

(andAcsiflo
4

DD, ;лим: 1473

AFOSR-TR- 91 -0 091

Applications of Numerical Conformal Mapping

Daniel I. Meiron and Steven A. Orsaag Department of Matheratics Massachusetts Instituice of Technology Cambridge, MA 02139

and

Moshe Israeli
Department of Computer Science Technion-Israel Institute of Technolugi Haifa, Israel
$!$
. -

Abstract

Abstract

The application of conformal mapping methods to the solution of free-surface flow problems is considered. Methods of numerical conformal mapping based on Fourier series are extended to handle efficiently problems with time-dependent boundaries. They are shown to be practicable only for moderately distorted geometries. Extensions of the Menikoff-Zemach method to 'breaking' geometries are presented. These latter methods are robust at quite large distortions, but degrade prematurely in time-dependent problems at amplitudes smaller than achieved by our recent vortex methods.

1.

 INTRODUCTIONInthis paper, we investigate the application of conformal mapping to the solution of time-dependent potential flow problems, such as Rayleigh-Taylor instability and water waves. We begin by formulating the water wave problem. For two-dimensional, incompressible, irrotational, free-surface Flow, the velocity is expressible as $\underset{\sim}{V}=\underset{\sim}{\nabla} \phi$, where the potential ϕ satisfies Laplace's equation $\nabla^{2} \zeta=0$ in the region $y<n(x, t)$ beneath the frec surface $y=n(x, t)$. Since the free surface moves with the fluid,

$$
\begin{equation*}
\frac{D x}{D t}=\Phi_{x}, \quad \frac{D y}{D t}=\phi_{y},(y=\eta(x, t)) \tag{1.1}
\end{equation*}
$$

where D/Dt is a Lagrangian derivative. Bernoulli's law is satisfied throughout the fluia so that

$$
\begin{equation*}
\frac{D \phi}{D t}=-\eta(x, t)+\frac{1}{2} v^{2}-p_{s} \tag{1.2}
\end{equation*}
$$

at the free surface $y=\eta(x, t)$, where the gravitational acceleration is normalized to unity and p_{s} is the applied surface pressure. It is assumed below that the free surface is periodic in x with wavelength 2π.

In order to march forward in time, it is necessary to know $\underset{\sim}{\nabla} \phi$ at the free surface. If ϕ is known then its tangential derivative $\partial \phi / \partial s$ is computable but its normal derivative $\partial \phi / \partial n$ must be found by solving Laplace's equation. Green's third formula expresses $\partial \phi / \partial n$ in terms of ϕ :

$$
\begin{equation*}
\int_{\partial D} \frac{\partial}{\partial n} \quad \ln |\underset{\sim}{p}-\underset{\sim}{q}| \phi(\underset{\sim}{q}) d \underset{\sim}{q}-\int_{\partial D} \quad \ln |\underset{\sim}{p}-\underset{\sim}{q}| \quad \frac{\partial \phi}{\partial n}(\underset{\sim}{q}) d \underset{\sim}{q}=2 \pi \phi(\underline{\sim}) . \tag{1.3}
\end{equation*}
$$

Here $\underset{\sim}{p, q}$ are vectors lying on the boundary ∂D of the region $D . E G . \quad(1.3)$, is a linear integral equation of the first kind for the unknown function $\partial \phi / \partial n$. Once
$\partial \phi / \hat{n}$ has been calculated, Eq. (1.1) and (1.2) may be used to update the free surface and potential.

Numerical solution of (1.3) for $\partial \phi / \partial n$ involves the approximation of its logarithmic kernel by a finite matrix. If the continuous boundary is approximated by N discrete points, the overation count for the solution of the resulting linear system is $O\left(N^{3}\right)$ since the matrix is full. In addition, storage of the matrix requires $O\left(N^{2}\right)$ memory locations; For large N the computational costs are prohibitive.

Our work is motivated by the desire to develop algorithms with decreased operation counts and storage requirements for solving free surface potential flow problems. We have recently proposed a new vortex method'to solve these problems with $O(N)$ memory and $0\left(N^{2}\right)$ operations per time step. In the present paper, two conformal mapping methods are studied. Both require only $O(N)$ memory. The methods discussed in Sec. 2 reguire only $0\left(N \log _{2} N\right)$ operations per time stcp but are effectivelylimited to modest surface deformations. In Sec. 3, modifications of the Menikoff-Zemach method ${ }^{10}$ that require $0\left(N^{2}\right)$ operations per time step are introducca. Larger surface deformations can be handled accurately by these latter methods.

2. CONFORYAL VAPPING USING FOURIER SERIES

In this section, numerical methods are developed to compute the conformal map $z(\zeta)$ of the unit disk $|\zeta| \leq l$ ontc a simply connected finite region D in the complex-z plane. A map of the unit disk onto a semiinfinite periodic region $R: w=x+i y, 0 \leq x \leq 2 \pi, y<n(x)$, is given by

$$
\begin{equation*}
w=i \ell n \quad z(\zeta) \tag{2.1}
\end{equation*}
$$

where $z(\zeta)$ is a man of the unit disk onto the interior of the rejion with boundas:

$$
z=\exp [-i x+\eta(x)]
$$

This sequence of conformal maps is depicted in Fig. 1.
Before proceeding to the discussion of methods to compute the conformal map $z(\zeta)$, we note that knowledge $\therefore f(\zeta)$ allows efficient solution of potential problems in the region R. If $\phi(w)$ is harmonic in R then $\phi(i \ln z(\zeta))$ is harmonic in the unit disk. Therefore, the Dirichlet problem can be solved by Poisson's formula. Also, since conformal maps are angle preserving, the normal derivative $\partial \phi / \partial n$ of ϕ on the boundary: of R is related to the radial derivative $\partial \phi / \partial \rho$ of ϕ on $|\zeta|=\rho=1:$

$$
\begin{equation*}
\left.\frac{\partial z}{\partial n}\right|_{y=\prime i(x)}=\left.\frac{\partial \dot{t}}{\partial \partial}\right|_{\rho=1}\left|\frac{z\left(r_{0}\right)}{\frac{d z}{d \zeta}}\right|_{\rho=1} \tag{2.2}
\end{equation*}
$$

The derivative $d z / d$, can not vanish for $|\zeta| \leq 1$ if $z(5)$ is single-valued.

Let us begin by characterizing the analytic character of $z(\zeta)$ in terms of Fourier series. The boundary values $z\left(e^{i / t}\right)$ of the conformal map $z(\zeta)$ are a periodic function of the angle α on the unit disk so

$$
z=\exp [-i x+\eta(x)]
$$

This sequence of conformal maps is depicted in Fig. 1.
Before proceeding to the discussion of methods to compute the conformal map $z(\zeta)$, we note that knowledge of $z(\zeta)$ allows efficient solution of potential problems in the region R. If $\phi(w)$ is harmonic in P then $\phi(i \ln z(\zeta))$ is harmonic in the unit disk. Therefore, the Dirichlet problem can be solved by Poisson's formula. Also, since conformal maps are angle preserving, the normal derivative $\partial \phi / \partial n$ of ϕ on the boundary of R is related to the radial derivative $\partial \phi / \partial \rho$ of ϕ on $|\zeta|=\rho=1:$

$$
\begin{equation*}
\left.\frac{\partial}{\partial n}\right|_{y=n(x)}=\left.\frac{\partial \phi}{\partial \rho}\right|_{\rho=1}\left|\frac{z(\zeta)}{\frac{d z}{d \zeta}}\right|_{p=1} \tag{2.2}
\end{equation*}
$$

The derivative $d z / d \zeta$ can not vanish for $|\zeta| \leq 1$ if $z\left(\zeta_{)}\right) \quad$ is single-valued.

Let us begin by characterizing the analytic character of $z(\zeta)$ in terms of Fourier series. The boundary values $z\left(e^{i \alpha}\right)$ of the conformal map $z(\zeta)$ are a periodic function of the angle α on the unit disk so

$$
\begin{equation*}
z\left(e^{i \alpha}\right)=\sum_{k=-\infty}^{\infty} A_{k} e^{i k \alpha} \tag{2.3}
\end{equation*}
$$

The condition that $z(\zeta)$ be analytic is

$$
\begin{equation*}
A_{k}=0, k<0 \tag{2.4}
\end{equation*}
$$

and, in this case, $z(\zeta)$ is given explicitly by

$$
\begin{equation*}
z(\zeta)=\sum_{k=0}^{\infty} A_{k} \zeta^{k} \tag{2.5}
\end{equation*}
$$

In other words, an analytic transformation of the unit disk onto a region D is equivalent to a parametrization of ∂D in terms of x such that the Fourier representation of ∂D has only positive frequency components.

Now we consider a discrete approximation to the conformal map. Consider the equally spaced discrete points ${ }_{j}=J j(j=0, \ldots N-1)$, wherc $\sigma=2 \pi / N$, and the associated points z_{j} on ∂D. Then z_{j} can be represcnted as the finitc FEnrinr ocrios

$$
\begin{equation*}
z_{j}=z\left(e^{i \sigma j}\right)=\sum_{\frac{N}{2} \leq k<\frac{N}{2}} a_{k} e^{i k \sigma j}(0 \leq j<N) \tag{2.6}
\end{equation*}
$$

It may casily be shown that

$$
\begin{equation*}
a_{k}=A_{k}+\sum_{p \neq 0} A_{k+p N} \tag{2.7}
\end{equation*}
$$

One way to determine an approximation to the conformal map $z(\zeta)$ is to require that $a_{k}=0$ for $k<0$. Indeed, if N is large enough that A_{k} is negligible for $k>N$, then a_{k} is negligibly small for $k<0$. This idea may be used to obtain iterative methods ${ }^{4-8}$ based on the fast Fourier transform (FFT) to compute the approximate conformal map. These methods typically require $0\left(N \log _{2} N\right)$ operations per iteration. We note that for any a_{k} satisfying $a_{k}=0$ for $k<0$, the resulting conformal map

$$
\begin{equation*}
\hat{z}(\zeta)=\sum_{0 \leq k<N / 2} \dot{a}_{k} \zeta^{k} \tag{2.8}
\end{equation*}
$$

satisfies $\hat{z}\left(e^{i \sigma j}\right)=z_{j}$. Thus, the map z transforms tho N equally spaced points $e^{i \sigma j}$ into points z_{j} lying on วD.

As an alternative to these iterative methods, we have obtained a differential equation which relates the time rate of change of the conformal map to the time rate of change of a moving boundary. This differential equation is well suited to the solution of free surface flow problems where the solution of the potential problem determines the time rate of change of the free surface.

Let the boundary be represented for all time t by the equation

$$
\begin{equation*}
F(z(\alpha, t), \bar{z}(\alpha, t), t)=0 . \tag{2.9}
\end{equation*}
$$

Differentiation of (2.8) with respect to t yields

$$
\begin{equation*}
\frac{\partial F}{\partial t}+\frac{\partial F}{\partial z} \quad \frac{\partial z}{\partial t}+\frac{\partial F}{\partial \bar{z}} \frac{\partial \bar{z}}{\partial t}=0, \tag{2.10}
\end{equation*}
$$

and differentiation with respect to the angle α (see Fig. l) gives

$$
\begin{equation*}
\frac{\partial F}{\partial z} \frac{\partial z}{\partial z}+\frac{\partial \bar{F}}{\partial \bar{z}} \frac{\partial \bar{z}}{\partial \alpha}=0 . \tag{2.11}
\end{equation*}
$$

The relation

$$
\begin{equation*}
\operatorname{Im}\left(\frac{\frac{\partial z}{\partial t}}{\frac{\partial z}{\partial \alpha}}\right)=\frac{i}{2} \frac{\frac{\partial F}{\partial t}}{\frac{\partial F}{\partial z} \frac{\partial z}{\partial \alpha}} \tag{2.12}
\end{equation*}
$$

is obtained by substituting (2.11) into (2.10). This equation only provides the imaginary part of $\frac{\partial z}{\partial t} / \frac{\partial z}{\partial n}$ The real part of $\frac{\partial z}{\partial t} / \frac{\partial z}{\partial \alpha}$ is determined by requiring that it be analytic in the domain described by (2.9).

The right hand side of (2.12) is real and can be represented by a conjugate symmetric Fourier series:

$$
\frac{i}{2} \frac{\frac{\partial F}{\partial t}}{\frac{\partial F}{\partial z} \frac{\partial z}{\partial \alpha}}=\operatorname{Re}\left[\sum_{m=0}^{\frac{1}{2} N-1} b_{m} \exp (i m \alpha)\right]
$$

Therefore, analytic continuation of (2.12) gives

$$
\begin{equation*}
\frac{\partial z}{\partial t}=i \frac{\partial z}{\partial \alpha} \sum_{m=0}^{\frac{1}{2} N-1} \quad b_{m} \exp (i m \alpha) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\frac{\partial z}{\partial \alpha}=\sum_{k=0}^{\frac{1}{2} N-1} \quad(i k) a_{k} \exp i k \alpha\right) \tag{2.14}
\end{equation*}
$$

The right hand side of Eq. (2.12) is directly related to the normal velocity, of the moving boundary. In Cartesian coordinates

$$
\begin{equation*}
F(z, \bar{z}, t)=y-\eta(x, t) \tag{2.15}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\partial F}{\partial t}=-\frac{\partial \eta}{\partial t} \tag{2.16}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\frac{\partial F}{\partial z} \frac{\partial z}{\partial \alpha}=\frac{1}{2}\left(\frac{\partial F}{\partial x}-i \frac{\partial F}{\partial y}\right)\left(\frac{\partial x}{\partial \alpha}+i \frac{\partial y}{\partial \alpha}\right) \tag{2.17}
\end{equation*}
$$

Substitution of (2.16) and (2.17) into (2.12) gives

$$
\begin{equation*}
\operatorname{Im}\left(\frac{\frac{\partial z}{\partial t}}{\frac{\partial z}{\partial \alpha}}\right)=\frac{\frac{\partial \eta}{\partial t}}{\frac{\partial x}{\partial \alpha}+\frac{\partial \eta}{\partial x} \frac{\partial y}{\partial \alpha}} \tag{2.18}
\end{equation*}
$$

The free surface condition (1.1) can be written
as

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=\frac{\partial \phi}{\partial y}-\frac{\partial \eta}{\partial x} \frac{\partial \phi}{\partial x} \tag{2.19}
\end{equation*}
$$

Using the decomposition of $\hat{\partial} \phi / \partial x$ and $\partial \phi / \partial y$ into tangential and normal components

$$
\begin{align*}
& \frac{\partial \phi}{\partial y}=\left(\frac{\partial y}{\partial s} \frac{\partial \phi}{\partial s}-\frac{\partial x}{\partial s} \frac{\partial \phi}{\partial n}\right) \\
& \frac{\partial \phi}{\partial x}=\left(\frac{\partial x}{\partial s} \frac{\partial \phi}{\partial s}+\frac{\partial y}{\partial s} \frac{\partial \phi}{\partial n}\right) \tag{2.20}
\end{align*}
$$

in (2.18) gives the final result in terms of the polar coordinates ρ and α :

$$
\begin{equation*}
\operatorname{Im}\left[\frac{\frac{\partial z}{\partial t}}{\frac{\partial z}{\partial u}}\right]=-\left.\frac{\partial \phi}{\partial \rho}\right|_{\rho=1} \cdot\left|\frac{z}{\frac{\partial z}{\partial \alpha}}\right|^{2} \tag{2.21}
\end{equation*}
$$

An analogous result was obtained using perturbation methods by Kantorovich and Krylov. ${ }^{8}$

Eq. (2.21) describes the motion of points following the conformal map of the free surface rather than the Lagrangian or Eulerian paths. Bernoulli's equation (1.2) must also be modified to take this fact into account:

$$
\begin{aligned}
\frac{D \phi}{D t}= & -\ell n|z|-\frac{1}{2}\left[\left(\frac{\partial \phi}{\partial \rho}\right)^{2}+\left(\frac{\partial \phi}{\partial \alpha}\right)^{2}\right]\left|\frac{z}{\frac{\partial z}{\partial \alpha}}\right|^{2} \\
& +\frac{\partial \phi}{\partial x} \frac{D x}{D t}+\frac{\partial \phi}{\partial y} \frac{D y}{D t}
\end{aligned}
$$

Once the conformal map (2.4) from the unit circle is known, the solution of the Dirichlet problem may be given in terms of a Fourier series

$$
\phi\left(\rho e^{i \alpha}\right)=\sum_{n=0}^{\frac{1}{2} N-1}\left[g_{n} \rho^{n} \cos n \alpha+h_{n} \rho^{n} \sin n \alpha\right]
$$

On the unit circle $(\rho=1)$ the tangential and normal derivatives are given by

$$
\begin{align*}
\frac{\partial \phi}{\partial \alpha} & =\sum_{n=0}^{\frac{1}{2} N-1}\left[-n g_{n} \sin n \alpha+n h_{n} \cos n \alpha\right] \tag{2.24}\\
\frac{\partial \phi}{\partial \rho} & =\sum_{n=0}^{\frac{1}{2} N-1}\left[n g_{n} \cos n \alpha+n h_{n} \sin n \alpha\right] \tag{2.25}
\end{align*}
$$

which are computable using FFT's in $O\left(N \log _{2} N\right)$ operations.

Now let us summarize the steps involved in marching from time t to $t+\Delta t$ by this method. At time t, the points $\left\{z_{j}\right\}$ and potentials $\left\{\phi_{j}\right\}$ are assumed known. First, the coefficients g_{n}, h_{n} in (2.23) are obtained from $\left\{\phi_{j}\right\}$ using an FFT. Next, 古 ϕ is computed on the boundary using (2.24) and (2.25). Then ϕ_{j} is updated by (2.22) and z_{j} is updated by (2.21). The total operation count is $0\left(N \log _{2} N\right)$. Note that the conformal map is uniquely defined by (2.21) and the supplementary conditions $a_{0}=0, \operatorname{Im}\left(a_{1}\right)=0$.

As a test of this time dependent mapping method, we study the propagation of Stokes' permanent water waves. In a frame of reference moving with the wave speed, the numerically calculated profiles should be steady. The initial conditions for the calculation are obtained using Padé approximants of perturbation expansions of the Stokes waves ${ }^{11}$. The time-dependent equations (2.21), (2.22) are solved by a fourth-order Adams-Moulton predictor corrector scheme. As with other simulations of propagating nonlinear water waves, 2,9 an instability of the free surface quickly develops unless damping is applied. To remove this instability, we periodically apply a fivepoint smoothing operator ${ }^{9}$.

For a Stokes wave with peak-to-trough amplitude 808 of the maximum allowed by theory, we choose the time step to be $2 \pi / 400$ with wavelength 2π and apply smoothing
every tenth step. The resulting wave profile is plotted in Fig. 2. The dots indicate the position of the points
z_{j} used to calculate the conformal map of the wave. The solid line is the wave profile computed by Padé approximants ${ }^{11}$. translated by an amount equal to the nonlinear phase speed multiplied by the time. The computation time for one evaluation of the time derivatives of the map and potential is 3 ms on the CRAY-1 computer using $\mathrm{N}=64$ points. The total computation time for the motion of the wave through one period is about $1 s$.

The conformal mapping method described here works well provided the region is not highly distorted. As the region of interest becomes more distorted the points corresponding to the conformal map tend to crowd 3,10 . For example, consider the conformal mapping from the unit disk to the region lying below $y=A \cos k x$. The number of terms N that must be retained in the Fourier expansion (2.4) to obtain a good representation of this map satisfies थn $N \sim \nsim k A$ as $k A \rightarrow \infty,^{3}$ where $x=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{x} d x \simeq 2.909$, showing the difficulty of mapping from the unit disk to a deformed region.

When N is large, almost all of the equally spaced points $e^{i \sigma j}$ on the unit circle are mapped into points z_{j} that are crowded into small intervals on the boundary of the domain D. Dubiner ${ }^{3}$ has recently made a detailed analysis of this problem and has shown that the crowding oncurs whenever the region being mapped has a 'narrow'
section. This effect occurs in high amplitude RayleighTaylor instability and in breaking waves. The FFT method is not effective in dealing with these highly distorted geometries.

- When the domain D is highly deformed, the iterative methods ${ }^{4-8}$ and our differential equation method do give a conformal map of the unit disk onto a domain that passes through the desired points z_{j} of ∂D. However, unless N is unreasonably large, the conformal map so obtained will have large deviations from ∂D between the points z_{j}. Indeed, (2.8) gives an accurate conformal map of ∂D only if a_{k} decreases rapidly as k increases to $\frac{1}{2} \mathrm{~N}$ 。

One possible approach to the crowding problem is to use a sequence of mappings of the disk onto successively more highly deformed regions. Such iterated mappings are still under study. For such methods, one result seems assured, namely that the operation counts must degrade from $0\left(N \log _{2} N\right)$ to $0\left(N^{2}\right)$ or worse. In this case, these Fourier series methods are probably inferior to the methods to be described in Sec. 3.

3. APPLICATION OF THE MENIKOFF-2EMACH METHOD

The Fourier series methods for mapping the unit disk onto D can not accurately handle highly distorted domains ir the crowding phenomenon causes a severe loss of resolution
in some part of the physical boundary. This difficulty. may be overcome by mapping D onto the unit disk with a regular distribution of points on ∂D. The crowding then occurs on the boundary of the unit disk. Even with a highly nonuniform distribution of points on the unit circle, the potential problem in the unit disk is still readily solved by Poisson's formula. Recently, Menikoff and Zemach ${ }^{10}$ have developed a new nonlinear integral equation for conformal mapping of the region R above $y=\eta(x)$ onto the periodic semi-infinite strip $S: 0 \leq u<2 \pi, 0 \leq v<\infty$. Their method requires relatively few points to achieve accurate results for distorted domains.

A simple extension of Menikoff and Zemach's equation which is valid for general periodic interfaces is derived here and is used to investigate the crowding phenomenon for multivalued (or 'breaking wave') interfaces. A time dependent version of the equation is also developed. This approach reduces to the integration of N nonlinear differential equations.

The Menikoff-Zemach equations, generalized to handle conformal maps of a domain with boundary curve parametrized as $x=x(e), \quad y=y(e)$, are

$$
\begin{align*}
& y(e)=y_{\infty}+2 \int_{0}^{2 \pi} \ell n\left|\frac{\sin \frac{1}{2}\left(u(e)-u\left(e^{\prime}\right)\right)}{\sin \frac{1}{2}\left(e-e^{\prime}\right)}\right| \frac{d x}{d e^{\prime}}\left(e^{\prime}\right) \frac{d e^{\prime}}{2 \pi} \\
& +\int_{0}^{2 \pi} \cot \left(\frac{e-e^{\prime}}{2}\right)\left[\left(x\left(e^{\prime}\right)-e^{\prime}\right)-(x(e)-e)\right] \frac{d e^{\prime}}{2 \pi} \tag{3.1a}
\end{align*}
$$

$u(e)=x(e)=x_{\infty}+2 \int_{0}^{2 \pi} \ln \left|\frac{\sin \frac{1}{2}\left(u(e)-u\left(e^{\prime}\right)\right)}{\sin \frac{1}{2}\left(e-e^{\prime}\right)}\right| \frac{d y}{d e}, \frac{d e^{\prime}}{2 \pi}$

$$
\begin{equation*}
+\int_{0}^{2 \pi} \cot \left(\frac{e-e^{\prime}}{2}\right)\left[y\left(e^{\prime}\right)-y(e)\right] \frac{d e^{\prime}}{2 \pi} \tag{3.1b}
\end{equation*}
$$

Here e is chosen so that $x(0)=0, \quad x(2 \pi)=2 \pi, u(e)$ is defined so ($x(e), y(e)$) is mapped into ($u(e), D)$, and Y_{∞}, x_{w} are determined by the condition that $u(0)=0$. Note that (3.1a) and (3.1b) are equivalent; either one can be used to determinc $u(e)$. Once $u(e)$ is found by solution of (3.1), the conformal map is determined.

Eqs. (3.1) are derived from the pair of Hilbert
transforms:

$$
\operatorname{Re}[G(u, 0)]=\operatorname{Re}\left(G_{\infty}\right)-P \int_{0}^{2 \pi} \cot \left(\frac{u-u^{\prime}}{2}\right) \operatorname{Im}\left[G(u, 0] \frac{d u^{\prime}}{2 \pi}\right.
$$

$$
\operatorname{Im}\left[G(u, 0)=\operatorname{Im}\left(G_{\infty}\right)+P \int_{0}^{2 \pi} \cot \left(\frac{u-u^{\prime}}{2}\right) \operatorname{Re}\left[G\left(u^{\prime}, 0\right)\right] \frac{d u^{\prime}}{2 \pi}\right.
$$

where $G(\mathbb{W})$ is analytic in the upper-half \mathbb{N}-plane and $G(W)=G_{\infty}+0(1 /|W|)$ as $|W| \rightarrow \infty$. Eq. (3.1) follows if $G=x+i y-W$, where $W=u+i v$.

The Hilbert transforms (3.2) are also useful for solving potential problems in the region R. If the map function $u(e)$ is known, boundary values of a potential ϕ on ∂R may be related to corresponding boundary values of a potential defined in the strip S in the w-plane:

$$
\begin{align*}
& \Phi(u)=\phi(e) \\
& \left.\frac{\partial \Phi \mid}{\partial u}\right|_{v=0}=\frac{\partial \phi}{\partial s} / \frac{d u}{d e} \tag{3.3}\\
& \left.\frac{\partial \Phi}{\partial v}\right|_{v=0}=\frac{\partial \phi}{\partial n} \frac{d s}{d e} / \frac{d u}{d e}
\end{align*}
$$

where s and n are the tangential and normal directions to ∂R. The vangential and normal derivatives of p are the real and imaginary parts of an alytic function in S so they are related by the Hilbert transform:
$\frac{\partial \phi}{d} \frac{d s}{d c}=-\int_{0}^{2 \pi} \cot \frac{1}{2}\left(u(e)-u\left(e^{\prime}\right)\right)\left(\frac{d \phi}{d c}\left(e^{\prime}\right) \frac{d u}{d e}(c)-\frac{d \phi}{d c}(c) \frac{d u}{d c}\left(c^{\prime}\right)\right) \frac{d e^{\prime}}{2 i}$

Note that in the application of (3.4) it is necessary to compute du/de with some care. We have found it best to find du/de by using the Hilbert transform of $\ln d z / d w$ to obtain an equation for $\ln d u / d e$.

In order to examine the crowding properties of domains bounded by breaking waves, we use (3.1). to compute the function $u(e)$ for the periodic curve

$$
\begin{align*}
& x(e)=e+b \sin e \\
& y(e)=0.4 \sin e . \tag{3.5}
\end{align*}
$$

For $b<1$, the curve is a single valued function of x. For $b=1$, the curve has a vertical slope at $e=\pi$, and for $b>1$, the function is multivalued. In Fig. 3, the curves (3.5) are plotted for $b=1,1.5$, and 2.0. The map function $u(e)$ must be a monotonically increasing function of e. Therefore $d u / d e>0$ although it can be exponentially small due to crowding. The functions $u(e)$ and du/de are tabulated for the curves (3.5) in

Table 3.1. Another measure of the crowding is given by in ($\frac{d u}{d e}$). In fig. 4, $\ln \left(\frac{d u}{d e}\right)$ is plotted for various values of b to reveal the exponetial nature of the crowding phenomenon. As b increases, the crowding rapidly becomes
severe even though the amplitude of the wave (3.5) is quite modest Similar crowding should be expected in any dynamic simulation of a breaking wave.

It is also possible to formulate a set of differential equations based on the Menikoff-zemach approach to map a time-dependent boundary. For parametrized boundaries of the form $(x(e, t), y(e, t))$, the mapping function $u(e, t)$ is determined by

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\frac{d u_{0}}{d t}+\frac{\frac{\partial x}{\partial t} \frac{\partial x}{\partial e}+\frac{\partial y}{\partial t} \frac{\partial y}{\partial e}}{\left(\frac{d s}{d e}\right)^{2}} \frac{\partial u}{\partial e} \tag{3.6}\\
+\int_{0}^{2 \pi} \cot \left(\frac{u(e)-u\left(e^{\prime}\right)}{2}\right)\left[\frac{\frac{\partial y}{\partial t}\left(e^{\prime}\right) \frac{\partial x}{\partial e}\left(e^{\prime}\right)-\frac{\partial x}{\partial t}\left(e^{\prime}\right) \frac{\partial y}{\partial e}\left(e^{\prime}\right)}{\left(\frac{d s}{d e}\left(e^{\prime}\right)\right)^{2}}\right. \\
\left.-\frac{\frac{\partial y}{\partial t}(e) \frac{\partial x}{\partial e}(e)-\frac{\partial x}{\partial t}(e) \frac{\partial y}{\partial e}(e)}{\left(\frac{d s}{d e}\left(e^{\prime}\right)\right)}\right]\left(\frac{\partial u}{\partial e}\left(e^{\prime}\right)\right)^{2} \frac{d e^{\prime}}{2 \pi}
\end{gather*}
$$

where $\left(\frac{d s}{d e}\right)^{2}=\left(\frac{\partial x}{\partial e}\right)^{2}+\left(\frac{\partial y}{\partial e}\right)^{2}$ and $u_{0}(t)$ is chosen so that $u(0)=0$.

Given the values of u, ϕ, x, and y at some time t the time stepping algorithm proceeds as follows: First, the values of $u(e), x(e)$ and $y(c)$ are used to determine
the map derivative du/de. Next, the normal velocities $\partial \phi / \partial n$ can be computed from (3.4). Once $\partial \phi / \partial s$ and $\partial \phi / \partial n$ are known, the boundary curve $(x(e, t), y(e, t))$ can be marched to the next time step. Then, Bernoulli's equation (1.2) gives the boundary values of ϕ at the next step. Finally, the map Eq. (3.6) is used to march u forward in time.

We have tested the time dependent mapping equation on the mapping of the region bounded by a cosine curve of increasing amplitude,

$$
\begin{equation*}
x(e, t)=e \tag{3.7}
\end{equation*}
$$

$$
y(e, t)=t \cos (e)
$$

and on the regions bounded by a time dependent version of the breaking curves (3.5),

$$
\begin{align*}
& x(e, t)=e+t \sin e \tag{3.8}\\
& y(e, t)=0.4 \sin e
\end{align*}
$$

A fourth order Adams-Moulton predictor-corrector scheme was used to march the map function $u(e, t)$ forward in time. At the times tabulated in Tables 2 and 3, the mapping function was corrected by solving (3.1). The time integration
was then restarted with the corrected values of $u(e)$. The maximum error for a given time is given in Tables 2 and 3 for 32,64 and 128 points. The minimum of the function du/de for each time is also listed to give an indication of the crowding. The error for moderate distortions was fairly insensitive to reductions in the time step. Δt but was reduced markedly when the number of points was increased. In regions of severe crowding the time step must be very small in order to ensure accuracy for an explicit integration scheme. Too large a time step can destroy the monotonicity of $u(e)$. We have also applied the integral equation (3.1) and time-dependent evolution equation (3.6) to the numerical simulation of Rayleigh-Taylor instability. The initial conditions for the Rayleigh-Taylor problem are as follows. Fluid of density 1 lies above the periodic interface

$$
\begin{aligned}
& y(e, t=0)=0.5 \cos (e) \\
& x(e, t=0)=e
\end{aligned}
$$

and is initially at rest. Below the interface, there is a vacuum. The resulting flow is unstable under gravitational arceleration. The results plotted in Fig. 5 are obtaincd
using the integral equation (3.1). With 60 points per wavelength, we were unable to continue the calculation past a time of $t \simeq 3.5$ at which the amplitude to wavelength ratio of the spike (at $x= \pm \pi$) is about $5.4 / 2 \pi \simeq 0.86$. The degree to which the total energy and the rate of mass flux are conservedgives a good indication of the reliability of the simulation. After a time of 3.0 , there is a progressive degradation of conservation of these quantities. This deterioration is also reflected in the spike acceleration. For large t, the spike should be nearly infree fall with an acceleration of -1.0 in our units. ${ }^{1}$ In contrast, the present simulation shows a spike acceleration which decreases (in absolute value) below 1.0 after $t=3.0$. Hence we conclude that the results are not reliable beyond $t=3.0 . \quad$ Similarly, the time-dependent evolution equation (3.6) gives results for this problem that are reliable only until $t=3.0$.

The present conformal mapping methods give results for Rayleigh-Taylor instability that are quite good. The amplitude/wavelength ratio has increased by about a factor 10 before the 60 point calculaiions degrade. Menikoff and Zemach (private communication) obtain similar amplifications before their calculations hreak down. However, the reasons for degradation of the calculations at large time remain unclear. On the one hand, the conformal mapping methods described in this Section are capable of resolving
much more highly deformed interfaces than achieved at breakdown, even with 60 points. On the other hand, new vortex methods ${ }^{1,2}$ have been used to calculate Rayleigh-Taylor instability with similar spatial resolution to at least twice the amplifications achieved here. It seems that our method of coupling free-surface dynamics and conformal mapping introduces numerical inaccuracies (observed as rapid oscillations of ϕ and η for $t \geq 3.0$). It is possible that this deficiency may be corrected by more sophisticated conformal mapping techniques ${ }^{3}$.

This work was supported by the Air Force Office of AFOSR-77-340S Scientific Research under Grant No. and the General Hydromechanics Research Program of the Naval Sea Sy̌stens Command under Contract No. N00014-80-C-0127.

References

1. G. R. Baker, D. I. Meiron and S. A. Orszag, Phys. Fluids, 23 , No. 8 (1980).
G. R. Baker, D. I. Meiron and S. A. Orszag, Vortex Simulations of Free Surface Flows, to be published (1980).
2. M. Dubiner, Ph. D. thesis, Dept. of Mathematicis, M.I.T., Cambridge, MA (1980).
3. B. Fornberg, SIAM J. Sci. Stat. Comp., to be published (1980).
4. D. Gaier, "Konstruktive Methoden der Korformen

Abbildung", Springer, Berlin (1964).
6. C. Gram, "Selected Numerical Methods for Linear Equations , Polynomial Equations, Partial Differential

Equations, Conformal Mapping", Regnecentralen, Copenhagen (1962).
7. D. Ives, AIAA J., $14(1976), 1006$.
8. L. V. Kantorovich and V. I. Krylov, "Approximate Methods of Higher Analysis", Interscience, New York (1958).
9. M. S. Longuet-Higgins and E. D. Cokeict Proc. Roy. Soc. London A364 (1978), 1.
10. R. Menikoff anf C. Zemach, J. Comp. Phys., to be published (1980).
11. Schwartz, L. W., J. Fluid Mech., 62 (1974), 553.

-.ble 1. Mapping functions for the 'breaking' curves (3.5).*

$$
b=1.0
$$

$$
b=1.5
$$

$$
b=2.0
$$

$u(e)$	$\frac{d u}{d e}$	$u(e)$	$\frac{d u}{d e}$	$u(e)$	$\frac{d u}{d e}$
0.0	1.9239	0.0	2.3575	0.0	2.7670
1.5706	1.9648	1.8956	2.3030	2.2126	2.6351
2.9331	1.4326	3.4076	1.4615	3.8677	1.4772
3.7681	7.0083×10^{-1}	4.1579	4.9413×10^{-1}	4.5352	3.0688×10^{-1}
4.0981	2.0146×10^{-1}	4.3291	4.7511×10^{-2}	4.6125	4.5852×10^{-3}
1.1841	7.7401×10^{-1}	4.3387	6.4110×10^{-4}	4.6131	9.8707×10^{-7}
4.4406	4.2459×10^{-1}	4.3440	4.0460×10^{-2}	4.6131	3.2512×10^{-5}
5.2656	1.2741	4.7624	1.3178	4.6920	7.0508×10^{-1}

The results were checked for 32 and 64 points and agreed to the 5 significant digits given here.

-ble 2. Error in the conformal mapping of the time-dependent cosine curves (3.7)*.

$$
\underline{N}=32 \quad \underline{N}=64 \quad \underline{N}=128
$$

3
.0

2.23×10^{-1}	1.8×10^{-5}
2.54×10^{-2}	9.1×10^{-2}
2.19×10^{-3}	6.9
1.66×10^{-4}	-
1.20×10^{-5}	

3.0×10^{-10}
6.9×10^{-10}
2.8×10^{-5}

1. 2×10^{-8}
3.1×10^{-2}
7.4×10^{-7}
1.3
3.5×10^{-4}
9.9
2.1×10^{-2}
. The time step is $\Delta t=0.001$.

' Table 3. Error in the conformal mapping of the time-dependent 'breaking' curves (3.8)*.

		$\mathrm{N}=32$	$\mathrm{N}=64$	$\mathrm{N}=128$
. 8	1.85×10^{-1}	4.5×10^{-5}	3.2×10^{-10}	1.6×10^{-10}
,	7.48×10^{-2}	2.0×10^{-3}	3.1×10^{-7}	3.8×10^{-10}
2	1.63×10^{-2}	3.9×10^{-2}	9.0×10^{-5}	6.4×10^{-10}
. 4	1.99×10^{-3}	---	4.9×10^{-3}	8.5×10^{-7}
. 5	1.02×10^{-3}			9.5×10^{-5}

. The time step is $\Delta t=0.001$ and 48 -bit mantissa arithmetic is used.

Figure Captions

Figure 1. A schematic plot indicating the sequence of conformal maps used to solve inviscid free surface flow problems. Here the fluid lies below the interface $y=\eta(x, t)$ as in the water wave problem.

Figure 2. A plot of the Stokes wave profile at $t=0$ and at $t=2 \pi$. The amplitude is 80% of the maximum Stokes wave amplitude. The FFT time-dependent mapping equation (2.21) is used with $N=64$ points. The dots indicate the numerically computed position of the interface. The solid line is obtained from Pade summation of the perturbation series for Stokes waves.

Figure 3. A plot of y vs x for the 'breaking' curves (3.5), $x=e+b \sin e, y=.4 \sin e, f o r$ $\mathrm{b}=1.0,1.5$, 2.0.

Figure 4. A plot of ℓn du/de for the breaking curves plotted in Fig. 3 (a) $b=1.0$, (b) $b=1.5$
(c) $b=2.0$. Here the Menikoff-Zemach equation
(3.1) is solved for the conformal mapping function u(e). Observe the exponentially strong crowding for $b>1$.

Figure 5. A plot of the interface $y(x, t)$ for the RayleighTaylor instability with initial conditions $y(x, t=0)=0.5 \cos x \phi(x, t)=0$ for $t=0.5$ to $t=3.5$ in steps of 0.5 . Here 60 points per wavelength are used. Both the integral equation (3.1) and time-dependent equation (3.6) degrade significantly in accuracy for $t \geq 3$ at this spatial resolution.
そ-PLANE
4
2
2
0
0
N

Fiqure 2.

Figure 4.

Fiourn 5.

