
A D-AO97 B25 CORNELL UNIV ITHACA N Y DEPT OF COMPUTER SCIENCE F/S 12/1
POLYNOMIAL-TIME ALGORITHMS FOR PERMUTATION GROUPS.(U)

D OCT 80 M FURST. J HOPCROFT, E LUKS N00014 76-C 0018
UNCLASSIFIED CU-CSO-TR-80-442.timhh-llllllllu
EHEEHEEI

\~-~Polynomial-Tie Algorithms

for Permutation Groups -

", errick/Furst
1 I

John opcroft I

Eugene/Luks
3

Department of Computer Science

Cornell University
Ithaca, New York 14853

1 Department of Computer Science, Carnegie-Hellon University, Pittsburgh

2 Pennsylvania
3 Department of Computer Science, Cernell University, Ithaca, New York

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania

This research was supported in part by ONR contract N00014-76-C-0018 and
NSF grant SPI-7914127.

Polynomial-Time Algorithms for Permutation Groups

Merrick Furst1

John Hopcroft
2

Eugene Luks
3

Abstract

A permutation group on n letters may always be represented by a

small set of generators, even though its size may be exponential in n.

We show that it is practical to use such a representation since many

problems such as membership testing, equality testing, and inclusion

testiLg are decidable in polynomial time. In additions we demonstrate

that the normal closure of a subgroup can be computed in polynomial

time, and that this procedure can be used to test a group for solvabil-

ity. We also describe an approach to computing the intersection of two

groups. The procedures and techniques have wide applicability and have

recently been used to improve many graph isomorphism algorithms.

Accession For

NTIS Gr&I
DTIC T.i
U:annoli!-ed

AVs.r n ,. t. '1 !7

Department of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pennsylvania

YDepartment of Computer Science, Cornell University, Ithaca, New L
YorkLi

3 Department of Mathematics, Bucknell University, Lewisburg,

Pennsylvania

This research was supported in part by ONR contract N00014-76-C-
0018, and NSF grant SFI-7914927.

-2-

Let gl,...,gk be permutations of the set (1,...,n). The collection

of permutations expressible as finite compositions of these gi forms a

group; a group whose size may easily be exponential in n and k. For

example, take the set Sn of all n! permutations. It can be generated by

just two permutations, a cyclic shift of the n letters, and a transposi-

tion of the letters 1 and 2. In fact, every subgroup G of Sn can be

represented succinctly by 0(logIGI) generators.

It is natural to ask, from a computational perspective, whether

using such a short representation of such a large collection is practi-

cal. More to the point, is it possible to answer basic questions about

a group C that is defined by a list of generators? For example, can

membership be tested? can the size be determined? can two groups be

tested for equality? can one be shown to include the other? We provide

positive answers to each of these questions in the form of polynomial-

time algorithms. Classical algorithms to solve these problems have been

known to computational group theorists for some time, but without accu-

rate analyses of running times [3,7].

Permutation groups, depending upon how they are represented, either

have polynomial-time membership tests, or they don't. Those that do we

call uoly -emiaj-11mm recogniabJ.. Any group represented by generators

is polynomial-time recognizable. The automorphism group of a graph is

also polynomial-time recognizable, even if generators for it are unk-

nown, since testing whether a permutation is an automorphism is easy.

As an important corollary we will prove that given generators for a

group G, generators for any polynomial-time recognizable subgroup with

-3-

small index can be found in polynomial time.

Using these techniques, in [4) L. Babai's probabilistic

polynomial-time isomorphism test for graphs of bounded color multipli-

city [2] was improved to deterministic polynomial time, C. Hoffmannts

probabilistic O(n cl gn) isomorphism test for cone graphs was improved to

deterministic O(nclogn) time, and a subexponential algorithm for

trivalent graph isomorphism was described. In these proceedings E. Luks

[6) shows that the last two problems are decidable in deterministic

polynomial time. Many other problems of permutation groups seem to have

polynomial-time solutions. We give two examples, an algorithm for com-

puting the normal closure of a subgroup, and an algorithm to test a

group for solvability. In addition, we describe an approach to the

problem of computing group intersections.

Preliminaries

A peruLQ.n o on {l,...,n} is a collection of 1-1 maps from

(i,...,n} onto itself that forms a group under composition. Let G be a

group. The order of G, IGI, is the number of permutations in G. Let H

be a subgroup of G, written G - H. The quotient symbol G/H stands for

the collection of cosets of H in G, i.e., the collection of equivalence

classes of elements of G in which x y if and only if x-Iy is in H.

From Lagrange's theorem we know that every coset of G/H has the same

size and, therefore, IGI = IG/HI lHI. The size of G/ is called the

indpx of H in G.

If gl,".,gk are permutations, then the group <gt1 ...9tgk> gen-

erated by the gi' is the group of all permutations formed by products of

-4-

the gi. We use the symbol I to mean the unique group generated by the

identity permutation.

n&Membership and D ting Lj Order gL aGrou

Let G be a group of permutations on l,...,'n) generated by

gl*"*gk" There is a descending chain of subgroups,

G = G G - Gn = Is from G to the identity group, in which Gi is

the subgroup of G fixing 1, ••,i. Consider the quotients

G i/G i+ fjr i=O,...,n-l. The group G can be expressed as

G = Go = (G0/G1)G1,

or. G = (G0 /GI)(G1/G 2)...(Gni/Gn).

Teref ore, any element g ir. G can be written in the form

g = aoal.-.an_lt where a i is an element of Gi/Gi+I . Intuitively this

says that any permutation in G can be realized as a permutation that

moves I to the correct place, followed by a permutation that fixes 1 and

moves 2 Lo the correct place, followed by a permutation that fixes 1 and

2 and moves 3 to the correct place, etc. The collection of elements in

Gi /G i+, i=0,...,n-1, are called sJtrong generators for G. Our first

theorem yields an algorithm, like the one proposed by Sims [7] that

computes coset representative: for each of the quotients in polynomial

time.

Thgorem I: Let 0 be a group generated by g1,...,gk . Let Gi be the sub-

group of C fixing letters I*,...,i. Coset representatives fox Gi/Gi+ 1

i=0,...,n-1 can be determined in polynomial time.

Proof: The maximum value that IC./G i., can have is n since cosets only
ML

-5-

differ by where they map the letter i+l. We will construct a table T

with n rows, labelled 0 to n-l and n columns, labelleo 1 to n, whose

ith row is a set of right coset representatives for Gi/G£+ I . The table

will be organized in such a way that the permutation in the i.jth posi-

tion fixes letters l,...,i-l and maps letter i to position j. Thus the

entries in T will only lie on or above the diagonal.

When we are finished, the table should have the property that g is

in G if and only if g can be expressed as aOal.-.ar. where a i is a

member of the ith row. This we will call the canonical representation

of g.

To start, initialize T with the diagonal elements equal to the

identity and all others empty. The procedure sift(x), defined below,

modifies the table by inserting at most one new coset representative in

such a way that x can be written in canonical form.

sift(x):
i4-0

while (i 9 n-I and
there is a y in row i such that
y and x map i+l to the same letter)

x y x
iL x is not a member if row i
1hn insert x in row i

As an example of how sift works, suppose the table for the tower

Go D GI G2 : G3 I at some point looks like Figure 1.

(C 00 1 1 1 I + Ij_ l GI + I IGI~

(cl-) I I I G 2 + IG102 + I_2"_

(c2=) Ic 3 + G3 + I3
Figure

Consider the call sift(b) for somc b in G but not in GI * If a'1b

is in G1 9 and a- b is not in G2, then after the call sift(b) the table

would look like Figure 2. In this table b is expressible in canonical

form as a(a-Ib)l.

Ia Ia I I

I 1........I I_.....a- 1b __.... I __ _ _

I I I II I_

Figure 2

At this point we make a key observation: all of the coset represen-

tatives have been found if and only if

(1) each generator can be written in canonical form, and

(2) each product of a pair of representatives in the table can be

written in canonical form.

Since we will only sift elements from G we need only verify that

when (1) and (i) are satisfied any g in G can be written in the canoni-

cal form. Let g be an element of G. Write g as a product of generators

and write each generator in canonical form. If this product is not in

canonical form, use (2) to rewrite it.

By using (2) we can take an adjacent pair of representatives xy in

the string representing g and, if x comes from a higher numbered row

than y, rewrite xy in canonical form. This has the effect of moving an

7 -

element from a 'lower numbered row past an element of a higher numbered

row to the left in the string representing g. Moving all the row 0

representatives to the left, then all the row 1 representatives, and so

on, we can put the string in canonical form. It is important to note

here that writing xy in canonical form does not require the introduction

of any elements from lower numbered rows than the one y comes from.

The whole algorithm can be described as

Step 1. Sift all the generators.

Step 2. Close the table such that the product xy, for every pair

(xy) in the table, can be written in canonical form.

To perform Step 2 simply run through all pairs (x.y) from the table

and sift their product. The number of coset representatives in the

2 2 2
table is at most n . The number of calls to sift is at most (n)(n2)

and each call to sift takes roughly n2 time. Therefore, the running

time is O(n 6), a polynomial in n.

0

Once the coset representatives have been found, testing membership

and computing the size of G is not hard. To determine if x is an ele-

ment of G, run sift with argument x. If x can be written in canonical

form without the introduction of new elements into the table, then x has

can be written as a product of generators. If x cannot be written in

canonical form, then x is not in G. The order of G is the product of

the sizes of Gi/Gi+1

The group G <gj,...,gk> contains H <hl,...,hs> if and only if

.... ...

-8-

each h i is a member of G. Two groups are equal if and only if each con-

tains the other. Therefore, the polynomial-time membership test gives

polynomial-time inclusion and equality tests for permutation groups.

The following important corollary to Theorem 1 is used by E; Luks

(6] in his polynomial-time, bounded-valence graph isomorphism test.

Corollary i: Let G be a permutation group on {l,...,n) generated by

gl,...,9 k . Let H be a polynomial-time recognizable subgroup of G, whose

index in G is at most a polynomial in n. Generators for H can be found

in polynomial time.

Proof: The sequence of groups G = H = HI ... H Rn = I, where H i is the

subgroup of H that fixes the letters l,...,i, can be used just as the

sequence G = G1 -.-. D Gn was use'd in Theorem 1. with two changes. The

first is that row 0 may have a polynomial number of entries instead of

at most n. The second is that to test whether two elements x and y of G

are in different cosets of G/H, the permutation x- y has to be tested

for membership in H.

0

By a .straitht .i= gxD.r, we mean a sequence of instructions

h1 ,. . .,hm in which

S hhk with j,k < i, or

gj, where gj is a generator.

Not every permutation x in G can necessarily be 'expressed by a

-9-

polynomial-length word in the gi' however, our next theorem states that

every x can be expressed as the result of a short straight-line program.

Theorem 2: Let G = <gl,...,gk> be a group of permutations on 1i, n}.

There is a polynomial p such that each permutation x in G can be com-

puted by a straight-line program hl,.*.,hm = x, where m : p(n)*.

Pzojf: Using the polynomial-time procedure of Theorem 1, compute a table

of strong generators for G. Before the algorithm begins, form a

directed acyclic graph with k leaves, one for each of the generators,

and no edges. As the table is built, new products are formed. Each

time a product is formed, add a new node to the dag in such a way that

the sons of this node correspond to the factors of the product.

When the procedure terminates, a polynomial-size dag will have been

formed and every permutation represented by a node in the graph will

have an obvious polynomial-length straight-line program to compute it.

Since each permutation in G is the product of exactly n strong genera-

tors, each can be computed by a polynomial-length straight-line program.

D

firD-Thopi Applications

Let H be a subgroup of a permutation group G on {l,...,n). H is

normal in G if g- Hg = H for any g in G. The normal closure of H in G

is the smallest normal subgroup, K, of G that contains H. To illustrate

the usefulness of the sift and close operations we present a

polynomial-time algorithm to compute generators for the normal closure

of H in G.

- 10 -

Theorem 1: Let^H = <hlt,...hr> be a subgroup of G = <g,...,gk>. Gen-

erators for K, the normal closure of H in G, can be computed in polyno-

mial time.

Proof: Form a table T of strong generators for H using the algorithm of

Theorem 1. In order to get generators for K we will modify T until it

is a table of strong generators for K.

Since H is a subset of K, and K is normal in G, each product of the

form g:Ihg. where gi is a generator of G and h is a coset representa-

tive from T, should be in K. In order to achieve this we will take

every such product and sift it into T. The following program takes T

and augments it using the sift and close steps until T has the property

that for all h in T, and for all generators gi of G, the product g 1hg i

is expressible in canonical form using representatives of T.

while there is an x in T

not processed by this loop

-1do r ach gl' sift g I x g i)

close T
ii

The main loop is executed at most a polynomial number of times.

Since sifting and closing are polynomial-time operations, the whole pro-

gram runs in polynomial time.

Let Group(T) stand for the group generated by the permutations in

the table T. Certainly Group(T) contains H. A simple induction proves

that the T produced by the above algorithm contains only permutations

-1
that are generated from products of the form x or gi xgi where x is an

element of the ncrnnal closure of H in G. Therefore, if Group(T) is nor-

mal in G, then it is the smallest normal subgroup of G that contains H.

-A d -..

- 11 -

To see that Group(T) is normal in G, observe that for each genera-

tor gi of G, and each generator x of Group(T). the product g. Ixg i is in

Group(T). Let Xl*...,xm be some of the generators of Group(T). For

each generator gi of G, define x. to be gi x.' an element of Group(T).

If y = xlx 2 . . . xm, then

gi Ygi = gi Xl"'xmgi

1 -l
xlg i x2*'*xmgi

I I -l
X= ...'xmgi gi

I I

SXl...xm , an element of Group(T).

It is not hard to see from this that if g is any element of G and y is

any element of Group(T), then g- yg is an element of Group(T). There-

fore, Group(T) is the normal closure of H in G.

D

The derived subgroup C' of a group G is defined to be the group

generated by all products of the form a- b- ab, where ab are elements

of G. The group G is called solvable if the sequence

G D GI =...D G M D... terminates at I. Solvable groups play an impor-

tant role in the study of field extensions and ultimately relate to the

conditions under which a polynomial equation has a solution in radicals.

Using the normal closure algorithm we can get a polynomial-time test for

solvability.

Theorem A: Let G = <g,...,gk> be a group of permutations on {l,...,n}.

In polynomial time C can be tested for solvability.

Proof: It is a fact, which we don't prove here, that the derived sub-

group of G is equal to the normal closure in G of the subgroup generated

- 12 -

by all products of the form gi gj gig j . By forming all such products,

and computing the normal closure, the derived subgroup of G can be com-

puted in polynomial time.

If the sequence G : G' :... converges to I, then it does so within

a polynomial number of steps, since IG(i)/G(i+l)I k 2. If tfle sequence

doesn't converge to I, then for some polynomially *bounded i,

G(i) z G i l . The derived groups can be computed, and group equality

can be tested in polynomial time. Therefore, it can be determined, in

polynomial time. whether the sequence convcrges to I. Hence. G can be

tested for solvability in polynomial time.

0

The Inxsie Problem

In [4]. [5]. and [6] a relationship has been established between

certain graph isomorphism problems and the problem of computing genera-

tors for the intersection of two groups. Given an arbitrary pair of

groups, G=<gl,...,gk>, and H=<hl,...,hr> we do not know whether it is

possible to compute generators for their intersection quickly. There

are, however, certain situations in which the intersection can be found

in polynomial time.

nomiaUl Accessible _wers

The theorem proved in section 1 that computes coset representatives

for the quotient groups Gi/Gi+1 relies on four properties of the tower

G0 G .. Cr I for its polynomial running time. They are

- 13 -

(i)the number of groups is polynomial in n,

(ii)generators for Go are known.

(iii)tbe size of Gi/Gi+1 is bounded by a polynomial in n. and

(iv)there is a polynomial-time test to determine if a and b from

Gi are from the same coset of Gi/Gi I ,

Any tower that satisfies these four conditions we call Ijni&Ly.

a.cessibl. Using this definition we can restate the first theorem.

Theorem 5.: Let G 0 D ... Gr = I be a polynomially accessible tower of

groups. Coset representatives for the quotients Gi/Gi+ 1 for

,...,r-l can be determined in polynomial time.

This allows us to prove the main theorem of this section.

Theorem fl: Let G and H be any two polynomial-time recognizable groups.

Let S be a group for which generators are known. If S contains both G

and H, and there are two polynomially accessible towers, one from S

through G to I, and the other from S through H to I, then generators for

GnH can be found in polynomial time.

Proof: Let S = H D H H .. H Zi and

S = G G=_1 = I be the two towers. Con-

struct an s x q table whose ijth entry is the group GinH . Each entry

is a recognizable group since it is the intersection of recognizable

groups.

Both IIIj/H j+I and Gi/G i+I are bounded by some polynomial p(n).

Consider the two groups Ginll. and Gi nHj+1 . Let a and b be distinct

1 i

- 14-

coset representatives of X (GinHj)(Ginll +l). The elements a and b

are both from the group H.. Furthermore, if a-lb were an element of3

H *+, it would also be an element of GinHj+I Since a and b are from

different cosets of X it follows that a- b is not in H j+ . Therefore, a

and b are distinct coset representatives of H./Hj+l. Hence

I(GinHj)/(GinHj+l)I is less than or equal to IHj/Hlj+lI < p(n). Simi-

larly, I(GinHj)/(G i+inH) r p(n).

Let P be any path in the table beginning at S. moving only one row

down or one column across at a time, passing through GnH, and ending at

I. This path P describes a polynomially accessible tower of groups from

S through GnH to I.

For example, the tower S = HI
" I 2 R -.. R H G1=) n

• G p nH D GnH n Gp+l nH D .. D I can be used to get generators for

GnH in polynomial time.

A natural conclusion that we can draw from this theorem is that

many group intersection problems lie in NPncoNP. For example, this will

be the case whenever we know that G and H

(1) lie under a common group S, and

(2) there exists a chain of groups between S and G, and a chain

between S and H whose indices are polynomially bounded.

The reason computing GnH, for such G and H, is in NPncoNP is that one

can use nondeterminism to guess generators for S and for each of the

groups in the chains. Towers from G to I. and from. H to I can be

- 15 -

obtained by fiiing letters, and then the algorithm in Theorem 5 can be

used to verify the guesses.

Refereneps

[1) L. Babai. Isomorphism Testing and Symmetry of Graphs, unpublished
manusc, ,pt.

[2) L. Babai. Monte-Carlo Algorithms in Graph Isomorphism Testing* Sub-
mitted to Siam J. of Computing, (1979).

[3] Curran. M.P.J., Ti on Theory and CmuaionL, Academic
Press (1977).

[4) M. Furst, J. Hopcroft, E. Luks, A subexponential Algorithm for
Trivalent Graph Isomorphism, Proc. Eleventh Southeastern Conf. on
Graph Theory and Computing, to appear.

[5) C. Hoffmann, Testing Isomorphism of Cone Graphs, Proc. Twelfth
Annual ACM S)mposium on the Theory of Computing (1980).

[6) E. Luks, Isomorphism of Graphs of Bounded Valence Can Be Tested in

Polynomial Time, Proc. 21st FOCS (1980).

[7) C. Sims, Computational Prob1ms in Abstract Algeba. Ed. John
Leech, Pergamon Press (1970). pp. 1 76- 17 7 .

UNCIASSI FTIED
I. n I% (I faI I I

DOCUMENT CONTROL DATA . R & D
v ecU'jey elms .,trc tln Ot ftl,, hbod aF nNhf t nl -, drv.;. ,mnollon .,,.. enterd .0n M.i oryali repo 1.rt I - ,i. t' #ed)

1.o NA.,, N G A C TIV ri If arporato &utfhor) .14. RL&' T SLCURI TY CLAS$1FICAT ION

Cornell University
Department of Computer Science,' 6. GROUP
Ithaca, New York 14853

3 REPORT TITLE

POLYNOMIAL-TI E ALGORITIIS FOR PERMUTATION GROUPS

4. OCSCRIPTIVE NOTES (Type at report mad incIUsiv dates)

Technical Report #Ti 80-442
S. AUTnON I (Fatal n(Fi "me. middle nsil. oa11 l namo)

Merrick Furst
John llopcroft
Eugene Luks

* NEPORI .ATE l. TOTAL NO. OF PAGES b NO OF REFS

October 1980 15 7
$4. CONTRACT OR GRANT NO . ORIGINATORI REPORT NUMbERII

X00014-76-C-0018 ' TR 80-442,
6. PRlOJEc T NO.

C. 9b. OTH RN RE PORT NO($S (Any other nsumberm &t/,r imy be assignea
thls report)

d.

Distribution of manuscript is unlimited

II. SUPPILMENTARY NOTES I
1

. SPONSORING MILITARY ACTIVITY

Office of Naval Research

A permutation 7roup on n letters Tray always be represented by a small
set of gFr ratr;, even thougi its size may be exponential in n. ;, e show
that it is practical -o use such a representation since many problems such
as membersip testing, vqualitv testirg, and inclusion testing are decidable
in poI on i al t i Me. In addition, we de-ionstrate tho-t tile normal closure of
a suhi,.rou!, can le comput.d in pol,no;mial time, and that this procedure can
be used to test a grott! for solvability. We also describe an approach to
computin'. the ntercsectioi, of two groups. The procedures and techniques
have w ide a7p 1icah i it. and have recently been used to improve many graph
isonorphism al,-orithms.

DD '°N"V%.14 7 3 'AU I

SIM 010|•807-6810 SCVuatlV CauslscaifIttoa

- IS e(:uf&IV (s.t-dl ,.

Id. LINK A LINK S LINK C
KEY WOR S - , .,

ROLE Wr ROLE WT ROLE WT

algorithms

complexity

permutation groups

graph isomorphism.

f Fl ORM - - - -DD .__v ..1473 ,,,
(PAGE" 2) , " " Cl io ai-a|ase teion

~I

