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Abstract

The application of conformal mapping methods to

the solution of free-surface flow problems is considered.

Methods of numerical conformal mapping based on Fourier

series are extended to handle efficiently problems with

time-dependent boundaries. They are shown to be

practicable only for moderately distorted geometries.

Extensions of the Menikoff-Zemach method to 'breaking'

geometries are presented. These latter methods are

robust at quite large distortions, but degrade

prematurely in time-dependent problems at amplitudes

smaller than achieved by our recent vortex methods.
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1. INTRODUCTION

In this paper, we investigate the application of

conformal mapping to the solution of time-dependent

potential flow problems, such as Rayleigh-Taylor instability

and water waves. We begin by formulating the water wave

problem. For two-dimensional, incompressible, irrotational,

free-surface flow, the velocity is expressible as v VC

where the potential 4 satisfies Laplace's equation

V 2 0 in the region y< r(x,t) beneath the frec

surface y n(x,t). Since the free surface moves with

the fluid,

Dx Dv
D-t = (y = f(x,t)), (1.1)

Dt Dt

where D/Dt is a Lagrangian derivative. Bernoulli's

law is satisfied throughout the fluid so that

_ 1 2(12
Dt - (x, t) + Ps (1.2)

at thp free surface y = (x,t), where the gravitational

acceleration is normalized to unity and ps is the

applied surface pressure. It is assumed below that the

free surface is periodic in x with wavelength 21T.
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In order to march forward in time, it is necessary

to know V at the free surface. If * is known then

its tangential derivative /3s is computable but its

normal derivative 3/an must be found by solving

Laplace's equation. Green's third formula expresses

3$/an in terms of :

f - £njp-qj4,(q)d~ - f 9.n Ip-q I .(q)dq = 2 Tf(p).
aD 9n D

(1.3)

Here p,q are vectors lying on the boundary ;D of the

region D. Eq. (1.3) is a linear integral equation of

the first kind for the unknown function D4/3n. Once

Dt /0n has been calculated, Eq. (1.1) and (1.2) may

be-used to update the free surface and potential.

Numerical solution of (1.3) for 3/an involves

the approxi-'ation of its logarithmic kernel by a finite

matrix. If the continuous boundary is approximated by N

discrete points, the oueration count for the solution of

3
the resulting linear system is O(N3 ) since the matrix

is full. In addition, storage of the matrix requires

O(N ) memory locations. For large N the computational

costs are prohibitive.

-3-



I I

/

Our work is motivated by the desire to develop

algorithms with decreased operation counts and storage

requirements for solving free surface potential flow

problems. We have recently proposed a new vortex
1,2

method to solve these problems with 0(N) memory and

O(N2 ) operations per time step. In the present paper,

two conformal mapping methods are studied. Both require

only 0(N) memory. The methods discussed in Sec. 2

require only O(N Zog 2 N) operations ner time stcp but

are effectively limited to modest surface deformations.

In Sec. 3, modifications of the Menikoff-Zemach method I0

that require 0(N 2 ) operation per time step are introduccd.

Larger surface deformations can be handled accurately by

these latter methods.

2. CONFORNAL MLAPPING USING FOURIER SERIES

In this Section, numerical methods are developed

to compute the conformal map z( ) of the unit disk

j1 <l ontc a simply connected finite region D in the

complex-z plane. A map of the unit disk onto a semi-

infinite oeriodic region R: w = x+iy, 0 < x < 2r, y < ,u (x),

is given by

w = i in z(4) (2.1)

where z() is a map of the unit disk onto the interior

of the relion with boundaLuy
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z = exp[-ix + n(x)].

This sequence of conformal maps is depicted in Fig. 1.

Before proceeding to the discussion of methods to

compute the conformal map z(C), we note that knowledge

.,f z(R) allows efficient solution of potential

problems in the region R. If 0(w) is harmonic in R

then O(i n z(O)) is harmonic in the unit disk.

Therefore, the Dirichlet problem can be solved by

Poisson's formula. Also, since conformal maps are angle

preserving, the normal derivative 3/@n of 4 on the

boundary, of R is related to the radial derivative

34/3p of 0 on =p1:

'lj ) = i i dz (2 .2)Wn i ',. ( ) -I P =l

The derivative dz/d; can not vanish for II<i if

z(.) is single-valued.

Let us begin by characterizing the analytic charactei

of z(C) in terms of Fourier series. The boundary values

z(e ) of the conformal map z(C) are a periodic function

of the angle a on the unit disk so
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z = exp[-ix + n(x)].

This sequence of conformal maps is depicted in Fig. 1.

Before proceeding to the discussion of methods to

compute the conformal map z(C), we note that knowledge

of z() allows efficient solution of potential

problems in the region R. If 4(w) is harmonic in P

then O(i Zn z(C)) is harmonic in the unit disk.

Therefore, the Dirichlet problem can be solved by

Poisson's formula. Also, since conformal maps are angle

preserving, the normal derivative 0/ n of p on the

boundary of R is related to the radial derivative

ao/3p of 0 on =p=1:

QOni =d"(X) P 0=1 I-az (2.2)I d1 =l

i =

The derivative dz/d; can not vanish for ICI<i if

z(C) is single-valued.

Let us begin by characterizing the analytic charactei

of z(R) in terms of Fourier series. The boundary values

z(e i ) of the conformal map z( ) are a periodic function

of the angle a on the unit disk so
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zi(ei A k e (2.3)

The condition that z(R) be analytic is

Ak = 0, k < 0 (2.4)

and, in this case, z(c) is given explicitly by

z( ) = Ak Ck (2.5)
k=0

In other words, an analytic transformation of the unit

disk onto a region D is equivalent to a parametrization

of 3D in terms of A such that the Fourier reoresentation

of 'D has only positive frequency components.

Now we consider a discrete aoproximation to the

conformal map. Consider the equallv spaced discrete points

= j (j = 0, ... N-1), where o = 2 T/N, and the associatedJ

points z. on D. Then z. can be represented as the

f i-ito Fqii~ erics

Z= z(e.i0) = k e (Oj<N). (2.6)

2- 2

it may easily be shown that

-6-



ak =A k + A k+pN (2.7)
pyO -

One way to determine an approximation to the conformal

map z( ) is to require that ak = 0 for k< 0. Indeed,

if N is large enough that Ak is negligible for k> N,

then ak is negligibly small for k< 0. This idea may

be used to obtain iterative methods based on the fast

Fourier transform (FFT) to compute the approximate conformal

map. These methods typically require O(N koq 2 N) operations

per iteration. We note that for any ak satisfying

ak = 0 for k< 0, the resulting conformal map

z(C) k C (2.8)
0 k<N/2

satisfies Z( ) = z.. Thus, the map z transforms the
3

N equally spaced points eiGj into points z. lying on
3

3D.

As an alternative to these iterative methods, we have

obtained a differential equation which relates the time rate

of change of the conformal map to the time rate of change

of a moving boundary. This differential equation is

well suited to the solution of free surface flow problems

where the solution of the potential problem determines the-

time rate of change of the free surface.
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Let the boundary be represented for all time t

by the equation

F(z(,t), z(a,t),t) = 0. (2.9)

Differentiation of (2.8) with respect to t yields

F F z F z- + z Z + DF 3 = 0, (2.10)

and differentiation with respect to the angle a (see Fig. 1)

gives

F z ?F z
,F - - = 0. (2.11)

The relation

Zm 5 zt (2.12)
-z 2 F z

is obtained by substituting (2.11) into (2.10). This

z ,zequation only provides the-imaginary part of
az/3z

The real part of /-z is determined by requiring that it

be analytic in the domain described by (2.9).

The right hand side of (2.12) is real and can be

represented by a conjugate symmetric Fourier series:

-8-
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3F-
2mt e O exp(ima) 1

Therefore, analytic continuation of (2.12) gives

1

az ~az
at O b~ exp(imi) (2.13)

where

- 2 (ik)a k exp ika) (2.14)

The right hand side of Eq. (2.12) is directly related

to the normal velocity of the moving boundary. In Cartesian

coordinates

F(z,z,t) = -r(x,t) (2.15)

so

_F an (2.16)

Also,

3F 3z _1 (2F - aFa(x +i(2.17)
-Z - ax a a 3O



substitution of (2.16) and (2.1-7) into (2.12) gives

at - at

IM az ax (2.1.8)
'+ a-- ay,() ( ax

The free surface condition (1.1) can be written

as

aT~a~~T1~(2.19)
at ay ax ax

Using the decomposition of ;O/ax and o/a y into

tangential and normal components

a =(a , ax )
ay as as s n

0 = ax +a (2.20)
a-x (gs as 3s DO22

in (2.18) gives the final result in terms of the polar

coordinates p and at

[azi
Im az- (2.21)

Im ap p=l j-z

An analogouq result was obtained using perturbation methods

by Kantorovich and Krylov.8
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Eq. (2.21) describes the motion of points following

the conformal map of the free surface rather than the

Lagrangian or Eulerian paths. Bernoulli's equation

(1.2) must also be modified to take this fact into

account:

2
= - nz - 2 () + ( ) - (2.22)

Dt mu 2 a 3 a az (.2

+ Dx + D_
ax Dt 3y Dt

Once the conformal map (2.4) from the unit circle

is known, the solution of the Dirichlet problem may be

given in terms of a Fourier series

N-1

(pe ) = [gn pn cosn + hn pn sinn a) (2.23)
n=O n

On the unit circle (p = 1) the tangential and normal

derivatives are given by

[-ng sinna + n hn cos n ] (2.24)
n= 0

= (ng n cosn a + nh sinna 1, (2.25)aP n=0 n n

which are computable using FFT's in 0(N £og 2N) operations.
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Now let us summarize the steps involved in marching

from time t to t + At by this method. At time t,

the points {z.) and potentials { j} are assumed known:

First, the coefficients gn, hn in (2.23) are obtained

from j.} using an FFT. Next, is computed on the

boundary using (2.24) and (2.25). Then 0. is

updated by (2.22) and z. is updated by (2.21).)

The total operation count is O(N £o.2 N). Note that the

conformal map is uniquely defined by (2.21) and the

supplementary conditions a0 = 0, im(a1 ) = 0.

As a test of this time dependent mapping method,

we study the propagation of Stokes' permanent water waves.

In a frame of reference moving with the wave speed, the

numerically calculated profiles should be steady. The

initial conditions for the calculation are obtained using

Pad6 approximants of perturbation expansions of the Stokes
11

waves 1 The time-dependent equations (2.21), (2.22)

are solved by a fourth-order Adams-Moulton predictor

corrector scheme. As with other simulations of propagating

2,9nonlinear water waves, an instability of the free

surface quickly develops unless damping is applied. To

remove this instability, we periodically apply a five-

9point smoothing operator

For a Stokes wave with peak-to-trough amplitude 80%

of the maximum allowed by theory, we choose the time step

to be 2r/400 with wavelength 21 and apply smoothing

-12-



every tenth step. The resulting wave profile is plotted

in Fig. 2. The dots indicate the position of the points

zj used to calculate the conformal map of the wave.

The solid line is the wave profile computed by Pade approximants

translated by an amount equal to the nonlinear phase speed

multiplied by the time. The computation time for one

evaluation of the time derivatives of the map and potential

is 3ms on the CRAY-I computer using N = 64 points. The

total computation time for the motion of the wave through

one period is about ls.

The conformal mapping method described here works

well provided the region is not highly distorted. As

the region of interest becomes more distorted the points

corresponding to the conformal map tend to crowd
3 ,10

For example, consider the conformal mapping from the unit

disk to the region lying below y = A coskx. The number

of terms N that must be retained in the Fourier expansion

(2.4) to obtain a good representation of this map satisfies
IT sinx

n N ~ kA as kA- w, where ' s X dx = 2.909,
2 f - x 2090

showing the difficulty of mapping from the unit disk to a

deformed region.

When N is large, almost all of the equally spaced

points ei aj on the unit circle are mapped into points

z. that are crowded into small intervals on the boundary

3of the domain D. Dubiner has recently made a detailed

analysis of this problem and has shown that the crowding

occurs whenever the region being mapped has a 'narrow'
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section. This effect occurs in high amplitude Rayleigh-

Taylor instability and in breaking waves. The FFT method

is not effective in dealing with these highly distorted

geometries.

-4'Jhen the domain D is highly deformed, the iterative

methods 48and our differential equation method do give a

conformal map of the unit disk onto a domain that passes

through the desired points z. of 3D. However, unless N

is unreasonably large, the conformal map so obtained

will have large deviations from 3D between the points

z. Indeed, (2.8) gives an accurate conformal map of

;D only if a k decreases rapidly as k increases to

-N.

one possible approach to the crowding problem is

j to use a sequence of mappings of the disk onto successively

more highly deformed regions. Such iterated mappings

are still under study. For such methods, one result seems

assured, namely that the operation counts must degrade

from O(N Zog2 N) to O(N 2 or worse. In this case,

these Fourier series methods are probably inferior to the

methods to be described in Sec. 3.

3. APPLICATION OF THE MENIKOFF-ZEMACH METHOD

The Fourier series methods for mapping the unit disk

onto D can not accurately handle highly distorted domains

* the crowding phenomenon causes a severe loss of resolution



in some part of the physical boundary. This difficulty

may be overcome by mapping D onto the unit disk with

a regular distribution of points on 3D. The crowding

then occurs on the boundary of the unit disk. Even

with a highly nonuniform distribution of points on the

unit circle, the potential problem in the unit disk is

still readily solved by Poisson's formula.

Recently, Menikoff and Zemach 10 have developed a

new nonlinear integral equation for conformal mapping

of the region R above y = n(x) onto the periodic

semi-infinite strip S:0<u<2, O<v<- . Their method

requires relatively few points to achieve accurate C

results for distorted domains.

A simple extension of Menikoff and Zemach's 
equation

which is valid for general periodic interfaces 
is

derived here and is used to investigate the crowding

phenomenon for multivalued (or 'breaking wave') interfaces.

A time dependent version of the equation is also developed.

This approach reduces to the integration of 
N nonlinear

differential equations.

The Menikoff-Zemach equations, generalized to 
handle

conformal maps of a domain with boundary curve 
parametrized

as x = x(e), y = y(e), are

-15-



2w 1 1
y (e) ym + 2 j i sin 2(u(e)-u(e')) ) e Oe0~)=y 2 n -'1 ' e) eI

0 sin !(e-e )

21T e-ede
+Icot 2 [(x(e')-e') - (x(e)-e)] 2- (3.'1a)

0

I27r 1

u(e) = x (e) x. + 2 f t sin 2(u(e)-u(e'))l dy de'

0 sin I(e-e') Ide 21

2 1_e -e d e '
+ f cot 2-) ly(e')-y(e) ] -- (3.1b)

0

Here e is chosen so that x(O) = 0, x(2n) = 2n, u(e)

is defined so (x(e),y(e)) is mapped into (u(e),0), and

y.,x, are determined by the condition that u(0) = 0.

Note that (3.1a) and (3.1b) are equivalent; either one

can be used to determine u(e). Once u(e) is found by

solution of (3.1), the conformal map is determined.

Eqs. (3.1) are derived from thc pair of Hilbert

transforms:

Re(G(u,0)J = Re(G,) - P I cot (uTu')Im[S(u'-- du'

0

(3.2a)

-16-



~2w

u-du'
Im[G(uO) = Im(G.) + P f cot( -)Re[G(u',0)1 27

0

(3.2b)

where G(W) is analytic in the upper-half W-plane and

G(W Goo+ 0(1/IWI) as lWI .Eq. (3. ) follows

if G = x + iy-W, where W = u+iv.

The Hilbert transforms (3.2) are also useful for

solving potential problems in the region R. If the map

function u(e) is known, boundary values of a potential

on aR may be related to corresponding boundary values

of a potential defined in the strip S in the W-plane:

D(u) = 4(e)

U-v= /du (3.3)

_k 34 ds/du
- =0 3n de/de

where s and n are the tangential and normal directions

to 3R. The tangential and normal derivatives of are

the real and imaginary parts of an analytic function in S

so they are related by the Hilbert transform:

1A 1 d (du cS du de'
f - cot (u(e)-u(o')) e ( C) de - e)L2(
0

(3.4)

-17-



Note that in the application of (3.4) it is necessary

to compute du/de with some care. We have found it best

to find du/de by using the Hilbert transform of

In dz/dw to obtain an equation for £n du/de.

In order to examine the crowding properties of domains

bounded by breaking waves, we use (3.1) to compute the

function u(e) for the periodic curve

x(e) - e + b sin e

(3.5)

y(e) = 0.4 sin e.

For b <1, the curve is a single valued function of x.

For b = 1, the curve has a vertical slope at e = 7,

and for b i, the function is multivalued. In Fig. 3,

the curves (3.5) are plotted for b = 1,1.5, and 2.0.

The map function u(e) must be a monotonically increasing

function of e. Therefore du/de 0 although it can be

exponentially small due to crowding. The functions u(e)

and du/de are tabulated for the curves (3.5) in

Table 3.1. Another measure of the crowding is given by

du du is plotted for various values£n(a). In Fig. 4, tn(a-)

of b to reveal the exponetial nature of the crowding

phenomenon. As b increases, the crowding rapidly becomes

-18-



severe even though the amplitude of the wave (3.5) is

quite modest Similar crowding should be expected in

any dynamic simulation of a breaking wave.

It is also possible to formulate a set of differential

equations based on the Menikoff-Zemach approach to map

a time-dependent boundary. For parametrized boundaries

of the form (x(e,t),y(e,t)), the mapping function u(e,t)

is determined by

au dU + t _e + t
at dt (ds) 2 a (3.6)de

[_-_t x(e,) -x ) 21e')
+ f cot(u(e)-u(e)) e' -(e') - ' e

2 L (--(e') 2

1e u 2de'

21(e) x (e) - -(e) -(e
-e (e a 2 j ((e')2) 2

d2 x2 3e 2T

where ds 2 3x + 3y)2 and uo(t) is chosen so that

u(O) = 0.

Given the values of u,4,x, and y at some time t

the time stepping algorithm proceeds as follows: First,

Like values of u(e), x(e) and y(e) are used to dotermiri.



the map derivative du/de. Next, the normal velocities

ao/an can be computed from (3.4). Once 4/3s and

30/;n are known, the boundary curve (x(e,t),y(e,t))

can be marched to the next time step. Then, Bernoulli's

equation (1.2) gives the boundary values of 4 at the

next step. Finally, the map Eq. (3.6) is used to march

u forward in time.

We have tested the time dependent mapping equation (3.6)

on the mapping of the region bounded by a cosine curve of

increasing amplitude,

x(e,t) = e

(3.7)

y(e,t) = t cos(e)

and on the regions bounded by a time dependent version of

the breaking curves (3.5),

x(e,t) = e + t sine

(3.8)

y(e,t) = 0.4 sine.

A fourth order Adams-Moulton predictor-corrector scheme

was used to march the map function u(e,t) forward in time.

At the times tabulated in Tables 2 and 3, the mapping

function was corrected by solving (3.1). The time integration

-20-



was then restarted with the corrected values of u(e).

The maximum error for a given time is given in Tables

2 and 3 for 32, 64 and 128 points. The minimum of the

function du/de for each time is also listed to give

an indication of the crowding. The error for moderate

distortions was fairly insensitive to reductions in the

time step At but was reduced markedly when the number

of points was increased. In regions of severe crowding

the time step must be very small in order to ensure

accuracy for an explicit integration scheme. Too large

a time step can destroy the monotonicity of u(e).

We have also applied the integral equation (3.1)

and time-dependent evolution equation (3.6) to the

numerical simulation of Rayleigh-Taylor instability. The

initial conditions for the Rayleigh-Taylor problem are

as follows. Fluid of density 1 lies above the periodic

interface

y(e,t = 0) = 0.5 cos(e)

x(e,t = 0) = e

and is initially at rest. Below the interface, there is

a vacuum. The resulting flow is unstable under gravitational

.!celeration. The results plotted in Fig. 5 are obtained

-21-



using the integral equation (3.1). With 60 points per

wavelength, we were unable to continue the calculation

past a time of t =3.5 at which the amplitude to wavelength

ratio of the spike (at x ± ±T ) is about 5.4/2nrZ 0.86.

The degree to which the total energy and the rate of mass

flux are conservedgives a good indication of the reliability

of the simulation. After a time of 3.0, there is a

progressive degradation of conservation of these quantities.

This deterioration is also reflected in the spike

acceleration. For large t, the spike should be nearly

infree fall with an acceleration of -1.0 in our units.

In contrast, the present simulation shows a spike acceleration

which decreases (in absolute value) below 1.0 after t = 3.0.

Hence we conclude that the results are not reliable beyond

t = 3.0. Similarly, the time-dependent evolution equation

(3.6) gives results for this problem that are reliable

only until tz 3.0.

The present conformal mapping methods give results

for Rayleigh-Taylor instability that are quite good. The

amplitude/wavelength ratio has increased by about a factor

10 before the 60 point calculations degrade. Menikoff

and Zemach (private communication) obtain similar

amplifications before their calculations hreak down. However,

the reasons for degradation of the calculations at large time

remain unclear. On the one hand, the conformal mapping

methods described in this Section are capable of resolving

-22-



much more highly deformed interfaces than achieved at

breakdown, even with 60 points. On the other hand,

new vortex methods1 '2 have been used to calculate

Rayleigh-Taylor instability with similar spatial

resolution to at least twice the amplifications achieved

here. It seems that our method of coupling free-surface

dynamics and conformal mapping introduces numerical

inaccuracies (observed as rapid oscillations of and

n for t- -3.0). It is possible that this deficiency

may be corrected by more sophisticated conformal mapping
3

techniques .
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-.ble 1. Mapping functions for the 'breaking' curves (3.5).

b = 1.0 b = 1.5 b = 2.0

Sdu dui du
u(e) du U(e) du u(e) du

0.0 1.9239 0.0 2.3575 0.0 2.7670

1.5706 1.9648 1.8956 2.3030 2.2126 2.6351

2.9331 1.4326 3.4076 1.4615 3.8677 1.4772

3.7681 7.0083x10- 1 4.1579 4.9413x10- 1  4.5352 3.0688\10- 1

4.0981 2.0146xi0 - I  4.3291 4.7511x10 - 2  4.6125 4.5852<10- 3

1.1841 7.740l10 - 1 4.3387 6.4110×10- 4  4.6131 9.8707x1O- 7

4.4406 4.2459x10 4.3440 4.0460x10- 2  4.6131 3.2512x10- 5

5.2656 1.2741 4.7624 1.3178 4.6920 7.0508xi0- I

'rho results were checked for 32 and 64 points and agreed to the

5 significant digits given here.
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t -bie 2. Error in the conformal mapping of the time-dependent cosine

curves (3.7) .

Min(e) Maximum Error (percent)

N =32 N = 64 N =128

2.23xi0 - I  1.8x10- 5  3.Ox10 -lo 6.9xi0 - I0

. 0 2.54xi0 -2 9.1x10 2  2.8xiO 5  1.2x10- 8

0 2.19xi0 - 3  6.9 3.1x10- 2  7.4x1O- 7

1.66x0 -4  1.3 3.5x0 -4

1.20xl - 5  9.9 2 1 10- 2

•The time step is At =0.001.



/ Table 3. Error in the conformal mapping of the time-dependent
*

'breaking' curves (3.8)*.

du
in('de Maximum Error (percent)

N =32 N = 64 N =128

.8 1.85x101 4.5x10 5  3.2x10 1.6x10 1 0

7.48xlO- 2 2.0xlO - 3  3.llO- 7  3.8xi0 - I 0

. 1.63x10- 2 3.9x10- 2 9.0X10 - 5  6.4x1010

.1 1.99xi0 - 3  --- 4.9xi0- 3  8.5xi0 - 7

. 1.02xlO - 3  ----- 9.5xlO- 5

The time step is At 0.001 and 48-bit mantissa arithmetic is used.
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Figure Captions

Figure 1. A schematic plot indicating the sequence of

conformal maps used to solve inviscid free

surface flow problems. Here the fluid lies

below the interface y = r(x,t) as in the

water wave problem.

Figure 2. A plot of the Stokes wave profile at t 0

and at t = 27. The amplitude is 80% of the

maximum Stokes wave amplitude. The FFT

time-dependent mapping equation (2.21)

is used with N = 64 points. The dots

indicate the numerically computed position

of the interface. The solid line is obtained

from Pad6 summation of the perturbation series

for Stokes waves.

Figure 3. A plot of y vs x for the 'breaking' curves

(3.5), x = e + b sine, y = .4 sine, for

b = 1.0, 1.5, 2.0.

Figure 4. A plot of in du/de for the breaking curves

plotted in Fig. 3 (a) b = 1.0, (b) b = 1.5

(c) b = 2.0. Here the Menikoff-Zemach equation

(3.1) is solved for the conformal mapping function

.u(e). Observe the exponentially strong crowding

for b >1.



Figure 5. A plot of the interface y(x,t) for the Rayleigh-

Taylor instability with initial conditions

y (x, t = 0) = 0. 5 cos x (x, t) = 0 f or t = 0. 5

to t =3.5 in steps of 0.5. Here 60 points

per wavelength are used. Both the integral

equation (3.11 and time-dependent equation

(3.6) degrade significantly in accuracy for

t> 3 at this spatial resolution.
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