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Abstract

The application of conformal mapping methods to
the solution of free-surface flow problems is considered.
Methods of numerical conformal mapping based on Fourier
series are extended to handle efficiently problems with
time~dependent boundaries. They are shown to be
practicable only for moderately distorted geometries.
Extensions of the Menikoff-Zemach method to 'breaking'
geomctries are presented. These latter methods are
robust at guite large distortions, but degrade
prematurely in time-dependent problems at amplitudes

smaller than achieved by our recent vortex methods.
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1. INTRODUCTION

Inthis paper, we investigate the amplication of
conformal mapping to the solution of time-dependent
potential flow problems, such as Rayleigh-Taylor instability
and water waves. We begin by formulating the water wave
problem. For two-dimensional, incompfessible, irrotational,
free-surface flow, the velocity is expressibleas v = V¢,
where the potential ¢ satisfies Laplace's equation
V2¢ = 0 in the reyion y<n(x,t) beneath the frec
surface y = n(x,t). Since the free surface moves with
the £fluid,

Dx Dy

oe = %« 5't-=¢y,(y=n(x,t)), | (1.1)

where D/Dt 1is a Lagrangian derivative. Bernoulli's
law is satisfied throughout the fluid so that

B2 = - nie,t) + 3y - p (1.2)

at the free surface y = n(x,t), where the gravitational
acceleration is normalized to unity and Pg is the

applied surface pressure. It is assumed below that the

frec surface is periodic in x with wavelength 2mu,
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In order to march forward in time, it is necessary

to know V¢ at the free surface. If ¢ is known then

its tangential derivative 3¢/9ds is computable but its

normal derivative 23¢/on must be found by solving

Laplace's equation. Green's third formula expresses

3¢/3n in terms of ¢ :

/ 59— tnlp-qld¢(q)da ~ | in |p-ql 2(aq)dg = 2 (p).
3 °n T T T o © < n s N

(1.3)

Here ©p,q are vectors lying on the boundarv 3D of the

~ o~

region D. Eg. (1.3)’ is a linear integral equation of
the first kind for the unknown function 3¢/3n. Once

3¢ /3n has been calculated, Eg. (1.1) and (1.2) may
be-used to update the free surface and potential.

Numerical solution of (1.3) for 3¢/3n involves

the approximation of its logarithmic kernel by a finite
matrix. If the continuous boundary is approximated by N
discrete points, the overation count for the solution of
the resulting linear system is 0(N3) since the matrix
is full. 1In addition, storage of the matrix requires
0(N2) memory locations. For large N the computationai

costs are prohibitive.
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Our work is motivated by the desire to develop
algorithms with decreased operation counts and storage
requirements for solving free surface potential flow
problems. We have recently proposed a new vortex
methoé'go solve these problems with O0(N) memory and
0(N2) operations per time step. In the present paper,
two conformal mapping methods are studied. Both require
only O0(N) memory. The methods discussed in Sec. 2
regquire only O0(N Slog2 N) operations ver time step but
are effectively limited to modest surface deformations.
In Sec. 3, meodifications of the Menikoff-~Zemach methodlo
that reguire O(Nz) operations per time step are introduccd.

Larger surface deformations can be handled accurately by

these latter methods.

2. CONFORMAL MAPPING USING FOURIER SERIES

In this Section, numerical methods are developed
to compute the conformal map z(z) of the unit disk
[t]<1 ontc a simply connected finite region D in the
complex-z plane. A map of the unit disk onto a semi-
infinite veriodic region R: w = x+iy, 0 < x < 27, y< n{x),

is given by
w=18m z(z) (2.1)

where z(f) is a map of the unit disk onto the interior

of the reqion with boundar
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z = expl-ix + n(x)]).

This sequence of conformal maps is depicted in Fig. 1.
Before proceeding to the discussion of methods to
compute the conformal map z(f{), we note that knowledge
£ z(g) allows efficient solution of potential
problems in the region R. If ¢(w) is harmonic in R
then ¢(i 2n z(z)) is harmonic in the unit disk. 'L
Therefore, the Dirichlet problem can be solved by

Poisson's formula. Also, since conformal maps are angle ]

preserving, the normal derivative 3¢/9n of ¢ on the ,]
boundary of R is related to the radial derivative ]
36/30 of ¢ on |z| =p=1: "
H
[ N
3z _as |z :
on . 30,0=1 ! 4 2.2)
THy=n(x) T | —% o =1 (

The derivative dz/d; can not vanish for |g|[<1 if

z(z) 1is single-valued. !
Let us begin by characterizing the analytic charactex
of 2z(Z) 1in terms of Fourier series. The boundary values .

i

z(e”") of the conformal map z(g) are a periodic function 5

of the angle o on the unit disk so




z = expl-ix + n(x)].

This sequence of conformal maps is depicted in Fig. 1.
Before proceeding to the discussion of methods to
compute the conformal map z(f), we note that knowledge
of 2z(z) allows efficient solution of potential
problems in the region R. If ¢(w) is harmonic in R
then ¢(i ¢n 2z(z)) 1is harmonic in the unit d4isk.
Therefore, the Dirichlet problem can be solved by '
Poisson's formula. Also, since conformal maps are angle
preserving, the normal derivative 9¢/on of ¢ on the

boundary of R 1is related to the radial derivative H

3¢/3p of ¢ on |z] =p=1: . t.
, |3
. ol g ‘
GRS = 39| |Z(b))
Ty () 2)0=1 | g% . (2.2)

The derivative dz/d; can not vanish for |gz|<1 if
z(z) 1is single-valued.

Let us begin by characterizing the analytic characte:
of z(Z) 1in terms of Fourier series. The boundary values
z(ehl) of the conformal ﬁap z(z) are a periodic function

!
]
of the angle o on the unit disk so ;
|




A el (2.3)

The condition that z(z) be analytic is
A, =0, k<0 (2.4)
and, in this case, z(z) is given explicitly by

z(g) = £ At - (2.5)

In other words, an analvytic transformation of the unit
disk onto a region D is equivalent to a parametrization
of 3D 1in terms of 2 such that the Fourier reoresentation
of 3D has only positive frequency components.
Now we consider a discrete aoproximation to the

conformal map. Consider the eguallv spaced discrecte points

4, =3 (3 =0, ... N-1), where o = 27/N, and the associated
points zj on aD. Then zj can be represcnted as the

fFinite Tanrier series

z, = 2(e?h) = 7 a e (ogien). (2.6)

It may easily be shown that

he, - N ]




(2.7)

One way to determine an approximation to the conformal

map z(gz) 1is to require that a, =0 for k< 0. Indeed,
if N 1is large enough that Ap is negligible for k>N,
then a is negligibly small for k< 0. This idea may ‘

be used to obtain iterative methods4"8 based on the fast
Fourier transform (FFT) to compute the avproximate conformal

map. These methods typically require O0O(N QogzN) operations

per iteration. We note that for any a, satisfying
a, = 0 for k<0, the resulting conformal map
z(g) = a, " (2.8) ]
0<k<N/2 1
- 5
satisfies :(el‘]) = zj. Thus, the map 2z transforms the
igj R

N equally spaced points e into points zj lying on

JD. !
As an alternative to these iterative methods, we have

obtained a differential equation which relates the time rate

of change of the conformal map to the time rate of change

of @ moving boundary. This differential equation is !

well suited to the solution of free surface flow problems

where the solution of the potential problem determines the.

time rate of change of the freec surface.




Let the boundary be represented for all time t

by the equation

F(z(a,t), z(a,t),t) = 0. (2.9)

Differentiation of (2.8) with respect to t vyields

+ EE 92 4 —
Z 32

]
@
T

3
3

T

l

0, ‘ (2.10)
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and differentiation with respect to the angle o (see Fig. 1)

gives

3F 3z 3 3z _
37 3. + E m =0 (2.11)
The relation
2z oF
at _ 1 2t
™z | T2 Tz (2.12)
kI dz Ja

is obtained by substituting (2.11) into (2.10). This
cquation only provides the-imaginary part of _"/35
The real part of %%/%é is determined by requiring that it
be analytic in the domain described by (2.9).

The right hand side of (2.12) 1is real and can be

represented by a conjugate symmetric Fourier series:




L5 Fars
2 3F 3z = Re ZO bm exp(ima)
dz 3a :

Therefore, analytic continuation of (2,12) gives

9z _ ; 3z
at 3a me0 bm’exp(ima) (2.13)
where
v
A2 2 . R
e = ) (ik)a, exp ika) (2.14) '
k=0

The right hand side of Eq. (2.12) 1is directly related

to the normal velocity of the moving boundary. In Cartesian

coordinates ?
F(z,2,t) = y - n(x,t) (2.15)
SO . A
3F _ _ 3n
3t T ot (2.16) 1
¥
Also, ,
. “
9F 3z _ 1 (3F _ ; 3F, dx ., dy
7z 3a - 32 (ax i ay)(aa + i au) (2.17)




Substitution of (2.16) and (2.17) into (2.12) gives

o ;

3

Dl
wlrtr
3

Im TR (2.18)

ET) +

&Rl

9y .
EY]

Q|

X

The free surface condition (l.1) c¢an be written

as

on _ 3¢ _ 3n 3¢ (2.19)

Using the decomposition of 5¢/3x and 3¢ /3y into

tangential and normal components

3 _ (av 20 _ ax 3¢

dy 9s 9s 9s on

20 _ (2x 20 3y 30

Ix (as 3s ' s 3n) (2.20)

in (2.18) gives the final result in terms of the polar

coordinates p and a
92
3t 2
m|aE| --2| . |Z (2.21)
s e p=1 l—a

An analogousg result was obtained using perturbation methods

by Kantorovich and Krylov.8

<10~




Eq. (2.21) describes the motion of points following
the conformal map of the free surface rather than the
Lagrangian or Eulerian paths. Bernoulli's equation

(1.2) must also be modified to take this fact into

account:
- 2
Dp _ _ - 11 3¢,2 3¢,21| =
—D%— tnlz] = 5 ‘\‘ao’ + (55 ] El (2.22)
Ja

+ 3 Dx . 3¢ Dy
ax Dt dy D

t

Once the conformal map (2.4) from the unit circle
is known, the solution of the Dirichlet problem may be
given in terms of a Fourier series

n

o (pei®) sinn a) (2.23)

]
t~1
Q
©

n
cos no  + hn P

On the unit circle (p = 1) the tangential and normal

derivatives are given by

1y
3& - 2 _ .
e Z (-ng sinne + n h cosna ] (2.24)
n=0 .
1
N-1
8 _ 2 -
30 nEO [ng, cosna + nh sinna], (2.?5)

which are computable using FFT's in O(N logzN) operations.

-ll-~




Now let us summarize the steps involved in marching
from time t to t + At Dby this method. At time t,
the points {zj} and potentials {¢j} are assumed known.’

First, the coefficients gq_, h in (2.23) are obtained

n n

from {¢j} using an FFT. Next, Vo is computed on the
boundary using (2.24) and (2.25). Then ¢j is
updated by (2.22) and zj is updated by (2.21).

The total operation count is O(N Lo N). Note that the
conformal map is uniquely defined by (2.21) and the

supplementary conditions = 0, Im(a,) = 0.

%0 1

As a test of this time dependent mapping method,
we study the propagation of Stokes' permanent water waves.
In a frame of reference moving with the wave speed, the
numerically calculated profiles should be steady. The

initial conditions for the calculation are obtained using

Padé approximants of perturbation expansions of the Stokes

wavesll. The time-dependent equations (2.21), (2.22)

are solved by a fourth-order Adams-Moulton predictor

corrector scheme. As with other simulations of provagating
2,9

nonlinear water waves, an instability of the free

surface quickly develops un}ess damping is applied. To

remove this instability, we periodically apply a five-
point smoothing operatorg.

For a Stokes wave with peak—tb-trough amplitude 80%
of the maximum allowed by theory, we choose the time step

to be 21/400 with wavelength 2m and apply smoothing




every tenth step. The resulting wave profile is plotted
in Fig. 2. The dots indicate the position of the points
Zy4 used to calculate the conformal map of the wave.
The solid line is the wave profile computed by Padeé approximantsll,
translated by an amount equal to the nonlinear phase spced
multiplied by the time. The computation time for one
evaluation of the time derivatives of the map and potential
is 3ms on the CRAY-1 computer using N = 64 points. The
total computation time for the motion of the wave through
one period is about 1s.
The conformal mapping method described here works
well provided the region is not highly distorted. As
the region of interest becomes more distorted the points
corresponding to the conformal map tend to crowd3'lo.
For example, consider the conformal mapping from the unit

disk to the region lying below y = A coskx. The number

of terms N that must be retained in the Fourier expansion

(2.4) to obtain a good representation of this map satisfies

_

in N~¥kA as kA > =,> where ¥ =2 | 3DXax=2,909,
0

showing the difficulty of mapping from the unit disk to a

deformed region.

When N is large, almost all of the equally spaced

X 107 . .
points e "J on the unit circle are mapped into points

zj that are crowded into small intervals on the boundary
of the domain D. Dubiner3 has recently made a detailed
analysis of this problem and has shown that the crowding

occurs whenever the region being mapped has a 'narrow'

-13~-




section. This effect occurs in high amplitude Rayleigh-

Taylor instability and in breaking waves. The FFT method
is not effective in dealing with these highly distorted
geometries.

--dghen the domain D is highly deformed, the iterative

-8

methods4 and our differential equation method do give a

conformal map of the unit disk onto a domain that passes

through the desired points zj of 3D. However, unless N

is unreasonably large, the conformal map so obtained

will have large deviations from 3D between the points ¥
Y
zj. Indeed, (2.8) gives an accurate conformal map of
3D only if a, decreases rapidly as k increases to {
1
: 7N.

One possible approach to the crowding problem is
to use a sequence of mappings of the disk onto successively
more highly deformed regions. Such iterated mappings

are still under study. For such methods, one result seems \

assured, namely that the operation counts must degrade

from O(N log2 N) to O(Nz) or worse. In this case,
these Fourier series methods are probably inferior to the
methods to be described in Sec. 3.

3. APPLICATION OF THE MENIKOFF-~-ZEMACH METHOD

The Fourier series methods for mapping the unit disk

onto D can not accurately handle highly distorted domains

a7 the crowding phenomenon causcs a severe losgss of resolution




in some part of the physical boundary. This difficulty
may be overcome by mapping D onto the unit disk with
a regular distribution of points on 3D. The crowding
then occurs on the boundary of the unit disk. Even
with a highly nonuniform distribution 5f points on the
unit circle, the potential problem in the unit disk is
still readily solved by Poisson's formula.

Recently, Menikoff and Zemach10 have developed a
new nonlinear integral equation for conformal mapping
of the regqion R above v = n{x) onto the periodic
semi-infinite strip S:0<u<2m, O0<v<® ., Their mcthod

requires relatively few points to achieve accurate

results for distorted domains.

A simple extension of Menikoff and Zemach's equation
which is valid for general periodic interfaces 1s
derived here and is used to investigate the crowding
phenomenon for multivalued (or 'breaking wave') interfaces.
A time dependent version of the equation is also developed.
This approach reduces to the integration of N nonlincar
differential equations.

The Menikoff{-Zemach egquations, generalized to handle
conformal maps of a domain with boundary curve parametrized

as x = x(e), y = yle), are

-15-




1l
yle) =y + 2 7"1n sin 2(ufe)-ule")) 4, de’
° 0 sin z(e-e') defe’) or
+ ?“c t (=221 ) [(x(e')~e') - (x(e)-e)] S&- (3.1a)
5 le] -—2—"- X e e 27 .

1
27 . = . [
ale) = x(e) « x_+ 2 [ an| SiD 2(u{e)-u(e )) %x' de'
© . ' e 2T
0 sin 7(e—e ) |
2‘“ - [ ]
+ £ cot (2320 [y(e')-y(e)] <. (3.1b)
Here e 1is chosen so that x(0) = 0, x(2m) = 2m, u(e)

is defined so (x{(e),v(e)) 1is mapped into (uf(e),N), and
Y, r%X, are determined by the condition that u(0) = 0.
Note that (3.la) and (3.1lb) are equivalent; either onec
can be used to determine u(e). Once ule) 1is found by
solution of (3.1), the conformal map is determined.

Egs. (3.1) are derived from the pair of Hilbert
transforms:

2n

RelG(u,0)] = Re(G) - P [ cot (3%
0

2

)Im(G(U‘.OI%%
(3.2a)

-16-




2% (]
Im[{G(u,0) = Im(G_ ) + P f cot(E%gL)Re[G(u'.O)l %%—
0 :
(3.2b)

where G(W) is analytic in the upper-half W-plane and
G(W) = G, + 0(1/|w]) as |W| >« . Eq. (3.1) follows
if G = x + iy-W, where W = u+iv.

The Hilbert transforms (3.2) are also useful for
solving potential problems in the region R. If the map
function wu(e) 1is known, boundary values of a potential
¢ on 3R may be related to corresponding boundary values
of a potential ¢ defined in the strip S in the W-plane:

'

d(u) = ¢ (e)

p du
Eﬂ o = jg/éﬁs (3.3)

where s and n are the tangential and normal directiorns
to 3R. The :iangential and normal derivatives of * are
the real and imaginary parts of an analytic function in §

so they are related by the Hilbert transform:

2n

ah ds _ 1 . d¢ , ,.du dp ., du .\ 5 de’
mode = é cot 7 (u(e)-u(e ))[aa(e )EE(C)‘aC(C)aE (e )157

17~




Note that in the application of (3.4) it is necessary’
to compute du/de with some care. We have found it best
to find du/de by using the Hilbert transform of
tn dz/dw to obtain an equation for 2&n du/de.

In order to examine the crowding properties of domains
bounded by breaking waves, we use (3.1)- to compute the

function u(e) for the periodic curve

x{e) = e + b sin e
(3.5)

y(e) = 0.4 sin e.

For b <l, the curve is a single valued function of x.
For b =1, the curve has a vertical slope at e = m,

and for b>1l, the function is multivalued. 1In Fig. 3,
the curves (3.5) are plotted for b = 1,1.5, and 2.0.
The map function u(e) must be a monotonically increasing
function of e. Therefore du/de> 0 although it can be
exponentially small due to crowding. The functions u(e)
and du/de are tabulated for the curves (3.5) in

Table 3.1. Another measure of the crowding is given by

n (gg). In Fiqg. 4, zn(gg) is plotted for various values
of b to reveal the exponetial nature of the crowding

phenomenon. . As b  increases, the crowding rapidly becomes

~18-
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severe even though the amplitude of the wave (3.5) is
quite modest Similar crowding should be expected in
any dynamic simulation of a breaking wave.

It is also possible to formulate a set of differential
equations based on the Menikoff-Zemach approach to map
a time-dependent boundary. For parametrized boundaries
of the form (x(e,t),y(e,t)), the mapping function wul(e,t)

is determined by

9X 90X Ay 9
a_q=d“o+57t‘—e+§%§%’au :
3t _ dt (35,2 = (3.6)

de

3 ax ax 3
2m o Fe) (e - Ee')y (e

+ f cot(u(e)zu(e )) ?t Je 5 t Je
0 (35 (ey)
de
Wier2E (e )-?—-’i(e)%i(e)
(——(e ))
(de(e ))

where (ds)2 = (%%)2 + (%g)z and uo(t) is chosen so that

u(0) = 0.
Given the values of u,¢,x, and y at some time t
the time stepping algorithm proceeds as follows: First,

the values of u(e), x(e) and y(e) arec used to determine




the map derivative du/de. Next, the normal velocities
3¢/3n can be computed from (3.4). Once 9¢/9s and
3¢/9n are known, the boundary curve (x(e,t),yle,t))
can be marched to the next time step. Then, Bernoulli's
equation (1.2) gives the boundary values of ¢ at the
next step. Finally, the map Eg. (3.6) is used to march

u forward in time.

We have tested the time dependent maoping equation (3.6)
on the mapping of the region bounded by a cosine curve of

increasing amplitude,

{
]

x(e,t)
(3.7)

y(e,t) t cos(e[

and on the regions bounded by a time dependent version of

the breaking curves (3.5),

e + t sine

x(e,t)
(3.8)

0.4 sine.

yle,t)

A fourth order Adams-Moulton predictor-corrector scheme
was used to march the map function u(e,t) forward in time.

At the timeé tabulated in Tables 2 and 3, the mapping

function was corrected by solving (3.1). The time integration




was then restarted with the corrected values of uf(e).
The maximum error for a given time is given in Tables

2 and 3 for 32, 64 and 128 points. The minimum of the
function du/de for each time is also listed to give
an indication of the crowding. The error for moderate
distortions was fairly insensitive to reductions in the
time step . At but was reduced markedly when the number
of points was increased. In regions of severe crowding
the time step must be very small in order to ensure
accuracy for an explicit integration scheme. Too large
a time step can destroy the monotonicity of uf(e).

We have also appnlied the integral equation (3.1)
and time-dependent evolution egquation (3.6) to the
numerical simulation of Rayleigh-Taylor instability. The
initial conditions for the Rayleigh-Taylor problem are

as follows. Fluid of density 1 lies above the periodic

interface
y(e,t = 0) = 0.5 cos{e)
x(e,t = 0) = e

and is initially at rest. Below the interface, there is
a vacuum. The resulting flow is unstable under gravitational

a~celeration. The results plotted in Fig. 5 are obtained




using the integral equation (3.1). With 60 points per
wavelength, we were unable to continue the calculation
past a time of t=3.5 at which the amélitude to wavelength
ratio of the spike (at x =im) is about 5.4/21° 0.86.
The degree to which the total energy and the rate of mass
flux are conservedgives a good indication of the reliability
of the simulation. After a time of 3.0, there is a
progressive degradation of conservation of these quantities.
This deterioration is also reflected in the spike
acceleration. For large t, the spike should be nearly
infree fall with an acceleration of =-1.0 in our units.l
In contrast, the present simulation shows a spike aéceleration
which decreases (in absolute value) below 1.0 after t = 3.0.
Hence we conclude that the results are not reliable bevond
t = 3.0. Similarly, the time-dependent evolution eguation
(3.6) gives results for this problem that are reliable
only until t = 3.0.

The present conformal mapping methods give results
for Rayleigh~Taylor instability that are quite good. The
amplitude/wavelength ratio has increased by about a factor
10 before the 60 point calculations degrade. Menikoff
and Zemach (private communication) obtain similar
amplifications before their calculations bhreak down. However,
the reasons for degradation of the calculations at large time
remain unclear. On the one hand, the conformal mapping

methods described in this Section are capable of resolving

“22-




much more highly deformed interfaces than achieved at

breakdown, even with 60 points. On the other hand,

’

new vortex methods1 have been used to calculate
Rayleigh-Taylor instability with similar spatial
resolution to at least twice the amplifications achieved
here. It seems that our method of coupling free-surface
dynamics and conformal mapping introduces numerical
inaccuracies {(observed as rapid oscillations of ¢ and
n for t>3.0). It is possible that this deficiency
may be corrected by more sophisticated conformal mapping
techniquesB.
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-ible 1. Mapping functions for the 'breaking' curves (3.5).*
b=1.0 b =1.5 b=

u( e g% ' u(e) %% u(e) g%

0.0 1.9239 0.0 2.3575 0.0 2.7670
1.5706 1.9648 1.8956 2.3030 2.2126 2.6351
2.9331 1.4326 3.4076 1.4615 3.8677 1.4772
3.7681 7.0083x107% 4.1579 4.9413x10"Y  4.5352 3.0688x107 "
4.0981 2.0146x10"1  4.3291  4.7511x107%  4.6125  4.5852%107°
11841 7.7800x10°0  4.3387  6.4110%107" 4.6131  9.8707x1377
4.4406 s.2450x107 % 4.3440 4.0460%x107%  4.6131 3.2512x107°
5.2656 1.2741 4.7624 1.3178 4.6920 7.0508x107%

§ The results were checked for 32 and 64 points and agreed to the

5 significant digits given here.
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-yble 2. Error in the conformal mapping of the time-dependent cosine

curves (3.7)*.

. ,du .
Mln(ge—) Maximum Error {(percent)
N = 32 N = 64 N = 128

P 2.23x107 % 1.8x107° 3,0x10"10 6.9x10" 10
N 2.54x10"2 9.1x10"2 2.8x107° 1.2x1078
. 2.19x1073 6.9 3,1x1072 7.4x10" "

1.66x1074 - 1.3 3.5x10" 4
9 1.20%x107° 9.9 2.1x1572

The time step is At = 0.001.
.26 -
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/ rable 3. Error in the conformal mapping of the time-dependent .

*
‘breaking' curves (3.8) .,

, du
- Ml“(aa’ Maximum Error (vercent)
N = 32 N = 64 N = 128

- - -10 . -
8 1.85x10" % 4.5x107° 3.2x10 - 1.6x10°10
" 7.48x10"2 2.0x10"3 3.1x10"/ 3.8x10"10
= 1.63x10”2 3.9x1072 9.0x10"> 6.4x10 10
1 1.99x1073 - 4.9x1073 8.5x10"/
5 1.02x10"3 —- — 9.5x107°

* The time step is At = 0.001 and 48-bit mantissa arithmetic is used,

.27~




Fiqure 1.

Figure 2.

Figure 3.

Figure 4.

Figure Captions

A schematic plot indicating the sequence of
conformal maps used to solve inviscid free
surface flow problems. Here the fluid lies
below the interface y = n(x,t) as in the
water wave problem.

A plot of the Stokes wave profile at t = 0
and at t = 27, The amplitude is 80% of the
maximum Stokes wave amplitude. The PFT‘
time-dependent mapping equation (2.21)

is used with N = 64 points. The dots
indicate the numerically computed position

of the intérface. The solid line is obtained
from Padé summation of the perturbation series
for Stokes waves.

A plot of y wvs x for the 'breaking' curves
(3.5), x==e + Db sine, y = .4 sine, for
b=11.0, 1.5, 2.0.

A plot of 4&n du/de for the breaking curves
plotted in Fig. 3 (a) b =1,0, (b) b = 1.5
(c) b= 2.0, Here the Menikoff-Zemach eguation

(3.1) 1is solved for the conformal mapping function

u(e). Observe the exponentially strong crowding

for b>1.

-0 =




for the Rayleigh-

Figure 5. A plot of the interface y(x,t)

Taylor instability with initial conditions

0) = 0.5 cosx¢(x,t) = 0 for t = 0.5

yi(x,t
to t = 3.5 in steps of 0.5.
Both the integral

Here 60 points

per wavelength are used.

equation (3.1 and time-dependent equation

(3.6) degrade significantly in accuracy for

t>3 at this spatial resolution,
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