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SIGNAL ANALYSIS TECHNIQUES FOR INTERPRETING ELECTROENCEPHALOGRAMS

INTRODUCTION

Objective

The principal objective of this project was to review and assemble the
relevant signal-processing literature for analyzing and interpreting electro-
encephalograms (EEG), especially visual evoked responses (VER). In the course
of satisfying this objective, it was necessary to consider the goals of the
U.S. Air Force; that is, to consider the fundamental U.S. Air Force objectives
which led to this study.

The principal U.S. Air Force objective is to investigate the usefulness
of the EEG/VER as a tool in assessing the effects of visual stimuli upon the
flier, especially stimuli which could lead to a temporary (or permanent) de9-
radation of performance. This could include flashblindness, disorientation,
or other physiological impairment caused by visual stimuli.

z. iScope

This study has been, by necessity, somewhat limited in scope. We were
concerned with assessing the state-of-the-art in digital signal processing as
it relates to analysis and interpretation of the ELG, especially the VER. The
nature of the EEG signal is very complex and for th s reason the required tools
may be quite sophisticated.

The study has concentrated on those methods suiiable for analysis of visual
evoked responses rather than those more suited for analysis of the spontaneous
EEG. Thus, emphasis is not placed on tracking periodicities such as alpha,
beta, or theta waves, since these tend to be missing in the VER. However,
methods of modeling the spontaneous EEG have been considered since by eliminatL
ing spontaneous EEG components, the VER should be more evident.

In the course of this study, we have investigated the problem of measure-
ment variability observed after signal processing In particular, we have
analyzed the current processing techniques used by the U.S. Air Force to de-
termine whether the observed variability might be cauled or aggravated by the
processing. We have also conducted a thorough literature search to look for
neurophysiological evidence of variability and possible cures. Finally, we
have reviewed advanced signal-processing techniques to determine their poten-
tial for reducing variability.

The results of our efforts are encouraging. We have found reason to be-
lieve that some improvement is possible, although the magnitude of the improve-
ment and the recommended processing techniques cannot be determined without
a thorough analysis of the original (preprocessed) data. We suspect, however,
that significant improvements may not be possible without more sophisticated
processing and modified experimental practice and data collection.



77-
General VER Signal Characteristics and Processing Implications

The characteristics of the VER signals we wish to analyze are not
easily described using simple models. An example of an idealized VER is
shown in Figure 1. The signal is clearly nonstationary and of high order.
Furthermore, the VER cannot be modeled by a minimum-phase system since
energy in the VER grows with time during the initial response. This
complicates the modeling process.

I A v v3A 1

VII 
VVl I

RESPONSE: RESPONSE

100 200 240 540 940 1340

"- TIME (ms)

.*-EVOKED POTENTIAL "014-RHYTHMIC AFTER DISCHARGE -'I

Figure 1. Schematic of a visual evoked potential.
(after Desmedt (28, p. 18))

The VER is a stochastic process and any realistic analysis must include
a consideration of stochastic effects. An example of a set of averaged VERs
taken from the same human subject, but at different times, is shown in
Figure 2. The variability between records is not systematic and follows no
simple pattern. The problem is made more difficult by the fact that the VER
is a collective process arising due to the action of many, variably coupled,
cellular generators. This lack of determinism (predictability) in the VER
suggests that stochastic effects are significant and that care must be taken
when modeling them.

In designing VER signal-processing techniques, it is essential that the
following points be kept in mind:

] a) The VER signal is a stochastic process with a significant amount of
unpredictability in time.

b) The VER signal is, at least in part, a nonstationary process. It
is important that analysis techniques explicitly take this fact
into account.

c) The information we seek may be spread over more than one electrode.
Thus multivariate analysis techniques should be employed.

d) The relationship of input stimulus to output response we are
analyzing will be nonlinear, especially the saturation (flash-
blindness) reaction.

4
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Figure 2. VER variability. Each tracing is an average of 240
successive 1-sec segments time-locked to a checkz borI 1< pattern stimulus at a reversal rate of 4 per second.
Data are for the human subject under the same
controlled conditions during the same day, covering
both morning and afternoon. Data supplied by the
U.S. Air Force.
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e) The corrupting noises we wish to filter out may be partially
correlated over several adjacent electrodes. This is anotherargument for using multivariate signal analysis techniques.

With these points in mind, we can now broadly outline an overall
approach to signal processing:

a) We iay think of the EEG/VER signals as outputs of a system which we
can iwodel phenomenologically. That is, using all information at
hand, e v'll1 use a system model to generate the evoked potentials.§4 b) We wish to take advantage of the known physiological character-
istics of the eye and brain, insofar as they suggest particular
model structures.

c) We will employ generic models which can be used to explain as many
,h Iobserved phenomena as possible.

d) We will take advantage of recent developments in the fields of
system modeling and identification, time series analysis, adaptive
Kalman filtering, spectral analysis, and pattern recognition.

e) We will sunest experiment design methods in order to enhance
model identification by tailoring stimulus features to particular
measurable reaction.

Overview

This report begins with a discussion of the signal-processing approach
presently used by the U.S. Air Force for VER analysis, namely the Fast
Fourier Transform (FFT). The obsered variabiiity in the periodogram is
explained qualitatively and quantit 'vely via several simple signal and
noise models. Based on these results. diereit signal processing
techniques based on FFT analysis are suggested.

The physiological aspects of VER vatiability are discussed in the
section "Aspects of EEG/VER Variability." A comprehensive literature search
has been carried out in order to relate the U.S. Air Force problem to the
work of other research groups and their findings. Several mechanisms for
rxplaining the observed variabilities are presented. The important problem
of how to determine an appropriate measure of VER activity is discussed.

The section "Improved Techniques for VER Analysis" is devoted to a
discussion of alternate signal-processing techniques which are appropriate
for VER signal processing. These include recently developed analytical
methods and modeling approaches as well as more classical approaches. They
have been culled from a comprehensive review of the EEG literature, as well
as specific Scientific Systems, Inc, experience in biological signal
processing.

Our conclusions and recommendations are given. Appendixes A through J
are sections from our Interim Report that summarized our survey of
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signal-processing techniques applicable to EEG/VER analysis. This report
began with a review of the physiological background of tne problem and the
general signal-processing objectives of the U.S. Air Force. We then
diszussed a number of signal-processing methods which may be useful in
fulfilling the objectives. We concluded with a discussion of how these
methods might be applied in VER experimentation.

ANALYSIS OF CURRENT PROCESSING

This section discusses some of the current signal-processing problems
facing the U.S. Air Force researchers and outlines potential solutions and
inalysis techniques for reducing signal variability. This variability in

•' the processed data, described in more detail below, is the major obstacle to
developing accurate visual performance measures. We believe this obstacle
can be reduced, if not removed.

U The basic questions we tried to answer are: is the large amount of
variability due to a signal characteristic or processing technique, and can
it be reduced by alternate processing methods? Our answer, based on theY available data and explained in this section, is: the variability is
largely consistent with a noisy measurement model; that is, the variability
is probably due to "noise" in the measured signal and is not a processing
artifact, although different processing methods have varyng sensitivities
to the noise. Thus, the effect of the (signal) variability on a visual
performance measure may be reduced by alternate processing techniques, some
of which are quite simple and fast. In order to recommend a specific
processing technique, however, an analysis of the raw data (measured EEG
signals, with and without stimulus) is necessary.

Experiment Purpose

In order to evaluate potential processing techniques, an understanding
of the purpose of the experiments is necessary. The immediate objective of
the current experiments is to develop a measure of visual system (eye and
brain) performance, using EEG data, that is accurate enough to distinguish
between levels of visual acuity ranging from normal sight to flash-induced

*j blindness. This measure must be computable in a reasonable amount of time
(e.g., I min or less) in order to permit accurate tracking of the recovery
for temporary flashblindness.

The achievement of this objective is hampered by certain experimental
constraints (imposed in order to make the results relevant to the U.S. Air
Force mission), such as narrow fields-of-view and anesthetized subjects,
which reduce the amplitude of the VER and make it difficult to measure. To
date, the observed variability in the processed data is sufficiently large
to make accurate visual performance evaluation extremely difficult. We
would like to examine whether this observed variability is due to the poor
signal strength or other factors.

We begin by describing the observed variability and then investigating
the processing used on the data. Next we discuss an alternate processing

7
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technique and compare its performance to that of the current method. We end
this section with a summary of our conclusions to date.

Observed Variability

An example of the degree of variability is shown in Figure 3, which was
made using actual data supplied by the Air Force. The figure shows the
power (in undesignated units) of an evoked potential (left-hand data) and
background noise (right-hand data) when processed in a particular manner,
described in the next section. The experiment was performed on an
anesthetized monkey, and the points have been reordered for this plot. Each
point represents 60 sec worth of data, and the noise points were originally
interspersed between signal points. Data were taken for approximately 5 hr,
and only the first group--up to a rest period at 40 min--is shown. The
rest of the data was qualitatively similar to that shown.

The experiment conducted was of the "steady-state" type, discussed in
the section "Aspects of EEG/VER Variability," where the stimulus was a
sinusoidal grate pattern which reversed 4 times per second. The processing
employed tries to estimate the evoked response power (at 4 Hz) while
suppressing the background EEG. The same processing is applied to each data
group--the only change is the presence or absence of the stimulus pattern.

ICurrent Signal Processing

In order to examine what the signal (EEG) characteristics are, we need
to understand what the current processing technique does to the data. By
inverting the processing operations, we would like to arrive at a signal
model which can be used to obtain a better processor. Such an inversion is
nearly impossible from the limited processed data available, of course, and
a complete signal model must await the analysis of the original raw datd.
Nonetheless, much can be learned from simple potential models, as discussed
below.

The basic processing approach currently used is a hybrid time-average
1]and Fourier Transform which has several interesting properties. The raw

signal (measured EEG), denoted by x(t), is first averaged at 1-sec intervals,
forming R(t).

N-l
-. F~)= x(t+n) t (0,I)

n=O

Thus, for the data of Figure 3, 60 sec worth of raw data is divided
into 60, 1-sec intervals (each with 4 evoked responses) carefully aligned
with the pattern reversal signal. These 60 records are then added together
and divided by 60 to obtain an average evoked response 1 sec long,
containing 4 individual average evoked responses. This average signal is
then passed through an FFT algorithm (see Appendix C), which produces a
complex sequence equally spaced in frequency (with 1 Hz resolution, in this
case). The periodogram (power estimate formed with the magnitude of the FFT

8F'
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coefficients) is then computed, and the power component at 4 Hz is ob-
tained. This power estimate is the data point used to summarize the
60-sec record, and these points are the ones shown in Figure 3. The pro-
cessing sequence is shown in Figure 4.

Time Average
Time Series 1 N Periodogram

Tim Seie 1T E x(t+n) R.~-LJFT ()- x(t) n1l tI_ ()+i 2(w) I(wk)Xl(k)+2(wk)I

Figure 4. Processing sequence of time series.

The two-step processing (averaging, then taking the FFT) should reduce
"noise" (spontaneous EEG not in phase with the stimulus for 60 sec) and
enhance the typical evoked response. The averaging process will favor
patterns that repeat at multiples of I Hz for the full 60 sec and suppress
those signals, such as the background EEG, which naturally "wander" in phase.
In particular, white Gaussian noise will have its variance reduced by a
factor of 60; that is, if

x(t) = n(t)

E[n(t)] = 0

E[n(t)n(T)] = Q6(t-T)

4 ! wh'.e 6 is the Dirac delta function, and Q is the height of the noise
spectrum, then

1 EEi(t)) = 0

E[i(t)iT)] = 60 6(t-,) (1)

Pure sinusoids at multiples of 1 Hz, however, will pass through the averages
:1 unaffected (i.e., with full power). Specifically, if

I! x(t) = I- sin w0t t c (0,T)

then

PT

for the scale factors used in our analysis. The application of the power
estimator when more complex signals are present is not as straightforwdrd,
however.

10
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FFT Operation

The FFT function often used to obtain power estimates is called the
oeriodogram, as discussed in Appendix C. When pure sinusoids are processed
in a periodogram, good power estimates are obtained, as discussed above.
When noisy signals are processed by a single periodogram, however, very poor
spectral estimates are obtained, with the error in the estimate often as
large as the true power level. In particular, for a Gaussian spectrum, the
standard deviation of the estimate is equal to the true spectrum height.
Moreover, when both a pure sinusoid and a Gaussian process are observed, the
estimation error (at the sinusoid's frequency) can be much larger than the
Gaussian process alone might suggest.

Consider a signal of the form

z(t) v2sin w0t + n(t)

where

E[n(t)n(T)] = Q 6(t-T)

If n(t) is observed alone and an FFT (periodogram) power estimate obtained
from it, the average power at each frequency would be

J S(w) = Q

The variance of each power estimate would be Q2. This results from the fact
that the elements of the periodogram are Chi-squared random variables with
2 degrees of freedom. If the pure sinusoid were observed alone for T
seconds, the power estimate at w would be

S(Wo) = PT

with zero error, as discussed above.

The question arises: if both components of z(t) are observed, what is
the mean and variance of the spectral estimates?

To answer this question, we first note that the FFT is a linear
operation (before the periodogram is computed) and that therefore the
Fowler coefficients are normal random variables. Thus, for the signal

~ above, we may model the Fourier components as1

1. 2

x-N(m,o ) implies that x is a normal (Gaussian) random variable with mean m

and variance a2. - = E( ) is used to denote the mean of the quantity ( )
Var( ) is used to denote variance. The mean of the xi(w O) components

depends on the phase angle of the sinusoid, and we have assumed a 450 angle
here. The spertral estimate s is, by design, independent of the phase.

• 11



N(O, Q/2); j0 = 1,2
xi (j)~

N .1 F, Q/2); wj = o

and the spectral estimate is

s(w) =xl(wi) + x2(wi)

Thus, if Q = 0

x(WO) = PT

and if P = 0

s(wj) = Q

var x(o) =Q

7 which agrees with our previous result.

When Q and P are both not zero,

PT

s(w ) + +Q (2)

Var S(wo) =Q + PTQ (3)

as derived in Appendix K.

Thus, the mean spectral estimate is precisely the sum of the sinusoidal
and white noise means. The variance, however, is larger than the white
noise variance, and includes a cross-product (PTQ) that results from the
squaring operation used for the power estimate. In the case of the data
shown in Figue 3, the cross product term may be much larger than the white
noise term (Q ).

If the noise process is not white but colored (correlated), the results
are similar. Indeed, if the noise spectrum is essentially flat over a
bandwidth enclosing the sinusoid and as wide as the FFT resolution, the
white noise model may be used. In the present case, if the FFT has
frequency samples 1 Hz apart and the background spectrum is nearly flat from
3 to 5 Hz, then a white noise model may be used for examining the 4-Hz power
component. Thus, the two noise spectra shown in Figure 5 have essentially
the same effect on estimating the 4-Hz' power component in an FFT. This
observation may be used to justify a white noise model for much of our
current analysis, where very little is known about the signal away from 4 Hz.

12
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S+-- colored noise
l--I----- - IA l--- l- -. Frequency

44 Figure 5. White and colored noise indistinguishable near 4 Hz.

Current U.S. Air Force Processing

With the above results, the performance of the current U.S. Air Force
processing technique may be analyzed for simple signal models. The current
technique can be divided into two steps: time series averaging and
periodogram power estimation. As discussed above, the averaging step
reduces the noise (broadband background EEG, measurement noise, etc.)
variance by a factor of 60. The periodogram then produces a somewhat noisy
power estimate from the averaged signal.

Specifically, we consider a signal composed of a pure sinusoid and

white noise, i.e.,

z(t) =V2sin W0t + n(t)

as above. The current technique computes the time average

lN
z(t) = z(t+n) t E (0,1)

n=l

The result of this averaging is to create a signal of the form

i(t) = /2P-sin wt + n(t)

4 where

E[n(t)ni(t)] N! (t-T)

using the results of Eq. 1. Thus, the performance of the current estimator
is:

Mean S( O) PT + Q (4)2 N?

Variance var(s(wo)) 2 + N QPT (5)

These results are shown in Figures 6 through 8.

13
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Figure 8. Variability of single periodogram (+o).

Modeling Implications of Data

The sample statistics (mean and standard deviation) of the data shown
in Figure 3 (18 points) are given in Table 1. Also shown in the table are
the statistics for the full (5-hr, 84 and 85 points) data sequence from that

14



experiment. The samples are reasonably close, so that a fairly high

confidence can be placed in them.

TABLE 1. EXPERIMENT STATISTICS

Stimulus on Stimulus off

18 pts. 85 pts. 18 pts. 84 pts.

4 Mean 5.56 4.41 1.42 1.52
Standard

Sy deviation 1.94 1.69 0.74 0.85

We note in particular that the standard deviation-to-mean (a/m) ratio

for the background noise (stimulus off) case is approximately 1/2. A
Chi-squared statistic, which would result from normally distributed samples 2
(xi(w)) being squared and summed (in the periodogram), would have a ratio of

m Vn

where n is the number of terms being summed. For n = 2, corresponding to
the usual spectral estimate (real and complex parts of the FFT),

m

Thus, we see that there is less variability (proportionately lower a)
in the stimulus-off case than would be present in a white noise (or
broadband noise) spectrum. This discrepancy, although not overly signif-
icant, indicates that a white noise model is relatively conservative (more
variability than actually observed) and that time-varying spectra (e.g.,
from nonstationary signals) may not be needed.

If we believe that the stimulus creates a highly correlated (nearly
deterministic) response in the EEG, then the observed signal might resemble
a sinusoid (at the reversal rate--4 Hz) plus the background noise. Using
noise values near the background noise levels (0.5 to 1) and a sinusoid
power level (P) of 9 (to produce spectral heights on the order of 5 for T=l
sec), we see in Table 2 that the resulting mean and standard deviation
(calculated using Eqs. 2 and 3) are close to those seen in Table 1.

Once aqain, the discrepancy between the simple model predictions and
the observed values is not great, and indeed the model values are more
pessimistic (higher a) about estimldting s than the observed data indicate.
We also see that adding a pure sinusoid to low measurement noise results in
a much larger spread in the spectral estimate than one might think. This is

21n this case, a2 would equal Q/60 where Q was the original noise level.

15



- -. . , *,

a normal consequence of using a single periodogram for spectral estimation.

The next section discusses one of the traditional ways of reducing this
variability.

TABLE 2. THEORETICAL STATISTICS

Stimulus on Stimulus off

a SS o 5

5 2.18 .5 .5

5.2 2.61 .7 .7

5.5 3.16 1 1

Classic Spectral Estimation

One of the standard techniques in spectral estimation is a slight variation
on the current U.S. Air Force approach of computing the periodogram of a time
series average. The classic technique computes a periodogram for each window in
the total record length and then averages the periodograms to obtain a power
spectrum estimate. This averaging reduces the error in the spectral estimate
although it does not reduce the noise level in the signal. This is a fundamentally
different result from that of the current U.S. Air Force processing: the classic
technique tries to estimate the complete spectrum (signal plus noise), while the
current approa:h tries to reduce the noise and then estimate the sinusoidal power.

The classic approach gained favor because of the severe sensitivity of

a single periodogram to noise--even when the noise power is low. This
sensitivity was discussed above, where it was shown that for white noise,

the standard deviation of a single periodogram was as large as the mean
value of the spectrum being estimated. The classic approach averages N
periodograms to obtain a M, reduction in standard deviation, while the
average value converges to the actual power spectrum (sinusoid plus noise).

Specifically, we consider the N spectral estimates

2 2
i + x2 (W0) + x2 (Wo) n =n(O I n 2i

from the N windows:

z(t+n), t c (0,I), n = ,...,N

For each window

SXin(W O)  N(m,a )

n

16



where

2 Q

and then
iN ^

S(o = W Sn(W O )n=l1

is the average spectral estimate. The mean and variance of s, as computed
in Appendix K, are:

PTs(WO) = 2 + Q (6)

and
2

vvr s(W) Q + PTQ (7)
N

This mean and standard deviation are shown in Figure 9.
Power

PT

2/ Q_

-P_ Frequency

Figure 9. Classic estimator performance (+o).

The classic technique is a somewhat ad hoc method which has proved to
be very useful in unknown-siqnal applications, The method can be tuned to a
particular problem by varying the window width, using window weighting1functions, overlapping windows, or smoothing the frequer-y estimates as
discussed in AppEndix C.

Comparison of Approaches

In order to demonstrate the difference in these signal processing
methods, we consider a sinusoid plus white noise model as discussed above,
with the parameters adjusted to produce results similar to those of Figure 3.
For clarity, the stimulus on (sinusoid plus noise) and stimulus off (noise
only) simulation results are plotted separately in Figures 10 and 11. The
first 10 points represent 10, 60-sec data records of signal plus noise,
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f3llowed by 3 min of quiet, and 10, 60-sec noise-only runs. Figure 10 shows
the performance of the classic approach, and Figure 11 shows the current
method. The same data were fed to both processors, and the simulation
parameters were P = 9, Q = 30, N = 60 (60, 1-sec intervals per point for
both techniques). The actual mean and standard deviation of the simulations,
along with the predictions from Eqs. 4 through 7 , are shown in Table 3.

TABLE 3. COMPARISON OF SPECTRAL ESTIMATORS

Stimulus on, Stimulus off

mean a mean a

Simulated 34.54 4.30 30.59 4.33
Classic

Predicted 34.5 4.42 30.0 3.87

Simulated 4.60 2.68 0.65 0.48
Current

Predicted 5.0 2.18 0.5 0.5

These results are quite revealing. The results using the current
approach (Figure 11) demonstrate that merely adding a sinusoid to broadband
noise drastically increases the ' spread of the data points in addition to
raising the mean. The numbers are generally similar to those of Figure 3,
as desired. The classic approach, on the other hand, has a much lower
percentage variability, although the separation between signal plus noise
and noise is no (proportionately) as great. Appendix K shows that the
percentage variability (a/m) for the classic method is always lower than
that of the current processing scheme for a simple signal plus noise model.
Whether this r3ult is useful to the U.S. Air Force depends on the true
signal characteristics.

The amount oF noise in these simulations is quite large. Before
averaging, the s;nisoid (P = 9) power level is only 4.5 units above the
background noise level of 30 (SNR = 0.15). If the noise--due to background
EEG, measurement noiqe. rocessing errors, or physiological artifacts--is
actually this bad or the sigpal this small, most processing schemes will be
hard-pressed to dra,;tically imnrove on these results. In order to determine
whether substantial improvement Is possible, we believe the raw data should
be analyzed in detail.

We note in passing thal the increased variability shown in t
stimulus-on results appears due to tne "cross term" PTQ (or PTQ/N) the
variance formulas. This cerm is a result of the squaring operatic in the
power estimates. If the signal shape is known (or easily approximated) and
the phase lag (latency) is relatively constant, it may be possible to

lfilter the signal,, thus avoiding the int,-rference cross term. For
example, for the sinusoid plus noise signal above, if we form

= 1Tz(t) sin wz dt
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The mean of I is

and

var

which is independent of P. For the parameters used in the simulation,

A =45 = 2.12

var A _7MT = 0.5

The degree of noise attenuation with this approach depends on the total
integration time (60 sec in this case) which is the reciprocal of the
bandwidth used. A longer averaging time corresponds to a narrower bandwidth
for the noise to pass through. In the U.S. Air Force case, it may be
possible to rearrange experiments to permit longer data lengths before
stimulus-off readings. (If an accurate estimate of P is obtained, the
stimulus-off readings might reduce to periodic baseline checks.) If 1-min
response is needed (or even faster for the flash recovery tests), a sliding
average may be used.

Finally, we note that the average of several log of periodograms are
sometimes used to estimate the log of the spectrum. This estimator has
somewhat different properties (the variance becomes independent of the
spectrum) which make it attractive in some circumstances. The scatter of
the estimates is proportionately reduced, although the sensitivity to

4amplitude changes is also lowered.

Remarks

This analysis has described what the FFT (and periodogram) does in
power spectrum estimation and how it is affected by noisy input signals.
Using this knowledge, a simple signal model was constructed which qualita-
tively duplicates the experimental results at a single frequency (4 Hz).
Alternate signal processing schemes which reduce the observed variability
were then discussed.

These alternate techniques estimate different parameters than those of
the current method, and the usefulness of any of these alternates can only
be judged by considering the relevance of the estimated parimeter as well as

, -the accuracy achieved in estimating it. Thus, if the classic method
(averaging periodograms) reduces variability (by better estimating the
signal plus noise power) but does not help distinguish between two low-level
signals of nearly the same power, it may not be useful in quantifying visual
performance. Alternatively, by estimating all of the power near 4 Hz, the
classic approach may find a signal component that was filtered out (e.g.,
due to phase jitter in the evoked response) in the current method, thereby
reducing variability and improving sensitivity.
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To determine what signals are really present, and what the best ways to
estimate them are, a thorough analysis of the raw data (measured EEGs from
many electrodes, as currently recorded) is necessary. Some of the tests
that we recommend performing on this data are listed below.

First, the classic spectral estimation technique should be used to
track the propagation of the full spectrum with time. (Other analysis tools,
in addition to spectral techniques, may be needed if significant nonstation-
arities are noticed.) The changes in the spectrum between stimulus on arc.
off should be noted. The response peaks (to the stimulus) should be
examined to determine if they are broad enough to be measured by the classic
technique but not by the current approach.

Examining the full spectrum will also determine whether any extraneous
large peaks are present to corrupt the data and result in poor FFT scaling.
Fixed-point FFT routines usually scale the signal to reduce error, which
tends to be of a constant magnitude independent of the signal (i.e., if the
signal weren't scaled, the maximum available signal-to-processing noise
ratio would not be obtained.) A large peak away from 4 Hz might therefore
govern the scaling operation, leaving the 4 Hz component with more noise
than necessary. This may be cured by simply filtering the EEG around 4 Hz.

Also, we believe it is important to examine all the recorded electrodes
for useful information. One channel will undoubtedly have most of the
response power, but the other channels may be useful in obtaining an
accurate EEG (background) signal which could be used to improve the VER
resolution (e.g., by subtracting the background from the VER-plus-background
channel before regular processing).

These tests, and others that may appear appropriate after an initial
investigation, can all be performed on recorded data, and do not require

4 special new experiments.

Conclusions

On the basis of analysis of the available data, we can conclude that
the observed periodogram variability is consistent with FFT processing of a
simple noisy measurement model. Therefore, it is entirely plausible that
the observed variability is due to two principal factors: (1) a high "noise"
level in the signal--most probably the spontaneous EEG, and (2) the extreme
sensitivity of a single periodogram to the residual noise present after
time-series averaging. In particular, the observed increased variability
when the stimulus is present is probably caused by the nonlinearity in the
processing technique (squaring signal and noise) rather than by an increase
in the noise level.

We also believe that the variability in the processed signal may be
reduced (i.e., the effect of the noise on a visual performance measure may
be reduced) by alternate processing techniques. Two of the techniques
discussed were: a simple modification to the current aporoach--altering the
order of FFT and averaging operations--and a simple linea,- filter to
estimate the VER amplitude. Selection of the most useful processing
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:echnique (or simply optimal t.-uninq of the availab> techniques) must,
however, await an analysis of the original measured data. Only then can an
appropriate signal model and related processing scheme be chosen.

A thorough analysis of the raw data may reveal that our simple model is
valid but that the signal to noise ratio ("signal" and "noise" as defined
earlier) is simply too low to permit sufficient reduction o4 variability for
the U.S. Air Force purposes. In this case, new informati:1 (e.g., through
more electrodes) or revised experimental procedure may Le: ne necessary.
The data analysis may also reveal that a more complex signal model, and
sophisticated processing techniques, are required. In this event, improved
performance may be obtained at the cost of some additional processing
complexity. These issues are addressed in the next two sections.

ASPECTS OF EEG/VER VARIABILITY

In our Interim Report we developed the concept of an Eye-Brain-

Electrode model (see also Appendix B). From information we obtained to date
from the U.S. Air Force, it appears to us that a considerable effort is made
by the U.S. Air Force to control for variability due to the experimental
conditions and eye (especially for the monocular preparation). Thus, we
will mainly address the variability due to the brain, discuss some appar-
ently new aspects of the brain-electrode transmission, and aspects of
improving the utilization of electrodes.

mt Roughly, the concept of variability of EEG and VER arose from experi-
ments in which many factors are unknown and their :ombined effect on
measurements appears random. But even when many experimental variables are
controlled, successive measurements may differ in quality or in quantity.

4' One attempts, of course, to control for as many factors as possible, but the
number of potential factors in living systems is rather overwhelming. But
even when the effect of some of the important factors is known individually
for each factor, one can often not predict the effect of several simulta-
neously acting factors. All of the resulting changes in experimental
outcomes may loosely be regarded as experimental variability.

Often a quantitative stochastic point of view is adopted in order to
:* describe variability. This concept lends itself to a further subdivision of

variability into variability due to sampling fluctuation (variability at
_fixed experimental conditions) and changes that are of a systematic nature

such as adaptation or fatigue.

When quantifying variability, one should always be aware that the term
is relative and the significance of a particular form of variability only
attains relevance when predictions are formed. For examole, variability of
scalp potentials can be used to assess lateralization of the brain (Rebert
and Low (84); Pfurtscheller et al. (81); Beaumont et al. (10)). In what
follows we will not stress any particular measure of variability, but
indicate in which sense a particular investigator perceived variability to
be important.

VIn this section, we will first discuss the variability of EEG and VER
under presumably fixed experimental conditions. Subsequently we will

23



briefly discuss some anatomical and neurophysiological principles which have
to be considered for the derivation of "good" measures (estimators) of VER.

General Considerations for Assessing Variability of Responses

For the purpose of quantifying responses as they are expressed in the
EEG, four methodologies stand out:

1. Signal transfer (modeling characterization)

2. Steady-state responses (these often lead to signal transfer
modeling)

3. (Single) response waveform analysis in space or in time (often one
uses random stimulus intervals and averages waveform)

4. The use of "a measure" of EEG activity such as power spectral
density estimation.

The first approach is a typical engineering approach and is geared for

the prediction of an output (the response) given some input (the stimulus).
In some instances the converse statement is also true, namely that the input
can be estimated from the output. In principle such an analysis might
appear to be the most attractive one. For practical matters, however, the
method is only useful vhen fairly simple structures are analyzed or the set
of possible inputs (stimuli) is small. The high complexity of living
structures can set limits to the identifiability (e.g., too many variable
components) of a given structure when only a "black box" approach is taken.
Also, in order to construct a quantitative model for a particular input-
output relation, much data has usually to be analyzed. For work in the
direction of signal transfer modeling, see Desmedt (28).

The second approach, steady-state VER analysis, is in many cases an
investigative stage prior to the above transfer-modeling approach. In
steady-state VER analysis, a stimulus is applied periodically and the

4 1 (usually) resulting periodic response is extracted. Typically amplitude and
phase relation (related to latency) to the stimulus are studied at the
fundamental frequency (e.g., reversal rate) and its harmonics. When
hardware correlation filters are used for this purpose they may have
adjustable bandwidth from about I Hz down to .001 Hz (Regan (85,86)). The
narrow bandwidth is equivalent to taking a long averaging window and

U)" typically reduces "noise" or variability, but results on the other hand in
slow tracking of possible true changes of a response. This method of
analysis is used as a diagnostic tool in medical practice.

Single response waveform analysis is often done by averaging individual
responses, all separated by large time intervals. Stimulation is done
either in a periodic fashion, or preferentially with random time intervals
between successive stimuli. Using randomized stimulus times is conceptually
comparable to drawing randomized samples, a typical approach in statistical
analysis. Such an approach is aimed at reducing variability (or cost) of
eecisions based on the sample (such as decision regarding the visual
oerformance).
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One may categorize a fourth approach in the evaluation of the response
of the EEG to a stimulus. This approach is characterized by the use of "a
measure" of EEG activity. The change of the measure in response to a
stimulus is studied. The choice of a particular measure reflects the
experience of the investigator or, in some instances, the properties of an
algorithm (Sencaj et al. (101)). Frequently used measures are the power
spectral density at specific frequencies or energy within a frequency band
and the autocorrelation (or cross-correlation) at selected lags. When
spatial distribution of EEG activity is measured, spatial spectra and
correlation are used (Adey and Walter (3), Nunez (74)). The use of such
m easures must usually be regarded as somewhat nonspecific. Lack of
well-defined objectives, insufficient understanding of underlying mechanisms
but well-understood properties of above-mentioned (noncommittal) measures
explain their preferential use.

In what follows we will consider evidence for the variability of any of
the above-rentioned measures as necessary. The discussion of several
measures relating to variability results directly from the U.S. Air Force
objective to reduce variability in their measures: the goal to derive such
measures (with respect to particular U.S. Air Force objectives) can only be
accomplished when the properties and contributions of several ongoing
physiological and physical mechanisms are clarified.

Variability of the VER

In the last decade the variability of the VER has become of increasing
concern, especially in the context of establishing confidence in averaged
VERs. Physiological variability as opposed to sampling fluctuations are
often described in more specific terms such as adaptation, conditioning
effects, habituation and dishabituation, sustained and transient responses,
and response plasticity. To understand this physiological variability of
the VERs, it was found important to investigate responses in relation to
other ongoing brain activity such as various rhythms ( the
Bereitschafts potential, and the P-300 wave. For some new findings in this

4 area using sophisticated signal analysis, see Chapman et al. (21). For
improved understanding of the variability of responses, invasive micro-
electrode studies have become quite prevalent. In contrast to scalp
potentials they provide drastically increased spatial and frequency
resolution of electric nervous activity.

One of the early systematic studies of variability in the VER is found
in Ciganek (25) who used 0 -Pz bipolar responses to flashes (.3 Joule, eyes
closed) with random intervils (3-6 sec). Ciganek describes considerable
intersubject differences analyzing mean amplitude (at peaks of response wave
some 10 msec after stimulus) and standard deviation. The ratios of standard
deviation over average peak amplitude lie between .24, for the "best"
subject, up to about 10, for the "worst" subject. In that latter subject
not only the mean amplitude decreased, but more importantly the standard
deviation was increased by a factor of 8 compared to the "best" subject.
Very interestingly, Ciganek reports also for some subjects a pronounced
decrease of VER variability (standard deviation of potential) some 80 msec
after the flash stimulus. Apparently this decrease in variability arises
from a general response of the brain to the stimulus. The finding of
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modification of brain activity by stimuli is also in agreement with the
investigations by Lansing and Barlow (61).

The relation between VER, adaptation attention fatigue, etc., has been
studied quite extensively with invasive microelectrode techniques ormicroelectrodes attached to the scalp (Riggs and Wooten (90), Van de Grind
et al. (112), Moise and Costin (71), Gould et al. (41), Salamy and McKean
(96), Oatman and Anderson (75), Pay (79), Schafer (97), Halgren et al. (48),

Rohrbaugh et al. (92), Kitajima (56), Kulikowski et al. (57), Drozdenko (33),
Hennessy and Levine (51), Grunewald et al. (43)). There is general
agreement on the importance of the limbic system (related to emotion and
autonomic control) and hence in microelectrode studies recording sites often
include the hypothalmus and hippocampal area in order to obtain indicators
for the arousal state of the animal. The typical measurements to derive
these indicators utilize transmembrane potentials (slow potential variations)
and neural firing rates of single cells. By these techniques the effect of
alertness or drowsiness of the test animal on the transfer characteristics
of the lateral geniculate bodies (the first relay stations of the optic
nerve, layered structures where binocular interactions first time take place)
has been shown.

On an anatomical level (Hubel and Wiesel (52)) back projections of
fibers from cortical layers to the lateral geniculate bodies have been shown.
The complexity of this structure, lateral geniculate bodies and visual
cortex, is Further underlined by evidence for inputs from structures other
than the lateral geniculate bodies (inferior and lateral pulvinar, Rezak and
Benevento (9)) to the primary visual cortex (Brodman's area 17). The
existence of these connections underlines the capability of VERs to produce
a rich set of responses under seemingly identical experimental conditions.
These findings also suggest not viewing the visual cortex as an "isolated
unit" when trying to model certain aspects of it. Instead, activity in
other areas may be important in explaining activity of area 17.

Along these considerations an interesting aspect of VER variability is
the apparent influence of the phase relations between c-waves and stimulus
on the VER. Work by Dustman and Beck (34), an extension of earlier
psychophysical results, aids in understanding subjective brightness41 enhancement when flash stimuli are phase locked with a-waves. The impor-
tance of considering various components of the EEG is underlined by this
finding.

The modulation transfer function (MTF) as a function of space and time
has been studied by Van de Grind et al. (112), and they give their results
in terms of isomodulation lines. However, their finding should be taken
with some care since Harter and Previc (50), investigating variability of
the MTF quite rigorously, found important adaptive processes in this
transfer system. In essence they studied the susceptibility of the spatial
MTF to changing attention to the stimulus and expectation of the individual.
By analysis of response amplitudes at a specific latency, they were able to
show an actual tuning of specific frequency channels. For evaluating the
MTF the experimental sequence of stimuli is thus important. Negligence of
this effect would clearly increase the unexplained variability of any
results.
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Several investigators have been concerned with the effect of simul-
taneous stimulation from different sensory modalities. The frequent finding
of strong interactions of evoked responses to these paired stimuli (possibly
with some intrastimulus time lag) (Oatman and Anderson (75), Fox (37),
Stowell (106)) suggests the control of at least some of them, auditory
stimuli in particular (Desmedt (29)).

Discussing variability of measures of VER also invites the question for
modifications of measures which, in a particular context, improve perform-
ance. One of the possible augmentation of measures is the P300 wave shown

Nto be a sensitive and significant indicator of attentiveness (Drodzenko (33)).
' However it appears that the use of the P300 wave limits stimulus rates to

frequencies below 3 Hz.

Modifications of measures of VER which do not show this limitation are
very desirable. Two findings concerning latency and spectral properties
might be important for the U.S. Air Force. De Voe et al. (30) showed that
predictions of stimulus luminance based on latency performs markedly better
than when based on amplitude. Somewhat in contrast to this finding might
appear the recent data by Osaka and Yamamoto (77) who show very high
correlation between amplitude and latency when luminance is changed. Their
particular stimulus condition, a 10 stimulus source, presumably very precise
orientation of the eyeball, a well-motivated subject, and the analysis of
very early response waves (P1) might in part account for their result.
Regarding day-to-day variations they find reaction time and response
implitude to change less than 0.5 log units.

The second finding concerning different spectral components is
discussed in Sokol (103). He summarizes that "low and medium frequency
ranqe reflect poorly the psychophysically determined spectral sensitivity
functions, while the high frequency components show good agreement with
photopic spectral sensitivity." These findings suggest the expansion of the
measures derived from the scalp potentials. Specifically, high frequency
components of the EEG and the phase relation (a relative of latency) of the
VER to the stimulus should then be included in the analysis.

Spatial Properties of the VER

From basic neuroanatomic and physical considerations one expects to
find local electric activity of the scalp to correlate with stimulus
modality. Clearly, the combined consideration of spatial and time proper-
ties of the VER lead to some experimental and data acquisition difficulties
and new aspects for data analysis. On the experimental side the main
problems are reliable reproduction of multi electrode arrays and on the data
acquisiLion side high digital to analog conversion rates. For careful
rupping of the entire scalp potentials Ragot and Remond (83) recommend about
200 electrodes (human), spaced about 2 cm apart. Currently, however,
development of potential maps is usually limited to tens of electrodes and
hence some spatial smoothing has to be performed in order to arrive at such
maps. Some of these maps are presented and discussed in Creutzfeld and
Kuhnt (27), Allison et al. (6), and Goff et al. (40). These maps might
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provide guidance for selection of multiple electrode placement. In addition,
timing windows for data acquisition may be specified in order to reduce the
digital-to-analog conversion rate requirements.

The EEG of Restrained Monkeys

In many VER experiments the experimental animal is restrained in its
body movements. Studies concerning the effect of restraint on EEG were
conducted especially in the case of monkeys. It was found that with
progressively more restraining conditions (head, legs, arms), the power
spectral density of the EEG shows corresponding progressive changes (Bouyer
et al. (13), Rougeul et al. (93)). In these studies the EEG of the experi-
mental animal, the unrestrained condition (in the cage), was compared to the
condition when the animal was strapped down in some device. Bouyer et al.
(13) suggest the use of an anxiolytic drug (diazepam) in order to restore
the highly abnormal EEG to near normal.

Anatomical and Neurophysiological Considerations of VER Changes

For studies of visual evoked responses one usually observes the
electric potential near the occiput. The anatomical basis for the use of
this electrode location is the proximity of the underlying visual cortex
(area 17, 18, 19). Consequently, one finds relatively large electric VER
potentials on the occiput when compared to the locations. It is necessary
to obtain large potentials because of masking noise-like "background
activity" of the brain.

From various field mapping techniques and neuroanatomic investigations
(Szentagothai (107, 108), Brooks and Jung (15), Sokol (103), Hubel and
Wiesel (52)) it is found that the visual world of upper half, lower half,
left half, right half, and a macular area have to be distinguished. These
areas map into corresponding areas in the visual cortex. Interestingly the
macular area has a very large representation in terms of area on the cortex
when compared to more peripheral regions. Sokol (103, p. 25) gives as a
typical value for this representation near the fovea that 2 min of arc in
the visual world correspond to 1 mm in the visual cortex.

4 Studies by Harter (49), in qualitative agreement with Riggs and Wooten
(90, p. 715), show that the central 30 are mainly responsible for VER
potentials on the scalp. Data by Sokol (103, Figj. 14) shows the small
contributir)n of stimuli outside that central 3' range. From these experi-
ments a relatively large response can be expected from low-diameter stimulus
fields (compare Osaka and Yamamoto (7)) provided they are centered foveal.
However, slight displacement (a few minutes of arc) may cause changes of
observed potentials, because the electrode location does not follow the
corresponding response location of cortical electric sources. An additional
aspect arises when opposing dipole moments are nearly cancelling (possibly
left versus right hemisphere). In such a case a slight spatial shift of the
stimulus may either result in zero potential, or amplitude reversal. Thut
such effects deserve attention follows from the distinct properties of the
response components Cl (% 75 msec delay), C2 (1 100 msec delay), and C3
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( 150 msec delay) described by Jeffrey (in Desmedt, (28) p. 136). He shows
that inversion of patterns produces corresponding inversion for some of the
potentials. Hence, for at least certain patterns, cancellation of differen-
tial voltages may result. In principle such an effect may contribute to the
finding of some researchers (Sokol (103)) of rather variable amplitude but
fixed response times at a given luminance. This concept might also be
elated to the finding of "variable" narrow-band low-frequency components

compared to "less variable" high-frequency components. (High-frequency
components may never attain a very fixed phase relation with the stimulus
and hence cancellation is not so obvious.) Anatomical considerations about
the mirror image-like mappings between areas 17, 18, and 19 suggest that
these contributions are separable by selecting appropriate electrode

j locations. In summary, analysis of scalp potentials by space, time, and
frequency properties is important for the derivation of good measures of
visual performance.

Signal Transmission from Cortex to Scalp

It has puzzled neuroscientists now for some time (F.G. Worden, 1979,
Director, Neurosciences Research Program, M.I.T., personal communication;
Pfurtscheller and Cooper (80)) that despite the large high-frequency content
of intracortical recordings, high frequencies on the scalp are very small
and are buried in electronic noise. Pfurtscheller and Cooper inserted
microelectrodes into cortical regions, passing high-frequency currents through
the tissue. No particularly selective suppression of high-frequency components,
as recorded on the scalp, was observed; they call for an explanation other
than tissue properties to be responsible for the surprisingly weak hig-
frequency components on the scalp as they arise from natural cortical
activity.

To get a grip on this phenomenon, it appeared worthwhile to us to

review properties of other bioelectric potentials, especially those which
arise from a large number of similar cells. The muscle as a source of
bioelectric potentials comes to mind. There too, one observes rather weak
high-frequency components on the superficial skin, while internal activity
contains strong high-frequency components. Some attempts have been made to
account for this phenomenon (including false arguments about wave-guide
phenomena), but the most successful and accurate work was done by Lindstr~m
and Magnusson (64). His theory predicts for fibers, conducting action
potentials with a given velocity, a power spectral density on the skin
(decreasing with increasing frequency), which is in good agreement with
experiments. Without going into detail of his mathematical derivation, we
just point out that the phenomenon of small high-frequency components is

* basically due to the travelling of action potentials. In Aopendix L
we give a simple outline of the concept which was solved by Lindstrdm and
Magnusson (64) for special geometries. The result suggests the possibility
of tuning sensor electrodes to nearby sources by selecting high-frequency
components. To exploit a range of frequencies rather than a single
frequency, the frequency-dependent properties of electrodes become important
and motivate the subsequent section.

29



teeFrequency-Dependent Properties of Macroelectrodes (and Amplifiers)

A good introductory treatment of the transfer characteristics of
electrodes is given in Cobbold (26) and the relevant main points are
reviewed in Appendix B. In summary, we recall that the typical impedance of
these electrodes at low frequencies is around 10 ko (compare also Osaka and
Yamamoto (77)). Interestingly, however, as higher frequencies are used, the
impedance falls considerably. To assess impedances of electrodes empiri-
cally, electrodes array approaches similar to Robillard and Poussart (91)can be used.

It should be noted that the frequency-dependent transfer function
characterization is insufficient to understand the limitations of recording.
The frequency-dependent noise characteristics set the ultimate performance

Z limit. With respect to these noise characteristics the work by Van der Ziel
(113) is fundamental. He distinguishes several different mechanisms for
noise, the most important ones in practice with electronic components
(including electrodes) being the 1/f-noise (mainly due to quantum mechanical
effects of tunneling), burst noise (with an insufficiently understood

mechanism of origin), and Schottky-noise. The 1/f-noise, or flicker noise,
has a power spectral density which falls with frequency f like 1/f and is of
importance for very low-frequency noise (including drifi) up to frequencies
of a few hundred Hertz. The burst noise has similarly a moderately
low-frequency power spectral density, while the Schottky-noise behaves like
white noise from DC up to terahertz.

The characteristics of the noise suggest different limitations for the
recording of low versus high frequencies. Van der Ziel (113) emphasizes the
importance of matching amplifiers to the frequency band uF intereL
(possibly using different amplifier units for different frequencies) and
using amplifiers with certain technologies (e.g., use, in some cases, input
pnp-transistors rather than npn transistors or FETs and use certain
semiconductor cleavage planes). he also discusses a variety of aspects in
connection with the design of amplifier input stages. It appears to us that
many investigators (personal communications) are not aware of some of these
fundamental principles. The view currently held (Cobbold (26)) is to use
high-input impedance in order to insure good common mode rejection.
However, in connection with sophisticated signal processing this need has
not yet been demonstrated.

Summary

In summary, it is seen that there is Lonsiderable evidet ;e fn
apparent VER variability with an origin other Lhan just signal analy- s.
The origin of this variability is mainly neurophysiological. Ways to
improve prediction or classification in the presence of variability must
come from improved extraction of information from the scalp potential field.
This can be accomplished with improved techniques for VER analysis (as
discussed in the next section) by consideration of an increased number of
electrodes and expanded frequency band for analysis (such as the analysis of
higher harmonics in relation to frequencies between harmonics). It should
be recognized that a priori restriction of analysis to only one component of
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i.
VER (such as the power of the sinusoidal 4 Hz component of one electrode)
merely limits the potential to measure visual performance; some of the
important facets relevant to good signal analysis were shown in this section.

• Finally, along the lines of information extraction we showed ultimate
limitations for information extraction due to the electrode and amplifier

1 design. Interestingly, it appears to us these limitations have not yet been
reached (personal communications, F. G. Worden), and little is known about
information extraction of high frequencies. As a result of these observa-
tions, we see considerable potential to aid in improving upon current
results of the U.S. Air Force.

IMPROVED TECHNIQUES FOR VER ANALYSIS1The use of classical spectral analysis techniques for VER analysis has
been discussed in the section on "Analysis of Current Processing." These
methods are quite popular in EEG analysis and have the advantage of being
almost universally understood in terms of their basic properties. However,
they possess several drawbacks which are significant for VER analysis:

1. Nonstationary components are difficult to analyze. The VER
contains significant nonstationarities.

2. Stochastic effects are not specifically accounted for. The VER

contains significant stochastic effects.

3. Relatively long data epochs are required.

4. They implicitly assume that activity is wideband when, in fact, a
more appropriate model may employ only a relatively few generators.

5. They are data-independent; that is, the decomposition is the same
for all signals, since the measured signal is always represented as
a weighted sum of sinusoids. This assumption is questionable for
signals of the complexity of the VER, as indicated in 1 and 2.

A wide variety of techniques offer potential improvements over the use
of classical spectral analysis. These will be briefly discussed in this
section. More detailed discussions are presented in the appendixes.

Philosophy of Approach

The underlying philosophy of approach which is suggested for VER signal
4 processing is based on the notion that all available prior information

should be brought to bear on the problem. For example, if we wish to model
the signal in some fashion, then we should use actual data to build the
models. We should incorporate information relative to known spectral limits
(upper and lower bounds characteristics of disturbances, structure of
underlying generators, etc. As an example, the discussion in the section
"Aspects of EEG/VER Variability" has delineated seteral research results
describing the importance of latency variations. Models which are utilized
should thus be consistent with the observed latency data, in terms of its
relation to amplitude, its possible rates of change, etc.

31



The approach we propose is model-based and is a combination of
phenomenological and physiological components. Phenomenological modeling is
a "black-box" approach which is often useful when trying to emulate complex
signal processes for which no adequate models exist. Phenomenological
models are developed without regard to underlying physiological structure;
they depend only on trying to match observed phenomena. The simplest
example of this approach would be modeling the alpha wave as an oscillator,
with some additional nuances to allow for observed statistical variation.
The physiological approach is based on the idea of using known structure or
structural constraints in the model. Although we seek to use physiological
information as appropriate (e.g., dynamics of the eye), it is felt that the
overall model will, of necessity, be more a phenomenological one.

We seek parsimonious models; models which are too complex almost
invariably lead to high noise sensitivity. In the section "Analysis of
Current Processing," it was demonstrated that the variability observed in
the U.S. Air Force data was consistent with very simple statistical models.
Such simple models can form an important benchmark in design of models.
For example, one needs to go to more sophisticated models only if the simple
ones prove inadequate. In addition, the modeling errors can often reveal,
by their nature, what the appropriate next modeling step is. By this
process, a series of increasingly suphisticated models can be formed, as
required, with reasonable assurance that the models are not overlyI soDhisticated.

The approach we propose is not just based on analysis of the VER but
utilizes the observed signal structure directly. Function is always linked
to structure. In the past decade, much progress has been made towards
understanding the ways in which information is communicated and processed in
the brain. In addition, recent experiments have strongly suggested that tti
EEG itself is a "second signal system" (Adey (4)) to which the brain cells
are tuned. That is, the EEG signal exerts an influence on the way in which
information is communicated and processed within the brain. If this is
indeed true, then it may be possible to eventually exert some stabilizing
control over the brain through the use of weak external electric fields.

41 We will not pursue the implications of external control here. Rather,
we wish to point out the importance of these experimental results on the
philosophy of approach to EEG, especially VER, analysis. Consider the
simple lumped parameter model shown in Figure 12. In Figure 12 (a), the
EEC e(t) is viewed as an output function consisting of noise-corrupted
sigial:

e(t) = S(t) + n(t) (3)

In Figure 12 (b), the EEG is viewed as a second signal system; thus e(t)
contains information. The EEG depicted in Figure 12 (a) may contain almost
no information, since there is ro a priori bound on the noise power; thus,
the EEG viewed as output could, in principle, be almost entirely buried in
noise. On the other hand, the "second signal system" model puts practical
upper limits on the signal-to-noise ratio. Since the brain utilizes the EEG
as a source of information, the signal cannot be almost entirely buried in
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noise; extraction of information would be rendered extremely difficult. The
implication of this result is that the EEG should, if viewed correctly,
supply us with information related to on-going brain function. We are aware
of no experimental results which would invalidate this conclusion. We wish
to stress this point here since it has impact on the philosophy we wish to
use in analyzing EEG data.

Since function is inevitably related to structure, we can conclude from
the preceding argument that the EEG may provide information as to the states
of groups of cells and, more importantly, to changes in the states of groups
of cells. If this can, in fact, be done, it is strongly suggested that more
sophisticated analytical methodologies will be required than have been used
heretofore. In his paper Adey (4) says that

lack of (new mathematical and statistical methods) remains a
critical bottleneck, in which engineering application has
seriously failed to keep pace with new physiological knowledge on

', the temporal and spatial organization of brain tissue and brain
systems .... our paths to an understanding of brain function must
surely falter and fail unless and until ways are found for
mathematical expression and analysis of the multidimensional and
hierarchical organization of cerebral information transaction.

We agree with this conclusion and would add the following points:

1. To our knowledge, EEG analysts have, as yet, not utilized several
powerful analysis tools already available. These include several
techniques of communication theory, adaptive filtering, and
generalized state space modeling techniques. These are discussed
in the appendixes.

2. More serious attention has to be given to the stochastic aspect of
the problem, so that information-bearing signals are not treated as
noise and true noise is filtered effectively.

3. A methodology is required to incorporate the idea of multiple,
nonlinearly interacting, generators.

4. Since the EEG is a manifestation of a distributed communication and
information processing network, a distributed process model should
eventually be developed. This would probably require a large
number of electrodes and models based on distributed network, or
larye scale systems, theory. These steps are in the future, of
course, but are an indication of the large amouat of work that yet
needs to be done in EEG signal-processing development.

Those points have been mentioned here to reinforce Adey's very
important observation that the present state-of-the-art in EEG signal
processing is seriously lacking. The methods which we discuss here are
based on the present state-of-the-art in signal analysis. Thus. these tech-r niques can be tried with a riniuum of software development time.
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EEG/VER Signal-Processing Objectives

Two types of objectives may be enumerated in EEG/VER signal processing.
The first is a general set of objectives which would be applicable to a
larger class of problems as well; for example, all biomedical signal-process-
ing problems. The second type of objective relates to the specific problem
at hand, i.e., EEG/VER signal processing, and includes determination of de-

*scriptive characteristics of the EEG/VER signal; e.g., characteristics not
shared by other types of biological signals.

General Objectives. The general objectives of EEG/VER signal processing are:

" 'i1. provide tools for extracting useful information
from the EEG signal;

2. perform information compression; and

3. remove noise from the desired signal processes.

Tools to be sought for information extraction should be general and
powerful. They will be determined on the basis of extensive analysis of the
data to determine the character of the signal and/or noise. Note that the
first objective implies that a measure of useful information be available.
This may or may not be a mathematical function. It could be based on a
statement such as "we wish to eliminate variability between these particular
measured signals" or "we wish to obtain a smooth response to this flash
i In this case, information may be only vaguely defined mathemati-
cally however, an improvement in information extraction will be readily
apparent by visual evaluation of the output of the signal processor. In a
more mathematical approach, measures such as entropy, rms fit error, or
others may be used.

Information compression is a very important step. Raw VER data,
sampled at a rate of 250 samples/sec, for example, quickly fills up adigital storage medium, especially when multiple electrodes are used. Not

ali of the data carries information. As a matter of fact, the information
rate is probably very low. The implication is that if we can extract only
the useful information, a tremendous reduction in storage can be realized.
More imoortantly, however, is that this information is what we need in order
to properly analyze the data. Information extraction is generally accom-
plished by employing modeling techniques, in which the signal is described
with a parsimonious set of parameters. These parameters, then, are the
carriers of information.

Once the signal process has been adequately described by, say, a

parametric model, it remains to remove the undesired disturbances. Disturb-
ance models may be utilized, which may be generated based on statistical
analysis of the cata. Some disturbances may have specific characteristics
(spike and wave, e.g.) which can be ised to advantage in d-tecting and
removing them. The VER has, characteristically, a large amount of noise
relative to signal, which is why a single VER is rarely used for analysis.
Typically many VERs are averaged. Although this does tend to bring out a
mean VER signal, any variations between responses which carry information
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tend to get averaged out. We propose to use techniques which can be used to
process a single VER.

A general model of the process by which the measured EEG is generated
is given below.

Information measured EEG3 Modulator +,

Information is thought of as being modulated by one or a set of modulating
functions of unknown character. For example, if the EEG contains phcse-
modulated signals, then the information we seek would be carried by a phase
process (t). Assuming simple sinusoidal carrier modulation at frequency w,
the EEG in the absence of disturbances would be sin(wt+ (t)), and (t) could
be recovered using phase-lock loop techniques described in Appendix D. Note
that if 4(t) were a constant, the modulation transforms the constant into
a continuous time process with infinite duration. The disturbances d and
d, may be correlated in practice. Using this general model, our objetive
i to:
it 1. remove disturbance d

2. recover the undisturbed modulating function; and

3. demodulate to recover the desired information.

Specific Objectives. The specific objectives are predicated upon
satisfaction of the general objectives just discussed. The objectives,
along with analysis tools and subtasks, are listed below in approximate
chronological order.

EEG/VER Data Analysis

compressed spectral arrays
correlation analysistransient response

effect of VER averaging
cross-correlation analysis

(a) between patients
(b) same patient/different times
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Model Development

overall signal processor structure
physiological considerations
signal models
noise/disturbance models

Performance Evaluation

parameter identification
model sensitivity determination
model validation
information extraction
pattern recognition

Redefinition Phase

project redefinition
experiment design

(a) enhance model validation
(b) disturbance reduction
(c) enhance performance

model redefinition
performance evaluation criteria

This list is meant to represent an outline of objectives and there will
be a synergism between the specific topics listed. For example, some

*i modeling may be performed prior to data analysis to better dtfine the data
analysis objectives. Prefiltering may be necessary to reduce disturbances
in regions outside the spectral bands of interest.

Data analysis is the initial information-gathering phase in which we
seek to learn as much as possible about the measured data. An important
aspect here is the sensitivity of the analysis to uncontrolled or unmeasured
changes. Model development will proceed in earnest in the next phase. It
is expected that both simple and sophisticated models will be developed.
However, the preferred approach will be to utilize simple models initially
and investigate the conditions under which these are inadequate. Tis
appltach will provide insicht into development of more appropriate and
complex models at a later stage.

Evaluation of performance will be assessed using a variety of tech-
niques. Robustness and sensitivity will be evaluated. Artificial data will
be generated, as requircd, to provide controlled inputs and disturbances.
Pattern recognition techniques will be used, as necessary, to assist in
evaluation of the signal processinq results in case there are more than two
or three parameters in the models (which we expect).

Redefinition of the problem and proposed solutions are expected to take
place during all of the above phases, as new information, other research
findings, test data, etc., become available.

3
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Discussion of Techniques

We now present a brief discussion of several techniques which may be
useful for VER interpretation and analysis. The reader is referred to the
appropriate appendix for a more detailed description of the techniques.

Frequency-Domain Signal-Processing Techniques. There are several
different types of frequency-domain signal-processing techniques, all of
which are based on a decomposition of the data into a set of spectral
components (sinusoids). Care must be taken, when using digital processing,
that the sampling rates are high enough to capture the frequencies of
interest without aliasing. In addition, sampling windows must be wide
enough to capture the lowest frequencies of interest.

The Fast Fourier Transform (FFT) is perhaps the most popular spectral
decomposition technique for EEG/VER analysis. A detailed discussion of the
properties of the FFT when used for analysis of the VER under a periodic
visual stimulation is given in the section "Analysis of Current Processing."

Recently, several alternate techniques have been developed for spectral
estimation which offer advantages over the FFT in noisy environments and
when the data epochs are rather short, perhaps only a partial cycle at the
lowest frequencies of interest. These are the Maximum Entropy Method (MEM)
and the Maximum Likelihood Method (MLM).

A detailed discussion of frequency-domain signal-processing techniques
is given in Appendix C.

Communication-Theoretic Methods. These methods are model-based
techniques of signal tracking and may prove useful in VER signal analysis.
The models are based on the assumption that the VER or EEG is a process

4composed of signal and noise components. The signal components we wish to
track are further assumed to be composed of one or more periodic processes
which are modulated. The modulation which we wish to recover is the
information carrier. As an example, latency variations in the VER could be
tracked using this approach. It is well known that the phase coherence in
the spontaneous EEG is affected by attention. This may also be true in the
VER, although to a lesser extent.

It appears that the use of phase-lock loops is an attractive approach
to the problem of signal tracking and recovery of modulation information.
These can be designea to recover amplitude modulation (AM) phase modulation
(PM), frequency modulation (FM), or a combination of these. In addition,
other modulation models, such as phase or frequency shift keying, can be

" tried.

rA detailed discussion of communication-theoretic methods and phase-lock

loops is given in Appendix D.

Nonadaptive Time-Domain Analysis. Time-domain signal-processing
techniques have the advantage of working directly with data as it evolves in
time. Typically, time-domain techniques are recursive in nature; that is,
the signal-parameter estimation process evolves in time along with the
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actual data. The most commonly used approaches utilize stochastic Markov
process models for the observed data_; these nodels are consistent with the
need to build recursive signal processors,

Perhaps the most important class of time-domain models are auto-
regressive moving-average (ARMA) processes. These have been used to model
the spontaneous EEG (e.g., Bohlin (12), Zetterburg and Kjell (121), Segen
and Sanderson(lO0)) and should have application to modeling of the VER as
well.

A more general approach to time-domain tracking of signals is the
Kalman Filter. This filiter utilizes a linear Markov process model and a
linear measurement model. The underlying dynamical process is driven by

' I a white noise process and the measurements are assumed to be noisy. There
are several advantages of Kalman Filters over the ARMA modeling approach.
The structure of the filter is a more intuitive one, allowing the ,esigner
to better use his judgment in constructing the filter. An even more
significant advantage is the fact that model identification is much simpler,
and specialized software exists for determining the structure and estimating
the parameters of the Kalman Filter directly from time-series data.
Finally, a third advantage lies in the structure of the filter itself. It
is relatively easy to model nonlinear effects and account for known time
variation of model parameters. The Kalman Filter is backed by almost 20
years of theoretical study and application to a diverse set of problems in
many fields including seismology, geology, biological signal processing,
space navigation, economic and financial forecasting, meteorology, hydrology,
image analysis, radar, and sonar tracking. In short, the Kalman Filter has
proved to be beneficial in estimation and tracking problems where there are
many variables to be simultaneously estimated and the signal process to be
estimated evolves essentially as a stochastic Markov process. The EEG/VER

'signal-analysis problem should be amenable to this approach since it appears
to satisfy these requirements.

A further discussion of nonadaptive time-domain approaches is given in
Appendix E.

Nonlinear Systems Analysis. The techniques discussed to this point

have been based on linear systems analysis in which the superposition
principle holds; that is, it has been implicitly assumed that the evoked
response is a superposition of several responses and that the total response
is a linear combination of these responses. Furthermore, linearity implies
the absence of saturation or hysteresis phenomena. It is well known that
there are many nonlinear phenomena underlying evoked responses, most
fundamentally in the generation of electrical potentials via the synapse.
At a higher level, these nonlinear effects may not be apparent directly.
However, they may manifest themselves in the evoked response via entrainment
or saturation phenomena, which have been observed often in EEG analysis.

Nonlinear analysis is much more difficult than linear analysis and, for
this reason, no general tools exist which are appropriate for all problems.
However, several tools have been developed which may prove useful in
analysis of the evoked potentials. Two of these are: (1) describing
function analysis, (2) Volterra series analysis. These are described in
some detail in Appendix F.
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Adaptive and Robust Schemes. There is strong evidence that the nature
of the evoked response may change significantly in time over both long and
short epochs. The nature of these changes may be evidenced in several ways,
including spectral content, amplitude, rms variation, etc. There may be
short transient-like phenomena which may be part of the signal process or
may be due to extraneous effects (artifacts) we wish to remove. All of
these effects represent relatively unpredictable phenomena and the attendant
evoked responses are then nonstationary processes. We need approaches which
can adapt to information-bearing changes in the observed data and which are,
at the same time, robust (i.e., insensitive to noise, artifact, and other
extraneous clutter).

In order to track nonstationary processes, more sophistication is
required than for stationary processes, since the observed data are
qualitativly more complex. Several methods have been developed, however,
which are felt to be particularly attractive for analysis of VER data.
These methods can be utilized to analyze, simultaneously, data from multiple
leads, and can do this without the requirement of growing memory for longer
data epochs. In addition, real-time analysis may be possible for few leads
and for simple models. Such (close to) real-time tracking and parameter
estimation can be of great help in assessing the results and validity of a
particular test shortly after or even during the test itself.

The methods which appear to have merit for nonstationary VER analysis
are: (1) adaptive noise cancelling, (2) adaptive ARMA modeling (analysis of
changing spectra), (3) adaptive Kalman filtering, (4) piecewise-stationary
modeling.

Adaptive noise cancelling is a heuristic technique based on the
assumption that the observed data in a particular lead consists of signalplus noise, with the signal and noise components correlated in a known

qualitative way with signal and noise -omponents in adjacent leads.

Adaptive estimation using ARMA modeling or Kalman filtering techniques
employs more structure for the signal process; the underlying signal is
modeled as a stochastic Markov process of known order and form. The
parameters of the model are then estimated recursively and used to infer and
track changes in the characteristics of the evoked response. Bohlin (12)
has successfully applied adaptive AR modeling to tracking the spontaneous
EEG, and it appears that this technique should also be applicable to the VER.

Piecewise stationary modeling of the VER is based on the idea that the
VER can be adequately modeled as a stationary process over sufficiently
short data epochs. These epochs are separated by points of transition of
which the signal process is assumed to jump from one type to another type.
Thus, changes in the behavior of the VER are assumed to occur in discrete
steps rather than continuously over time. Several methods are available to
handle this type of process. The most appropriate method to be used depends
on the nature of the jump. If the time between jumps is relatively long,
and the number of different signal types relatively distinct and small,
multiple hypothesis testing methods involving a bank of Kalman Filters mightbe appropriate (Lainiotis and Park (59)). These have been successfully

applied by Scientific Systems to ECG rhythm analysis (Gustafson et al. (45)).
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If there are a large number of different signal types, multiple AR models
can be derived using cluster analysis. This method has been successfully
applied to analysis of the spontaneous EEG by Segen and Sanderson (100). If
the time between jumps is relatively short or if there are transient
artifacts, a generalized-likelihood ratios approach (Willsky and Jones (118))
may be more appropriate. This technique allows one to both eliminate
artifacts and identify particular types of transients, as desired. This
approach has been successfully applied to the detection and identification
of cardiac rhythms using the ECG by Scientific Systems (Gustafson et al. (46)).

All of the techniques mentioned above have robustness properties, since
they are designed to be insensitive to noise and other artifacts, The
choice of the most appropriate technique must await detailed analysis of raw
VER data on a variety of subjects and under a wide variety of conditions. A
further discussion of adaptive and robust techniques is given in Appendix G.

Feature Extraction and Pattern Recognition Techniques. The previous
subsections have been based on thenotion that it is possible to generate
structural models of the VER and then infer the VER characteristics from the
parameters of the model. It may, in fact, turn out that it is not possible
to generate adequate structural models of the VER. For example, theirequired number of parameters may be too large.

If this turns out to be the case, it might be more appropriate to
utilize pattern recognition techniques. Pattern recognition may also be
useful, if parametrized models are employed, to analyze the relationships
between the parameters.

Pattern recognition is an approach which is essentially model-free; it
depends, however, upon having a sufficiently large data base on hand, This
approach has been found to be particularly useful in many biomedical signal
processing problems, simply because of the inability to develop meaningful
models of biomedical signals. The ECG is a good example of this. Although
apparently more simple in nature than the EEG, no parametric model presently
exists which can adequately capture the variations seen in the ECG signal.

*Recouree has inevitably been made to the tools of pattern recognition.

Pattern recognition generally takes tlace in two steps: (1) feature
extraction wherein a parsimonious representation of the raw data is sought,
(2) classification wherein the features are utilized in a decision rule to
identify the pattern of the original data.

The feature extraction step is extremely important, since we wish to
obtain an accurate representation of the data using as few parameters as
possible. A particularly powerful technique which appears appropriate for
VER analysis is the Karhunen-Loeve expansion. By this technique it is
possible to represent the time-synchronized VER (cf. Figure 2) as a weighted
combination of predetermined basis functions. This technique has been
successfully applied to representation of the ECG, and further discussion of

k this approach is given in Appendix M.

Once feature extraction has been performed it remains to extract the
desired information from the numerical values of the features. Assuming
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there are more than two or three features, this information extraction can
best be performed using pattern classification techniques. This involves
the use of some type of decision logic to discriminate between patterns.
This decision logic can be formed using two different types of approaches:
(1) supervised learning, (2) unsupervised learning, or cluster analysis. In
suoervised learning, the oattern of each VER is known; that is, each VER can
be labeled according to some typification. Decision rules are then gener-
ated to correctly classify each of the known cases. In unsupervised learning,
such labeling is not used (generally it would not be available) and, in
addition, the number of distinct classes of responses are not known. A wide
variety of techniques are available for both supervised and unsupervised
pattern recognition, and the choice of technique depends upon the nature of the
problem at hand. It is generally true, however, that supervised learning is
preferred assuming that labeling of the responses can be carried out. Further
discussion of pattern recognition techniques is given in Appendix M.

CONCLUSIONS AND RECOMMENDATIONS
Based on our analysis of data supplied by the U.S. Air Force and a review

of the relevant literature, we conclude that the observed variabi ity in the
processed data is most probably due to the small averaged evoked response
amplitude relative to the background EEG. This results in a low
signal (response)-to-noise (EEG) ratio, which is a severe handicap to the
current U.S. Air Force processing technique, as discussed in the section
"Analysis of Current Processing." The basic problem of VER variability has
been noted by many other researchers, however, although under different
experimental conditions, as indicated in the section "Aspects of EEG/VER

~Variability." Nonetheless, we believe the variability may be reduced byalternate processing techniques and possible experiment modification.

To reduce the variability by modifying the signal processing, an analysis
of the raw data (measured EEG and VER signals as currently recorded) is
necessary. Some specific tests that should be performed are outlined in the
subsection "Remarks" on page 21. The complete analysis procedure will depend on
the results from these early tests, of course, and is hard to specify at this
time. The analysis of the raw data is the most important step towards reducing
variability. Using this data, a signal model can be developed and a processing

41 technique selected from those described in the section "Improved Techniques for
VER Analysis." If the performance of the improved techniques is not sufficient
to meet the experiment objectives, modification of the experiment and redesign
of the processing (to fit the new experiment) will be necessary.

A list of recommendations for reducing variability through experiment
modification is given in Appendix N. These techniques have been extracted
from the VER literature, and may be reviewed to determine whether any proven
techniques are not now being used but may be incorporated without violating any
experiment ground rules or constraints. If the use of these techniques does
not sufficiently reduce variability, then a modification of the imposed
constraints may be necessary to achieve higher signal-to-noise ratios.

Finally, if major modification of the experiment is needed, modern signal-
processing techniques may be used to help design new experiments and their
associated processing, as discussed in Appendix H.
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APPENDIX A

BACKGROUND OF VER/EEG EXPERIMENTS AND ANALYSIS
- 1

The analysis of electrical potentials from the surface of the human
head is assuming increasing importance in the evaluation of brain functions,
since these potentials reflect the activity of the brain. The use of
surface potentials is also convenient for the investigation of brain
functions from other primates because the technique is relatively noninva-
sive and hence many experiments can be carried out on a single subject.
However, a price is paid for this convenience in terms of the information
ultimately available, especially about the fine spatial distribution of.] neural activity.

The main problems experienced in the analysis of VER/EEG signals are

high signal variability, complexity of patterns, and superimposed noise:
noise is usually separated conceptually into noise of biological originIand
noise due to recording equipment. The concept of biological noise should
always be viewed with some suspicion; what might appear worthless varia-
bility of a signal to one investigator may be an informative feature to
another investigator who is able to relate it to a neurophysiological
mechanism.

From a more global point of view the problems experienced result from
the complex and poorly understood neurophysiology of the brain with its many
inputs, the large number of experimentally lncontrollable quantities, and
the relatively small energy turnover (=10-I W/nerve). Not all of the
energy turned over by the brain is converted into electrical energy since
only a few nerve fibers are electrically active (Abeles (1)), and usually
they are quite distant from the recording electrodes. In addition, surface
potentials do not have a one-to-one correspondence with internal brain
activity which raises questions of observability (i.e.,, the capability of
discriminating brain activity at different locations).

The high complexity of the structure to be analyzed leads to a variety
of considerations about information gathering and processing schemes.
Information gathering and processing cannot be separated into independent
subproblems because of constraints imposed on experimental efforts, such as
stimulus complexity, signal recording, and computational complexity. Thus,
depending on special objectives, different compromises are sought.

In this appendix we will roughly outline several methodologies
currently in use for VER/EEG analysis, including a discussion of the gross
experimental structure, specific problems, experiment design with different
objectives, and the "classical" as well as more modern methods of signal
analysis. Physiological and physical considerations will be invesLigated in
Appendix B.
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SETUP OF VER/EEG ANALYSIS

A schematic of a typical VER/EEG analysis system is shown in Figure A-l,
and the flow of information is indicated.

Stimulus: the discussion of the flow of information in the arrangement
of Figure A-1 may naturally be started with the prooerties of the test
stimulus since historically the feedback path was rarely used. In most
instances, the stimulus pattern is two-dimensional, and basic geometric
figures are used. The patterns (and background) have to be well defined in
terms of brightness, onset-offset (or time course), color, and angular size.
Care has to be taken to avoid production of simultaneous acoustic signals
such as clicks from flash cubes or noises from static discharqes of the TV
screen. With use of a TV screen the time constant of the after-imaqe may be
of some importance, since the visual system may subconsciously process
high-frequency (>60 Hz) information (Desmedt (28) n. 44). In general, when
using TV stimuli, several technical characteristics of the images should be
obtained from the manufacturer. With these precautions in mind, the use of
a TV screen is still viewed as a very convenient and valuable source for
stimuli (Desmedt (28) p. 8).

Subject: a subject of an experiment should he categorized following
a standard procedure. Personal characteristics such as visual acuity,
color vision, left- or right-handedness should be recorded as deemed
necessary. Possibly the ears should be covered or background noise
provided to mask event-related sounds.

Electrodes Leads)._ electrodes should be placed on (selected)
standard lead positions. Electrode type (cup, needle, capacitive) and
the use of electrolyte paste are design quantities. Some aspects re-
lated to the choice of electrodes are discussed in Appendix E.
These leads should be routed as close together as possible to avoid
pickup of external electromagnetic or electrostatic interference.

Signal conditioning: typically the electric signal is fed into a
high-impedance bandpass amplifier which suppresses DC and frequencies
above 300 Hz (in some instances, such as spectral analysis, mixers, and
narrow-band amplifiers are used). The choice of roll-off frequencies
is usually determined by the signal-versus-noise bandwidth (where "signal"
and "noise" are subject to interoretation, as discussed in Appendix B).

* Signal conversion: the analog output of the signal conditioner is
fed into an A/D converter which typically measures several leads (or
channels) virtually simultaneously. The important characteristics of A/D
converters include dynamic range, samplinq rate, and the stability
of the sampling rate. Note: actual sampling intervals may not follow
precisely scheduled intervals when driving the sampling process through
software executive commands. Digitizing a known waveform is thus recom-
mended for Derformance evaluation.
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Computer: the digitized data is typically buffered and/3r processed
in the comouter. Since information flow from many leads may lie in the
kbyte/sec (8 bits/byte) range, on-line processing of all the data with
sophisticated nondedicated software/hardware would be extremely diffi-
cult if required. Simole processing of the data (for example, detection
of gross artifacts or lack of signal) may well proceed in real time, while
more advanced signal analysis can be performed off-line on stored data.
This data may be stored on either magnetic tape or disc. No difficulty
due to limited transfer rates to the storage devices is anticipated.

During the recording, the computer may generate various test stimuli,
possibly conditioned on a simple analysis of the data. Hence the loop
shown in Figure A-l may be closed in real time. An example for such a
structure is given by Vidal (114).

SPECIFIC PROBLEMS IN VER/EEG ANALYSIS

Blinking, saccades, and lack of attention are some of the most
deleterious disturbances in VER analysis when neglected. By means
of separate information channels some compensation of these disturbanres
may be accomplished. For example, blinking and saccades are monitored
with electrodes placed near the eye; the quick potential charges asso-
ciated with these events provide reliable timing information to change
the mode of analysis. Attention may be judged by separate human observer
via a monitor. Clearly, the need for a human observer should be eli-
minated as much as possible.

The backqgound EEG activity during VER studies provides a different
form of disturbance. For example, the stationarity of EEG activity cannot
be assumed followinq a stimulus. Indeed, there is indication of EEG
activity entrainment or modulation by processes following stimulation (Lansing
and Barlow (61)). Since EEG activity appears to be nonstationary in
itself, it is hard to distinguish between random changes with superimposed
VERs and nonlinear interaction between random changes and responses
to a stimulus.

Fatigue and adaptation pose further problems, at least when stationary
technioues are being used for signal analysis. Adaptive or piecewise
stationary techniques are necessary to deal with this problem. The par-
ticular choice of adaptivity or segmenting requires some prior information
about system behavior, especially for real time analysis; this
prior knowledge may be represented in the form of a particular heuristic.

A difficulty on the hardware side in VER/EEG analysis might arise
from uncertainty of electrode positioning when experiments are to be
repeated or compared among subjects. One possibility to cope with this
oroblem is to first study positioning sensitivity and selected points which
aopear to be insensitive. Alternatively one may position electrodes so
as to obtain a specific transfer characteristic from the stimulus to the
electrode. For example, signal processing tools may be used to qive an
indication of correct electrode placement. A completely different approach
miqht involve photographic documentation or other more "physical means"
to qenerate reproducible electrode placements.
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CLASSICAL METHODS FOR VER/EEG ANALYSIS

* The two classical methods of VER/EEG analysis are based on averaging
- and sDectral analysis. These techniques were developed in other sciences,

spectral analysis especially in engineering in the context of oscillating
systems. These techniques are widely used today for the analysis of bio-
loqical signals, mainly because of their well understood, usually fairly
simple prooerties and simple implementation. They should be regarded
as important techniques proved successful in a variety of areas. In some
situations the methods are reasonably easily extended to approximately
describe nonlinear and "moderately'! nonstationary processes.

It should be noted that for the special case of analyzing linear
processes, averaging and comb filtering (one of the spectral techniques
analyzing a siqnal at integer multiples of the stimulus frequency) areintimately related via the Fourier transform.

These classical methods of signal analysis may be regarded as nonparametric.
They provide a simple tool to describe input-output relations of dynamical
systems. Often these techniques are inexpensively implemented on analog
circuitry.

RECENT METHODS FOR VER/EEG ANALYSIS

With the advent of the computer and fast analog-to-digital converters,
more complex techniques for the analysis of signals became feasible. These
techniques are especially useful for treating the randomness of signals in
natural processes. The Fast Fourier Transform, autoregressive modeling,
and Karhunen-Loeve expansion are among the most prominent. For the purpose
of spectral estimation the maximum entropy approach has drawn much atten-
tion. From the usual snecification of the entropy induced by a filter
(following Bartlett (9)) this form of spectral estimation leads essen-
tially to autoreqressive modeling. A close "relative" of the Karhunen-
Loeve expansion is also well known in statistical analysis in slightly
different setting under the title of principal component analysis. All
of these methods are based on relatively strong linearity and stationarity
assumptions. The use of these methods is widespread today and
common in pattern classification.

It appears to us that many recent techniques are not fully ex-
ploited, in particular, techniques which allow modifications to test
noniinearities and certain forms of nonstationarities. For example,
one of the important contributions of Box and Jenkins (14) was to
develop systematic approaches to the use of time-series analysis in the
time domain (with some reference to spectral representation) which can
be followed by the statistical layman. The method advocated is the
so-called autoregressive-movinq average technique which can describe
all possible (finite dimensional) linear time processes. Yet for reasons
mentioned in this appendix and discussed in more detail in Appendix B, the
modeling of VER/EEG may call for more general forms of nonlinearities
and nonstationaritiesthan those outlined by Box and Jenkins (14).
Scientific Systems, Inc. has developed extensive exoertise and automatic
software to perform such analysis. In fact, the routines available to us
are still more general in terms of modeling nonstationarity and nonlinearity.
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The area of system identification in the engineering sciences has,
of necessity, addressed the issues of fairly strong nonlinearities and
nonstationarities. Important developments which allow consideration of
these issues are extensions of the Kalman filter algorithm and modern
control theory. These techniques are of vital importance today in air-
craft trajectory estimation and control, As a supplement, describing
function analysis, which developed in a rather straightforward fashion
from classical spectral analysis and from certain statistical concepts,
provides a good tool for modeling some of the interesting features of
nonlinear systems such as the mixing of frequencies, limit cycles, sub-
harmonics, and entrainment. For the successful application of these
techniques considerable computational effort may be required. The high com-
putational burden is in good part due to the iterative nature for solvinq
the nonlinear equations associated with parameter estimation in these
systems. The techniques in use today often require searchez in a 10- to
50-dimensional parameter space to fiftd the best fit.

Thus a variety of practical and theoretical problems related to
numerical accuracy and uniqueness of solutions arise for the researcher.
To deal effectively with these problems one should proceed stepwise in
the augmentation of models, and, in our opinion, as much as possible start
out with "meaningful" models. This appro3ch can save considerable amounts
of comDutation since it allows incorporation of prior knowledge about
structure into the models. Diagnostic checking may then lead to approval,
modification, and possibly augmentation of conjectured structures. In
some instances one should also consider whether adding alternative forms
of measurements may reduce computations through improved observability
of parameters or decomposition of a model into simpler structures, thus
simplifying the multidimensional searches. To show some of the possible

II considerations in this context, Appendix B is devoted to an investigation
of the physiological and physical structure of VER/EEG analysis.
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APPENDIX B

PHYSIOLOGICAL AND PHYSICAL CONSIDERATIONS IN VER/EEG SIGNAL ANALYSIS

In this appendix, we will give an outline of the overall signal
structure under the special consideration of its physiological and
physical origin. We start out with a review of physiological mechanisms
resoonsible for electrical potentials and potential changes and turn
then to what we term the Eye-Brain-Electrode model. This model is
motivated by the different forms of information currently available
about the eye, the brain, and properties of electrodes. In particular,
such a partitioned model may be useful in analyzing specific saturations
that take place in flash responses. Current literature appears to have
disregarded this overall view of VER/EEG signals. Finally, the structure
of the experimental setup is reviewed as it may pertain to the experiment
design and data acquisition.

THE ELECTRICAL ACTIVITY OF LIVING CELLS

Living cells require an electric potenti l difference across the cell
membrane. This bipolymer sheet of about 100 A strength is by itself
not capable of withstanding the high osmotic pressure of proteins in the
cell interior; that osmotic pressure is balanced by the osmotic pressure
and electric force of ions. Special sodium pumps shuttle sodium ions
toward the cell exterior rendering the inside negative. Some of the ions
leak back and hence the pumps must remain active.

Nerve cells utilize this potential difference to propagate actively
(that is, in a regenerative fashion) variations of the potential along
the cell body. These potential variations are regarded as action poten-
tials, and they consist of a short reversal of the polarity of the (local)
cell interior. Typically the duration for such an action potential is
in the l-msec range, and the spatial length of the potential reversal
in the centimeter range. Propagation speeds vary, depending on
myelination and diameter of an axon. The action potential follows an
all-or-nothing law, and results always in a signature of the line and
snace distribution (Abeles (1)).

The initiation of an action potential may occur in several ways,
for example, via sDecialized receptor cells or from another nerve cell
via the dendritic tree. This dendritic tree serves as an approximate
inteqrator of postsynaptic currents in time and space. These postsynaptic
currents, in turn, result from chemical transmitter substances released.l ,. ,by the synapses of other nerves. The effect of potential changes may

either facilitate or inhibit the possibility of generating an action
potential. The delay associated with the transmission of information
from one nerve to the other may be as short as 1 msec per synapse-
dendrite "relay." Thus response time can give a clue about the number
of sequential relays and hence complexity of a neural pathway.

In contrast to the unit of information, the action potential which
travels along a nerve axon, no such unit exists in the dendritic tree.
As mentioned above, the dendritic tree functions more in an integrative
linear fashion. Small inputs into many of these dendritic trees might
thus be expected to result in changes of neural interaction. This view
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is supported by observed behavior changes in animals and the selective
release of calcium ions (Adey (4)) in brain tissue by means of low-
amplitude electric fields. He suqgests demodulation of modulated
high-frequency fields occurs on the (asymmetric) bipolymer sheet of cell
membranes, inducing changed transmembrane potentials. This observation
leads to the concept oi slow electric potential changes serving as a
possible second (electric) message system.

The nerve cells, composed of the dendritic tree, axon, and terminal
branches, constitute the majority of cells in the brain. They are or-
qanized in bundles for siqnal transmission and in nuclei for information
processinq., The arrangements of dendrites and terminal branches appear
to follow a random pattern (Abeles (1)). Electric activity among the
various nerve cells also appears to follow random time processes, though
not independent among nerve cells and with respect to stimuli.

In recording the electric activity of the brain through EEG and VER,
it is the random superposition of extracellular farfields which is observed,
since typically electrodes are separated from active cells by centimeters.
It should be said that it is not clear today how much the voltage fluc-
tuations observed result from action potentials and slow potential chanoes
in dendrites, but both mechanisms are implicated.IA Having set out some of the important aspects of bioelectrical poten-
tials, we may turn tr the eye-brain-electrode model and discuss the effect
of these three components on the recorded signal.

THE EYE-BRAIN-ELECTRODE MODEL
i inestiatin ofthestimulus-response path and the different properties

The concept of the eye-brain-electrode model was motivated by the

and forms of prior knowledge about the components along that path. The
eye appears to be physiologically fairly well understood in terms of its
transmission properties and control. Thus some physiological modeling
is suggested for the sake of stimulus design and transmission characteri-
zation.

4 In comparison with the eye, the brain is functionally extremely
4, complex and information for the characterization of signal transmission

is very incomplete. In addition, the neuroanatomy of the brain is highly
species-specific, Drohibiting simple extrapolation to other species. For
example, the neuroanatomic structure of layers in the visua, cortex of
human and other closely related primates is quite different in quality
and number. Hence, for the purpose of description, one is forced to

! resort to abstract models which may not resemble the underlying structure.
Nevertheless, some information about potential pathways and processing
mechanisms is available and should be considered in the selection and
comparison of models.

Finally, it is realized that all signals recorded are affected by the
transmission properties and location of the electrode. Hence they call
for separate consideration. Proper use of electrodes, lead placement, and
impedance matching may lead to improved signal quality and, potentially,
to new information.
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The Physiological Model of the Eye

The anatomy of the eyo is shown in Figure B-I. Several of its com-
ponents appear to be important factors in the signal transformation from
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an optic image to the optic nerve: the iris, the lens, and the retina.

The importance of the iris is due to not only its well-known control of
;1' illumination and consequent effect on image quality, but also its rather
1 4 stochastic behavior. Stanten and Stark (105) demonstrated the consider-

able random fluctuations of pupil area at different levels of illumina-
tion; amplitudes may fluctuate about 20% (1 S.D.) and with a time constant
of several seconds (cf. Figures B-2 and B-3). They also noted the strong
correlation of left and right pupil area noise. This suggests a common
pathway for the processing of illumination information, and they give
a stochastic model for these processes.

Following the path of liqht, the lens is the secorJ element-modu-
lating image quality. Stanten and Stark (105) showed a dynamic limit
cycle behavior of the focal length of the lens. For this they developed a
deterministic nonlinear control model which accounts for oscillations around
2 Hz (cf. Figures B-4 and B-5). An obvious purpose of this system is to track

"* focusing by testing blurs on the retinal image, much like automatic man-made
systems do. These oscillations appear to be superimposed by a 1/f type
(flicker) noise at still lower frequencies. For understanding properties
of the retinal image one should be aware of these processes, especially
since they are strong enouqh to drive an internal servo mechanism.

Another effect on retinal imaqe associated with ,he lens results from
its strong chromatic aberration. Thus not all colors are simultaneously
in focus, and typically a 2-diopter myopic correction (50-cm negative
focal length) is necessary to focus blue when red is focused (Desmedt
(283)). Recall the common experience of the glare of blue lights (e.g.,
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from emergency vehicles) at night. With the above-mentioned oscillatory
lens control, focusing of different colors at different times occurs.
Also, due to the geometry of the retina and the lens, sharp images are
confined to the macula lutea with its fovea centralis, However, the
area in focus may move (expandinq and contracting) in connection with
lens oscillations.

withThe retina, the organ which receives the optic image, is equipped
with a large number of different receptors. Rods serve night vision
(scotopic vision) and three types of cones serve daylight color vision
(chromatic photopic vision). The dynamic rangeof this system is about 5
orders of magnitude in light intensity, far in excess of the dynamic range
of the pupil, but with much slower adaptation (Fiqure B-6).

The highly regular arrangement of cells in the retina has an in-
teresting effect on the electrical properties of the eye: it renders it
an approximate dipole with the dipole moment approximately aligned with
the optic axis. This property can be exploited to determine (within
limits) eye position or at least eye movement.

For the purpose of investigating quick dynamic changes of illumina-
tion, the modeling of the kinetics of pigment synthesis in rods and cones
is important since the recurrence of vision secondary to flash stimulation
is limited by these kinetics (Leibovic (63)). The kinetics are probably
different for rods and cones, and possibly even different for cones with
different color pigments.

The lateral interaction between visual receptors is of special
importance ir, color contrast experiments. Fortunately, in the case of~the human retina, there seem to be no efferent neural networks. In cats

such efferent networks voluntarily change retinal performance.

In addition to the above-mentioned nonlinearities aod nonstationari-
4ties, a different kind of static nonlinearity is described by Leibovic

(63). For intermediate light levels he supports the logarithmic-type
Weber-Fechner law. However, for very low light levels a square root law
is theoretically and experimentally more appealing. He also discusses
the expected deviations from the Weber-Fechner law for very high light
levels. These nonlinearities are interesting, because they allow the
stimulus design to be such that the input to the optic nerve follows an
arbitrary function, possibly a sinusoid.

Another interesting effect associated with the retinal image processing
is its superresolution of lines. resolution of lines is not limited by

' the spacing of receptors. Instead, local spatial interaction via some
sort of averaginq allows considerably higher resolution.

Finally, we should consider changes of retinal image due to gross
eye movement. Three mechanisms should be distinguished: a smooth system
for smooth Dursuit, a saccadic system for fast positioning and correction

of errors, and a slow drift of the optical axis. Interestingly, the
dynamics for the horizontal and vertical system are quite different, To
avoid the blurring of images during saccades, visual perception is reduced
(even some time after the movement is completed until the "wobbling"
of the eyeball has sufficiently died out), for a total of about 30 msec
(Leibovic (63, P. iG)).
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The drift phenomena, following Leibovic (63), is similar to Brownian
motion of the optical axis. When certain critical limits of the positioning
error are exceeded, correcting saccades are invoked automatically.

A different type of optical signal is created by blinkinq. Elec-
trical potentials associated with this muscle activity might be detected
by electrodes Dlaced near the eye; these electrodes may simultaneously be
used to detect saccadic eyeball movements. Since the mechanisms for, gener-
ating these potentials are somewhat different, discrimination may be
possible.

Finally, the stereoscopicvision should be considered. The long
evolution of the visual system seems to have led to a strong integration
of individual components. Thus, Stark (personal note) found a correlation
of the anqle of the optic axis with the focusing of the lens. The angle,
in turn, is driven by the difference in retinal images. He also discusses
the imDortance of considering the rotation of the eyeball around the
optic axis during these dynamic maneuvers.
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Modeling the Brain

The fast processing of information within the brain is based on
electrochemical processes. Some of these processes, such as neural action
potentials, are of short duration and fixed waveform but occur with
variable time intervals. The intervals, even though random, are not
independent. Thus, even though individual responses to stimuli seem to
fluctuate, there is a consistent relation between them. In particular,
in the case of VERs, variable amplitudes and latencies are observed.
Little is known about the dynamics of these variations, but their impor-
tance for signal enhancement is recognized (McGillem and Aunon (69)). In
some situations, as in acoustic click stimuli experiments, a relation
between signal amplitudes and latencies was found (Moller (72)), in
agreement with elementary models of synaptic signal transmission (Eccles
(36)). The establishment of such models and their incorporation into*1i estimation schemes may be very helpful in developing powerful and
efficient techniques.

Some of the difficulties which are suggested by our understanding of
the functioning of the brain should also be emphasized, For example,
the transmission of signals is apparently accomplished via different path-
ways, each "modulating" the signal in its own fashion in terms of
amplitudes and latencies, possibly even influenced by some of the other
pathways. An example of this mechanism is the processing of different
colors in "color channels" (Regan (87)) and the complex evoked sensation
(Land (60)).

Another diffuculty arises due to the nonlinear behavior of infor-
mation processing: in some cases, it is not clear whether evoked poten-
tials result from the stimulus directly or from the modulation (en-
trainment) of other electrical activity of the brain, such as the
modulation of the EEG (Lansing and Barlow (61)).

One of the potentially interesting, but more speculative aspects of
the EEG and VER analysis, is the consideration of frequencies above the
currently used values (say between 50 Hz and 1000 Hz). It is usually
argued that the power of the spectrum falls off quickly above 50 Hz, hence
higher frequencies do not represent much information. From an information

* theoretic point of view, this interpretation is incorrect. The crucial
quantity to be looked at is the signal-to-noise ratio. As mentioned
earlier, only thermal electronic noise can safely be regarded as noise.
Another interesting aspect is the possible effect of a dielectric
constant of the brain on high-frequency transmission. For low fre-
quencies currently studied, this dielectric effect can safely be dis-
regarded (Desmedt (28)); for higher frequencies up to the kHz range,
however, we have not yet found relevant information. The interest in
high frequencies is due to 1) their existence: the spectrum of action
potentials reaches into the kHz range, and 2) their possible value in
locating signal sources. Globally, increasing the signal bandwidth of
analysis implies increased information flow.

On physical grounds, one may expect a different character in signals
at high frequencies: first, because of the above-mentioned dielectric
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effect; second, because of the loss of the phase relation with respect
to stimuli as a result of latency variations (often called jitter). The
different properties may call for different processing techniques, but
also preprocessing for digitizing and for the design of electrodes
and preamplifiers. The following section should serve to clarify some
of these considerations.

Considerations About Electrodes

Roughly, the use of electrodes is characterized by 1) their electro-
chemical characteristics (type), 2) number used, 3) placement, and 4) size.
The important electric properties of (external) electrodes are well
described by the linearized characterization of the electric half cell.
They imply an interesting small signal frrquency character: for in-
creasing frequencies their impedance reduces (Figure B-l). Many inves-
tigators dislike this frequency-dependent characteristic of electrodes
and reduce its effect by the use of a high-input impedance amplifier.
However, increased input impedance results in an effective thermal
electronic noise power (ex-luding flicker noise at the moment) in the
final signal, proportional to that input impedance. For the purpose of
sophisticated signal analysis such noise sets a limit for the perfor-
mance of any scheme, but the frequency dependency does not. In fact,
since the electrode characteristics can easily be modeled, they would
not significantly decrease performance of sophisticated signal analysis.

For the purpose of high frequency measurements with a given sampling
interval of the analog-to-digital converter a frequency shift is necessary.
That shift may be done at the output of the analog preamplifier. It should
be mentioned that a separate preamplifier may be desirable for high-
frequency amplification to match the lower electrode impedance in that

4 frequency range (compare Figure B-7). A consequence of the use of low-
input impedance amolifiers isan increased sensitivity to electrode and
scalp interface impedance changes, This sensitivity may be overcome by
periodic (recalibration) sampling of the impedance, but care must be
taken to limit the calibration-signal amplitude to avoid interference
with brain activity.

The number and placement of electrodes are interesting experiment
design features. The number may be limited by convenience of application,
available preamplifiers, and the analog-to-digital conversion capability
of the computer. Data storage may impose further practical limits on the
number of electrodes used. The placement should clearly follow some
anatomical considerations about the origin of various signals. The
determination of "good" locations may proceed interactively with the
signal analysis. In this context the issue of placement sensitivity and
reproducibility plays an important role. The location of the ground,
or reference, electrode is also important in specifying the differential
potentials actually measured (see Cobbold (26, p. 431)).
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The size of electrodes seems to be a further important design factor.
Clearly, for low impedances which reduce thermal electronic noise, large
diameters are desirable. Even though spatial resolution may be lost,
there are some indications that information for the purpose of response
classification may not so much be contained in spatial characterization
(Squires and Donchin (104)). In that study of schemes which classified
different stimuli based on evoked responses, a classifier based on a
linear superposition of tracings from different leads performed nearly
as well as the "optimal" classifier (a Karhunen-Loeve representation was
used in both cases). Furthermore, assuming dipole models for generators
of electric fields, the distance of electric dipoles to the electrode
should affect the choice of electrode use. A pragmatic approach might be
based on trying different size electrodes and determining performance in
conjunction with various signal analysis schemes.

I In summary, the current methods of data acquisition and signal analysis
should be rethought in view of the flexibility and adaptability of modern
computerized signal analysis. Demands different from traditional
VER and EEG analysis are present today.

I

',
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APPENDIX C

FREQUENCY DOMAIN SIGNAL-PROCESSING TECHNIQUES

DIGITAL PROCESSING CONSIDERATIONS

Several practical considerations arise in the digital processing of
I analog (contifuous) data. These issues concern the relationship between

the digital numbers being computed and the analog data, spectrum, or otherJ information originally sought. Excellent general referencee for this
subject are Oppenheim and Schafer (76) and Papoulis (78).

Sampling

An analog-to-digital (A/D) converter accepts a continuous input and
2creates a discrete (in time and range) output. Several types of A/D

converters and sampling circuits are available, but the casual user is
most concerned with the rate of sampling (discrete time) and quantization
(discrete level or state) of the digital work. The usual precaution taken
in digital processing is to ensure that the sampling rate is above the
Nyquist frequency, which is twice the maximum frequency in the signal
being analyzed. If this is true, then no "aliasing," or folding of high
signal frequencies into low-frequency digital artifacts, will occur.,

To avoid aliasing when high-frequency noise (or signal) is present,
an anti-aliasing filter must be placed before the A/D converter. The
corner frequency of the filter should be above the maximum desired signal
bandwidth and at least a factor of 2 below the sampling frequency. A
factor of 3 or 4 is usually desirable since the anLi-aliasing filter
passes some noise, although attenuated, above its corner (-3dB) frequency.
If enough is known about the filter and noise properties, the exact
consequences of aliasing can be computed.

The second effect of sampling--quantization or discretization of the
signal level (amplitude)--is harder to examine. In general, the quanti-
zation should be fine (small) enough so that the discrete signal is an
accurate representation of the analog process. The adequacy of the rep-
resentation may be analyzed by assuming that uniformly distributed quan-
tization errors are added to the desired signal. A second quantization
error occurs in the processing of digital data. This error is harder to
analyze, but bounds have been developed for FFT algorithms as a function

4 of the number of data points (and therefore nultiplications) that are
used.

SueIn general, the cost and speed of very accurate A/D converters pre-
vent their use in many applications, and the computer work lengths are
much longer than the input signal. This extra computer work length is
desirable, however, since processing increases the required word lenqth
(e.g., during the sequential multiplication and subtraction of many
numbers) at intermediate steps in the analysis.
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Data Windows

The use of digital processors on finite-length data intervals results
in errors caused by the sudden appearance and disappearance of the data.
These errors are qreatest for short intervals and become negligible for

very large data sets. The errors can be reduced, however, by weighting
the data in a manner that simulates the gradual turning on and off of
the information. Such weighting functions are called windows, since they
represent the finite boundaries through which the computer views the
(presumably) infinite data stream.

For an input f(n), n=O,...,N-l, the window function a(n) is used to
create a processing input b(n):

b(n) = f(n)a(n), n=O,...,N-l

For long data sets, a(n) may be unity, forming a rectangular window:

a(n) = 1, n=O,...,N-l

The simplest alternate to the rectangular window is the triangular,
or Bartlett, window:

2n n N-I

a(n):In ' 2n , N-1
~~2 - N 1 ' - : n ,. N-12

A slightly better tyue of window employs a cosine weighting to the data.

The two most popular are the Hanning window

a(n) = J[l - cos(£N_-- ], 0< n < N-1

and the similar Hamming window

a(n) = 0.54 - 0.46 cos'- 1) 0 < n < N-i

The Blackman window provides even better performance, when needed, at the
cost of a second cosine term-

I ', 271n 47fn

a(n) = 0.42 - 0.5 cos(N- ,) + 0.08 cos(--l, 0 <.n < N-i

and finally, Kaiser (54) suggests a family of windows using the modified
Bessel function of the first kind I0( ):

[ a (N-1 )2 - [n -N)]2

a(n) = n0 a N 2,. .. ,N-
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where wa is an adjustment parameter, usually in the range

a

4 ~< " a7 ) <

Window choice is usually a matter of convenience if the data frame
size is large enough. For very small data blocks, however, more care
must be taken in window design. Windows may be examined and compared in
the frequency domain, of course, where some of their features are most
easily understood. In particular, when using windows to smooth periodo-
grams for spectral estimation, some windows can produce negative power
estimates (for some frequencies) because of the negative spectrum of
portions of the window, as discussed in Tretter (109).

FAST FOURIER TRANSFORM (FFT)

The Fast Fourier Transform (FFT) is one of the most popular signal-
processing techniques. The method gets its name from one of several
algorithms available for quickly and efficiently obtaining the discrete
Fourier Transform of a given time series. The discrete transform is
useful for power-spectrum estimation, signal c:aracterization, signal
detection, and analysis of model performance. -,r further reading, the
books by Oppenheim and Schafer (76) and Tretter k109) are well written
and informative.rA'

Definition of Fourier Transform

Given a time series f(t), and a sampled version of the signal f(nT),
the Fourier Transform (of the sampled siqnal) may be written as

F(e3w) = - f(nT)e -jwnT
I n=-00

where f(nT) 1 fri F(eJW)eiwn dw
-T

Discrete Fourier Series

. For periodic signals of period N or limited sample signals x(n),
n=,.. .,N-l that may be assumed to repeat after N steps, we may write

x(n) := N-0 X(k) e(nNn

N-1

X(k) =  N. x(n) e j (2ii/N )nk
n=O
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e j(
2,,IN)

N-1
X(k) Y, x(n) ")N

n=O

=1 N-I
x(n) = O X(k) W N

X(k) may be thought of as samples on the unit circle, equally spaced
in angle, of the z-transform of (one period of) x(n).

Si If the inout is thought of as periodic, then the operations
above are usually called the discrete Fourier series; if the input is
considered finite duration, then the operations are called the Discrete

, J, Fourier Transform (DFT). The transform (with no computation errors) is an
exact representation (one-to-one mapping) of the input, but may not be a
good approximation of the continuous transform due to sampling and spectral
estimation considerations.

Efficient algorithms for computing DFTs are known as Fast Fourier
Transforms (FFTs). These algorithms have greatly expanded the use of
Fourier transforms in signal processing, and permit the computation of
parameters thdt were considered impractical a short while ago.I

SPECTRAL ESTIMATION WITH FFT ALGORITHMS

In many instances, one wants to estimate the power-density spectrum
of the process which generated the data sample. The Fourier Transform
may be used in several ways to obtain such an estimate. The most direct
estimate is the periodogram, which is the square of the amplitude of the
OFT, i.e.,

4 IN( ) I lIX(e j ) 12

Unfortunately, this estimate is not usually a good use of the available
N data points. The periodogram is a biased estimate of the spectrum, with
a bias which decreases with N but a variance which approaches a constant
for large N. For a Gaussian spectrum, the variance of the periodogram
approaches the square of the spectrum which results in rapid fluctuations
(in the periodogram from one frequency point to the next) about the true

spectrum. Since the resolution in frequency also increases with N, there
is an inevitable trade-off between resolution and variance.

3

3The resolution of an FFT calculation is equal to the bandwidth of interest
divided by twice the number of data samples used (since two data points arp.

used to produce amplitude and phase information at each frequency).
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Two common ways of improving the periodogram estimates are averaging
and smoothing. The averaging method breaks the data block into several
smaller blocks, usually not overlapping, and computes a periodogram for
each smaller block. These periodograms are then averaged, at each
frequency, to obtain a spectrum estimate. This estimate has the low
resolution and larq bias of the short block size, with a reduced variance
from the averaging. The estimate is affected by any data window used,
of course, and other effects dominate for very short data blocks.

An alternate technique for improving spectral e-imates is to "smooth"

the large-N periodogram. The smoothers used correspond to window types,
and the remaining errors relate to window shape. The same types of trade-
offs exist as in averaging, and smoothing method is not used as much as
averaging now that FFTs permit fast periodogram calculations.

These techniques assume, of course, that the desired spectrum does
not change during the data interval (N steps, above). This assumption of

stationarity is implicit in most :ourier Transform analysis. The DFT
will always be a unique transform of a given data set, but it may or may
not be the spectrum of interest. Several complex tests for stationarity
exist and should be used if there is doubt about the signal characteris-
tics. A change in the measured windowed spectrum gives an indication
of nonstationarity, of course, but, in general, FFTs provide a poor means
for measuring changing spectra.

SPECTRAL ESTIMATION VIA ENTROPY AND LIKELIHOOD

Maximum Entropy Method and Maximum Likelihood Method (MEM and MLM)
for spectral estimation are modern procedures (Childers (24)) often
considered superior to various alternatives. The value of these methods
lies in providinq tools which, at least 4n orinciple, do not imDose strong
assumptions about the underlying structure of the process being examined.
This is of importance since other parametric tools of statistical analysis
require checks of their appropriateness, of which practitioners are
often not aware. Much of the success of MEM and MLM is due to their mini-
mal structural assumptions, and hence the oroDerties of the data come
to bear, rather than a possible incorrectly implemented procedure. There
are still open questionq in this area, but the concepts are appealing
and turn out to be related to certain forms of statistical modeling,
showing the latter in a still different light.

4 A bias indicates that the estimated spectrum converges to the wrong
spectrum, independent of the number of periodograms averaged. The bias
is a function of the number of data points and window function used in
each periodogram. The degree of convergence to the (biased) spectrum
estimate is indicated by the variance, which decreases with the number
of periodograms in the average.

80



The Maximum Entropy Method (MEM)

The Maximum Entropy Method is based on a result by Bartlett (9),
who showed a simple relation between the power-transfer characteristics
of a linear filter and the change of entropy of the signal transferred.
Burg (17) then raised the question of which spectrum estimate has the
largest entropy, given autocorrelation values of a signal. The idea of
maximizing entropy is appealing since it is "least committal" (Ables (2)),
that is, few prior assumptions have to be made about the data. The ques-
tion leads to a constrained optimization problem. The entropy change is
given by Bartlett's

AH f In S(v) dv
F

and the constraints resulting from the (usually estimated) autocorrela-
tion values satisfy

g(k) = f S(v) exp[-i2rvk] dv, i =V7
F

Interestingly, the Lagrangian multipliers in this problem can be inter-
preted as autoregressive coefficients (Childers (23, p. 92)), identical
to those described in Box and Jenkins (14). Burg (17) suggests certain
procedures to estimate these coefficients in a recursive way, without
resorting to estimates of the autocorrelation of the process, as is done
by the use of Yule-Walker (120) equation. Thus, the importance of "end-
effects" of the finite data window is reduced. For example, by use of
the Yule-Walker equation, there is finite probability of obtaining (for
autoregressive models of higher than second order) a non-semi-positive
definite (Toeplitz) autocorrelation matrix (regarding the definition of the
autocorrelation matrix, see Box and Jenkins (14, p. 31)). Hence, auto-
regressive coefficients (or Lagrangian multipliers) may be estimated which
correspond to an explosive process. Clearly, spectra which correspond
to such a process are meaningless, since limits by which spectra are
defined do not exist under such circumstances. The problem is exacerbated
when observations are missing.

Various extensions of Burg's (18) MEM are in use today. These
extensions concern, for example, multidimensional image processes,
processes containing white noise, and vector processes. The remaining
main problem for practical applications results from questions about the
order M of the autoregressive model (or more generally, the number of
Lagrangian multipliers) which should be used. This question is not an-
swered by the current maximum entrop) methodology. Some guidance is
derived from classical statistical procedures or criteria such as those
given by Akaike (5) or Schwarz (98).

The importance of the MEM approach lies in avoiding the imposition
of any particular structural assumptions on the spectral estimation
(except for linearity when Bartlett's formula is used), In some instances,
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however, certain assumptions about a spectrum are reasonable. One might
expect superior estimation if these prior assumptions are incorporated
into tpectral estimation. This idea leads to the method of maximum like-
lihood spectral estimation.

The Maximum Likelihood Method (MLM)

The maximum likelihood method is derived from a structure shown in
Figure C-1. The goal is to adjust filter coefficients in such a way that
the single frequency of the signal z(t) is optimally (unbiased) estimated
by the filter output x(t). Thus the filter is to be adjusted in such a way
that the signal z(t) is transferred without distortion, and all other
frequencies are suppressed as much as possible (Lacoss, (58)). Obviously,
the procedure has certain optimality properties when a single frequency
is to be estimated. However, for the practitioner it is interesting to
see performance of that scheme when some assumptions are not satisfied--
for example, when the spectrum contains two frequencies, possibly "close"
together. It turns out that in such a situation the "noncommittal"
MEM method is superior in detecting two spectral lines when compared to
MLM. Thus, as one might expect, MLM should only be used when there is
strong prior evidence for the existence of only a single frequency in an
otherwise continuous spectrum. Burg (19) noted a simple relation be-
tween MEM and MLM spectral estimation which accounts for some of the
properties of MLM estimation, for example, the "smeared out" estimation of
a pair of spectral lines.

When two or more spectral lines are expected in an otherwise con-
tinuous spectrum, one might of course generalize the MLM approach. The
value of such generalizations can be seen in Siegel's (102) generalized
test of periodicities in a white spectrum. Even though Fisher's test is
known to be optimal in certain settings for the detection of a single

'4 frequency, it is outperformed by Siegel's method when multiple lines are
present in a spectrum. At the same time very little power for detecting
single lines, compared to Fisher's optimal test, is lost.

1 n(t)

x(t) = i(t)

L single frequency

Figure C-l. Structure for maximum likelihood spectral estimation (MLM).
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APPENDIX D

COMMUNICATION-THEORETIC METHODS

MODULATION

Several concepts in communication theory may prove to be useful in
understanding or characterizing EEG signals. In particular, modulation
and hete-odyninq may be used to transform an EEG analysis task into a
domain where linear signal processing is more appropriate. Modulation,
in general, is the encoding of a signal of interest in another, more
easily transmitted signal. The process is designed to be reversible
so that the original signal may be retrieved (demodulated) by the receiver.
An excellent referencekor communication systems is Wozencraft and
Jacobs (119).

The most common forms of modulation--amolitude and frequency modula-
tion (AM and FM)--are achieved by the multiplication of a sinusoidal
(carrier) signal s(t) by an information orocess of interest a(t). The
new signal (usually thought of as a "transmitted" signal) z(t) is then

z(t) = a(t)s(t)

or a linearly filtered version of the above.

Amplitude modulation is produced by the operation

z(t) = A(t) sinwt

where A(t) is the process of interest and w is known, while frequency

modulation (ormore generally, angle modulation) may be written

z(t) = A sin(wt + 0(t))

Where o(t) contains information and A is a fixed amplitude.
Although we are not interested in communication systems in general,

it is useful to examine typical transmitted signal types and the means of
demodulating them. Demodulation is a transformation to recover a signal
of interest from the transmitted wave. In many instances of signal process-
ing , it is useful to transform a signal (whether originally modulated or
not) to simplify subsequent processing. In addition, demodulation may be1used to extract certain information (e.g., phase coherency) of interest
even though the corresponding modulation process is not thought to be
Dresent.

The basic goal of most demodulation systems is to mathematically
recover the signal (i.e., functionally invert the modulation) while re-
moving as much transmission noise as possible. The noise may be wide-
band (nearly white) due to receiver thermal noise or very narrowband
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due to specific interference or jamminq. For EEG analysis, noise sources
include thermal noise from the electrodes and amplifiers, 60 Hz "line"
noise from the power system, and possibly a related 120 Hz noise from
fluorescent lights. For VER detection, the spectrally similar backgro rz
EEG itself may be considered "noise."

Heterodyni ng

Heterodyning is a modulation process which frequency-shifts the
signal of interest to facilitate transmission or processing. The tech-
nique relies on standard trigonometric identities and high, low, or band-
pass filtering to manipulate the signal spectrum in the frequency domain.

As an example, consider a signal of bandwidth W, a. shown below:

S(f)

-W W

where S(f) is the 2-sided power spectrum.

If this signal is multiplied by 2 coswit, the new product has spectrum:

S'(f)

1 fl-W  fl fl+W

where f The information in the range fl-W to f is redundant and

sometimes filtered out (in single side-band modulation) to oroduce the
spectrum:

f1 1SSSB ff+

If this signal is transmitted, received, and multiplied by 2 cos,,lIt d( icn,
the spectrum below results:

S11(f)

-2f -W W 2f I 2f +W
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This signal may now be low-pass filtered to remove the component above
2f1 and recover the original information.

This tyDe of manipulation, while invaluable in communications, must
be approached with caution in signal analysis in general, where no control
may exist over the original modulation. For example, if a narrowband
signal exists as shown:

1- 17 1-fl 7 If1+W

and the signal is multiplied by 2 cosw 2t where

w2f 2 =  _7 = fl ' A<W

and then low-pass filtered to remove the f1+f2-A component, the distorted
soectrum shown below results:

A A+W

When "demodulating" a narrowband signal whose modulation is un-
certain, one must be careful to preserve the information in the signal.
One way to assure this preservation is to carefully bandpass filter the
siqnals before heterodyning, to assure that no unanticipated aliasing, or
frequency ambiguity (as shown above), occurs.

One way to use such distortion to advantage is in power spectrum
estimation. For examole, if we multiply a measured EEG by a cosine wave
at 10 Hz and oass the result through a low-pass filter with a bandwidth
of 1 Hz, the resultinq siqnal is a mixture of the original signal be-
tween 9 and 11 Hz. By rectifying and averaging (low-pass filtering) this

4 signal, an estimate of the power in the original signal, between 9 and
11 Hz, may be obtained. This estimator has independent control ov .- the
bandwidth (the first low-pass filter after heterodyning) and response
(the averaqer low-pass filter) of the spectral estimate, subject to the
restriction that the averager should not be faster (higher bandwidth)
than the first filter.

PHASE-LOCK LOOPS

Phase-lock boos are communications receivers that lock-on, or
synchronize, to the transmitted signal, thus permitting excellent perform-
ance even during transmitter or receiver drift in frequency. These
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devices naturally demodulate phase- or frequency-modulated signals, while
being almost completely insensitive to amplitude modulation--which may
be due to interference in normal communication channels.

Usually, phase-lock loops assume a signal input of the form:

"N z(t) = A sin(wt + o(t))

where A and w are known and o(t) is the information process of interest.
If z(t) is multiplied by a siqnal of the form

2 cos(t + 6(t))

and the product is then low-pass filtered to remove the double-frequency
component (A sin(2wt +0 +6))?, the result is

A sin(o- 6)

If 6 is "close" to o, this signal may be approximated by

A(o - 6)

and a lfiear filter then used (in servo fashion) to compute 6, an estimate
of e, from the error signal o -6. The loopxis (usually) completed by a
voltaqe-controlled oscillator, which takes 6 as an input and produces
2 cos(wt + o) as an output. The loop thus looks like Figure D-1, and per-
forms like the linear system of Figure D-2.

• Asin(ut + 0.) A sin 0o- s 0- _ _

'rP

Figure D-1.6 Phase-lock loon.

JA

Figure D-2. Linearized PLL model.

5 We temporarily suppress the time dependence of u and 6 for convenience.

LP by the multiplier refers to the low-pass filtering which removes the

dcuble-frequency terms.
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Several assumptions are implicit in the PLL model. The frequency
and amplitude are assumed known, but this may be relaxed somewhat. For
example, the filter may be designed to acquire and lock to a frequency
different from that expected (within limits, of course). Also, practical
considerations usually require that a hard limiter be used on the input
(usually in the multiplier). Thus, the received amplitude may be an
unknown A but the input amplitude to the PLL will be the known lim~ter
amplitude (L), provided that

A >L

If A < L and A is an unknown function of time, then A can significantly
degrade loop performance or make the loop completely lose lock. The
degree to which the oriqinal signal can be amplified to make A > L is
limited by the receiver noise.

Phase-lock loops have been suggested for use of EEGs to track an
expected phase modulation. This model assumes that the single-sideband
tyoe of phase modulation (shown above) is in fact present, and that
double-sided modulation, i.e.,

z(t) = A sin(wt + e) + A sin(wt - e)

is not. It also requires that A be known or limited (as above). It is
generally prudent to narrowband filter the input before the PLL, to assure
that no out-of-band components corrupt the processing. The narrowband
filter should have at least the bandwidth of the loop filter (calculated
from the linear model) and be centered around the band of interest.

These bandwidth considerations become very important when the PLL
filter bandwidth is a large fraction of the carrier frequency, for example,
for low frequency EEGs. For instance, if a PLL is tracking an EEG
component at 8 Hz, and the loop filter is 1 Hz wide, then the loop will
be susceptible to other EEG components present between 7 and 9 Hz. Un-
less the EEG is known to represent only one Dhase-modulated process, it
is dangerous to use a wideband PLL to track the "EEG phase."

One final aspect of PLLs is the inherent lock indication avail-
able. By multiplying the original limited input by 2 sin(wt + 6) and low-

- ! pass filtering, the signal L cos(o- 6) is obtained. An averaged value of
this signal provides an indication of lock since, for a- 6 small, the

* cosine-1. A threshold detector easily may be set to trigger on this
signal, often called the "quadrature" channel since it results from a
signal 900 out-of-phase to the original feedback channel.

In general, if o(t) can be described as a linear process and if the
acutal measurement

-~*z(t) =  A sin(wt + o(t)) + n(t)

has low enough noise n(t), then a phase-lock loop will perform very well.
For cases where more noise is present, other filters may be developed
(see, e.g.. Bucy and Mallinckrodt (16), Willsky (117), Gustarson and
Speyer (44)). For the EEG, measurement noise is not as much of a prob-
lem as amplitude modulation, and two simple approaches to phase and
amplitude demodulation are worth noting.
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The first technique uses linear filters in the measurement space,
i.e., filters which take

x(t) = A(t) sin(wt + e)

or the "base band" (heterodyned by 2 sinwt and 2 cosot and low-pass
filtered) pair

xl(t) = A(t) sino

x2(t) = A(t) cose

as signals of interest (states). These filters assume that the measure-
ment is of the form

z(t) = x(t) + n(t)

where n(t) is white Gaussian noise, and then

zl(t) = x,(t) + nl(t)

z2(t) = x2 (t) + n2 (t)

are the inputs fed to linear filters, where n and n2 become (after hetero-
dyning) independent white Gaussian noise proc sses. The linear filters

produce estimates (t) and 2 (t), and phase and amplitude estimates 
are

0 = tan x 1 (t)/i 2(t)

A(t) = (x Mt +x

An alternate technique for amplitude estimation is to use the quad-
rature charnel of a PLL discussed above. If a limiter is used for the
normal PLL, and A(t) > L, then the normal loop will be insensitive to1.1 A(t), and a good phase estimate w'll be obtained. Also, the quadrature
signal

2 cos(wt + 6(t))

may be used to heterodyne the input (without limiting) to create

A(t) cos(o-6)

If 6 is close to o, this signal produces a good amplitude estimate.

It should be noted that all of these demodulation techniques assume
an original modulation. If the amplitude or phase of an EEG is easier
to track, classify, or reproduce than the measured wave, then such de-
modulation will be justified. If, however, the demodulation reveals no
new insight, it may be a needless complication, and other techniques should
be considered.

88



APPENDIX E

NONADAPTIVE TIME-DOMAIN ANALYSIS

Time Domain Analysis is a tool to compress datb efficiently, that
is, with little loss of information and if possible by a simple scheme.
In some sense the compression then describes the properties of the data.
The compressed information may be used to forecast, classify patterns,
or for design changes (e.g., when a system appears "sluggish").

For the purpose of VER/EEG analysis we will concentrate on the

stochastic modeling of time processes. An important class of these models

is given by the Markov processes. In these processes the future statistics
of a process are fully specified from knowledge of the present statistics.
This concept is also referred to as a generalized causality principle.
In good part the importance of these processes arises from their flexibility
and mathematical convenience. The transition from the present to the
future may proceed in a linear or nonlinear fashion and the process may
or may not be stationary.

An important class of linear and stationary models is given by auto-
regressive (AR), moving average (MA), and autoregressive-moving average
(ARMA) processes. Their importance in a variety of fields and a system-
atic approach to selecting proper models is described by Box and Jenkins
(14). An important and still more general tool was developed by Kalman
(55). Increased generality and applicability are due to considering
nonstationary linear processes which also allow approximation of many
nonlinear processes through nonstationarity.

In this appendix we outline model assumption For AR, MA, and ARMA
structures together with their characteristics. Then we outline the Kalman
model and discuss its advantages over other procedures, but also some
important problems related to its structural generality.

AUTOREGRESSIVE AND MOVING AVERAGE MODELS

The use of AR models goes back to Yule (120) when he attempted to
predict sunspot activity. It had been observed from W6lfer's (Box and
Jenkins (14)) sunspot data that the sunspot activity was nearly periodic
with a cycle length of about 11 years. However, there was fluctuation in
amplitude and period of these nutmbers. Yule (120) attempted to describe
these fluctuations by a causal random process of the type:

x(t) = 1 x(t-l) + cx2x(t-2) + ... + xp x(t-D) + C(t)

where c(t) expresses random shocks driving the linear process. They
assumed c(t) to be a white process with constant power; that is, the
covariance of e(k) and t:(z) are given by

2
cov [ (k), I()] :k
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Yule found for suh a process a closed form estimate for
S and a based on estimates of the autocorrelation function.

Asymptotically, as the observed data grows infinitely long, his estimate
is equivalent to the maximum likelihood estimate. Observe that
for an AR process any disturbance propagates infinitely long (even though
the amplitude may decrease).

An alternative linear process with slightly different characteristics
can be written as

~~y(t) = EMt - 1 (t-l) - ... q c(t-q)

2 q
cov [e(k), c(z)] = 6kz c2

This linear process is known as moving average (MA) process. An apparent
difference to the AR process is its finite memory of lag q; that is, dfter
more than q steps any disturbance has died out.

For purposes of modeling it appears attractive to combine the AR
with MA structure to obtain a still more flexible model. The combination
may be written as

y(t) A a1 y(t ... - A y(t-p) (t) - 6l C(t-l) - -Bq e(t-q)

2
cov [s(k), E(z)] =k

and is called an autoregressive-moving average (ARMA) process. Since
this model may be viewed as a polynomial, in a delay operator, on y(t) and
c(t), the representation is only unique up to common roots in these poly-
nomials (known to engineers as pole-zero cancellation). This is of
importance when parameters are to be estimated since such comnmon roots
are not identifiable.

As an example for an ARMA process, Zetterberg and Kjell (121)
have modeled the EEG signal as:

m n
y(k) = E a1 y(k-i) + E bi e(k-i) + e(k) (E.1)

i=l j=l

where y(k) is the EEG signal at time tk = kT, and e(k) is an assumed
white noise input process. This ARMA model parametrizes the EEG in a
set of m+n parameters (ai, ..., am; bI, .... %bn). The residual process

e(k) (the moaeling error) can be computed to determine goodness-of-fit,
for example, by variance tests. The advantage of a model of the form of
(E.l) is that it may be possible to model the EEG signal using a few
parameters. Zetterberg found that m < 5, n<m, gave satisfactory per-
formance in most cases for the spontaneous EEG. Bohlin (12) has also

considered models of this form. Since many parameters are free to choose,
a significant computational simplification is accomplished by assuming
the moving average parameters (b ... , b ) to be constant for all signals,

so that signal variations could 1e accounied for by using only the auto-
regressive coefficients (a,, ... , a ). For the purpose of multilead
recording the modeling can easily b extended to vector ARMA processes and
covers then all linear stationary finite dimensional Markov processes,
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The basic theory using (E.l) assumes stationarity of the EEG signals.
However, it is well known that the character of the EEG may ch nge spon-
taneously. Furthermore, when the chanqe in character is induced by
stimuli, the nature of the change is of interest.

In order to treat this more general problem effectively a different
notation, known as the Kalman message model (Kalman (55)) was introduced.
The model with the observation z(t) is given by

z(t) = Ht x(t) + v(t) observation model

x(t) = Ft x(t-l) + w(t) process model

cov(vk, -k ) 6kz Vv(k)

cov(wk' wz 6kz Vw(k)

'1 moment assumptionscov(4 , V, 0

E[w(t)] = E[v(t)] = 0

Kalman (55) showed a computationally efficient way to track in
real time x(t). The algorithm, in combination with nonlinear parameter
estimation is easily extended to find also estimates of the transition
matrix F , observation matrix Ht. the variance of the measurement noise

Vv(t) ,and the process noise Vw(t). Moderately nonlinear processes may

be approximated by nonstationarities (Jazwinski (53)). The scheme is also
easily extended to be adaptive (see AppendiA G, "Adaptive Filtering") and

v robust (see Appendix G, "Artifact Detection and Robustness").

Clearly, with increasing generality u schemes, theoretical and
computational problems arise. For example, while for the estimation of
AR-parameters the solution is unique and found by elementary matrix
operations, estimatinq parameters in the Kalman model must be preceded
with an analysis whether these are at all observable (such as in the
problem: what is a given c, where c = a + b?). In other words, parameters
are mutually dependent, sometimes such that they cannot be distinguished.
(Note: this observability problem arose already in ARMA models with the
pole-zero cancellation).

When estimation of parameters is possible, one still has to be
aware of possible nonuniqueness, a result of the complex (usually ncn-
linear) relation of parameter with the data. Hence, when nonlinear
parameter estimation is used, one has not only to recursively optimize
the fit of a model, but also to verify uniqueness by using a sufficient
number of different starting points of the estimation scheme. Since,
in addition, many model structures are possible, they all have to be
compared.

b S2 I is in possession of routines which perform this task automatically,

but aoplication to models with many parameters (high dimensionality) is
computationally expensive and requires potentially high computational
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accuracy. S 21 is also working on methods to relax some of the compu-
tational requirements, further automate these routines, and improve their
performance for high dimensional problems. It will not be advisable,
however, to use these routines in a completely unsupervised manner.

One of the conveniences in the use of the Kalman filter lies in the
simplicity with which physical models are converted into filter coefficients.
For example, one may have good a priori knowledge of the noise power
in measurements; this quantity can be directly entered in the Kalman
model. If this knowledge is to be expressed in the ARMA structure, a
nonlinear relation to ARMA parameters arises. Clearly, this further
exacerbates the problem of untangling the "components" in biological
signals.

A danger in the use of the Kalman filter for the layman lies in the
rather overwhelming freedom of structures he may choose from. He is then
easily tempted to "overfit" the data (Box and Jenkins (14)). Thus their
use requires experience with modeling, beginning with statistical analysis
of residuals to an understanding of controllability and observability
and appreciation of numerical complexities.
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I APPENDIX F

NONLINEAR SYSTEMS ANALYSIS

The nonlinearity of responses of living systems to stimuli, such
as VERs for visual stimulation, is well documented. Nonlinearity is also
seen on more microscopic levels--for example, in the generation and
propagation of action potentials or the quantum release of chemical
transmitter substances of synapses. The importance of nonlinearity can
be appreciated in different ways: on the one hand, it is a means to enrich
the input-output relations of systems and often it is a tool to perform
certain tanks very reliably and inexpensively. In some instances, it is
indeed the optimal approach to certain constrained problems such as the

-force constraint in saccadic eye movements. On the other hand, the
richnPss of input-output relations poses considerable analytical problems;
hence, analysis is typically limited to approximations. These approximations
will often require simulations and iterative numerical procedures to check
and improve solutions.

For the understanding of such systems special tools were developed
in the engineering sciences. Typically the tools are based on an
expansion such as Taylor or Volterra series. Special forms of linearization
are used for the describing function analysis or extensions to the Kalman
filter algorithm. Applications of Volterra series expansions for system
analysis were pioneered by Wiener (116) and subsequently somewhat modified
by others (Marmarelis (67)).

- iWe may start out with the describing function approach, miinly
because it provides insight into some of the important properties of
nonlinear systems. As such, it is mainly developed for the evaiuation
of known nonlinear structures, such as the description of transfer
characteristics or oscillations, as opposed to the estimation of under-
lying structure, given the transfer characteristics. On the contrary,
extensive Kalman filter methods and Volterra series representations
have been developed for the estimation and identification of unknown
structures qiven input-output relations. However, in this appendix we
will not discuss the Kalman filter algorithms or its extensions, since
it is based on linear estimation and only its extensions deal with
nonlinearity. The reader is referred to Appendix G where approximations
to nonlinearities and nonstationarities are treated jointly.

DESCRIBING FUNCTIONS ANALYSIS

Describing function analysis was mainly developed in the engineering
sciences and resulted from the need to describe nonlinear devices such
as on-off controllers in an analytical fashion jointly with other possible
linear circuitry. Often these on-off controllers are implemented more
reliably or economically than continuous alternatives. It should thus
not be surprising that similar principles are also favored in biological
systems. As a matter of fact, in many hormonal control schemes (Martin (68))
the on-off approach is rather "popular." However, the usual context of
describing function is with dynamical mechanical or electrical elements
from enqineering. In that field, specification of elements and overall[ structure are known and performance characteristics are of interest.
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For our purpose here, the situation is somewhat different. Nevertheless,
we believe the describinq function analysis provides a tool to gain insight
into processes such as limit cycles, sub- and superharmonics, and intermodulation.
It may also provide guidance in the design of stimuli and aid in the
discrimination of competing hypotheses.

The main thrust of describing function arises from the convenience
of describing a ,onlinearity by its transfer of the fundamental frequency
and/or the transfer of mean and variance of the input signal. The
sufficiency of such a description arises from the memory-behavior of
practical linear components within a system. Firstly, the memory will

j result in spectral selectivity and secondly, via the central limit theorem,
it suggests Gaussian output amplitude densities (Wozencraft and Jacobs (119)).
Hence the signal flow and characterization may be accomplished by the
consideration of only few soectral lines and the propagation of only
the first two moments of the amplitude distribution functions (which are
given by the mean and variance).

The methodology of the describing function analysis provides thus
moderately simple means to understand oscillations of biological systems
(recall the oscillation of the focal length of the lens of the eye), and to
predict their frequencies and amplitudes as well as sensitivity to external
perturbations. Mechanisms like variable gain and the effect of dither
signals (signals which have a linearizing effect on nonlinearities) can
all be studied within that framework. For hypothesized structures the
methodology may suggest signals which emphasize a particular feature of
a system, or guide one to test signals which allow improved estimation
of certain components, or possibly to discriminate between alternatives.
The-e is considerable freedom in the design and modification of signals
because of their freedom in space and time. Some guidance about the
way in which such changes should be made appears very important and
may in part be answered by that methodology.

VOLTERRA SERIES

The Volterra series representation for the analysis of nonlinear
dynamical networks was first developed by Wiener (116). The concept
evolves easily from the generalization of the impulse response charac-
terization of linear networks, an approach widely used in engineering.
In linear networks (assume for simplicity scalar input and output)
the general response (the output) is completely characterized by the
resoonse to a unit Dirac impulse. Basically any input other than the
Dirac impulse may be viewed as a limiting superposition of infinitely

_ many impulses shifted in time. Due to the superposition principle of
linear networks to the response to this arbitrary input, waveform is also

the limiting superposition of the individual impulse responses, sinceI no "interaction" takes place between impulse responses.

The generalization to nonlinear system characterization is then
realized by incorporating the possibility of interaction of impulse
responses. This concept is precisely what is expressed by the Wiener

-series. To simplify the characterization, Wiener chose orthogonal
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functionals. In general, an infinite number of functionals (and their
associated kernels) have to be considered. In practice, this infinite
expansion must be truncated; but from current methodology (Lee and Schetzen,
(62)) it is not clear how many kernels have to be calculated for adequate
system characterization. For rather practical computational reasons
only first- and second-order kernels are usually calculated.

In the application of the approach other considerations are also
of importance. Instead of a Gaussian white input signal (which carries,
roughly speaking, infinitely many (Dirac) impulses with a particular
amplitude distribution) some other amplitude distribution and nonwhite
signal which can be generated by physical means (finite power) must
be used. Under limiting conditions a Gaussian white signal is usually
reached.

Marmarelis (67) points also to other practical limitations of
the method. In particular, he notes the strong dependence of kernel
values on input (stimulus) power. Great experimental care has to be
taken since the dependency becomes more prrnounced with increasing
order of the kernel. He discusses a variety of practical considerations
and suggests methods for computing error bounds on the performance of
such analysis. Some theoretical difficulties associated with kernel
computation in dependence on input function are also presented. A
good example of the application of the method to quantification of
multiple sclerosis is shown in Sclabassi et al. (99). In this example, the
intuitive meaning of the second-order kernel as a measure of interaction
between a pair of stimuli is quite appealing to the clinician, for
the evaluation of the integrity of portions of the nervous system
is certainly characterized by such interactions.
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APPENDIX G

ADAPTIVE AND ROBUST SCHEMES

ADAPTIVE NOISE CANCELLING

One of the principal objectives in the EEG signal-processing task
under consideration is the elimination of spurious signals (noise) from
the desired VER. The problem is complicated by the fact that there are
no simple methods for modeling the nature of the noise or the inter-
relationships of the signals present at the various scalp electrode loca-
tions. In this case, we need to be very careful in any modeling assump-
tions we make to ensure that they do not place unnecessarily severe
limitations on the quality of the results; that is, we seek techniques
that are robust to modeling errors. In a general sense, we can enhance
robustness by using a minimum number of assumptions in our models and by
using a minimal number of parameters as well.

One technique which uses a very minimal number of assumption5 as to
the nature of the data is the adaptive noise-cancelling technique of
Widrow et al. (115). The form of the problem and its solution are shown
in Figure G-1 using, for simplicity in presentation, a sinqle signal channel
and a single noise channel. In the figure, the signal S is corrupted by
noise n Two electrodes are used; the first electrode records signal
plus no~se (S + no) and the second electrode records the noise ni. no and

n are related by an unknown transformation which is dependent upon the
pXoperties of the medium through which the noise travels. Clearly if
no = nl, the signal can be recovered directly by subtraction (S = S + n0 - n1 )

+I- System

OuOuttut

I S + n
Source I IFteMedium Filter

Output

. Noise n"1 Adaptive y

L e
~error

L.
Adaptive Noise Canceller

Figure G-1. Adaptive noise-cancelling concept.
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Thus, we see that the problem of recovery of the signal is related to the
properties of the conducting medium and, it turns out, the properties of
the noise itself. Since the spurious signals we wish to estimate may
change dramatically in character with time, we need a method to a
to these unpredictable changes. The Adaptive Noise Cancelling met hod
is an appropriate technique for this problem.

By inspection of Figure G-l it is clear that we wish to make y "track"
the unknown noise no as closely as possible. If we make the crucial
assumption that the signal S is uncorrelated with n and y, then the
problem is solved by adjusting y to give minimum output power (the power
in z).

The adaptive noise canceller may be used in various ways. By assum-
ing that the desired signal is the VER, we can attempt to cancel distur-
bances and make z a good estimate of the VER. Another approach would
be to treat a desired response (such as flash response) as the signal and
make z a good estimate of the response. In this case, the noise would
include the VER.

The adaptive noise canceller has found many applications, as a result
of its very general nature. These include estimation of fetal ECG by
elimination of maternal ECG, elimination of radar sidelobes, notch filter-
ing, noise cancelling in speech, self-tuning filters, and spectral es-
timation.

LONGINI'S NOISE CANCELLATION VIA ORTHOGONAL BASIS FUNCTIONS

A particular type of adaptive algorithm is based on orthogonal basis
function representation; it has thus some similarity with the Karhunen-
Loeve expansion and may be viewed as a communication theoretic approach.
The method applies to models of the structure assumed by Widrow's adaptive
noise cancellation. The solution proceeds, however, in a different fashion
and provides fast convergence. For nearly periodic interferences of
noise with the signal a further advantage over Widrow's method arises,
since nonstationarity can easily be accounted for by rather primitive
windowing. Due to the better convergence properties of Longini's over
Widrow's method, less danger of system instability exists. Clearly a
price has to be paid for these conveniences in terms of computational
comolexity.

Just as in Widrow's LMS-algorithm the linear but structurally un-
known transmission characteristics for noise and the direct observation
of the noise sources are exploited in a least-squares sense. The basic

"' version of Longini's (65) method is based on the selection of sequential
frames of data; within each of these frames the noise cancellation is
done independently. The selection of frames is often given in a very
natural way by periodic "events" such as heart beats, artificial stimuli,
or other oscillation.

The procedure then calls for the estimation of noise transmission via
estimation of covariances. Knowledge of these covariances may then be



exploited to construct an orthogonal set of waveforms via the Gram-Schmidt
procedure. Minimization of the noise in the signal then results directly
from subtraction of these orthogonal waveforms from the observed data
containi;6g the signal. It is the use of the orthogonal set of waveforms
which leads in this quadratic minimization to a one-step "convergence."
Since Widrow's method does not orthogonalize his waveforms, convergence
via his particular (nonlinear parameter) estimation scheme is slow if
noise sources are correlated (either in space or time--depending on the
particular problem). On the other hand, when noise sources may be assumed
independent, nothing can be gained by Longini's orthogonalization approach,
but much computation is saved by Widrow's algorithm. Longini's method
requires n(n-l)/2 correlations for n-correlated noise sources.

For the purpose of real-time noise cancellation a fairly simple modi-
fication exists for Longini's approach. Instead of using frames of
data, an exponential weighting function, aginq past data can be used. In
this form the algorithm is considered for implementation on a clinical
instrument for removing maternal ECG signals (noise) from the abdominal
fetal ECG signal (Longini et al. (65)).

ADAPTIVE FILTERING

The adaptive estimation technique given in Appendix G, "Adaptive Noise
Cancelling," was predicated only on several vague assumptions concerning
the character of the EEG; specifically, signal and noise components were
assumed uncorrelated. No particular signal structure was presumed. In
Appendix E, it was shown that the EEG (particularly the spontaneous EEG)
does have certain definable statistical characteristics and that autore-
gressive models may be useful in EEG analysis. It would appear to follow
naturally that the VER would have even more definable structure due to the
controlled nature of the input signal. If this is so, then it also follows
that adaptive algorithms should have more structure than allowed by Widrow's
method. This subsection will discuss a potentially powerful approach to
adaptive filtering using more highly structured models.

The basic theory, discussed in Appendix E, assumes stationarity of
the EEG signals. However, it is well known that the character of the
EEG may change spontaneously. Furthermore, when the change in character
is induced hy stimuli, the nature of the change is of interest.

H An example of the variable character of the spontaneous EEG is shown
in Figure G-2. The resultant time-variable spectra are shown in Figure G-3.
Each curve in this plot is a power spectral density, averaged over 1.6
sec, and taken over successive 1.6-sec intervals. Figure G-3, sometimes
called a compressed spectral array (CSA), is often used to
analyze the time-varying nature of biological signals. The figure can
give us qualitative information as to the nature of the nonstationarities
in the EEG. However, we need to obtain quantitative information in order
to study the problem more precisely. To do this, we now turn to a
discussion of analysis of nonstationary EEG signals.
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Nonstationary Models

For the nonstationary case, it is useful to think of the AR'A model
as time-varying; that is: the coefficients now become time functions.
These functions are unknown, due to the unpredictability of the EEG
signal. Thus, we need a way of estimating them from the data. The most
powerful and general methodology for accomplishing this is adaptive
filtering.

Before discussing adaptive filtering, we wish to remark that the
ARMA model causes difficulties if the moving average parameters also
change in time. ARMA modeling is very difficult for nonstationary
processes. Bohlin (12) has developed an adaptive filter for tracking
the AR parameters, while keeping the MA parameters constant; he did not
consider time-varying MA parameters. It is possible, however, to resolve
this problem by using a different problem formulation called state-space
modeling. The state-space models we will consider are of the form:

y(k) = H x(k) + r(k) (G.1)

x(k) = D(k) x (k-l) + G(k) u(k-l) (G.2)

where

y(k) is the output (measured EEG),

x(k) is the n x 1 state vector,

H is a l x n measurement matrix,

M(k) is an n x n state transition matrix, and

G(k) is an n x 1 input vector.

The output y(k) may be a vector. The noise input u(k) produces uncer-
tainties in x(k), while the noise r(k) acts as channel noise.

The state vector x(k), and hence the output y(k), may be estimated
using modern estimation theory. If we assume that {u(k)} and {r(k)} are

zero-mean white Gaussian processes with known second moments, that x(k)
is Gaussian, and that H, 4(k), and G(k) are known, then the best estimator
is a Kalman filter which is of the form

R(k) = (k) x(k-l) + K(k) v(k) (G.3)

v(k) = y(k) - H (k) x(k-l) (G.4)

Here R(k) is the minimum-variance estimate of x(k),and v(k) is the
measurement residual, or innovation, which represents the new information
brought in by the measurement y(k). The last term in (b.4) is the
predicted value of y(k); hence, if v(k) = 0, we are not getting any new
information from y(k). The matrix K(k) is a gain matrix which controls
the rate at which new information is incorporated into the estimate i(k).
It is computed as a function of (k), H, G(k), and the noise covariance
matrices.
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With this brief background, we are now finally in a position toidiscuss adaptive filtering.

Adaptive Kalman Filtering

Since Ihe models we are discussing here have a particular parametric
structure, we expect that development of adaptive techniques will be more
complex than the Widrow algorithm. This is indeed the case. Adaptive
filtering based on a Kalman filtering methodology has been an active
field of research for at least a decade. A good review is given in
Mehra (70).

Perhaps the most generally powerful technique is the maximum likeli-
hood approach, in which we attempt to compute the most likely set of
oarameters in time. Bohlin (12) has used this approach for EEG analysis
(while restricting his study to AR models) and developed adaptive filters
in a special integer arithmetic implementation to maximize computationalspeed. His results indicated that the approach could provide a useful
man-readable interpretation of the EEG.

Duval (35) has developed a more general adaptive algorithm which
can be used for the model of (G.I)-(G.2). He considered only the problem
of adapting the gain matrix K(k). More recently, Gustafson and Ledsham
(47) have developed an adaptive filter for tracking the transition matrix
o(k) in real time. The form of these adaptive filters is similar. To
illustrate the technique, suppose we are interested in tracking only O(k).
Then the adaptive filter takes the recursive form:

filter(k) = y(k) - H x' (k)

Lx(k) x'(k) + K(k) v(k)

= *(k-I) - f(v(k))

adaptor t $(k+I) = ;(k) + [I*(k) -

propagation {x'(k+l) = $(k+l) i(k)

The first two equations ("filter") incorporate t;oe measurement y(k) into
the state estimate i(k). The quantity x'(k) is tie predicted value of
the state x(k) prior to incorporating the measurement y(k).

Adaptation of s(k) takes place in two steps. First, the optimal
estimate *(k) is found using thi maximum likelihood equations. TheI function f(v(k)) is linear in v(k). Next, the estimate N(k+l) is computed
using an update rate parameter B. If B=l, then $(k+l) = t*(k). If

A B = 0, *(k+l) = $(k) and the estimate does not change from its previous
value. Thus Bcontrols the speed of adaptation.

The final step is propagation of the state estimate using the
new estimate $(k+l
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This algorithm is easily extended to include simultaneous adaptation
of (k), K(k), and G(k)A although the equations become more complex. As
mentioned previously, S I has applied these algorithms to other problems
and is quite experienced in their use.

PIECEWISE STATIONARY MODELING

Another approach to the analysis of nonstationary signals is to
seqment them into stationary, or quasi-stationary, segments. It is un-
doubtedly true tnat the nonstationarity of the VER, using almost any
nonstatioiarity measure, increases as the data epoch increases. It has
been experininially verified (e.g., McGillem and Aunon (69)) that seq-
menting the VER and usinq latency-correcting techniques for each segment
results in higher signal energies and more sharply defined responses.
More recently, Seqen and Sanderson (100) have used piecewise stationary
autoregressive models for the spontaneous EEG. The data were segmented
using a cluster analysis of the model parameters. Their results demon-
strate clearly the possible improvement in signal tracking attainable using
segmentation of the EEG. This same technique should be applicable as well
to the modeling of the VER (cf. Figure G-2 for anexample of the non-
stationarity of the VER).

ARTIFACT DETECTION AND ROBUSTNESS

Large real-world data sets will always tend to be corrupted by
artifacts, some of which cannot be accounted for. When the occurrence
of artifacts is rare and of little power, they may be ignored. In VER/EEG
analysis, however, rather large artifacts such as from frequent saccades
of the eye, periodic blinking of the eyelid, and looseninaj of electrodes
may occur. Analysis of VER/EEG data should include these effects.

A Robustness expresses the corcept of good system performance when
structured or other deviations +,-om the assumed model arise. The concept
has received much attention irn co,l-r-i theory and statistics in the last
decade. The objective when making i p~rucvlar procedure robust
is to trade little of known good popertes of a particular procedure
against resistance to model errors. Tit;- general theoretical treatment
is very hard or even intractable, in all but the most trivial situations.
Consequently investigation of robustness properties is guided by consid-

J eration of limiting cases, possibly exnressed in bounds and typically
Ichecked by simulation. Usually only robustness against a few types of

iodel deviations is accomplished, but never against all.

Applied to VER/EEG analysis this could mean an algorithm is capable
of contitiued good performance, despite saccades, blinks,or other erratic
events; possibly the algorithm might also cope with an occasionally
misplaced electrode. The robust scheme will typically "suspect" or "detect"
model deviations and reduce the weight in considering such data. A
good example of such a robust method is given Dy Athans et al. (7)
where a ballistic reentry vehicle produces "n ionic wake; when observing
the vehicle by radar, the wake may also reflect the radar beam resulting
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in erratic measurements. Based on a likelihood argument, the well-known
Kalman filter algorithm is modified to be "cautious" in incorporating
such erratic data. In a comparison, the "optimal" Kalman filter algorithm
lost track of the vehicle; the robustified version did not. Furthermore,
when there was no wake, there was little difference in the performance
of the two versions of the algorithm.

Lately, the concept of robustness is also combined with the concept
of adaptivity. For examole, one would like to make a procedure more robust
when there is evidence of model deviation, but approach the optimal
method if there is no such indication. Some theoretical work in this
direction has been done by Prescott (82) for adaptive trimming
proportions for the estimation of means.

Some experience related to adaptive trimming in dynamical system
was also gained by one of the authors. There the problem arose to
describe dynamic fluctuations (arrhythmia) of the fetal heart rate in
the presence of erratic artifacts due to maternal heart beat, uterine
contraction durinq labor, and electrode imperfections.

Examples: Adaptive Spectral Line Enhancing

Adaptive methods are quite useful in extracting periodic components
from broadband noise. For example, this approach could be used to track
VER frequencies at or near the input frequency.

As a result of random, unknown modulation effects within the brain,
the counterphase frequency component may be changed slightly within the
measured VER. This "detuning" is something we would like to be able to
track. As a simple example, suppose that the counterphase frequency is
f0=2n/wO Hz. The fund-mental signal component is

S (t) = cos W0t

Now assume that a phase modulation of the form

o(t) = asin w0 t

is introduced. The signal then becomes

S(t) = cos(wot + a sin w0t)

The Fourier cuefficient at frequency f0 is

af (a) = Jo(U) Jl (a)
0

where J (a) is the Bessel function of order v. For a small
V

af (a) = 1 - 0.75a - 0.159a2

0

The oarameter a reDresents the maximum phase deviation one would expect
over one counterphase cycle. For example, McGillem and Aunon (69) found
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nhase deviations of UD to 20 msec over VER segments of 100 msec. For
a counterphase frequency of 8 Hz this gives .= .16 and

ao(.16) = .88

Thus, expected small latency shifts give rise to significant reductions
in output signal power (here 23%) at the counterphase frequency.

Frequency tracking may be accomplished by the Adaptive Line Enhancer
(ALE) (cf. Tufts et al. (110)). An example of the performance improvement
relative to the ,FT is shown in Figure G-4. The probability of detecting
a constant frequency signal in wideband Gaussian noise is plotted vs.
input signal/noise ratio for several values of false alarm probability
(P,,). Performance improvement at low PFA is quite significant.

0 so -ALE
PFA70 ! CONVENTIONAL FFT

so ./

3o 160

420

20 -
10 d ,

36 34 32 30 28

INPUT SNR

Figure G-4. A comparison of receiver operdtion characteristic
(ROC) curves of the conventional and ALE detectors.

(after Dentino et al., Proc. IEEE Conf. on Decision and Control,1* p. 1377, 1978.)
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APPENDIX H

EXPERIMENT DESIGN

The design and operational details of a VER experiment can have a
significant impact on the effectiveness of signal processing. In particu-
lar, critical parameters in the signal source, subject condition, and
experimental procedure should be regarded as valuable data inseparable
from the measured EEG. These parameters may be classified as a) controlled,
b) uncontrolled but measured, and c) important but unmeasured. Of
cou-,se, the same parameter may be controlled in one experiment but an
unmeasured disturbance in another. Desmedt (28) contains (in chapter I
on methodology) a good description of such parameters in VER research.

The first group of parameters contains all of the factors directly
controlled by the experimenter, These parameters include a) stimulus
details, for example, color, pattern characteristics, flash frequency,
and eye illuminition; b) subject details, for example, concentration points
and task performance during the experimentt and c) measurement details,
such as electrode placement and characteristics, analog processing before
digitization and digitization parameters.

Other parameters may be equally important, although uncontrolled
(or even uncontrollable) but measured. Included in this category are
subject blinking or eye movement, time of day (patient awareness), and
electrode impedance characteristics. The effect of some parameter
variations may be reduced rather than measured, by proper experiment
design. For instance, impedance variations may be reduced by using a high-
impedance amplifier at the sacrifice of noise level (see Appendix B).

The last group of parameters, uncontrolled and unobserved, contains
the most troublesome variables for the experimenter. Subject attention
and focal point, random stimulus variations (e.g., frequency jitter),
pupil dilation, and electrode noise can all add unaccounted variability
to an experiment session. The potential damage is much worse when the
data is processed long after it is taken, possibly ending in a wasted
session rather than merely one bad run. Data processing techniques which
qive instant results, not unlike instant pictures, are quite valuable
even if inferior in quality to post-processing.

Proper experiment design may test for the sensitivity of the results
to any questioned parameter and modify the experiment when necessary.
For example, a simple VER extraction technique (for removing the back-
ground EEG) in real time can be used to Position electrodes for maximum
response and may reduce day-to-day variability in the data, thus orovidingbetter data for later, more sophisticated, oost-processing.

Experiment design may also prevent unmeasured disturbances from4corrupting the data. For example, a Maxwellian view technique may be
used to prevent random pupil dilations (see Appendix B) from unintentionally
amplitude-modulating the stimulus. Another example is the possibility
of (deliberately) frequency-modulating the pattern reversal rate in the
a wave region to prevent the EEG from locking to the stimulus. If the
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resoonse to a blindinq flash is measured by sychronously demodulating

(see Appendix D) the pattern response, a much different result from

constant-rate experiment--with EEG entrainment--may be obtained. This

may permit EEG entrainment time-constants to be distinguished from
flashblindness recovery times.
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APPENDIX I

EVALUATION OF PERFORMANCE

Evaluation of the performance of , signal-processing method or
exDeriment is inherently based on costs and benefits (negative costs,
also considered utility). Ideally, an evaluation should aid in modifying
the structure analyzed, so as to improve overall utility or reduce costs.
A difficulty exists in that utility and cost are usually not fixed as a
project progresses, and often they are hard to specify at all. Thus the
best one can do initially is to discuss aspects related to these costs as
they pertain to the balance between signal analysis aru other research
objectives.

Typically simpler structures can be evaluated more objectively,
comolex problems more subjectively. In this appendix we will start out with
a discussion of simple structures and turn to more complex situations.

EVALUATION OF PERFORMANCE OF SIMPLE STRUCTURES

Earlier, in Appendix A, we discussed the general philosophy of signal
analysis as a task to separate information in data from its random
component. The separation is rarely complete; in many cases, complete
seDaration is not even necessary to meet one's goals, while in other uses
it may be mandatory.

Special tools have been developed in statistics to identify when
separation is nearly complete. The tests concern the residuals of the
model: that random part not accounted for by the model. A variety of
tests for the mutual independence of residuals (from one sample point
to another) have been developed, each with a specific diaqnostic value
and power to discriminate aqainst certain alternatives. For Gaussian
distributions, which are very important in much of signal analysis, a
test for uncorrelated residuals is equivalent to a test for their mutual
independence.

For example, consider an EEG tracing. We select a window-subsection
in order to fit a model and would like to detect when in subsequent
windows a significant model change occurred, so that we may update our
model. In this case, we may, for example, simply compute the one-lag
autocorrelation value of the residuals for any of these new data windows;
when a critical value is exceeded we are willing to proceed with the
poss 4oly costly (in terms of computer time) reestimation of our model.

The importance of mutually independent residuals is intuitively very
appealinq in case of sequences of events, such as in time series. Foi-
example, when we forecast an observation based on present and past, and
the difference between our forecast and the eventual observation is

'I independent of all our knowledge (including all past forecasts and
observations), we have done the best possible job--all structural information
in the ongoing process is known to us. It is only the randomness of nature
which surnrises us and creates an innovation. On the contrary, if the
difference between forecast and eventual observation depends on the past,
we could use this dependency to improve our forecast; hence we did not
use the optimal scheme.
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The importance of this concept was emphasized by Wiener (116).
In the case of linear dynamical structures and Gaussian densities, testing
for uncorrelated innovation is equivalent to testing for optimality of
the scheme. Such uncorrelated sequences are usually called white sequences
(they need not be Gaussian) in resemblance to the stochastic properties
of white light. Observe, that colored light such as from lasers is
highly structured as expressed by the coherence properties. Again, in
resemblance to colored light, (innovation) sequences which are correlated
and hence contain much structure are regarded as colored (see Sage and
Melsa (94, 95)).

For cases other than linear structures, checking correlation is in
general insufficient to detect dependency. But in many statistical
models local linearizations are possible and hence "moderately" nonlinear
problems may still be analyzed by correlation procedures. Possibly one
might also use Dewan's (31) generalized procedure. Thus testing cor-
relation remains one of the most important and also diagnostic procedures
to establish optimality of a scheme.

An alternative to checking for the "optimality" of a signal-proces-
sing scheme in terms of residuals is to look at the usefulness of one's
scheme to express gross features. For example, the second-order (linear)
AR-model describes gross oscillations in an EEG waveform but does not
account for the asymmetry in that particular waveform. When these
oscillations entrain another mechanism, it may not be very interesting
to have the "optimal" model. It may be sufficient to specify roughly the
(possibly somewhat drifting) modulating power and frequency of these
oscillations to predict the behavior of the entrainment.

.4 For other purooses one miqht not be interested in the predictive

value of a scheme, but as in pattern recognition, one wishes to have a
parameterization of observation which allows separation into different
classes, sometimes even into distinct clusters. When such separation
is accomplished with low enough error rates, one may well regard a parti-
cular scheme as good. Clearly, when error rates are not low enough,
examination of model residuals may tell whether there is (still) possibly
useful information left in the original data which might be "extracted"
by improved modeling.

SUBJECTIVE EVALUAlION AND EVALUATING A LARGE SYSTEM

Subjective performance evaluation will often occur in preliminary
evaluation of simple structures or will result from subjective cost
structures. For the preliminary evaluation of simple models, plots of
model residuals and their visual (subjective) evaluation are very
important; a good treatment of this topic is given by Draper and Smith (32).
As structures become more complex, their evaluation requires approximations
(they are subjective) especially because of nonlinear interactions (such
as limitation and decisions) of system components and changing objectives.

The most important performance measures of large systems we will

use are based on:
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1. Reproducibility

2. Sneed of processinq--real time versus off line

3. Numerical stability and sensitivity

4. Automatic versus manually supervised operations
(selection of starting values)

5. Robustness against artifacts

6. Resistance to operator command errors

7. Structural clarity--e.g., relation of parameters to
physical or physiological processes

8. Ease of modification (e.g., model changes)

Their mutual weiqhting in the evaluation ofa particular component is
essentially a quite subjective task.

In an environment with the goal to improve these essentially sub-
jective performance measures, we ask first for diagnostic procedures to
detect components which perform poorly. Detection of such components
(e.g., a spike/wave detector) and their importance in the overall scheme
will tend to be more valuable (because of simplicity) than a complete
ranking of the performance of all components: delineation of poorly
performing components invites immediate treatment. In view of changing
objectives and costs it is unlikely that the effects of a poorly performing
component will improve with time. Hence this approach of detecting "bad"
components is one of the important aspects of the philosophy of trouble
shootinq which ultimately may reduce costs or improve utility.

Then, once all "bad" components have been taken care of, one may
proceed to examine more carefully the cost effectiveness of components.
Possibly one determines also their relations and the potential to tune
components in terms of tradeoffs.

I
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APPENDIX J

OVERVIEW OF APPLICATIONS

The varied techniques of signal processing discussed earlier in
this report can be applied at several points, and on several levels in
VER experimentation. This appendix outlines some obvious applications
and discusses some of the more promising processing techniques for each
area.

I .OVERALL EXPERIMENTATION

The basic exoerimental process may be structured as in Figure J-1.
The first steo ir the design of an experiment is to define objectives;
i.e., to specify what one hooes to learn in the experiment. With these
objectives in mind, one forms a model for the process under investigation
and then designs an experiment to test the model. The actual preparation
and conduction of the experiment may include the minor feedback loop,
from data analysis to experiment set-up, as shown. This loop represents
the real-time use of signal orocessing in "calibrating" the experiment or
reducing unwanted variations in experimental conditions, for example, the

Suse of EEG amplitude measurements to repeatably place electrodes.

LDATA PROCESSING AND ANALYSIS FOR VER EXPERIMENTS
The data-rrocessina block of Figure J-l contains the usual functions

of signal analysis in experimentation. For VER experiments, this block
may be subdivided into several subtasks, each of which may be accomplished

by a different signal-processing technique. The subdivision will also
be different for "transient" (single flashes or patterns) testing than
for "steady-state" (pattern reversal) experiments.

,
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SDefine Objectives1 i
Assume a Model

Design an experiment
to test the model

Set up the experiment

4t

Perfor m the experiment
Collect Data

L-Process and Analyze
the Data

SVerify/Improve the Model

I Reexamine Objectives t

Figure J-1. Experiment overview.
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Steady-State Experiments

For steady-state experiments, the measured data from one or more
electrodes will be used to compute the instantaneous spectrum of the
EEG (or a single component of the spectrum at the pattern reversal
frequency). This instantaneous spectrum may then be tracked in time,
and any changes (especially in response to blinding flashes) noted.
The first task--that of computing the instantaneous spectrum--is a
nroblem in spectral estimation as discussed in Appendix C. It is particu-
larly difficult in this experiment because the spectrum is chanainq
with time, and one must inevitably trade off the accuracy of larger data
windows against the error caused by spectral changes during the window.

Once the instantaneous spectrum is computed, the modeling and tracking
of the spectrum changes (in response to a stimulus) may be more appro-
priately handled in the time domain as discussed in Appendix E. This two-
part analysis is shown in Figure J-2.

EEG affected p ' Model for
by pattern spectral S(tSpectral Eye-Brain
reversal stimation - Tracker Response

Flash stimulus timing

Figure J-2. Steady-state analysis.

Transient Experiments

In transient experiments, the EEG is measured at one or more scalp
locations, and the data is used to identify a brain response to a visual
stimulus. The data processing may be separated into two parts, as above,
but in this case the goals are decidedly different. The first task is to
take the measurements and extract the evoked response from the background
(spontaneous) EEG. Several different techniques for this removal of the
EEG may be considered. The second task is to analyze the VER, as shown in
Figure J-3.

Traditionally, the background EEG is averaged out by superimposing
several responses all synchronized by the stimulus times. This technique,
unfortunately, removes some high-frequency VER information and ignores
any response (VER) change from one stimulus to the next. Two other tech-
niques seem useful for VER extraction and do not possess these drawbacks.
The first would use time series filtering (e.g., ARMA) to track the EEG
before the flash and subtract an estimated EEG from the measurements during
the expected response. The residual should be the VER alone. The second
approach would use multi-lead information (ideally one lead with EEG plus
VER and one with EEG alone) to extract the VER via, for example, Widrow's
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idetify to Filter to Model for
VER + EEG identracy& E Analyze ------ Eye-Bra in

MeubrrtentRs Response ResponseMeasremnt~')- EEC,

.stimulus t

Figure J-3. Transient analysis.

method (see Appendix G). The first suggested approach requires temporal
correlation of the background EEG, while the second looks for spatial
correlation of the EEG (but not VER).

Once the (pure) VER is obtained, any manner of signal processing,
feature extraction, and pattern recognition techniques may be used to
examine the stimulus-response behavior. The choice of technique will
depcnd on the stimulus and response characteristics, but should be greatly
facilitated by the visibility of the VER after its extraction in the above
stage.

I
11



APPENDIX K

CURRENT AND CLASSIC SIGNAL PROCESSOR PERFORMANCE

This appendix derives some of the numerical results used in the section
"Analysis of Current Processing." We begin by noting a numb r of relations
for a Gaussian random varable (x) with mean m and variance a', denoted by

xN(m, a 2)

Then the first tour moments of x are

x=m

1 7 :=m 2 + 2

1 i= m3  m22

x m4 = 3 4 + 6m2 2

We consider the spectral estimate s:

2 2
S=X 

1 +X2

where xi %N(m, a), i 1,2

x and x2 are independent, and

2 = Q/2

Mean of s

The mean of the random variable s is

s E(xI) + E(x2) 2(m2 + 02)

and, substituting from dbove

-PT+Q

Variance of s

We may find the variance of s from the relation

Var s = E[(s-s) 2] = E(s2) =

From above we know that

s = 4(m
2 + ,2)2
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We have that

~2) = ~ 4  2 2 4E~s Ex I1 2xI x 2 +x 2)

=2Ex 4 + 2x22

2(a+ m + 6m a) + 2(a2 + rn)

Then
4 4 2 2 2 2 2

Var s =2[ 3a + M +6mo a (a + m)

= 4a +8m2 a

And, substituting for m and a

Var s Q + P T Q

Classic Spectral Estimation

The classic technique computes N estimates

2n=x + ,2

from the N windows:

For each window, the components at 4 Hz are

x. %N(m, 2)
in

where
m--2

2
a=Q/2

and then

n1l
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is the spectral estimate. We wish to compute the mean and variance of .

Mean
N -

S :Y . n

n=l
and, s= x 2n + x 2n = 2(m 2 + 02)

Therefore

7- PTs T + Q.

Variance

To compute the variance of s we need (S)2 and s

1 N N
w~i,. N n r f=1 SLiSE Sr] :E(x2  2 + 2 4 22 2 22

E~f r s I 2 (x1 2+x 2 ) 4Ex 2 x 2  4(02+m )2 2 n# rnrIn 2n r 2r12
and

24 2 2 4 4 2 2 22 2E[ (Sn)2] E(x1 + 2 x1 x + x2 ) 2(2a +4m a )+ 4(m +a )

Therefore

N N 4(2 +m2)2  + 2 (2a +N4m

N n=1 r=l N n=l

4(72 + m2)2 + 1 (4 4 + 8m2, 2)

and

(S)2 4(m2 2)2
~so that

so that Var s = 4 (4o4 + 8M 2o2)

and, substituting for m and a, we have

V , Q2 + PTQ! Var -
N
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Comparison

- Consider the following measure of a spectral estimator:

M = standard deviation

mean

where the lower M is, the better. Then the current estimato- has

M 
2

PT +

2 N

and the classic estimator has

M I =[ (Q2 + P T Q] 2

M 1l 2ITT)PT

We note in passing that the current estimator performance is inde-
pendent of T (the window length), and depends only on the total record
length NT. To see this we let the record length be

L = NT

Then

Of course, different window lengths result in different frequency resolu-
tions and thus different responses to noise outside of the 4-Hz band that
we consider. Thus this result should be approached with caution.

An interesting point, however, is that the classic estimator perfor-
mance imDroves as more windows are taken. This improvement is limited,
however, by the low-frequency resolution available at short window lengths
and by the eventual correlation (lack of whiteness) of the noise for short
times.

Finally, we are ready to consider the ratio of the measures

n = Mcl/M c

where small n (<l) implies the classic technique is better while large
n (>1) favors the current method. We let T and N be the same for both
techniques, so that frequency resolution and total data lengths are the
same for both.
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We have,

= [(l/N)(Q 2 + PTQ)] (PT/2))+ (Q/N)
(Q/NPT] ' (PT/2) + Q JI -(Q2/N2)" + (Q/N)PT] P/

Letting a represent a siqnal to "noise" ratio

a = PT/2Q

we have

2 I 
1/ ) N) + 2

F (I/N2 ) + (2/N) + a

= (I /,N) + 2at 1 +. a

A shown in Figure K-1, n is always less than 1, although for large a,
nT + I.7 Thus, if a pure sinusoid of sufficient power is present, both
techninues will give equally good performance. For low a, however, the
classic technique is better by a factor of

7 27For convenience the asymptotes of the ln(n 2) versus lna have been
plotted by analogy with Bode techniques.
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APPENDIX L

A MODEL FOR WEAK HIGH-FREQUENCY COMPONENTS

OF TRAVELLING WAVES, MODIFIED FROM LINDSTROM (64)

Lindstrbm's model is based on a Fourier analysis and Coulomb's law for
quasi-stationary fields (wave propagation velocity v c c I/i-). The ex-
planation we give here is a simplified qualitative geometric consideration.

We may start out by considering a wave, such as an action potential,

as composed of a continuum of infinitely long sinusoidal waves. For simpli-
r city, we will only consider far-field effects (h* X), as shown for two

sinusoidal waves in Figure L-l.

$

r
h >> XI

, i/2 - wave 1

- X wave 2
Figure L-1. The far-field contribution of two

halfwave #1 (darkened area), shown in the Figure L-1, will decrease like
1/r as the distance of that halfwave #1 from the point P is increased.
However, the contribution of the wave #2 within the window shown (With
twice that spatial frequency) will simultaneouslyidecrease like 1/r since
it contributes a dipole. Correspondingly the contribution o higher spatial
frequency components, say of order p, will decrease like /r . However,

ivoit as the deryn fthtfwave uc aso the inpoential) ndrastic

these higher spatial frequency components are also the components generating
the hiqh-frequency components in time, since they all travel with the samevelocity as the underlying wave (such as the action potential). A drastic
decrease of high-frequency component due to dealing with waves, all traveling
with constant velocity, is thus to be expected. Integration (Lindstr6m
and Maqnusson (54)) for the infinitely long structure yields for the
far-field "transfer function"

(jw) z C[Ko0 (wh/v)] exp(_jwXo/V0

.' _ 12 1



where K is the Bessel function of the secon dtknd. For large arguments,
one can use the approximation K o(u) = (/2u)"/ exp(-u), showing a pre-

dominantly exponential decline of the transfer with increasing frequency.
Note, there is no need to consider only a single fiber for this model;
there could be many synapsing fibers in series giving rise to the propagation
of a potential wave. Qualitatively, the above equation shows how quickly
with increasing distance h and increasing frequency w the transfer of
potentials decreases. This result is interesting since it suggests
the possibility to tune sensor electrodes to nearby sources by selecting
high-frequency components. With such a goal in mind, methods to reduce
electronic noise of currently used equipment become important (see
subsection "Frequency-Dependent Properties of Macroelectrodes (and
Ampl ifi ers)").
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APPENDIX M

PATTERN RECOGNITION TECHNIQUES

Pattern recognition techniques have been developed to provide com-
*1 puter assistance to the problems of analyzing, detecting, recognizing,

and describing patterns in apparently erratic data. As a result, an
entire field of study has evolved which has found application in diverse
fields, including engineering, computer science, biology, psychology, and
medicine. The techniques of pattern recognition have been especially
useful in the biomedical area, due to lack of appropriate physical models
with which to describe the processes of interest.

Pattern recognition is generally divided into several sequential
steps, as illustrated in Figure M-l. The raw data is first conditioned

raw data preprocessorI filtered feature features _ _ decision
--or filter .. data extractor -cassifier

Figure M-l. Information flow in typical pattern recognition
process.

(e.c., remove unwanted frequency comoonents or artifacts), with the
proviso that no information is lost in the process. The next step is
feature extraction, where the desire is to extract a minimal set of
information-bearing parameters. This step may be viewed as a process of
data compression. The final step is the classification process, where
decision rules are utilized to classify the features. Since the features

j contain (ideally) the same information as the raw data, the classifier
actually classifies the raw data.

We discuss briefly here aoproaches to feature extraction and pattern
recognition which might be particularly useful for VER analysis.I

FEATURE EXTRACTION

Perhaps the most important part of any nattern recognition scheme
is the feature extractor. In this appendix, a mathematical model will be
derived which will generate signals that closely approxinate maeasured

VERs. The model can account for the information-carrying signal compon-
ents, along with the various noises corrupting them. The model can be
derived from a training set via the Karhunen-Loeve expansion technique.
The coefficients of the expansion then become the features of the VER.

A model of the VER must be able to account for the variations from

cycle to cycle (i.e., each time the stimulus pattern is repeated) in
bc'th amplitude and period (stimulus rate). Moreover, it must be able to
take advantage of the possibly strong correlation between signals from
different electrodes. Any variation in the stimulus rate means that the
time origin must be reset with onset of each stimulus. The model to be
developed attempts to describe the VER and the identifiable sources of
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noise as observed by measurements on the head surface. For ease of
implementation on a digital computer, only linear discrete time models
will be considered.

First, we consider the VER model. An efficient means of characteri-
zing a sample waveform from an ensemble of statistically nonstationary
waveforms in terms of a set of parameters ai is:

M
y(n) = y(n) + Z yi4i(n) + E(n); n=l,2,...,N R  (M.1)

i=l
where )y(n) is the average value of the waveforms at the n sample.

2) e(n) is the truncation error corresponding to M terms.

3) ¢i(n); n = 1,2,...,N are a complete set of orthonormal basis
functions.

4) NR is the number of samples in the heartbeat (assumed of
standard duration).

The coefficients a. can be assembled into a vector a called the pattern
vector of a particular VER. Of the several techniques for generating the
desired basis functions, the method chosen is the Karhunen-Loeve expansion,
which has the following desirable properties (Fukunaqa (39)):

1) It minimizes the expected value of the error energy

NR
J = E{ 2

i1

2) It maximizes the distance between independent samples from a
single distribution, as defined by the scatter measure

d = EIII a- ij 1121.

3) It minimizes the population entropy, defined by

~ h = -E{lnp(a) ,

where p(2) is the probability density function of a.

4) The coefficients ai are statistically uncorrelated.
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The basis functions are determined as follows. Let

6Y- [6y(1)6y(2) ... 6Y(NR)] 
T

•i [ i(1) i ( 2 )  ... Oi(N R) ] T ;  i : 1,2,...,NR

[E(I)P(2) ... (NR)]
T

where 6y(n) y(n) -(n). Then (M.l) can be expressed as

6 M ii (M.2)

~i=1 - "

where I =[1i_2 ... IM]. The eigenfunctions are orthonormal in the sense
that

T =

where 6ij is the Kronecker delta function. Therefore,

:T 6- (M.3)

4 Let the covariance matrix of 6y be

R l= f] (M.4)

where E(6y) = 0 by definition. Then the basis functions are the eigen-
vectors of the covariance matrix R. A particular eigenvalue is the expected
value of the energy associated with its eigenfunction.

If y(n) is a sample function from one of k different stochastic
processes (i.e., generated by different brain processes), the Karhunen-
Loeve expansion is still optimal in that it minimizes the mean residual
energy and the population entropy, when the covariance matrix is defined
appropriately (Chien and Fu (22)):

k
R Y Pi R i

i=1
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where R. is the covariance of the ith stochastic process, which has proba-
bility-6f occurrence pi.

For a vector stochastic process (we are simultaneously measuring
different components of the VER with multiDle electrodes), the expansion
can be easily extended.

An example of the use of a Karhunen-Loeve expansion for ECG data
is given in Figurt M-2. Three different types of heartbeats are shown and
compared to a 10" order expansion (RECON). Since there were 200 samples in
the original data, the data compression is a factor of 20:1. Further-
more, the reconstruction error is seen to be very small, in this case
not large enough to give a different cardiac diagnosis.

PATTERN CLASSIFICATION

A wide variety of techniques are available for classifying a set
of feature vectors. They may be conveniently divided on the basis of
the process used to determine the location of classes in feature space
(learning). Supervised learning implies that all data are labeledIaccording to class. In unsupervised learning, the data are unlabeled and
classes are typically generated using cluster analysis.

Many supervised learning techniques are available. However, the ones
which are most widely applicable to relatively unstructured data such as
the VER are the so-called nonparametric methods. Among these, the par-
titioning decision tree approach of Friedman (38) is particularly
powerful, as well as being ideally suited to computer implementation.
This method will construct decision trees to any arbitrary accuracy on
the training set and can handle multiole classes in a straightforward
manner. It is presently b.ing applied to classification of ECGs by
Scientific Systems, Inc.

Cluster analysis might be particularly useful in the early stages
I of investigation of the properties of the VER. By using this technique,

it may be possible to gain insight into the structure of the data and
determine whether the VERs tend to f:1l1 into distinct types. The most
pooular and generally applicable clustering techniques are iterative
ones, using similarity measures between points in feature space, and
employing hierarchical or nearest-neighbor decision rules. A good review
is given by Ball (8). More recently, the use of fuzzy set theory has
been proposed for unsupervised learning, in order to eliminate the neces-

- .* sity of using zero-one membership functions (a point is either in the
class or not). This work has led to a class of "Fuzzy ISODATA" al-
qorithms (Bezdek (11)) which are easily implementable and are particularly
applicable tc problems in which there are smooth transitions from one
class to another (e.g., slightly overlapping classes). Since the results
are completely data-dependent, it is not possible to present results or
even predict the outcome of using such techniques on the VER. However,
they do represent the most generally powerful approach to data clustering
and thus have potential for VER analysis.
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ORIG (Original data)

RECON .-... ,(Reconstructed data)
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Fiqure M-2. Illustrating the data-compression capability of the Karhunen-
Loeve expansion, ECG data with variable morphology. Compression
ratio 20:1.
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APPENDIX N

A SET OF RECOMMENDATIONS FOR SEVERAL PROBLEM AREAS

The recommendations given below are derived from our analysis of
the pertinent literature, especially literature concerning the evidence
for certain properties of EEG/VER signals and literature on experimental
procedures and considerations. The recommendations fall into the following
groups: signal analysis, stimulus design/experiment design, choice of
electrode location, medical/psychophysical, and future aspects. Within
each group we followed (tentatively) some ordering corresponding to the
apparent increase in complexity of the recommendation and/or decreasing
expected pay-off in terms of reduced variability.

SIGNAL ANALYSIS

1. Incoroorate information from frequencies other than the funda-
mental pattern reversal rate. Especially harmonics and fre-
quencies between harmonics should be considered in the development
of measures of visual performance. To distinguish
between experimental conditions (e.g., preflash vs. postflash),
learning schemes such as Friedman algorithm (38) [developed at
the Stanford Linear Accelerator Center for sirilar purposes],
which selects by itself the important features (given a set of
measures) could be useful.

2. Variability in itself should not be regarded as adverse.
Variability itself may provide a measure of visual performance
as concluded from studies by Ciganek (25) and recently by
Callaway (20).

3. The general techniques for signal analysis as described in
Appendixes C-G should be applied. The importance and power of the
use of these (statistical) techniques are demonstrated in the
recently published report by Chapman et al. (21) which used
a principal component analysis for the simultaneous extraction
of known (well established) and discovery of new VER properties.

EXPERIMENT DESIGN

1. The overall performance of the data-acquisition system has to be
verified. By that we mean to set up experiments (complete simula-
tion including TV)--possibly with a dummy subject (some conductive
material fed with active electrodes) which generates known waveforms.
These waveforms must be retrievable truthfully from the collected
data base before any further data collection on actual subjects
should be conducted. From time-to-time the reliability of that
system has to be checked.

2. The best brightness level should be determined. Studies by RiGcs
and Wooten (90, q. 707) suqqest that very stable amplitudes of
VER are obtained at 0.3 log units of brightness above threshold,
while with increasing brightness variability increases. Nachimas(73, p. 71) gives similar results for cat (microelectrode studies).
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One way to increase possibly weak responses might be to use zig-zag
lines as recommended by MacKay and Jeffreys (66).

3. Use masking noise in the experiments and verify its effectiveness.
In most of the literature this point is stressed.

4. Use stimuli with random intervals. Investigate the importance

and variability of the CI,...CIII (complex) waveform (Jeffrey, in
Desmedt (28)) and P10-P150 (or N)) as described above in the section
for signal analysis recommendations.

5. Check the importance of dipole reversal by pattern (mirror image)
reversal, similar to Jeffrey (in Desmedt (28)).

ELECTRODE LOCATION

1. The earlobes should not be reqarded as "ground" and should not
mutually be connected. Instead the differential voltage for the
left and right side (e.g., inion vs. left or right ear) should
be recorded. When a grounding for the subject is necessary
(especially with high-input impedance amplifiers), any point of
the body may be tried. Care should be taken in shielding of
cables and avoiding magnetic loops.

2. The number of electrodes for recording should be increased.
Especially we are thinking of four additional electrodes slightly
(2 cm) above and below, to the left and right of the currently
used electrode. Since analog-to-digital conversion rate may be
limited, the amplifier bandwidth and sampling rate for A/D should
be reduced as necessary.

3. Search for optimal electrode location individually for each subject.
Grass (42) argues that many investigations rely too much on
standard lead arrangements. One possible way to speed up such a
search is to use an array (e.g., horizontal linear array) which
is applied at different locations. Signals from the data analysis
scheme could indicate the adequacy of the location and/or select
the "best" electrodes.

4. Monitor saccades, eyeblinks, and other muscle potentials (jaws,
heart, etc.).

MEDICAL-PSYCHOLOGICAL ASPECTS

1. The use of (additional) drugs like the anxiolytic diazepam should
be considered for the restrained animal, in order to restore near
normal EEG.

2. The subject should be assigned an appropriate task. As MacKay
and Jeffreys (66) point out, a subject without a task is not
in a "neutral" state.
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I, FUTURE POSSIBILITIES

1. Flectrode impedance can be calibrated automatically and periodically
(for safety standards, see Underwriter Labs. Manual (111)).

2. Low-input impedance amplifiers should be tried (Van der Ziel (113)).
This approach may necessitate the above periodic recalibration.

3. Extension of the currently used frequency band up to higher fre-
quencies. This approach, if of value, will probably require low-
input impedance amplifiers.

4
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