)

The Langrangian formulation makes it particularly easy to write down
the equation of motion. If the pressure at any instant at the left side of the
volume element (Fig. 3.2a) is pL, while that on the right is pL+ (5pL/axL)dxL
then the net force (to the right on the fluid in the volume element dV) is
-(3pL1/xL)dxLdydz and the equation of motion becomes

dxl-dydz = (podadydz) "

3XI -

or

apf aXL apL= -= Poi+
,,,L 7a- 3a

It is instructive to develop the equation of continuity in Eulerian coor.
dinates also. We consider a volume element dxdydz in Eulerian coordinates
(see Fig. 3.2b). The rate of mass influx at the left will be pEuE6 dydz, while the
outflow at the right will be

+ ~GA')]dydz,

so that the net influx will be

pEuEdydz [pEuE + ax ] j ax dV.

(3.9)

! I,
_ ___-_ 4
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This must in turn be equal to the rate of mass increase in the element,
(ae18at)dxdydz), where e is the mean (Eulerian) density over the distance
interval dix. Hence

_a± dV - (a(p'E I dV
Vat ax

or, in the limit as dx -0,

apE a ) (3.10)
at a

which is the equation of continuity for one dimensional motion. In three
dimensions, this equation can be rewritten as

apE ( -a ( ,) a (PE ~E) a ( r. ) .

1 t3.11)

We now define the speed of sound c by the relation

c2 = aPL _aPE 3.2

where the derivative is taken under adiabatic conditions. Then, by use of Eq. i(3.7), we get|

aa aPL aa (+ .)2 aa 2

and Eq. (3.8) becomes

- C2 a2 " (3.13) A
at 2  (1 +-.)2 (' 4

411o1

• ,_21 :_.22....
i --- I
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which is the equation of motion for an acoustic wave in one dimension. For
the special case of an ideal gas, the adiabatic relation can be written

P = P0 (3.14)

where -y is the ratio of specific heats. Then

,2 - apL - 2' 0 _ __- 1 W O I

apL P0 kPo ( +.)'

whence (3.12) becomes

a2 C2__ a2  (.5

at 2  + I

This is the form of the nondissipative wave equation in one dimension in
Lagrangian coordinates.

We have already obtained the equation of continuity in Eulerian coordi-
nates tEq. (3.10)]. To find the equation of motion in these coordinates of
motion, we need only recall that we can follow the velocity changes of an
element of the fluid by using the total derivative, so that the equation of
motion is given by

T=: -p (Euierian coordinates)dt P

or

S+ (u.V)u =-
p

which, in one dimension, is

"+i a. =-_1Lp(3.16) A7x p ax

",..=...-

t' • -- "• "• '%'w ~ I .. . . .• d ¢ fJ • • 2."" - ' _ •• _ J
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This equation, together with (3.10), gives us the wave equation in parametric I '
If one is dealing with a liquid, some other relation must be found

between p and p than that given in Eq. (3.14). The form

(3.17)
p=PO

is sometimes used, where P, Q, and -f are three constants to be determined
from the experimental data. Such a form is commonly used in hydro-
dynamics for water, with the values y = 7, P= 3001 atm, Q 3000 atm, and
is known as the Tait equation. Note that in this case y' is no longer the ratio
of specific heats, but is a parameter chosen to fit the experimental form of
the p- p curve.

An alternative representation is obtained by the use of the Taylor ex-
pansion of the pressure in terms of the density for the isentropic case:

(P - PO) + I(ýý) - p) 2 +.P o+ ap),o--o0 2\ap2/s'Pooo•

(3.18)

or

p " PO + As + s + -7, s3 +-- (3.19)

where

-fA =O Po0 ()p 0  2

B a2P'• s=-p o (3.20)B = P2aP P-P
capo 2 sI,:o S(

Sap Sp= a

The parameters A. B. C... are temperature-dependent quantities. In most f

situations, only the terms involving A and B are necessary.

!.I
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A

We could use Eq. (3.19) in conjunction with Eq. (3.20) to obtain an
expression for c2 to be substituted in Eq. (3.13). This expression is

This would give a rather cumbersome form to Eq. (3.13) and it has proved to

be more convenient (and equally accurate, to terms of second order) to
establish the relation between the parameter ' in Eqs. (3.14) and (3.17) with

the ratio B/A.
If we expand Eq. (3.14) in powers of the condensation s,

-t('- ) 2 +P = PO( +$s)" = PO El+s+ 2

and comparing the result, term by term, with Eq. (3.19), it can be established

that B/A = y - 1 for the ideal gas. If therefore we use the form of Eq. (3.14),

but replace y by B/A + 1, we can rewrite Eq. (3.15) in the form

32  co2 a2. (3.15)

a 2  B+~ a2

that will be good for all fluids for which C/A can be neglected.*

The ratio B/A plays a significant role in nonlinear acoustics, so that its

experimental determination is of some importance. To make this determina-
tion, we first observe that, from Eq. (3.20),

B O _ sa2p) Po (,a sc _ ,

A c02 \p 2oS.,o=P 0  C2 ý

*Ha w -2poc 0

*Had we expanded Eq. (3.17) instead of (3.14), we would have obtained the same
relation between 'r and B/A. In such a case, P - Q Po and P = poC 2 /,Y, where

"B/A + 1.

I. -- •
j. .4,
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By means of simple thermodynamic transformations, this expression can be
converted to the form

B ac 200c fc (+ - )
A pTpoPO

r
where P = (I/I)(aV/laT)p = volume coefficient of thermal expansion, and cp
is the specific heat at constant pressure.

A similar analysis for C/A leads to the relation

A - 2C + 2)2 C32pýc c (3.22)

Analysis of the case of water at 200 for an excess pressure of 6 atmospheres
has indicated that the relative size of the A, B and C terms of Eq. (3.20) is

I . 6.75 X 10-4, 4.56 X 10-7

Except at very high pressures then, it is safe to neglect the cubic and higher
order terms in (3.20), at least in watar. [21

Some typical values of the ratio B/A are given in Table 3-1. The range
of variation is very slight, as is the variation with temperature and pressure.

A plot of B/A vs 1/c (Fig. 3.3) is a useful way of presenting these data.
Points corresponding to liquid metals are indicated by the black circles. The
line drawn on the graph is one suggested by J. F. Ballou. and known in the
author's research group as Ballou's rule: [2a]

B 1.2 X 106-- = - 0.5
A C

where c is the speed of sound in the medium in cm/sec. While the data are
scattered it is clear that B/A in general increases as c decreases.

In the rest of the chapter, we shall replace -y + 1 in (3.16) by B/A + 2
whenever we are dealing with liquids.
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Table 3-1. Values of B/A. Except where indicated,

all values are at atmospheric pressure.

Substance T, °C B/A Substance T, 0C B/A

distilled water 0 4.2 methyl acetate 30 9.7
20 5.0 cyclohexane 30 10.1
40 5.4 nitrobenzene 30 9.9
60 5.7 mercury 30 7.8
80 6.1 sodium 110 2.7

100 6.1 potassium 100 2.9
Pressure tin 240 4.4
1 atm 30 5.2 indium 160 4.6
200 kg/cm 2  30 6.2 bismuth 318 7.1
4000 30 6.2
8000 30 5.9 monatomic gas 20 0.67

diatomic gas 20 0.40
sea water

(3.5%) 20 5.25 methyl iodide 30 8.2
methanol 20 9.6 sulfur 121 9.5
ethanol 0 10.4 glycerol (4% H20) 30 9.0

20 10.5 1,2 - dichloro- 30 11.8
40 10.6 hexafluoro-

n.propanoi 20 10.7 cyclopentene
N-butanol 20 10.7 (DHCP)
acetone 20 9.2
beneze 20 9.0
chlorobenzene 30 9.3
liquid nitrogen b.p. 6.6
benzyl alcohol 30 10.2
diethylamine 30 10.3
ethylene glycol 30 9.7
ethyl formate 30 9.8
heptane 30 10.0
hexane 30 9.9

3.2 Earnshaw Solution of the Wave Fquation.
The Discontinuity Solution.*

Equation (3.16) was solved in implicit fashion by Earnshaw in
1860. [31 His analysis began with the fact that the Lagrangian particle veloc-
ity u = i must be some function of the local density, which is in turn a
function of atf/ax through (3.7). We therefore write u = flat/ax). Then

- 2ii 2-1 = 2L (3.23)
xat 'xat " ax2

*Beginning with this section, we shall cease using a to denote Lagrangian coordinates,

replacing it with the more conventional x,

K A

t' •
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4"

1.2 X 104 .5
C

12- 0

0"0 0 0

0 0

B/A 8 0 0

0
0

4

2 4 6 8 10 12 14
104 /c, c in m/sec

Figure 3-3.-Ratio of B/A for liquids as a function of inverse sound
velocity: Solid curve indicates Balou's rule

* liquid metals
o other liquids.
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where f' denotes the derivative of f with respect to its argument, so that

S=f,2t82 (3.24)
Tx2

By comparison of Eq. (3.24) with (3.16) we obtain

- co (3.25)+1 ax)1 2'+ -

Integrating (3.25), we get

( U c ( const. (3.25a)

/+4) 
2A

(' ax)

When there is no sound, as/ax =0 and u 0, so that

_ (B) Co + const 0

or

U = .. c[ _ ( I 1

(3.26)

=24CO - (1+s •1

The rate at which a particular value of s, u or at/ax is propagated is given by
the square root of the coefficient of a 2t/ax 2 in (3.24), i.e., f', to which we
attach the symbol v. From (3.25),

B
V= ±co(l+s)

! , . , '.,,
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We confine our attention to waves traveling in the positive x direction
and eliminate s from Eqs. (3.26) and (3.27), thus obtaining the rate of propa.
gation of the wave as a function of the particle velocity:

2A

V 0o (I + B UR (3.28)

Since the general form of the solution of (3.16) is

u = F t~( ±~ (3.29)

a wave with the boundary condition

u(O, t) = u0 sin wt (3.30)

will have the solution

u(xt) = u0 sin t + A (3.31CO 2A co

which is the implicit solution of Eq. (3.16).
A simple plotting of Eq. (3.31) as a function of x for specific values of

u will demonstrate that the points of high particle velocity will move more
rapidly than those of low velocity, so that the waveform becomes progres-
sively steeper (in the neighborhood of u = 0) as x increases (see Fox and
Wallace [4] ). If we therefore take the derivative with respect to x in (3.31)
and evaluate au/ax at it u 0, we obtain the result

-_LA

au C0  (3.32)
a•x 1 wx ( B+B.

U0  02 \, 21)c0

Thus, au/ax becomes more negative with increasingx, becoming nega-

tively infinite at a distance Q from the origin, where

S % c2 -3Mk; 1 + (3.33)
C 2 20  2A

.
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Here M is the acoustic Mach number, and the symbol 0=(l +B/2A)[=(y + 1)/2
for gases] measures the nonlinearity; R is called the discontinuity distance. It
is, of course, defined for the idealized case of zero viscosity, but it gives a
measure of how rapidly distortions appear even in a wave of very modest
amplitude. Some values of Q are shown in Table 3-2.

Table 3.2 Values of the discontinuity distance 2 for various sound
levels and frequencies (T - 20%, p0 = 1 atm).

Water

Pac M , in cm 2, in cm
in atm (at 100 kHz) (at 1.0 MHz)

0.1 0.0046 X 10-3 14,800 1480
1 0.046 X 10-3 1,480 148

10 0.46 X 10- 3  148 15

Air

Pac dB 2, in cm 2, in cmin atm
dyne/cm 2  re 0.0002 M (10 kHz) (100 kHz)

20 100 0.014 X 10- 3  32,000 3200
200 120 0.14 X 10-3 3,200 320

2000 140 1.4 X 10-3 320 32

3.3 Riemann's Solution.

At about the same time as Earnshaw, Riemat.n attacked the finite
amplitude problem in quite a different way.[5] He began with the equations
of mass and momentum conservation, which we write in Eulerian form [see
Eqs. (3.10), (3,16)J

u a u c2 ap (3.34)
at ax p x5

1 ap u ap au (3.35)P at P Fx Tx •

I.

S• -. "- • "i = --• - ='~ 1 Z ... l b : "f •'• :=: "• '• ", : • / • "! • :• • • =• ' -t°•
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We then multiply (3.35) by ± c and add the result to (3.34). This gives us two
equations, which we write as

= - (u + C)
Pax

(3.36)
•Q (U, C) aQH

at (u ax

where

P u + 'dp Mu + w(p)
P0

(3.36a)
Q = u - w(p).

We now consider P as a function of x and t, and form its differential

dP LPdx + apdt.dP at

Then, using (3.36), we get

d =P [dx - (u + c) dt]ax

Hence P will be invariant along the curve defined by dx/dt = u + c. Similarly,
Q will be invariant along the curve dx/dt = u - c. The quantities P and Q are
known as the Riemann invariants.

The behavior of the fluid is completely determined by a knowledge of
P,Q everywhere in the x,t plane. The significance of the Riemaiin invariants is
that, if P is originally known as a function of x at some time to, then the
particular values of P will remain the same as the initial values along the curve
defined by dx/dt = u + c.

Let us look at this in terms of a wave that was initially sinusoidal. At
t 0 0, u0 sin kx. This is indicated in Fig. 3-4 by the heavy sinusoidal curve.
(One should think of this curve as plotted in a plane perpendicular to the
paper. Only the first half cycle will be studied.)

As time passes a particular value of the particle velocity, ul, will be
propagated along the straight line dx/dt = u + c. A number of such lines are
also plotted for various points in the wave, the slope dt/dx becoming smaller

1

•.+ + It
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t°t

lid
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Fispre 34.-Wave distortion as desobed by method of characteristics.

as u becomes larger. We can therefore reconstruct the curve 3t later position
in time and space, as is shown in the figure. The steepening of the wave
profile as it progresses is plainly indicated by this method.

Such curves as the straight lines in Fig. 3-4, along which P,< remain
invariant are known as the characteristics of the flow, and the technique used
for their solution is known as the method of characteristics. It is widely used
in fluid dynamics and shock wave theory (see Chapter 4).

3.4 The Fubini Solution.

i.i
Figue 3x.-Wci e dstolu tion ofE.(. as describ ed by mei fucaaceistics in13 o

loas h nuec mesbrers. W6 Te arn thereforexpresonstruct3the1curve etpatder poitin

aionotiea space, asi sown the fi gure.m Te septening o thew
3 equai n S

u(x, t) =uo sin ý! al~(~
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so that [recall Eq. (3.33)]

S= sin t - kx + •- (3.37)

where k = c/c. We now expand u/u 0 in a Fourier series

00

SE B, sin n(wt - kx) (3.38)
n•-I

where
27f

lo uf sin n(wot- kx) d(wot- kx) . (3.39)Bn I f t 0

Substitution of Eq. (3.34) in (3.36) and manipulation of the result
ultimately leads to the values of B.:

Bn= 2)Jyn (3.40)

where Jn is the Bessel function of the first kind of order n. The explicit
solution is then

u - 2 sin n(wot-kx) . (3.41)U0 nx

It should be noted that when x > 2, Eq. (3.37) becomes multivalued in
u, and cannot be used without modification (see Section 3.8). In the actual
physical case, such an infinite steepness will occur first at the point u = 0 and
then in its neighborhood, so that a shock front is formed with a very small
discontinuity in pressure. Such a discontinuity increases in strength with the
propagation distance and the wave becomes more and more nearly sawtooth
in shape.

It is of some interest to note that in the corresponding case of trans-
verse waves in water, multivaluedness is possible, as anyone who has had a
surf wave break over his head can testify.

1*.

• ~~.. ._
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Before leaving the nondissipative case, it is worth introducing a graphi.
cal representation made popular by Soluyan and Khokhlov [6a]. If we re-
turn to Eq. (3.37) and let W= u/uo, Z = owt - kx, o = x/a, we have

W =sin (Z+oW)

OI

Z = sin- 1 IW - oW . (3.42)

We now plot a graph of Z vs. W(Fig. 3-5). If we indicate the two terms
separately, the distortion of the wave form can easily be seen. Forward prog-
ress of the wave corresponds to clockwise rotation of the curve II. When a =
1, the negative slope of curve Ii 's the same magnitude of the positive slope of
sin- 1 IW at the origin so that infinite steepness (shock) of W as a function of Z
is achieved at that point.

3.5 The Viscous Case. Perturbation Analysis.

We shall now take dissipation into account. The distortions of the wave
form brought about by nonlinearity are equivalent to the production of
higher harmonics of the original wave, as is explicitly indicated in Eq. (3.38).
Since a w2 for fluids at frequencies far removed from a relaxation fre-
quency, this means that the higher harmonics will be attenuated more rap-
idly. Hence the net growth of these harmonics will be smaller than that
predicted by Eq. (3.38) so that the presence of viscosity should delay or even
prevent the appeaance of a shock front. There is then a region along the path
of propagation in which the rate of energy conversion from the lower to the
higher harmonics is roughly counterbalanced by the increase dissipation of
these higher frequency components, so that the wave form remains very
nearly constant. This is sometimes called the region of the comparatively
stable wave. Experimentally, its presence has been clearly demonstrated by
Krasilnikov and coworkers. [7]

The theoretical analysis of the wave propagation for the case of finite
but moderate amplitude by means of a perturbation analysis was first carried
out over one hundred years ago by Airy in studying tidal motion. [81 The
perturbation is performed in the acoustic case in terms of the initial Mach
number M0 = uo/c 0. It is assumed that the hydrodynamic variables, such as
the displacement t, can be written in series of the form

= + •2+'

in which each term is smaller than its predecessor by the factor M0 .

I-77
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ara
00- W• '/

'000I
Figure 3.5.-Plot of terms in Eq. (3.42). 1- sin- 1W; ff- -oW; broken line- Z.

In the case of viscous medium, Eq. (3.38) can be replaced by the

Stokes-Navier equation ( 1. 5 1)

-() + 7± + 77 aZiL (3.43)
ax (3 / ax2

(Where we have continued the notational change a -+ x mentioned on p. 3-11)
so that the nonlinear Eq. (3.16) is replaced by

+ 23t2t '+l a A ( b a b~L C2 a2
k ax) 7x 2at 0 ax2

'(3.44) 4
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where v is the kinematic shear viscositjy, equal to 77/po -- d b = 4/3 + i7'/1? is
the viscosity number. (This analysis is not valid in the neighborhood of a
relaxation frequency, where b would have to be a function of frequency) (see
Section 3. 10).

We now substitute our expansion of t in (3.44) and equate terms of
corresponding order in t. The resulting equation can be written in compact
form by defining the differential operator n:

I a2  vb a3  a2
n 2M -ax (3.45)

co2 0 t2 C02 3x2at tx2

Then 1 = (,

a aXn a 3 x x ax ,n > 1 .(3.46)

In deriving these equations, the further approximation that a/k << 1 has
been made; this is virtually always a safe assumption. In this approximation,
terms that are smaller by the factor cr/k than otherwise similar terms have
been neglected.

Equations (3.45) and (3.46) can now be solved in their homogeneous
and inhomogeneous parts, subject to the boundary condition

t(0,t) = - cos ot ,

corresponding to t(0,t) = u0 sin wt as used in the nondissipative case.
The solutions of (3.46) have been carried out up to n = 6.[91 The most

interest attaches to the series representations of the fundamental and second
harmonics, the early terms in which have the form

u
uI = UoR 112 sin (wt - kx) V (

[ R)
~ (i-NH21

(I R) -2-R2) + J.
2! 3! (4-cS (4 -2R

/I l -R 4/ It- R\33+ R1u2 uoR sin 2(wt-kx)+I- --.
K ýý 4aQ 4k )/ * '1J

(3.47)

where R =e-2ao.

I.
- - I
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Graphs of ul, u 2 , u3, u4 are shown in Fig. 3.6 which corresponds to
the case w/2n1 = 2.5 MHz in water, initial pressure amplitude 3.0 atm. Here
a = 0.00 16 cr- I, Q = 21 cm. As the graph indicates, the calculations can be
carried beyond the point x = 2, but to a lesser extent for each succeeding
harmonic.

It has been proved by Blackstock[101 that the series represented by
solutions such as Eq. (3.43) converge everywhere. However, the complete
form of the series has never been obtained, so that the partial solutions
represented by the first few terms may or may not be an entirely valid
solution of the problem. It should also be noted that when 4o0 is large, the
Keck-Beyer solutions (Eq. 3.47) are always a good approximation.

We can also compute the total absorption coefficient by forming the

expression for the energy density in each harmonic and using the relation

I dl•fin =7tn 21 dx

As a result, we obtain

in + 2 ax e ) +0 2 (3.48)

4a

Here 0 ... t denotes "order of".

3.6 Other Methods of Solution.

Before taking up the analysis of finite-amplitude wave propagation by
means of Burgers' equation, it is appropriate to discuss several other
approaches that have shed light on the problem.

A. Fay's solution. The most important of the other methods, particu-
larly from the historical viewpoint, has been that given by Fay in 193 1. [11
He made use of an equation of the form of (3.40) and expanded the excess

pressure in a power series in Z•t/3x. At the same time, he expressed atlax as a
Fourier series whose coefficients depend on x and include exponential decay

factors. The details of the derivation are quite involved. Among other assump-
tions, Fay limited his region of application to that of the comparatively stable
waveform. From Fay's analysis one ultimately obtains the following expres-
sion for the acoustic pressure Pac " P - P0:

brlw 'ý- sin n(wt - kx)
Pac = . sinh no x+-x0 ) " (3.49)

I - . .. .. .. . - __ ,
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Figure 36.-Fundamental and several harmonics as a function of distance
traveled in water. Frequency 2.5 MHz, pressure amplitude 3.0 atm
(from R. P. Ryan 19a1 ).
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To evaluate x0 , we consider the asymptotic form of the sawtooth part
of the solution in the analysis of blackstock's briaging function [see discus-
sion after Eq. (3.79) below]. ThP.; gives the amplitude of the fundamental
component in a decaying sawtooth as

2p1 " (3.49a)

1+0

where Pi0 is the amplitude of the original sinusoidal signal at x = 0 and o =

x/Q. This is to be compared with the first term on the right side of Eq. (3.49)

b____ b__ 2P1O0 (3.49b)
0 sinh a(x + x0 ) j3a(x + x0 ) x+x 0

By comparing the second and third terms in Eq. (3.49b), we see that x0
should be tified with the discontinuity distance 2.

An approximate evaluation of (3.49) can be carried out by noting that
sinh na(x + x0 ) can be approximated by not(x + x0 ) for the first few terms of
the series (which are the most significant ones). No major error is then intro-
duced by replacing the hyperbolic sine function by its argument for all n and
writing

2p,0. sin n(wt - kx) (3.50)
Pac = €.(X +X 0 ) n=1

where the summation is the expression for the Fourier series of the sawtooth.
This can be rewritten as

2p10Q [W 1 + kIx 4. t] (3.51)
Pac X + x0 2.

with the bracketed term running from - 1r/2 to + 7r/2. Hence the step in the
pressure will be

22

XO "
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with the maximum departure of the pressure from equilibrium being half this
amount. It is evident that the peak pressure does not decay exponentially. If
we try to fit an effective absorption coefficient to this case, then

I dpmax 1
aeff Pmax - X0 + (3.53)

Another way of expressing this result is to consider the ratio 0eff/' 2 to
Pmax/I:

OQeff/V 2  2 2._._ (3.54)

pmax/', P 0OQw poc0 3

so that aeff/V2 is directly proportional to Pmax/V, provided that Pmax is
evaluated at the same point as aeff.

A number of other approximate treatments have been developed.
Mendousse[121 suggested that the approximate stable waveform can be split
into two parts (Fig. 3-7). Over most of the wave, the particle velocity will be
proportional to x so that the value of -(u/lax) is as shown in the second part
of the figure. The viscous force, -(a 2u/ax 2), is then equal to zero except in

PorIicle Velociy a -Pressre 0 A•

AAI A €ý

(b)
Viscb. force so 8ur

PNonchgsai•port

tion: (c) viscous force.

(0__
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the immediate neighborhood of the crest, in which region its fluctuations can
be approximated by a sine wave of much higher frequency. Mendousse was
able to show that the attenuation predicted by this analysis was consistent
with the decrease in the height of the near sawtooth wave as propagated in
gases.

By a somewhat similar analysis. Rudnick[ 131 derived an expression for
the attenuation coefficient for the fundamental component of the wave,
arriving at the result

afund F 2,1/ 1/2
a ( aoc9] -2] ) (3.55)

B. Numerical Analysis. In 1954, Fox and Wallace[4] attempted a
graphical analysis of the distortion of the wave. Taking the implicit solution
of one-dimensional propagation in a nondissipative medium, they divided the
discontinuity distance into ten equal parts and determined the harmonic
content of the wave at the end of each such interval. From this they derived a
numerical growth factor bin) such that the content of the nth harmonic at
the end of the (k + 1)th interval was given by (

(un)k+I = (un)k exp .n) (3.56)

They then inserted an attenuation factor appropriate to the given harmonic.
For a nonrelaxing medium with infinitestimal absorption coefficient at the
original frequency given by a, the modified form for harmonic growth was

(ufn)k+I = (un)k exp [a4") - n2a~x] (3.57)

where Ax was the propagation interval.

Essentially the same procedure has been adapted by Cook[14] for
analysis by a high-speed computer. In addition, he made use of the Bessel.
Fubini explicit solution, Eq. (3.41) as a starting point, instead of the graphi-
cal method used by Fox and Wallace. C;.,uk has presented his results for both
harmonic content and effective absorption coefficient in terms of the reduced
distance a = x/Q (Q is the discontinuity distance) and for various values of a.
The shape of such curves is indicated in Fig. 3-8.

-_ L. . -- _ _ _ _
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Figure 3-8a.-Calculated values of second harmonic particle velocity as a function of
the reduced distance x/Q for different values of ,X. Figure 3-8b.-Total absorption
coefficient afin as a function of the reduced distance x/Q for various values of aQ.

Sis the discontinuity length, a the infinitesim al-amplitude absorption coefficient
(from Cook [ 14]1)

3.7 Burgers' Equation.

The analysis of finite amplitude waves in fluids has recently been stimu-
lated by a fresh approach. Consider an equation of the form

ut + uvX = 8UXX (3.58)

where 6 is a constant, and where we have introduced the reduced notation v.,=- O/ax, 'xx, = a2v/ax2, etc. This equation, which is known as Burgers'
equation, has two interesting properties. If 6 = 0, Eq. (3.58) has the general

solution v = f(x - vt), which resembles wave propagation in a nondissipative
medium [cf. Eq. (3.29)]. On the other hand, if one assumes the linear ap-
proximation of Eq. (3.58) with 6 * 0, then the solution is in the form of
damped waves. Thus, Burgers' equation resembles both extreme cases of the
finite amplitude propagation under study. However, unlike the case of Eq.
(3.44), Burgers' equation has a known exact solution.

A large number of authors have, with increasing success, attempted to
modify the writing of the equations of finite amplitude sound propagation so

7-- . \.
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as to fit an equation of the Burgers type. In the early (non-acoustic) analyses,

the use of the equation was limited to initial value problems. The work of
Mendousse (1953) broke new ground, 121 although its meaning for acoustics
was not fully appreciated until nearly a decade later.

Let us begin with the Lagrangian formulation of the wave equation for
a dissipative medium ( in reduced notation)

S(3.43)
= - + 1 + n') tx

To quote from Mendousse's paper:

"In the approximation that will now be described, the only physical
feature that needs to be used is the relative stability of the wave, regardless of
any assumption of a particular shape. That is, one imagines an observer mov-
ing with the wave velocity c, riding the wave, so to speak; and one assumes
that only slow changes occur in the state of the medium near this observer
(there would be no change at all for a nondissipated, nondistorted wave). In a
suitable system of coordinates some of the partial derivatives are then very
small and can be neglected in many places where they occur."

As a first step, we use the pressure-density relation (3.19), stopping
with the quadratic term, and recall that s = 1/(1 + tx) - I [Eq. (1.26)), so
that approximately

px= -Axx + 2A[txtxx (3.59)

Equation (3.43) now can be rewritten as

pott - btxxt = Atxx - 2"40txtxx (3.60)

Since our observer is going to move with the speed co, we are in effect
making the coordinate transformation z = x - Cot, r = t. The various deriva-
tives then transform as follows:

t,(z,r) -= txzt + t71

Which, from the definition of z,r becomes

,r c- , +\

i "
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Similarly,

tt= Co2 tzz - 2cotx. + tTT

tixx t 2Z

(3.61)

so that Eq. (3.60) becomes

2 (pt,- 2poc0 tz, + 2pc a -z ( + 1I) tZZf

+ + 7?) ozz (3.62)

with3 1 + B/2A, A = Pc 0o 2.
Thus far, we would have appeared to make things worse, but there is

hope. We recall from our previous analysis that the linear approximation for
the particle displacement t is

S= toe-•cos (.t - kx) ,

1 or, in the transformed variables,

t(z,") = - oe + CT)cos kz . (3.63)

We now attempt to estimate the relative size of the terms in (3.62). We recall

that a 2 << k 2, so that a = (l/2)(bw2 n/pOc0
3 ).

In magnitude, differentiation with respect to T multiplies the function
by ac0 while differentiation with respect to z multiplies it by k. Using the
definitions of a, b. we can write the orders of the terms in (3.62) as

Term Order of Magnitude

Potrr toPoC0 2 of2

- 2poCotz aioo02r

2PoCoo2 ztz z toPoCo 2 k 3ot•

-(4 77 + 7n') tzz toPoco2()2(3 0
S71' CoAZZZ opoc

(3.64)

_______________

t : K___.
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It is evident that the first and fourth terms are of higher order. We
therefore neglect them and rewrite our equation as

- 2oc0tz, + 2poc02p3tztzz + brjcotzzz = 0 (3.65)

which is of the form of Burgers' equation if we set v = at/az = tz.

One could just as well have employed a retarded time r = t - x/c0 , z = x
(so that t = oe -`z cos or), and make similar approximations. The deriva-
tion is somewhat lengthier, but eventually one emerges with the result

3 ~~1 bi7C3O
c3 z - 0 -o07 .2 urT (3.66)

which is the form of Burgers' equation used by Blackstock. [15] *

Equation (3.66) can be further reduced, to nondimensional form, by
dividing by Ou02c0 (2ff/x) and introducing the notation W U/Uo, o z/l,y
WT and r 13 (Uo/ 0oa) (21T/X) = l/&*V. The result is

Wa -WWy =- wyy (3.67) '.

*Blackstock also includes the heat conduction losses, which have the effect of adding

the quantity (7,- l)IPr to the viscosity number b in the term on the right in Eq. (3.66).
Here -y is the ratio of specific heats and Pr is the Prandtl number = ilc /K, where K is the
thermal conductivity. The relation (1/2)(0l/p)[b + (Cy- 0)1Nh] is equal to avo(X/2r)2 for
a 3ound wave of length X and absorption coefficient a.
"**Soviet writers often speak of the Reynolds number (Re) in this connection, but the
definition varies. Thus Khokhlov and Soluyan (161 use

e 0 U0 W
Re -C T2a o2 2

while Naugolnykh [ 171 and Goldberg 1181 use

Pol'ox 1 U0  r
Re -- = - w= -

21rb 2a C2 20

We have avoided its use, because of the ambiguit, and retaLn r to which the name
Goldberg number is sometimes given.

K 7Ii-u___
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which is of the same form as Eq. (3.58). If we make the change of variable

2 a 3 In • (3.68)
W 17•'Y ý ay

Eq. (3.67) reduces to the diffusion equation

I
ý0 = r tYY (3.69)

The solution satisfying the usual boundary conditions has been developed in
detail by Blackstock. The final form for " is

=I (0 . 2 (-j)fl 1,, (0~- e-nof cosnfy
n=1

We can then recover u = u0 W from (3.68):

(3.70)

(~ ffl+1 iii, (~ n ef 2 a~x si n(wt - kx)U - n=1l -)+I"n 2

"o 10 + 2 (-1 ) I( e-ax cos n (wt- kx)
n=1

where In is the Bessel function of order n of imaginary argument:

In(z) = i-nJn(iz)

The solution (3.70) is quite a complete one, but its form has thus far
prvented any simple expression of it. As Blackstock has pointed out, what
we desire is the Fourier series

-- = Bn sin n (ct- kx) (3.71)Uo n=l

i.1
i~ ....
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but what we have is its logarithmic derivative. Various computer methods

exist to evaluate (3.70), the results of which are very similar to those ob-

tained by Cook (see Fig. 3-8). The extra attenuation of the fundamental, due

to finite amplitude effects

EXDB = - 20 log1 0  -(3.72)

has been computed by Blackstock for various values of Ir (Fig. 3-9).

1 I 1 1 1 1 1 1 1 1 1 1 1 1 " I I .f

9 0 - G - 1 00 " 0--

so-

_ 70I- G-10,U
60 -

50 I G 100 00

Go50

0I40-
N0

.30 W20

X 
-5

W20

10 
1

.5 1 2 5 10 20 so 100 103 104 105 lo0l

Figure 3.9.-Curves of EXDB for values of r (written G in figure) computed for Eq.

(3.73) and similar approximation. The dashed curve is the asymptote EXDB = 20

log [(o+ 0)/21 (from Blackstock [f15).

The asymptotic form of (3.63) for large 1' has also been studied by

Blackstock, following the original treatment of Cole.[19J Several orders of

approximation are given, the highest being

2 - i coth (I +÷0)
2 r sin n (wt- kx) . (3.73)

,--7,.- -, ,2 ( -,7)

S... . . .• • ... • : .. . . .. . - - ; . -"r
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If the coth term is neglected, Eq. (3.73) reduces to the Fay solution
(3.49), provided that x0 = 2 in that equation.

Equation (3.73)-the "improved" Fay solution-is highly reliable for
o>3, 1r 50.

3.8 Blackstock's Bridging Function.

In 1966, Blackstock[20] proposed a method for connecting the Fubini
solution at short distances from the source with the approximate sawtooth
solution of Fay that is valid at larger distances.* To establish this connection,
we assume that the particle velocity at x = 0 is given by u = u0 sin W.t or

W = sin 4) (3.74)

where W = u/u 0 and 4F = wt, t being the time.
A particular value of the particle velocity u (orW) travels at the con-

stant speed v in a nondissipative medium, where v is given by Eq. (3.28)

2A

V --: Co 1 + (3.28)

This displacement velocity at the space point x and time t would have
originated from the point x = 0 at an earlier time t' given by

t -0 tl = .1ý- 0! (3.75)

where the binomial expansion has been used for the expression in parentheses
in Eq. (3.28) under the assumption that Bu/2Ac 0 << I (small Mach number).

The amplitudes Bn of the various harmonics of the distorted wave
[Fubini solution, Eq. (3.38)] are given by Eq. (3.39), which we now write in
the notation

Bn = f W sin ny dy (3.76)

0

where Y w-zt - kx.

*It has been noted by at least one observer that this actually is a separate approxi-
mate solution, valid for intermediate ranges.

A1
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As the wave travels out from the source, it undergoes progressive distor-
tion until the point x = 2 is reached at which the shock front first appears,
with the slope div/dy becoming negatively infinite at that point. As the wave
progresses further, the interval of infinite negative slope becomes steadily
greater, i.e., the step in the velocity profile (the shock front) increases in
strength. All that we are saying is that, since the quantity W cannot become
multivalued, more and more of the wave "'piles up" at the front marked by
u = 0. This process is illustrated in Fig. 3-10.

The initially sinusoidal wave at x = 0 (Fig. 3-10a) has just reached the
condition where aW/ay -+ - at just the point u = 0 in (b). In (c), a consider-
able part of the wave has reached the shock front, so that a large velocity
jump appears at u = 0. Fig. 3.10d shows the virtually completed sawtooth
formation.

Vb

I) ~C U II
'I

Figure 3-10.-Distortion of waveform during propagation
(after Naugol'nykh [ 17]1, p. 16).

In order to treat the altered conditions for x > R, we rewrite Eq. (3.75)
in the form

t,=t- t + U
co2



SEC 3.8 NONLINEAR PROPAGATION IN FLUIDS 125

or, using the definition of Eq. (3.33)

x + x 11
co WQ u0

so that

4 t = = = wt - kx + W-w

or

4) = y + o sin 4). (3.77)

if we now return to Eq. (3.76), we have

Bn =-- sin 4) sin ny dy

-. sin cos fly +f cos fly cos 4) d4)].
y=O f=0

(3.78)

When 4, = n', y = IT Ifrom Eq. (3.77)]. Asy decreases, 4) falls, not necessarily
to zero, but to 4)min, where

rmain = a sin 4 rmin

We can then rewrite Eq. (3.78)

Bn= - sin r.in + 2.y cos ly d(-

since d(4b - y) = o cos 4D d4) from (3.77). But

f cos 'iy dy 0

i.0

v'N
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so that Bn finally becomes

IT i2. 21•

Bn sin 4 min + nu cos nQ(- asinD) d4 . (3.79)
nmin

If a < 1, (Dmin = 0, the first term on the right-hand side of (3.79) vanishes,
while the second becomes the Fubini amplitudes of (3.39). For o > 1, i.e., in
the shock region, the first term begins to increase. It can be shown that for

very large values of o, this term has the asymptotic value of 2/n (I + a),
which defines the relative amplitudes of the components of a sawtooth. At
the same time, 4jmin -" 7T, so that the second term on the right vanishes. Thus

a smooth transition is made from one solution to the other. A sample of this
transition is shown in Fig. 3-11.

10
I10 9 ,^ , S ow foot'h ) a = Fub 'n ,

(-8 eS Sowl~ h 1 8,1 F Lub f,

2 -

0 o . ,( So-tooth)

(Fabini

o L 2 3 4... F.......

F 4 5I6 7 8(9

Fiure 3-1 L.-Amplitude of first harmonic vs. distance. I-first term on right¢.

side of eq. (3.79) (n = I); 2-second term; 3-total B, (after Blackstock
1201 ).

3.9 Work of Soluyan and Khokhlov.

An excellent summation of our understanding of the distortion prob-

lem has been made by Khokhlov and Soluyan. [16] They examined in detail

the representation for •" in Eq. (3.68). This solution can be written as the

summation

00

2 (-1)n jn () e-n ax sin nZ (3.80)

n=O

I- i _ _ _ _ _ _ _ _ _ _ _ _ _
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where Z wt - kx, or as an integral,

exp r cos z -( -F' ) dZ. (3.81)

If one considers the integrand of Eq. (3.81)

Y= exp r cos z r (Z-Z J (3.82)

one can see that for F (= I/l) small, the first term is small and the principal
contribution to the integral comes from the second term in the ..eighborhood
of Z = ZO. If P becomes large, however, the function will have peaks in the
neighborhood of Z - + r. This latter condition leads to the result

u[___ [ rF'Z 1 3.3

u = a 1= Z + irt tanh 2(1+.)
-u I +2(12(l(3.83)

t Here it is required that a > 1 + 2/P.
Soluyan and Khokhlov therefore break up the solution of Burgers'

equation into three zones.
(1) From the source to a point x such that a, = x1 /Q < I. Here

the dissipative effects can largely be ignored and the Fubini solution applies.
(2) From the neighborhood of x, to some point x 2 ; here, both dissi-

pative and nonlinear effects must be considered simultaneously. The point x 2

is defined as

21 21
Mk a

(3) From x 2 on. Here the sawtooth has decayed into what is
predominantly a damped harmonic. In fact the first two terms are

u = 4 e-aX2•x z
U 4 [c sin Z + e- 2  sinZ. (3.84)

The wave shape in the second region can easily be calculated from Eq.
(3.83). Figure 3.12 shows u/u0 for the case F = 10, which corresponds to a
peak initial p/f of 1.5 atm/MHz. The plot is shown for the values of a = 1, 5,
29-the vertical scale in the last case being multiplied by 50. This relation

K.
- 4"
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-- 29

I mI

Figure 3-12.-Wave form from Eq. (3.83) for various o.

(3.83) has suffered surprising neglect in the study of nonlinear propagation
although, as Blackstock has pointed out, Eq. (3.83) is an exact solution of the
Burgers' Eq. (3.67).

From Eq. (3.83) we can also deduce an expression for the effective
thickness of the wave front-the distance between the crest and trough of the
wave. Neglecting the slight variation of o over a distance of a single wave-
length, we have

dW- [I + sech 2  (3.85)
dZ I + a

r4
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where A = 2(1 + )/iri. The extrema therefore occur at Zm such that

Zm .= t A cosh- I' 7• (3.86)

so that the thickness Twill be

T = 2Zm = 2A cosh-1 v'/f . (3.87)

Since Z = wtt - kx, T is measured in radians. The physical distance corre-
sponding to T will be

T X2"f= C
2ir c

Table 3.3 shows the thickness of the front for the cases examined in
Fig. 3-12.

Table 3.3
r t

A A, ra T T/21r (fraction of a period)

1 0.127 0.58 0.092

5 0.382 1.30 0.207

29 1.91 2.87 0.465

sine wave 0.5

3.10 Spherical and Cylindrical Waves of Finite Amplitude.

Thus far, our analysis of finite amplitude wave in this chapter has been
limited to plane waves. We must now consider spherical and cylindrical waves.
We shall not repeat the complexities of Section 3.5 in the adaptation of the

I,
- I.- * .... K_•
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acoustic equation to fit Burgers' equation, but point out that a general form
corresponding to Eq. (3.66) can be obtained. [10] It is

u _ 3br

ur + n-- - CI uu1  = - Uurr. (3.88)

Here n = 1, 112 and 0 for spherical, cylindrical and plane waves.

A number of Pttempts have been made to generalize Burgers' equation
to include the cylindrical and spherical cases. The most significant of these
are those of Naugolnykh and coworkers [211 and the stretched coordinate
concept of Blackstock. [221 A summary of work in this area has been given
by Cary. [24]

In the stretched coordinate representation, Burgers' equation can be
written as

Wf - WWz = EWz (3.89)

where

W (-U)

Z - *o

x

UO =" "

x0= source radius (for spheres and cylinders)

x = field position in all three cases
(3.89a)

The definitions a, f and E are given in Table 3.4.

While this representation appears to make the spherical and cylindrical
cases solvable by analogy with the plane wave case, that is not so. This is due
especially to the variable behavior of the coefficient E.

WRI
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Table 3.4

Notation in Generalized Burgers' Equation

Type of wave a W f E

Plane 0 U/U0  f- 1

1 ,•/2u

Cylindrical 1/2 ( lU 2[(a°o)0)1/2 -°01 (1 +--)1o
00)o U0  o

Spherical I a-)NU O o In a er-ý00 )0 In- 'FO expo

An interesting technique has been developed by Banta [231 and Cary
[241 for the problem at hand. In this method, the function JV(f,Z) is ex-
panded in a Taylor's series about the point f-=0:

W ) D ( . (3.90)
n=O n=O

Further use of Eqs. (3.89), (3.90) involve approximations. A few spe-
cial examples will be considered here. If we limit ourselves to zone 1 of Sec.
3.9 arid large values of the Goldberg number r, (r > 5) we can assume that
the terms containing r- I in Eq. (3.89) (EWzz) are small in comparison with
WWZ.

We therefore expand the various derivatives D!?. By repeated use of the
approximations just stated, one can obtain a simplified expression for the
derivatives. The final solution for plane wave is then

wVfIZ) fn (Dn +n 1 )
n=O

(3.91)

+ ED,,L L: D~n W(Z
n=1

A similar expression can be obtained for spherical waves. Since it is
quite cumbersome, it will not be written out here (see ref. 24, p. 1371).

,-. ;. \
Li•fl.

------ '-j- - -- - -



132 NONLINEAR ACOUSTICS SEC 3.10

These expressions can be used with the computer to giye detailed infor-
mation about the initial stages of the finite amplitude beam and are especially 4
useful in treating parametric arrays (see Chapters 9, 10).

3.11 Case of a Relaxing Medium.

Thus far, we have considered the propagation of a finite-amplitude
wave only in a nonrelaxing medium, in which a is proportional to w 2 . We
shall now consider the relaxing case, under the limitation that the velocity
dispersion is small, i.e., that the relaxation strength e = (c! - c0

2 )/c0
2 << 1.

The derivation involves the addition of a quadratic term in p to the
relationship between p and p and the introduction of the quantity ',* known
as the degree of reaction in the equation for the Helmholtz free energy F:

dF = - SdT - pdV - Adý (3.92)

where A is known as the chemical affinity. As " goes from 0 to 1, the reaction
(which here would be the internal state of the system) proceeds from a state
where there are only reactants to a state where there are only products.
An equation such as (3.92) was used in the derivation of(1.58).

We now form the expression for the sound velocity. Since c2

(aplap)s, we need to evaluate ap/ap in terms of the new variable:

dP LPar dp + (ý dý

or

(•) L P• + (LP) (at) (3.93)
dp fs - ps a\

If we now introduce the rate equation

-7 (L" -) , (3.94)

where the subscript r has been added to the symbol for the relaxation time to
distinguish it from the T used for the retarded time in the Burgers analysis, we

*For a more complete discussion of the degree of reaction, see Beyer and Letcher,
Chapter 4.

+ __ _ _____
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can parallel the development given by Beyer and Letcher* to obtain the
relaxational equation

2 ct s)

(3.95)

+ Pe - pocs - pOc 0  A 0.Trr

Then making the transition to the retarded time representation, we have
approximately

au • au P_, __2_

az 0 " 2 a"2  (3.96)

+ e2pocjuCoe~~o
4, += - --oT-

Here P = (3p/la)po and e are both small quantities.
In an effort to provide at least a partial solution of Eqs. (3.96), Soluyan

and Khokhlov [251 examined possible solutions in the limiting cases w7" <<I
and wr >> 1.

As before, we divide the path of propagation into three parts:
(a) In the first region, the dissipative effects are negligible. This is

equivalent to setting the right side of the first of Eqs. (3.96) equal to zero;
i.e.,

U a- = 0 (3.97)
3az c0

2  a"

subject to the boundary condition u = u0 sin wt for x =0. This equation has
the solution given by Eq. (3.42),

UU
Z = sin -I0 - a -. (3.98)

(Z = wt - kx), i.e., the same result that was obtained in the nonrelaxing case.

*Op. cit., pp. 99-102.

ii , -n. ,l •r,, l- •-,l I[ ; u: •i nn mIl l n w l • l i -m llI i l-'
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(b) Beginning at a = 1, the second region is that for which the
approximate sawtooth is undergoing slow decay. To solve Eqs. (3.96) in this
case, we write

au LG

8= =07
3z aT (.9

where

=-G u2 + -T (3.100)
-co 2 2pco

If dissipation is neglected, P = 0 and a plot of -G vs. r would be the solid
curve in Fig. 3-13. This curve is equivalent to a perfect sawtooth at T = 0.

When the relaxation loss is taken into account, the wave front takes on
a finite steepness, as in the case of Fig. 3-12. In such a case, u is a rapidly
decreasing function of r near r 0 0, so that the second term on the right in Eq.
(3.100) is virtually a constant near r = 0, giving (3.100) the dashed form in "
Figure 3-13. Hence G is constant over most of the wave front. This is equiva-
lent to the condition au/az = 0 and yields the solution

2 u2
au I U1  u (3.101)Fr 2rr CC0 311

213

where

Ut Uoz (3.102)

co

is the limiting jump ini the amplitude of the (velocity) sawtooth.

If Eq. (3.101) is integrated, one gets

Z + Z0 (UI +u) -I U 2

n (U U K+(3.103)

- " (1 -U)+

- . . . _ _ __ _ _ _ _
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-G

/

N
N

1*

Figure 3.1 3.-Plot of Eq. (3.100) (aftei SoIuyai� and Khokhlov 1251).

where

-c 2
2�3c 0u2  (3.104)

For large K, this combination yields the result

u - u1 tanh (+) (3.105)

which, when matched with the sawtooth, gives

UO (z)J
u = - Z + iT ta nh (3.106)

which is similar to (3.83), except that A here has the form

1+o 2 (3.107)

where I" = U 0 /C 0 EJ.T�.
Actually, this presents nothing basically new. As long as Wir « 1, the

absorption coef�cierit is proportional to w2 and could have been introduced

1*
I.
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through a bulk viscosity added to (4/3)v7 (17 is the shear viscosity). Thus, if we
express the shear viscosity in terms of a relaxation time rsh, then

417 = rshpoec 2 , r -30

and Eq. (3.106) reduces to the precise form of (3.83).

(2) n" >> I

We first write the integral solution of the second of Eqs. (3.96):*

ePOcO u(T') exp dr'
P =r

F-T f

(3.108)

[1 - exp

An approximate expression for 32ý1/ar 2 can be found by expanding the ex.
ponential in the integrand of Eq. (3.108) in a power series and differentiating
the resultant expression for " twice with respect to r:

-2•" _ -o-- [ 1 (u - Uav (3.109)

where Uav, the constant part of the velocity, is given by

Uav = T u(f') dr' = 0

for our original boundary conditions.
Equation (3.109) can then be substituted in Eqs. (3.97), (3.100) to

yield

au au+ + f U = 0 (3.110)
az c2 + 2J +T 2co0 Tr

•Sotuyan and Khokhlov, ref. 25, p. 172.

4- -
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which has the solution

k uo) U0

(3.111)

- (J.,T•x

where

2Coe (3.112

The third term in (3.103) is the modification of the equation due to the
velocity change from co to c.. The rest of the equation can be seen to be of
the same form as Eq. (3.42) and can therefore be analyzed graphically in the
same way. That is, we plot wor vs. ueXx/uo which is then the sum of the
inverse sine function and a straight line with slope -Z, where

Z = ¢0w'- - (1- e - -ý` (I ( - .- x
~3~0

Soluyan and Khokhlov refer to Z, which has the dimension of a length in
angular units, as the reduced distance. It rises from zero at x = 0 to the
limiting value Z,. = 2c 0 r/Ek as x -

Now Eq. (3.42) indicates the formation of a shock discontinuity at u =
1 (or x = Q). Since Z is the generalization of a, it follows that no shock front
can form if Z < 1, and the distortions will be given by Eq. (3.111), which can
now be written in the form

wr' = sin- Wekx ( e ( x) ex (3.113)

where r' = r + e.x/2cO.

If the initial u0 is large enough that Z.. >> 1, the nonlinear effects
dominate virtually from the beginning, and one is dealing with a decaying
shock wave from x = 2 onwards.

The nonlinear effects in a relaxing medium are summed up by Soluyan
and Khokhlov in a graph of the waveform for relatively large distances from
the source, but all for the case a < I (Fig. 3-14).

I. ,•• _
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Figure 3-14.-Profile of a finite-amplitude wave in a relaxing medium
(after Khokhlov and Soluyan 1161 ).

Curve I corresponds to the case WT << I, curve 3 to wT >> I. Since
w.r - I is an intermediate case, involving no special effects, it should be

contained between the two curves and is suggested by the dashed curve (z).

The problem of the intermediate case has also been treated approxi-
mately in a perturbation analysis. [26) In Eq. (3.45) the term vb refers to
the effects of shear and bulk viscosity (we neglect thermal conductivity so
that vb = (477,'3 + 7?')/pO. When we operate at a frequency well below the
relaxation frequency, a is related to vb by the expression

I i~bwo2  q0= 2 Pbo2o (3.114) •

Poe0

Ryan, Attanasio and Beyer [26] used Eq. (3.114) to replace vb in Eqs.

(3.44) ff., employing the value of a corresponding to the frequency involved
in each individual term of the inhomogeneous and homogeneous equations.
Expressions were found by them for the first few harmonics as a function of

distance. In this analysis, all effects of dispersion have been neglected. The
terms corresponding to Eqs. (3.47) are

u= uoe-'1x sin (wt-kx) X

{ - (2Q) 2( 2 - 2 1 ) a- I2 21 2a a2 X

u2 uoe_2alX sin 2(wt- kx) [1 - e_(02_2O)X , 2+...
(a 2 - 2a 1)

(3.1l15)

-. - - -- . - - . - . . . .. ..- _ --~

•- .-..-" --



SEC 3.12 NONLINEAR PROPAGATION IN FLUIDS 139

3.12 Experimental Verification.

A. Electrical Method. The relations derived in the previous sections
have been subjected to a number of experimental tests. It has long been
known that the use of too high an intensity in ultrasonic absorption measure-
ments would lead to a higher measured value of co than that obtained at very
low intensities. Eventually, a number of observers attempted to measure the
absorption coefficient as a function of the initial intensity. Unfortunately, it
was not realized in a number of these researches that the value of the effec-
tive absorption coefficient would vary with distance from the source, so that
this valuable parameter-the range over which the measurement occurred-
was not always recorded. Such measurements gave an average effective
absorption coefficient over some range, usually 10-40 cm.

Another problem was raised by the fact that the usual detecting instru-
ment was a quartz or ceramic transducer that was sensitive only to odd
harmonics of the distorted wave. Nevertheless, surprisingly consistent results
were obtained.

In 1935, Thuras, Jenkins and O'Neil [271 made absorption measure-
ments in air. Sound in the frequency range 300-2000 Hz was generated in an
air-filled tube 3.8 cm in diameter and 1 S m long. The second harmonic signal
developed in the tube was measured. While exact quantitative agreement was
not to be expected, because of the many approximations involved in this
early work, the qualitative aspects of the nondissipative theory were con-
firmed; namely, that the acoustic pressure of the second harmonic generated
was approximately proportional to the distance traveled by the sound, to the
frequency used, and to the pressure of the original signal.

In 1954, Fox and Wallace [28] reported measurements on a 5 MHz
sound beam with initial intensities up to 4.00 watts/cm 2 . Measurements were
reported in water and in carbon tetrachloride. In the case of water, at points
several centimeters from the source, the rate at which the intensity fell off
was equivalent to an absorption coefficient about five times that due to an
infinitesimal wave. While they were not able to observe the initial rise in the
total absorption coefficient predicted by Eq. (3.48), their results were con-
sistent with a numerical and graphical analysis which they presented.

In 1957, Krasilnikov et al. [291 made a striking improvement in tech.
nique by measuring the harmonic content of a beam from a 1.5 MHz source in
water. To filter out unwanted harmonics, they used glass or metal plates set
at some appropriate angle with respect to the direction of the beam. By
suitable choice of plate composition and thickness, as well as the setting
angle, they were able to reduce undesired harmonics to a very small amount
and thus achieve a harmonic analysis.

A reason for this success can be found in the following way, when one is
dealing with the case in which x > Q. In Eq. (3.48) the absorption coefficient
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remains fairly constant over the measured region, so that the first objec-
tion becomes less significant. In the second place, since the piezoelectric
receiver is nearly equally sensitive to all the odd harmonics, we can replace
Eq. (3.50) by

nb)7w sin n(.ot - kx)
(Pat odd = aX + X0). n

1,3,5...

The acoustic intensity will then be

1 0 (pat) 2 odd = wX 2 n

and the effective absorption coefficient aeff will be

I dI d In I _ + ln'•(x"+xo)- 1
aeff 21 dx dx X + X0

exactly as before.

Figure 3-15 shows the measured values of the absorption coefficient
aeff in water. Here aeff/V 2 is plotted against (Pae)IV. The slope of the
straight portion of this curve is 2 X 1015 cgs units, while the computed slope "

from Eq. (3.54) is 2.1 X 1015 cgs units, which is far better agreement than
the approximate analysis warrants.

Krasilnikov and his coworkers also used a thermal detector to measure
the total incident acoustic radiation and recorded effective absorption coeff-
cients up to 30 times the infinitesimal amplitude value.

A modification of the radiation pressure microphone was used by
Barnes and Beyer [30] to determine the effective absorption coefficient. In I
this experiment, the rf carrier wave applied to the transducer is 100% modu-
lated by an audio frequency square wave. As a result, the radiation pressure
oscillates at the audio frequency. This signal, whose amplitude is proportional
to the ultrasonic intensity, is detected by means of a condenser microphone.
In this way, the ultrasonic intensity can be measured at a variety of distances
from the source.

The ultrasonic intensity for a specific case is shown in Fig. 3-16, to-
gether with the relative intensity obtained from the perturbation analysis.
The slope of the continuous curves, which is in each case proportional to the
effective absorption coefficient, is seen to begin at the infinitesimal rate (the
dashed lines) close to the source, increase to a maximum, and then fall off
gradually, once again approaching the infinitesimal amplitude value at the g
largest distances measured.

I...

. ir
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Figure 3-15.-Values of the measured absorption coefficient ian water as a
function of the initial pressure p and frequency v. (+) 1.5 MHz 1291; (o) 3.85
MHz; (o) 5.85 MHz; (x) 6.80 MHz; (A) 8.74 Mi~z; (o,*,X,•) 129a1.

A comparison can also be made here with the Fay theory. From (3.48?,
the ultrasonic intensity in the sawtooth region is proportional to I /(x + x0 )
so that

logI = const - 2 log (x +x 0 )

If log I is plotted against x, the result will be a curve of fixed shape, which has
the limiting value shown in the figure for the case x0 = 0, which corresponds
to an infinite source intensity. As x0 increases, the curve shifts to the left in
the diagram. The Fay region for each of the experimental curves can thus be
established.

The distorted wave form has also been studied in detail. Progressive
distortion of a finite-amplitude wave is shown in Fig. 3-17. while Figs. 3-18,
3-19 show experimental values of the components of initially sinusoidal
waves, compared with the theoretical values obtained by perturbation analy-
sis.

B. Optical Methods. Many optical methods have been developed for
the study of ultrasonic waves, but the method of optical diffraction has been
especially useful in the study of finite-amplitude waves. A schematic diagram
of the method is shown in Fig. 3-20. A collimated monochromatic light beam
is pass.-d through a tank containing the liquid and the ultrasonic beam. The
light is then focused on a screen. Since the sound beam represents a variation
in the local index of refraction that is equal to the wavelength of the sound N,

" : :. - . . . .' :_
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Frtquency i1 6 MC
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Figure 3-16-Comparison r theoretical an4 experimental values of the
intensity of an I 1.6 MHz svund beam in water. The solid line represents
values computed from formulas of Keck and Beyer 191, except that the
uppermost curve is computed from the Fay [Il) theory with x0 = 0.
Broken curves indicate intensity computed with the use of infinitesimal
amplitude absorption ca. N = I/4A (from Barnes and Beyer 1301).

the system is akin to a diffraction grating. The focusing lens merely assures
that the resultant Fraunhofer diffraction pattern will be registered on the
screen. Under these circumstances, X is the grating spacing, and the diffrac-
tion formula for the maxima in the diffraction pattern becomes

sin 0 =

where XQ is the optical wavelength, 0 the angle made by the diffracted way
with the horizontal and n is the order of the diffraction image.

The theoretical analysis of this problem for an infinitesimal-amplitude
wave was first performed by Raman and Nath, 1311 who showed that the
intensity of the light in the nth order diffraction image was related to the
peak change in the index of refraction 5M in the following way

I a Jn (.A

V A
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x 1.3cm

r .137

x 5. 0cm

" = .525

x= 10.0 cm

a- =1.05

I 1x _-5i.0cm

S=1.58

x =ZO cm

a 2. 1

Figure 3-17.-Progressive distortion or waveform in an
originally sinusoidal signal. P = 2.58 MHz, initial acoustic
pressure 6.0 atm. The medium was water at 22'C; x is the
distance from the source, a = reduced length = x/1Q. (a) x =
1.3 cm, o = 0.137; (b) x = 3.0 cm, o = 0.525;(c)x = 10.0
cm, a = 1.05; (d) x = 15.0 cm, o= 1.58; (e)x = 20cm, o =
2.1 (from R. P. Ryan, Ph.D. thesis, Brown University,
1963).

where L is the width of the ultrasonic beam traversed by the light and Jn is

the Bessel function of order n. Since 6bj is related to the density change Sp by

the expression of Lorenz-Lorentz

ITO 6M (3.116)

PV
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Figure 3-18.-Comparison of theoretical and oxpd.r'mental values of the
relative second harmonic content of 1.5 MHz waves in water:. . . ...
theoretical 1 181 ; . _ - . experimental (291 ; - B/A =5.5 and
--------- -----_---B/A =7.0, theoretical [9). The symbol (I) indicates the spread
of expefrimental data.
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Figure 3-19. -Comparison of theoretical and expeurimental values of
harmonic growth and decay for 2.5 MHz sound waves in water,
compared with theoretical predictions: (-) theory; (X) digital
analysis; (9) analyzer measuremeiit. Initial pressure amplitude 3.0
atm. The curves marked "digital analysis" were obtained by a
computer analysis of waveflorms photographed on an oscilloscope
screen. Those marked "analyzer measurement" represent data ob-
tained by passing detected signal through an electric filter tuned to

the appropriate harmonic (from Ryan, Lutsch and Beyer 1391).
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Transducer

Figure 3.20.-Schematic diagram of the Debye-Seats method (from HI. J. McSklIrnn,j
"~Physical Acoustics" (W. P. Mason, ed.), Vol. IA, P. 280, Academic Press, N. Y.,
19641.

the light intensity is an excellent measure of the intensity of the sound wave.
An example of these diffraction results is shown in Fig. 3-21.

-- IIIII

muli milm

miliii.Im ~ u r
1111111101i11111

Figure 3-21I.-Optical diffraction in a traveling sound wave at various

314 (1940)].
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Shortly after the initial work on the optical diffraction by sound,
Sanders [32) noted a slight asymmetry between the intensities of the positive
and negative diffraction orders. At the time, it was suggested that a second
harmonic signal was present in the source. Some twenty years passed, how-
ever, before it was realized that the true explanation of the asymmetry lay in
the presence of distortion in the medium rather than in the inadequacies of
the generator. Almost simultaneously, Mikhaiov and Shutilov [331 in the
USSR and tiedemann and coworkers in the USA [341 demonstrated this
finite-amplitude asymmetry in optical diffraction. We shall give a brief discus-
sion of both methods, beginning first with that of Mikhailov and Shutilov,
since it is much simpler mathematically.

If the optical diffraction experiment is carried out at very high inten-
sities, many diffraction orders are excited (Fig. 3-22). A diffraction order of
maximum intensity can be seen on each side of the central lire. As long as the
sound intensity is very weak, the location of these maxim-i is symmetric (see
Fig. 3-21), but as the sound intensity is increased, the negative-order maxi-
mum becomes the brighter one, in addition, it occurs at a lower order number
than the maximum among the positive order lines.

The net effect of the ultrasonic beam at low sound intensities is to
modulate the phase but not the amplitude of the light passing through the
cell. As a result, the wavefront of the light emerging from the cell has the

Figure 3-22.-Optical diffraction at high acoustic intensity. (a) Pattern with direct
ultrasonic beam of 15.1 W/cm 2 , r - 583 kHz. The remaining photographs correspond
to the same experimental arrangements but with the acoustic flltot p.n;Ang only the
second harmonic (b), third (c), and fourth (d) (from Mikhailov and Shutilov 1331.)

II -.
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form pictured in Fig. 3-23a. The resultant "corrugation" of the wavefront of
the diffracted light beam would then have the same shape. Since the slope of
each side of the sawtooth wave is proportional to the value of the pressure
gradient in that portion of the cycle (recall Fig. 3.7), and since the portion of
the wave cycle during which :.he gradient of the condensation is positive is
now smaller than that during which it is negative, the light intensity of the
maximum in the forward direction is less than in the back direction. Further-
more, the order of the diffraction image for which refraction occurs must be
greater in the forward direction. Shutilov was able to show that 01 = X2m / ,
02 = - Xem 2/X, where X is the acoustic and Xq the optical wavelength and
M1 , m2 are the orders of the positive and negative intensity maxima.

Mikhailov and Shutilov worked at a frequency of 583 KHz and with
sound intensities up to 20 Wfcm 2 , corresponding to an excess pressure of
nearly 8 atm, a much higher value, especially for such a low frequency, than
any at which Hiedemann et al. operated. Therefore, the approximation of a
nearly sawtooth waveform was reasonable in their case.

In the measurements of Hiedemann and his students, the intensity of I
the sound was sufficiently low that only a small number of harmonics had to
be considered. In their analysis, which we shall now summarize, it is further
assumed that the odd harmonics are in phase with the fundamental and that
the even harmonics are 1800 out of phase.

The Hiedemann analysis is an enlargement of the infinitesimal-
amplitude diffraction theory of Raman and Nath. In essence, the distorted

wave is analyzed into its Fourier components. The diffraction effect of each
of these components is then combined to obtain the total result for the case J
of a light beam whose width is very large compared with the ultrasonic
wavelength. The light intensity of the nth order image is

n

0
AJAcfos/i.

S~DiffrocfleI

(a) ES)

Figmue 3-23.-Wave shapes in optical difffaction: (a) low acoustic Intensity;
(b) high acoustic intensity (after Miktldlov and Shuttlov (331).

"" t
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where b, is the amplitude:

4' Jn-2k2-3k 3  (w)Jk2 (a2 w)Jk 3(a 3w) +''"
k 2 ,k 3 ,k 4 ,

(3.117)

Here v = 21rfL/X. The term a/ is the amplitude of the jth harmonic in the
distorted waveform, relative to the fundamental. The operation of Eq.
(3.117) is best understood by an example. If one is looking at the third-order
diffraction image (n = 3), and if the sound intensity is so small that only a2
among the harmonic amplitudes is appreciable, then

4ý3 = J3_k2(W) Jk2(W) (3.1 18)

k2= -*

If, further, the only Jp of importance are those for p = 0 +1, 2, ±3, we have

4)3 : J 3(w) Jo(a2 w) + JI(w) Jl(a2w)

(3.119)
+ J_l1 (w) J 2 (w) + J_ 3(w) J 3(a2w)

In the undistorted case, of course, 4n = Jn(w) and the solution reduces to
that of Raman and Nath. By making use of the theoretical values for a2 from
the perturbation analysis, one can compute the relative intensity of the dif-
fraction order under study. Some typical examples are shown in Fig. 3-24.
These experimental and theoretical results are seen to be in excellent agree-
ment with each other.

3.13 Practical Sources of Finite Amplitude Sound.

The numerous studies described in this chapter have concentrated on
two simple cases-the plane wave and the spherical wave. In practice, how. -
ever, we deal with sources of limited extent-usually a rectangular or circular

ij2
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40

20 - Negativ order

20 *gat"Oofee

10. Po6tv

0 -- 2 3 4

P, otm

Figure 3-24.-Experimental values of the intensity of the first diffraction
order as a function of the original pressure p for water at 2 MHz (from
Hiedemann and Zankel 1341).

vibrating disk on the one hand, or a portion of a spherical surface on the
other. In each case, the distortion of an originally sinusoidal wave form is
complicated by the diffraction of the infinitesimal beam. The theoretical and
experimental studies of this problem have thus far been quite limited.

The Plane Piston. A. The Near Field. Ingenito and Williams [32] have
produced a partial solution for the near field of the finite amplitude plant
piston. They began with the presumed existence of a velocity potential

=--i

where the 4ib are the potentials applicable to-each harmonic. Then, following
Heaps, [33] they deduced the equation for the second harmonic 4)2:

"24 2 - -! a ()2 ) + c--. (-- -) 21 (3.120)
2 2c 2  at C 1 2 at )~

where 02 is the d'Alembertain operator V 2 - (l/c 2 ) (3 2/at 2) and 13 is the
parameter of nonlinearity. The authors further assumed that all harmonics
higher than the second can be neglected and that the function 4b, is unaf-
fected by the growth of D2. These are the usual assumptions of a perturba-
tion theory and parallel in spirit the early treatment of the plane wave
problem.

. D ' !
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By assuming the fumdamental velocity potential (b, to have the form

()1 = Re I (x,y,z) e-iW

Ingenito and Williams transformed Eq. (3.120) to the form

[V2 + (2k)2] 02(xy,z)=(i-ik 2+(2k2)l ¢12 - 2o3k2¢02>.

(3.121)

The authors were then able to show that the most significant effects were
produced by the last term in the curly brackets on the right.

By the use of a Green's function technique, plus an expansion of an
exponential factor in terms of Bessel function, Ingenito and Williams arrived
at an approximate expression for 02 in cylindrical coordinates

(3k2  z k0202 (rz) -47 ~ 02 rzj do 312

The authors carried out explicit solutions of Eq. (3.122) in three cases. (

(i) A collimated beam

(rz) iv eik: r < a

(3.123)
=0 r>a.

Application of Eq. (3.123) to Eq. (3.122) yields

0 2 (rz) = V u2 zekz r < a

(3.124)

This yields a second harmonic that increases in amplitude with z, thus resem-
bling the first correction to the plane wave case [Eq. (3.4 1)].

(2) Average value

ý52 (rz)= v2 exp [2(ik- a)zJ (z+ 9sinz/1) (3.125)

I,
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It is common practice to use a receiving transducer of the same radius
as the source, so that the average value of 02 over a plane area of the same
size as that of the source, centered perpendicularly on the axis is of interest.
Their final expression is of the form

<02 (rz) eika ! (z - do) (3.126)

When a specific expression used for 01 [such as that obtained by Bass (34)],
Eq. (3.126) can be evaluated numerically. A plot of the results [essentially, of
the integral in Eq. (3.126)] is shown in Fig. 3-25, along with the linear
relation of Eq. (3.124).

1(0 I,¢•)I "

01!;;a ILi

o 4 " 12 1. ,/4" 20

Figure 3-25.-Magnitude <02> 1 of averaged second harmonic velocity po-
tential in dimensionless form versus axial distance z/a. k = 109.9 cm- 1 ,
a = 1.042 cm. 8/A = 5. - - : Eq. (3.124). -. (3.125). (R - 3):
Figure 7 of Ref. 39. (R - 6): Figure 8 of Ref. 39. (G - 5): Figure 3 of
Ref. 38. Numbers 3, 6 and 5 and source pressures in atmospheres (from
Ingenito and Williams [351).

Since this is a nondissipative theory, it is difficult to make a realistic
experimental comparison. However, Ingenito and Williams have plotted three
experimental cases of signals of initial pressure of 5 atm [38] and 3, 6 atm
[391 obtained with a receiver 2.5 times the radius of the source. Good
agreement is evident between the theory and the 3-atm curve. The curves for
the higher pressures deviate considerably from the theory. As can be seen
from Fig. 3-19 (from which the curve R - 3 is taken) at a point corresponding
to z/a = 15 (a = 1 cm) the amplitude of third harmonics is a considerable
fraction of the second while the fundamental amplitude has decreased
slightly. For 6 MHz however the data from the same paper show a 25% drop

-~I
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in the fundamental amplitude at z/a = 15 cm while the amplitude of the third
harmonic is more than that of the second, so that two of the approximations
of the lngenito-Williams theory have lost their validity.

(3) Axial value

In the case of waves of infinitesimal amplitude, the axial value of the
velocity potential has long been known [Eq. (1.64)]. Ingenito and Williams
have found an expression for the finite amplitude case that appears to be the
most accurate of their formulas:

02(0,z) = e - Jo (t-t0)dt

(3.127)

-2f t_2e'tdt +

t0

An evaluation has been carried out of the second harmonic pressure
amplitude based on this equation (Fig. 3.26) and compared with experiment.
The agreement is astonishingly good.IG

lots?

0 'I

Si atmo v.

Figure 3-26.-Ma(gnitude oPe of a second hmrmonic p3es-
sue in atmospheres versus axa distance zia. Source
presure 5.0 atm, k = 109.9 cm-I, a = 1.042 cma, B/A -- 5.

•Eq. (3.127) including coupling function. - - Eq.
(3.127) with coupling function unity. ..... Perfectly colil
mated plane waves (froma Eq. (3.124)2. a: measured values of ([ ~Ref. 38 (from Ingenito said Williamns f35]).
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The Plane Piston. B. The Farfield. The problem of the nonlinearities of
the farfield of the plane piston can be shown to be essentially that of a
spherical source with boundary conditions at the effective starting point of
spherical spreading superposed. We shall therefore follow this treatment of
Lockwood, Muir and Blackstock [40] and assume that the particle velocity
amplitude u0 at this point r0 is given by (uo/co)D(O), where D(O) is the
infinitesimal amplitude directivity function in the farfield of a circular,
baffled, plane piston:

2J, (ka sin 0) 3128'

) a sin 0

An additional assumption is that the farfield distortion of the wave
form derives almost wholly from disturbances that were purely sinusoidal at
the point rO, i.e., that the nearfield distortions do not play a significant role
in the farfield. [41]

The analysis of Lockwood et al. is based on the weak shock theory of
Blackstock. [20] The acoustic pressure for the spherical wave is given by
Blackstock as

ro
p - pocouoD(O) " sin (b (3.129)

where (D is the function defined by Eq. (3.77)

4) = y + u sin 4) (3.77)

where y is given by
(r - ro)y -= -W. (3.130)

Co

in the spherical case and a is given by j
DU 0  ) D kr I n 0 (3.131)

1~ r 0 )

If the Blackstock bridging technique (Section 3.8) is used, the Fourier
coefficient Bn can be written as

22

Bn -sin mn -2 Cos n()- asin 4)) e04
iramin 

(3.79)

i.~
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= Fay contribution + Fubini contribution.

At large o(a > 3) the Fubini contribution becomes negligible and B, --
2/n(l + a).

The pressure at the point r can now be written as

P = poCouoD(O) rB sin ny. (3.132)

n=1

Since B. is a function of a, it also depends on D(O) through Eq. (3.131).
The directivity of the nth harmonic in (3.132) [D.(0)] is therefore propor-
tional to D(6) Bn(o). If we define oI as the value of a at which D(O) 1,
then Dn (0) can be written as

D(O) Bn (O) Bn(_)
Dn(0) en(o)] -- D(O) ) (3.133)

We distinguish two cases:

o<1.

Here the Fubini solution Bn (o) = (2/no)Jn(nO) prevails, so that

J,, [nD(O) oil
Dn(O) = oJn(nol) (3.134)

For small values of oj, Dn (0) - [D(0)1' so that the higher frequency
components of the beam become progressively narrower.

a>> 1.

Here

D,(O) = D(+) 1 D 01 = (0)(I +0a) (3.135)1 + 1 I + D()o 1

i.e., the directivity is independent of the order of the harmonic and is some-
what broader.

Experimental measurements have been also carried out by Lockwood et
al. with a 3.in.-diameter piston source operating at a fundamental frequency
of 454 kHz. The measurements were made distances of 41 and 117 yd, both
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of which are well into the farfield (a 2/X = 2 yd). The results are shown In
Fig. 3-27.

0 0 0
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Figure 3-27.-Finite amplitude effects of circular piston: (a) harmonic beam
patterns at a range of 117 yd. Source level 109 dB, frequency 454 kiz; (t)
range 41 yd, source level 127 dB, frequency 4S0 kItz (from Lockwood, Muir
and Blackstock [401).

In the case of the theoretical curves, a value of r0 = I yd was chosen.

The Spherical Cap. In 1969, Smith and Beyer carried out an experi-
mental study of the radiation from a focusing spherical cap at finite ampli-
tudes. [421 To date, there exists no theory for this case. There is a theoiy for
the finite amplitude spherical wave [211 and another for a spherical cap under
infinitesimal amplitude conditions. [43] A comparison of cxperimental data

, • l -J• "• m : = 11_____-ii
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with the two theories is shown in Fig. 3-28. It can be seen from the figure
that there is fair qualitative agreement among the three curves for the funda.
men:al, but not much agreement between experiment anid theory for the
sý,cond harmonic.

a._.

C 0u 30I-

Figure 3-28.-Theoretical and experimental values of axial
acoustic pressure amplitud.- for initial pressure of 0.5 atm.

--.... Yalues computed from infinitesimal amplitude theory.
Subscripts 1, 2 refer to fundamental and second-harmonic
componentk (from Smith and Beyer [421).

A second comparison with the finite amplitude theory is shown in Fig.
3-29 for a source pressure of 1 atm. Here the averaged value of the experi-
mental curve is reasonably close for both the fundamental and second har-
monic.

4 Bii

V I ga
to VI ,.,l

0.e

Va.

0 o 20 30 4

Figure (CM)--.

Figure 3-29-Theoretical and experimental values of the axial
acoustic pressure amplitude for initial pressure of 1.0 atm.
Subscripts 1, 2 refer to fundamental and second harmonic
components (from Smith and Beyer 1421).
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3.14 Finite-Amplitude Propagation in Tubes.

All of the previous analysis has been concerned with unbounded waves. A
body of literature has also accumulated on the propagation of finite-
amplitude sound waves in fluid-filled tubes. This section contains a brief
review of such propagation.

Earlier theoretical and experimental work on the propagation of finite-
amplitude waves in air-filled ducts was carried out by Thuras, Jenkins and
O'Neil in 1935 in the work cited previously. [27] A more modern repetition
of these measurements was made by Cruikshank 144] in 1966. A 24-ft pipe of
2-in diameter was used with an absorbing termination. The results shown in
Fig. 3.30 give the magnitude of the second harmonic in the case of a 1000-Hz

.10-

-40.

-45- 02 03 05 0 1
.r I z 3I 4 5 4 O to a2 • Ito l ll-*

Figure 3-30.-Second harmonic generation in a tube as a function of distance
from the source. Fundamental: I kHz at SPL of 140 dV..-.... Iolssess theory,2/Pi o/2. - Theory corrected for viscous and thermal waUl effects.

........ Experimental data (from D. B. Cruikshank, Jr. 1441).

source. The measurements are clearly in the near field. The theoretical curve,

which takes viscosity and heat conduction at the walls into account, is a
refinement of the work of Thuras et al., carried out by Blackstock. [451

P2 = e- a I X/')ax/ [cosh [(2 - -,2 atx]

P1 2 (2 - V2axj

(3.136)

- cos 12- V2) alx1}1/2

V -

4 L.I 4.
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where a, is the infinitesimal-amplitude sound absorption at the fundamental
frequency and Pl, P2 are the pressure amplitudes of the fundamental and
second harmonic.

A much more exhaustive treatment of this problem has been presented
by Bums. [46] An initially sinusoidal wave was studied for propagation in a
fluid filled tube. Equations for the scalar and vector potentials were set up
and solved by fourth order perturbation theory. The theoretical results are too
cumbersome to be repeated here, but it should be noted that reasonably good
experimental confirmation was obtained for 445 Hz waves in air. These meas-
urements were also nearfield in character. A sample of the results are shown
in Fig. 3-31 for Mach number M = 0.0316 in air. Here the fundamental and
second harmonic are plotted for three different tube diameters.

CdB -OeIsr -----

1.58c-m 2.66cm 5 26c-m TU.EI- - THEORY:
-IO0 . ...- A\.E RAGE 0 o . ExPERIMENTS is. TRY 13.

lrd TRY d I '
S I I I

.1' ' -÷

-40 .. .t.. . . "-:- A -

-60.•0 2X 3 4• 5 6X 7 z

Figure 3-31.-Fundamental and second harmonic for air-filled tubes. Fre-
quency - 445 Hz, initial Mach number 0.0316 (from S. H. Burns 1461).

Another analysis of the problem has been given by Coppens. For a duct
with rigid walls, the one-dimensional wave equation for a dissipative fluid can
be written as(1 322  a2a"2"2 3r D : ' x (3,137)

I .... ii

S. . . .n)

W V ~ . 4d
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where

D-• Sn +3
C.2 _1 i a3

_ !1/2 + -1)1/

(2nw)t/2 t

Here the particle velocity u = act/at is formed from the sum Zun of the

harmonic components, c0 is the phase velocity when 1 = 0, 5n - 0, 'Y is the
ratio of specific heats, v the kinematic viscosity and v' the thermometric
conductivity. S is the cross sectional area of the duct and G its perimeter.
Equation (3.137) is the dissipation generalization of Eq. (3.46) and holds,
subject to the conditions that the boundary layer separating the main stream
of the fluid from the walls be small compared with the wave-length or physi-
cal dimensions of the duct, and that the wave fronts be essentially planar
across it.

If we take the limiting case of a linear process (03 - 0) and use the
boundary conditions

u(O,t) = u0 sin wt (3.138)

the solution reduces to that of Kirchhoff for sound propagation in a tube

e- e 'l sin [wt - (k 0 +a,) x] (3.139)
U0

where the absorption coefficient is given by

a 2 co il(3.140)

and the dispersion of the primary frequency is given hy

= - 61. (3.141)

For the nonlinear case, Coppens has carried out both perturbation
analysis and computer solutions by Fourier expansion. He has expressed his
results in the form of the following parameters:

M I 0 (3.142)
61 ctiko

I | - .
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where M is the acoustic Mach number, MP/5 1, which is the ratio of the
"waveform strength" M0 to the fractional loss per wavelength 2alko, is called
by him the strength parameter. A second parameter is modeled on the dis-
continuity length k for a plane wave [Eq. (3.33)]. If we define a dimension-
less distance d,

d = alX (3.143)

then the dimensionless discontinuity length could be represented as

= s Q (3.144)

A few samples of Coppens calculation follows. Figure 3-32 shows the relative
harmonic distortions for values of the parameters just mentioned, while Fig.
3.33 shows the profile of the waveform. The asymmetry of the positive and
negative portions of the curve should be noted.

Two other recent studies deserve mention. Keller and Millmann have
carried out a perturbation analysis of a finite amplitude wave propagating in a
wave guide of nonrectangular cross section in the absence of dissipation. [48]
The propagation wave numbers kn of the waves corresponding to the modes
of linear theory are found to be functions of the amplitude 1i0.

Finally, Cruikshank [49] has carried out an experimental study of the
pressure waveforms of a piston vbrating in a closed resonance tube. The
results are in good agreement with the b'asic theory of Chester. 1501 Cruik-
shank also gives an excellent historical revi .w of work in this field.

*1

i '- . _. -- ,
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1* .M

00i

001300
f

Figure 3-32.-Relative harmonic distortions in wave form as a function of the
dimensionless distance for various values of the strength parameter. n =number of
harmonic (from Coppens (47J)
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Chapter 4

SHOCK WAVES

The literature on shock waves is probably larger than that of all other
fields of nonlinear acoustics combined. Large numbers of books have also
been devoted to the problem. [Ill Here, therefore, we shall give it only the
briefest of treatments, emphasizing fundamentals and those aspects of the
subject that have a bearing on other topics covered in this text.

4.1 The Rankine-Hugoniot Equation.

The concept of the shock wave is familiar to nearly everyone today
through the phenomenon of the sonic boom. It also, however, appears as the
result of explosions or in the flight of a high speed projectile. The passage
of a body through the air at supersonic speeds (bullet, sonic boom), or the
sudden release of a high pressure (air blast, shock tube), results in a rapid
rise in pressure that is propagated through the medium. Because this jump
in pressure takes place over a very short distance along the direction of propa-
gation, it is a useful and convenient approximation to assume that the rise is
instantaneous, i.e., that there is a discontinuity in the pressure. The actual
"thickness" of the jump region is only of the order of a few free path lengths
and will be discussed in Section 4.

We shall also assume the gas to be ideal, so that p = npRT, and that
such properties of the gas as the specific heats remain constant over the
pressures and temperatures of interest.

Let us now consider flow taking place along a straight line in a tube, or
along a stream tube, of constant cross section area S. In Fig. 4-1 AA' repre-
sents the shock front, which moves to the right at velocity V. The lines
00' and PP' represent plane surfaces behind and in front of the shock re-
spectively, that are also moving to the right with velocity V. In the undis-
turbed gas in front of the shock, the pressure PO, density P0 and velocity of
flow V0 represent equilibrium values. Behind the front (to the left of the line
AA '), these same quantities have the constant values p1 , p1 , v1 .

Conservation of mass (equation of continuity) requires that the mass
flow across any plane surface 00' behind the shock must be equal to that
across any similar plane surface PP' in front of the shock. In this notation the
surface PP' moves with a speed V - v0 relative to the local fluid, so that a

165
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0 A P

gas behind I gas in front of
shockfront shock
("upstream")

P =P1 p• P=O
P Pi IV P =Po

0' A' P'

Ax

Figure 4-I .- Passage of idealized shock wave in a tube.

mass (V- vo)po passes through PP' (from right to left) per second. Similarly,

the mass (V- vl)pl passes through 00', so that

(V - v,)P 1 = (V - Vo)p 0  mt. (4.1)

We call this mass flow per unit time the mass velocity mt (after Rankine).*
For the conservation of momentum, the net force acting on the vol-

ume of gas between 00' and PP will be (p, - pO)S. This must be equal to
the increase in momentum of the gas. Now the mass entering the volume
element per unit time is mt, so that the momentum added per second at the
left is mtoy, while that removed at the right will be mtvo, we have

(PI - PO) = mt(uV- v0 ). (4.2)

We now consider the conservation of energy. If E is the internal en-
ergy per unit mass of gas, the increase of energy per second in our volume
element (between 00' and PP') will be

m ' V12 + E] I mt [j V2 + E]

which must equal the work done in increasing the velocity from u0 to vI,
Pl l -PO°O:

mt[ U2 + E] - mt[v02 + E0 ] = 
(4.3)

"•it is customary to use m for this mass flow rate, but the author finds it dimensionally (
confusing and has added the subscript t.

i" I.... ~ .
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Equations (4.1), (4.2), (4.3) are known as the Rankine-Hugoniot relations,
and form the basis of virtually all shock theory.

We can eliminate v0 , vi from the first two equations, obtaining
mt2 2

P1 i, = P + -= constant. (4.4)

I

We can also calculate the change in the entropy across the shock front.
If So and S1 are the entropies per unit mass on the two sides of the front

PoSo(V- V) <= pSI(V - V)

or,

mr0 <=~0  mS 1 , (4.5)

i.e., since we are dealing with an irreversible process, the entropy cannot
decrease.

For an ideal gas, P = pR'Z. where R =R/M =gas constant per unit
mass, so that we can write for EIC

E c1,T -R'T

where cq = specific heat per unit mass (at constant volume). Then, since

;CP 1+ R 1 +R
CV CV cV

"E (4.6)7-10

That is, the energy density increase across the shock is

AE=El -E 0  " 1 [1 PO" (4.7)

We can rewrite Eq. (4.3) in a more convenient form:

PIl -POo = m1 ( 112 t 002 ) + mrAE (4.3')

VA
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which, by application of (4.2), becomes

1f (pl * P0)(ul - °0) = rtAE.

A second application of (4.2) gives

2m'"p + po)(pl -Po) = mAE [ [ Poj (4.8)

Since (from 4.4)

Pi -Po = mr 2[l (4.4')

Eq. (4.5) becomes

1r1 1 Plrp
-•(PI + PO)[..1 = "L -]

Simple algebraic transformations then lead to the final result:

PI PI( + 1) + P0 (-Y -1)

P0 PO(7 + 1)+ PI (- 1) (4.9)

Equation (4.9) is known as the Rankine-Hugoniot equation.

Let us now obtain an expression for the velocity V with which the
shock movcs forward. If we solve Eq. (4.4') for mt and use Eq. (4.1), wefind

V-v° = -- P- (4.10)

If we now consider a shock of very small amplitude, such that p I Po +
6p, p, =p o + 6p, 6p/pO. Sp/po0 - 1, Eq. (4.10) reduces to

V - v0,

. .. -... " ., . . .. .. . . , .. .. . _- .. _
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If the fluid in front of our weak shock is at rest, u0 = 0. In any event, tme

quantity V-- u0 is the speed of the shock relative to the fluid in front of it,
and its value iG correctly given by Eq. (4.10). Appropriate substitution for p,,
p, in Eq. (4.9) will also lead to the result lrn ýp = 0,i'-hs

speed becomes equal to the small amplitude value of the sound propagation
speed.

Equation (4.9) can also be solved for the ratio p, /po:

Pi PI1(y+ l) -p(1) '-) (4.12)

P0 P0 (Y + 1) - P1 ('Y -)

It is useful to express the values of the various parameters before and
after the shock in terms of the shock strength T1, defined as the ratio of the

pressure jump to the quiescent pressure in front of the shock:

P1 - P0  P1Por - + 77. (4.13)

The speed of the shock front u(= V - u0) relative to ,he fluid ahead of
it is then given [Eq. (4.12)] by

_____ 1/2

U V- v 0 = (4.14)

where use has also been made of Eqs. (4.9) and (4.13). A further application

of Eq. (4.9) and collection of terms yields

- 17-?

co 1 + 77 co I + (4.15)p -y 42y

t.

• , q ,
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The similarity of this equation to the propagation velocity of a finite
amplitude harmonic wave [Eq. (3.28)] should be noted. For an ideal gas,
Eq. (3.28) becomes

V = co + (3.28')

For waves of modest amplitude, we expand the bracketed expression in
(3.28'), keeping only the first two terms. Then

S-•C0[l + 'Y 1 0"]2 (4.16)

which is the same as the corresponding expansion of Eq. (4.15) if we identify
2-ru 0/c0 as the equivalent of the shock strength.

The temperature ratio TI/T 0 across the shock front can also be found.
From the general gas law,

T1  p1 pO p0T_ + (i +17)- (4.17)TO P0 Pi Pt

while Eq. (4.9) can b,- put in the form

P1  2y' + r7("t + I)p0  .yny-I (4.18)P0 2'Y + 17(Y'-I

Combining Eqs. (4.17), (4.18) we get

T_ 2 y +71(y-l)
T= 20 + 17)- l) (4.19)TO (I+) 2 -f + 71(-f + )

Some interesting consequences follow from these equations. Suppose,
for example, that Po is equal to atmospheric pressure, while Pi is 101 atm.
Then the shock strength r7 = 100. For air, y = 1., and we have

P1 7
= 5.7, 17.7,

PO'
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Actually, in the limit of large r1 (strong shocks),

S- + 6 (air)

P0  y-1

and

T, 0 L-T+17 6 17 (air).

That is, the density cannot become greater than 6 times the density of the
gas ahead of the shock front, but the temperature can increase linearly with
the shock strength. We therefore have a mechanism of achieving very high

gas temperatures with only relatively modest density changes, that has been
used in investigation of gas reactions under such conditions. [21

4.2 The Shock Tube.

Waile much experimental information can be gathered from a study of
blast waves, sonic booms, etc. in the open atmosphere, the most detailed
comparison of theory and experiment has been provided with the use of the

shock tube. Such a tube is pictured in Fig. 4.2.
Such tubes are usually constructed of glass or metal with diameters of

L. few inches and lengths of about one hundred diameters. The tube is made
in two sections, separated by a thin, expendable diaphragm. Each section has
separate pumping facilities. The high pressure end is usually about 1/6 the
entire length of the tube. A window is placed in the side of the tube for
photographic purposes.

In operation, the high pressure end is raised to a level ranging from a
few to several thousana atmospheres. The diaphragm is then ruptured and

the gas rushes down the tube. A shock front will be formed in a distance
equal to about 10 diameters. The structure of the wave as it passes down the
tube is indicated in Fig. 4-3. When the diaphragm is ruptured, high pressure
gas moves forward. The most advanced front of this moving gas is known as
the contact surface C It begins at the diaphragm position *tzd moves for-
ward with the flow velocity u. This plane corresponds to the position defined
by mt = 0 in the Rankine-Hugoniot relation. We can see immediately from
Eq. (4.4) that the pressure will have the same value in either side of this sur-
face, while Eq. (4.3') indicates that the velocity will also be contin'ou-.

The shock front S travels with supersonic velocity and pulls away from
the contact plane. At the same time, the expansion of the gas, initially to the

I ... . .... . . . _



- -- - - --- ----- . .-~ ---... - ,-r.-~s .%!.q** _ ......- . . ' .... '-~*-, . .

172 NONLINEAR ACOUSTICS SEC 4.2

4
". A

(a)

Figue 4-2.-Form of shock tube. (a) sketch of longitudinal cross Wetion;
(b) photograph of actual installation (from JJ. Lacey, Jr. [31 p. 135).

left of the diaphragm, results in a region of reduced pressure or rarefaction

that moves to tie left from th2 diaphragm. The foremost part of this wave is
known as the "head" H, while the trailing part is called the "tail", T.

Another way of expressing these curves is by a plot in the t,x plane (the
so-called x/r diagram). Here t measures ~he time elapsed after rupture of the
diaphragm and x is measured fromi the diaphragm, positive in the direction
of propagation of the shock.

The four dividing plane surfaces in Fig. 4-3 correspond to thle four Ilines in Fig. 4.4: S shock front. C contact plane, T tail rarefaction,
H =corresponding head.

The gas in the shaded areas (1.5) of Fig. 44 is at rest, ahead and behind
the shock. The gas in region 2 moves forward while that in region 3 moves in

part in both directions. The gas in region 4 moves to the rear.
When the various wave fronts (SCcH ) reach the ends of the tube, they

will be reflected back upon themselves, The velocity of the rarefaction wave
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pCnolonntt
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Figure 4-3.-Distribution of various parameters in a shock tube
(from Stephens and Bate I 11, p. 496).

the front H is greater than that of the shock front, so that it will ultimately

catch tip with the shock.
In such a reflection, the characteristics of this reflected wave are modi-

fied as it succcssively overtakes the trailing edge of the rarefaction and the
contact surface, as well as its final termination at the shock front itself.
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t

C
T

H

1disturbance

®-

Figure 44.-Space-time plot of shock wave: S = shock front, C = contact plane, T = tail
rarefaction, H = corresponding head. The numbers correspond to those of Fig. 4-3.

4.3 Reflections of Shocks.

The reflection of a shock wave from a rigid wall is considerably more
complicated than simple acoustic reflection. We consider the case of normal
incidence, as is illustrated in Fig. 4.5. The dashed lines indicate the behavior
of particles at several points in the medium.

The air in region 0 is at rest, with downstream parameters vo0 = 0, P0,
p 0 , co. As the incident shock approaches the wall, the air particles are
pushed toward the wall (region 1). This is the upstream region of the inci-
dent wave. with v = v1. Finally, region 2 is the region behind the reflected
shock, with the air again at rest, so that V2 = 0.

We carry out the analysis of each shock wave separately:
1) Incident shock, In this region, the origipal equations 1(4.10) and

(4.12)] remain valid and we can write (ref. 2, p. 53)

2 P0 = (n - (1- (4.20)
PlPO '00 IT + Mz2

where

(P- I) -- (4.21)
('Y + P0

!E
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region 1

__,__ I

shock

Figure 4-5.-Space-time plot of shock wave reflection at normal incidence.

2) Reflected shock. The flow velocity u2 = 0 will be given by an
equation similar to (4.20)

u2
2 = (T' - 1)2pl P - - 2) (4.22)

P1

C I.

"l | " 4 .

- --.-
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where now i1' = P2 /PI, while the other symbols are the same as before.
Equations (4.20), (4.22) can be solved for the ratio of the excess pres-

sures after and before reflection (P 2 -Po)/("i -PO)" Physically, this repre-
sents the ratio of pressure increase in the reflected shock to the pressure in-
crease in the incident shock. We solve (4.20) for If'

- P2 = (2W2 + l)'r - p 2  (4.23)

Pi 9 2 7r + I

whence it follows that

P2 - PO + +A2
- 1 + (4.24)

P - P0 P.o + P2
P1

For a sound wave, the pressure doubles upon reflection, which follows
here also in the weak shoc." limit pI - p0 . In general, however, the ratio
approaches

1 21- +2 + '-'"= y-l

as p1 becomes large, and the resulting ratio can be quite large (= 8 for air).

4.4 Method of Characteristics.

Riemann's method of characteristics, introduced in Section 3.3, is very

useful in the treatment of shock waves. Let us consider the case of a uni-
form tube in which a piston is accelerated instantaneously to a constant ve-
locity. This is the idealized behavior of the shock tube.

For an ideal polytropic gas (i.e., a gas for which 7 is constant), 2(p)
[Eq. (3.36a)] can easily be evaluated in the isentropic case. Using c2 =

7p/p, p/p'V " p0/p 0Y, we obtain

f P C-dp = 1 0 f 2 dpo 0"P Po~r ipoo

2 [Vpo /2 - 2c 2c0"-" to . _ (4.25)

•P 7 -2 PO 
4 ..
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Since we are only interested in the representation u Q Q = const (along the
characteristics), the constant term is usually equated to zero so that Eqs.
(3.36a) become

P = U + - const
y-1I

(4.26)
2c

Q = u - const.

If a wave disturbance starts from x 0, t 0, it can clearly be broken up
into the two simple waves, P, Q, traveling in opposite directions. If we follow

the P wave (Fig. 4-6) we see that P = u + 2c/(y - 1) along its characteiistics.
In the same region (x > 0) Q will remain what it was at x, t 0 0, i.e., u = 0,
Q = -2c 0 /(y - 1). We can thus evaluate P. From(4.26), P- Q = 4c/(y - 1).
Using the value of Q above, we then obtain

4c 2c 0
P -. (along dx/lt u + c)

(4.27)

Q --1 (everywhere).

A similar pair can be deduced ror the Q wave.

phase Q wave t phase P wave

Fitre 4-6.-Riemann treatment of shock waves. ,

L i .. 
-_ _. . .._ _, _:



178 NONLINEAR ACOUSTICS SEC 4.4

We now turn our attention to the characteristics for a wave undergoing
steady acceleration so that its velocity increases from 0 at x 0, t = 0 to
some final value.

For the Q waves in this case,

dx =U-Cdt

2c 2c 0
P U + + everywhere

(4.28)
2c

Q = u - const.

Again making use of Eqs. (4.26), we obtain

4c 2c 0  4c
P --- =T-(4.29)

on the curve dx/dt = u - c and, using the form of Q in (4.28) we can write

2c 2c 0  4c
Q = u (4.30)

or, solving for u

2(co - c)u- (4.31)

This enables us to write for c and u

2 1-ldx
1 T y+l dt

(4.32)
2 2 ldt

u- + co ,+ + Id

or

dx -y + Idr u -co.
dt 2 a o i g4

The resultant characteristics are shown in Fig. 4-7.
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\t

characteristics

charactrisic P characteristics

Figure 4-7.-Wave pattern due to steady acceleration of a piston
in uniform tube (after Bradley [ I], p. 40).

In the region to the left of the line defined by dx/dr =u - co (u0 = 0,
x = 0, at t = 0), the fluid is always at rest, so that all the Q characteristics will n
be straight lines with slope -1/cO.

The path traveled by the piston has the parabolic shape shown. The J
other Q characteristics will be found from (4.32). As the piston gains speed,
dx/dt becomes a smaller negative number, so that the slopes in the t,x plaiie
become steeper.

For the P waves,

2c 4c 2c0

-_- I

dx
-=t +C.

dtI

: | " It"

- .-. .• • -
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In front of the wave u = 0, and we have the characteristics defined by

d7= u(= 0) + co

The slopes of these characteristics decrease as the piston increases in speed.
Hence a "focusing" of the characteristics takes place-i.e., a shock wave is
formed.

Let us now take the limiting case of instantaneous acceleration of the
piston. The shock is formed at the origin. In the case of Q characteristics,
the situation is the same as in the previous case, except that the piston now
moves with a constant velocity up (Fig. 4-8). All the characteristics between
the head of the rarefaction wave in Fig. 4-8 and the piston now terminate at
x = 0, t = 0, and the shock wave is formed instantaneously at the same point.
There are then 5 portions in our diagram. In areas 1 and 5, there is no mo-
tion of the fl,. . and all Q characteristics have the form dx/dt = -co. In re-
gion 4, the characteristics have the form x = (u - co)t and fan out as shown.

t3

Piston

50

Figure 4-8.-Wave pattern (Q waves) due to instantanteous piston acceleration.
Numbers correspond to those of Figure 4-3 (after Bradley (21 , p. 42).

II
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We note that when the piston reaches a speed UL > 2c0 /(y - 1), the
rarefaction pulls away from the piston, leaving a vacuum behind, between the
tail and the piston. For such a condition

x
UL - C0

This equation defines the tail of the wave.
The tail of the wave will have a slope defined by the speed uL attained

by the piston. This also defines a set of parallel characteristics that fill re-
gion 3.

The last region to be considered is 2, between the piston and the shock.

Here dx/dt = 0 and the characteristic curves are vertical lines. This corre-
sponds to sonic flow, i.e., u = c = 2c0 /(y + 1).

It should also be noted that the tail of the rarefaction wave may move
to the left or right (Fig. 4-8) depending on whether the flow in region 3 is
subsonic or supersonic.

The similarity of Fig. 4-8 to Fig. 4-4 should be remarke'd. They are in
fact the same.

A photograph of the development of the waves in a shock tube, taken
by means of the schlieren technique, [2] is shown in Fig. 4-9. Most of the
characteristics discussed above can clearly be seen; in particular, the head and I
tail of the rarefaction waves, the contact surface (split in two) and the shock

I I

1

• i I

Figure 4-9.-Development of shock wave in tube. I'hotopraph token by schllefen photo-
graph at Institute of Phybics, University of Toronto (from Bradley (2), p. 50).

! ..
! | ~ 41" .. [
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front are all visible. The wave is not a centered one, i.e., the characteristic
lines do not extrapolate back to a single point as in Fig. 4-8, but are spread
out as in Fig. 4-7, indicating the finite time of acceleration of the piston.

'4

4.5 Shock Wave Structure.

The previous section described various aspects of the fluid flow behind
the shock. The behavior of the fluid in the immediate vicinity of the shock
front should also be of special interest to us since its features are most closely
related with those of nonlinear acoustics.

Thus far we have idealized our shock as a mathematical surface of zero
thickness. To proceed further, and to consider finite thickness, it is neces-
sary to refer back to the conservation equations of a continuous medium (see
Sections 1.6, 3.1). For the one-dimensional case, these are

d
y (pu) = 0 (continuity)

du d- dx + d b77 (momentum)

du +J d + .. ] (4.33)-pu + br u +

- 1u d P +u (energy).
77-1 IX dx

In the second of the equations above (the one-dimensional Stokes-
Navier equation), the viscosity term is included as a variable rather than the
constant quantity used in Eq. (3.43). The early analysis of st.ock wave thick-
ness by Becker [41 did not include the possible variation of the viscosity at
the high temperatures achieved in the shock zone. Therefore, his results are
valid only for weak shocks. (See alsc the paper by Thomas. [5])

Our analysis follows in part that of Shapiro and Kline. j61 The con-
tinuity equation can be integrated immediately to give

PU = mt, a constant. (4.34)

4 . K ,. _
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After substitution of u = rnt in the first term of the Navier-Stokes equa.
tion. we can integrate it immediately, obtaining

fu

mtu + p - bq = F, a constant. (4.35)

The constant F can be evaluated upstream, where the flow is uniform, so that
du/dx=O. ThenF=mtuI +pl.

Proceeding in the same fashion, we integrate the third of Eqs. (4.33)
to get

dP dx tp 2

= G = constant

m1  p1  U1
2

=P + +m , (4.36)

where the constant G has also been evaluated upstream.
If we make use of the ideal gas law p = pRT, the energy equation can be

rearranged to read

2
" l b d(u2) - K d mtu

Spu - dx Rm, dx 2

while the Stokes-Navier equation can be written

2 1 du2  ( 8
pu - Fu -mu +- bi (4.38)

2 dx

If we eliminate pu from these equations, we get the nonlinear differen-
tial equation

1 KU d 2 (u2) + _ bLP + K]d(u2)
2 mdx 2 2 •t-y I dx

(4.39)
K du r n+ u2  +

Rm- dx 7-1 2 -• I

which is of rather formidable appearance.

! | " 4
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This equation has been solved by Becker [41 for the case of constant
viscosity, and for the specific value of the Prandtl number Pr = cpqlx/ = 0.75.

The flow velocity has a number of requirements built into it. Up-

stream it must have the value uI, downstream, u 2. In the Becker theory, the
velocity at the inflexion point (d 2u/dx 2 = 0) is required to be c* =

To satisfy these conditions, Shapiro and Kline expressed u in terms of
the error function

x < 0 u c* + (u, - c*) erf (-x/xo)

(4.40)

x > 0 u c* +(u 2  c*) erf u' ]

where

erf (z) =•J"•foet 2 dt (4.41)

and x0 is a constant still to be determined.
We define the shock thickness 6 as

u 2 -(4.42)

(du/dx) IX= 
(.2

and determine x 0 by requirement that Eq. (4.40) be an exact solution of
(4.39). At the inflexion point x = 0, we get the result

xo /_nM~I*+ 1 (4.43)x0 = 2 MIM* 1

where Mj* = ul/c* is the ratio of the upstream flow velocity to the inflexion
point velocity.

We now proceed to eliminate x 0 . Making use of Eqs. (4.39)-(4.43),

and denoting the values of the transport parameters at the inflexion point by
asterisks, we obtain the following expression for the shock thickness 5:

6 17 D MI + I
PlUl 7' + I MI*

8 -(-y- 1 1 M 1j l)' 1/2j{X [*I I + (4.44)3Pr* D2  MI

I-- i [



SEC 4.5 SHOCK WAVES 185

where

4 2-y + (4.45)
3 Pr L2P* M1

U= + I _. (4.46)

A comparison of the curve (4.40) and Becker's solution is shown in
Fig. 4-10.

Typical thicknesses computed by Shapiro and Kline are shown in Fig.
4-11. It should be noted that the evaluation of T presents some difficulty.
Becker found that the adiabatic stagnation temperature To remained constant
throughout this region and that T* = 2T0/(j + 1) in this gas. Shapiro and

Kline used this value and the standard expressions for the temperature de-
pendence of 17and K.

The shock thickness is often expressed in terms of the Reynolds number

plu1 s
Re - (4.47)

Figure 4-10.-Comparison of Becker's exact velocity distribution
(for Pr =3/4, M! = 2.0 and k = 1.4) with arbit~rary error curve,
symmetric cosine curve and Eq. (4.40) (from Pain and Roers

[71).

0 It

Figure~~~~~ 4-1,.\prio fBce'seatvlctydsrbto
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0 1\L"--Wil bukvsosiyo L3 14

Eqpe alieta oints (Smno bulk ) shown t hu 0

IL

Fio t 4-1...~l blk- viectofshokity hnunb n rot hikns

*M 1 -

theoretsol curves arepre
a1-4 ,Pr*=O*75,m =0-77

Experimental points (Sherman 19%5) shown thus 0

Allc w tesltive Mach number of flid oppromchinaio shoc h

Figure 4-1 I.-Effect of shock Mach number in front thickness
for diatomic gases (from Pain and Rogers 17

For weak shocks (Ml* 1), Eq. (4.44) reduces to

!7 +

Re~- + 1 [ 3  2 .2 ..I] * (4.48)

I!

The thickness 5 should be compared with the thickness of the finite amplitude
wave as given by Eq, (3.87).

A calculation based on Eq. (4.44). valid for diatomic gases is shown in
Fig. 4-11. The solid curve represents the case of zero bulk viscosity, the
dashed curve that for a bulk viscosity arbitrarily set at 2/3 the shear vis-
cosity. Experimental points by Sherman [71 are also given. The agreement
is quite satisfactory.

The agreement shown in the figure suggests that the measurement of
shock wave thickness would be suitable for the determination of the bulk
viscosity coefficient.

4.6 Shock Thickness in Liquids.

In liquids, as the equivalent to (4.40), one usually employs the hyper-
bolic tangent curve

P PI+ P2) + I(P2 Ptanh (4*.497)"2' 2
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where P , P2 are the pressures up and downstream and 5 is again the shock
thickness. If we use pressure as our variable, Eq. (4.42) becomes

P2 - P1= -(4.50)
(dp/lX)max

This can in turn be related to thermodynamic parameters

S= 0 , .•(4.51)

where 1, b have the values defined by Eqs. (3.33) and (3.44).
Experimental measurements of this thickness were reported by Flook

and Hornig in 1955. [81 Their technique may be understood by reference to
Fig. 4-12.

1A

W2

Figure 4-12.-Optical system for meas••ing shock ticknes
in liquids: S = source, A.B = focusing system, W ,W2 =
windows, F = shock front, P.M. = photomultiplier (after
Flook and Hornig [8]).

A monochromatic light is passed through a window in the shock tube,
is reflected out through a second window and focussed on a photomultiplier.

The reflectivity of the advancing shock front could be measured and
then related to the density variation. Such a technique had been widely used
in gases, but its success in liquids has been limited.

II
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In 1964, Eisenmenger [91 presented a new technique. In his experi-
ment, shock wave microphones were used to measure the rise time of the in-
cident pressure pulse. The times were determined by a frequency analysis (in
the 100-1000 MHz range) of the output signal from the piezoelectric
transducer.

A comparison of Eisenmenger's data with those of Flook and Hornig
for acetone is shown in Fig. 4-13.

2

oi.,.•

0,2,
2 5 10 20 50 afm 100

Figure 4-13.-Shock front thickness in acetone as a function
of pressure jump: .eo 26°C (7], ooo 190C [81, xxx
50.5°C 18] , theoretical curve (from Eisenmenger (91).

Table 4-1

(largely from Eisenmenger [91)

Tc C, /v2 , BIA Ap6,
10 5 10- 17 10-3

cm/sec cm'/sec2  cm-atm

Theoret. Exper.

water 16 1.46 27.5 4.9 7.7 7.1
acetone 19 1.19 30 9.2 1.74 1.64

CC14  20 0.925 500 8.5 23.2 21.1
Toluene 20 1.328 80 5.6 11.5 7.3

7.9 8.8
Methanol 20 1.12 34 9.6 1.49 1.74
Ethanol 20 1.117 52 10.5 2.50 2.8

. = ~

I.

• • • """ -'• ""'. "-'• '••--" - , . . . ,,,,P,-.g.,... ". . . ,,-• u .



SEC 4.7 SHOCK WAVES 189

The results of Eisenmenger's work for a number of liquids are shown in
Table 4-1. The calculations here are an interesting blending of acoustic ab-
sorption theory (the role of the bulk viscosity) and nonlinear acoustics (in
particular the nonlinear parameter B/A). At the time of the Flook-Hornig
work, the theory of ultrasonic absorption in liquids was very imperfectly
known, while quantitative knowledge of B/A was almost entirely lacking.
The agreement that now exists between the experimental values of the shock
thickness and the values computed by means of the better established values
of ot and B/A is reasonably satisfactory.

4.7 N Waves. The Sonic Boom.

"As has already been observed, the rapid passage of fluid over the surface
of a solid body can give rise to a shock wave. In a study of "ballistic" shock
waves in 1946, Dumond, Cohen, Panofsky and Deeds 1101 introduced the
term N waves for this phenomenon, since the pressure profile of the wave is
approximately that shown in Fig. 4-14.

pressure

lime
Figure 4.14.-N wave.

The buildup of a shock in the neighborhood of a speeding projectile in
air (or the formation of the analogous bow wave in the case of a fast moving
boat on the surface of the water) is a direct consequence of the medium's in-
ability to move the wave fast enough out of the way of the oncoming source,
so that there is a substantial compression of the medium just ahead of the
projectile. The form of the wave front in this case can be obtained from a
consideration of Fig. 4-15.

In the figure, a source of sound is moving to the right with velocity
v = 1.6 c0 . The points AB,CD,E are the positions of the source as observed
after each of a series of equal time intervals At.

The spherical waves set up by the source when it was located at each of
these points are shown at corresponding later times. Thus, when the source
reaches B, the sound from point A will lie along the curve B', of radius
coat. When the source reaches C, the sound from A lies along the curve C'

~~- ~ - \. . _ _--_ ___-.,_ __
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Figre 4-15.-Ceneration of sonic boom.

[radius c0 (2At)], while the sound from B lies along C" (radius CoAt). The•
other curves are similarly drawn when the source is at DE.

The trace of the resulting wavefront is then given by the tangent curve
shown. The angle 0 made by the front with the direction of motion of the

source is then

sin 0 = A-E v(4At) v M' (.2

where M is the Mach number. The front of the N wave therefore moves out

over a conical surface.

I. 415 . . o( s

[r s . T
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The N wave differs from the shock waves discussed previously in that
the pressure is not constant behind the shock front. Therefore, some of the
formulas applying to that case require modification. In the elementary treat-
ment of Dumond et al., this was not taken into account.

If we write the Earnshaw relation (3.25a) in terms of -' (B/A) + 1,
we have

2c0
U - U0  - - -

( -1)[ + a J 2

or, since

1
= +

700

we obtain

U - U0 = (4.53)

If we consider a coordinate system moving with the speed of sound co, then
u = -co when p = pO, then Eq. (4.53) yields

UO C- .

Dumond et al. combined the equations of continuity (3.10) and motion (3.16)
in Eulerian form and substituted Eq. (4.55) to obtain a rather cumbersome
equation for the pressure. This can be simplified by writing p = po(l + 0),
expanding and neglecting terms of order 02. The final result is

3' + I co a~p ap
2-y ax ap

or

ax _ aplat Y + (4.54)
at p=const ap/ax 27
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This is the speed with which the pressure p moves relative to the center
of the N wave (where p = 0, u = co). Hence two points with pressures cor-
responding to the values 0 i, .- , will separate at a rate twice that of Eq. (4.54)
or [(-t + 1)/1yIc 0 . If we go back to Eq. (4.15) we see that the value of
(4.54) is just twice that for the elevation of the speed of a weak shock above
that of the speed of sound. The reason for this apparent discrepancy may be
understood from Fig. 4-16 and is associated with the weakening of the shock
front.

A"

A A'

C C"1 C'
0

Figure 4-16.-Degrmdation of N wave.

In Fig. 4-16, the discontinuity AC moves to the right, with a speed
+ 1)/4 -t] cOPA relative to the forward motion of the point 0. In some

small time interval bt, it therefore moves to the x position C". Now, the excess
pressure PO'A moves to the right at twice this velocity, reaching the line
AC'. The peak of the front has therefore moved only to the point A"-i.e.,
the peak pressure in the shock has fallen to the value POA ". Since the re-
verse holds at the tail of the wave, the rate at which the entering wave in-
creases in length is given by

dL Iy+ CO (4.56)
dt 2-t

The rate at which the amplitude decreases can also be determined from the
geometry of Fig. 4-16. From the similarity of triangles OA"C" and O'C',
we obtain

OA,, 0e, -L + 4-' cASt
T -C- 2 '4-y CAS'+ leco=A C •1 7+1 co 2

$A' I''- Lo + I-+ COgAJ t 2-y L-2o 2---y
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and in the limit as St -+ 0

dt 2-y (4.57)

The energy E in the N wave is proportional to the length of the wave L and
to the square of its amplitude 0. Hence the logarithmic derivative of E with
respect to time is given by

dE I dL 2di _( __1 (4.58)

F dt L dt + dt 27L

which is the rate at which energy is lost per unit distance in a direction nor-
mal to the shock front.

The usual problem presented by a sonic boom is the strength of the
shock as perceived by an observer on the ground when a supersonic plane
has flown by on a horizontal trajectory. Equations (4.56)-(4.58) applied
strictly only to a plane N wave, but will serve as reasonable approximations
if the radius of curvature of the wavefront is large compared with the wave-
length L.

The geometry of our problem is shown in Fig. 4-17. In the time inter-
val considered the airplane flies from the position 00' to the position AA'.
The sound emitted from position 00' is contained in the N wave that has
reached the shaded region by the time the airplane has reached AA'. (The
"head" wave lies along HA', the tail along TA.) The perpendicular distance
v from the center of the N wave to the line of flight is known as the miss
distance.

0 O' A A'I

I

T

LI

H

Fi$•m 4-17.-Goometry of the sonic boom
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By the application of some tedious algebra, Dumond et al. obtained ex-
pressions for the N-wavelength L and the amplitude factor 0 as a function of
the miss distance that are valid for relatively large miss distances.

2cLc 2 (-, + 1) 1/4 _ 1/2
L Y cos 0 YY0 1  (4.59)

2Y0 y012-/ 2  (4.60)

Here yo = y/cl, and c', c2 are constants which depend on the geometry

of the shock source. At large miss distances then,

= const y-314

L const y

A more sophisticated analysis by Whitham [111 leads to the farfield
bow-shock pressure generated by bodies of revolution:

2P0• Apmax = pKr(M2 - 1)1/8 D

D
2p = =pa Ks .. (4.62)

(HiW)14

Here D is the equivalent body maximum diameter, Ks a shape factor, Kr a
reflection factor for amplification by ground reflection; Kr is theoretically

equal to 2. M is the Mach number, Q the length of the aircraft, p the local
pressure, h the miss distance; h has the same dependence on the miss distance
in Eq. (4.61).

An experimental verification of Eqs. (4.61) is shown in Fig. 4-18 which
shows actual recorded pressures (flight signatures) from flights of a fight air-
plane at various altitudes. The dashed lines indicate the theoretical depend-
ence, in line with Eqs. (4.61).

The detail of the near field signature (h = 60 ft) is due to shock fronts
from various separate parts of the plane. These gradually blend into the
characteristic N wave for the far field. [121

It is of interest to compare the decay of the N wave with that of the
sawtooth [Eq. (3.52)]. The pressure step APsaw for the sawtooth is given
by that equation

22(3APsaw = PI0VI + X (3.52)

!.4
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Figure4-18.-Flight signature. - Experiment;---
Theory (from Carison, Mack and Morris [121).

where Q is the discontinuity length. For the N wave, we rewrite Eq. (4.57) in

terms of the pressure step APN = 2p0':

dApN .y+ 1 C o dt

(APN) 2  2-y L 2po

or

I "7 + I cOt
(-- + const.(AP ' =N 2-y L2po

with cot =x. At t = 0, the pressure step ApN is maximum, Apm ax, so that

(APN)_ _= 2'Y 2PoL + (APmax--I

or i

APNl (4.63)A =`7+ I x + I

"2 2SypoL APmax

r.
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If we regard the length L of our N wave as the effective wave length
XN, so that the discontinuity length Q can be interpreted as

2 2p 0 c0
2 L

Iy + 1 1Pnax 2(4'

then Eq. (3.52) may be written (O'Po = P0 c0
2 )

APmax21TQ
APN = x + 2rfQ (4.65)

which corresponds to Eq. (3.52) for x >- 21rQ.
The major difference between the phenomenon of the N wave and that

of the finite amplitude sawtooth waves discussed in Chapter 3 is that the
"wavelength" L increases as the N wave propagates, while the wavelength of
the sawtooth remains fixed at the value for its fundamental component.
While the result is rather obvious, it is perhaps not without merit to consider
the effect briefly. An instantaneous picture of the profiles of the two types
of waves is shown in Fig. 4-19.

In the case of the N wave (Fig. 4-19a), the wave B moves forward rela-
tive to the midpoint 0 at the speed given by Eq. (4.54), speed which is one-
half the value of dL/dt in Eq. (4.56). Similarly, the tail wave T drops back
(behind 0) at'the same numerical rate. As has been pointed out previously,
the lengthening of the shock coincides with a weakening of its intensity from
the same mechanism.

For a periodic wave of nearly sawtooth shape (Fig. 4-19b) the spread-
ing out of the length of the wave is not possible. As Blackstock has demon-
strated in his treatment of the range of finite amplitude propagation between
those governed by tile Fubini and Fay solution (Section 3.8), the maximum
particle velocity moves forward within the wave, but is cut off in its further
motion upon its approach to the discontinuity. The waveform therefore
stabilizes in. the pattern shown in Fig. 4.19b and decays while remaining in
approximately that shape.

4.8 Underwater Explosions.

The explosion of TNT or similar material underwater produces a shock
wave with special features of its own. Besides its obvious practical military
significance, the study of such explosions has provided insight into shock
wave propagation, involved the interrelation of viscosity and finite 3mplitude
effects, and the explosions themselves can serve as acoustic sources in long-
range propagation studies.
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Figure 4-19.-Comparison of N wave -nd the newly sawtooth sound wave.

For these reasons, it is appropriate to discuss the phenomenon briefly

here. For the mathematical details, the reader should consult the works of
Arons 1131 and Cole. [14]

When an explosive charge is detonated underwater, the initial solid ma-
terial of the charge is converted rapidly into a sphere of gaseous products at
high temperature and pressure. Since the water offers only the relatively low
hydrostatic pressure as resistance, the sphere expands rapidly. This expansion
lowers the pressure in the bubble so that the bubble reaches maximum size
and then contracts under the hydrostatic pressure. This in turn causes a
buildup of pressure outside the bubble, so that it is ultimately compressed to
minimum size, and then expands once again, repeating the original oscillation.

K --. .,.A

S' • - , '' , . , . • , • - ,, r i ••'_ 1_ '""' • .•.. ,_• •-- -. fi " • •'- •' .'--•'•J . .. -''•- "'.
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During this oscillation, however, several events take place which cause
the oscillation to be attenuated so that no more than 5-10 pulsations occur.
First, the bubble rises (migrates) under the influence of gravity. This converts
some of the potential energy of the bubble into kinetic energy of the water,
so that there is a steady loss of energy from the bubble.

Next, a pressure pulse (shock wave) is emitted from the bubble each
time it passes through its minimum size. This also extracts energy from
the source.

Major success in treating explosion phenomena has come from the de-
velopment of scaling laws. In 1947, Friedman [15] pointed out that the fol-
lowing scale factors are appropriate for length L and time T:

L = 3E ,] 1/3

L =[47rPij

3 1/2 (4.66)
TJr L 32,]

1 2P

where E is the total energy to be associated with the bubble oscillation, P* the
absolute hydrostatic pressure at the location of the explosion and p the equi-
librium density of the liquid. These can also be expressed in terms of the bub-
ble energy per unit mass of explosion e (in cal/gm), the weight of the explo-
sive W (in pounds) and the equivalent water depth of the pressure p*-
Z* = Z + 33 (in feet). In terms of these rather bizarre units, we have

L = 1.733e 1/3 I- ,W 1/3

(4.67)

T = 0.373E0/3 W13

(Z*) 1/6

A fundamental theory of explosion shock wave propagation has been
developed by Kirkwood and Bethe 1161 and is developed in some detail in
the book by Cole. The results of this theory give the following relationship
for the pressure pulse amplitude at the distance R (ft from explosive source of
W Ilbs.)

PR= K, ] (4.68)

- - K
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where K, is a constant characteristic of the explosive, equal to 2.16 X 104 for
TNT in the units used.

A graph of experimental results [1 71 is shown in Fig. 4-20, indicati~ag
substantial agreement with the theory over variations in explosive charge and
depth by a factor of 1000 or more.
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The shape of the shock pulse is also predicted by the Kirkwood-Bethe
theory. The relation of the period T of the first oscillation from an explosion
at a depth d is given by

P= K2 z (4.69)
(Z,) 5/6

which is of the same form as Friedman time dimension [Eq. (4.67)). Ex-
perimental results [181 (Fig. 4-21) also confirm this dependence.

*NOL 1949
* ONOL 1961
+NOL 196 3
ONOL 1964XUERL 1947

-HUDSON LABS, 1963

'4 36(C)-5/6
Wi/

3

101 

-

10 2 3 6 1030
BURST DEPTH,ý (FT)

Figure 4-2 1.-First bubble period s a function of total hydrostatic
depth. E(-z*). * (1949), o 1961, + (1963), a (1964), (all Naval
Ordnance LAboratory); x Underwater Explosives Resarch Lab-
orator/ (1947); o Hudson Labs (1963) (from Blalk and Christian
[ 18 /.

The interconnection of viscosity and shock propagation has been studied
by Arons. As in our discussion of finite-amplitude wave propagation in
Chapter 3, we found that the role of viscosity in blunting the steepness of the
rise and decay times of the pressure peak is counteracted by the role of finite
amplitude which tends to sharpen the pressure peak as it passes through the
medium. A comparison of the results of this theory with experimental
charges at two depths is shown in Fig. 4-22.

Weston [191 has pointed out that the Fourier energy spectrum of an
exponentially decaying pulse can be written as

2P0
2  -

E(w) 
-
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Figure 4-22.-Comparison of measured and theoretic shock wave
pressures, normalized to the maximum pressure. " is the total

hydrostatic depth (-g*) (from Blaik and Christian [ 181).

where Po is the initial peak pressure and to measures the initial decay of the
pulse. For to, Arons used

to = 58WI/
3  [_/3] -0.22

while Weston employed a slightly larger value.
Each succeeding bubble pulse has an energy spectrum as does the origi-

nal shock wave. The combined effects of the shock wave and the first two

bubble pulses is shown in Fig. 4-23 for a I -lb charge at 20 fathoms. The os.
cillations near the center of the curve are due to the bubble oscillations.
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Figure 4-23.-Theoretical energy spectrum of explosion for a
20-fathom I-lb depth charge (from D. E. Weston 1191).
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The propagation of this energy spectrum will be modified by the pres-

ence of absorption in the medium. On the other hand, the detection of this

explosive material can serve as a measurement of sound absorption in the

medium.
This technique has been used widely in connection with the SOFAR

channel to measure a at low frequencies. Figure 4-24 shows a variety of re-

sults by this technique, while reference 20 gives a critique of some theoretical

aspects of the problem.
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Figue 4-24 -Sundattenuation coefficients obtained from analysis ofunderwater explosions (from R. J. U rck 101)
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Chapter 5

AEROACOUSTICS

5.1 The Lighthill Equations.

It was pointed out in the Introduction that Rayleigh 111 had developed
an equation for the scattering of a plane wave from small inhomogeneities in
which the d'Alembertian of the pressure was placed on the left side of the
equation and all other terms were placed on the right side, where they formed
an equivalent distributed monopole source strength. In his subsequent argu-
ment, Rayleigh retained only the principal terms, which involved the degree
of inhomogeneity of the medium and the strength of the original sound wave:

2Ac a 2p.V / aPS0 2p = 2  t2  a A •PJ. (5.1)(o2 3t2 Ty.-o0 ay"

Hence ps is the pressure amplitude of the original beam in the Rayleigh
formulation.

Lighthill, in his classic work, (21 began at this point and noted that the
vanishing of the two terrms on the right in the absence of an external sound
source (ps = 0) made it necessary to reexamine the terms that Rayleigh had
quite justifiably neglected in his scattering investigation.

In his analysis, Lighthill considered a fluctuating fluid flow that occu-
pied a limited part of a large volume of fluid, the rest of which was at rest
(Fig. 5-1). He then made a comparison between that system (a) and a similar
one, (b) whose density values were those appropriate to a uniform acoustic
medium at rest. Outside the zone of flow fluctuations, the two systems were
therefore identical. Lighthill then stated that the difference between the two
systems was to be "considered as if it were the effect of a fluctuating external
force field, known if the flow is known, acting in the said uniform acoustic
medium at rest and hence radiating sound in it according to the ordinary laws
of acoustics."

To begin the mathematical analysis, we first write out conservation
equations. The momentum in a fixed region of space changes as the result of
the combined effect of (I) the stresses on its boundary and (2) the momen-

*M. J. Lighthill, 1, p. 566. (
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Figure 5-1.-Lighthill concept of fluctuating fluid flow (a) and
equivalent acoustic system (b).

turn flow across the boundary. The boundary stresses are expressed by the
Reynolds stresses puiuv while pij gives the real stress. Hence the contribution
to the rate of momentum changes irn the shaded area of Fig. 5-1a is of the
form

T'i = pq + pviv1 . (5.2)

A uniform acoustic medium at rest (5-1b) would havc stresses only in the
form

T"= Pco2b (5.3)

where 6 is the Kronecker delta-that is, only a simple hydrostatic pressure
would be present. The difference between these two terms then is the equiva-
lent external stress acting on the uniform acoustic medium of Fig. 5-b:

Tii Tii - Til= pL'/ + P11 - p " (5.4)

I.
' .

¶ -• _m~l 1 • '1 1I III• 1 I II~llll l
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Under such conditions, the equation of motion takes the form

02Ti- c0
2o 2p = c0

2 2  p (5.5)
aY12Y a o t2

2 ayiayi-

Actually, Eq. (5.5) derives from the equation of continuity

ap

at= 0

and the momentum equation

2P a i1--t(Pud) + C2 x x (5.7)
t C0 sý-i = axi

which combine to yield

2, 2Pa 2 Toi

Vp _ _ _ = l 0 2p = . (5.8)
2 at2 c02 axiaxi

The effect of viscosity on the processes involved here may be taken
into account in the stress tensor pi. For a Stokesian gas (for which the bulk
viscosity 17' = 0)

Pij = P06i+uf + 1(i0k5 (5.9)

where p0 is the equilibrium pressure.
Equation (5.5) is a rather complicated one, but it car, be reduced for

the problems at hand. First, the stresses Til can be neglected outside the flow
region. There oi = 0 and one has only the motions of the medium due to
sound waves. Next, the viscous stresses in pq constitute small scale absorp-
tion effects which can be neglected except for large scale phenomena.
Finally, for low Mach numbers, T1, can be approximated by polV/.

5.2 Monopole, Dipole, Quadrupole Sources.

Before proceeding further, a brief discussion of the mathematics of
acoustic sources is desirable. The simplest possible sound source is that of a (>
small pulsating sphere whose radius varies sinusoidally with time (us --uoeh'').

r
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By small here we mean ka 4 1, where a is the mean radius of the sphere. In
such a case, the pressure at a distance r will be

Uoe) .(wt - kr)
P = iwpa2 r (5.10)

We now define S as the simple or point source strength. It is equal to the
amplitude of the volume rate of expansion of our sphere, i.e., S = 47ra 2u0 .
Hence the pressure can also be written as

iw~pSe(, - kr)
P = 41r(5.11)Oir

The variations of the density can be found from Eq. (5.11), since the excess
pressure p = c0

2 Ap or

i~~i(wrt- kr)
P - P0 = i 4cpSe (5.12)

47rc2r0

while the intensity will be given by

1p12 - pck S2 (5.13)
2pc 321r2r 2

Such a simple source is an example of a monopole source. Monopole sources
usually involve the introduction of new fluid into the source region (explo-
sions or gas combustions), but they can also originate from the introduction
of heat into a localized region or from the presence of turbulence.

If the source emits more generalized radiation than sinusoidal, we may
describe the density fluctuation, say, by the expression

q (t-Tr0
q - -Mc0 / (5.14)

- 0 4irc02

where q is the rate at which a point source adds mass to the medium, and
q'(z) = 3q(z)/az.

• .. * - t
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In the notation of Eq. (5.12), q[(t - (rco)] replaced pSei(wr - k).
For an extended distribution of sources of matter, we need to replace our
point equation (5.14) by a volume integral, i.e., rewrite Eq. (5.14) as

P -P ~ f Ir -RI dVR (.5P - Po - •c2 t-Q R,t - co lI-r •1 (.5
47w0 JLc 0 IrR

where QdVR represents the time rate of mass production in the volume ele-
ment dVR marked out by the vector R (Fig. 5-2). The integration in. Eq.
(5.15) is over all space, but in practice is carried out only over the region in
which there are sources. The quantity q'(t) is called the instantaneous
strength of the point source, and aQ/1t the (mass) source strength per unit
volume or more briefly, the (monopole) source densiy.

OBSERVATION
POINT

Figure 5-2.-Geometry corresponding to Eq. (5.15).

In most acoustical situations, one is more interested in the pressure
rather than the density. The result of Eq. (5.15) (and others following be-
low), can always be put in the form of the pressure by the pressure-density
relationship studied in Chapter 3, the linear form of which is

p - P0 = c0 - PO). (5.16)

While there are many acoustic sources (such as pulsed jets) which are
effectively monopole, in most physical situations, the monopole strength
vanishes, and attention must be focused on the next higher level of sources-
dipoles.

Lighthill makes the following instructive analysis. If there are no mat.
ter sources, then the sound is generated by a fluctuating force field F1 per (
unit volume in some part of the medium (i = 1,2,3 corresponding to the vec-

.. _2'-,
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tor components x,y,z). Such a force would appear as Fi on the right side
of Eq. (5.7) and as -(aF,/axj) on the right side of Eq. (5.8). A comparison
of Eqs. (5.7), (5.12), (5.15), (5.16) indicates that this force field would
be equivalent to a source distribution with strength per unit volume =

- (aFi/ax,).
Ughthill goes on to point out that a specific component of this equiva-

lent source distribution-say, -(aF, lax, ) is itself equivalent to a distribution

1F1(X',x2,x 3 ) - +FI(X1 + e,x 2 ,x 3 ),

in the limit as e - 0, by the definition of a derivative. That is, we are already
dealing with a field of dipole sources of strength F, per unit volume. Thus,
"a force field Fi per unit volume emits sound like a volume distribution of
dipoles whose strength vector per unit volume is Fi".*

We can therefore generate a pair of equations analogous to (5.15),
(5.16), (i) for the force fi(t) concentrated at a point:

- (5.17)

P -PO 4 c02 x r

and (ii) for a volume distribution of dipoles:

I a - Fi(R Ir-RI)I dVRP0 -PR t • (5.18) 1
4 tc2 ýx~i CO• If - RI"

Equation (5.18) can be written differently for the far field. Since the
derivatives of Fi with respect to the xi fall off with ,J r - R1- 1 while those of
Ir - R 1-1 fall off as I r - R1- 2 , the latter can be neglected in far field. Then

p- PO 1 2 ri -Ri I t Ir -" Ir-RI)do

4co2  fIf -RI 2 co at Fi ,d

(5.19)

Thus the density changes at the point of interest depend on the time rate of
change of the dipole strength Fi, and are not due to simultaneous time
changes in the local density but depend on their time of arrival at the distant
point.

*M.J. LighthiU, I, p. 573.

I.
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Lighthill again emphasizts the point: while the fluctuating stresses TU
in Eq. (5.8) produce a force pei unit volume equal to their inward flux
S-(3Tii/xi), so that they generate like a dipole field of strength -(aTi/axi)
per unit volume, the sound radiated is not to be computed from the total
dipole strength per unit volume, since this is in fact zero at any instant of
time. Rather, the sound will come from the next higher order of terms, i.e.,
it will be the equivalent quadrupole field, a field that is the limiting case of
four simple sources which obey the inverse square law of radiation. This can
be seen by paralleling the development given above for a field of distributed
monopoles. In the limit as c -' 0, the term -(aTI/1x,) is equivalent to the
combination of dipole fields at the two points x1 and x, + e:

-Tti lim T'-nT1(X1 ,x 2 ,x 3) i + exx,. (5.20)ax, -"* 0

The total quadrupole field can then be regarded as the combination of three
suc' 'Is. However, they may also be regarded as a single quadrupole field
with b.. ngth per unit volume given by the stress tensor Tii.

We therefore write the expression for the density variations due to a
continuous distribution of quadrupoles with strength density Til by analogy
with Eqs. (5.17), (5.18) for the dipole field:

1 a2  f ( Ir-Ri\ dVR
P - PO - -axx i/ Rt . (5.21)4tnc 02 3X70) -, lr -Ra

Also, at large distances from the quadrupoles producing the radiation, argu-
ments similar to those preceding Eq. (5.19) justify the approximation

FI f(Ri - r1 XR 1 - r) I a2  Lr r- Rl

0 47rco2 I1 R - r13  c0 
2 a t 11 R2 co

(5.22)

One other approximation is useful: when the origin of the coordinate
system is taken within the flow region, and the dimensions of the latter are
small when compared with r (Fig. 5-2), we can then disregard R and R, in the
difference terms of the integrand of Eq. (5.22), obtaining

I rrl I a2  ( Ir-RIl\
P- 0 at 2  't I d VR. (5.23) (

4rc0
2 r3  c0

2  C0t2

~~~~~~... .. . . . . . . . . . . .. . .... I
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Equations (5.22), (5.23) form the starting point for investigations of
problems involving the scattering of sound by sound, as we shall see in Chap-
ter 9.

The sound intensity represented by a given fluctuation of the density
can now be found by multiplying the average of the square of the fluctuation
by c0

3/po [recall Eqs. (5.13), (5.16)]

C03
1(r) = (( - ( )>. (5.24)

In Eq. (5.22), pO is the mean density. One can also write down the expres-
sion for 1(r) directly by substituting Eq. (5.22) in (5.24).

By integrating once over the surface containing the radiation field, it is
possible to give a relatively simple form for the total acoustic power output P
under the conditions of Eq. (5.23), i.e., in the far field:

[f { a2 [ Jat' (R-RI dR]
607rp0 c0

5  (t2 Tii(,r -co

2 _ TI(R.1 o - JJ (5.25)

Here o2 is the variance, defined by

02(z) = ((z - (z))2). (5.26)

5.3 Sound from Changes in Vortex Strength.

The discussion of Section 5.2 represents only the foundations of Light.
hill's theory. We shall not pursue its ramifications further in this chapter.
Particular application of the Lighthill equation will be made in Chapters 9
and 10, and there is no need here of the more sophisticated treatment of
mathematical theory.

There are, however, a number of aeroacoustical effects that it is ap-
propriate to treat at this point, and we shall follow the analysis of Powell, [3]
an analysis which gives a graphic quality to the description of the phenomena.

It has been pointed out in the INTRODUCTION that interest in flob'-
induced sound dates back to the Aeolian harp of antiquity, which was later
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generalized to the study of the flow past a cylinder. Such a flow gives rise to
the well-known alternate eddy pattern known as the von Karman street (Fig.
5.3). if r" is the circulation ( f u •-6) around the cylinder, the eddies that
are cast off have circulation of ±21r. As each eddy removes itself from the
cylinder, it changes the circulation about the cylinder by an equal, opposite
amount, so that the circulation about the cylinder alternates between +r
and -F. _

u r

> '~*21' 21' 1
/

_ (j
" t I 2r - 2r

Cý' G\

Figure 5-3.-Generation of a von Karman street.

This alternating circulation is suggestive of a dipole phenomenon and,
indeed, both Rayleigh [41 and Lamb have shown how a dipole field will be
created by the vibration of a cylinder. Lamb 151 in fact proved that the in.
compressible field induced by a closed vortex loop with constant circulation
r is equivalent to that produced by a uniform distribution of dipoles of
strength r per unit area, distributed over any surface with a single boundary
of the same shape as the vortex loop. This behavior is illustrated in Fig.
5-4. The equivalent source here is a long rectangular dipole sheet filling the
space between the space between the two vortices.

(0* 0

Figure 54.-The streamlines resulting from a rectangular vortex ring of
great length normal to the page (at left) are identical to those of the
coresponding vortex sheet at the right (from Powell 131).

In mathematical terms, this means that the particle velocity at the
point x , which is given by the relation

r t× de(R) ,
u(x) = - XQ()(5.27)

41r r 2

I,,!

mnna ~w .'•" -,',,,•u . •. .. . . . ."n'' l,*--* *-u ,tni-n-. - -t -m ca lI I lre m
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can also be written as

u(X)= x " [ iV( ds(y (5.28)

where r = x - y, and r^, s are unit vectors (see Fig. 5-5, where the vectors s,i

are perpendicular to the plane of the drawing).

t
II Y

RFire 5-5.-Geometry €ofnesponding to Eq. (5.28).

In regions of zero vorticity, the veiocity u(x) can be set equal to the
gradient of a velocity potential @:

u(x) = - (5.29)

Then (5.28) can be integrated to obtain

"Irv(x ds(y) (5.30)

which corresponds to the potential due to a "point" dipole source of strength

For distances x that are large in comparison with the size of the vortex

loop, Eq. (5.28) can now be written

U00) = V[D -vX (01] (5.31)

This is the expression for an incompressible fluid, for which there will be no
retardation of the field. For a slightly compressible fluid, it can be shown
that Eq. (5.31 ) can be replaced by

I' ____

U x - _ X D .1 x (5 .3 2 )t , 41rn
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where I* is a time delay operation, such that

[For a sinusoidal timne dependence, D(t) = Doeiw the effect of I* is equiva.
lent to multiplication by e-iw(r~co). I

If we now expand (5.33) and keep only the terms for which r x, then

u(t)l =- t -a2  = * [Ddt)]*. (5.34)

I A
If the area empains const)ant, keq. (5.34 rheduers tor hc •x hnu(x) -D) = (5.34)4iCo2 at2 /

where Dx = rsx = D cos (x, s).
If the area s remains constant, Eq. (5.34) reduces to

Ux (5.35)

for a single vortex. For a distribution of vortices, summation or integration

would be necessary.

If the circulation remains constant, we need d 2sxidt 2 . If each part of
the vortex loop moves with a velocity u, in the time 6t, the area increase will
be 8s = (u X 62)t, where the length increase is Q -- 21rubt. As a result, we
obtain

PX XdX'
41rxco- uJ 4xco (r x u)xd2

(5.36)

In the more general case of a vurticity distribution " V X u we use
£ - " X u and obtain

u(x) - -d .dV(y)*. (5.37)
4nxco2f at

Finally, if the surface moves normal to itself, one can develop the expression

S 2u
u(x) X- YX La ds(y)*. (5.38)

41rxco 2 s at 2

14 1
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Equations can also be derived that give the pressure instead of the velocity.
If we use the equation of motion in the form

-2p = V .Vp + V. 1(PU)atI

and use

p = -7" + V.pu2 - U LP - L(P 2a 2 P)

we can make approximations in the nonlinear terms on the right of the in-
homogeneous differential equation, so that it reduces to

P -VjPLC+ AiPU2)

In the presence of a closed surface so within the flow, the general solution of
(5.39) can be written

P W P£X Vx'--dV(y) + I L2 PU2 dV(,y)
p(x) = r 41Tco 2v0atVy 0 2S ( L

+ 2)I

Sds(y). (5.40)
QTJr at \r/0

These four terms have the following interpretation:
(I) a volume distribution of dipoles, whose strength is proportional

to C;
(2) a volume distribution of nondirectional sources, of monopole

strength per unit volume proportional to

2 art2 22)Co

(3) a surface distribution of dipoles, whose strength is proportional to
the Bernoulli pressure [p + (I/2)pou 2 l;

(4) a monopole distribution over the surface due to its motion normal
to itself.
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In the far field approximation, Eq. (5.40) can be reduced to the form

p(x) = 2 dV(y)*

b0 ( + (I +.pou2) nds&y)*

4rltxc0 27

SOo a f, undsty)." (5.41)
4ffx at '0

Here the second ir~tegral of Eq. (5.40) has been neglected as of higher order.
Again, one may interpret the first terni as the motion of vorticity in the vol-
ume of flow, and the second as relating to vorticity at the boundaries of the
flow, while the third indicates the flow across the boundary, or the motion of
the boundary if there is no such flow.

Let us now consider the case of flow past a circular cylinder. The be.
havior as the flow increases is shown in Fig. 5-6a.

If a vortex forms, the picture is equivalent to the insertion of free vor-
tex of circulation -2r in the flow and a vortex of circulation +21r at the
inverse point of the circle, plus one of the same strength and sign at the
center. The total effect is that shown in Fig. 5.6b.

(b)

Figure 56.-Flow put a rSg circular cyMider (a) low velocity, (b) higNW C
velocity with generation of vowtex at the right.

____________ __ _ _____

-1 la-_er_____ii______F_______"___,__________.. . .__-____
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The sound produced can be obtained by means of this analysis. For
an order of magnitude dependence, one can use the similarity approach. For
high Reynolds numbers, we can assume that the dependent variables do not
depend on the Reynolds number. Then u(y) - U, r - Ud, a/at - w - Uld.
From Eq. (5.40),

p -) (u2(x))p0coX2  p0U3d2(. 3_). .

Here b is the length of the cylinder and d its diameter.

5.4 Sound from Movement of Vorticity in Free Flow.

For an inviscid liquid in the absence of impressed forces, we can write
the equations of continuity and motion in the form

ap + (u V)P + p(V-u) = 0
at

(5.42)
auI

-t + (u-V)u + -(Vp) = 0.

These can be combined to produce the form

02u = -V xV x u v u. r V

+ _L( VJIu - VPy 7,)u.VP

+ ~~~1 V I )a 5.43)
at [(-2 ,,C2)

As we have done before, we can interpret the terms on the right hand
side as source terms driving the linear system represented by the left hand
side. If we start with a sinusoidal disturbance for u, it is easy to rank the
orders of magnitude of the five terms on the right in terms of the Mach num-
ber M = uo/c0 and the Strouhal number S = woL/u (recall INTRODUCTION),
where L is some typical length in the flow. The terms are of the respective
order

1: SM2 : M2 : SM4 : SM4 . (5.44)

7_ _ _ _ _ _

- - - -.



218 NONLINEAR ACOUSTICS SEC 5.4

If the flows are for low Mach numbers (M 1 1), and if the condition

SM <• 1 holds, the last two terms can safely be neglected.

We now rewrite Eq. (5.42), dropping the last two terms and making
some simple transformations

. = + a. lta
c0- " -•2 + -t-2

where ',i have been defined previously. The solution to this equation has
the form

u1 X -* dV(y) f L dV()
7 0 4rco2  0 at r

l vC+ .-(,-)d ,y dV(y) (5.46)
41Tc02 (V02r

1 which can be used to obtain the sonic power from turbulent flow.

We shall not pursue this study, which opens up into the entire field
of turbulence-produced sound, but shall only make some summarizing
observations.

In the case of the aeolian tone, the sound was produced through
changes in area of the vortex rings. In such a case, a dipole source exists, as
shown in Section 5.2. In the case of free flow however, there is no change
of momentum and any dipole radiation is eliminated. In such a case, the
motion of a vortex in one place may be accompanied by an opposite vortex
motion elsewhere. Each of these generates a dipole sound, but they are of

equal strength and opposite sign, so that the dipole effect is zero. However,
because of path differences to the field point, their net contribution at that
point will not be zero but will be that of a quadrupole.

Powell has given a simple picture of this quadrupole action. Consider
two opposite flows of velocity (1/2) u and examine the disturbance of a thin,
plane layer subject to shear. The layer will be distorted as shown in Fig. 5-7.
The circulation 61' is given by ý'5A. The rate of momentum change 5M
is then

6dM p0 61r X udR = p0o6V. (5.47) C"

1' a., _ _.,A - . -j

• ---- 7" .. ..:- ' • " . . . .. . . . ... .. '
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Figure 5 -7. -Quadrupole action of thin plane layer subject to shear (from Powell (31)

To field point

Two dipoles
Figure 5-8.-Resolution of y and X in the direction of the distant

observation point x (from Powell (31).

This is a free vortex, so that no force is applied to it. Therefore

p0 f CdV(y) = 0 (5.48)

and no dipole results.
That is, the movement of vorticity at one point is simultaneously coun-

terbalanced by arn opposite motion elsewhere. However, the contributions to
the sound at some field point from the two vorticities have generally trav-
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eled different distances and therefore originated at different times. Thus the
two signals will have an initial time difference of 2Yx/co. This yields, for
Eq. (5.37) a net velocity difference

2 Yxa-,; aix "1
bu(x) =- T o - 1V (5.49)

C0 at L4lrxco 2 at

so that the velocity perturbation in the far field, due to quadrupole action,
will be

-- Y x dV(y)*. (5.50)
u cdt 2

Finally, the sound intensity at the point x has the form

lIx PoCo Wu2(x)> Oo Y"1"

1(x2c d2(x) 161r2x 2co5j V0 YZ

K t--() dt-x-- (z) dV(y)dV(z). (5.51)
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Chapter 6

RADIATION PRESSURE

The small size of the steady forces involved in the phenomenon of the
acoustic radiation pressure, the differences between theoretical conceptions
and experimental procedures, and the overly long devotion of acousticians to
the linear view have all combined to make olbscure this relatively small point
in the theory of nonlinear acoustics.

In the analysis that follows, we shall abandon the traditional quasi-
linear analysis, (i.e., analysis in which nonlinear distortion of the wave is en-
tirely neglected, but a nonlinear relation between p and p is employed) but
shall endeavor to point out where errors have been committed in the past.

Some of this confusion regarding radiation pressure stems from the vari-
ous ways in which this pressure can be defined. Two particular definitions
predominate -those due to Rayleigh and Langevin, and we shall now turn our
attention to these.

6.1 The Rayleigh Radiation Pressure.

In the previous chapters, we have had occasion to distinguish between
Lagrangian (material) and Eulerian (spatial coordinates). This distinction
plays an important role in our ideas about radiation pressure. Let us first
describe the processes for an ideal gas, obeying the adiabatic law

p = pO(p/po)"Y . (6.1)

and make the usual transfer to the liquid case later.
In the Lagrangian representation, the pressure ratio p/po is given by

Eq. (3.7)

P~p0  I 1(3.7)P0 + ta

where we use the reduced notation at/ax =x', 32 /ax 2 =vx, etc. Then
Eq. (6.1) can be rewritten

pL = Po(l + a)-

221

, - I: •
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and then expanded in powers of 3t/8a (the superscript L denotes the La-
grangian form):

PL Po (t+t) 12 .... ] (6.2)

If we assume a plane progressive wave of moderate amplitude, the dis-
placement velocity i can be found from the first terms of Eq. (3.47)

t0a

t =o sin (wt - ka) + -- sin 2(wt - ka) (6.3)

where 0 = wto =Mco and I/• = / (Q + 1)/2]Mk = •IMk.

If we integrate j with respect to t and apply the boundary condition
that • = = 0 when wt - ka = 0, then

t= toII - cos(wt - ka)]

÷ •°2a

0 k0  (y + I)fl - cos 2((t - ka)] (6.4)

and

-Msin (wt - ka) - M 2 ka 4 + ) sin 2(wt - ka)

+M7÷

+ M -2 ' [I - cos 2(cot - ka)]. (6.5)
8

We now substitute (6.5) in (6.2), keeping only terms up toM 2 and also as-
surming ka > I1

PL _PO = YPoM sin (wot - ka) - M2ka Of sin 2)t ka)

M Of+ 1)1 A)J
+ 8 11- cos 2(wt- ka}- a . (6.6) 1
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The time average of PL is then given by

(PL) po + p + M 2+-21 ]

P0 + "YPOM2 (8 + ) + Po co2M (7 + (6.7)S~ 8 -00 8(67

(here , ) indicates the time average).

It is to be noted in the square brackets of Eq% (6.7) that the second
term derives frcom the t.2 term of Eq. (6.2) and is frequently the only one
given (the quasilinear case). The first term is developed from a consideration
of the nonlinear term in t.. Thus, even in the simplest analysis here, the non-
linearity cannot be neglected. This fact was pointed out long ago by Fu-

bini, I1 ] but it has often been overlooked. [2)

Equation (6.7) can be written in simpler form by introducing the mean
energy density, which is given by Eq. (1.33)

I7
(E) = 1 o22M2 (1.33)

so that the average Lagrangian pressure-the pressure at the position of a vi-
brating particle that is located at rest at the point a, averaged a complete
cycle-is

pL p O+ I
(p 4 (E). (6.8)

The Rayleigh radiation pressure can be defined as the difference be-
tween the average pressure at a surface moving with the particle (i.e., the
mean Lagrangian pressure (p4 )) and the pressure that would have existed in
the fluid of the same mean density at rest [p0 in Eq. (6.2)]. [31 Therefore,
the Rayleigh radiation pressure PR is given by

PR = (pL) P

= 'Y + (E) (for an ideal gas) (6.9)4

under the assumptions thus far made (note that the quasilinear theory gives
[(Wy + 0)/2] (E) in this case).

I. - --
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Special difficulties have been added to the problem of the Rayleigh
radiation pressure in a liquid by the introduction of the concept of a "linear
liquid." This case has been treated in detail in the literature. [3-5) Such a
liquid is one of constant compressibility K. The relation between p/- and K
would then be

1 V- V0  1 " (6.10)

For the case of a planelharmonic wave just discussed,

L = to sin (wt - ka) (6.11)

K1

so that

(pL) = pO (6.12)

and the Rayleigh pressure PR vanishes.

The case of constant compressibility is a false one, however, since no J

such liquid exists. To solve the actual problem, we must use terms of second
order. The Lagrangian pressure pL will then be [Eq. (3.20)]

ptP O = - 1+ - +''

= Po +A + ) +'2 \ + - a +

,PO+A(-a + a + -22 (a)2 + higher order terms

= p0 + A tJa + I + 2. + higher order terms. (6.13)

If we parallel steps (6.2) to (6.8) (with the substitution Ak 2 t 0
2 =

P2o22 = 2(E)), we finally obtain

(pL) = PO + (E)(I + (6.14)

-2 2
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so that

PR = + (6.15)

Equations (6.13)-(6.15) could have been obtained from (6.2), (6.8),
(6.9) by the usual method [see discussion preceding Eq. (3.15)] of replacing
the nonlinear form for gases, -y + 1/2, by I + B/2A. They were rederived in
detail, however, to emphasize the falseness of the "constant compressibility"
condition. Even if the liquid were linear in behavior, so that B = 0, there
would still be a quadratic term in at/aa in Eq. (6.12) and the Rayleigh
pressure would not vanish.

Now let us follow the Eulerian approach to find the mean pressure at a
point in a fluid. In the Eulerian system, the density (pE) is given by the gen-
era] transformation rule (see Section 3.1)

P E L -Lj" '°/' 1L t pO(! -t,~ + t.,2 + tixxti) (6.16)pE=

x~a a x=a

Then, for the adiabatic process in an ideal gas,

E ± Y~ +
p O PO + IWP0[l - + - x + .txx• (6.17)

Substituting for the case of a plane harmonic wave, and averaging over time,
we finally obtain

(pE) po PO y-po ^y___3 M1

PO + (E) (6.18a)
4

while, for a liquid,

(pE) = PO + " 2) (E). (6.18b)

All of these cases have presumed the existence of a plane wave of infinite ex-
tent as well as an undissipated monochromatic wave. As we shall see below,
the growth of harmonics, the absorption by the medium and the presence of
boundaries on the wave will alter the form of these equations.

ha I
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The fact that the pressure at a fixed point in a fluid is alteret by the
passage of a sound wave indicates that the density at a fixed point an also
change. This was first pointed out by Langevin [7] and plays a role in the
determination of the Langevin radiation pressure, to which we now turn our
attention.

6.2 The Lange'in Radiation Pressure.

The Langevin radiation pressure PL is defined as the difference be-
tween the mean pressure at an absorbing or reflecting wall and in the same
acoustic medium, at rest, behind the wall.

Let us consider a collimated plane wave of circular cross section. The
mean pressure at a point on the side of the beam is the Eulerian pressure
(pE), given, under the approximation used thus far, by Eq. (6.18) [with ac-
count of (6.15)]:

(pE) = Po + - 2 (E) = PR - (E) + Po. (6.19)

But this value of the mean pressure differs from that just outside the
beam, which is p 0 . The fluid on the outside will therefore move in or out.
Its behavior can be understood by a consideration of the following model
experiment, which is taken from Hertz and Mende. 15]

We consider a cylinder, equipped with two frictionless pistons, entirely
enclosing the sound beam. The fluid in the cylinder also occupies the region
outside the cylinder. The piston X is a perfect absorber, so that the only
sound in the medium is the plane wave traveling from left to right. We dis-
tinguish two cases.

Case /. Let X and Y be fixed, and let p0 ,po be the density and pres-
sure in the fluid (at rest) outside the cylinder (see Fig. 6-1a).

The pressure inside the chamber at the end piston X will be the Ray-
leigh radiation pressure given by Eq. (6.15),* superposed on the mean pressure

Px= PR + P0

(6.20)

PX 2• 2A (E) + Po"

*The case discussed by Hertz and Mende was the artificial one of a liquid of constant
compressibility. Under those conditions PX= pO and the piston X could be free to 4
move as a whole.
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PX + (E) + p0

x

--- Sound P( p .pL j Po

Py (I 2) (E) (outside)

Y

(a)

Px "po +( + (E')= p0 +(E')

XIS~P a PE a PL M PO

p-(pE'), + .- ) (E')- p.

(b)

Figure 6-1.-IUustation of Rayleigh (a) and Langevin (b) radiation
pfesstuft (after Hertz and Mende 15]1).

The fact that the piston is held fixed does not prevent the use of the La-
grangian expression here because the surface of the piston must move back
and forth with the adjacent fluid, by the law of continuity.

In this same case, the mean pressure at any point on the piston Y wiln
be the Eulerian pressure from Eq. (6.18):

p = - 2(E) + pO. (6.21)

Case 1f. Now let X continue to be fixed but let Y be movable (Fig.
6-1b). The pressure difference Ap between the opposite faces of Y in Case 1,

Ap- 2)(E) - = 2)- (E) (6.22)

4 4-(A
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will cause the piston to move outward until the net pressure at the upper face
of the piston Y becomes equal to pO, i.e.,

(pE) = P0

or

Po - 2)(E') P0  (6.23)

where the primes on p0 and E indicate the altered state of the fluid. Then the
Lagrangian pressure at the face of the piston X becomes [Eq. (6.14)]

Px = (pL) = " + ( (E') + P;

=Po + I(E')+ -E')

= P0 + (E'). (6.24)

Since there is no sound beam behind the piston X, so that the pressure there
is p 0 . we have the conditions for the Langevin pressure pL. That is,

PL PX - po = (E'). (6.25)

The modified energy density (E') differs only very slightly from (E), so that it
is safe to discard the prime in the final result.

If we now remove the cylinder and piston Y, keeping only the piston X,
the situation will remain unchanged, except that the beam will not now be
so sharply bounded. In such a case, there will be a gradual change from
maximum beam intensity in the axis to no beam at some distant point. Be-
tween these two points a variation in the hydrostatic pressure of the type
indicated in Case ii must occur, leading to the same result as in Eqs. (6.21)-
(6.25).

In summary then, we have, for our four pressures,

(pE) = 2 - (E) time-average pressure at a fixed

point (Eulerian)

t'b
* - I-.. - • - _"-
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S(p L =p + I + T~)(E) time-average pressure at a vibrat-

ing particle of the medium (La-

grangian)

PR = (pL) -PO ( + (E) Rayleigh pressure

PL (pL(E',po)) - PO = (E) Langevin pressure
(6.24)

where pO is the pressure in the fluid at rest, in the absence of sound and

(PL(E',pp)) = P+ 4. ( ( E). (6.27)

A recent paper by Rooney and Nyborg reviews much of this same ma-
terial with substantially similar conclusions. 181

6.3 Higher Order Effects.

The relations in the previous section are valid up to terms of order M2 .
To find the effect of the next higher order terms, we repeat the substitution
of Eq. (6.5) in (6.2) keeping terms up to M2, there, and also the condition
ka > 1. The result for (pL) is

(P£L) = Po+ [7+r M 2 + 7 + M 2

Po 1'0L 8 8 (.8

"M2(3` 48 +1)2 (k2a2+ 4)].(6.28)

Retaining the assumption that ka), I and introducing the relation (E) =
(!/2)p0

2 c2 M 2, 1/2= [(- -+ )/2]Mk, we have

(pL) = p+ + - (6.29)
4 2Q2)'

- - ilK - - -A

•%.IF
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However, the correct energy density (E,) to second order is given by
(p0o 2 ), where t is given by Eq. (6.3). 19] Hence

1 2 1 2 a2  ( a2
(Et) = (pot2) = + (E) + . (6.30)

74R2 4 2

and (6.29) reduces to the same form as Eq. (6.8).

6.4 Effect of Reflection.

Throughout our previous treatment, we have assumed the existence of a
perfect absorber of the radiation. Let us now consider the case of a partially
reflecting surface (Fig. 6-2).

Medium 1 Medium 2

Figure 6-2.-Geometry of beam pawing through an interface.

We follow the treatment of Sec. 6.1, but now assume the presence of
incident, reflected and transmitted waves

t = K, cos (ct - ka)

= K2 cos (wt - ka) (6.31)

kr = L cos (wt - ka). -

7 ' -=._ _
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Following standard theory [91 we obtain

K2 - 2K,
P2c2 

:

1+--

PIcI 
(6.32)

LI P2C2 - PlCI- K I =_ rK

P2C2 + Pic1

where m is the reflection coefficient.
In terms of the previous analysis, K.1 -•0" The Lagrangian pressure

in medium 1 is then

(PL) - PO, + ." + (E)(I + m2 - 2m cos 2kla) (6.33)

while the corresponding pressure in the second medium will be

(L) = P02 + + (6.34)

I where (E 2) can be evaluated from the intensity I= cE in the two media:

= rn2 1I + 12

cl(El) = c1m 2 (El) + c2(E 2)

or

(E2) = 2(1 - m2 )<E). (6.35)

Similarly, the Eulerian pressure will be (from Eq. (6.17))

(1EB + _ 2) E1 )(1 + m2 - 2m cos 2ktx)

- (E0)4m cos kix

B T 2 (6.36)
X (PI) P02 + l- - 2) _.4V2
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so that the pressure change in each medium will be

(P0- PO)! = -Y - 2)(E(1 + M2 - 2m cos 2klX)

t (E1)'lm cos 2klx

(6.37)

X (pb - Po) -(- 2) (E2). i

We now encounter a difficulty in attempting to establish the Langevin
pressure. In the previous section, we set the Eulerian pressure at the boundary
of our beam equal to p0 , the quiescent pressure in the medium. In the real
case, the change from beam to no beam as we move away from beam axis is a
gradual one, but the effect is the same: the medium at the center of the
beam is compressed. Now however, we are dealing with time averages of the
pressure in the beam that vary periodically along the beam. Borgnis pointed
out that a reasonable assumption would be that, by reaction of the surround-
ing medium, the space and time average of the pressure in the beam be
brought to Po0 This in turn requires the taking of space averages of Eq.
(6.33), (6.36), (6.37). The Langevin pressure on either side of the interface
is then given by

(PL = ((Pp) + - p 0))1 = (EI)(I + m2 )
(6.38)

(PL)2 = (E2 ) = 2( - m

6.5 Radiation Stress Tensor

In his book on tensors, Brillouin discusses at some length the tensor na-
ture of the radiation stress. (101 He considers, in the case of a solid, an
imaginary fixed plane through the solid. The stresses acting through this
motionless, undisturbed surface are given by

Sii = -Pi] - pvivi (6.39)

where the pi represents real stress and pviuj represents Reynolds stresses Ire-
call Eq, (5.2')I. In this notation a tension is positive, a compression negative,
which is opposite to that of Chapter 5.

!4
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For a fluid, (6.42) reduces to

S,, = -p6i/ - pvjv1  (6.40)

where p is the pressure of the quiescent fluid.

We now consider a sound wave with particle displacements in the x di-
rection only (subscript 1). If we take the mean values of the tension (6.40) at
some point x, then

-P (x) I Pu1  0 0

(so) 0 -p(x) 0 )
0 0 -p(x 1 ) . (6.41)

Now pv1 2 is twice the kinetic energy density in the sound wave and is
equal to the total energy density f. Brillouin also demonstrates that p(x-" =

-E(v/c) (dc/dv) so that the final radiation stress tensor can be written as

dc)V 00

0 0 (6.42)
c d

0 0 v dc
c dv)

Let us apply this to the case of the sound beam of Fig. 6-lb. The pres-
sure at the lateral faces will be ÷E(v/c)(dc/dv) but the pressure at an ab-
sorbing face at x will be -E [I - (v/c)(dc/dv)J from inside the cylinder, but
E(v/c)(dc/dv) from right to left on the outside, giving the net radiation
pressure of Prad = E as before.

6.6 Interface Between Two Nonmiscible Liquids.

Suppose that a beam of sound falls normally in the plane interface of
two nonmiscible liquids. We take the hydrostatic pressure P0 to be the same
in both liquids. The arrangement is that of Fig. 6-3. We suppose a signal is
generated by the source at the bottom with energy density in the first liquid
equal to El. Because of the interface there will be partial reflection and par-

L. - " .7. .. -
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r

Figure 6-3.-Expertmental arrangement for observation of radiation
pressure at an interface (from Hertz and Mende (31).

tial transmission with the energy density E2 in the second medium given by
Eq. (6.35).

The next pressure at the interface in the upward (forward) direction
will then be the difference of the two pressures in Eq. (6.38):

Pnet = Ei(E + n2 ) - E2

= L l - + n2 + c (6.43)

As can be seen from the equation, the net force acting on the interface can
be either positive or negative, depending on the choice of fluids.

This fact has been very clearly demonstrated by Hertz and Mende in
terms of the acoustic fountain. 141 It might be observed parenthetically
that, if the second medium is air, m s 1 and Eq. (6.43) becomes Pnet
2£, i.e., a considerable force is exerted on the free surface, resulting in a jet
of liquid being forced upward into the air, an effect known as the acoustic
fountain (Fig. 6-4).

The beam of sound rises vertically through an oil bath and is incident
on the base of a glass tube that is closed at its bottom by a 0.03-mm sheet of
copper foil. Two nonmiscible liquids are poured carefully into the glass
container. Figure 6-5a shows the case of water over CCI4 . Here p1 =
1.594 g/cm 3 , c1 = 938 m/sec, P2 = 1 gm/cm 2 , c2 = 1483 m/sec, m = -0.004.
By Eq. (6.35), the net force =-SPnet ý- +0.367 (El), i.e., the force is in the -
direction CCI4 - H20, the direction of the sound beam.

LLS
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I
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Figure 6-4.-Example of acoustic fountain
(from L. Bergmann, Der Ultraschall (6th
ed.) S. Hirzel, Stuttgart, 1954, p. 208).

Figure 6-5b shows the case of water over anilin. Here p1  1.022
g/cm3  1 = 1659 m/sec, m = -0.07, net force = -0.364 (El), or counter to
the direction of the sound beam.

The fact that the direction of the net force is independent of the di.
rection of the sound beam is brought out even more clearly by experiments
with the same pairs of liquids, in which reflection system, schematically de-
picted in Fig. 6-6 is used.

Figure 6-5.-Radiation pressure effects at an interface. (a) water 1
over CC14. (b) water over aniline. The sound source is at the bottom
in both cases (from Hertz and Mende 131).
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Figure 6-6.-Arrangement for observing in-
dependence of net force at interface in direc-
tion of the beam (from Hertz and Mende
131).

Figure 6-7a shows the case for water over carbon tetrachloride and Fig.
6-7b that of water over anilin.

6.7 Radiation Pressure Devices.

The pressure of radiation has been used in several techniques for meas-
uring sound intensity.

-!

Figure 6-7.-Observation of independence of net force on direction
of beam. Arrangement is that of Figure 6-7. (a) water over CCl4:
(b) water over aniline (from Hertz and Mende [3]).

.1- I"



SEC 6.7 RADIATION PRESSURE 237

The first instrument for sound intensity measurements by means of
radiation pressure was due to Altberg. [11 The basic principle is shown in
Fig. 6-8.

--- s
--- I

Figure 6-8.-Use of radiation pressure to measure sound intensity.

A continuous beam of sound is propagated upward in a liquid. A flat
plate is suspended in the liquid to intercept the beam. The plate also forms
one pan of a microbalance. To avoid standing waves, the bottom of the plate
is usually roughened so as to produce diffuse reflection.

The balance is first adjusted in the absence of sound. When the sound
beam is turned on, the pan will be pushed upward by a force given by

F = fbeam PL dS'

If the beam approximates a uniform one of cross sectional area S, and if the
entire beam is absorbed by the detecting surface,

F pLS = (E)

=S

For a beam in water of one atmosphere initial pressure amplitude and cross
sectional area 3 cm2 , F = 6.7 dynes, which is equivalent to the weight of a
7-mg mass. Thus the accurate measurement of the mass difference gives
a measurement of the sound intensity.

To obtain absolute values, it would, of course, be necessary to know the
reflection coefficient m. However, one generally needs only to know that the
radiation pressure force is proportional to the energy density.

. LI-. J.
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This method of detection was frequently used in measuring sound ab-
sorption in early days. [ 12] More recently it has been incorporated into
sound intensity meters.

A more sophistic.ated technique of "chopping" the radiation pressure
by square wave modulation has also been used in absorption measure-
ments. [13-15] The resulting radiation pressure becomes a square wave
with an amplitude proportional to the intensity of the initial beam.

The device has the advantage that it measures the total energy density
present, rather than that of a particular harmonic, and can be used with suc-
cess in finite amplitude work.
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Chapter 7

STREAMING

The term streaming is given to the bulk flow of fluid that results when-
ever a sound wave is present in the medium, and was first observed by Fara.
day in 1831. [1] Under certain circumstances, (high intensity, presence of
surfaces from walls or impurities) the effects of streaming can be quite
marked.

7.1 Basic Equations.

In order to treat the phenomenon quantitatively, we first consider a
homogeneous isotropic fluid. We focus our attention on a small volume 8V
of such fluid and sui, ose that the only forces acting in it are the forces of
elasticity (-7P) and viscosity (b7 VV - u - 77V X V X u), where the terminology
has all been introduced previously. That is, our equation of motion is the
Stokes-Navier relation

f =-Vp + V [(11 + 17') V. u] - tV X V X u

du fau1
= p'--= o L + (u'V) . (7.1)

We can rewrite this equation somewhat differently by making use of the equa-
tion of continuity

ap + Vpu = 0 (7.2)

to yield

3(pu)
+ p(u- V)u + uV7 Pu

[=-vP+ V(37+ 17)V-u] -r7VX VXU. (7.3)

239
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As in our perturbation analysis of Chapter 3, we introduce expansions
of p, p, u in terms of successively higher order approximations:

P = PO + P1 + P2 + "'"

P - PO + PI + P2 + (7.4)

U = I1 + U2 +''

The quantities p0 , p0 are the static or quiescent values of the pressure
and density, respectively. The corresponding value of u is of course zero.

A complicating problem is the presence of the viscosity under the V
operator in the second term on the right of Eq. (7-3). In some of the standard
references (Rayleigh, [21 Eckart [3] ) both 17 and i7' are assumed to be inde-
pendent of the density, so that they can be rent 'ed from under the 7. In the
research of Medwin and Rudnick, [4] these authors assumed the shear vis-
cosity 7? to be constant, but wrote the bulk viscosity il' as

ri77 = + a p p+17'' ' (7.5)
p 0  

0

A very general form of the acoustic equation in a fluid has been developed by
Hunt. 15] For the present we shall neglect all variations in viscosity, return-
ing to them in Section

The equation of continuity has been written in its most general form
in (7.2). The conservation of momentum yields I

p "T -- pFe - p (u"- V) u - V p + (X + 2,ri)V (V7 "u)

- '7V X (V X u) + (V.u)VX

+ 2(' 7 7 ' V)u + V X X (V X u) (7.6)

where Fe is any external vector body force per unit mass acting on the sys-
tem, 17, X are the two viscosity coefficients, r is the shear viscosity, while X is
the dilatational viscosity. The bulk viscosity 7n' is given by

X= + 2 (7.7) (
3"
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If no forces act from outside the system and the variatfon of viscosity is
neglected, Eq. (7.6) reduces to the form

au
p -' = _p( u. u - Vp + (X + 27)V(V. u) - r1V X (V X u) (7.8)

or, since

aGpu) aU ap,

which, by application of (7.2), becomes

a(pu) auat - = • -t u(7. pu),

we can obtain the following expression for the mass transport velocity pu:

a(p u)t -- = -u(V .pu) - Ou. V)u - Vp

+ (X + 217)V(V "u) - r/V X (V X u), (7.9)

which is the same as (7.3) when we identify the second viscosity coefficient X
with 317' - 277 as in Eq. (7.7).

It should be evident by now that the first rule of calculation of non-
linear acoustics is to keep the minimum number of additional varying quanti.
ties that is needed for the consideration of any problem. If the results of cal.
culation with these give good experimental agreement all is well. If not, or if
the calculations result in zero effect, we then must look for additional terms.

In application of this second rule, we place all known or solvable terms
on the left of the equation and the new, unknown and nonlinear terms on the
right as small perturbations.

The treatment of the bulk viscosity has long been a controversial one in
the field of linear acoustics. For example, the quantity can be, and often is,
used as a catch all, to account for excess absorption beyond tht predicted by
the Stokes theory. The discovery of relaxational processes in fluids required
the bulk viscosity to be a function of the frequency. This has disturbed many
researchers (see Markham 161 ) who preferred to introduce an empirical dy-
namic equation connecting the pressure and the density. The resolution of
this difficulty is found in the application of irreversible thermodynamics. [7]

S."
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In his treatment of tae problem, Nyborg (8] introduced a dynamical
relation between pressure and density with a frequency-dependent param-
eter, writing the first order relation between p, and pI as

P1 = c02P + R .Pl (7.10)

If we insert Eq. (7.10) in (7.1), we obtain a first order expression for
the stress force per unit volume

f = -c02TPl - R,.o7, + ± T7+ r 17 •7 V u I - 77V X V X Ul (7.11)

Now the continuity equation in first order is

, I + poV'u* = 0. (7.12)

so that the term -R.vpI = poR,.,VV • ul, i.e., a quantity poR•, has in effect
been added to the bulk viscosity 17'. In using R . one must therefore keep it
in mind that 17' used here does not have a frequency dependent component.

We have already reviewed the simple solutions of Eq. (7.10) in Chapter
2. Of particular importance to our work is the fact that the absorption
coefficient

ct =-(3 t + 1) 1PLC2Poc3

17 + + R 0po2p (2 2

in the work of Nyborg} is much smaller than k in virtually all fluids.*
Equation (7.9) can be conveniently rewritten In first order (for hai-

monic waves with the time dependence e1 '") in terms of the wave number k
and the absorption coefficient a:

VV 'u + (k - ia)2 = i(k - ioi)2 210 V X -vX u (7.13)PtOW

*An cxccption is provided by fluids of extremely high vi-teniity, such as methyl meta- (
crylate. whcre 77 is thousands or millions of times greater than ioi common liquids.
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This equation has two distinctive types of solution:

(a) Irrotational motion. Here V X Ula = 0 and

VV Ula = V2Uja = -(k - iO')Ula. (7.14)

This is the standard acoustics equation for damped harmonic waves,
and will be used for the case of an unbounded medium.

(b) Incompressible motion. Here V. Ulb = 0 and

-iXPVXu V2u = (7.15)

0lb =b.

Equation (7.13) gives a solution in the case of thin sheets of fluid along inter-
faces between phases.

The complete solution u, is of course given by the sum Ula + Ulb as a
simple inspection will show.

Now let us return to the streaming problem. We restrict ourselves to
the case where the motion is irrotational to first order and choose as our first
order solution

u Uoe- sin (wot - kx)

where u0 = 0 is the particle velocity amplitude, and look again at Eq. (7.3).
This now takes the form

KOOi~ ) F' = -Vp + ±3r7 + 17') VV .u - 17V X V7 X 11 (7.3')

where

-F' = +(pu. -V)u + uV" pu.

If we substitute the expansions (7.4) in (7.3') and sort out terms of cor-
responding order, we obtain

zeroth order

-Vp 0 = 0 (Po = constant) (7.16)

LL7
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first order

PO !Ul- VPj + br/V -uI -iV X V X u1atuI

[This is essentially Eq. (7.11)]
(7.16)

second order

t (P Iu1 + p 0 u2 ) + (Pou1 -V)u 1 + PoUIV ul

= -Vp 2 + bi VV -u 2 - 17V X V X u2 .

Let us look at the second order equation in (7.16). We first denote the
mass flow rate through some area S by M,; then

M = fpu'dA.

If we now substitute for p and u from Eq. (7.4), keep only terms up to sec-
ond order, and form the time average, then

(Mt) = fs(pOU2 + Pl ul)'dS.

We now introduce the symbols U and UT such that

U = U2 + " (Plul) U u2 + UT.

Then

fU. dS = (M)/p 0 .

In the steady state f U. dS = 0.
The quantity U is known as the mass transport velocity.
The time average of the first term of the second order equation can

then be written

a a ( M
Ft <((Plul + P0 U2 )) = V- kdSI

which must vanish in the steady state.

i'..
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The remaining portion of the equation, when averaged over an integral
number of cycles, is therefore

-F = -V(p 2) + b/•VV (u2 ) - 7V X V X (u2 ) (7.17)

with

-F = p0(u1 .V)ul + ul(V- u)).

It should be noted that F depends entirely on first order quantities and
therefore is a known function, while the right hand side of (7.17) contains
the unknown second order terms. Nyborg refers to -F as the vector giving
the "time average (over a number of sonic cycles) of the time rate of in-
crease of momentum in a fluid element."* The force is then equivalent to a
known external force driving the second order system.

We shall now look at F for some special cases.

7.2 Plane Waves in an Unbounded Medium.

We begin with the usual expression for a damped harmonic wave as the
first order solution

u =u 0e' sin (wt - kx).

Then F reduces to the single component

2 'xU l = PoaUo 2" 2ax (7.18)

One sees immediately that the artificiality of the bounded plane is going
to cause trouble. Suppose that we have a beam of circular cross section (Fig.
7-1). Then F. is a constant over the surface x = constant so long as the radius
p < a, and is zero elsewhere. The force must therefore produce a flow of
fluid to the right in the central cylinder of Fig. 7-1. Clearly the most ele-
mentary application of conservation principles requires that the fluid must
return to the left in the region outside the central cylinder. That this return
is necessary for maintenance of the flow can be seen from a consideration of

*Nyborg, Op. cit., p. 271.
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Figure 7-1 .- Geometry of a bound sound beam of circular transverse
cross section in an unbounded container.

the flow in a cylinder where the entire cross section of the cylinder is radiating
sound, so that there is no place for a fluid return. There is then no fluid
flow. In that case (7.17) reduces to

d (P2) 2 1~
-pou0 e (7.17')

or I
IP2 2(l e-2•x).

That is, the force F, is everywhere counterbalanced by the pressure gradient

and no net force exists to induce a fluid flow.

The effect of the second order terms in the case of an unbounded me- C"
dium is then to produce vortical streaming. This can be made more evident

it°
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by taking the curl of the second order equation of (7.16) and considering
steady state conditions. If we introduce the second order vorticity 2 =

V X U2 , then our equation becomes

b VPI X P 01 LO X (ul X RI)
2 2 apt 17

--- V X (p IV XRI) ME SE + SR ST, (7.19)
P0

where b = (4/3) + (i?'/rl). The identification of the three S terms was pointed
out by Medwin and Rudnick. [41 The term SE is that found by Eckart, [3]
SR that studied by Rayleigh, [9] and ST a third term which exists only in the
case of a rotational field (as is true also for the Rayleigh term SE).

Medwin and Rudnick pointed out that the quantities SE, SR and ST
may be regarded as vorticity for which there is a first order vorticity:
V X u, = Q, * 0.

Such sources (SR and ST) will be strong in the vicinity of solid sur-
faces (e.g., near the walls of a tube), where viscous forces are important and
V X ut may be large.

The term "volume source" is applied to a source (SE) in which the first
order flow is irrotational. Such sources should predominate in an unbounded
fluid or far removed from the walls in the case of a confined one. It can be
seen from (7.19) that only the Eckart term depends on the bulk viscosity.

7.3 Case of a Cylindrical Tube.

Let us apply Eq. (7.18) to the case of a cylindrical tube in which a

bounded plane beam of sound is progressing (Fig. 7-2). The radius of the
beam rI is less than that of the tube r0 and the tube is of sufficient length
that we can neglect any returning acoustic signal.

(front L. Liebermann J111).
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We rewrite the first order solution for irrotational flow in the form

U = U(r)e-' sin (wt - kx) (7.20)

where U(r) allows for radial variation of the particle displacement velocity.

We now consider only the first term on the right in Eq. (7.19) and
make use of the first order continuity Eq. (7.12) obtaining

72f2 b•_ Ib Vp1 X VV. "7UP (7.21)
2p 0

If we now identify S12 with the steady vorticity so that fl 2 = V X (u2 ),then
time averaging of (7.21) and some vector manipulation (see [10] gives the
result

V22 -= V X 7(u .Ul). (7.22)
17

Substituting Eq. (7.20) in (7.21), we get
S•22_ap0 32

V 2rax u12) (-i sin +j cos 0)

_ aP0 eax U..2

10 ar (i sin- j cos 0). (7.23)

It follows immediately for Eq. (7.21) that there can be no second or-
der circulation if a = 0. Further, if we have a plane wave filling the tube, so
that U= u0 everywhere, then 3U 2 /ar = 0 and again no flow results.

To find the streaming velocity, it is usetau to take the curl of both
sides of Eq. (7.17):

-V X F = -(V X V)p 2 + bi'(V X •)X U2)- 1V X V X V X u2.

(7.24)

But the operator V X V is identically zero, so that the first two terms on the

right vanish and the third reduces to

-r7V X (VV .u 2 -V 2u 2 ) = -_V X V2 u2 ,

I •, t
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and we have, finally,

-V X F = -iV X V2 u2 . (7.25)

Let us now consider the circular cylinder of fluid shown in Fig. 7-2.
The radius of the transducer r, is less than that of the cylinder r0 . It is as-
sumed that the cylinder is a long one and that there is no reflection of the
sound from the far end. Furthermore, it will be assumed in calculations that

u1 uoe-ax sin(wt - kx) 0 < r < r1

= 0 r I <• r <• ro .

Then F is given by the expression in (7.18)

2= p 2 u o2&x2 .e- (7.18)

t Eckart [3] used Eqs. (7.25) and (7.17) to obtain the following solution
for the flow in the axial direction, subject to the condition of zero net mass
flow through any cross section:

u 2(r) KI(rO2 - r2 ) + K 2 fo P(s,r)P(s)ds (7.26)

where

I1
K 2 = . bak2/p0

2Co3

r(s,r) = sIn (ro/r) s < r

= slnrO/s s > r

fo°
K 1 = K2 rJ4J (sr 0

2 -s 3 )p 2 (s)ds.

04
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For the specific geometry of Fig. 7-3, Fckart obtained the result

r2r12 T2 r1

u2 - U G (I. - -In
r -2 Tr0 0

2)

0< r <rt

=-G I rr] + In r

r,<rr <rr0

where

G L17 (kuor 1\ 2

Co 2

Plots of u 2 vs r are shown in Fig. 7-3 for three cases, for which r, 1.5
cm and the ratio ri/r0 is successively 1/3, 1/2, 2/3. From these calculations,
it is evident that the cross sectional area of flow in the positive direction is
greater than that of the sound beam for a relatively large tube, but becomes
smaller than that of the sound beam in the case of a narrower cylinder.

7.4 Experimental Studies.

A number of interesting experiments have been performed indicating
the qualitative validity of the theory just sketched. Figure 7-4 shows that
streaming in the case of a geometry similar to that employed in the Eckart
theory. [11] Fine particles of aluminum were suspended in a xylol filled
glass cylinder. The circulatory nature is clearly indicated.

In another technique, Zarembo and Shklovskaya-Kordi 112] used a
container half filled with glycerine and then a layer of vaseline oil (immis-
cible in glycerine) was added. A beam of sound enters the container parallel
to the interface, with its axis lying in the interface.

A drop of colored water is then released in the vaseline. It gradually
falls to the level of the interface, where it spread out, due to surface tension
forces. The motions of streaming at the level of the interface carry the drop
along the stream lines, so that a flow pattern gradually emerges (Fig. 7-5).

A modification of the analysis of Eckart has been given by Statnikov
(1967) 1131 for the case of sawtooth-like wave [Eq. (3.49)]. In essence,
Statnikov begins with Eq. (7.3') and writes u in the form u = u0 + Uac, where
u0 is the streaming velocity and uac the oscillating particle velocity. He then

I- ,----------
- " - - n - -.
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Figure 7-3.-Plots of theoretical values of streaming velocity as function of radius r. (r1 =
radius of beam, rO = radius of cylinder.) (a) r1 /r 0 =1/3; (b) rl/r0 1 /2; (c) r1 /r 0 =2/3
(from C. Eckart r31).
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Figure 7-4.-Acoustic streaming from a sound source in water. The motion is made
visible by a suspension of finely divided aluminum (from Liebermann [ I I I).

uses Eq. (3.49) for Uac, under the assumption that the cross sectional area of

forward streaming is identical to the area of the sound beam (Fig. 7-6). No at-

tempt was made to determine the reverse motion.
After some mathematical transformations, the same solution as Eckart's

is obtained except that the amplitude function G is given by

G b 72 W2 2k2r2 1- 1 2 (7.28)
G = 43 4 2 Co 3 ... i sinh a0  (72

Here cto is the small-amplitude absorption coefficient and the nonlinearity
parameter. If the acoustic Reynolds number Reac :Pac/bro <'I (and
r lg I ), G reduces to a

Po0t (pac)2r2 (7.29)2b p2c2

which coincides with the Eckart value. For high intensities,

(uac)210-4 Reac __o.3kl2 (7.30) i 4•,

Co4
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(a)

(b) (c)
Figure 7-5.-Motion of a colored film of water at an interface between glycerine and vas,-
eline for increasing time after start of experiment. Source is at the left (from Zarembo
and Skhlovskaya-Kordi [ 121).

Figre 7-6.-Acoustic streaming for a iawtooth wave
(from Statnikov 113)).

!N.
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Experimental resuits are shown in Fig. 7-7 for streaming in water. [ 141
The measurements were made on a 1.2 MHz beam with the receiver 17 cm
from the source. Aluminum-magnesium alloy filings were illuminated in the
water and photography with intermittent illumination served to measure the
velocity.

cm/lse

I

2 * a' I IoIzpg

Figure 7-7.-Streaming velocity in water as a function
of axoustic pressure amplitude (in dynes/cm2 ). Curve
(1) experimental data of Romanenko 1141; curve (2)
theoretical data of Statnikov [ 13).

It is estimated that Reac ranged from 28-145. The inflection on the
curve corresponds to the formation of sawtooth. Both upper and lower por.
tions of the curve are parabolic in the pressure. The Statnikov theory for the
upper region is indicated by curve 2. The agreement of theory and experi-
merit appears to be quite satisfactory.

7.5 Plane Wave Traveling Between Parallel Walls

We shall follow here the analysis given by Nyborg. 1151 The geometry
is that sketched in Fig. 7-8. The quantity F of Eq. (7.17) is directed mainly
along x and we take V-, to be approximately a function of z only.* We first
assume that the surfaces are infinitely rigid, and that there is no slipping of
the fluid at the walls, Under these circumstances, Eq. (7.17) reduces to

'321 2  ,P 2

17 - - + x2 =0 (7.31)

(all the variables are averaged quantities) where 3p 2/3x =K is a constant.

*Although we know that the fluid must return somewhere, so that there will be some
poiIt at which the main flow must turn and therefore be in the z direction, wc defer the
location of this turning to some distant point out of the range of our immediate con-
sideration. N'borg makes the comparison with an express highway- heavy traffic inboth directions, but no U turns are permitted except at some far distant location.

LW' I, *
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41?7k

h SOUND

J-LS___L______I_ _ _ L

Figure 7-8.-Geometry for plane wave between paranllel wal.

We further particularize the sound beam to be symmetric about the
plane z = 0, and to be cut off sharply at z = z1 , h - z1 . Three major cases
can now be distinguished.

(a) zI > 0, K = 0. This corresponds to a sound beam whose edges do

not reach the walls, one in which the ends of the beam are not terminated
(open channel).

The first order velocity will be given by

ul = Ae--Xx + i(wct - kx) z1 < z < h - z

= 0 elsewhere.

Then Fx = po0 42e-2ft - poc4 2 over the cross section of the beam [Eq.
(7.18)1.

Equation (7.31) then has the solution

u2 = B(h- 2zI)z 0 < Z < Z

= B(hz - z2 - Z1
2 ) zI < z < I h (7.32)

where B = p0 aA 2/2P.
The same curve will be repeated in the opposite half of the channel.

AA
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(b) z I > 0, K* 0. This corresponds to the case in which the flow is
altered by a closing or partial closing of the ends so that a pressure gradient
exists. This in effect alters the constant in Eq. (7.31). However, we shall
have K * 0 over the whole cross sectional area. The result is therefore a flow
velocity u£ to be added to the u2 of Eq. (7.32), given by

, 2 Kz(z - h). (7.33)

The alteration produced in the flow pattern here is shown in Fig. 7.9.

STREAM-
ING
VELOCITY

SOUND BEAM /

Figure 7-9.-Distribution of streaming velocity in propaptlon of sound between
parallel wails. The geometry is that of Figure 7-8. _: open channel, z1 = h/4;

-..... closed channel.

The solid curve gives the streaming velocity u2 for an open channel for the
case in which zI = h14. The dashed curve shows the velocity u2 + u2 for a
closed 4hannel. In the latter case, the mass flow rate M, must vanish:

M = P0  (u2 + uý)dz
ý*1

P0 h 02 (7.34)

Here i2 is the average of the quantity u2 across the channel.

iI

• • ....... ... -__ _=
; u • 1• ,,
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Equation (7.34) therefore represents the mean forward flow of case (a),
u2 , plus the reverse flow, characterized by the potential gradient K. The
value of i!2 can be found from Eq. (7.32):

=9n2 J/ 2 u2dz = Bh2 ( 2 - 3Z 1
2 .+ ZI 3 ). (7.35)hf -f ~d 12

0

Here Z1 = measures the relative width of the sound beam in the channel.
h/2

(When zt = 0, the sound beam fills the entire channel.)

(c) zI = 0. Nonslip condition. If we allowZ 1 = 1 in Eq. (7.35) so that
the sound beam fills the entire channel, L72 = K = M 0, i.e., no flow can oc-
cur. However, this result is based on an unlikely physical situation-that the
fluid particles can move freely at the wall (i.e., we have allowed the magnitude
of uI to be constant over the cross section of the channel, even at the wall).
A more realistic assumption would be that the tangential component of the
particle velocity is zero at the walls, i.e., a nonslip condition. The solution of
this program involves the problem of boundary layer behavior, a problem that
has had enormous attention in fluid dynamics (see Schlichting [ 16) ) and one
into which we should like to enter as little as possible.

If one has a sound beam that extends to the wall, the first order solution
uI that satisfies the nonslip condition is given by the following equation
(Nyborg, p. 314):

uI (longitudinal component)

= u0e"'(l - e-mz) cos (wt -kx)

(7.36)
w, (transverse component)

U oe-x
- (1 - e-m z) [a cos (wot - kx) - k sin (wot - kx)]m

These lead to a force field F dominated by an x component that consists of
two separate terms

Fx Fxa + Fxs

i.

• i1
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where

Fxa po= ,o e-2_

(7.37)

Fxb = •p 0 A2e-20 [kfl(6z) + Oxf 2(0z)].

The functions fl(0z),f 2 (#z) are defined as follows

f1 (0z) = e-O' cos Pz + e-Pz sin Oz - e-20 z

(7.38)
f 2(0z) = -3e-10 cos Oz + e-Oz sin Ojz + e-20z

where p2 = wp/2p.* These relations can be put in a neater form by introducing
the substitution C = e-02 cos Oz, S = e-oz sin Oz so that

f1 (03z) = C + S - e-2pz

(7.39)
f 2 (0z) = -3C + S + e=20z.

The variation of f,(o3z),f 2 (p3z) with lz is shown in Fig. 7-10.
/3/• --

Fire 7-10.-Force field functions of Eq. (7.39):
Q�-�) 1Oz)&f-]'2 (pz) (frorn Nyborg 181).

It is clear from the figure that both fA and f2 vanish for z greater than

*The ac thickness parameter 3 is used only in Secs. 7.5-7.7, and should not be con- (
fused with the nonlinear parameter 3 used elsewhere in the book.

- ----- .-. I
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The distance •-! is given the name of the ac boundary layer thickness.
For water at 10 kHz, 1/3 t- 5 microns, so that the ac boundary layer will be
extremely thin.

We shall not go into the details of further calculations but only cite the
result.

The average flow velocity U in the channel that is capped at both ends
(valid for distances >50-1 from the walls) is

3u0
2 r 6 ~U •- z-• - (1f - (7.40)

4co Lh

A graph of (7.39) is shown in Fig. 7-11. This is a complete turnaround
from case (b). The forward flow of the fluid will occur near (but not at) the
walls, with reverse flow in the center.

1.0

0.5.

U

0
Q1 0. 0. 5 ~

-0./

Figure 7-1 .- Average flow velocity U for cloed channel with nonslip condition
on side wall. Units of U arbitrary (from Nyborg I8 ).

In the case of an open channel, the flow is given by Eq. (7.31) for
ZI = I provided that the width of the channel is large compared with the
sound wavelength (kh !, 1).
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7.6 Standing Waves Between Parallel Walls.

As pointed out in the INTRODUCTION, streaming in the case of stand-
ing waves was observed a hundred years ago in Kundt's tube experiments and
here as almost everywhere else in acoustics, Lord Rayleigh presented much
of the basic theory. [171 Using the geometry and notation of the previous
section, we follow the Rayleigh treatment and introduce the stream function
4. This function was used by Stokes to express the average for the second
order, or streaming, velocity u2 . The quantity V "U2 is essentially zero and
we define the stream function such that the x, z components of u2 (u,w) are
given by

(7.41)

axp

Then the associated vorticity ý22 =-V X u2 will take on the value (for the
case of Fig. 7-7)

a•u aw). (L2k •2w')2 (.2t 2 = V X u2 (a 2 + w) (7.42)

Then, taking the curl of Eq. (7.17) (with V' (u2 ) • 0),

V X F = +77V X V X U2 = +r 7V X V2u2

= 172V X u2 = 7V22 2. (7.43)

Rayleigh derived the solution for standing waves in a channel with the
nonslip boundary condition as

u = u0 cos kx [cos wt - e-oz cos (Wt - 0z)J

Wi = kUO sin kx cos -e 0 2 Cos (t IT)

Here 3-I is the ac boundary layer thickness, as before.

L
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As in the case of a traveling wave, the force F1 along the direction of
propagation will be given by the sum of two terms,

Fx =Fxa + Fxs

where

Fxa = PokuO2 sin 2kx

(7.45)

Fxs = .pokuo2f2(Az) sin 2kx

with f 2 (oz) given by Eq. (7.38).
The patterns of ul, Fx, and the average particle velocity U [u 2 +

(l/po)(p ul)] are shown in Fig. 7-12.

A N A N

I I I I

I I-

Figure 7-12.-Distribution of u 1 , Fxs and V for standing
waves in a channel (from Nybog [8) ).

The combination of Eqs. (7.42), (7.43) yields the equation

174  4 -1pokuo 2 sin 2kx(2C + S - e-20z) (7.46)

2  dz2 27 0

where the nonvanishing of V , u has been taken into account. The solution
of this equation with the boundary conditions

U2 w2= 0 at z = 0

3u2
U 2 0 at midchannel (z (I/2)h)

3.

Li ' . .. . . : . .. . .. . .. , . t = • ', , •J r • •L• ,.':. • :':: i." ". I " "-
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has the following form for Ph 0- 1:

= Gsinkx [4C + 2S + e- 9+ 33z ( )

where G u0
2 /80c.

Equation (7.47) can then be used to find the velocity components
u 2 , w2 . By further manipulation, we can derive the expression for the x and
z components of the average particle velocity U and W:

U = -3i3Gsinkx e2$z + 2S -1 + 6 -L(I -

(7.48)

W = -3kG cos 2kx [e-2gz + 2(S + C) - 3

+ 20- h2(1 l- 2.

If we assume O3z > I (i.e., positions in the channel well outside the
boundary layer) then

U = u2 3j3G I - 6 (I - sin 2kx

--w2  = -(6kh3G)[h(l - h-.-(l -2 zh--.)] cos 2kx.(7.49)

These are the values obtained by Rayleigh.

Expressions can also be derived for U and W rear the walls, say near
z = 0. These take the form

U = -(3f0G)(e-20z + 2S - 1) sin 2kx

(7.50)
W = -(3kG)[e-20z + 2(S + C) -3 + 203z] cos 2kx

z z-~l.

K 
.. . ..
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The behavior of all these relations can be made somewhat clearer by
defining limiting values of U and W:

UL = 30G sin 2kx

(7.51)
WL = -6k 3zG cos 2kx.

Figure 7-13 shows plots of UIUL as a function of Oz. If Oh is sufficiently-
large (>104), the streaming rises rapidly to the limiting value.

08.

"--0.41 11
0.2 -

0 2 4 6 a 12 16 20
/3, --.

Figure 7-13.-Distribution of streaming velocity near wall for stand-iny waves in a channel. Upper curve: 0h = 104; lower crive: p h
103 (from Nyborg 78o). o

Many other relations can be obtained for the streaming for various spe-
cific situations and the reader is referred to Nyborg for further details.

7.7 Oscillatory Flow Near A Cylinder.

The streaming field in the neighborhood of a cylinder has been widely
studied. The basic acoustic problem is that of streaming in the presence of a
sound field. It has been shown by Westervelt [181 that, to terms of second
order, the streaming past a fixed cylinder in an oscillating fluid is the same as
in the case of a cylinder that is oscillating in a fluid that was previously at
rest.

The first of these cases was solved-in detail by Holtzmark, et al., [19]
and we shall summarize the main points of their analysis.

I..
'S.- . -
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The geometry is that indicated in Fig. 7.14.

0u

Figure 7-14.-Geometry for oscillatory flow near cylinder.

We assume that the fluid at large distances from the cylinder is oscil-
lating sinusoidally and apply the usual boundary conditions on u,. and uo.

ao r 0, r = au8 r

S-A cos w.t sin O, r = +0o

(7.52)
,,, r = a

r aO

A cos w.r cos 0, r = +

As in virtually all scattering problems of this type, the solutions are
most effectively written in terms of the Hankel functions Of .. e first kind
(recall Section 1.8). We therefore define

H(I)(kr) H( I )(kr) HlI )(kr)X -Y -Z -(7.53)
H(OI )(ka) H(ol)(ka) H(ol)(ka)

where k is the wave number of the shear wave:

k = d/2= (I + i)m. (7.54)

X, Y and Z are therefore the Hankel functions of order 0, 1, 2, nor-

malized to the value of the zero order Hankel function on the surface of the
cylinder.



SEC 7.7 STREAMING 265

The first order solution of the problem with the boundary conditions
(7.52) is

Aa sinO -Y a -

+ complex conjugate. (7.55)

If O~a is large, as it usually is, Eq. (7.55) can be greatly simplified. This
form, first given by Schlichting [16], can be written as the real part of

PII - - A sine0 '.'[I - e-0 + 00(r -a)

- \/'- (r - a)] e-it'. (7.56)

The solution of (7.55) and (7.56) is divergence free. For r>a and
3a > 1. one can consider ',Is in the limit of large Or. In such a case, the
tangential component u. is much greater than the radial component ur.
The actual relations are

iuo -2A sin 0 [cos w• - e" cos (wt - n)]

o o(7.57)

Tr -• 4AW4

- V,; Cos W,]

where n = f3(r - a).

For large Or and far from the boundary layer (n > 1), Eq. (7.57) re-
duces to

uo= -2A sin 0 cos wt

ur -Acos 0coslwt--~
r 4

We now attempt to determine the streaming velocity. To do this. Holtz-
mark et al. begin with the first order streaming function and obtained the
equation analogous to Eq. (7.44):

V4 p2 p (r) sin 20. (7.58)

: -- -.. . ..... T_ ...
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Here p(r) is an involved function of the Hankel functions:

p~) i.A2rz a2 a2 *-4r) + - Z(a)X* + 2XZ* - a- -Z*(a)X - 2X

r2  r Z

where the asterisk indicates the complex conjugate.
We shall not write down the solutions of Eq. (7.58), which are even

more involved, but limit ourselves to reproducing the calculated streamlines
for the first quadrant (Fig. 7-15) in a particular case.

I i II'/ ,

a

I. 4

I * 4 4 I

a'ai

IS a

-4~

Figure 7-1 5.-Stremlines in quadrant of fildd near circular cylinder in oscillatirig
fluid. Oscillation occurs in horizontal direction (from Hoktzmark (191j).

7.8 Some Furher Experimental Work.

The coflfl!o't hetwern sounc' hsorptni•-n and acoustic streaming which
was noted bt ~'k; mi in a remarkt ar -s work, 1201 has been subjected
to further ex'n:, -ital test. In i9. ýol nsoii~ Tiott 1211j made experi-

I-

I _ _ _ _ _ _ _ _ _ _ _ _ __-_ _
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mental studies of the streaming velocity profiles that were in good agree.
ment with theory. From the values of the axial streaming velocity, they
computed the ratio of the viscosity coefficients 1i', 17 for water and ethanol
and propanol and obtained values within 10% of the accepted values. While
this was not a precise method of measuring the sound absorption, it did give
substantial experimental confirmation of streaming theory.

Piercy and Lamb [22] also used the streaming technique to determine
the absorption. Their experimental arrangement is indicated in Fig. 7.16.

I

-U-

SPolythero

Tran. St won

Figure 7-16.-Arrangements for streaming measurements

(from Piercy and Lamb (221).I
A tube of approximately L shape with a sidc arm is filled with the test

liquid. A I -MHz quartz transducer terminates at the end of the vessel so that
a traveling wave fills the main body of the vessel. This wave is incident on and
reflected from a radiation pressure vane at the corner of the L. This vane
nieasu-es the initiai acoustic pressure by determining the radiation pressure.

As the sound wave reflects into the leg of the L., it is substantially ab-
sorbed by the polythene material surrounding the terminal cone of the liquid.

Since the transducer fills the main channel, there is negligible stream-

ing in it. The static pressure is then that of Eq. (7.16)

(p2) = 2 - e -2( 

I
and the pressure difference between points x 0 and x Q marking the ends
of the side arc will be

Ap 2ý e2- . (7.59)

2 0
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If the flow in the side arm is then assumed to follow Poiseuille's law, it
follows that the velocity ua measured along the axis of the tube will be

a2  -
Ila a2 4/Ap (7.60) -

417Q

where Ap is given by Eq. (7.59). Hence the measurement of ua was sufficient
to determine the absorption coefficient at. This method was used by Lamb
and his colleagues for the measurement of the absorption coefficient of a
considerable number of liquids.
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Chapter 8

CAVITATION

8.1 The Nature of Cavitation.

The uame cavitation has been applied to the phenomenon of the ap-
pearance of boles in liquids. This appearance is usually due to the stress of
tensile forces of some kind. These later may, in turn, be due to high speed
flow, the rapid motion of a solid (such as a propeller blade) through the
liquid, or to high intensity sound. At the same time, the nature and behavior
of the holes can be quite varied. Depending on circumstances, these holes
will be filled either by gases previously dissolved in the liquid or, in the ab-
sence of such dissolved gases, by the vapor of the liquid itself. Some authors
have distinguished between these two types of behavior by calling the first
gaseous cavitation or pseudocavitation and the second, vapor cavitation or
true cavitation. In his very detailed study of the cavitation process, Flynn
[1] (1964) noted that the first phenomenon has also been called "soft,"
"weak," "degassing," and "false" cavitation, while the second bears the
labels "hard," "strong," "pure," and "real." The terminology certainly sug-
gests that we are dealing here with the "bad guys" and the "good guys," and
in an effort to avoid prejudicial language, Flynn has suggested the name
stable bubble field for the first of these phenomena and transient bubble or
cavitation field for the second. This shifts the distinction between two gen-
eral types from the nature of the content of the bubble, or from a description
of the characteristic manifestation of the bubble, to the ability of the bubble
to survive for any appreciable length of time.

The subject of cavitation is a large one and could easily fill up a whole
book, as the article by Flynn can testify. We shall be interested here only in
a few aspects of cavitation that bear most closely on the field of nonlinear
acoustics. These include acoustic means of cavitation generation, nonlinear
behavior of the cavity, and sound produced by the collapsing cavity.

8.2 Static Bubble Thcory.

When we observe a cavitation event in detail, we note that we first see a
very minute buoble which grows very rapidly and then collapses with a dis-
tinctivL souh.d. What we do not see is the process in which the little bubble

269
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came to be. Qualitatively, most of cavitation theory presumes that the little
bubble was already there, clinging to some bit of impurity in the medium. If
we begin with this hypothesis, postponing the discussion of the origination of
the little bubble, we must ask the question as to what conditions are neces-
sary to bring about the rapid growth and collapse of this bubble. This begins
with the study of the equilibrium theory of a bubble nucleus in a static
pressure field.

PLo

_20
R 0o

Figure 8-1.-Presures in cavitation bubble.

In such a bubble (Fig. 8-1 ), the total pressure Pc inside the bubble, due
to the gas pressure Po and the vapor pressure p,, will be counterbalanced by
the hydrostatic pressure of the liquid PLO plus the contribution of surface
tension p. = 2u/Ro, where o is the surface tension and R0 the radius of the
bubble. Therefore

20P v + P O -- P L O + 0 (2.1

If the external pressure is changed to some new PL, so that the bubble
radius becomes R, the new equilibrium relation will be

2a
P1 + P = PL + "- .' (8.2)

If the pressure change inside the bubble is isothermal, then pR3

poRo or

IRo0  2a
P o +'PO ) = PL + (8.3)

(R •-1
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Equation (8.3) defines the equilibrium condition, but does not guar-
antee stability. Given PL <pu, R may be so large that the left side of the
equation cannot equal the right side and the bubble will grow steadily. If we
take the differential of both sides of (b.3) with respect to R and require the
two sides to be equal, we define a critical radiusRc:

R03 20

If R < Rc, the bubble will be in stable equilibrium. Substituting this relation
for Rc in Eq. (8.3), we obtain the result

4o

RC (8.4)
31PL - P, (I

If pL = -1 bar, then the critical radius in water at 200 C is 9.5 X 10-5 cm or
95 microns.

Of course, one does not usually maintain static negative pressures. In-
stead, one deals with an acoustic wave where the pressure is oscillating, with
periods of negative pressure being less than half the period of the sound wave.
We therefore seek, first, an expression for the value of the acoustic pressure
amplitude needed to enlarge a bubble of initial size R0 to the critical size Rc.
We must then study the time interval necessary to bring about this growth.

The first of these questions was answered by Blake, [21 using simple
equilibrium theory. If p", is the acoustic pressure amplitude, then the most
negative pressure in a medium in which the static pressure is PLO will be

PL = -Pac + PLO

Since this is a negative quantity, the expression (pL -P,) of (8.4) can be
written Pac - PLO + p, so that (8.4) becomes

R - 4a (8.5)3 (pat - PLO + P)

In the absence of sound, we have Eq. (8.1)

2oPO + Pv PLO + RO

i.0

I;
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while in the presence of a sound beam that just achieves critical size of the
bubble, we can write Eq. (8.3) as

Ro• 20
Po'"j + Pu '-Pac + PL O + RC (8.6)

The original bubble size R0 can now be eliminated between the last two equa-
tions, achieving the result for the Blake threshold for vapor cavitation as

40 4o 
-1/2

Pt PO L (PLo -0P) (8.7)

According to this analysis, the radius of the bubble nucleus of original size
R0 will grow at an explosive rate whenever the acoustic amplitude reaches the
value ptB.

Under normal conditions, and in the absence of sound, bubbles of gas
can disappear by reason of diffusion of the gas through the gas-liquid inter-
face. This will occur even though the liquid is itself saturated with the gas.
The reverse process, known as rectified diffusion, occurs when a sound field is
present, and may cause gas to go from the liquid into the cavity. This phe-
nomenon was first suggested by Harvey et al. [31 in 1944 and has been de-
veloped in the researches of Blake, [21 Hsieh and Plesset [41 and Stras-
berg. [5] The theory involves the existence of a threshold pressure ampli-
tude pffP, for which the nucleus will grow under rectified diffusion. When
the pressure in the liquid is below this threshold value, the bubble will lose
its gas by normal diffusion and disappear. The expression forptiP is given by

P PLO 2 0a (8.8)

where co is the saturation concentration of the gas at the pressure PLO and
c,, is the actual concentration of the gas in the liquid at great distances from
the nucleus.

Figure 8-2 is a graph taken from Flynn of the two thresholds just dis-
cussed. We restiict our attention to the case of PLO. The effect of an in-
crease in PLO is to shift the entire set of curves upward.

If we are to take both theories seriously, the nucleus bubble will grow
sometimes by one mechanism and sometimes by the other. For example, a
bubble of radius less than 2 X 10-5 cm would grow by rectified diffusion as
soon as Pac reached the threshold Ptt. If the acoustic pressure remained con-
stant, the bubble would increase in size until it reached the line of the Blake

I.| " 1
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Figure 8-2.-Theoretical cavitation thresholds (from H. Flynn [ I).

I Ithreshold, whereupon it would grow explosively. For bubbles of initial
radius greater than (1-2) X 10-4 cm, the growth must be entirely by recti-
fied diffusion, while those in the intermediate range, for which the threshold
pressures are about the same for the two mechanisms, the growth will be
dominated by the very rapid Blake process.

All of this theory suggests that the growth process will be independent
of frequency. Since many experimental measurements exist that demonstrate
a frequency dependence the application of Eqs. (8.6), (8.7) must be limited
to cases in which the sound frequencies are far below the resonance frcquen-

cies of the bubbles.

One experimental point has been plotted, that of Strasberg for bubble
growth under rectified diffusion. It can be seen to be in good agreement with
the theory,

8.3 Dynamic Bubble Theory.

The previous section dealt only with the equilibrium states of the cavi-
tation bubble. Since we are primarily interested in the growth and collapse
of cavitation bubbles, a study of the dynamics of bubbles is necessary.

4* ,
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In reviewing the large literature on the subject, Flynn distinguishes
four major approximations, each leading to a somewhat different differential
equation. To quote Flynn, we have

"1. The incompressibility approximation in which the density of the
liquid is assumed to be constant and the speed of sound is infinite. This ap-
proximation leads to a differential equation (DE 1) most useful in giving us
semiquantitative information about stable cavities that can be simply
interpreted.

ii. The acoustic approximation in which the speed of sound is a finite
constant but in which there is inadequate account taken of energy storage by
compression of the liquid. This approximation leads to a second differential
equation (DE 11) most useful in giving us more precise statements about stable
cavities and the dissipative effects of sound radiation on transient cavities.

Ill. The Herring approximation [6] in which the speed of sound is a
finite constant, and a more adequate account is taken of energy storage by
compressioa of the liquid. This approximation leads to a differential equa-
tion (DE 1I1) that should be most useful in describing the motions of transient
cavities that only expand to several times their initial radius.

IV. The Kirkwood-Bethe approximation [7] in which the speed of
sound is a function of the motion. This approximation leads to a fourth dif-
ferential equation (DE IV) most useful in this context in describing the final
stage of collapse of a transient cavity that expanded to many times its initial
radius." 181

It should be clear that all of these treatments represent approximations
and that qualitative agreement with experiment, for certain ranges of variable,
is probably the most that can be hoped for.

We begin with an isolated bubble of radius R undergoing oscillations in
an ideal incompressible liquid. The equation of motion can be written for
the velocity u at the point r as

au + au I ap (8.9)

at Tr P0 Tr

for all points in the liquid, i.e., r > R.

Similarly, the continuity equation is

S(r 2u) = 0. (8.10)
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Since we have irrotational flow, we can introduce the velocity poten-
tial 0:

fir

We now integrate (8.9) from r to infinity, obtaining

!L, pu20+u + LP)• = 0. (8.12)
at 2 j P

We have assumed here that € =0, u = 0 andp(r) = p for r = o. Since we are
dealing with an incompressible liquid, p = p0 and Eq. (8.12) becomes

30 u2 p(r) + p_ 0. (8.13)
Tt - 2 - p0

Integration of Eq. (8-10) from r to - gives

r2u = constant.

If we designate the velocity at the surface of the bubble (radius R) to be U,
then the constant = R2 U or

u U-R2 - o_ (8.14)r2 ar "

Then = -U(R 2/r) and (8.13) becomes

I d(uR2) _1 U2R4 +1
- U ! + ±- [p-p(r). = 0
r dt 2 r4 Po

or

"" dR I U2R 4  I
-R2 dU + -RUT + -[p. - pr) 0.

r dt r dt 2 r4  PO

If we now set r = R, and recall that U = dR/dr in this case, we have

I-d2R 3 (dRý\2 1
d2R j+ + [lp_- p(R)] 0. (8.15)R, 2  2\dt P "

i I



276 NONLINEAR ACOUSTICS SEC 8.3

or

dU 3 U2  l+ - p -p(R )] = 0.
dt 2 R pR

Equation (8.15) was the equation used by Rayleigh [91 for the case of a
collapsing bubble. in which he assumed a constant hydrostatic pressure p90 at
infinity and a vacuum inside the bubble. Under such conditions, it can easily
be verified that the solution of (8.15) is

U 2 P0 - R8.6
23 Po R3 (8.16)

The value of U is zero at R =R 0 and becomes rapidly more negative as
R - 0. The time required for the collapse of such a bubble was found by
Rayleigh to be

tc = 0.915RoV/ . (8.17)

Thus, for p = I atm, P0  I g/cm 3 , R 0 = 1O-4 cm, tc = 91.5 nanosec-

onds. Such a bubble would indeed have a short life! If R0 is the radius of any
bubble as it starts its final collapse. this expression gives a very accurate esti-
mate of the collapse time.

In the presence of a harmonic sound field, the pressure at infinity
would be written

P= = P- % - Pn sin wt. (8.18)

The pressure inside the cavity will be due to the pressure of any residual
gas, water vapor and surface tension [as in the equilibrium pressure relation
(8.3)]. The pressure due to the gas will be

R 3~Pg o (8.19)

where Pgo is the gas pressure at R = R0 and y = I for isothermal expansion.
For a simple adiabatic expansion, -' would be the ratio of specific heats of the
gas. In general, the actual behavior is neither one nor the other, so that it is -
perhaps better to define an effeotive P (see Zwick, I 0]).

I
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The pressure of the gas in the bubble will also be sensitive to the surface
tension and can be written

P90 : Po + go2

so that p(R) now becomes

p(R) = pv + 0 )+70/\R3 2a (8.20)

We now substitute (8.18) and (8.20) in Eq. (8.15), obtaining the Noltingk-
Neppiras equation, [11I labeled DE I by Flynn:

d2R 3fdLR'\ I 2 RO_ lR -2 + I dj 2 +O

dt 2  2dt/ PR ) IR )

+ PL - "- - P0 + PM sin W (8.21)

or

dU 3 _U [(L 0 + L.aoR 0
<7t + R2 g 0R o R0 /I\R)

+ PV - P- O + Pm sin w

We shall spend most of the time on this equation, but it must be that it
assumes an incompressible liquid and is inadequate for description of the final
stages of collapse of the cavity. Before proceeding to its consideration,
however, let us turn to the other three equations delineated by Flynn.

If the compiessibility of the liquid is taken into consideration, Eq.
(8.10) must be replaced by

I ap U ap 2u
7--: +- +T+ - 0(.2

Oo2 dt + O 2 "r = 0 (8.22)

where we have used the sound velocity relation Co2 - ap/lp.

S!r
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By a development parallel to that of Eqs. (8.9)4(8.15) we then obtain
the result

d 2R 3 (dR-2 I(

dr 2  2 \dt] PRO0
R R

+o -t 0 t . (8.23)

When the values of PQ and p given above are substituted we obtain DE !1

dU 3U p
II

d U 2  + Pu + sin wt
dt 2R dt

/t+ _-( dp 2u _ L_ (8.2 4)

S/c"
with pg P ,(e //R 3/,v), n7= shear viscosity, S = entropy, U dR/dt.

This equation has been solved numerically by high-speed computer
techniques. It can be used to study the effect of sound radiation and vis-
cosity on bubbles of moderate amplitude.

The third form, due to Herring, 161 introduced compressibility of the
fluid. In its general form it is quite similar to (8.23):

R -ýdp
- odt ++ ) co- R -j•OR t

(8.25)

Akulichev refers to Eq. (8.26) as the Herring-Flynn equation. 1121
Since it has taken the compressibility of the liquid into rough account, it is a
better source of quantitative information on the rate of collapse of the bub-
bles than the Noltingk-Neppiras equation. It is not accurate however, if
Ul/co approaches or becomes greater than unity.

In such a case, the finite amplitude theory of spheiical waves must be
used. This method was developed by Kirkwood-Bethe 17] in the theory ofunderwater explosions, and leads to DE IV-the Kirkwood-Bethe equation.

r
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Their theory postulates that the quantity rO propagates with a velocity
cf = c + u where c is the local sound velocity.

In Eq. (8.12), the integral is the specific enthalpy h of the liquid for the
case of constant entropy that we are considering. The quantity bo/at also
has the dimensions of enthalpy and is called the kinetic enthalpy 02. Then

I.,2U2

It can be demonstrated that

+ Cf )(r 2) = 0 (8.27)

which in turn implies that r•2 also propagates with the finite amplitude ve-
locity cf. Thus if the value of rl is known on the surface of sphere of radius
R, and time tR, its value can be deduced elsewhere in the fluid at a later time
t by use of the generalized retarded time

-r dr (8.28)
t - JR 7f

When these relations are applied to our problem of the radiating bubble, we
obtain the result

- dH (8.29)

with

-p(R )d
H pj dp (8.30)

Equation (8.29) is the Kirkwood-Bethe equation. It is deceptively simple;
the sound velocity here is a variable and H is a very involved parameter.

I - _ -' _
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We make use of the Tait relation for the pressure.density relation
[Eq. (3.17)1

P = P(PV - . (8.31)

The quantity H can then be expressed in the form

2c)Ro r 2a ]
- - Ip00  0  R

- (Po - Pm sin wt + Q) 'Y (8.32)

A comparison of the numerical solutions of Eqs. (8.21), (8.25) and
(8.30) indicates that the) all give identical results in the early stages of bubble
growth. This is shown in Fig. 8-3. The ordinate a is the reduced bubble

h a

b

1 r0 r

Figure 8-3.-Solutions of the bubble equations of (a)
Noltingk-Nelpphw, (b) Herinr-F["n, and (c) Kirkwood-
Bethe (from Aku~chev [121, p. 219).
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radius, = (wA/co)(R/R 0) while the abscissa is the reduced time 'r = wjt. The
frequency wo is the linear resonance frequency of an equilibrium bubble of
radius Ro.

FP0 + 2R]l/2

wo = "0 __ I (8.33)

In terms of these units, the Noltingk-Neppiras equation can be written

ad2a + 3 J7 2a ) ýdt2 2\dt] .., 2R0
2  

0  w 0 a

+ PP + Pmsinj + - -a- 0.(8.34)

Figure 8-3 represents the results of the numerical solution of (a) the
Noltingk-Neppiras equation (8.21), (b) the Herring-Flynn equation (8.25) and
the Kirkwood-Bethe equation (8.30) for a bubble of initial radius R0 = 10-5
cm for adiabatic behavior in water at a hydrostatic pressure of I atm. The
solid curve represents behavior at 10 kHz while the broken curve indicates
500 kHz. The numbers on the curves indicate the values of the sound pres-

sure in atmospheres. The sine wave at the bottom of the drawing represents
the applied acoustic signal. The value of wo for this bubble is 4 X 108/sec,
so that w = 2nf is much smaller than coo in each case.

It can easily be seen from these curves that the three results are virtually
identical. The basic characteristic of a!l curves at low acoustic pressure is the
growth of the bubble radius to a maximum and then rapid collapse. The total
time required for this process is roughly one acoustic period.

When the pressure reaches some critical value, the bubble does not im-
mediately collapse after passing its maximum radius but instead expands
again, reaching a second maximum and then collapsing.

This behavior is shown in greater detail in Figs. 8-4. These figures ap-
ply to Eq. (8.21) and are for the same case as Fig. 8-3 (500 kHz) except that
the initial bubble size is v• rie~' (a-10-4 cm; b-5 X 10-4 cm and c-10 3 cm).

The calculations have been extended to higher acoustic pressures, and
the ordinate is plotted in terms of the radius ratio R/RO. The resonant fre-
quencies of the bubbles are o0 = 15.8 X 106 /sec, 2.28 X 106/sec and
1.07 X 106 /sec, respectively. Since w = 27rf= 3.14 X 106 /sec, these three
cases correspond to a bubble radius smaller than resonance (a), approxi-
mately equal to resonance (b), and greater than resonance (c).

- --.
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Figure 84.-Pu~attoh of cavitation bubble at 500 kI~z for (a) RO = lO-4cm, ,()RO=5

X 10-4 cm, (c) R0 = 10-4 cm, Sine wave at bottom/ ridcates sound signal (from
AkuUchev (121, pp. 222-223).
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The shaded areas on the figures indicate instability of the solution,
since a very small change in the acoustic pressure produces a qualitative
change in the shape of the solution, i.e., a new pulsation of the bubble.

We can also see that there exists an acoustic pressure amplitude pmc,
below which the bubbles do not collapse, but fluctuate in size with roughly

the period of the applied acoustical signal. This can be interpreted as the
cavitation threshold for bubbles of the given size.

An extraordinary experimental confirmation of the theory of bubble
growth and collapse has been carried out by Akulichev. [12] Cavitation bub-
bles were formed under the action of 15-kHz sound and photographed by a
camera system capable of a film speed of 200,000 per second. A series of
such photographs is shown in Fig. 8-5 for a sound pressure of about 2 atm. It
was inferred by curve fitting that the initial bubble size was R0  I 1 cm.

The comparison of theory and experiment is shown in Fig. 8-6. The
solid curve is Herring-Flynn and Kirkwood-Bethe, the broken curve Noltingk-
Neppiras and the circles are experimental points based on the data of Fig. 8-5.

A somewhat paralleling set of investigations have been carried out by
LUuterborn, [17al including detailed photographic studies of tearing of a
water column by a centrifuge [17b] and laser-induced cavitation. [17c]

8.4 Experimental Evidence of Cavitation Thresholds.

The material of the previous section indicates that cavitation effects
depend critically on the size of ambient bubbles, which in turn must depend
on the purity of the medium and the physical conditions under which it is
examined.

There exists a long history in the literature of attempts to measure a
cavitation threshold. Such measurements of course require some criterion
for judging the appearance of cavitation. In the earliest measurements, cavi-
tation was described as the appearance of vigorous bubble activity. Blake
described three stages in the process. [13] At low acoustic pressures, rela-
tively large bubbles were produced without appreciable sound emission. At
higher pressures, streams of bubbles appeared in the liquid, accompanied by a
hissing sound. These bubbles rose as stable bubbles to the surface of the
liquid. Blake found a critical pressure for these streams to form and called
that his threshold. Since his liquid was nearly saturated with air in these
measurements, he regarded these bubble streamers as evidence of gaseous
cavitation.

When Blake increased the pressure still further, he found that new bub-
bles would appear suddenly, and just as suddenly disappear. These short-
lived bubbles appeared irregularly and singly, and were accompanied by a
click or snap as they went through their stage of growth and collapse. He
identified this process with "vaporous" cavitation.
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(from ~ ~ ~ Aq-ie 11] p. 23)

/

.I

Figure 8-5.-Bubble growth and collapse. Ultrasonic frequency is 15 Hz,
film speed 200,000 frames/sec and sound preuuie amplitude 2.0 atm
(from Akulichev 112], p. 235).
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Figure 8-6.-Comparison between the pulsations of experimentally observed 2avitation
bubbles and the calculated pulsations (from Akulichev 1121, p. 236).

While Blake made threshold measurements, he did not report informa.
tion on size of bubbles in the medium or of the bubbles produced. (This is
true of many other observers also.) Other observers have, however, studied
size distribution, so that some remarks can be made. [14] In freshly drawn
tap water, the commonest ambient bubble radius is near 2 X 10-3 cm. After
it has stood for several hours, the water was found to have the largest nuclei
with radius of 8 X 10-4 cm. Such bubbles are somewhat larger than those of
Fig. 8-4a and are capable of serving as cavitation nuclei.

Blake's experiments relied mainly on the visual. One can also use the
acoustical evidence for the appearance of cavitation. This has been done by
Meyer and coworkers at G~ittingen. 1151 They noted that very small bub.
bles could grow to a size of 50 X 10-4 without being visible to the naked eye,
and could then collapse. While such transient cavities would never be noted
visually, they could be detected acoustically.

The problem of the presence of dissolved gas in the water was especially
studied by Galloway. [16] He worked with a large liquid-filled sphere driven
by a magnetostrictive element at a resonant frequency of -he sphere.

At this resonance, the acoustic pressure at the center of the sphere
could attain values as high as 200 atm. As the acoustic pressure was in-
creased to a threshold value, a cavitation bubble would appear at the center
of the sphere, grow to about a I-cm radius and collapse violently. The ap-
pearance of the bubble was taken as the evidence of cavitation, which would
be of Blake's third or vaporous type. In his measurements (Fig. 8-7), the lim-
iting value of the pressure threshold for water was approximately 200 atm.
Theoretical estimates of the tensile strength of a homogeneous liquid lead to
values of the order of a thousand atmospheres or more, while an experi-
mental value of -275 atm has been obtained by Briggs in a static measure-
ment. The agreement is quite respectable, since Galloway's figure must be
highly sensitive to the presence of minute impurities in the liquid.

Lw - . .. ..- S
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Figure 8-7.-Cavitation threshold for water and benzene as a func-
tion of percent air concentration for a hydrostatic pressure of I
atm and T = 22°C. P, = cavitation threshold in bars, PA = hydro-
static pressure in Ton (from W. Galloway [ 16J).

In a further experiment, Galloway measured the cavitation threshold of
air-saturated water as a function of the hydrostatic pressure (Fig. 8-8).
These results, together with those of other observers, indicate clearly that
gaseous cavitation can occur (for sound of about 30 kHz) whenever the total
pressure (hydrostatic plus instantaneous acoustic) reaches zero during the
acoustic cycle.

&.0
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02 i.0 8LO
Po

Figure 8-8.-Cavitation threshold of air-saturated water as a
function of hydrostatic pressure: P, = cavitation threshold in
bars, PA = atmospheric pressure in bars, T = 22 0C (from
Galloway [161).
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The measurements thus far discussed have not been concerned with the
time required to produce cavitation. It is clear from other measurements that
the instantaneous pressure must remain above the threshold value for some
time interval in order to produce the cavitation phenomenon. Esche (1952)
measured the onset of cavitation in gassy water at a number of frequencies
from 3 kHz to 3.3 MHz, and found a steady increase in the pressure required.
While his results are rather qualitative, they are supported by various finite
amplitude studies, which indicate that the gaseous type of cavitation does not
occur even at acoustic pressures of several atmospheres, when the measure-
ments are performed in the megahertz range.

Figure 8-9 summarizes experimental work in cavitation threshold in
water. The three values given by Rozenberg, [171 correspond to water
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Figure 8-9.-Cavitation threshold measurements (data from
Refs. 13-18, curve from Flynnn [171, p. 126).
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"'clarife'e et degazee" (150 atm), water "distill~e et degaz~e" (270 atm) and
the latter "in certain cases", (380 atm). In his research Esche [18] estimated
that the threshold for cavitation should lie between the two continuous curves
shown (depending on the bubble and dissolved gas content).

Another view of the frequency dependence of the cavitation threshold,
due to Sirotyuk, [191 is shown in Fig. 8-10. The size of ambient bubbles
was carefully controlled in the case of curve 2, but allowed to vary up to
R = 10-3 in case 1.

4: 1f .

' 2

8.! ~--- It LIT• •'

Figure 8-10.-Frequency dependence of cavitation threshold in water;
(1) nuclei from 10-5 to 10-2 cm in radius present in the water; (2)
only nuclei of radius less than 10-5 cm present in the water (from

Sirotyuk 1191.

In summary then, meaningful quantitative information on the cavita-
tion cannot be had until one knows the size of the ambient bubbles. In most
cases, the cavitation threshold increases as the frequency increases, although
the presence of large bubbles may mask this effect.

8.5 Origin and Stability of Cavitation Nuclei.

Throughout the previous sections we have talked about the growth of
bubbles already present in the liquid without explaining why bubbles might
be there in the first place. In fact the history of cavitation research includes a
large number of articles describing attempts to find the cavitation threshold
for pure or clean water.

Such a search is largely illusory. It has been well described by
M. G. Sirotyuk:

"The production of absolutely pure water is impossible. One of the
strongest of existing solvents, it dissolves the walls of the container and, on (
coming into contact with any gas, dissolves that gas." [201

S. .. . . .... . . . .. .1
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In fact then, any sample of water will contain some dissolved materials.
It may also contain minute particles of solid matter, not dissolved in the
chemical sense, too small to be seen, but large enough to trap vapor or gas
within their crevices. These trapped microbubbles are then available to serve
as nucleation centers.

Another possible sort of cavitation nuclei may be found in nuclear

radiations or cosmic radiation. The passage of energetic charged particles
through a liquid can lead to the formation of microbubbles (of size 0.1 to
10 A). If these bubbles can be stabilized in some way in the liquid, then the

passage of a sound wave can initiate the bubble growth processes discussed
in the previous section. Thus the presence of nuclear or cosmic radiation
could serve to lower the threshold pressure for cavitation in a given liquid.

Evidences of this behavior have been reported by a number of authors.
In 1958, D. Lieberman 1211 irradiated a liquid filled sphere with a sound
beam. lie failed to achieve cavitation with a sound beam maximum pressure

at 22 atm. He then irradiated the sphere with a neutron beam and found
that the threshold fell to 6.5 bars in acetone and 3.5 bars in pentane.

This work was followed by experiments by Sette and Wanderlingh 1221
on the influence of cosmic radiation. In their apparatus. lead screens could
be placed around a tank of distilled water. Typical results are shown in Fig.
8-11 . As the thickness of the screen is increased (up to about 15 mam), the
threshold of acoustic pressure required for cavitation increased.

|,1 ! , ,I t,,
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Figure 8-1 L.-Cavitation threshold in distilled water shielded by lead screens
of various thicknesses (from Sette and Wandcrlingh 1221)

Mhen the screicn was removed, the cavitation level returned to its origi- -

nal value.
In a second experiment, a Ra-Be neutron source was used. Figure 8-I1

b I.
I { llllshows tile results. Tile following sequence of steps was used: (I ) no screenl

(0-8 It), (2) 15 mm lead screen (at 8 ht); (3) neutron source added (at 27 It),
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t Fisur8-12.-Cavitation threshoid in distilled water surrounded by a

15-mm lead screen and in the presence of a Ra-Be neutron source (from
Sette and Wanderlingh [221).

(4) neutron source removed (44 h); (5) lead screen removed (48 Ih). This
shielding from cosmic radiation raised the cavitation threshold; insertion of a
neutron source in the medium lowered it again. Removal reversed the two
processes.

The water used in these experiments was distilled but not degassed.
Subsequent experiments by Finch [231 gave similar results for degassed
water.

In his theory of nucleation in bubble chambers, Seitz 1241 suggested
that the energy from the incident charged particle is transferred first to the
electron system of an atom of the medium and then to atomic and nuclear
vibrations, which can be communicated to immediate neighbors. This "ther-
mal spike" can result in the production of a vapor bubble if the energy is suf-
ficient to overcome surface tension forces and supply energy for evaporation.
The analysis indicated that the chief agents for nucleation were knocked-on
electrons of about I keV. Later, Lieberman and Rudnick [25] used Seitz's
theory with C and 0 recoil nuclei (in pentane and acetone) as the nucleation
agents. However, Sette and Wanderlingh conclude that the maximum energy
deposited by the ionizing particle in traveling a distance equal to the diameter
of a cuitical-size bubble is insufficiernt to establish that bubble. Sette and

4. j. .. _ -
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his coworkers therefore suggest that the energizing particle makes two
contributions:

(I) it heats up a small region of the liquid beyond its critical tempera-
ture so that a bubble originates;

(2) it warms the surrounding region sufficiently that the minute bub-
ble can continue to grow.

Even these are apparently insufficient in a perfectly pure liquid. If
however, the liquid is assumed to contain dissolved gases, so that these can
act as cavitation embryos, the energy needed reduces to the level of the energy
available from processes (1) and (2). Sette and Wanderlingh 1261 draw the
following conclusions:

"Ultrasonic cavitation in water under normal conditions indicates the
presence of microbubbles of 1. radius. An enormous amount of energy is
required for the creation in pure water of such bubbies from a high-energy
particle. This value is lowered by the presence of dissolved gases.

It is shown that, if an ionizing particle passes through water containing
dissolved gas, a threshold-energy value exists for the initiation of an cxoener-
getic process. When the particle energy is higher than the threshold, the parti-
cle may create a bubble of large size.

It would seem that the process suggested will ensure a statistical life- 2
time of the microbubbles in the liquid for a time sufficient to reach a condi-
tion at which the bubble may remain indefinitely stable: e.g., by adhering to ]
a dust particle, as proposed by Harvey." 1271

The last remark in the passage quoted above reflects a long standing
pioblem in cavitation research. The classical theory of bubbles indicates that
small bubbles are not stable; they tend to collapse if below critical size, or j
they grow if they are above that size and simultaneously rise toward the sur-
face. A suggestion was made by Harvey et al. that air is trapped on the sur-
face of hydrophobic particles suspended in water. Strasberg has given a de-
tailed picture of how gas can be maintained in cracks, and a more complete
discussion is provided by Flynn. [281 I

There appears to be ample evidence that even distilled water contains 7
large numbers of solid specks or motes, sufficiently small that they can be
prevented from sinking to the bottom but large enough to provide the crev-
ices needed to secrete the gaseous embryos. Some support to these ideas is
given by Messino, Sette and Wanderlingh, [291 who compared the amount of
bubble production for various acoustic fields when distilled water was used
and when minute wettable and nonwettable impurities were introduced.
They drew the conclusion that these impurities played an active role in alter-
ing the distribution of nuclei previously present and raise again an earlier no-
tion of Fox and Herzfeld that the bubbles may have a kind of skin formed
from organic impurities. [301 Turner 1311 has also made the suggestion that

- ---. I-
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solid unwettable impurities of very small size may adhere to the surface of the
gas nucleus, forming a wall that would prevent further solution. Such a proc-
ess would apply primarily to larger bubbles and the results of Sette et al. [32]
indicated that the use of unwettable teflon particles did in fact increase the
number of large nuclei in the liquid. An excellent review of the complexities
of this subject has recently been given by Apfel. 133]

8.6 Cavitation Noise.

The phenomenon of cavitation is accompanied by a variety of noises,
often given colorful names in tile literature. As pointed out in Section 8.4,
these noises can be used as a basis of determination of the threshold, since the
sounds are usually detectable at very low i.;tensities, before cavitation bubbles
cap be seen.

There are two main types of cavitation noise. One is the noise due to
the collapse of the bubble. The collapse of a transient bubble gives rise to a
shock wave which propagates through the medium. Schneider [341 assumed
that a shock wave would propagate from the bubble when the inward motion
of the collapsing bubble was stopped by an incompressible sphere at the
origin. This yielded an exponential decay of the shock pressure in the me-
dium. More precise theoretical calculations by Brand [351 and by Hickling
and Plesset [361 indicated that the pressure falls off as I Ir. The results of the
latter's measurements are shown in Fig. 8-13.

The pressure discontinuity in the shock results in a continuous power
spectrum with the high frequency end being proportional to f-2, where f is
the radiated frequency of the spectral component.

The second source of noise from the bubble is due to oscillations of the
stable bubble. That these oscillations will reflect both the harmonics and the

subharmonics of the forcing sound frequency can be gathered by a review of
Figs. 8-4. although the theoretical problem is a more complex one. An ex-
cellent experimental study of these cavitation noises was made by Esche, [ 18
the results of which are shown in Fig. 8-14. The half-harmonic component is
clearly seen in each case, while even lower frequency subharmonics are visible
in the higher frequency cases. The low-intensity continuous spectrum is also
evident.

The relation of harmonic, subharmonic and continuous components are
clearly demonstrated in the work of Akulichev 1371 shown in Fig. 8-15.
Here fresh tap water was irradiated by 22.5 KHz sound of pressure amplitudes
0.4, 0.6 and 0.8 atm. A detecting system that was practically flat from 8 to
500 kHz was used. At the lowest intensity, only the harmonics and a small
continuous spectrum can be observed, but as the pressure amplitude is in-

_ __ _ _ -i- _ _
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FiguMe 8-13.-Decay of bubble produced shock wave in
water (from Hickling and Pledset (361 ).

creased, the subharmonics grow until they are nearly as strong as the har-
monics, while the continuous spectrum also increases appreciably.

The case of cavitation noise in dc fluid flow has also been treated. In
particular, Boguslavskii, loffe and Naugolnykh 1381 have applied Lighthill's
Eq. (5.8) to the problem, obtaining the modified equation for the liquid
density p in the case of a liquid containing bubble:

32t2 _ c p PO axiax

32Zvivj 32Z- oXj3x + at2 (8.35)

where z = (4/3)irn(R 3 -R 0
3 ), n being the number of bubbles per unit vol-

ume, R the bubble radius and R 0 its initial value, as before. That is, z is the
volume of all bubbles per unit volume of liquid.

A detailed mathematical analysis of this equation leads to the conclu-
sion that the cavitation noise intensity is proportional to the fourth power of
the flow velocity.
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Figure 8-14.-Noise spectrum from cavitatina bubble.;
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emission of visible radiation. This optical emission was first reported in 1933
and was later given the name of sonoluminescence. [391 Its qualitative
features have by now been reasonably well identified, although the nature of
its origin is not yet wholly clear. The intensity of the light is strongly de-
pendent on the nature and temperature of the liquid, being greatest at low
temperatures and in materials of high electric dipole moment and viscosity.
The spectral content covers the entire visible range and is relatively independ-
ent of the material involved.

An early theory of Frcnkel, 1401 that the sonoluminescence was due to
the appearance of nonspherical bubbles which then develop positive and nega-
tive charges, with ensuing electrical mlcrodischarges has been largely aban-

I. - -- -- - - -- ~~~~~V
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doned, since it would apply only to a completely degassed liquid, whereas the
sonoluminescent effect is observed mainly in gassy liquids and is indeed highly
sensitive to the nature of the dissolved gas.

Tables 8.1 and 8.2 show the effect of different liquids and different
gases on the relative intensity of the sonoluminescence. [411

At the present time, the most acceptable theory of sonoluminescence is
that the radiation arises in the microshocks developed in the collapse of the
cavitation bubbles, i.e., from the same phenomenon that produces lumi-
nescence in the case of cavitation bubbles produced by continuous gas flow,
by the study of luminescence from the collapse of a single large bubble, and
from the well known phenomenon of luminescence appearing behind a
shock wave.

The phenomenon of sonoluminescence is accompanied by some chemi-
cal changes which could in turn give rise to chemiluminescence, but ap-
parently this could only account for a very small portion of the luminescence
actually observed.

Table I
Relative intensity of st-noluminescence from various

liquids at three different, temperatures.*

Relative intensity of
sonoluminescence

Liquid 25'C 400C 55'C

Dimethyl phthalate 16 6.6 2.4
lthylene glycol 12 3A4 0.5
Tap water 3.6 1.0 ...
Chlorobenzenc 0.84 0.43 0.20
isoamyl alcohol 0.54 0.28 0,18
O-Xylenc 0.36 0.24 0.14
Secondary butyl alcohol 0.30 0.17 0.086
N. butyl alcohol 0.21 0.10 0.030
Isobutyl alcohol 0.17 0.088 0.046
N. propyl alcohol 0.21 0.076 0.038
Toluene 0.15 0.074 0.050
Benzene 0.23 0.060 0.010
Tertiary butyl alcohol ... 0,050 0.025
Isopropyt alcohol 0.054 0.028 0.012
2N NaCI 25
2W KCl 20
2V' MgCI 2  1I
2V MnCl 2  5
IN NaCI 10
Sea water 10

*From Jarman

- -
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Table 2
Effect of dissolved gas on the intensity of sonoluminescence from water.*

Relative intensity of
Gas Relative intensity sonoluminescence divided i

of sonoluminescence by the bunsen coefficient
of gas

Xenon 28.5 195
Krypton 8.5 120
Oxygen 0.15 4
Xenon 540
Krypton ISO
Argon 54
Nitrogen 4S
Oxygen 35
Air 20
Neon 18
Helium I

*[:rom Jarman
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Chapter 9

NONLINEAR INTERACTION OF SOUND WAVES

As has been amply demonstrated in Chapter 3, the passage of a finite-
amplitude sound wave through a fluid leads to distortion of the wave, both
from the nonlinearity of the equation of motion and the nonlinearity of the
equation of state of the medium.

Such a distortion is similar to that in a vacuum tube operated in the
nonlinear portion of its characteristic. The question now arises as to whether
there is an acoustic analog to the mixing that occurs in the case of such a non-
linear device when two electric signals of different frequency combine to form
sum and difference components.

The problem has posed special difficulties, both theoretically and ex-
perimentally. In a linear system, there can be no such interaction. In line
with the principle of superposition, the solution of two waves passing sepa-
rately through a region will be equal to the solution of two waves passing
simultaneously through the same region. No new terms will appear and the
interaction is zero.

Since the effect may be small, the simplifications necessary to produce
a solution may eliminate the effect on the one hand, or insert a false positive
result on the other. Experimentally, the impossibility of obtaining two per-
fectly collimated beams, or of plane waves, raises the possibility that any in-
teractions that are measured experimentally may be taking place on the face
of the detecting instrument rather than in the "interaction region."

Because of the amount of controversy on this problem, a chronological
resume of the various theoretical works will be given.*

9.1 Lighthill, Ingard, Westervelt (1950-60).

All of the theoretical work on nonlinear interaction of two sound beams
(or. in different words, the scattering of sound by sound) begins with the
papers of M. J. Lighthill on sound produced by turbulence. [31 In these
papers, which were discussed in the INTRODUCTION and again in Chapter 5,

*The author acknowledges the usefulness of the survey of this field prepared by J. P.
Jones, Ill as well as the summary given by C. A. AI-Ternimi. (2)
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Lighthill represented the exact equations of motion for an arbitrary fluid in
the form

ap+ -0
at ax1

O ~ ~ a_ Tij

a(Pu) + c02 ai (9.1)**

at2 axiaxj

where the stress Ti! is defined by the relation

Tii " + p,1  - 2Co'5 . (9.2)

Here puju1 is the instantaneous Reynolds stress tensor, pii the compressive
stress tensor and 6ii the Kronecker delta. In effect, the sound field radi.
ated by fluid flow (including the interacting sound beams) is equivalent to
one produced by a static distribution of acoustic quadrupoles with source
strength density given by T7i (cf. Section 5.2).

Lighthill found the solution Eq. (5.22) for the density changes in terms
of the retarded potentials. In the far field his expression reduces to Eq.

(5.23), which we write out again:

P - PO f I RT t dVR . (5.23)

4i 0  f3 .2 at2 Tii\'

In their analysis. Ingard and Pridmore-Brown [4] began with this equa-
tion, neglected viscous loss and derived the following expression for the far
field magnitude of the pressure at the sum frequency, p+(r):

p+(r) 4Pra 3  ) 2 P M1 2(I)( B) sin a sin 3
= + in 20 + 2 (9.3)PoC4 r os 0

Here vi v2 are the primary beam frequencies, a the radius of each source,
P1 (I,P 2(I) the primary beam pressure amplitudes at the center of the inter-
action region, r the distance from the interaction region to the receiver, 0 =

**The summation convention is used here; repeated subscripts are summed over.

I.. .,
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angle between the first incident beam and the receiver (see Fig. 9-1), and the
angles a, 3 are defined by

= [V1  - (v I + V2 ) CosO]

(9.4)

C - K(v. + v2 ) sin 0 -v 21.

S \ INTERACTION

\' REG(N \

'2

Figure 9-1.-Geometry for interaction of two crossed beams.

The corresponding expression for the difference frequency can be ob-
tained by replacing v2 by -v2 everywhere in Eqs. (9.3), (9.4).

Ingard and Pridmore-Brown performed an experiment to test their
analysis using an electrostatic speaker at 110 or 130 kHz as one source and a
horn-equipped eiectrodynamic speaker drum at 10 kHz for the other. Each
was about 10 cm from the center of the interaction region. A 120-kHz
BaTiO 3 ceramic was used to detect sum and difference frequencies.

I.7
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Signals were obtained at both these frequencies, with maxima defined
by the angles a = 0, 3 - 0 (which define the Doppler angle for 0). The inten-
sity of the scattered signals however was about 10 dB below those expected
theoretically.

There has been criticism of this work: the theory assumes perfect
collimation of the beams, but the low frequency of the sources, especially
that at 10 MHz, and the continuous nature of the signals make possible the
interaction of the two beams outside the defined interaction region, includ-
ing the face of the receiving probe ("pseudo-sound"). [51

Such comments were made by Westervelt, [61 who developed his own
theory for the interaction. Westervelt used the expansion of the pressure in
terms of the density [Eq. (3.19)] and deduced the following equation for the
lowest order in the scattering process:

El
2 p I a2  I3 1A~p (95""ul " + - • (9.5)

co2 xiaxL P P 0

Here 02 = V2 (I/c02)(82/at2) is the D'Alembertian operator, Ps is the den-
sity in the scattered wave. From Eq. (3.21),

I (_2p _ B

20 \ap 2) p0A
Westervelt then recast (9.5) in the following form for harmonic dependence

of the initial wave
o 2,° = c02 r 2El 2 - V2(2T! 2 + qV 1 2). (9.6)

Here

T1 2 =Pou u2

VI2=C3 P0PVI2 co

p0

El 2 = 2 + V12  (9.7)

wi 2 - \Po'l ( 2 /\-t' P t/

q= -2 ('a2p\q Poe0 
I
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and the following relation exists among V12 , W1 2 , T1 2:

v 2 V12 = V + W2 2) W-1cW222 2W + C-2 (9.8)

The quantities P1 ,P 2 refer to the excess density in each of the primary
beams, while T 1 2, V1 2,' 2 are respectively the kinetic, potential and total
interaction energies, respectively.

For the case of two mutually perpendicular beams, some reductions re-
sult: V1 •U2 0, T1 2 = 0, E1 2 = V1 2" Equation (9.6) then becomes

-2ps = 2( (9.9)

where

PO ý P 2 (9. 10)[E 12]
C 2.±o[c12 2 .7-(.1o

t At this point. Westervelt states that ps .t, is the complete solution of
Eq. (9.9). If the two beams involved are perfectly collimated, then W1 2 and
El 2 will vanish everywhere outside of the interaction region, and zero scatter-
ing result.

Westervelt attributed the positive theoretical results of Ingard and
Pridmore-Brown to the singularities produced by assuming perfect collima-
tion of the waves.

In a review of Westervelt's paper, Lighthill writes

"The reviewer has had the advantage of Pridmore-Brown's collabora-
tion in checking the theory of this paper; both of us agree that it is correct,
and that the author correctly explains the wrong theoretical results of Ingard
and Pridmore-Brown by referring to the singularities in the assumed primary
fields. The author's explanation of their experimental results as due to radia-
tion pressure, is, however, untenable, since the microphone was much farther
outside both beams than he supposes. Accordingly, imperfect perpen-
dicularity of the two beams near their edges seems the most probable
explanation." [71

In a subsequent paper, [8] Westervelt considered the more general case
of two collimated beams intersecting at an arbitrary angle 4. The governing
equation is
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02p, 3 l2-1[ Cs0+L 1

f C02 2 2(cos Col)2r

X V2 1 2 } 7- F124,' (9.11)

where 4' is the quantity in the curly brackets of (9.11) and reduces to 4, in
the case 0 = 900.

Once again, Westervelt set p. 4/ as the solution. Since, just as in
(9.11), El 2 = WI 2 = 0 outside the interaction region, there can be no scatter-
ing at the combination (sum and difference) fiequencies.

An exception to this case is the angle 00 = 0 (collinear beams), since the
second term in Eq. (9.12) becomes indeterminate in this case. We shall dis-
cuss this case in Section 9.5.

In 1960, Bellin and the author attempted to measure the scattering that
might result from two CW sources, operating in water at 7.4 and 6.0 MHz. [9]
The sources were mutually perpendicular. A receiving crystal tuned to the
sum frequency was provided so as to move in a circular path about one foot
from the interaction region. Pressure amplitudes of 1.72 and 2.0 atm were
maintained in the interaction region. For these amplitudes, the theory of
Ingard and Pridmore-Brown predicts a scattered wave of amplitude 104

dynes/cm 2 at the angles defined by a• and 03. Although the apparatus was
capable of detecting 0.3 dyne/cnm2 at the sum frequency, the only signal
actually received could be explained in the overlap of the two primary waves
at the position of the microphone-i.e., a failure of perfect collimation.

9.2 Dean, Lauvstad, Tjotta (1960-66).

In 1962, Dean considered the interaction of two concentric cylindrical
waves and two concentric spherical waves. [10] His solutions follow the gen-
eral method of Westervelt. For cylindrical waves that do not depend on the
polar angles, Dean obtained the following result for the sum pressure:

(I - r)k+r H,(kIr)Ho(k2 r) + Ho(kIr)Hl(k 2 r)
= PIP2 2 02 Hl(kla)Hl(k2a)

Here I' = (l/2)p0c0
4 (a2p/ap2), a is the radius of the cylinder and H,, is the

nth order Hankel function of the first kind. The subscripts 1, 2, + refer to
the two primary beams and the sum-frequency beam.

i .
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Referring back to Eqs. (3.20), (3.21), we can form the derivative

ap B( - p)
+ p0

from which

(a~\ -I B
rap2) 4 A

so that

B
1 -r I + . (9.13)

Similarly, for two concentric spherical sources, each of radius a, we
have, for the sum frequency pressure amplitude,

A~k~kk a4
_(I F, 1.

p+. = _- 2 -• ' .I

i exp (ik+r)

(I - ikla)(1 - ik 2 a)

x [n.- exp (-2ik+r) r- 1 exp (2ik+r)drl . (9.14)
a

In reviewing the work of Westervelt, and of Bellin and Beyer, Dean
so!ved the inhoinogerneous equation for the interaction region. For the analy-
sis of fully collimated beams, Dean argued that the second order pressure
wave incident on the plane boundaries of the beam must develop a reflected
wave that comes back into the interaction region and a transmitted (scattered)
wave that goes outside, thus making the pressure and normal velocities of the
secondary field continuous across the boundaries. This analysis leads to
maximum scattering at the Doppler angles (a, 0 = 0). In the near field, his
value for the same frequency in the plane wave case is

p+ = w 2 2 + pl()pM2(D. (9.15)
2 (

-P0 Ap ( I w)

Im • •',•,, *••',.,,•',,,•• *'.••,•.,•. .. .- '' . •=.r,,* ,-,.•,•• a4,.• .... . * m,. ,,• . .. . • l• L,•,rt• i ill•| i i ~tlql.
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Equation (9.15) gives smaller values of p+ than Eq. (9.3) of Ingard and
Pridmore-Brown. Dean further inserted a correction for the circular beams
(radius a) used by Bellin and Beyer, since the theory was developed for beams
of square cross section:

p+ (circular c.s.) /2a\1/2

p-" (square c.s.) r(9.16)

Thus with the conditions used by Bellin and Beyer, the expected pressure
amplitude should have been about 25 dynes/cm 2 instead of the 104

dynes/cm 2 cited. The difference, Dean believed, lay in the fact that real
beams are not perfectly collimated so that neither the stipulations of Wester-
velt nor of Dean conform to the real case.

Lauvstad and Tj6tta [I 1 continued the efforts begun by Dean to avoid
the artificialities introduced into the problem by the requirements of per-
fectly collimated beams. As has been noted above, such a requirement leads
to the necessity of introducing fictitious sources. Lauvstad and Tjbtta de-
fined the problem in terms of two highly directional spherically spreading
sound beams. The interaction volume was taken to be in the Fraunhofer re-
gion of dnsmitters.

This approach avoids the existence of sharp collimation boundaries and
the singularities that result. It also provides for some non-perpendicularity of
the two beams.

The result of this analysis was similar to that of Ingard and Pridmore-
Brown with the addition of a frequency dependent factor that causes the scat-
tering to vanish as the combination frequency goes to infinity. It was noted
by them that if the interaction takes place in the Fresnel near field, the rapid
oscillations characteristic of this region would cause the scattering to vanish.

In other papers Lauvstad and coworkers introduced an angle 0 between
the directions of the two primary beams. [12,13] Their resultant expressions
gave maximum scattering at two generalized Doppler angles defined by

co . 1 cos4• + V2  (.7
OSi CO 1  + v 2

V1 + V2 (9.17)

v I + v2 cos €
sin a -

VI + v2

for the sum frequency. These reduce to the angles a,3 of Eq. (9.4) where
,= 7/2. For the difference frequency case, one need only replace v2 by (

in Eqs. (9.17).

-v2.

* . I,.. . . . ... .. . .. . .
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In a third paper Lauvstad endeavored to take into consideration the
dependence of dcstructive interference between second order sound sources
on the frequencies and directions of the primary waves. [121 He found that
the destructive interference between the primary waves in the interaction re-
gion is enough to eliminate any scattered wave except when the primary
sources are collinear.

9.3 Berktay, Al-Temimi.

Thus far, the weight of theory and experiment has been moving in the
direction of zero scattered radiation outside the interaction region, except
for collinear beams. However, new voices were soon added to the discussion
with the report of work by Berktay and his student AI-Temimi. (14]

As a point of departare, they reconsidered Westervelt's solution of
Eq. (9.9), namely that the scattered density p., = 4, which is a function that
differs from zero only in the interaction region. Westervelt states that ps = 4"
is the complete solution of Eq. (9.9), buit Berktay and AI-Temimi point out
that this is the complete solution only if the interaction region is unbounded.
The more general solution is

Ps= ' + A (9.18)

where A is a homogeneous function satisfying the equation

02 A = 0. (9.19)

Thus, Berktay and AI.Temimi then obtain

Ps = 04 + A I inside the interaction region
(9.20)

Ps = A 2 outside the interaction region

where C2A I = C-2A 2 = 0. Recalling the definition of the D'Alembertian, we
recognize that A 1, A 2 are additional sound waves inside and outside the in-
teraction region, respectively. For the case of two beams intersecting at right
angles, Berktay concluded that the scattered pressure for the sum frequency
p+(r) at distances that are large when compared with the interaction region is

p+(r)= 41r (vl + v2)2 [PI (/)P2(/)" B sin a sin ge"a +r_ (.1
p+(r) =4tra3 l~h~JJsn (9.21)

PoC 4 1 r JA a 0J

where a+ is the absorption coefficient at the sum frequency. This expres-
sion differs but slightly from that of Ingard and Pridmore-Brown [Eq. (9.3)].

-.A-.... ,
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In his derivation, Berktay has assumed the two primary beams to be
fully collimated and has neglected any amplitude or phase variation across
them. This latter is the case only for far field interactions, which is not the
usual experimental case.

Berktay and AI-Temimi also consider the case of two non-collimated
beams interacting at an arbitrary angle. In the directions of the two Doppler
angles o, 0 (Eqs. 9.4), they found the following relations for the ratio of non-
collimated to collimated pressures

p+(non-collimated) 0.451ra•.2v 2 \1/2

p+(collimated) o f R-o 0) = 0)

(9.22)

0.45iral 2vI 1 /2- C(Oo )

where R 1,2 are the distances between the appropriate source (I or 2) and the
interaction region. Such a factor would further reduce the scattered pressure
to be expected in the Bellin-Beyer experiment.

In their original experiments (in air), Berktay and AI-Temimi were un-
able to obtain decisive results, since their maximum expected scattered pres-
sure was just above the noise level. In later experiments in water, they did re-
cord scattering of sound outside the interaction region for non-collinear
beams. [IS5]

The geometry of their experiment is shown in Fig. 9-2. It should be
noted that the two beams are not collinear. In his review, Jones pointed out
that their scattering can be accounted for in two ways. [I] First, the fact
that the beams are not collimated allows for the possibility that parts of the

Obs•ver

Doiccoion of p•op qiqof Os'qnol wave

/um tnpump Wave

2 2d

Figue 9-2.-Geometry for Intenaction of a high-inten3ity source
(pump wave) and low-intensity signal located behind source of
pump wave (from Beiktay 1141).

I.'J_
L iY , , . .I
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two beams may be traveling in the same direction, so that partial collinearity
exists (see Section 9.5). Second, some of their measurements apparently

took place in the interaction region, where scattering is conceded to exist
by all.

In 1970, another paper has appeared in which the authors, Zverev and
Kalachev, follow an analysis similar to that of Lauvstad and Tjbtta, and with
similar results. [161 That is, for two collimated plane waves intersecting at
right angles, Zverev and Kalachev obtained the following expression for
p+(r):

p+(r)- irV [P0-04 (P . (v+ v2 "2

2poc0
4 [a j L

+ 2vI21 sin a sin 30 (9.23)

where V is the volume of the interaction region.

This expression differs but little from Eq. (9.5), mainly in that the en-
tire angular dependence lies in the factor (sin a!/)(sin 0/3). Indeed, the au-
thors show that if Vu :, v2 (which was the case of Ingard and Pridmore-
Brown), the scattered field is a maximum in the direction of propagation of
the main beam, i.e., when 0 = 0

r rV PI(P2(D B 2p+(r) -(2oC r24)12

2poc0 
4  r A"~(.4

In the same paper, Zverev and Kalachev report an experimental test.
Their apparatus consisted of two separated water tanks connected by a cop-
per tuhe 40 cm in length. Transducers operating at 5.0 MHz and 4.5 MHz
were oriented at right angles to each other in the first tank. The copper tube
serves as a high pass acoustic filter and the sum frequency was detected in the
second tank in the usual fashion. No diagram of the apparatus is available,
but it would seem that the system may in fact be measuring the sum fre-
quency in the interaction region.

9.4 Jones and Beyer.

Quite recently, a student of the author attempted to make a definitive
experimental study of the problem. [ 1,1 7] One major improvement over the
experimental set-up of Bellin and Beyer was the use of pulses. Two circular
x-cut quartz transducers of resonant frequencies 7 and 5 MHz were used, each
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of 0.9525 in radius. They were fixed at right angles to one another at a dis-
tance of 21.89 cm from the center of the interaction region (see Fig. 9-3).
Pulse lengths of 15 M sec were used, which produced an interaction region
equal in length to the diameter of the sources. Standard pulse-echo tech-
niques were used to ensure simultaneous arrival of the pulses at the inter-
action region.

TO RECEIVING
SYSTEM

0 4 '

I2-MMZ RECEIVER /,/

CRYSTAL / /
X AXIS . /

r44

II

OSCILLtATOR namey that CRYSTALl

-- -- -

_ZS SOU'R C E_ ! INTERACTION REGION

I •4,--2,89¢m • II1.905 CM

"9-ý- 8EA M 221 SSC
I,_ . 5•,-MNHZ SOURCE

TO PULSED RF
"-"OSClL LATO R •,

Figlufe 9-3.-Geometry used In scattering o( sound by' sound experiment
(frorn Jones and Beyer, JASA 48, 398 (1970)),

The authors considered an additional source of experimental difficulty
not noted by previous workers, namely that rapid oscillations in the scattered

pressure amplitude are predicted by the factor (sin oi/o)(sin /343) in Eqs. (9.5),
(9.23). In previous experiments, the angle subtended by the receiver with the
interaction was such that a number of oscillations would be present across the
face of the receiver. These oscillations could conceivably cancel each other,
thereby prodticing negative results. In the present arrangement, the angular
displacement between a theoretical pressure maximum and the first zero Ci
pressure is about 1/2'; that is, the change in the angle 0 between •--0 [a

i..
S ¶ - ,-,-
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pressure maximum, according to (9.3), (9.23)] and 13 = ir (a zero in pressure)
is about I/20. Since the receiver subtended an angle of 280 as viewed from
the interaction region (see Fig. 9-3), any experimental curve would follow the
fluctuations in (sin c/o:)(sin 3/03), rather than smooth them out.

It was estimated that the apparatus was capable of detecting 3 signal at
the combination frequency of 1 2 MHz as low as 0.07 dyne/cm 2 with a I 0-dB
signal-to-noise ratio.

In searching for scattering, particular attention was given to the Doppler
angles (24037', 54020' in this case) for which pressure maxima had been pre-
dicted. A comparison of predicted values of p+ for one specific experimental
trial is given in Table I.

Table I
Various theoretical predictions for Jones-Beyer experiment:

p I() = 4.5 atm,p 2(0 = 1.8 atm,R 1, R2 = 21.89 cm,r= 47.62 cm.

p+ max
Research Equation (j3 = 0, 0 = 24057')

dyn/cm2

Ingard. Pridmore, Brown 9.3 24,000
Dean

Correction for receiver in near field 9.15 5,230
Additional correction owing to use

of circular instead of square beam 9.16 586
Berktay, AI-Temimni

Correction for noncollhnated 9.21 2,940
Correction for noncollirnated plus Dean - 45.3
Correction for circular beam- 5.1

Westervelt 0

A number of experimental trials were conducted, in which the distance
between the receiver and the interaction region was varied from 7 to 74 cm
and the distance between the source and the interaction region from 3 to 30
cm.

The experimental conclusion of Jones and Beyer was, therefore, that no
interaction occurred between the two beams under the specified conditions.

It is of interest to note that in the solid state case (Chapter 10) such
interactions (called three phonon-interactions) for longitudinal phonons are
forbidden except in the case in which both momentum and energy are
conserved-i.e., collinear beams. [ 181

9.5 Collinear Beams.

Throughout the preceding sections of this chapter we have avoided con-
sideration of the case in which the two beams are collinear. The theoretical
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treatment here is due to Westervelt, who noted that the nonlinear terms made
the beam act as a distribution of sources for the modulating frequency. [191

In his analysis, Westervelt returned to the formulation of Lighthill. re-
arranging the fundamental equations of (9.1) in terms of the pressure

2 2 1. a2 ( 1 ) xa2

op Vp__ L-(p - - --- (puiul). (9.25)
Co 2Co 2 3ij

The terms on the right are kept only up to the quadratic. The comparable
approximation in the relationship of p and p is

2_c 0
6 ap- p2i._o 2co]P=

(9.26)

a2  IPid_2 P2+1O 2 + V2 0U
axiax1  oo2 (1 o2c

Now p in (9.25) is the total pressure at a point in the medium. It is made up
of the hydrostatic pressure pO which is a constant, the pressures of the
two primary beams P1 , P2, and the scattered p.. Since we are interested here
in the sound energy Ps that might be scattered at the sum and difference fre-
quencies, we can omit PI, P2 as well as pO from the pressure in V2p, recalling
this omission when we calculate the contribution of terms on the right hand
side. Putting all this together gives the governing equation for the scattered
p re ssu re p .: !a

o2Ps -p6- 2 a06aP2 p\P0 t- - pOV2U2 (9.27)

where the subscript i refers to the total primary beam. We note also that

a~pE - o -B" (3.21)
ýap2)po po A

The quantity ui can be reasonably approximated on the right by the
linear acoustics relation u, = pl/poco. Then

72.-. I V2 P I2 1o22 + I i2

i 1 22_ 2 p2 -! a 2

S IL . " ...... -

poo C0 0 C0
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Since we have discarded terms of 02 in the source, we can write

I a2pi2
•2ui2

PoCo 3 -at 2

so that (9.27) becomes

o2 aq
OP - -PO • (9.28)

where

q + (9.29)

PO2c 4(l a

Westervelt notes that q is the "simple source strength density resulting
from the primary waves pi." [201

Further solution of Eq. (9.28) depends on the character of the inter-
acting beam. For the case of two primary beams,

" - "10 cos (w t - klx)

-4:x2x
P2 20e cos (w 2 t 2X)

Ws = (J! - W 2,

the general solution of (9.29) is (see Fig. 9-4)

i eikslr -r'I
"Ps(r) - " e dV' (9.30)j Ir -r' I

2w•poS OL iksr
-4r f dx. (9.30)

The integration in (9.30) is taken over the volume of the sources. Set.
ting dV' = Sdx, since our effective sources are distributed along the x axis, we
obtain the form (9.30'). The quantity L represents the effective length of the
array, extending to the point where g becomes negligible. For simplicity of
calculation, Westervelt extended the integration to infinity. In the case dis-
cussed below, where w, /21r - o2/27r2 •- 13.5 MHz, a, + 2- 0.09/cm so that

i.
'. -4• __ _ _ __ _ _
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P(r, 0)

x0O

Fiure 94.-Goometry for parametr array source.

a choice of L = 30 would mean a reduction of q by a factor of 15 from its
initial value. We need only L > I /(a, + a 2 ).

With the added approximation R0 > /a.s/O2c, the scattered pressure
becomes

2 F ei(wst - ksRO)_

P s =spo (9.31)
= ) l 2 S +kssin2 0

where

F - 2 4 1+ z4 )PIOP20. (9.32)

For the case of two collinear beams of equal pressure P0 , Westervelt
obtained the following expression for the radiated intensity Is at a distance
R0 far from the source:

Is ý-. (9.33)
2(8nr)2po3 c09 Ro2  a 2 + ks2 sin4 (9/2)

Here w0 is the angular difference frequency, So the cross sectional area of the
primary bearns, a the acoustic absorption coefficient for the carriers (it is as-
sumed that w, ':-c2), 0 is the angle between the line of R0 and the axis of
the primary beams and k = ws/cO.

This arrangement was called by Westervelt the parametric end fire array f
because of its resemblance to the corresponding sonar array; and in his origi-

[L

r F
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nal note, he remarked on the fact that if a single high intensity sound beam is
radiated, it behaves as a parametric amplifier for any sound traveling in the
direction of the beam and can be used therefore as a highly directional re-
ceiver (see Chapter 10).

The qualitative aspects of Westervelt's theory were very quickly con-
firmed experimentdily. Bellin and Beyer 121] drove a 1-in. diameter quartz
crystal (resonance frequency 13.5 MHz) by means of two transmitters op-
erating at frequencies of 13.0 and 14.0 MHz. The difference frequency was
received on a cylindrical barium titanate probe 1/16" outer diameter, 1/16"
long. The results are shown in Figs. 9-5, 9-6 which give the directivity of the
difference beam for both the theoretical and experimental cases. The coor-
dinate for each curve is measured in relative units.

f2 3 1Me. • MIA4JSMr.

I I I M
- 4 -4 40.2*.4.4.5*

AN6Le 9 (IN Ot )

Figure 9-5.-Experirnental and theoretical direc-
tivity patterns for end-fire radiation in water
(from Bellin and Beyer 1211).

t.

2 Tgot1, ti8

' _.5DIFFEfIIECI FrIeuw~cy IN Pk

Figure 9-6.-Half pressure angle versus differ-
once frequency for the cam of transmisdon in
water (from Beglin and Beyer 1211)

"p. * ••%

/ ' • .. . • •:-;' .. .• •2 :-
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The maximum scattered pressure was measured to be 2 X 104 dyn/cm 2

while theory predicted 3.5 X 104 dyn/cm which was regarded as reasonably
satisfactory agreement.

The half-width of the beam 01/2 at the half pressure point (6 dB down)
was measured as a function of the difference frequency, with the results
shown in Fig. 9-6. The theoretical value can be obtained from Eq. (9.24):

S2 314/•ss1/2
01/2 -2 3 (9.34)

Thus the correct frequency dependence was obtained. However, the narrower
form of the directivity pattern in Fig. 9-5 was a surprise; it has been con-
formed by subsequent measurements of other researchers. In particular,
Vestrheim and Hobaek [22] have reported measurements of the variation of
01/2 with respect to the sound intensity and the distance from the primary
source. Figure 9-7a gives the experimental 0 1/2 as a function of the acoustic
pressure, while Fig. 9-7b gives 01/2 as a function of distance from the source.
In both cases, 0 1/2 approaches the calculated value 0. for collimated sources
at large values of the argument.

Further discussion of this problem will be given in Chapter 10.

9.6 Absorption of Sound by Sound.

Recently, Westervelt [231 has made a new approach to the problem of
scattering of sound by sound. He begins with the more general form of Eq.
(9.11 ). valid for the angle 0 between the two beams # 0: 124]

(s Cos- +l(2CO cos -A) 721. (9.35)

This expression has a singularity at 0 = 0. However, by forming the
operator

D = I - exp cov - I)] r- V (9.36)

and applying it to ps, Westervelt was able to exhibit a solution for p. that was
valid at 0 = 0, and that reduced to axial form of Eq. (9.31) as 0 -- 0.

Westervelt then proceeded to apply this solution to the attenuation of a
monochromatic plane wave with wave vector kI interacting with an isotropic
distribution of other waves with arbitrary angular and spectral distributions.

!1
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Figure 9-7a.-Varlation of half-pressure angie o1/2 with primary in-
tensity (Re = Reynolds number of source, 0. = coxresponding angle
for collimated sources, 0 d = angle for direct radiation (from Vests-
heim and Hobaek 122]).
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Figure 9-7b.-Variation of 81/2 with distance for primary source
(from Vestrheim and Hobaek [22)).

Using an energy conservation method based on the power absorbed by virtual
sources, [241 he obtained the general form of the absorption coefficient re-
sulting from this interaction

Ih
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2o ÷l + r-7 ir ku(k)dk
2poc0 

2 0

+ 2kI u(k)dk + k 2  u(k)dk. (9.37)

fk' 0

If the range of frequencies in u(k) lies well above that of kI, this equa-
tion reduces to

I (I + irk E (9.38)

2P0C0
2

where E is the energy density of this background radiation.
Since Eq. (9.37), (9.38) represent an absorption of sound from the

primary beam due to interaction with the secondary (background) radiation,
Westervelt has called this the absorption of sound by sound.

A similar phenomenon has already been noted in the absorption of
sound in liquid He4 below 0.6 0 K. [251 The maximum absorption, due
to interaction of the sound beam with the background of phonons, is given
by Eq. (9.38) if E is the energy density of the background phonons [261

E = kT) (9.39)30h3c3

(kB = Boltzmann constant), and if B/2A is replaced by the Griineisen con-

stant (see Section i1 .3). The experimental results are larger than the theory
by a factor of about 2, a difference explained by Marns and Massey in terms
of anomalous dispersion.

This phenomenon suggests that one might be able to increase the ab-
sorption of an unwanted low frequency sound by use of an intense back-
ground field at other frequencies.

9.7 Scattering of Sound by Sound in the Presence of Obstacles.

In his early paper on the scattering of sound by sound, Westervelt [61
pointed out that the presence of a solid body in the interaction region would
give rise to scattered waves at the combination frequencies. He attributed
such an effect to the action of the time-dependent radiation forces exerted
on the solid by the primary beams. The reaction of these forces on the me-

. - .-- - -. ,;.
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dium would generate the sound. He also noted that the primary waves would
undergo simple scattering and that such scattered waves might interact with
themselves and with the original beams.

These effects were observed by Bellin and Beyer [91 when a #38 wire
was introduced in the interaction region. They also noted that interaction
could be produced by blowing bubbles through the interaction region, but
no quantitative measurements were made at that time. More recently, Jones
and Beyer [1,17] have reported a systematic study of both phenomena, a
summary of which is given here.

A. Rigid Cylinder. The geometry of the arrangement is the same as
that described in Section 9.4. except that a metal cylinder is centered on the
interaction region (Fig. 9-8). Their analysis begins with the expression for a
diverging cylindrical wave from linear acousticz (recall Section 1.9):

"rHo(kir)1 ,

pi(r) = PI(a) l i, 1,2 (9.40)

pi(r) is the pressure of the ith wave at a distance r from a cylinder of radius
ac. pi(ac) is the pressure of that wave on the surface of the cylinder, H,3 is the
nth order Hankel function of the first kind.

When the pressure pi(ac) is gradually increased, nonlinear effects ap-

pear and Eq. (9.40) will no longer be strictly correct. However, we shall con-
tinue to use it for (ihe large amplitude case (at the fundamental frequency),
correcting for finite-amplitude losses by inserting an appropriate factor.

This particular problem was solved by Dean, [101 who obtained Eq.
(9.12) for the sum-frequency pressure at a distance r:

p+(r)- pl(ac)P 2 (ac) B
2PoC

0 2

Hl (kjr)H0 (k 2r) + H0 (klr)H1(k 2r)
X k~ Pe H, l(klIac)H! (k2ac) (.2

Lauvstad [121 has noted that this equation applies only when r > ac,
but such a condition was satisfied in these experiments.

In what follows, it will be desirable for us to express Eq. (9.12) in
terms of the primary pressure at the field point r, rather than at the surface of
the cylinder. We therefore replace p, (ac), P2(ad) by p, (r), P2(r) through Eq.

I- . . . ... . . .... ._ _
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bjec at ce nter 1 f Interaction
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Figure 9-8.-Arrangement for scattering of sound by sound
in presence of obstacle.

(9.40). The result is a most unwieldy expression. However, under the ap-
proximation r > a., the Hankel functions can be approximated by

Hl(kjac) - 2

Ho(Ik,r) 2 ( e) /2e(k r-) (9.41)

i(kjr -j)
HI (kir) = (rk2 VL

i' r)
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and the revised and approximated (9.12) is given by

p+(r) = ,Re [pI(r)] Re Ip2(r)• + - r. (9.42)
poco

What we have done is to make possible a discussion of the scattering

amplitude at the field point r in terms of the primary signals that would exist

at the same field point in the absence of interaction.
In the experimental arrangement, the cylinder lies at the center of the

common region formed by two perpendicularly intersecting plane-wave

beams. It is now assumed that the scattered field produced by the plane

waves is equivalent to a cylindrical source modulated by the plane wave dif-

fraction pattern. The assumption is illustrated in Fig. 9-9.

Figure 9-9a indicates the classical diffraction pattern plane wave scat-

tered by a rigid cylinder (no attempt has been made to give detail). It is now

assumed that the cylinder is acting as a source of cylindrical waves, in accord

with Eq. (9.40). but that the amplitude of the waves at a. is modulated in

accord with the diffraction pattern just described. This wave form is indi-

cated for source 12, by the solid line. A similar pattern is also shown for

source -l (dashed curve).

diffraction pattern
from source #2 j

diffraction
pattern

10j from 4
source #1

IT
Fiue 9-9.-Dlfraction pattern from rod cylinder.

source #1; : sour #2.

I.
- :-. -• -I
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finitesimal amplitude case by Morse and Ingard 1271

pS(r) = p(I) -sin .- ÷f+ cot2 sin 2(kaCsin0 C -1)

where p(I) is the pressure amplitude of the incident plane wave a! the face of
the cylinder-the interaction region. For this formula to be valid, it is re-
quired that kr )" I and a. ) X, , which are both the case here.

For high ampi:.udes, of course, this formula is not strictly accurate.
However an exponential decay factor can be added in the form

exp [-r/(r + Vj)] (9.44)

where Qj corresponds to the discontinuity length for a plane wave for the ap-
propriate source (in this experiment, i = I refers to the 7-MHz source, i = 2 to
the 5-MHz.

We may now identify 6Re [pi(r)] (Eq. (9.37) with ps.(s) (9.43). This

i5 the step in which we transfer from the classically scattered pressure p., to
the pressure radiated by a cylindrical source Re[pi(r)]. I

We therefore have two concentric cylindrical waves whose pressure am-

plitudes depend on the polar angle 0 in exactly the same way as two perpen-
dicularly intersecting plane waves scattered by a rigid cylinder. We are in ef-
fect rewriting Eq. (9.42) as

p Ps2(- (9.45)

Figures 9-10, 9-1I show results of the scattering by a 1/4" steel cylindri-
cal rod (a. = 0.3175 cm) as a function of angle; 0 = 0 corresponds to direct
alignment of the receiver with the 7-MHz source, 0 = 900 to similar align-
ment of the receiver with the 5-Mliz source. The distance from both sources
to the interaction region was fixed at 21.89 cm.

Figure 9-10 indicates the diffraction scattering from each sound beam
alone.

The apparatus was so constructed that the two transmitters could be
rotated about the interaction region. This rotation was carried out until a
maximum or minimum was recorded.

The theoretical curves have been plotted from Eq. (9.43) with the at-
tenuation factor (9.44) added. The argument on the various maxima is quite (
satisfactory. The lack of absolute agreement on the level of the minima prob-

I- -I_, _
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Figure 9-10.-Scattering of sound by a rigid cylinder (from Jones (I, p. I II).

ably results from the fact that the finite sized receiver is averaging over an
angle that extends well beyond the width of the crevasse.

The same frequency was examined by means of the same apparatus,
with both transmitters in operation. Once again theory and experiment are in
good agreement.

Similar measurements were also reported for a 1/16" cylinder.

In all of these measurements, the interaction distance R was greater
than the discontinuity distance 2.

In order to study the buildup of the interaction signal, an additional
experiment was performed in which the amplitudes of the primary beams
were greatly reduced, so that the distance to the receiver r would be smaller
than the discontinuity distance. Measurements were then made with the 1/4"
rod at 0 = i over a range of values of r. The results are shown in Fig. 9-12.
The discontinuity distances for each primary bean, were over 100 cm.

The curve divides into three regions. When r is less than about 20 cm,
the amplitude ot the received sum frequency increases with r-which is char-
acteristic of the parametric interaction in its building-up phase. In the region

i"'
.4

k .- 1
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Figure 9-1 1.-Interaction (at the sum frequency) of sound with sound from
scattering by a rigid cylinder (from Jones 111, p. 112).

of r between 20 and 36 cm, the value of p+ is roughly a constant. This is the
region in which the increase in p+(r) by the factor r in Eq. (9.45) is almost ex-
actly counterbalanced by the cylindrical spreading (I/ r12) in each of the
classically scattered beams (the damping of the signal is slight). Finally, in the
region where r is greater than 36 cm, the attenuation due to the varying ab-
sorption factors becomes dominant and the value of p+ decreases. When the
higher intensities were used for p1 IP2, only the latter part of the curve could
be observed.

B. Rigid Sphere. Similar measurements were reported in the same re-
search for rigid spheres. The analysis is completely analogous to the case of a
cylinder. We first assume two linear concentric spherical waves, each given by

k ias 2 ik ir (,6

pi(r) = pi(as) 1 - ika (9,46)

where the subscript i denotes the particular wave, a. is the radius of the

sphere. As before, we shall add the factor exp [-r/(r + Ci)1 to account for C;
finite amplitude attenuation beyond the distance r = .

,• ,.'-- 
- - - -
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From the work of Dean, [101 we have, for the sum interaction fre-
quency p+(r),

P 1(as)P 2(as) I + - ) k+klk 2as4

p+(r) =
2Poco r

X6 i exp (ik4.r)
x e (I - iklas)(! - ik2as)

X - e 2 k+r r- 1 exp 2ik rdr (9.47)
asas

for r > a., this reduces to

where F is the factor in front of the expression {... in (9.47).

We now rewrite the pi(as) in terms of Re [Pi(r)] and substitute the result
in (9.48). This gives

I+ -f- k+4
p+(r) = 6e[pl(r)] •6?e[P 2(r)J L1 2 r In (k+r). (9.49)

We again refer to Morse and Ingard [281 for the classical scattering of a plane
wave by a rigid sphere,

as 0j1/2 e"r" 9.0

PsI(r) = pi(l) "-2r " + cot2(12) J, (k as sin 01)1 e (9.50)

where i = 1, 2, pl(1) is the pressure amplitude of the ith plane wave beam at
the center of the interaction region, pi(r) is the scattered wave at the distance
r from the sphere, 01 the polar angle of the ith wave, Qi the plane wave critical
length for the same wave,J 1 is the Bessel function of order I. As before, the
exponential fraction has been added to account for the decay of the funda-
mental component of the pressure after an initial sawtooth has been "
established.

I. •
I-. 4
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We now make the identification

(Relpi(r)] =- psi(r)

which is entirely analogous to the step of Eq. (9.44). Then

p÷(r) sk~r)p2j r In k~r. (9.51)

The results for the interaction resulting from a 1/4" rigid sphere are shown in
Figs. 9-13, 9-14. Figure 9-13 gives the measurement of the 5 and 7-MHz scat-
tered signal (only one transmitter operating at a time). The continuous
curves are plots of Eq. (9.50). Figure 9-14 gives the received sum frequency.
The continuous curve is a plot of Eq. (9.51).

as=0.3175cm, r=48.18cm, R=21.89cm,

p(I)= 2.45 xl0 6 dynes/cm2 , p()=:3 36xl06dynes/cm2

7MHz 5MHzI042 f-- I I l g I

2
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Figure 9-13.-Scattering of sound by rigid sphee (from Jones (1), p. 130).
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os:0.5175cm, r: 48.18cm, R- 21.89cm,
p (IM)-2.45 x 106dynes/cm2 , p (I)=3.36 x10 6 dynes/cm 2

7MHz 5MHZ

0.10 1

C -THEORY
o EXPERIMENT

S0.001

~0.0001

Ix
-20 0 20 40 60 o0 100 120

0 (DEGREES)

Figure 9-14.-Interaction (at the sum frequency) of sound with sound from
scattering by a rigid sphere (from Jones [I ], p. 131).

C. Non-rigid Sphere (air bubble). We proceed as in the previous para-
graph. The classical formula for the scattering of a plane wave by a non-rigid
sphere of radius aB is given in the Born approximation by

kip2 a33r [K. -- X 3 P -_ 3p ]
(r) + Pi(l) -+ cos 0 (9.52)

where x, p are the compressibility and density of the medium, KB, PB the cor-

responding values for the sphere (bubble).
Equation (9.52) holds for Xj > 21raB. For a frequency of 7-MHz, this

restricts us to bubbles of radius less than 0.02 cm.
For an air bubble in water, Eq. (9.52) reduces to

Q.r.

psi(r) pj(Il)k12aB3 r-l0l - cos 0]e e (9.53)

i.-
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cross-sectional area S and possessing an en. lope f[t - (xic)], where f is nor-
malized so as to have a maximum amplitude of unity:

since KB > K, P > PB- Here again we have added the exponential sawtooth
decay factor. It is obvious for (9.53) that the scattering is nondirectional.

We may now use Eq. (9.5 1) for the pressure of the sum frequency wave,
but with the ps. given by Eq. (9.53) in place of (9.50).

Experiments were conducted on air bubbles produced by controlling
the flow of air under high pressure through a small glass nozzle. The system
permitted a steady vertical flow of bubbles whose size could be varied from 3
to 700 microns. Controls were provided so that only a single bubble would
be in the interaction region at any one time.

Considerable indeterminancy existed in these experiments. During the
passage of the bubble through the interaction region, it scattered numerous
pulses of the primary waves, but each from a different vertical position. This
led to a blurring of the results. The authors attempted to compensate by
averaging over some ten independent readings at each position and fre-
quency, but it was not possible to reproduce the detailed structure.

Figure 9-15 shows the results for bubbles of radius r= 0.0035 cm

(35 p). The solid curves correspond to Eq. (9.53) (tile two upper lines) and
Eq. (9.51) (the lower line).

Virtually identical results were obtained for bubbles with a mean radius
of 95 W. However, when larger bubbles, of mean radius 283 pa, were used,
the scattered signal was far below that given by Eqs. (9.51) and (9.52) (see

Fig. 9-16).
In this last case, of course the bubble radius has become larger than

the wavelength of one of the primary beams (7-MHz) so that Eq. (9.53) is no
longer a valid approximation.

The general conclusion of this section then is that sum frequencies are
indeed obtainable when a rod or sphere is located in the interaction region,
and that the entire scattering behavior can be accounted for by the Wester-
velt theory.

9.8 Interaction of Pulses of Finite Amplitude.

Thus far all of the discussion of interaction has been of two separate
beams of two distinctive frequency components in a single collinear beam.
In a typical ultrasonic pulse, such as that shown in Fig. 9-17, the beginning
and ending portions of the pulse have broad frequency spectra, so that large
amplitude pulses must possess considerable self-interaction.

Such pulses might be viewed as transient versions of the parametric ar-
ray discussed in Chapter 9.4. The theory of such an array has been piesented
by Berktay, 1291 who derived an expression for the transient signal pressure
p(x,t) generated along the propagation axis of a pulse of initial amplitude P,

i .
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0B=O.0035cm, r=48.18cm,R=21.89cm, I
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Figure 9-1 5.-Scattering of sound beams from air bubble of radius 35 microns
and the interaction at the sum frequency (from Jones (1), p. 143).

=I B\ f'2S 1 a2Fx 1
pxt) t / (9.54)167rpc 4 c-x T 

()]
Equation (9.54) therefore describes the on-axis generation of sound by

a "parametric array" consisting of a propagating high amplitude pulse.
The theory has been accurately confirmed by experiments in carbon

tetrachloride. [30] The pulse shown in Fig. 9-17 had a carrier frequency 10

, 
• . ..... _ -I
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Figure 9-17.-Pulse applied to transducer (from Moffett,
Westervelt and Beyer [30]).

Oscillograms showing various stages of the pulse's progress are shown
in Fig. 9-18.

The rapid transformation produced by the effect is clearly demon-
strated. Berktay has called this process the "self-demodulation of a pulsed

a4 M 5m. 1.m G. 0.9 ision.

5 -OM • n •v/i~ision. 24.0 Cm. 0.50.

l 10.5$ ¢r. 1,9j M V/dli[V tlfto. 33 • .0 c-. 0.5ýý Y/ lvisiion.

1 4 5 Cm 09 m YltwlonI 42.0 CM' 0.5 m V/divi.;0fl

Figure 9-18.-Vanation of pulse shape withx, the source receiver separation
(from Moffett, Westervelt and Beyer [301).
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carrier." One can also think of the medium as playing the role of an acousti-
cal low-pass filter. The fluctuations of a2f 2 /8t 2 have an approximate period
of 2 Msec or a "frequency" of 500 kHz. The effective absorption coefficient
of such a pulse would be 1/202 = 1/400 that of the carrier with its frequency
of 10 MHz (at frequencies far removed from any relaxation frequency).

Moffett and his coworkers made further confirmations of the theory.
A smoothed version of the envelope of the pulse in Fig. 9-18 at x = 3.0 cm
was plotted and read into a digital computer, squared and differentiated
twice. The computed result for t 2 a2f2/3t 2 is shown as the continuous curve
in Fig. 9-19. The abscissa r is the retarded time expressed in periods of the
carrier. The experimental points are taken from Fig. 18, x = 19.0 cm. The
horizontal scale was adjusted to place the first experimental peak at its com-
puted position.

0.05
0.04- 1
00O3
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0.01

-0.004

0.05

-0.02 2
--0.03-
-0.04-€

-0.05 
3
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-0.09

-10 0 10 20o 50 40 50 60 70

0it o/C)/

Figure 9-19.-Comparison of transient signal shapes calculated from
the pulse envelope similar to that of the first curve of Figure 9-18
(continuous curve) and measured from the photograph of Figure 9-18
at x = 19.0 cm (from Moffett, Westervelt and Beyer [301).

The same effect has been observed in water, where the much smaller
absorption coefficient prevents a cleafcut separation of the carrier and
transient responses. However, it was observed that rotation of a 20-Mzi-
x-cut quartz carrier beam could have the same "fidtering" effect as the spatial
filter of Fig. 9-18.

The results are shown in Fig. 9-20.

* .

----------------------------------------------- .- .......



334 NONLINEAR ACOUSTICS REFERENCES

0.$3.16 0 -- 4.40

S04.40 0 5.
*7 ?r0 •la -. a0

Fiswe 9.20. -Received pulse at a radius of r :47.7 cm in tap water for various angles
of beam (from MoffeIt, Westervelt and Beyer [ 30]1)
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Chapter 10

APPLICATIONS OF NONLINEAR INTERACTIONS.
THE PARAMETRIC ARRAY

The ultrasonic parametric array has now been analyzed and tested over
a wide range of conditions. A large number of these researches will be
touched on in this chapter. To develop some system for our review, we shall
consider first the transmitting applications and subsequently the receiving
applications. In each instance the research subdivides further into far-field
and near-field operation.

10.1 Far-field Transmission.

Equation (9.33) gave Westervelt's expression for the interaction to be
expected from two beams of the same intensity and nearly equal frequency.
This analysis assumed the existence of plane waves and was further restricted
to the far field of the scattered wave by the condition ksRo >(ks/a)2 . [1]
Berktay extended Westervelt's treatment to take into account the finite size
of the transducer. (2] Assuming a rectangular transducer of sides 2b, 2d, he
obtained the following expression for two beams of initial pressure ampli-
tudes P1 ,P 2 (Fig. 10-1):* I

r _ P1P 2SW 2 exp(--aR) ý (,y,0) (10.1)

41rp 0c04R0 [A2 + 4k/2 sin2

where

S = (2bX2d)

A = 1 + a2 - ascOsO
(10.2)

sin (dks cos -f) sin (bk, sin -f sin 0)
= dks cos -y bk, sin O sin y

*In his derivations, Berktay made the simplifying assumption that the nonlinear panim-
cter 3 was equal to unity.

336

I.'
- !~ - - ,. viK -



SFC 10.! NONLINEAR ACOUSTICS 337

R -

d

Figure 10-I.-Geometry for two collinema interacting sound beams
traveling in the x direction (from Berktay 121).

al a2, as = absorption coefficients for the two primary waves and the differ-
ence frequency wave, respectively.

The results shown in Fig. 10-2 indicate the effect on the beam width
of taking the diffraction pattern (10.2) into account.

For practical application, a different transducer geometry is often used,
and Berktay has derived expressions for both cylindrical and spherical
spreading:

0.1
Diffoelco frequency, MHz

Figmue IO-2.-Experlmental results of the Interaction of two
ollnear sound beams., Curve 1, I! derive from Eq. (10.1),

curve I without the aperture function tp, curve Ii with it;
curve Ill corresponds to the case of radiation from a square
aperature of area 9 cm2; curve IV is the mean experimental
curve (from Berktay (2]).
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(a) Cylindrical case (Fig. 10-3)

The pressure distribution in the far field in the plane z = 0 is

given by

0P1P2 (2Q)wo~e"

PS -Poc2S2Ro, 2 -+L (10.3)

where

4= -2 tan-'(v/1j- 1)-i + tan-l( V'U- 0)-1

-tan-(v/2 + 1)-i _tan-l(v2xu I - I)-'

eL (2_;p2v d (I,/d)2V-I

eL (9 0 2-ý2M '+ 'fVd 2)+ (-120 V~)2(10.4)

u0 = 0o-1o 0  0o=/d Od =' 5 '/ks

U= 00 - Od ý0 = 01/d

2U 00 - Od Od = 011/0d.

II

Ftliire I0.3.-ceometiy fot an and-fi, e au'y fotmed by cylin~dl1Iy F

qnealin prnuuy wae (romBak~y'121).
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In this case, one is dealing with a primary beam of two cylindrically
spreading waves confined within the limits z :t Q and making angles of :t'

with the x axis. It is also assumed that the radial power flow is uniform over
the angular range of 2p.

(b) Spherical spreading

Here it is assumed that the primary waves are confined to a cone of
angular width 20 1 with the intensity independent of angular position within
the cone.

The analysis by Berktay leads to the result

P = 2  4:R--• In (I + d4)1 + (tan- 1 'd2)} (0.5)

[Same terminology as in Eq. (10.4).]

The directivity of the array can be considered by comparing the scat-
tered pressure at angle 0 with its value at 0 = 0. For the bounded plane wave
case, in the plane z = 0

D( ) _p(r, 0) sin (blc, sin 0) 2ks n-1/l 2
ps(R.0) bk sin L (A2

For the problems of interest (waterborne sound) \/2k7 = sin Od/ 2 <, 1.
The half power points (3 dB down) of this directivity pattern occur when
(2k/A) sin 2 0/2 = 1. Hence

20d A- 7 . (10.7)

The corresponding directivity function for cylindrical waves is given by

Dc(Oo,0d) = 0 + L2, (10.8)

and for spherical waves

Ds(O,Pd) n.. { + Pd4)] + (tan-, td2)2 (10.9)

The relation of the scattered wave to the intensity of the fundamental
frequency component in the far field has been established semi-empirically

i.k
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by Merklinger. [31 He points out that the source function (9.29) can be
written in the form

q(x,t) = (r, t) (10.10)PCo3 a t

where I is the total acoustwc intensity.

Of several empirical relations between I and the intensity of the funda.
mental frequency component I0 proposed by Merklinger, the simplest is

I I0 e°2ax x < x 2

(10.11)
-!.6 11 x > x 2 ,

where 10 is the initial sound intensity and x 2 the distance at which the extra
attenuation [Eq. (3.72)] is 2 dB. Working with this and a somewhat more
involved approximation, Merklinger obtained an approximate form for p.:

I~~~ 1 Ps-0c3• 2f~-c) /KIIo t- _ --
32 -1 0)L

S 3 t2 =K tan-1- 2  j (10.12)
L

where K1 = 32 W2 /poc0
2 . At high intensities, Eq. (10.12) becomes inde-

pendent of 0, achieving the form

S a
Ps(R't) o (1P0 t _ 0.13)

Merklinger has applied this analysis to the case of the parametric array
to show that the beam pattern will narrow as the nonlinear parameter 0 is
reduced.

In an attempt to be more realistic, Berktay and Leahy [4] considered
interaction in the far field of a transducer, the directivity (in the far field) of
whose two primary frequencies is known, under the assumption that one can
neglect interactions in the near field and also any higher order (than primary-
primary) interaction.

In their work, Berktay and Leahy generalize the Westervelt scattering
integral Eq. (3.90) to the case of complex waves with known directivity char-
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acteristics. The geometry is shown in Fig. 10-4. If the primary waves are
given by

pi r--i Di(.ry, )exp I[-(o/ + ik/)r]

(10.14)

1=1,2

where Dl(-y,) is the directivity index of the jth primary wave, then the differ-
ence frequency pressure at the point R will be given by

(R, 0 - 2PP 273) DI D2

4pP)oc 4 f rlr-RI (10.15)

X exp [(- a , + ik)r-(a -jk) Ir- RI dV

Y

- y

N i

Figure 1O.4.-Garnietr for interaction of two primary sound waves of
known characteristics (from Bemktay and Leaky [41).
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where the volume element is

dV = r2 cos d'y d dr.

In the far-field approximation, Eq. (10.15) can be reduced to

W 2-P2tPRP2 e-(- + i_)R

4n'poco

ff/2 ff/2 D I('yO)D 2(Y,O) cos I -1k_ R(I-u)

£t/2 I,- /2 aT + ik (0 -U) d yd e -

kR lu =I (- 0)2 ( _-17)2
2 2

Of= aI + 2 + 0._ (10.16)

if the directivity functions are the same for each primary beam and if it
is assumed that the beams are very narrow, then Eq. (10.16) reduces to the
Westervelt solution of two collimated plane waves (9.33).

Berktay and Leahy have applied their analyses to the cases of a rectan-
gular transducer and a circular transducer, both in infinite baffles, We shall
review the first of these cases.

We therefore suppose the transducer to be a rectangle of length Q, width
?n. The directivity function is taken to be approximately

sin irLy sin irM,0
(,)- rLy iy (10.17)

where L = Q/X, M = m/X.

The half power points of the two primary beams are defined by

irL'I = irM0l V 2fi. (10.18)

The authors then normalized all angles with respect to the halfpower point
of the difference frequency beam 0d [Eq. (10.4)]

0d 2- 2/ ir/k_

7' 71Od 4y =7 1/0d (10.4)

'= 010d = 0 10d

I-• . ;. . ,
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Then

sin(V•/'"/,Y) sin(V2/0'/O) (10.19)V/'f' / ýJy V/2, ' / @z P1019

In these terms, Berktay and Leahy could write a general expression for the
difference frequency pressure:

p_(R,O,77) -- Pw(R,O)V(iy,4i,O',r') (10.20)

where

-w2P I P20JS

pw(R,O) =

V = LMOd2 f D2(I( ',')' .d.') (10.21)
1-,2 "-d !+i(' -y-r)2 + (17, -,01)2]

The integration of V(4y, 4z,0,0) was carried out and the results are plotted
in Fig. 10-5. Curves such as that of Fig. 10-5 can be used to compute the far
field behavior of a parametric area for a given set of parameters.

Another approach to the same problem has been made by Mellen and
coworkers 15] who have sought scaling parameters for the design of para-
metric arrays. In particular, Mellen and Moffett considered a model in which
the piston transducer was driven at frequencies f0 ±f/2 so that a difference
frequency f f0 is achieved. The beam is assumed to be a collimated plane
wave out to R0 = ira2/X0 (a = radius of transducer, X0 = c/fo) and then to
spread spherically within a cone defined by the half angle 00 - 0.6%/X_0/&0.

In their analysis, these authors began with the usual Westervelt inter-
action formula and computed the far field of the secondary pressure at dis-
tances large compared with the dimensions of the interaction volume (which
are of the order of 1/2%O). At the same time, they described their results
in terms of three scaling parameters: I) the downshift ratio folf, assumed to
be greater than about 5; 2) the absorption number 2 o0Ro, which is less than
unity for most practical systems; 3) the saturation number r0/Q (equivalent to
a of Chapter 3). Finally they defined the scaled primary source level L*,
equal to the actual source level in dB (re I /bar at 1 m) + 20 log f 0 , where f0
is in kHz. Thus scaled levels above 180 dB corresponds to shock formation in
the collimated zone.

p I i - ./ .-
- . -- , I,.



344 APPLICATIONS OF NONLINEAR INTERACTIONS SEC 10.1

I I I I • I

RECTANGULAR
TRANSDUCERS

S- --- SQUARE AND
o CIRCULAR TRANSDUCERS
I

O -10

Lf)

L()

a- 0
Uj -0.5

>0 1.5< -1.1 2.0
CX -2.5

5.0-6.0

-30 ~ ~ ~ ~ ~ ~ ~ ~ .___________________

, 3 I * I 0 . I

0 2 4 6 8 10 12

Figure 10-5.-Fa-fleld behavior for given dimensions of tr ducei in the case
of a paramettc amy (from Berktay an Leahy 141).

C'

"". k•,



SEC 10.1 NONLINEAR ACOUSTICS 345

The principal results of their analysis are shown in Fig. 10-6 for a
downshift ratio of 10. The quantity labeled parametric gain is the ratio (in
dB) of the secondary source level frequency (f) to the primary source level
frequency (f0). For scaled input levels above 180 dB, the formation of shock
within the collimated zone flattens the gain curves (saturation limiting).

The lower left of the figure corresponds to the Westervelt situation, in
which the gain is limited by the small signal absorption.

As a typical example, the problem is considered of producing a 5-kHz
secondary beam from a 50 kHz source with primary level 130 dB re I pbar
at I m. Then folf= 10, L*= 130+20 log 50= 164 db re 1 pbar-m-kHz. If

-10 (2 aRorl :OD 10/f 10

-20

c. -30 -L

-70-

-80• i I I I . I
140 150 160 170 180 190 200

SCALED INPUT SOURCE LEVEL (dB/ 1 '1/J.bar-rn-kHz)

Figure I O-6.-Parametric gain as a function of scaled input source level for various values
of the absorption number 2aRO. (From Mellen and Moffett [51).

I- 5< -.0-
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the diameter of the projection is 3 in., R 0 "- 6 in, and 1/2ciO0R - 1000, the
parametric gain can then be read as -30 db re 1 Mbar-m (see dashed lines on
graph).

Propagation curves have also been studied by Muir and Willette [6)
who used the directivity of a low frequency circular plane piston source

D(kasin) 2J1 (ka sin 0)

ka sin 0

and employed numerical integral of the Westervelt equation for the scattered
pressure. Their results are shown in Fig. 10.7 for 418 and 482-kHz primary
beams. Theoretical and experimental values of the received signal are given
for the carrier beam and for the sum and difference frequency.

V MVIAN OF t~f 46IB. A£lil2.kxt CARII~ER

FRIOUINCY RADIATIONSS64-txt DIFEIrEWEf'•
IIO • FlIE(XJENICY RADIATIONl

A 900e-IH SUM-FRCOUENCT

RADIATIAN

"S-41EICAL SPIAOING

90 N

44 .

w

is0 - .N

0 *IIi i~ ggp i pp iggtf I I I i Jlilii

3 os I 3 S 7 30 0 10O
It NOQ - VD

Figure 10-7.-Behavior of primary and difference frequency components
in a transmitting aay (from Muir and Willette 161).

The problem of the secondary beam directivity has been treated by a
number of authors.

Muir and Willette [61 extended the calculations and measurements to
off axis measurements of the scatteted pressure. Their results for carrier,

sum and difference frequencies are shown in Figure 10-8.

- ___ __
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Figue 10.-B-eamn pattern for carrier, sum and difference
frequency components in a transmitting array. (a) 482-ktb
carrier; (b) 64-kHz difference frequency radiation; and (c)
900-kHz sum frequency radiation (from Muir and Willette
161).

Mellen, Konrad and Browning [5] also measured the difference fre-
quency obtained by driving a single transducer with two signals of mean fre-
quency 720 kHz. The difference frequency signal is plotted as a function of
angle in Fig. 10-9 for difference frequencies from 12.5 kHz to 100 kHz.
Somewhat similar results have also been obtained by Pearcc and Berktay, [7]
who employed a mosaic transducer.

Finally, an operational sonar has been described by Walsh. 18] In this
construction, primary beams in the vicinity of 200 kHz were used to produce
a difference frequency of 12 kHz. Figure 10-10 shows the beam pattern for
the 200-kllz primary and for the I 2-kHz difference frequency.

- a-
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10.2 Near-Field Transmission.

The problem of the near field of the parametric array has been treated

by Berktay and Shooter. 191 They begin with a continuous line array of sim-

ple sources (shown in Fig. 10-11) with a strength q per unit length:

q(x,t) = Q0 exp [i(it - kx)i (10.22)

for 0 !5 x !5 L, and zero outside the range. The velocity potential at the point
r can then be written

Q0f• L

r(zp) oexp [-ik(x + r)] dx

(10.23)

r 2 = (z -x)
2 +p 2 .

By introducing the notation

v = k(r + x - k(r - ýr2 -p2), (10.24)

Eq. (10.13) can be _.. na as

Q0 R ,
OR,0) =Q In ..-- exv (-ikR cos O)D(RO) (10.25)

RR-

- ~ ~ / 0 ~

0 L/2 L

Fi~pre 10-M -Geometry for nmr-fleld tranmiSaon.

4..
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where

D(R,O) = [ ]n _ f] exp (-iv) dy

vI = kR(I - cos0) (10.26)

V2 = k[(R 2 +L 2 - 2LR cos0) 1/2 - (R cos0 -L).

The function D(R,O) is a normalized directivity function. This func-
tion is plotted in Fig. 10.12 for various values of RIL, ranging from L.I to

,N

I/ 100L.0I.

0 30 60 90
DEGREES

(a)

Figure 10-12a.-End-fire amay pattern for kL = 31.4 and the ratio
RIL = 1., 1.2, 1.5, 2.0, 8.0 and 100.0.

1.0 ,_._. _ _ _ _ _ _ _ _ .. _,

II

0 30 40

(b)

Figue 10-12b.-Far-field ond-fie arrmybeum pattern forkL = 31.4 (-
(from Berktay and Shooter (8)).
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100, i.e., from the near field to a relatively far field. In all caseskL = 31.4.
The most interesting feature is the narrowing of the beam as the range is
decreased.

While the analysis of Berktay and Shooter is derived in terms of real
arrays, it can be used also in the case of the parametric array. In that situation,
the effective length of the ray is at least as great as I/a where o, is the absorp-
tion coefficient at the mean transmitter frequency. In the experiments in
water of Bellin and Beyer, [101 described in Sec. 9.5, 1/a = 22 cm. Since the
difference frequency was detected at distances of about I foot,* it is clear
that R -L in Eqs. (10.25), (10.26), so that considerable narrowing should
be expected (see Fig. 9.5).

Some further mathematical analysis of Berktay and Shooter is also of
interest. If Eq. (10.25) is expressed in terms of the retarded time

t' - t g
Co

and the substitution

t=t, Py
Co

is made, Eq. (10.25) becomes

I iq(r)drý(z, p, t) = "7 t (10.27)

T-2

or, if we introduce the so-called window function U("I, T2 )

U(r1,"2) = 1, 72 < 1" < r1

- 0 otherwise,

where

pyVi
ri = t - - = t' - ti'.

Co

i = 1,2,

*These authors neglected to record the distance for posterity, but the dimensions of the

tank and this writer's memory suggest 1 foot as the most probable value.

i.
#--!"~' ' --
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then

D (z,P,t) = f q() _di-.r (10.28)

This integral is the convolution of q(t') with the function h(t'), where

I1U(t2,tl)
h(t') = T- t- (10.29)I t,

h (t') is known as the impulse response function of the end-fire array. [I I

This latter result was actually first obtained by Westervelt in 1965 in a
problem on gravitational waves. [12]

Measurements have also been carried out in air by Bellin and Beyer. As
in water the directivity pattern was inversely proportional to the difference
frequency (Fig. 10.13), but the absolute width was narrower than that pre-
dicted by the Westervelt theory, again, presumably because the measurements
were carried out in the near field.

i 1 • •| iii kc

* rpuMI IDlIOIh,,'ib III w?

Figure 10-13.-Htalf-pfenure angle for difference
frequency in air. Primary frequencies - 350 kHz
(from Bellin anJ Beyer [10] ).

Recently, Bennett [131 has confirmed the results of Ref. 10 by excit-
ing two elements of a "squirter" transducer at 18.6 kHz and 23.6 Hz. Each
of these primary beams has a directivity tialf width of about 160. Both the
sum and difference f'requencies were detected after various false signals re-
suiting from intermodulation distortions in the receiving system had been 4•
eliminated. All the Bennett measurements were made in the near field. Re-

i - -'-

+-- Tuu u.: ,,..
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suits of the measurements are shown in Fig. 10-14. The solid curves in each

case were obtained by numerical integration of the equivalent of Eq. (10.13),
where the directivity patterns are those of ideal pistons operating at the two
primary frequencies.

0I
.30 '30

.,30 e

-4. . IXPE RIMENTAL DATA

(o) SUM FREQUENCY (47.2 k%)0

tO* ~-30 ,O

NUMERICAL INTEGRATION

.........................................-. PRODUCT OF 0011MARY PATTERNS

. EX £PEUIMENTIAL DATA

(b) OIFFERENCE FREQUENCY (SkHs)

Figure 10-14.-Measured and oomputed boom pitterns for parametric area in air. (a) sum
frequency (47.2 kHz); (b) difference frequency (5 kHz) (from M. B. Bennett [ 131).

i,



354 APPLICATIONS OF NONLINEAR INTERACTIONS SEC 10.3

10.3 Far-field Receiving

Westervelt's parametric acoustic array [1 ] can also serve as a receiving
array, in which an incoming wave interacts rnonlinearly with a local sound
source and the scattered sum-or-difference frequency is detected. Such sys-
tems have now been examined by a number of authors. [14-16]

The arrangement used in Ref. 16 involved the geometry shown in Fig.
10-15. The first order field consisted of a spherical wave source of angular
frequency w, and a plane wave source of a lower frequency "'2(w1 > w'2).
The spherical wave emanated from a baffled circular piston and both sources
were assumed to have harmonic time dependences.

n /PLANE WAVEFRONT

(AT r -"0)

- PLANE WAVEFRONT
(A (AT r)

.. Br- .AFIFLED

PUMP
"/ " 'I/ "'. •'RECEIVER•

•' / '//(R, 0, 0

" '•$PHE RICAL

" " WAVEFRONT
(AT r)

Figure 10-15.-Orientation of the plane and spherical wave primaries in the
spherical coordinate system (R,g4,) (from Barnard et aL, 1161).

Other assumptions were:
!) linear-field effects of the pump are disregarded;
2) while absorption of the spherical wave is taken into account, the

absorption in the plane wave is neglected;
3) the amplitudes of the primary waves are such that losses in the pri-

mary beams due to finite amplitude effects can be neglected.
Barnard and his coworkers began their analysis with the Westervelt

equation for the scattered wave

-P04___ _ • f a exp [i(ks + iAs)]ps(Ro ,) - 29 % ,tv(O o
If-t IR-r I R-rIdV (.
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where q is the source strength and the subscript s refers to quantities in the
scattered wave. The factor exp (--aIR0 - ri) did not appear in the original
Westervelt formulation but was added to taKe into approximate account the

absorption of the secondary radiation.As before, q ( j8/p2c02(apY/art) where Pf is the first order sound field

and 0 the nonlinearity parameter.
In the specific case studied in Ref. 16, the pressure pf is given by

ro 2Jj(ka sin
P1  e cos(wt-_ k1r)

+ P2 Cos (w 2 t - k2z). (10.31)

Insertion of (10.31) into (10.30) and integration over V/ yields

_6 ?o 2PIP 2rofj°o oeffPS 4" 20 ak J(kI a sin )

2poc0 4ak1  o 0

X Jo(k 2r sin 0 cos -y) exp [i(kI -k2 sin y cos 0 + ia1 )r]

exp [i(ks + ia5 )r]
X r do dr, (10.32)

#r

where w. -. t w 2 and the upper limit on the ¢ integration, Oeff, is the
angle from the axis of the acoustic beam to the first zero of the pump far-
field radiation pattern.

Equation (10.32) has been solved numerically and the results tested
against experiment for the sum-frequency. The results are shown in Fig.
10-16, with good agreement between theory and experiment. I
10.4 Near-field Receiving.

The problem of nonlinear parametric reception in the near field of the
pump signal has been treated theoretically by Rogers, Williams, and Barber
in the case of the difference frequency. [ 171

The geometry of the system is shown in Fig. 10-17. The circular piston
(pump) of radius a is driven at the frequency w, = kjc; kla> 100. The ve-

locity potential op(x,y,z) describes the field of this piston. A plane wave of
frequency w 2 = k 2c is incident as shown. The authors assume k2a > I and
seek the second order veiocity potential 0 2(x,y,z). The perturbation method

I.V

,;.-
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Figure 10-16.-Sum frequency patterns for a pump-receiver separation of 48 ft. Theo-
retical values - ., experimental values - , F, = 90 kHz, P1 = 101 dB re I pbar at
I yd, P2 = 85 dB re I pbar at input to parametric receiving array,f 2 = 1.0, 2.8, 5 and 10
kHz (from Bamard et al. (16]).
of analysis used is similar to that used by Ingenito and Williams [181 and de-
scribed in Section 3.i 3. In complex notation the differential equation under ]
study takes the form

(2 t ks2)> 2 (XYz) = _.(kjk2 ks)Pp(xyz)e'½ R (10.33)

where R denotes the field position, k. = k, - k2.
By the use of the Green's function

G e. cos [n(O- 02)1 J LJn(kro)eiLAsIzZOQdQ41ks 
(.k

n=0 0 (10.34)

- -- --
4 , I,,
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RIGID
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CIRCULAR 2a
PISTON z
V

T-
INCIDENT PLANE WAVE

Figure 10.17.-Geometry for near-field teceiving systen.

where Wa2 = Q2- k2, and a number of approximations, Rogers et al. were

able to obtain an expression for the difference-frequency component of the
particle velocity in the z direction

u2z(r,z, [(k.2k2)P*] rpd(r,z)F(k2 ,z,4i) (10.35)

where

F(k,, 4) ep(ik~zsn . sin (k~zsin2 .ý. (c 2 sin2 .

OPd(r,z) is the piston velocity potential calculated at the difference frequency.
The quantity F(k 2 ,z,4.) is the response function of the end-fire array of
length z to a plane wave of wave number k 2 , directed at the angle ' to the
array axis.

Thus, the directional characteristic is governed entirely by the response
function. This function is plotted in Fig. 10-18 for three different distances
from the source.

INI
_1 _J.L
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340* to 20*

320' 400

300°, 1 aJ

280 80

240" 220' 200' 180 •)0 140' 20"

Figure 10-18.-Response curve ; F(k,,z,ý,) vs;w _ k2a 'Z: 1, k a =100 and z

k 2a
2/k, which corresponds to a value for k 2z 31.83 ...... : k 2zie 63.66, 100. :

k 2z = 15.915 (from Rogers et al. [I17).

10.5 Other Applications of the Parametric Array.

It was noted in the paper of Walsh [81 that the parametric array sonar
was especially useful in shallow water, subbottom investigations. Two specific
variations of this facet of the parametric array have been discussed by Muir,
Adair et al.

In the first of these, [191 an array was designed to search for objects
buried in the sea bottom, such as materials from sunken ships. Two beams
in the neighborhood of 200 kHz, with a 20-kHz difference frequency were
obtained from a transducer consisting of eight hollow ceramic cylinders,
driven in the thickness mode, four at 210 kHz and four at 190 kHz. The
difference frequency directivity pattern is shown in Fig. 10-19.

As a test, a scan was made of the ocean bottom in the absence and in
the presence of a 5-in diameter aluminum sphere buried to a depth of six
inches in sand. The signal strength of the difference frequency is plotted as a
function of the grazing angle in Fig. 10-20. In this particular case, the ball
could not be detected by use of carrier beam alone.

------------------------------------

I%
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Figure 10-19.-Beam pattern for subbottom investiptions (from Muir and Adair [191).

In the second experiment, the parametric array system is compared

with other conventional techniques of ultrasonography. To quote the author,

it was found that, "for the range of parameters required in medical diag-

nostics, the nonlinear parametric array does not usually provide as good an

angular resolution as does the strong focussing of large, linear arrays. The

parametric array, does however, provide for a large depth of field and as re-

gards angular resolution, it is competitive and in many cases superior to un-

focussed transducers commonly used in diagnosis employing contact scan-

ning." 1201 Clearly these applications are only in exploratory stages.

10.6 Arrays of Parametric Arrays.

Berktay and coworkers 121] have considered the advantages of ex-

tending the parametric receiver to a two dimensional array of simple (single-

element) parametric arrays. In the case of a single-element array, the pressure

L '" N
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Figure 10-20.-Signal strength of difference frequency in subbottom scanning with S-in.
diameter aluminum sphere buried in sand and in the absence of the sphere (from Muir
and Adair [191 ). I
amplitude at the sum and difference frequency at a distance L from the
pump transducer along its axis can be written in the form

4WI t W2)OPIP2
p+ (LO) = exp [-(ci+ + ik+)L + iMl D(o)

2p 0 c0  (10.36)

where

sin MW
D(O) = M

M = k 2 L sin 2 0.
2

U . -._.-.- '-
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The half power point for such a beam is given by the relation

0Hp = 4 sin~1  0.470) - 1.88 ,

so that the beam width is inversely proportional to the square root of the
parameter array length L, whereas the broadside array of primary sources has
a beam width proportional to I IL.

Now let us consider the array of parameter receivers shown in Fig.
10-21. Each element has the directivityD(O) given by Eq. (10.36). If DB (O)
is the directivity of an array of elements with the same geometry, but acting

S! 0-n
I 0

WL

2 nd

k2 nd sin 8

F:igure 10-2 I.-An array of parametric receivers (from Berktay and Muir 1211).

I " . \1 •
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as omnidirectional receivers, then the combined directivity func•,on DT(O)
will be [231

D7 (O) = D(O)DB(O). (10.37)

Berktay and Muir first studied an array of two independent parallel
parametric receivers placed a distance d apart. The total directivity then
becomes

k2d sin 0 sin M
DT(O) =cos 2 (10.38)

Thus the beam is further narrowed by the intr- *-ction of the second element.
Figure 10-22 shows the beam pattern in th - , first for a single element
[Fig. 10-22a and Eq. (10.36)] and for the two-element case (Fig. 10-22b and
Eq. (10.38)].

Arrays of more than two elements can be treated similarly. It is clear
that the parametric array can be manipulated according to the many tech-
niques of sonar arrays of conventional elements, with corresponding im-
provement of operation.

10.7 A Standing Wave Parametric Source (SWAPS).

Rogers and Van Buren (241 have developcd a mathematic model of a
standing wave parametric source (SWAPS) that is designed to improve the
efficiency.

The proposed SW\iAPS apparatus consists of a piston transducer at one
end of a liquid filled cylinder. The far ena of the cylinder is terminated by a
pressure release wall. The piston is driven at two neighboring resonance
frequencies that lie within the bandwidth of a single resonance. In either
case, (lie difference frequency w will be much less than either primary fre- LIquency cJ, , 2-!

The walls of the cylinder arc sufficiently rigid for all predominantly
plane waves to propagate, but they and the end terminations are to be thin
enough to he nearly transparent at the difference frequency.

The role of the pressure release surface is to discourage harmonic gen-
eralion of the primaries. These will. of course, be generated in the forward
propagation of the primary beam. Reflection from the pressure-release sur-
face will produce a reverse sawtooth, so that the harmonic generation in the
trip back to the transducer will tend to restore the original sinusoidal wave
form.

--
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I)

--- THEORY

** • EXPERIMENT (b)

Figure IO-22.-Boam patterns for parametric aeas (a) ingl boom pattern; (b) difference
pattern fot two.element can (from Bhrktay and Muk 1211 ).
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The mathematic analysis follows substantially along the lines developed
earlier in this chapter, and will not be reproduced here. We shall content our-
selves here with giving the principal results. The pressure at the difference
frequencies is given in spherical coordinates by

p (R,O) = SF(O)exp [i(wt - k R - 20 0 )] (10.39)

where S is the sound level, F(O) the far-field pressure distribution and €0
the plane shift introduced by reflection. We now look at the results for the
two special cases:

I ) w I, w2 neighboring resonance frequencies:

S(•,\/2) = 7Tgo P o02Q2k a2

- T6I( 
0.0

J, (k a sin 0) cos 0 cos iCos
22

IF(0)l = I kai0l
k- si 0• sin2 0

Here P0 is the amplitude of the initial signal, ) the nonlinear parameter, Q is a
quality factor covering the reflection coefficients of the terminating material
and the losses in propagation due to finite-amplitude distortion.

Trie factor S\12 is very close to unity, while F(O) is very nearly omni-

directional except close to the 90'-270' axis.

The total power radiated by this system is obtained by numerical inte-
gration of IF(0)12 with the result

h1.64 e r2 l (10.41)Wx/2 = 2poC° ,\2

2) I 2 both within bandwidth of a single resonance:

In this case.

S op 2 Q2 k 8  (10.42)

where C, the effective length of SWAPS, - (2m + I/4);k, m an integer;

- 2poc0 (10.43) (
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The output of SWAPS can be compared with the output of the travel-
ing wave parametric source of Westervelt (TWAPS). For the case (2), with
the SWAPS system filled with sea water,

ST Q2ilk (10.44)

where the subscript T refers to TWAPS, a' is the absorption coefficient of sea
water and

=- 2Q 4 &,Q 1- " (10.45)WT IT ýaT

Here Q is as yet undetermined, but it would appear that the system is a

more efficient radiator of the difference frequency, principally because near-
resonance conditions can be maintained in the tube and competing nonlinear
interactions are iithibited through the use of the pressure-release reflection.

In addition, the operating liquid in SWAPS can he chosen with different
parameters of nonlinearity and absorption coefficient so as to increase the
output of the system.

There is, however, a possible problem that by constraining the inter-
action to a relatively narrow tube, one has interfered with the phase relations
of individual portions of the signal-both primary and scattered-so that the
gain may be considerably lessened.

10.8 Nonlinear Interactions in Intense Noise.

The preceding portions of this chapter offer substantial evidence of the
powerful role of the source function [Eq. (9.29)] developed by Westervelt in
nonlinear interactions and we have indeed reviewed a number of interactions

of pairs of sinusoidal waves, as well as the effect of a pulse of finite ampli-
tude [Eq. (9.54)].

These analyses suggest a further extension, to the case of more than two
incident frequencies, or to the case of a nondeterministic amplitude varia-
tion, sch as finite amplitude noise.

Such an extension has not yet been made, but a recent study by Pes-
torius and Biackstock 1251 of finite amplitude noise propagation in tubes
views this same problem from the weak-shock point of view. While the sub-
ject mat:er is close to that of Section 3.14, it seemed more appropriate to in-
sert it at this later point in the text, after interactions had been more fully
discussed.

I.-
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The weak shock theory developed in Chapter 3 indicates the progressive
distortion of a sinusoid (see especially Fig. 3-10). From Eq. (3.28) we have,
for u - c0 , the rate of propagation dx/dt of a given displacement velocity

dx
c= + O3u. (10.46)

At the discontinuity of a shock wave, this form becomes

ddt I l Pc c~(ua+u)2 ' (10.47)

where ua and Ub are the values of u just ahead of and just behind the shock.
It is convenient to rewrite and approximate Eq. (10.46) in the form

dt _ I , I(I . 0 ) (10.48)
dX C0 + u- Co 70 ,

Pestorius and Blackstock began with this relation and then proceeded
to write Eq. (10.46) in the form of a difference relation, solving the latter by
use of a computer. The method is reminiscent of the analysis of a finite-
amplitude sine wave by Fox and Wallace. [261 That is, they considered the
propagation of the wave through a small distance x. Then the difference in
time corresponding to (10.48) is

x
tnew = t old - OUold 2 (10.49)

Co1

The new wave form is then tested for multivaluedness. If it is still single-
valued, the process is repeated. If it becomes multivalued, Eq. (10.47) is
used; the shock is located and particle velocities are corrected.

These shocks can overtake other portions of a complex waveform, and
as the authors point out: "Through the progression of growing, decaying and
merging, the shocks ultimately determine the shape and amplitude of the
wave." [271

The experimental problem to which Pestorius and Blackstock addressed
themselves involved propagation in a tube, and required the introduction of a
computational procedure to take into account both the attenuation and dis-
persion that are characteristic of tube propagation.

The algorithms developed made it possible for them to predict the be.
havior of both single pulses and noise in propagation in an air-fifled aluminum , a

tube of 96-ft. length, 2-in. i.d.
I

I,.
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To test the apparatus, a sinusoidal source of 2-kHz sound with an initial
sound pressure level (SPL) of 160 dB re 0.0002 jubar was employed. Figure
10-23 shows the received pulse shape (both experimental and computed) for
distances of 1, 13 and 85 feet from the source. The solid curves were com-
puted by the algorithm mentioned, taking tube effects into account, while the
dashed curves are the corresponding results with the omission of wall ef-
fects. The most conspicuous feature of these curves is the round off of the
positive peak, which is the result of wall-induced dispersion.

The case of intense noise was considered both theoretically and experi-
mentally. The results are shown in Fig. 10-24 for noise with an SPL of 160
dB in the frequency range 500-3520 Hz at a distance of 85 feet from the
source. Figure 10-24 (a) is the experimental pulse, (b), that computed from
weak shock theory and (c), that computed from weak shock theory taking
wall effects into account.

Figure 10-25 shows the experimental and computed (with wall effects)
values at various distances from the source.

Two conclusions can be drawn from these data. First, roundedness of
the positive peaks is indeed characteristic of tube propagation for noise as
well as single pulses. Second, the number of axis crossings decreases with
propagation and the overall wave form becomes more regular as portions of
the wave are overtaken and "eaten up" by the stronger shocks. Thus the fre-
quency distribution of the noise is significantly altered because of the non-
linear effects, with the upper and lower ends of the spectrum gaining at the

expense of the middle. The similarity of this behavior with that of the ab-
sorption of sound by sound (Section 9.6) should also be noted.

•, • • "••".. . - , , , ,'::• , -- -- ,., - or - • ,4, -• _ q '=- .• -'l" .• ..- , -..- •'. . . .• , '-,,= ... . .
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EXPERIMENTAL COMPUTED

-U
SOURCE SPL X A I ft t

159 dB VA

-
X a 13 ft
VA 1

I

U'

X. 85 ft
VA a 4

Figure 10-23.-Wave distortion in on aisk-tled aluminum tube of 2-hL diamntet
(from Pestodus and Slackstock (271).
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I
a.

+15 DISTANCE •85.00

.10

.5-

I..

10'L 5' 1' i 1 1
TIME - msec

+15- DISTANCE $ 85.00

.5,

TIME - msec

.0 *15 DISTANCE' 8 5.00
E

TIME - 15e

Figure 10-24.-Behavior of noise burst in propagation along 85 feet of a 2-in. diam-
eter aluminum tube. (I) Experimental signal; (b) signal computed from weak shock
theory: (c) weak shock theory plus wall effects (from Pestorius and Blackstock [271).
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Chapter 11

NONLINEAR PROPAGATION IN SOLIDS

11.1 General Aspects.

Problems in solid state acoustics are not only classified separately, his-
torically, from other branches of acoustics but are generally performed by a
different group of researchers, who are interested in the sound wave only as a
tool in the study of the properties of matter. This is not wholly the case in
nonlinear acoustics, but it still seems appropriate to treat all nonlinear aspects
of acoustics in solids as a separate chapter.

The difficulty for the acoustician is one of selection. The concept of
the phonon was generated by the Soviet school of theoretical physicists in the
early thirties [1 and applied to the analysis of thermal vibrations, or lattice
vibrations of the solid. If the totality of thermal vibrations of the lattice is
considered as a sea of phonons, then such a classical problem as that of elec-
trical conduction can be solved in terms of "collisions" of the electrons with
the lattice, or alternatively, of electron-phonon interaction.

By proceeding in this fashion, one is led to the consideration of thermal
conduction in the same manner. But this requires internal adjustment of the
phonon population-i.e., of the interaction of different groups of phonons
with one another.

Finally then, the passage of a sound beam through a lattice is a special
case where the rhythmically advancing phonons (coherent phonons) undergo
collisions with the lattice phonons, producing a new set of phonons, this time
incoherent in nature.

Both thermal conduction and sound dissipation are therefore cases of
phonon-phonon interaction. But such interactions have been treated at length
in Chapter 9 a3 instances of nonlinear acoustics, In this sense, then, virtually
all of solid state acoustics could be included under the label "nonlinear".

It is, however, not our intention to repeat the extensive surveys of this
field given elsewhere. 121 A very brief background survey will suffice. [2a]

We begin with the concept of the phonon. In complete analogy with
the photon description of electromagnetic waves, elastic waves can be repre-
sented by quasi-particles called phonons. A phonon has energy Phw and acts
as if it has momentum hq (often called the quasimoinentum). The increase or
decrease of the energy of an elastic wave corresponds to the creation or an-
nilation of phonons.
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The quasiparticle that is the phonon has some characteristics that differ
from that of a true particle. Thus, suppose a phonon (in a crystalline solid)
with wavevector q combines with any system of wavevector k, a phonon with
wavevector q' resulting. Conservation of momentum requires that

q + k = q' G (11.1)

for that process, where A'G represents the momentum imparted to the crystal
as a whole. If q' lies outside the first Brillouin zone (see below), then q' + G
is the wavevector inside the first Brillouin zone that describes the same physi-
cal motion as q'. If k is the wavevector of a phonon, so that three phonons
are involved in Eq. (11 .1) then g may be equal to zero (called a normal or
N-process) or differ from zero (an Umklapp or U-process).

11.2 Lattice Vibrations in Crystals. The Debye Approximation.

According to the modern theory of solids, the motions of the atoms of
a solid can be described as elastic waves propagated under the action of the
nearly elastic interatomic forces. In the classical theory, the medium is treated
as an elastic continuum. Both the continuous and elastic properties of such a
medium are approximations that need further consideration. The effects of a
discrete crystal structure of the propagation of elastic waves are most easily
seen from a consideration of the simplest case-a linear chain of identical
atoms. The relation between the frequency and the wave number q for this

case can be shown to be

W (-312 sin (11.2)

where a is the spacing between atoms, each with mass M, and 0 is the inter-
atomic force constant. The corresponding dispersion curve is shown in Fig.
11-1. When the wavelength is much longer than the atomic spacing a, the

Fisue I 1-1 .- Dispersion curve for a monatomic linear attice.
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chain can be treated as a continuum and w = c0 q. The phase velocity co is
then the same as the group velocity aw/aq, and is independent of frequency-
there is no dispersion. As the wavelength becomes shorter, the discrete nature
of the lattice produces dispersion. In fact, when X = 2a, the wave is no longer
a progressive wave, but is a standing wave. The adjacent particles are then
1800 out of phase; the group velocity has vanished and no energy is
transported.

Since only the motion of the atoms has physical significance, all waves
of length shorter than 2a describe exactly the same physical motions that can

be represented by other waves with wavelength greater than 2a (Fig. 11-2).
All unique physical motions are then represented by waves with wavenumbers
between q = -iT/a and q = iT/a. This region is called the first Brillouin zone.
If there are N atoms in the chain, then there are N discrete vibrational states
located in the first Brillouin zone.

i.3 ), -]

' ~1

I I -I Avllrrri ii
li i

Figue I .2.-Two different wavelengths that could represent the same physicalI

motion of a lineir chain (from Beyer and Letchet 2a] ).

In a real, thiee-dimensional crystal, the waves can propagate in all di-
rections, and for each direction there are three polarizations Each propaga-
tion direction and polarization will have its own dispersion curve.

Thus, for any direction of propagation in a solid, three different modes
with mutually orthogonal displacements are possible. However, the anisot-
ropy of crystalline solids strongly affects the elastic waves. For an arbitrary
propagation direction, the three modes will not be pure longitudinal or pure

K -
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SEC 11.2 NONLINEAR ACOUSTICS 375 j
transverse waves, and the energy flux will generally not be exactly in the di-
rection of wave propagation.

The fundamental relations for strains in a solid is given by the strain
tensor Uik, whose components are (recall Eq. 1).

___i ___ atq ___

- :2 Tx, a + x (7 L.3)

If one deals with small deformations only (the linear case), the third term
can be neglected. In such a case, Hooke's law of elasticity applies; this can
be written in tensor form

Ti ': ciikQukQ (11.4)

where Cijký is the fourth rank elastic modulus tensor.

When the direction of propagation is a pure mode direction, one longi-
tudinal and two transverse polarizations exist. The particle displacement is
either parallel or perpendicular to the propagation direction. In other,
nonpure-mode directions, the branch with the greatest phase velocity is
usually identified as the longitudinal branch.

Debye Approximation.

In order to calculate in detail the thermal properties of a particular
crystal lattice and the resultant effect of the thermal lattice vibrations of an
ultrasonic wave, one would need to know not only the dispersion curve for all
directions of propagation and polarization, but also the density of vibra-
tional states as a function of frequency. This would be a formidable task. but
one which can be avoided by using the simple but remarkably successful
Debye approximation.

The Debye approximation treats the solid as a continuum. As a result,
the two transverse modes become identical and the speeds of propagation are
independent of frequency. Although a true continuum has an unlimited num-
ber of normal modes of vibration (there being no restriction of the wave-
length) the Debye approximation limits the number of normal modes to the
number of degrees of freedom of the actual solid. If the crystal contains
N/3 atoms per unit volume, each with three degrees of freedom, the number
of normal modes will be limited to N. If D(w)dw is the number of modes
per unit volume with frequency between o and w + dw, then the cutoff fre-
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quency, wD, which is characteristic of the Debye approximation, is defined
by the relation

0 D(c) dw= N. (11.5)

Joi
The density of states D(w) for a solid continuum can be shown [31 to be

.ii

D( 22) = -+ (11.

where clong and ctr are the phase velocities for longitudinal and transverse
waves, respectively. This is shown in Fig. 11-3. Then, from Eq. (11.5), we
have

[D 6 2N 1 3 (11.7)

c I

S•°•ebye W Laoffice

FiPue 1 l-3.-Density of phonon states by the Debye approximation

and by a more exact lattice theory (from Levy [31 ).

The Debye temperature eD is defined by "
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where kB is the Boltzmann constant. For an anisotropic crystal, suitable
averaging of clong and ct, over possible directions is needed to obtain a repre-
sentative OD. If an effective sound velocity co is used, Eq. (11.8) becomes

E) LC (21r2N)11/3

kB 
(11.9)

where

3 1 2

C0  Clong ct3

The number of thermally excited phonons in the Debye approximation
is given by

n-foD D(w)n(w)dw, (11.11)

*ll/kBT -where n(wo) = (e T- )1 , which is known as the Bose-Einstein distri-
bution function, is the probability that a phonon is in a state with frequency
w. Then

f o" D 12

-kT
3  fD X dx _(1 1.12)

2ir23c0 3 ex 1

where xD = hwD/kB1T eODIT. In the region T4 (1 1.12) becomes

n = 3N dx. (11.13)
SJo e -lI

In a similar manner, the total thermal energy in the Debye approximation is
given by

fo D
U -d (11.14)
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which becomes

U = 3NkBT D 3dx, (1 3.1 5)
9D 0 ex

11.3 Nonlinear Lattice Waves.

In an ideally elastic medium, propagating waves are represented by
functions that are solutions of the linear wave equation and therefore obey
the principle of superposition. Even a very small amplitude wave in a real
solid however, will only approximate this linear behavior. Fundamental non-
linearities, as in the definition of strain [Eq. (i 1.3)] are assumed to be negli-
gible in order to derive the linear wave equation. It is a common occurrence
that elastic waves do, in fact, interact with one another. Quantum me-
chanically, one can speak of phonon-phonon interactions. Such familiar phe-
nomena as lattice thermal resistivity, thermal expansion and the maintenance
of an equilibrium distribution of thermal phonons are possible only if the lat-
tice waves behave in a nonlinear way.

A. Grilneisen Constant. A particular lattice vibration mode can be
characterized by its wave vector q, and its polarization p. The anharmonicity
of the lattice can be expressed by the change of sound velocity (or elastic
constants) as a function of the strain or, equivalently, by the change in the
frequency w = w(q,p) of the mode q,p with changing strain. This latter
change is defined in terms of the Griineisen number for the effect of a strain
Eik on the frequency of mode q,p. This number, "Yik(q,p)is defined to be

! ak~q~p)"ii=qP - I a(t,)(1 1.16)
wo(q,p) &¢;/k

where the strains are defined as

Elk = = - if -= k

(11.17)
S a~ _ a,

2U/k -= x+ ** if j•k,

and where wo(q,p) is the mode frequency for zero strain.
If the strain involved is a pure dilation, Eq. (11.16) becomes

V w(q,p) d In w(q,p)

( oo(q,p) 3V = dinV (V1.18)
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If the further, rather unrealistic, assumption is made that all modes have the
same -y, and if we use the Debye approximation, Eq. (11 .18) becomes

d In w d In 9 D

"dln V dinV (11.19)

The quantity -y in Eq. (11.19) is the Gr'ineisen constant, a single parameter
that describes the anharmonic properties of a crystal in much the same way
that the Debye temperature describes the elastic properties. The Griineisen
constant can be written in terms of various thermodynamic parameters:

3" Tr~v cv (11.20)

where 0 is the linear thermal expansion coefficient, KT the isothermal com-
pressibility, B the bulk modulus and Cv/the heat capacity per unit volume at
constant volume.

In the real case. -y is of course a more complicated quantity. For many
purposes, however, one can define [41 an average GrUneisen constant from
(1 i.16):

________(q__p)____q____) (11.21)

S 2;C(q, p)

This satisfies Eq. (11.20) with the heat capacity of the mode (q,p) serving as
the weighting factor.

B. Finite Deformation of Solids. We have already noted the form of
Hooke's law IEq. (I 1.4)1 . In the same notation, the elastic potential energy
is given by

V C (11.22)

The CiikQ are commonly called the second-order elastic constants, for the
reason that they appear in an expression that is second order in the strains.
Nevertheless, they represent linear elastic phenomena.

Expressions such as (11 .4) and (11.22) can be modified to describe

nonlinear effects by letting ciJkQ (and, theretore, the speed of sound) be de-
pendent on the strain. Then the stress will no longer be directly proportional
to the strain, and the potential energy will no longer he merely quadratic in
the strain. A convenient form for the generalization is in terms of higher or-
der elastic constants.

-' - -" • t I •••

-•-- - - - - -- - - - - - - - - - - - - - - - - - - - - - -



380 NONUNEAR PROPAGATION IN SOLIDS SEC 11.3

A point at position vector a in the unstrained solid is moved to point x
by a finite strain. This displacement of the particle is [ x - a or, for each
component, tj =xi - a,. The strain, which is given by Eq. (11.3), can also be
written

S- ax2 ax2  (11.23)
2 ý3a~ja aa.-

where ki is the Kronecker delta.

The ratio of a volume element in the new coordinate system (x)to the
volume element in the unstrained system (a) is the Jacobian determinant.
Hence the ratio of the unstrained density to the density in the strained state
is given by

PO txý a(xl,X2, x3)
O det = . (11.24)

P Iai] 1 (a1/,a2,a3)

The equation of motion of the system, if we ignore body forces, is

a Tf
-~ aT,,i (11.25)"

axI

A change in the internal energy of a solid is given by the thermodynamic
relation

dU = TdS + - ti,,l~i/ (11.26)POl

where T is the temperature, S the entropy per u- a mass, and tj the thermo-
dynamic tension, given by

tr = P0 • (11.27)

Then quantity tti is related to the stress T#1 by

P axi axi
Tii aam tkm" (11.28)

P" aa a" tl
mI
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11.4 Third Order Elastic Constants.

We are now in a position to generalize the relation between the internal
energy of a system and the strains eq. We expand the internal energy U(S,t)
about the point of zero strain e = 0 in the isentropic case:

PoU(S't) - poU(S'°) = T! cijkQeekQJ

1+ 3 .cik~mneiiEk~emn + (11.29)

where the nth order (n ; 2) isentropic elastic constants are defined by

cs e ao (11.30)CiikR... i a •..s

In cases where Hooke's law is valid, only the first term on the right hand side

of Eq. (11.29) differs from zero, and the left hand side becomes the elastic

potential energy.

Because of inherent symmetries in crystal systems, it is possible to
simplify the subscripts on the elastic constants. In this reduction of the
multiplicity of the first four subscripts on the c r..S , we ccndense them

iltikmin...unambiguously according to the following scheme:

1 - 1 23--4

22 - 2 13 - 5 (11.31)

33 -3 12 - 6

(In the case of an elastic crystal, this reflects the fact that the most general
crystalline form has 21 elastic constants rather than 81). Then, for example,
we have

1  C 1  a3U

(11.32)
Cs _- ___3U

1!12323 C144 =PO Ull U2

- 1..- 23
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The term "third-order elastic constant" is rather self-contradictory,
since the original connotation of an elastic body was that it obeyed Hooke's

law, i.e., that all the higher order constants ck vanished. However,
here, as is often the case in physics, the concept has been generalized along
with the equation.

A cubic crystal has three independent second-order elastic constants.
In the reduced notat:on, they are c1 1, c1 2, c4 4 . For the third-order con-
stants, symmetr,', rules again restrict the number, this time to six, as follows

CI = C 2 2 2  C 3 3 3

C11 4 = C2 5 5 = C 3 6 6

C1 1 2 = C2 2 3  C1 3 3 = C1 2 2 = C 2 3 3 = C1 1 3

(11.33)
C1 5 5 = C2 4 4 = C 3 4 4 = C1 6 6 = C 2 6 6 = C 3 5 5

C 1 23

C4 5 6

all others being zero.
For an isotropic medium, the third-order constants have the same

representation as a cubic crystal, with the additional relationships

C1 1 2 = C12 3 + 2CI44

C15 5 = C 14 4 + 2C 4 5 6  (11.34)

C1 11 = C1 2 3 + 2C!44 + 8C 4 5 6 .

Thus, an isotropic medium, which has two independent second-order con-
stants [c1,1 and c4 4 = (I 12)(c1 I - c 1 2), has three independent third-order
constants.

By means of this scheme, the elastic energy Eq. (11.30) for an isotropic

solid is found to be

PoU(S,Z) - poU(S,1)cI2Cif~jj + C44ceijck + "-C12 3EJkk

+ C 14 4 Eje/~Efkik + "±C456fikfi/1ki

+ higher order terms. (11.35)
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The corresponding expressions for anisotropic crystals are considerably more
complicated.

11.5 Ultrasonic Determination of Third Order Elastic Constants.

Third-order elastic constants of crystals can be found by measuring the
change in the sound velocity caused by the application of hydrostatic pres-
sure or uniaxial stress. 15] The appropriate relationships for cubic crystals
are given in Table 11 .1. These give 17 different relationships directions when
the solid is undergoing either hydrostatic pressure or uniaxial compression
along the [0011 or [110] directions. Fourteen of these velocities (6-8 ex-
cepted) can be measured with a single sample cut with 10011 and (1101 faces
exposed (Fig. 11-4). This aDlows several independent checks on the values
of the elastic constants. Usually the hydrostatic pressure results are given
extra weight because of the relative confidence in the uniformity of the
stress.

Figure 1 l-4.-Crystalline directions for a cubic crystaL

A system for applying uniaxial stress is shown in Fig. 11-5. A steel ball
bearing is inserted to make the stress as uniform as possible. It is also helpful
to reduce shear stresses at the specimen-piston interfaces by matching their
mechanical properties.

Certain crystals, particularly metals, will not sustain a large stress with-
out permanent deformation, because of dislocation motion. In this case, the
third order elastic constants can be found by methods that are similar to
those used for nonlinear effects in liquids (see Section 11.5). Breazeale and
Ford 161 have shown that the third-order elastic constants of cubic crystals

S.i - 4
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Figure 11 -5.-Arrangement for uniaxial stres experiments
(from McSkimin and Andreatch 1Sa]).

can also be obtained by measuring the discontinuity distance of finite ampli-
tude longitudinal waves. Some measured third order elastic constants are
shown in Table 11 -2.

One can single out two major causes of nonlinear behavior in a crystal-
the anharmonicity due to a departure of the medium from the simple linear t 11
behavior of Hooke's law and the phenomenon of dislocation displacements.
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Table 11.2
Measured third-order elastic constants of some cubic crystals

at room temperaturea
(from Ref. 2a)

Crystal C 11  C 1 1 2  C 1 2 3  C144 C 66 C456

Ge -7.10 -3.89 -0.18 -0.23 -2.92 -0.53
Si -8.25 -4.51 -0.64 +0.12 -3.10 -0.64
GaAs -6.22 -3.87 -0.57 +0.02 -2.69 -0.39
GaAs -6.72 -4.02 -0.04 -0.70 -3.20 -0.69
InSb -3.14 -2.10 -0.48 +0.09 -1.18 +0.002
Cu -15.0 -8.5 -2.5 -1.35 -6.45 -0.16
Cu -12.71 -8.14 -0.50 -0.03 -7.80 -0.95
Ge -7.32 -2.90 -2.2 -0.08 -3.03 -0.41
Ge -7.16 -4.03 -0.18 -0.53 -3.15 -0.47
MgO -48 9 -0.95 -0.69 +1.13 --6.6 +1.47
NaCI -8.3
KCI -7.1
NaCI -8.80 -0.57 0.284 0.257 -0.611 0.271
KCI -7.01 -0.224 0.133 0.127 --0.245 0.118
Bal: 2  -5.84 -2.99 -2.06 -1.21 -0.889 0.271

Approx.
Accuracy t57- +-j% 0r ±0W -50 ±3Y -15,%

L aAl eidsti, - .:on!tant.% X 1012 d)nj,:1n2

The first of these leads primarily to a small shift in the sound propaga-
tion velocity. The accurate measurement of this velocity therefore provides
for the measurement of the third-order elastic constants.

The effect of dislocation displacements is associated with the p defects
present in any crystal. A dislocation is a linear imperfection in a crystal, such
as the edge dislocation pictured in Fig. 11-6. Such dislocations can move
easily under stress within a crystal, thus facilitating the propagation of the
lattice vibrations that are sound waves. The motion of the dislocations is hin-
dered by the presence of point defects and by other dislocations. Internal
stresses surrounding dislocations and point defects are both relieved by their
interaction, so that they tend to attract one another, causing the disloca-
tion,, to be pinned at certain points.

In passing through a real crystal, a sound wave will be attenuated by
interaction with the dislocations. The theory for such dislocations damping
is based on the concept of the motion of dislocations between the two pin-
ning points as analogous to the motion of a vibrating string, equal in length to
the distance between pinning points. The small amplitude oscillations of such
dislocation loops leads to an attenuation that has been well confirmed by ex-
periment. (71 This corresponds to the first three portions of Fig. 11-7.

I .
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IA

I..

Figure 1 1-6.-Structuwe of an edge dislocation. The imperfection can be t&
garded as the insertion of an extra half plane of atoms in the top half of the
crystal (from Kittel 131).

WW stress field NO Stress f id

F.

(a) (b) (c) (d) W (1) (0)

laersing strns ------

Figure 11-7.-Bowing out of a pinned diloc..tlon line by an increaslng applied stres. The

loop length, determined by the impurity pinning is t and the network length LN.. At (d)

the stress is large enough to cause the dislocation to break away from the impurity
pinning sites (from Granato and LUcke (71).

As the amplitude of the oscillation becomes larger, however, the dis-

location loop will break away from many of the pinning points, producing the
bowing out shown in the latter stages of the drawing.
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In these latter instances, the bowing out becomes nonlinear. An ultra-
sonic wave propagating through a crystal containing movable dislocations will
therefore become distorted and harmonics of the fundamental frequency will
be generated. This is in addition to the same effects caused by the anharmonic
nature of the crystal lattice itself. By use of the vibrating string model,
Hikata and Elbaum have cast the equations of motion of the dislocation into
normal coordinate form. Concentrating their attention on the equation for
the first coordinate to, they obtained the result

-r ao +. 1 - 8 4  
t 3A +B34bR.

(11.36)

In this equation, C is the line tension of the dislocation, given by the product
of the shear modulus and the square of the Burgers vector b, R0 is the equi-
librium distance between pinning points, R is an orientation factor, A the ef-
fective mass of dislocation per unit length (see Ref. 2, p. 222) and B is the
damping coefficient per unit length, a = applied stress.

For small dislocations displacements, t will be a linear function, given
approximately by

t osnIY (l11.37)

Equation (,1.36) can be solved by iteration. If one neglects the cubic

term, one obtains the first order solution

4bRA1  cos (t - kx - 51 )

7p IT [(-_ 2A +p) 2 + j 2B 2 ] 1/2

2wB (11.38)

tan-..[ 2 wB

ff
2

for a driving stress o = ao cos (wt - kx), This value of •' is introduced in Eq.
(11.36) and the resultant linearized equation is solved. The resulting solu.
tion is a lengthy one and will not be given here (see Ref. 2, p. 224).

I. -K--._,
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The results indicate that dislocation displacements can produce second
harmonics that are comparable to those resulting from lattice inharmonicity,
while the corresponding contribution to the third harmonic is enormously
greater. Experimental investigations of the nonlinear behavior of dislocations
is therefore most conveniently carried out by use of the third harmonic.
Hikata and Elbaum [81 derived the term for the third harmonic amplitude in
the form

A 3  NA0f1(o 0 )f 2(ctx) (11.39)

where N is the dislocation density, A 10 the initial amplitude of the funda-
mental, fl (Qo) a function of the loop length and f 2 (ox) a function that de-
pends on the distance x traveled by the wave and on the absorption coeffi-
cients of the fundamental and the third harmonic. Although this equation
was derived for the pre-breakaway region, experiments have shown that the
breakaway from point defect pinning points also contributes to third har-
monic generation.

11.6 Interaction of Sound with Sound.

A theoretical study of the interaction of elastic waves in an isotropic
solid has been made by Jones and Kobett. [91 The cubic terms in the parti-
cle displacements are included in the equation of motion and perturbation
analysis has been carried out for the case of an initial signal consisting of two
sinusoidal waves of arbitrary direction and frequency. A set of resonance con-
ditions has been worked out for primary waves of three different types:
(I) both transverse, (2) both longitudinal, and (3) one transverse and one
longitudinal. Table I 1.3, taken from their article, indicates the allowed con-
tributions. Here k , kl, W2, refer to the wave vectors and frequencies of
the primary waves. In each case, the resonance occurs for a sum or difference
frequency propagated along a particular direction.

It is of interest to note that the combination of two longitudinal waves
produces an interaction wave that is transverse. The corresponding case can-
not arise for a normal fluid, which does not support a shear wave.

Such a result is consistent with our earlier discussion of the fluid case.

Experimental verifications of these results has been reported by Rollins
(9a). Two pulses with frequencies between 3 and 15 MHz were applied to a
hexagonal specimen of fused quartz, polycrystalline aluminum and poly-
crystalline magnesium. The specimen was of such a shape as to satisfy the
resonant conditions of Table 11.3. Each of the five cases noted in the table
has been observed experimentally.

- - - - - -
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Table 11.3
Interaction cases which produce a scattered wave.'

Resonant Direction
wave type of C Frequcncy

Primary waves and scattered omitsc

frequency wave

Two transverse Longitudinal kl + k2  (C2 -l)a 2 +l) 1-c <<1c
(• 2 2 +c 2a T _+e' I - C

_ 1a2a+1
Two longitudinal Transverse k-k 2  c2  (c2 - 1)(a2 + 1) 1 - c _ +c-+ l-'<0I I -C

One longitudinal Longitudinal k + k2 +a(c - 1) < 2c
and one d + 2c 0 < a
transversed 2c (+ -)

Onc longitudinal Longitudinal k, - k2  +a(1 - C2) 0 < a<and one (w1 - ">) +

transversed

One longitudinal Transverse kI - k2 1 (C2 
- 1) 1 - c I + c

and one (w w) - 2 2
transversed " 1 C2

SaFrom Jones and Kobett [9].
bo is the angle between kI and k2 at resonance; a is the frequency ratio c.J2/6.ý2; c is

velocity ratio cttlClong.
CWhen a is within the limits shown, it is possible to choose an angle 0 that will give a scat-

tered wave.
dThe frequency of the longitudinal primary wave is wl.

11.7 Nonlinear Surface Waves.

The simple phenomenon of surface waves, described in Chapter 1, has
recently been widely exploited in signal processing. [10,1 1,121 The first sur-
face wave transducer using interdigital electrodes was developed by White and
Voltmer. (131

In a typical arrangement, [Fig. (11-8)] metallic "fingers" are deposited
on a piezo-electric substrate by photolithographic techniques. For a 100-MHz
transducer, for example, the aluminum fingers would be 0.2 x 9 microns.
The fingers are spaced a half wavelength apart. If the rf voltage is between
one set of fingers, Rayleigh waves will be excited on the surface, traveling at a
velocity given approximately by (recall Sec. 1.10)

cR 0.87 + 1.12v (11.40)

I. + V--

t _
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Piezoelectric material

Metal electrodes "

Figure 11-8.-Schematic representation of a typical piezoelectlic device with
interdigital electrodes ("riners") (from Kino and Matthews [I1 ).

where v is the Poisson ratio and cS the shear velocity in the bulk medium.

When these waves reach the second group of fifigers, an rf signal will be
detected.

The first use of such a circuit was in delay lines. By varying the num-
bers and spacing of the electrodes, various pulse compression and phase cod-
ing techniques have also been develot)ed.

The velocity expression (i 1.40) is of course based on linear elasticity
theory. When the strain exceeds 10-5 - 10-4, nonlinear effects appear, simi-
lar to those described for bulk waves in solids.

In 1970, Lean and Tseng [141 developed a phenomenological theory
for the generation of harmonics of surface waves, using the method. of coupled
amplitude equations, taking losses into account. If Ai is the (complex) ampli-
tude of the ith harmonic and a. the corresponding absorption coefPcient,
these equations take the form

dAt
= r / r - rimnAmAn" + a1A1  (11.41)

for i / + Q i,I,I,m,n 1,2,3....

M r-n

- -
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The asterisk denoted the complex conjugate. The nonlinear coeffi-
cients are related to the wavenumber. If dispersion effects can be neglected,
then

(11.42)
rimn = im nkm kn

where the 'y's are analogs of the GrUneisen constant.

In their theory, Lean and Tseng assumed that a single -y would suffice
and obtained the value experimentally. As a refinement, adjustments were
made to fit the individual experimental curve. As a result, a set of a's ranging
from 0.81 to 5.20 were obtained. The comparison of theory and experiment
for a specific case is shown in Fig. 11-9.

LiNbO 3  ,
I L-- .. ., p

"4- FUNOAMENCTAL

* H[ORETICAL

CALCUA.AT"0

I•141hhj•,

te

0.i u.0 0..
OISTANCE (con!

Figure I1-9.-Experimental results of Rayleigh-wave har-
monic seneration on a YZ Ll bO3  bstritte as a function
of interaction length. The fundameital frequency is 615
MHz. Also shown are the theoretical calculations based on
coupled amplitude equations (from Lean and Tsen$ 141).

Just as in the cases of fluids and bulk waves in solids, nonlinear mixing
of finite amplitude waves can take place. Typical experimental schemes are

. .. _ . - • • - - - . . . . .- , , . -- - _ _i-" i
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sdiown in Fig. 11-10. 115] Two pulses of center frequency wl, "2 travel in
opposite directions along the surface. The nonlinearity will produce a com-
bination wave with frequency W3 = W) + W2 and wave numberk 5 = k1 + k 2 .
Since the spacing of the electrodes is based on the relation k3Q = 21r, the
"pitch" of the figure must necessarily be relatively coarse (see Fig. I l-lOb).
If the two primary frequencies are identical, so that k3 = 0, w3 = 2W, two
continuous metal films, one on each side of the acoustic substrate, are used
(Fig. I I-IOa).

GOLD ELECTRODE CONVOLUTION OUT AT Zw
PAIR

PULSE IN -PuLs,
AT w AT

(b) YZ-CUT LiNbO 3 DELAY ROD

WI cm- 1INTERDIITAL GRATING

(o) YZ-CUT LiNbO3 DELAY ROD

Figure I 1-10.-The two different electrode confqfiutton referred to in
the text (from Luakkals and Kino 1151). I

Quate and Thompson [ 161 have obtained the convolution of two modu-
lated rf signals through an application of this technique. If two are modu-
lated in the form

F(t) cos woI t, G(t) cos wo2t

and passed in opposite directions in the arrangement of Fig. I 1-lOb, with the
pickup signal driving a microwave cavity resonator, the output signal will be
proportional to the convolution integral

K(t)= f F(r)G(2t - r)dt. (11.43)

The correlation function can also be obtained from the relations above
if one of the two signals is inverted in time. This has been done by applying (7
an input signal to the left transducer in Fig. I 1-lOb, and a spike to the central

-i.'.~- -.
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transducer. The output is then the time inversion of the original signal and
can be used without a convolution step to obtain the correlation function. A
sketch of the time inversion step and a set of oscilloscope traces are shown in
Fig. I1-11.

iplM boc

Figure I 1-11 .- Time inversion step (a) and oscilloscope trace of stop
(b) in surface wave circuitry (from Kino and Matthews I I I I).
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Absorption, sound, 32-37 sonoluminescence in, 295-297
Absorption of sound by sound, static bubble theory, 269-277

316-318 true, 269
Acoustic approximation in vapor, 269, 283

cavitation, 274, 277-278 Cavitation field, 269
Acoustic fountain, 234-235 Cavitation noise, 276-295
Aeolian harp, 3 Cavitation nuclei
Aeroacoustics, 3, 204ff origin and stability, 288-292
Arrays of parametric array, 360-363 Cavitation threshold

experimental evidence, 283-2883
B/A, values of, 101, 102 Characteristics, method of, 107,
Ballou's rule, 100 176-182
Beats, 10, 23-24 Classical sound absorption, 35-37
Berger approximation of vibrating Cochlea, theory of vibration In, 87-

plates, 84-85 89
Berktay analysis of Interacting Collinear beams, nonlinear inter-

sound beams, 307-309 action In, 311-316
Blackstock's bridging function, Combination tones, 10

123-125 Comparatively stable wave, 9, 109
Brillouin zone, 375 Cubic crystal, 383
Bubble growth and collapse in third-order elastic constants, 386-

cavitation, 281-284 387
Bulk modulus, 380 Cylindrical waves, 32
Bulk viscosity, 35 of finite amplitude, 129-132
Burgers' equation, 9, 117

for a relaxing medium, 132-138 Debye approximation, 376-379
Burgers' vector, 390 Diffraction corrections, see Piston,

plane
Capillary waves, 56 Dipole sources of sound, 209, 218
Cavitation, 12-13, 269-297 Directivity of parametric array, 347,

approximations In theory, 274- 351
283 Directivf't of plane piston, 47

dynamic bubble theory. 273-.15 Discontinuity distance, 105
gaseous, 269 Dislocation, 384-391
pseudo, 269 damping, 388-390

401
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displacement, 385 Green's theorem, application of, 40
loops, 389-391 Griineisen constant, 318, 379.380,
pinning, 388 394

Duffing's equation, 70-74 Griineisen number, 379
Dynamic bubble theory of

cavitation, 273-275 Harmonic generation, 92, 144
Herring approximation in cavitation,

Earnshaw solution of wave equation, 274, 278
101-104 Hooke's law, 376

Elastic constants
second-order, 380 Impulse response function, 353
third-order, 382-384 Incompressibility approximation in
ultrasonic determination, 384- cavitation, 274-277

388 Intensity of sound beam, 29
End fire array, 314, 337ff Interaction of sound with sound,
Ene-'v density of sound wave, 29 9-10
Eq n of state, 98-100 in fluids, 299-335
Eulerian coordinates. 92-97, 228, in solids, 391-392

231 on surfaces, 394-396
Explosions, underwater, 196-202

Keck-Beyer solution of wave equa-
Far field, 44 tion, 112

of finite amplitude plane piston, Kinematic shear viscosity, Ill

153-155 Kirkwood-Bethe approximation in
receiving in parametric array, cavitation, 274, 279-280

355-356
transmission in parametric array, Lagranglan coordinates, 91-97,

337-338 228,231
Fay's solution of wave equation, Langevin radiation pressure, 226-

112 229, 232
Finite-amplitude waves, 8-9 Lattice vibrations in crystals, 374

propagation in dissipative media, Lighthill's equations, 7, 204-211,
109ff 299,300

propagation in tubes, 157-162 Linear oscillator, 17-20
Finite deformation of solids, 380- Liquid helium, 318

384
Flight signatures, 194 Mach number, acoustic, 1, 107
Fubini solution of wave equation, Mass transport velocity, 244

107 Membrane, nonlinear velocity of,
78-82

Generalized Burgers' equation, 131 Method of characteristics, 107, 176-
Goldberg number, 120 182 C!
Gravity waves, 56 Monopole sources of sound, 207
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N process, 374 optical method, 141-148
N waves, 188-196 Nonlinearity parameter, 99
Natural frequency, 18 Normal process, 324
Near field, 44

of finite amplitude plane piston,
of4fint aOptical methods for observing sound
149-15 3

receiving in parametric array, propagation, 125-132
356-359 Oscillatory flow near a cylinder,

transmission in parametric array, 263-266

350-354
Noise, nonlinear interactions in, Parametric array sonar, 348-349

366-371 in shallow water, subbottom in-
Noltingk-Neppiras equation, 277, vestigations, 359-360

281
Nonlinear interaction of sound Parametric arrays, 331, 337-371

pulses, 330-335 arrays of, 360-363
Nonlnear inter o ofarfield receiving, 355-359Nonlinear interaction of sound farfield transmission, 337-338
waves, 299-335 cylindrical case, 339-340

in surfacees,3 392-6 sphcrical case, 340-349
innearfield receiving, 356-359
two collinear beams, 303-304 nearfield transmission, 350-354

two concentric spherical waves, experimental measurements,
305-307 352-354

two crossed beams, 300-302 Perturbation solution of wave equa-
experimental measurements, tion, 109

301, 304, 309-311 Phonon interactions, 318, 373-378
Nonlinear interactions in intense Phonons, coherent, 373

noise, 366-371 Pinning, 388-389
Nonlinear lattice waves, 379-381 Piston, plane
Nonlinear propagation in solids, farfield for finite amplitude case,

373-396 153-155
Nonlinear sources nearfield for finite amplitude

cochlea, 87-89 case, 149-153
membrane, 78-82 radiation field for small amplitude
plates, 82-85 case, 39-47
practical sources, 148-155 Plane waves, acoustic, 24-31, 91 ff,
simple pendulum, 60-63 45-247, 254-260
springs, 63-69 Plates, nonlinearity of, 82-85
strings, 74-78 Poisson ratio, 393

Nonlinear surface waves, 392-396 Prandtl number, 120n
Nonlinear wave propagation, expert- Pseudosound, 302

mental measurements Pulse methods for m,'asuring sound
electrical method, 139-141 propagation, 330
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Quadrupole sources of sound, 210, Scattering of sound by sound in uae
218-220 presence of obstacles, 318-

Quartz wind, 12 329
Quasimomentum, 373 non-rigid sphere (air bubble),

328-350
"rigid cylinder, 319-325

Radiation rigid sphere, 325-328
from a piston source, 39-47 Second order elastic constants, 380

farfleld, 153-158 Shear viscosity, 19, 111
nearfield, 149-153 Shock thickness in liquids, 186-188

from a spherical cap, 155-156 Shock tube, 171-173
Radiation pressure, 10-11,221-238 Shock waves, 8, 165-202

devices, 236-238 reflection, 174-176
effect of reflection, 230-232 structure, 182-186
higher order effects, 229-230 thickness in liquids, 186-189
in case of interface, 233-236 Simple pendulum, 60-63
Langevin, 226-229 Sonic boom, 8, 188-196
Rayleigh, 221-226 Sonoluminescence, 295-297

Radiation stress tensor, 232-233 Sound absorption, 32-37
Rankine-Hugoniot equations, 165- Sound sources

171 from a fluctuating medium, 204-
Rayleigh radiation pressure, 221- 211

226,229 from changes in vortex strength,

Rayleigh waves, 41, 392 212-217
Reflection, 50 from movement of vorticity In

of shock waves, 174-175 free flow, 217
Refraction, 47 Source density, 208
Relaxation, 37-39, 132-138 Source strength per unit volume,
Relaxation strength, 39 208
Resonance of a linear oscillator, 19 Spherical waves, 31-32
Reynolds' number, 4, 120n, 217, of finite amplitude, 129-132

252 for spherical cap, 155-156
Riemann invariants, 106 Springs, nonlinear, 63-69
Riemann's solution of wave equation, Spring nliear, 63-69

105 Standing wave parametric source
(SWAPS), 363-366

Standing waves, streaming in, 260-

Saturation, limited propagation, 263

346 Static bubble theory of cavitation,
Sawtooth waves, 114, 115 269-277
Scaled primary source level, 344 Strain tensor, 376
Scattering of sound from circular Streaming, 11-12, 239-268

cylinder, 50-54 basic equations, 239-244
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experimental studies, 250-254, Velocity potential, 10

266-268 Vibrating string, 20-23, 74-78
from plane wave traveling Viscosity number, Ill

between parallel walls, 254- Von Karman street, 212

259 Vortex street, 4
from plane waves Vortex strength, 211 ff

in a cylindrical tube, 247-250 Vorticity, 247
in an unbounded medium,

245-247 Wave equation
from standing waves between in Eulerian coordinates, 92-97

parallel walls, 260-263 in Lagrangian coordinates, 91-97

oscillatory flow near a cylinder, solutions of,
263-266 by Blackstock, 122-125

Stress tensor, 206 Earnshaw, 101

radiation, 232-233 Fay, 112

Strings, nonlinear vibration of, 74. Fox and Wallace, 116

78 Fubini, 107

Strouhal number, 4, 217 Keck-Beyer, 112

Surface waves, 54, 56-58 Mendousse, me15, 118
nonlinear, 392-396 nrturbation method, 109

Rientann, 105

Tait equation, 98 Rudnick, 116

Tartini pitch, 10, 85-89 Soluyan and Khokhlov,

Thickiness of wave front, 129 126-129

Third order elastic constants, 382- Waves
384 cylindrical, 32

ultrasonic determination. 384- plane, 24-31

388 spherical, 31-3

Tubes, finite amplitude propagation for spherical cap, 155-156

in, 157 of finite amplitude, 129-132
Westervelt theory of collinear beam

U process, 374 interaction, 303-304, 312-316

Umklapp process, 374 experimental verification, 304,

Underwater explosions, 196-202 316
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