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PREFACE

The idea of writing this book occurred to the author one night while he
was in the hospital, between surgical operations. Whether he was under seda-
tion at the time, or whether the idea was an hallucination, is best left to the
judgment of the reader.
The opportunity to write the book was provided by a sabbatical leave
3 from Brown University, spent in the Department of Electrical and Electronic
‘ Engineering at the University of Birmingham (U.K.) in 1971, and the writer
extends his thanks to the Department Head, Professor David Tucker, Dr. O. H.
Berktay, for their help in making the stay both possible and fruitful. Particu- 5
lar acknowledgment must be made to the University and Department librar- |
ians at Birmingham for their courtesy and helpful service. :
The finishing of a book requires the assistance and cooperation of
many. Thanks are ot course due to Brown University on many points. _
The writer is also grateful to his colleagues in the Department of Physics at f
Brown, especially Professors A. O. Williams, Jr. and Peter J. Westervelt, for i
conversations on acoustical problems that have assisted in the preparation of
this book. Special thanks are due Professor Mark B. Moffett of the University
of Rhode Island who, in the spirit of “once a graduate student, always a .
graduate studept,’” reviewed a good fraction of the book in some detail. The i
boOk was supported by the Naval Sea Systems Command under Contract
N00024-72-C-1397 with Brown University, :
—~Ae) The author acknowledges with thanks the cooperation of Academic
Press for allowing him to use materials in this book from the author’s previ-
ous publications with that company. Acknowledgment should also be made '
to various secretaries who worked on parts of the manuscript, with special
thanks to Miss Maureen Byrne, who typed most of the text twice.
Finally, gratitude is due to my wife and family, for putting up once
again with an author in the house.

Robert T. Beyer

February 14,1974




n-v-—-m-qw-w |
]
-
|
»

R,

. - —— i -

1

Y

e

C e e -

TEFATSRA =TT Y Ty YR

PRECEDING FAGR blaliedl FIUGRS

To my wife Ellen,

on our thirtieth anniversary

i e e A =2 NI T

___‘—...,.I:..;—~.« -~




.- - - ".;;&‘.L-.’i‘-n . L TR . _
FRECKD1AG FAGR BLANK=NOT F1.A@D B¢

R e

\ I

CONTEN'[D
- PREFACE ... .0 00 i
“ Introduction T 1
| 8 "(fhe Nature of Nonlinear Acoustics/ ............... 1
2. Historical Aspects”, .. ....... . .. ..., 3 :
Aeroacoustics . . - .’.".".“.’“.‘m,\. ............. 3
Shock Waves. . ............. \ ........... 8
Finite-Amplitude Waves . ... ..... N oo 8 p
Interaction of Sound withSound . . . \. .. ... ... . 9
Radiation Pressure . . . ... ... . ... PRI 10 k
Streaming. . .. ......... T T 11 :
e Lavitationecermm s TTIT Lo 12 ;
1. Principles o Linear Acoustics® .. ............. ... ... 17 !
1.1 The Linear Oscillator . . . = . e 17 ?
1.2 The Vibrating String . . ............ DA 20 !
1.3 Beats ............ ... . .. ... e 23 i
1.4  Plane Waves, Nondissipative Case . ... ...... \ - 24 3
1.5  Spherical and Cylindrical Waves . ... ......... \ ] | ;
1.6 Sound Absorption . .. ...............0.0.... ..o 32 i
1.7 RelaxationPhenomena .. ..................[.. 37 ¥
1.8 Radiation Field of a Piston Source. Diffraction....;... 39
1.9 Refraction, Reflection and Scattering of Acoustic /
Waves . ...... ... ... ... ... ... . . ... FA 47
1.10 SurfaceWaves........................ Jo... 54
Waves on a Liquid Surface. . . ... ...... -/ FI 56
. Waveson a Solid Surface. .. ... .. .. N A 57 !
\z X
I1. Some Sources of Nonlinear Oscillations ;. TR AV 60
2.1 TheSimplePendulum ....................... 60
2.2 NonlinearSprings . ......................... 63
2.3 Undamped Forced Oscillations with Nonlinear
RestoringForce .. ....................... 65
2.4  Effect of Damping. Duffing’s Equation............ 70 i
2.5 Subhammonics.............. ... .. ... . . ... 72 4
i 2.6 NonlinearStrings. ................0.0u. ..., 74 i]
) 2.7 Nonlinearity in Membranes . .. ................. 78 1
vii i




Il. Some Sources of Nonlinear Oscillations (Continued)

2.8 Nonlinearity of Plates. . . . ... ................. 82 \
29 Tartini Tones . .......... e 85 :
Ill.\\'&lonlinear Propagation in Fluidg.. ..................... 91 4
s T T ]

_ 31" Formulation of the Wave Equations, Lagrangian and

7 Eulerian Coordinates ... ................... 91 3
3.2 Earnshaw Solution of the Wave Equation. The ;
‘ Discontinuity Solution . . ................... 101 3
33 Riemann’sSolution . ........................ 105 E
34 The FubiniSolution. . ... ... ................. 107 é
3.5 The Viscous Case. Perturbation Analysis . .. ........ 109 ! f
3.6 Other Methods of Solution .. .................. 112 b
3.7 Burgers’ Equation . ........... ... .. .. . ...... 117 ‘ :
3.8  Blackstock’s Bridging Function . ................ 123 b
3.9  Work of Soluyan and Khokhlov . ... ............. 126 ’ 3
3.10 Spherical and Cylindrical Waves of Finite Amplitude ... 129 i
3.11 Case of a Relaxing Medium . . ... ............... 132 .
3.12 Experimental Verification . . ... ................ 139 !
3.13 Practical Sources of Finite Amplitude Sound . ....... 148 ;
v, 3.14 Finite Amplitude Propagation in Tubes . . .......... 157 3
S , | !
IV. Shock Waves, . ....... ... ... ... .. ... i 165 ;
41" The Rankine-Hugoniot Equation . ............... 165 1
4.2 TheShockTube ..... ... ... .. .. . . . ... 171 :
4.3 Reflectionof Shocks ... ............ .. ....... 174 i
4.4  Method of Characteristics . . .. ................. 176 :
4.5 Shock Wave Structure .. ..................... 182 ;
4.6 Shock ThicknessinLiquids . . .. ................ 186 i
4.7 NWaves. TheSonicBoom . ..... ............. 188 :
4.8 Underwater Explosions. . .. ................... 196 1
‘. 3
;’.NAeroacoustic.:' ................................ 204 ;
_-5:t The Lighthill Equations . .. ................... 204 )
5.2 Monopole, Dipol=. Quadrupole Sources . . . ......... 206
5.3  Sound from Changes in Vortex Strength . . ... ... ... 211 i

/\ 5.4 Sound from Movement of Voiiicity in Free Flow. . . . .. 217

Radiation Pressure . barer- 20/ LA 221 !
6.1 The Rayleigh Radiation Pressure .. .............. 221 ‘L
6.2  The Langevin Radiation Pressure ... ............. 226 '

vii |
I
—
v\ ‘
—_ S N e .

,
— PSS PUL e S ZSHE VLR ST Y VS SRPSUSUTE TUU ST DI T e TS




i V1. Radiation Pressure (Continued)

6.3 HigherOrder Effects .. ......... ... .......... 229
6.4 Effectof Reflection. .. ...................... 230
6.5 Radiation Stress Tensor. . . . ....... ... ........ 232
' 6.6 Interface between Two Nonmiscible Liquids . . . ... .. 233
" 6.7 Radiation Pressure Devices . ... ................ 236
VIL. Streammgj .................................... 239
Basic Equations. . . . . ... ... ... . .o L. 239
Plane Waves in an Unbounded Medium. . . ... ... ... 245
Case of a Cylindrical Tube . . . ... ... ... ... ... ... 247
Experimental Studies . . ... ... ... ... .. ... ... 250
Plane Wave Traveling between Parallel Walls . . . . ... .. 254
Standing Waves between Parallel Walls . . .. ... ... .. 260
Oscillatory Flow neara Cylinder . ............... 263
Some Further Experimental Work ... ...... ... .. 266
VL. Cavi(ation)'.\ ................................... 269
The Nature of Cavitation. . . . . ................. 269
Static Bubble Theory. .. ... ... . ... ... .. ... ... 269
Dynamic Bubble Theory . . ... ... . ... ....... 273
Experimental Evidence of Cavitation Thresholds . . . . . . 283
Origin and Stability of Cavitation Nuclei . ... ... ... . 288
CavitationNoise . ... ......... ... ... ........ 292
Soroluminescence . . . ... ... Lo L 295
IX. Nonlinear Interaction of Sound Waves :5/ ................. 299
~ 9.1 Lighthill, Ingard, Westervelt (1950-1960) .. .. .. ... .. 299
/9.2 Dean, Lauvstad. Tjotta (1960-1966) . . ... ......... 304
9.3  Berktay Al-Temimi . ............. ... ........ 307
94 Jonesand Beyer .. ...... ... ... .. ... ... ... .. 309
9.5 CollinearBeams .. ......................... 311
9.6 Absorption of Sound by Sound. ... ............. 316

9.7  Scattering of Sound by Sound in the Presence of
Obstacles . . ......... ... ... ... ... . .. ... 318
9.8 Interaction of Pulses of Finite Amplitude . . . .. ... ... 330

X. Applications of Nonlinear Interactions. The Parametric Array 7. 337

)y
| 7 10.1  Farfield Transmission .. ..................... 337
, 10.2  Near-field Transmission. . .. ......... .......... 350
1 X

ET PR MMM

> arrade.

e oo e = o g St o i




W TWNTYT WS o ocam s re e m ey,

X. Application of Nonlinear Interactions. The Parametric

Array (Continued)
10.3  Farfield Receiving ... ................... ...
104. Near-field Receiving . . . ......... ... ... .. ...
10.5  Other Applications of the Parametric Array ...... ...
10.6  Arrays of Parametric Arrays .. .................
10.7 A Standing Wave Parametric Source (SWAPS) . ... . ...
\; 0.8 Nonlinear Interactions in Intense Noise . . ... .. .. ...
Xl. Nonlinear Propagation in Solids Ks ....................
1 General Aspects .. ... ... ... . ... .o
.2 Lattice Vibrations in Crystals. The Debye
Approximation . . . ... ... ... o oo ..
11.3 Nonlinear Lattice Waves . .. . ... ...............
11.4  Third Order ElasticConstants . .. ...............
11.5  Ultrasonic Determination of Third Order Elastic
ConsStants . . ..o vttt e
11.6  Interaction of Sound with Sound ...............
11.7 Nonlinear Surface Wave . . ... .................
X
[ o~
Y ';' w . \\

I L . TRepow Py y™ YN OURY: VArehL DR M‘JML;._MJ‘_‘— ke

vy L P anat dal mt..d



INTRODUCTION

1. The Nature of Nonlinear Acoustics.

It is a commonplace remark to say that the theory of acoustics is an
infinitesimal theory. The meaning here, of course, is that such quantities as
the changes in pressure, density and temperature, produced by a sound wave
are always small (i.e., infinitesimal) in comparison with the equilibrium values
of the same quantities. However, one cannot make the same comparison for
the displacement velocity of the hypothetical particle, since the theoretical
treatment of sound propagation presupposes a continuous medium that is at
rest in equilibrium. It is customary, and sensible, therefore, to require that
the ratio of the particle velocity to the velocity of propagation of sound be
sufficiently small. The question is, how small is small?

The answer to this question will be the burden of much of this book.
To make a beginning, we first define the acoustic Mach number M as the ratio
* of the maximum particle velocity to the local sound velocity. We then require
M<K,

The significance of this definition, which parallels the more common
Mach number of aerodynamics, can be gathered by considering the case of a
planc harmonic wave in which the particle or displacement velocity u is
expressed by

u = llO smw(t- \') (l)

€o

where ug is the amplitude of the displacement velocity and ¢, the sound
velocity when the amplitude of the wave is infinitesimal.

The acoustic Mach number is then M = uy/cy. We now introduce the
fact that the change in pressure 6p associated with such a wave, is related
to the particle velocity by the expression §p = Pocot: where p is the mean
density of the medium. Then

u OP ax
M = __Q _ m:;\ . @)

Co PoCp

For a gas under pressure py and with an equilibrium density Pg. the

sound propagation velocity is given by ¢ = +/vpg/pg. where v is the ratio of
specific heats.



The acoustic Mach number for a gas is thercfore

8P max
TPo .

, This ratio enters our problem in the following way. The -usual one-
dimensional wave equation for a particle displacement £

2 2 B
af=c(2)§_§ (3)

o2 ax

N

is in fact an approximation. The more accurate form {see Sec. 3.1) is

9 v+l aZ aZ .
(I+a—£> ———E-=c%——§-.' 4)
X Y ox

Equations (3) and (4) are compatible only if d£/0x is entirely negligible, or if
v = - 1. This latter is highly unlikely, although mathematical treatment of the
case is not without significance. [1] We shall concentrate our attention on
the first condition. In the case of the harmonic plane wave of Eq. (1), we can
integrate over time to obtain

= - X
£ =-§ cosw<t CO>

so that

d
<-a—i>max i EOE T T M. )

Thus the condition that 9&/dx be negligible compared with unity is equivalent
to the previously stated condition M << 1.

It might appear that we have answered our question, but in fact we
have not. For example, the sound of a jet engine at short range may be as
intense as 140dB re 0.0002 dyne/cm?2, which corresponds to a value M =
1/1000, a number that seems to be very small indeed. Nevertheless, the total
effect of the factor [1 + (3&/dx)]**1 will turn out to be quite considerable
in this casc.

The reason for this curious development is that the effect of the pres-
ence of a finite value is cumulative and while the influence of this term’is
only on the scale of 1 part in 1000 in a single wavelength, the wave will be
scriously distorted by the term in d&/dx after 1000 wavelengths.
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The distinction between Eqs. (3) and (4) is, of ccurse the difference
between linear acoustics [Eq. (3)] and nonlinear acoustics [Eq. (4)].

It has been said that the mathematical analysis of physical problems is a
series of rearguard actions. After we admit that a situation exists, we first
suppose that it can be represented by a suitably chosen constant. When that
fails, we switch to a linear dependence, and it is only as a last resort that we
retreat to the use of nonlinear relations and nonlinear equations.

Only a few decades ago, nonlinear acoustics was little more than the
analysis of shock waves and large amplitude mechanical vibrations. Gradually,
however, more and more of acoustics has been examined for its nonlinear
aspects until today one can write a nonlinear supplement to virtually every
chapter of a text on acoustics and vibrations. This book might be regarded as
a compendium of such supplements.

Because of the large attention that has already been given elsewhere to
the topics of shock waves and nonlinear vibrations, these subjects will be
treated rather sparingly here, and the reader is referred to well-known texts
[2,3] for more detailed treatment. A

2.  Historical Aspects.

The reader who makes even a casual study of the earlier literature will
be astonished, not at the lack of references to nonlinear phenomena at dates
more than thirty years ago, but rather at the number of nonlinear processes
that were observed and described in the distant past, studies that have fre-
quently been neglected or forgotten until recently.

Aeroacoustics

Probably the oldest known nonlinear (acoustical) device is the Aeolian
harp. In 1650, Athanasius Kircher [4] wrote a description of this instrument,
but its existence goes back to early antiquity. In the Aeolian harp, a flow of
wind (Acolus, Roman god of the wind) past a string or wire can set that string
in oscillation, and tradition has it that King David would set his harp so that
the wind at night would strike it and produce sound. The wind whistling
through tall grass or tree branches, the “singing” telephone wire and Lord
Rayleigh’s fingers in the baths at Bath* are all examples of the same phenom-
cnon—the conversion of direct fluid flow to vibratory motion.

*“Bath, January, 1884

I find in the baths here that if the spread fingers be drawn pretty quickly through
the water (palm foremost is best) they are thrown into transverse vibration and strike
one another. This sccms like the acolian string . .. . Raylcigh’s Notebook. [5]

3



An early analytic treatment (1878) of this phenomenon was that of
Strouhal [6] who found experimentally that the frequency f is related to the
airspeed v and diameter of wire d by

f = 0.185v/d. (6)

If f corresponds to the natural frequency of the wire, a substantial reinforce-
ment of the vibration is obtained.

It was pointed out by Lord Rayleigh that the effect of the Aeolian harp
must be due to the forces set in motion by the vortices that are created by
the fluid flow past a solid cylinder. At very low speeds of flow the stream-
lines cling close to the cylinder on all sides, a behavior known as potential or
laminar flow (Fig. 1a). However, even for rather modest speeds of flow, the
stream lines break away from the cylinder in the rear (Fig. 1b). Helmholtz
[7] attributed the drag resistance of a ¢ylinder to the apparent “surface of
discontinuity” AA’. Eddies or vortices are set up in this region (Fig. 1¢). It
. was noted by Benard [8] and Mallock [9] that these eddies detach them-
selves from the region of the cylinder and move along the stream lines, very
much as if they were small bits of matter caught up in the flow.

These vortices move off alternately from one side and the other. Their
theoretical description was supplied by von Karman in a pair of classical
papers [10] that resulted in the name von Karman vortex trail or street for
the phenomenon. For a distance between the vortices at one side € and
spacing of the two lines of vortices A, von Karman found the relation

%2 0.28 . (7

The fact that the vortices drop off first from one side of the cylinder
and then from the other results in a periodic force acting on the cylinder. The
longitudinal component of this torce opposing the flow direction always has
the same sense, and contributes to ‘the drag resistance. but the transverse
component acts alternately in opposite directions, thus providing the stimulus
for the Acolian tones.

It is also of interest that Rayleigh noted in his famous book [11] that
the Strouhal number, = fd/r could depend on the shear viscosity n of the
medium only through the combination n/pvd (p = fluid density) a combina-
tion that was later exploited by Reynolds [12] in describing the transition
from laminar to turbulent flow, and is hence known as the Revnolds’
number.

A sccond sound source in fluid flow is that due to edge tones, [irst
noted by Masson [13] and Sondhauss [14].

If air emerging from a narrow slit falls on a sharp wedge of wood or
metal (Fig. 2), tones can be produced. Vortex trails pass out from the slit on
cither side, and a scecond street of vortices are produced at the wedge tip.

4
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Figure 2.—Vortex formation and generation of edge tone in airflow through
narrow slit onto facing wedge.

Thesc vortices apparently must keep pace with the first set so that the dis-
tance d between slit and edge makes a kind of resonance distance.

Now the alternating naiure of the detachment of vortices causes a
vibration of the cdge piece just as was the case for the wire. Here again the
forces produced by the turbulent vortex street produce sound.

As carly as 1877, Rayleigh had considered the effect of a rigid sphere
undergoing periodic oscillations in a fluid, and showed that it would actina
fashion similar to that of an acoustic dipole, which was defined by him as “the
limit of two equal opposite simple sources whose distance is diminished and
intensity increased without limit in such a manner that the product of the
intensity and distance is the same as for two unit sources placed a unit

distance apart.” |15]
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Rayleigh also calculated the force exerted on the fluid by the oscillating
sphere and observed that sound radiation occurred in the fluid flow past a
wire when the wire was not permitted to vibrate. [16]

Thus the stage was set for the idea that sound generation from vortices
might not require the presence of a solid surface, but more than half a
century was to pass before it was stated directly by Yudin (1945) that he was
“obliged to suppose that the origin of the vortex noise lies in the variable
force acting on the medium.” {17]

The next step was to regard turbulent motion of a fluid as a kind of
inhomogeneity. Now the mathematical theory of the scattering of sound
from small-scale inhomogeneities had been considered by Rayleigh. In this
development, Rayleigh wrote down the expression for the D’Alembertian of
the pressure,

o= v} - 2 Yl
0(2)81

He collected all other terms on the right side of the equation. These included
terms dependent on the relative inhomogeneities in the sound velocity Ac/c,
and the density Ap/pq of the medium, as well as other nonlinear terms in p
and its derivatives. Since Rayleigh was interested in the effectiveness of these
inhomogeneities in scattering an incident sound beam, he neglected the higher
order terms not associated with the inhomogeneities. His equation then
became

D2p= -

28¢ 2°ps (Ap> ap ®)

where p; is the pressure in the incident beam.

In 1952, Lighthill pointed out that, in the absence of inhomogeneities,
the only terms remaining on the right side of Eq. (8) would be the higher
order terms for a homogeneous medium, i.e., the terms discarded by Ray-
leigh. This led Lighthill to the equation

92
ay ,~3y i

sz = - (p“iU/+Pi/‘ C(Z)P5,',') . )

an equation that has become fundamentai in subsequent studies of vortex-
produced sound. (Sece Chapter S for identification of symbols and further
development.)
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Shock Waves

The history of the phenomenon of the shock wave begins with the
observation in 1742 by a Belgian named Robens [18] that projectiles travel-
ing faster than sound experienced surprisingly high resistance, but important
progress waited upon improvement in experimental techniques.

In 1867 Poisson developed the schlieren method of sound visualization,
Basically, this method involves the focussing of a light beam on the objective
of a telescope or camera by means of a concave mirror. [19} If an opaque
screen is drawn over half the objective lens, the mirror will appear to be quite
dark. If the rays coming from the light source are disturbed by the presence
of density changes in the medium (due, for example, to the passage of a
shock wave), some additional light will bypass the screen and the mirror will
appear illuminated. (Many variants of this technique have been developed.
See A. B. Wood, [20] L. Bergmann {21] and Hargrove and Achyuthan. {22])

Topler used this technique to show that an electrical spark discharge
produced a compressed pulse in its neighborhood, while Mach and Gruess
(23] used the same experiment to establish the fact that this pulse moved
faster than sound and also that its speed increased with increase in the spark
intensity.

The so-called shadow method, in which the shadow of the compressed
regions of a spark induced pulse is photographed in the light produced by a
second spark, made it possible to produce excellent photographs of the shock
waves produced by a projectile in flight. [24] :

At this stage, the experimental results were well ahead of theory, but
Lord Rayleigh presented an analysis of shock waves in 1910 [25] and the
fundamental equations governing shock wave propagation were derived by
Rankine {26] and Hugoniot, [27] while the theory of shock thicknesses was
treated by Becker. [28]

The problem of the “booms™ resulting from the piling up of com-
pressional waves in front of a supersonic source was treated by Prandtl [29]
and later by Dumond et al. [30] while a definitive analysis of the patterns of
such shocks at large distances waited until Whitham'’s work in 1952. |31]

Finite-amplitude Waves

Lying between linear acoustics and shock waves is the subject of small
but finite amplitude waves. In 1808, Poisson {32] developed the forin for the
particle velocity

u=flx-(o+ utl (10)

that accurately describes the effect of a finite displacement « on the effective
propagation speed of a given value of that velocity.
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Poisson did not pursue the implications of this equation but Stokes
[33] pointed out in 1848 that, since large values of u were propagated more
rapidly than small values, th¢ wave becomes progressively distorted as it
travels through the medium, until ultimately a point is reached at which
du/dx becomes negatively infinite, indicating a discontinuity. It remained for
Earnshaw (1859) to produce an exact solution of Eq. (10), a solution that re-
mained, however, in implicit form. [34] This relation of Earnshaw, which
will be treated in detail in Chapter 3, remained in implicit form until 1935
when it was solved explicitly by Fubini. [35] The Fubini solution itself re-
mained but little known for some years. The interesting history of this theory
and its frequent rediscovery have been reviewed by Blackstock. [36]

A somewhat more limited but practical solution of the finite amplitude
problem was developed by Riemann {37] in which the equation of motion
(10) was linearized by using the first order expression for ¢ to determine

0t/dx and by expanding

at\"*! Y
<|+-—~) ——1+(’)’+|)-a}
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This results in the production of a second harmonic component in the wave,
the amplitude of which proportional to the distance from the source.

None of the foregoing analysis took sound absorption into account. In :
1931, Fay developed his theory of the “'almost stable wave.” [38] The pro- :
duction of second and higher harmonics as a wave progresses, due to the
nonlinear character of the acoustic wave equation, leading to the fcrmation
of a shock in the inviscid case, is counterbalanced at the higher frequencies
(for most fluids, the absorption coefficient is proportional to the square of
the frequency). In the almost stable wave, the two processes very nearly
balance, so that the form of the distorted wave remains virtually constant.

Eckart [39] developed the perturbation analysis of the problem, and it ;
was shown by Goldberg [40] and others [41] that the various harmonics rise :
to a maximum and then decay, a result confirmed experimentally by Krasil-
nikov et al. [42]

A somewhat different theoretical analysis was undertaken by Men-
dousse {43] who first noted the similarity between the acoustic equation and
Burgers’ equation, a general solution of which is known (Hopf, [44] Cole
{45]). Khokhlov and coworkers [46] successfully carried out the analysis in
1962 and the work was continued by Blackstock, who also developed a
model for the transition from the Fubini model to the Fay model of non-

linear propagation. [47]
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Interaction of sound with sound.

One of the oldest observations in nonlinear acoustics was that made by
Sorge in 1745 [48] and independently reported by Tartini in 1754 [49] (the
latter claimed to have observed the effect as early as 1714). These two musi- :
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cians found that the sounding of two musical tones of high intensity resulits in
the appearance of a lower tone, whose frequency is equal to the difference
between the two original tones. The sounds have come to be known as
“Tartini tones” or the Tartini pitch.

It was suggested by Lagrange [SO] and later by Young [51] and
Chladni [52] that the effect was the same as that of beats. The latter effect,
which is the (low-frequency) modulation resuiting from the sounding of two
nearly similar tones, is a linear phenomenon. It was argued that, as the beat
frequency increases, it goes over into a continuum tone, which is the differ-
ence frequency. These arguments found many supporters in the 19th century,
even though it became known that the signals had to be quite intense before a
difference tone could be observed, and that such a tone was a weak one,
whereas beats are very evident even at relatively low intensities.

The problem therefore hung on for more than 100 years, until Helm-
holtz undertook his study of what he called combination tones, [53] and
discovered the existence of a sum frequency as well as the difference fre-
quency.

Even Helmholtz’s discovery met with opposition, some observers com.
pletely denying its existence. An argument also developed as to whether these
combination tones existed objectively, i.e., actual pressure waves propagating
through the air, or “subjectively, being due to the nonlinear response of the
ear.” Helmholtz attributed the presence of the combination tones to non-
linearities within the ear, and modern research indicates the cochlea as the
most probable source of such a nonlinear response.

Nevertheless, Rucker and Edser [54] were able to excite a tuning fork
at the sum frequency, thus identifying the interaction as an objective one—
i.e., actually occurring in the medium.*

In 1931, Lamb used a perturbation technique to consider the effect of
two different primary frequencies propagating through a medium to show the
existence of both sum and difference frequencies. His work was confirmed
experimentally by Thuras, Jenkins and O'Neil. {56]

In 1950’s, a controversy arose as to whether two sound beams inter-
secting at an arbitrary angle can produce sum and difference frequencies. The
issue is a cloudy one and the author is an interested party. It is clear that two
beams, traveling in the same direction, do produce sum and difference fre-
quencies in the medium. The further development of this controversy will be
treated in Chapter 9.

Radiation Pressure.

Three phenomena associated with the passage of intense sound “eams
are radiation pressure, streaming and cavitation, and some remarks on the
history of each are in order.

*The issue is not a wholly settied one. See P. J. Westervelt, Proc. Symp. on Nonlinear
Acoustics, Birmingham, U. K., 1971, p. 6.
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When one attempts to determine the time average of the pressure at a
fixed point in a medium traversed by a sound wave, one finds that an asym-
metry has been produced by the fact that the hypothetical particle of the
medium is itself displaced from its rest position. For equal displacements
from the rest position, the first order density changes are the same, but the
second order changes differ. The following quotation from Poynting (1905)
gives an account of the situation:

“In sound waves there is at a reflecting surface a node—a point of no
motion but of varying pressure. If the variations of pressure from the undis-
turbed value were exactly proportional to the displacements of a parallel
layer near the surface, and if the displacements were exactly harmonic, then
the average pressure would be equal to the normal undisturbed value. But
consider a layer of air quite close to the surface. If it moves up a distance y
towards the surface, the pressure is increased. If it moves an equal distance y
away from the surface, the pressure is decreased, but by a slightly smaller
quantity. To illustrate this, take an extreme case and, for simplicity, suppose
that Boyle’s law holds. If the layer advances half-way towards the reflecting
surface the pressure is doubled. If it moves an equal distance outwards from
its original position the pressure falls, but only by one-third of its original
value; and if we could suppose the layer to be moving harmonically, it is
obvious that the mean of the increased and diminished pressures would be
largely in excess of the normal value. Though we are not entitled to assume
the existence of the harmonic vibrations when we take into account the
second order of small quantities, yet this illustration gives the right idea. The
excess of pressure in the compressed half is greater than its defect in the
extension half, and the net result is an average excess of pressure—a quantity
itself of second order on the reflecting surface. This excess in the compression
half of a wave train is connected with the extra speed which exists in that
half, and makes the crests of intense sound waves gain on the troughs.” [57]

It is not surprising to learn that Lord Rayleigh made substantial con-
tributions to the theory of radiation pressure, defining a particular form that
bears his name (Chapter 6). More recently, Brillouin [58) pointed out the
tensor character of the pressure in the sound wave, and various aspects of the
phenomenon have been studied in detail by Borgnis [59] and Wester-
velt. [60]

Streaming.

In 1831, Michael Faraday [61] noted that currents of air were set up in
the neighborhood of vibrating plates—the first known observation of acoustic
streaming. In 1876, Dvorak [62] reported that when Kundt's tube was ex-
cited to vigorous oscillation, currents of air were observed. Near the walls of
the tube, this current flows from the loops to the nodes, with a return in the
inner part of the tube from the nodes to the loops.
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Once again, Lord Raylcigh put forth a fundamental theoretical explana-
tion. In particular, he noted that, while the phenomenon depended on the
viscosity of the fluid, it was one of second order, i.e., nonlinear. [63]

Rayleigh treated the problem of standing waves between paralle]l walls.
The successive generalization of the problem to cylinders of various types is
sketched in the review by Nyborg. [64]

In the 1920’s. it was observed that a flow of fluid takes place in front
of a quartz crystal used as a transducer, and the name “‘quartz wind” was
attached to the phenomenon. The effect was observed by Meissner in liquids
in 1926. [65] In 1948, Eckart [39] published a theoretical account of
streaming in its relation with the so-called “‘bulk viscosity” of fluids, and for a
time it was thought that an independent method of measuring this quantity
had been determined. Subsequently, however, it was made clear that the
streaming was in fact proportional to the total acoustic absorption coefficient
in the fluid, so that what had been obtained was another method of meas.
uring this quantity. [66]

Cavitation

The early history of cavitation research is marvelously summarized in
the opening lines of Rayleigh’s paper (1917) “On the Pressure Developed in a
Liquid during the Collapse of a Spherical Cavity,” lines that recall Poe’s
opening to “The Cask of Amontillado.” [68] although with less ominous
overtones:

“When reading O. Reynold’s description of the sounds emitted by
water in a kettle as it comes to the boil, and their explanation as due to the
partial or complete collapse of bubbles as they rise through cooler water, I
proposed to myself a further consideration of the problem thus presented;
but 1 had not gone far when | learned from Sir C. Parsons that he also was
interested in the same question in connexion with cavitation behind screw-
propellers, and that at his instigation Mr. S. Cook, on the basis of an investiga-
tion by Besant, had caiculated the pressure developed when the collapse is
suddenly arrested by impact against a rigid concentric obstacle.” {67]

We thus learn that research in cavitation had a wholly non-acoustic
origin. Cavitation refers to the formation of holes in liquids, and it is a matter
of indifference whether the holes are produced by local heating in a kettle of
water, by the slashing of a propeller blade through the liquid, or by the
oscillation of liquid particles under the action of a sound beam. Nevertheless,
all three causes have strong interconnections and are of interest in acoustics.

Besant’s calculation was made in 1859. [69] On the basis of it, it was
concluded that enormous pressure could be generated in the collapse of a
void existing inside an incompressible liquid. Thus, if bubbles are generated
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near a propeller surface, their ensuing collapse generates large forces that can
act on the blade and severely damage it. Hence cavitation is of great signifi-
cance in engincering work.

Lord Rayleigh’s reference to Reynolds suggests two other aspects of
cavitation. Bubbles are developed in a heated liquid near its boiling point,
apparently due to the local concentrations of heat, with impurities often
playing the role of growth centers or nuclei. Cavitation therefore is of interest
in the study of the phenomenon of boiling. Also, the collapse of such bubbles
can be accompanied by noise.

For the acoustician, interest in cavitation divides between the origin of
holes and the forces and sounds produced by bubble collapse.

A great amount of experimental research was carried on in the period
1930-1950, by which time it became clear that cavitation could involve bub-
bles filled with air that was previously dissolved in the liquid or filled with the
vapor of the liquid itself. This second kind of cavitation was more difficult to
achieve and apparently depended on a number of extraneous factors, in-
cluding the purity of the liquid. In 1954, Galloway [70] estimated the
threshold for this type of cavitation in water at overpressures of 200 atm.

The presence of bubbles in a liquid causes appreciable scattering and
absorption, so that sound transmission through a bubbly medium will be
greatly impeded. Studies of this phenomenon were pursued by E. Meyer and
his associates. [71]

One of the most difficult probiems with regard to cavitation is the
determination of its onset. One technique is photographic, while another has
been the recording of sound produced by the cavitating bubbles.

The fundamental problem of cavitation has remained the determination
of the mechanism of bubble formation. Various theories of impurity seeds,
entrapped air, thermal spikes. cosmic rays have ali been advanced, but the
picture remains unclear. As it says at the end of any research report, much
more work remains to be done.
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Chapter |

PRINCIPLES OF LINEAR ACOUSTICS

Since we have embarked on a text in which the world of vibrations and
acoustics is divided into the part that is linear and the part that is not, it
would be well to review first the part that is linear, which is supposed to be
familiar to the reader. Actually, only the topics that bear on the nonlinear
aspects of acoustics will be covered, and even here, the reader is encouraged if
not urged to seek the fuller accounts in the references and bibliography given
at the end of the chapter.

1.1 The Linear Oscillator.

The most familiar problem of vibratory motion is that of damped,
linear oscillations. We consider a one-dimensional system in which a particle
of mass 2 is attached to one end of a weightless spring of stiffness .

If the particle undergoes a displacement £ from its rest position, the
restoring force is expressed by -k&. If the damping force is given by ‘RE,
where £ = dE/dr and R is some constant of the system, we have the equation

mE = -ki - RE . 1.1

AL

To solve (1.1), we set £ = Ae”'. Then, substituting in (1.1), we obtain

Mm+ AR +k=0
or

_ R (R? - 4mk)”2
A= m * - 2m (1.2)

Three cases can be distinguished here, depending on the relationship
between RZ and 4mk:

Case |: R? > 4mk (overdamped motion)

- R? 1/2
o R (2 5

4m? m
\ -
R: [R?T k2
+ AZ exp ‘;‘:z"—n' - (m -~ H) t (1.2a)
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18 '~ NONLINEAR ACOUSTICS SEC 1.1

Case 2: R* < 2mk (Underdamped motion)

! . t .
E = Al exp [—2772- + lwna,t]+ A2 [m = lwnart] (12b)

where wyyy = (kfm — R2/4m2)”2 is the natural frequency of the system.

Case 3: R4 = 4mk (critically damped motion)
A second solution is necessary here, in addition to exp (-Rt¢/2m). It can
easily be established that r exp (~R¢/2m) is such a solution, so that the

compleie solution of (1.1) in this case is
£ =(4; +tAyt)exp(-Rt/2m) . (1.2¢)

I our particle is now subjected to a harmonic force, such as F cos wt,
the problem can be most easily solved by means of complex numbers. We
therefore use the form Fyeé“! for the force (Fy real), so that Eg. (1.1)
oecomes

mE+ RE + ki = FoeW! | (1.3)

If we use as our test solution £ = 4¢“’ (4 complex), simple substitution
yields

(-mw? +iwR +k)A = F,

or (1.4a)
) Fy Fge'®
T GwR + k- mw? [wiRY + (k- mw?)?) V2
where
tan ¢ R (1.4b)
n B e———— B
a k - mw?

Our complex solution for ¢ then becomes

£ = FO (j("‘" -¢) (1.4¢)
[W?R? + (k - mwh)?) /2 .

for which it is understood that the real part is the solution for the real case.

!
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Thus oscillations are forced at the frequency of the driving force. How-
ever, the amplitude of such oscillations will be small except in the neighbor-
hood of the frequency for which

L [WR? + (k-mw?)?) < 0.

) This resonance condition yields the frequency for maximum displace-

ment, (c)d:
_ k R2 1/2

It is worth noting here that the use of the complex variable technique
relies on the principle of superpasition—i.e., that if f,(¢) is a solution of a
given equation and f5(f) is a second solution, then f = af|; + bf isalso a
solution. In particular, if @ = 1,b = i, (f] f; real) Then the fact that fis a
solution guarantees that the real (f|) and imaginary (if,) parts are also solu-
tions. The principle of superposition in turn requires that the governing equa-
tion be linear, so that this technique cannot be used for nonlinear problems
without special consideration.

In most of the problems with which we shall deal, it is of greater
interest to consider the displacement velocity £ rather than the displacement
itself. If we form the time derivative of (1.3) and set £ = u, we have

wit il -d.d"l_mulm it R o5k

s

mu+ Ri + ku = iwFyd*! . (1.6)

Proceeding as above, we try u = A4¢'“?, Substitution in (1.6) then yields

R R UL WS DT O N R o T AT Sy s LR

[~w?m+iwR + kA = iwF

or

FO Foe-’¢ g

A= = STI77 (1.7a) 3

R+i(mw-—> [R2+<mw——>] ]

w 1

with 2

ﬂil

mw - & ;

tan ¢ = - (1.7b) 3

|

The maximum particle velocity is therefore obtained when the imagi-

nary part of the denominator of Eq. (1.7a) vanishes, i.e., -

A

: 2 .k .*

; w, — . (1.8) i

; l - :
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This frequency is known as the resonance frequency, since it is the one
for which the displacement velocity is exactly in phase with the forcing term.
It should be noted that this was not the case when we considered displace-
ment. The maximum displacement [Eq. (1.4a)] occurs when w = w, [Eq.
(1.5)] which is a lower frequency than w,.

1.2 The Vibrating String.

A second important problem of linear theory is that of the vibrating
string. If a string is attached to rigid supports and given a small displacement,
(Fig. 1-1a), the resultant restoring force will cause the string to vibrate.

ety ol ca o e

s i Rt

o ikt W s o

x + dx

N |

e e ket net dlbed

Figure 1-1a.-Displacement of a vibrating string under uniform tension 7.

The details of the situation are indicated in the enlarged Fig. 1-1b. The
string is assumed to be uniform, with a mass per unit length equal to g, the
magnitude of the tension in the string, 7. is assumed to be constant, and all j
displacements are small (§/L << 1, where L is the length of the string). \

The force in the y direction at the left end of our string segment (at x)
is given by

ey i s e
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- 7%
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while that at the right end (at x + dx) is
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X x + dx

Figure 1-1b.~Enlarged view of segment of string from Fig. 1b.
Motion is restricted to xy piane,

SR P R W RPEFY WUV PO 3 PO

so that the net restoring force on the element is

, 32t
T, - T, = -T — dx. (19)
yor dx2

The mass of the length of string dx is odx, where g is the mass per unit
length of the string. Then the equation of motion becomes

2 .
- Té—g = -odx}
ax2
or
2 2
Ta_z. = ga_g. . (l.lO)
ax? ar?

A a2 W] S 1AL 4 et e i 33 ke et Rt Ao P 0 £ i Saltb

This is the same equation as Eq. (3) of the INTRODUCTION if
cg =T/o. Hence waves can propagate along the string with velocity o=

VTTa.

The general solution of Eq. (1.10) can be easily demonstrated to be

£ = Af(x - cot) + Bg (x + cot) (1.11)
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since

£ = Af'(x- cot) (~cg) + Bg'(x +cyt)cy

E= QAL (x - cot) + c3Bg"(x + cot);

and

— = C%Af" + c(z) Bg"

which is exactly equal to £..

Equation (1.11) represents two transverse waves traveling in opposite
directions. It is an entirely general solution. The particular form that the
displacement of the string takes depends on the way the string is initially
plucked.

This initial plucking could lead to a complicated form for the solution,
and be a very difficult problemn but for the principle of superposition, to
which we have already referred, and for the procedures of Fourier analysis.
So long as we are dealing with a linear equation, any linear combinations of
solutions will also be a solution. But virtually any physically realizable dis-
placement of the string can be decomposed by Fourier analysis into sinus-
oidal components, each one of which can be studied separately, with the final
answer represented by the sum of the Fourier components.

In the problem at hand, only the sine series will be needed, since the
end points of the string are fixed. Let us therefore iook at the simplest
possible case, in which the initial displacement is given by a sinusoidal curve:

E(x, 0) = g sin kx . (1.12)

If the length of the stringis L, the condition that the ends of the string
are fixed yields

£(1.,0) = EgsinkL =0, or kL =nan=123,.... (1.13)

=
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The solution of (1.10) for this case is given by (1.11):

Asink(x - cot) + Bsin k(x +cyt) (1.149)

oo
1}

or

(A + B)sin kx coswt - (4 - B) cos kx sin wt

wer
n

with w = kcg. Since £(0,1) = O for all ¢, it follows that A = B. Then, recalling
{1.13) we obtain

£ = A+ B =24
or
A= E5f2 .
Hence Eq. (1.14) becomes
£ = £p sin kx cos wit (1.15)

which corresponds to a standing wave. Finally, substitution of the boundary
condition (1.13) leads to the result for the nth harmonic:

£ = £ sin l%x- cos nwt . (1.16)
1.3  Beats,

The “beating” of two oscillations of different frequencies is a linear
phenomenon. The two oscillations might be sound waves traveling in the
same direction, two oscillations superposed on a string or two separate vibra-
tors forcing a mechanical system. For simplicity, we assume the two oscilla-
tions to have the same initial phase. Then

£, = Asinwyr
(1.17)

mA sin Wyt

33

where w, > wy, and m lies between 0 and 1, we shall further assume that the




e

24 NONLINEAR ACOUSTICS SEC1.3

difference between w, and w, is small, and introduce the notation for the
difference (£2) and mean (wg) frequencies

= wy - wy
wy = (1/2)(wy twy) .

Then, by simple trigonometry, the sum of the two displacements &, +
&, becomes

E=§ + & = Asinw it + mAsinwyt

(1.18)

A(1 + m) sin wyt cos %—t- - A(1 - m) cos wyt sin >

We restrict ourselves to two signals of equel amplitude, so that m (the
modulation index) = 1. A plot of Eq. (1.18) in this case for w = 107, wy =
127 is shown in Fig. 1-2.

The human ear hears the pulsations of sound in the vicinity of the
extremal values (i) of cos §2¢/Z and therefore perceives a beat frequency §2,
which is also the diffcrence frequency.

1.4 Plane Waves, Nondissipative Case,

A number of features of linear acoustic waves will be used throughout
the book and will be summarized here.

In many problems, one uses the simplification of plane waves, in which
the wave fronts are plane surfaces traveling perpendicular to their surface. For
a harmonic wave traveling in the +x direction, the displacement velocity u =
0%/at of the plane wave was given by Eq. (1) of the INTRODUCTION:

= u sinwt—x
0 c

ug sin (W - kx)

1N
!

(1.19)

ft

with k = (.L)/C, Ug = E’O = wEO.
A common way of describing wave motion in the linear case is that of

the velocity potential. For irrotational motion (curl u = 0), there exists a
function ¢ (r, ¢) for which the velocity displacement vector can be written

u=4a¢ (1.20)
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Figure 1-2. - A computer trace of beats, The first trace is that of w; = 10nra/sec (T = 1/§
sec), the second that of wy = 12ma/sec (T = 1/2 sec). Beat frequency 2 = 2ara/sec.
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or, for plane waves, u = 9¢/dx. This quantity ¢ is known as the velocity
potential.

The pressure due to the presence of an acoustic wave can be introduced
by considering a small volume element (Fig. 1-3a). At rest, the volume d Vg is
given by dV, = dxdydz.

If a disturbance now passes in the +x direction, the force exerted on
this element from the left will be pd4, where p is the total pressure at the
plane x.

In the plane x + dx, the corresponding pressure will be

ap
p¥ ax dx

and the force exerted by this pressure on the material that was in the original
element will be

- (p+ %g-dx)dA .

The net force on dV is then

- pda - 2P -2
pdA - pdA 5 dxdA 3% dVy .

By Newton'’s equation of motion, we obtain

op

or
-3
poE= 3= . (1.21)

From Eq. (1.20), this can be written in terms of the velocity potential:

o _ ¥ _ 2%
3x - P03 T Podxar (1.22)

Integrating (1.22) with respect to x, we obtain

-p= po-%f- + f{t) + const .
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Since this relation must also hold in the absence of sound (when 3¢/dt = 0), it
is clear that the function f{t) must vanish and that the constant must equal
-pg, the negative of the equilibrium pressure. Hence

P Py =- pog—f = ppe = excess pressure due to sound wave.(1.23)

The density changes can also be introduced by defining the condensation as
the fractional increase in the density:

P - Py

pg (1.24)

s:

If we refer to Fig. 1-3b, and observe that the particle displacement at x is &,
while that at x + dx is £ + (0%/dx) dx, we can see that the original volume
element dV, is now distorted into the new volume

dyd: [x+dx+£+ g—f —(x+£)]

dxdydz (l + %i—) .

av

Since the mass of the element remains constant, we have

podVO = pdV

or
)

podVO = pdVO (] + 3&) .

Finally,
)
p = -—Qg . (1.2%)
L+ dx

The condensation s can then be written

i - ot
§ T ———— - l _ - —— (1.26)
e & E
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Figure 1-3,—(a) Element of volume; (b) linear displacements in volume element. -
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We also need the expression for the energy in the wave. Let us consider
a volume element AV. In the presence of the sound wave, the element will
have a displacement velocity £ and condensation s.*

The energy of the volume element will be EAV, where E is the energy
per unit volume at time and position x (the energy density). This in turn can
be broken up into kinetic (Ey ;) and potential (E,,) energy terms:

l *
EAV = By OV + Epo 8V = 5 pE? AV - f pedV.  (127)
av

The sound velocity is related to the pressure through the isentropic equation

/

2 =K3—5) (1.28)

For small changes in density, dp = c8p. so that P = poczs. Making use also
of the fact that dV/AV = - dp/py or dV = - AVds, we can convert the
potential energy term as follows
* I
- f p.dV = pg 2AV _[ sds = =poc’stav

AV 0
and Eq. (1.22) becomes
S |
E= 5pof% + zpgcs? . (1.29)

We now define the intensity of a sound beam as the average rate of energy
flux across a unit_area perpendicular to the direction of propagation of the
wave. If we write E as the mean energy density, then

I=cE. (1.30)

If we arc dealing with a plane harmonic wave, such as is described by
Eq. (1) of the INTRODUCTION, then

£ = 2'0 sin (w1 - kx)

*These are the mean quantities for the clement V. As a4V — 0 these become identical
with the ¢ and s introducvd previously, as can be demonstrated by application of the
theorem of the mean.

o ke
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£=- (%—)cos (wit - kx) = - §q cos (wt - kx)

¢ = %cos(wt—kx) = Eoccos(wt-kx) (1.31)
p = pokpew sin (wt - kx) = pgcug sin (w1 - kx)

s = & %s‘m(wt-kx) = kg sin (Wt - kx) .

The energy density is given by

E = —;-poé(z) sin2 (wt - kx) + 17 poc(z) E_g_ sin? (wr + kx)
- C
0
. (1.32)
= pOE% sin? (wr - kx)
so that its mean value £ is
_ 1 T 1 .
E = pyid —T-J sin?(wt - kx)dt = ok (1.33)
0
and
o
<0 (1.34)

1 9
] = — =
7 Pocokd = 35 o

where p, is the pressure amplitude in the wave, equal to pgcouq-
The set of Egs. (1.31) can be repeated for the complex notation:

£ = _igoei(wt- kx)
£ = _Eoei(wt- kx)

s = —ikEOei(“” - kX) (135)

o= E’Q_ei(wt - kx)

i(wt - kx)

Pe = - ipOCOgOe

|
k
|
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where we are interested in the real portions only. Since £ and / depend on the
squares of £ and £, the complex form cannot be used in the simple product
form. However, a check with Eqgs. (1.35) will show that the intensity is given
by the form

S R
I = 2p£ (1.36)

where the asterisk denotes the complex conjugate.
1.5 Spherical and Cylindrical Waves.

The one-dimensional wave equation

32

% gk
a2 ax?

cited in the INTRODUCTION (Eq. (3)] is a special case of the more general
relation

or, in terms of velocity potential,

3%¢

g9 C(z) V2o . (1.37.b)

ar?

Here & is the vector displacement at the point r and V2 is the differ-
ential operator div grad. Equation (1.37b) can easily be converted to Eq.
(1.37a) by taking its gradient

32V e

- A VAV
t

which becomes

- —— B —

|
|
|
i
|
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or

3 (3% _ 252

ar[m = VoE
whereupon simple integration produces Eq. (1.37a).

In the case of a spherical wave, the equivalent to Eq. (1.37b) can be
written as

2 2
1 0%(rp) _ 1 0°¢ (1.38)

— mm— D —— e——

¢ = —lf[t t-'-] , (1.39)

1 2 [ ap 1 3?2
18 | de|_ L3¢ 1.40
p op [pap] c? ar? (140

where p is the radial coordinate. For large values of p, this equation possesses
solutions of the form

f[ti—::-]
puf— (1.41)

¢:

This solution is valid whenever p is large compared with the acoustic wave-
length (kp >> 1).

1.6 Sound Absorption.

A great deal of attention has been devoted to the theory of sound
absorption in various media, and the reader is referred 10 the extensive treat-
ment given in Beyer and Letcher (1969), Chapters 4 and S. Here we shall be
mainly interested in the simplest case, that of absorption due to viscosity.
The original theory was developed by Stokes more than 100 years ago.“ '
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In the derivation here, we shall consider waves of infinitesimal ampli-
tude, so that products of first order quantities can be neglected.

We begin with the equation of continuity (or conservation of mass). If
we again consider a fixed volume element dxdydz (Fig. 1-3a), the influx of
mass per second from the left will be pudydz while the outflow will be

[pu + % (pu) dx] dydz
so that the net mass increase in the volume will be
pudydz - [pu + -aa; (pu) dx]dydz = - -aa? (puw)dv
which is also equal to the rate of mass increase

dp
'a?dV .

[The density p in the last equation is a mean value, just as the s in Eq. (1.29),
a value which the p of the previous equation approzches in the limit as dV =
0]

Hence

- a‘i (ou) = %‘:l' (1.42)

The second equation is the equation of motion (conservation of momentum),
Eq.(1.21)

pok = --5§. (1.21)

The third equation will be the first law of thermodynamics, or the conserva-
tion of energy. The first law can be written

AQ = dU -AW (1.43)

where AQ is the heat added (per mole) to the system of an infinitesimal
process, dU the corresponding increase in the internal energy of the system,
and AW the work done on the system during the process. In particular, we
use the equation under the adiabatic condition; that is, we assume that no
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heat enters or leaves the system during the process. In such a case, AQ = 0.
Furthermore, AW can be replaced by

AW = -pdV = M(p/p?)dp (1.44)

where M is the gram molecular weight of the gas, while dU == C,dT, where
Cy is the heat capacity per mole at constant volume.

In the general case, the fourth equation (the equation of state) is an
expression of the form

p=pip.T). (1.45)

In the case of an ideal gas, p = pRT/M, where R is the gas constant (per
mole). In many cases, however, the more general form of Eq. (1.45) is satis-
factory.

Now let us suppose that a plane harmonic wave travels through the
medium in the +x direction. We shall write the expressions for the change in
the pressure (p,), the condensation (s = (p.- Po)/Pgl, the change in tempera-
ture (8 = T - Ty) and the velocity (u = £) associated with this wave, all in
complex form

>
[}

Pe = Poee!(t k%) 6oei(w! - kx)

(1.46)

s = soei(“’ ~ kx) u uoei(wl - kx)

We now substitute these values in (1.42), (1.21), (1.44), (1.46), neglect-
ing all products of small quantities. This results in the four equations

(147)
ou _ |1 p, _ {0 (ap)
(b ot pO ox (d) pe "(597_/)0‘9 + 'ﬁ"pe

or, for the plane harinonic wave of Eq. (1.46),
thu - iws +0 + 0 =0

iwu + 0 —(;—(’:—);;e +0 =0

(1.48)

St o ———————
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0 -M(.’l.o)s +0 +Cy8 =0
Po
[op ap\ , _
o (e G0

In order that (1.48) have a non-trivial solution, it is necessary that the deter-
minant of the coefficients of (1.48) vanish. This yields the following expres-
sion for the sound velocity ¢ = w/k

b= (3) + (Gen) ()

¢t = =] +|—C . 1.49

0 (ap r p02 Vi \eT » ( )
For an ideal gas,

B

dp T I

@) _Po_ PR

(ar)p T M (1.50)
50 that

All of the treatment thus far has assumed the absence of dissipation in
the medium. The presence of viscosity adds new force terms to the righthand
side of the =quation of motion. In its most general form, the resultant equa-
tion of motion is known as the Stokes-Navier equatim\.[2l For the one-
dimensional case, this equation can be written

\ 92

where 7 is the shear viscosity coefficient. The quantity %' is known as the
second or bulk viscosity coefficient, and corresponds to the viscous drag that
would be experienced in a pure volume dilatation, in which no shearing
motions can occur.

The nature and value of n° forms one of the most interesting problems
in the historical development of ultrasonic wave propagation.[3 I Stokes as-
sumed that ' was identically zero, and to a large extent, this assumption
marks the difference between classical and modern theories of ultrasonic
absorption and dispersion. We shall leave n' in Eq. (1.51) so that it can be
used to cover both classical and modern theories.
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If we now make the linear approximation in Eq. (1.51), we obtain

4 +)
du__ 1% 3777 3%

ot Po ox Po axz (1.518)

or, for harmonic waves of frequency w,

. fk a ) k2>
= 4 ———— - [ - + o
i I(Po) Pe (3 1 n><Po !

which now replaces Eqs. (1.21), (1.47b), and the second line of Eq. (1.48)
becomes

o ffeed) )-8

This leads to the result

k2 [2 .(4 ,)w]'l
— = |cptilgntn)—] . (1.52)
w2 0 3 Po

The presence of the imaginary term on the right side of (1.52) makes k
complex. We therefore set k = k, - ia, so that all the Eqgs. (1.46) can be written

in the form

u = uyexp (- ax)expi(wr - kx) , (1.53)

in which a is the amplitude absorption coefficient, while k_ is the real wave
number, equal to w divided by the phase velocity c.
The substitution k, - iain Eq. (1.53) leads to the two equations

]
|
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k,2 -at= w?es s—3
ch + (3 n + n') w—;-
PO
(1.54)
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4 ,) w3

- + Oam—
= <3 nEn Pg
2,2

4 4 )
G o)
Pg

In virtually all cases, k3 >> o? [and hence (4n/3 + 1')2 w?/pd << c8] so
that, to an excellent approximation, we have -

= L
k, &
1 (4 N w? |
ka = —(—n+n . (1.55)
r 2 3 ) poct
a ==\ n+tn | —
2\ 900(3)

Thus the ordinary propagation of a plane harmonic wave of infinitesimal
amplitude is non-dispersive. Experiment has shown that most fluids obey the
quadratic dependence of a on w, but the value of a is much larger than is
predicted under the Stokes assumption that . = 0. The keeping of ', there-
fore, provides a mechanism for describing this additional absorption.

1.7 Relaxation Phenomena.

In the decisive equations of the previous section [(1.54), (1.55)], the
sound absorption coefficient is proportional to w*. In many gases and lig-
uids, however a is not proportional to w? over a significant range of fre-
quencies. The reason for this behavior lies in the lag of the internal processes
in the medium behind the externally applied changes in pressure that derive
from the sound wave.

If we look back at Eq. (1.47), we can see that (¢) and (d) (the equation
of energy conservation and the equation of state) could have been combined
into a single relation involving only the pressure and the condensation:

_aP.) (?.P.) Mpo | (1.56)
[(ap T Po ¥ oT, p CVpO

Pe

.
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The determinant of Eq. (1.48) could then have been written in 3 X 3
form. For an ideal gas, (1.56) reduces to

P, = Ypgs = Pocds . (1.57)

Any process that removes energy from the sound beam and returns it at
an appreciably later time in the wave cycle causes a dissipation of the acoustic
energy, i.e., attenuation of the beam. This destroys the isentropic character of
the sound propagation (even though it may still be adiabatic) and properly
requires the use of irreversible thermodynamics for a rigorous description. We
shall not make such an exposition here, but only make a few explanatory
remarks and write down the resultant equations, the derivation of which can
be found in the literature.[4

The analysis of these processes, which transfer energy from the transla-
tional mode of motion (the sound wave) to other modes such as vibration or
rotation of atoms or groups of atoms within the molecule, or to the potential
energy of some structural rearrangement (including chemical reactions and
electrolytic processes) is aimed at obtaining a time-dependent equation con-
necting the instantaneous values of the pressure and density that is often called
the *“‘acoustic equation of state.” This type of equation is known as a relaxa-
tion equation and the process is usually referred to as a relaxation process.
The rate of this relaxation is defined in terms of quantity known as the
relaxation time. This is a measure of the time required to complete some
specified reaction, subject to the condition that an appropriate set of thermo-
dynamic variables is held constant. It should be noted that there exists no
unique relaxation time for a given process, although the differences among
those defined for liquids are usually negligibly small.

In the simplest case, that of an ideal gas, in which one can still neglect
the changes in entropy that do occur, the acoustic equation of state takes the
form

T 1

. I
PoTpsS + Pos = _pz_ p. t = Pe (1.58)
€0 €o

where c_, cq are the values of the sound speed measured at very high and very
‘low frequencies, respectively, and Tps is the relaxation time measured under
conditions of constant pressure and entropy. If we again introduce a har-
monic time dependence, Eq. (1.58) takes the form

‘ .
IWThe

(1 +iwrpg) pos = -—2-+ 2p P, (1.59)
o Co
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The quantity 7, is the relaxation time measured under conditions of con-
stant pressure and entropy. If we consider Eq. (1.59) at very low frequency,
it can be seen to reduce to Eq. (1.57), with the previously calculated expres-
sion for the absorption coefficient. A similar equation is also obtained at very
high frequency, except that the sound speed to be used in that case is ¢, .

For the general case, however, the expression for ¢ will be quite dif-
ferent. If we write our three equations

iku ~-iws =0

ik
; - — = 1.60
iwu ( p0> Pe = 0 ( )

) 1 i“”ps
Q1 +1prS)p0s 1= + > p, =
CO C.

|
o

and set the determinant of the coefficients equal to zero, we ultimately
obtain the expressions for the sound velocity ¢ and the absorption coefficient
per unit wavelength u = oA:

2.2

o2 ) l+w‘rps
— = .
C 0 2.2
0 1 +|—) wr

<c3) i

(1.61)

uza) =_2 22 4

€5 1+w1'ps

where the quantity ¢ = (cf - cg)/cg is known as the relaxation strength.

While more complicated expressions can be obtained for other specific
relaxation processes, the general structure of the final result remains the same
as Egs. (1.61), and we shall content ourselves with making use of these
equations.

1.8 Radiation Field of a Piston Source. Diffraction.

In Section 1.5 we discussed the case of plane waves at some length,
while Section 1.6 gave a brief account of spherical and cylindrical waves.
Actual sound sources usually differ considerably from these idealized cases,
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the commonest being a flat plate of finite dimensions that vibrates perpendic-
ular to its plane (the plane piston). The next step in the case of linear
acoustics is the analysis of the radiation field from such a sound source,
whose dimensions are many times the wavelength of the radiation.

Such sn analysis usually begins with the statement of Green’s theorem.
Given two continuous functions with continuous first derivatives, in a region
bounded by the closed surfaces, we have

2y - yo? = % 4
f,,(w V- yve)dV -L (w 3 ® 5 )dS (1.62)

where n is the inward drawn normal to the surface (Fig. 14).

Fig. 1-4.-Surface for Green's theorem. P, P’ are inside and
outside the closed surface, respectively.

Now suppose that both ¢ and ¢ are solutions of the wave equation
(1.37a), where the time dependence is assumed to be given by ¢/“’!. Then the
left-hand side of (1.62) vanishes, leaving

a0 30\ .. _
L(ﬁ&" -5;->ds =0. (1.63)

Since ¢ is an arbitrary solution of the wave equation, it can be chosen
so as t