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Abstract

A permutation group on n letters may always be represented by a
emall set of generators, even though its size may be exponential in n. '
We show that it is practical to use such a representation since many
problems such as membership testing, equality testing, and inclusion

testirng are decidable in polynomial time. In addition, we demonstrate

that the normal closure of a subgroup can be computed in polynomial
time, and that this procedure can be used to test a group for solvabil-
ity. We also describe an approach to computing the intersection of two
groups. The procedures and techniques have wide applicuzbility and have

recently been used to improve many graph isoﬁorphism algorithms,
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Introduction

Let gys.ccs8, be permutations of the set {l,...,n}. The collection
of permutations expressible as finite compositions of these g; forms a
group; a group whose size may easily be exponential in n and k. For
example, take the set Sn of all n! permutations. It can be generated by
just two permutations, a cyclic shift of the n letters, and'? transposi-
tion of the letters 1 and 2. In fact, every subgroup G of §, can be

represented succinctly by 0(log|Gl) generators.

It is natural to asks, from a computational perspective, whether
using such a short representation of such a large collection is practi-
cal. More to the point, is it possible to answer basic questions about
a group G that is defined by a list of generators? For example, can
unembership be tested? can the si;e be determined? can two groups be
tested for equality? can one be shown to include the other? We provide
positive answers to each of these questions in the form of polynomial-
time algorithms, Classical algorithms to solve these problems have been
known to computational group theorists fo; som2 time, but without accu-

rate analyses of running times [3,7].

Permutation groups, depending upon how they are represeanted, either
have polynomial-time membership tests, or they don't. Those that do we
call polynomial-time recognizable. Any group represented by generators
is polynomial~time recognizablz. The automorphism group of a graph is
also polynomial-time recognizable, even if generators for it are unk-
nown, since testing whether a permutation is an automorphism is easy.
As an important corollary we will prove that given generators for a

group G, generators for any polynomial-time recognizable subgroup with
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small index can’ be found in polynomial time.

Using these techniques, in [4] L. Babai's probabilistic
polynomial-time isomorphism test for graphs of bounded color multipli-
city [2] was improved to deterministic polynomial time, C. HSffmann's
probabilistic O(nC1°gn) isomorphism test for cone graphs was improved to
deterministic 0(a!°8") time, and a subexponential algorithm for
trivalent graph isomorphism was described. In these proceedings E. Luks
[6] shows that the last two problems are decidable in detemministic
polynomial time. Many other problems of permutation groups seem to have
polynomial-time solutions. We give two examples, an algorithm for com-
puting the normal closure of a subgroup, and an algoritlm to test a
group for solvability. In addition, we describe an approach to the

problem of computing group intersections.

Preliminari

A pemutation group on {lse..on} is a collection of 1-1 maps from
{lseeesn} onto itself that forms a group under composition. Let G be a
group. The order of G, |G|, is the number of permutations in G. Let H
be a subgroup of G, written G > H. The quotient symbol G/H stands for
the collection of cosets of H in G, i.e., the collection of equivalence
classes of elements of G in which x =y if and only if x-ly is in H.
From Lagrange's theorem we know that every coset of G/H has the same
size and, therefore, |G| = |G/H| |H|. The size of G/H is called the

index of H in G.

1f gyreeerg, are peruutations, then the group <g1.....gk>. gen-
erated by the 8i» is the group of all permutations formed by products of
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the g;° We use the symbol I to mean the unique group generated by the

identity permutation.
Iesting Membership and Determining the Order of a Group

Let G be a group of permutations on {l,...sn} generated by
goeeerBye There is a descending chain of subgroups,
G = Go DG D DG = I, from G to the iéentity group, in which G; is
the suégroup of G fixing lseeesi. Consider the quotients

Gi/Gi+1’ for i=0,.0450-1. The group G can be expressed as

or, G (GO/GI)(GI/GZ)"‘(Gn-l/cn)’

Tuerefore, any element g in G can be written in the form
g = apay**ea, s where a; is an element of Gi/Gi+1‘ Intuitively this
says that any permutation in G can be tealize& as a permutation that
moves 1 to the correct place, followed by a permutation that fixes 1 and
moves 2 io the eorrect place. fo}lowed by a permutation that fixes 1 and
2 and moves 3 to the correct place, etc. The collection of elements in

Gi/G i=0seeesn-1, are called strong generators for G. Our first

i1’
theorem yieclds an algorithm, like the one proposed by Sims [7], that
computes coset representativec for each of the quotients im polynomial

time.

Theorem 1l: Let G be a group generated by gyseesoBye Let Gi be the sub-
group of G fixing letters l,...,i. Coset representatives for Gi/Gi+1’

i=0sseesn=-1 can be determined in polynomial time.

Proof: The maximum value that lGi/Gi+ll can have is n since cosets only

-
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differ by where they map the letter it+l. We will comstruct a table T
with n rows, labelled 0 to n-l, and n columns, labelles 1 to n, whose
ith row is a set of right coset representatives for Gi/Gi+1' The table
will be organized in such a way that the permmutation in the i,jth posi-
tion fixes letters l,...si-1 and maps letter i to position j: Thus the

entries in T will only lie on or above the diagonal.

When we are finished, the table should have the property that g is
in G if and only if g can be expressed as agay*rra _g» where a; is a
member of the ith row. This we will call the canonical representation

of g.

To start, initialize T with the diagonal elements equal to the
identity and all others empty. The procedure sift(x), defined below,
modifies the table by inserting at most one new coset representative in

such a way that x can be written in canonical form.

sift(x):
i+ 0
while (i # n-1 and
there is a y in row i such that
y and x map i+l to the same letter)
_do
i« i_i 1
X+y x
if x is not a member if row i
then insert x in row i

As an example of how sift works, suppose the table for the tower

Go > G1 > 62 > G3 = I at some point looks like Figure l.

(Co=) l—1 16 + l_a_ | G, + | S G~

(6=) 1116, + | 16 + oI 67

(=) I—L (6 + | ey + |

. Figure 1




Consider the call sift(b) for some b in Go but not in Gl' 1f a-lb

is in Gl' and a-lb is not in Gz. then after the call sift(b) the table

would look like Figure 2. 1In this table b is expressible in canonical

form as a(a-lb)l.

Figure 2

At this point we make a key observation: all of the coset represen-—

tatives have been found if and only if
(1) each generator can be written in canonical form, and

(2) each product of a pair of representatives in the table can be

written in canonical form.

Since we will only sift elements from G we need only verify that
when (1) and (2) are satisfied any g in G can be written in the canoni-
cal form. Let g be an element of G. Write g as a product of generators
and write each gemnerator in canonical form. If this product is not in

canonical form, use (2) to rewrite it.

By using (2) we can take an adjacent pair of representatives X,y in

the string representing g and, if x comes from a higher numbered row

than y, rewrite Xy in canonical form. This has the effect of moving an
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element from a lower numbered row past an element of a higher numbered
row to the left in the string representing g. Moving all the row 0
representatives to the left, then all the row 1 representatives, and so
on, we can pﬁt the string in canonical form,. It.is important .to note
here that writing xy in canonical form does not require the imtroduction

of any elements from lower numbered rows than the one y comes from.
The whole algorithm can be described as
Step 1. Sift all the generators.

Step 2. Close the table such that the product xy, for every pair

(2,y) in the table, can be writtem in canonical form.

To perform Step 2 simply run through all pairs (x,y) from the table
and sift their product. The number of coset representatives in the
table is at most n2. The number of calls to sift is at most (n2)(n?)

and each call to sift takes roughly nz time. Therefore, the running

time is 0(n6). a polynomial in n.

Once the coset representatives have been found, testing membership
and computing tpe size of G is not hard. To determine if x is an ele-
ment of G, run sift with argument x. If x can be written in canonical
form without the introduction of new elements into the table, then x has
can be written as a product of gemerators. If x cannot be written in
canonical form, then x is not in G. The order of G is the product of

the sizes of Gi/ci+l‘

The group G = <gpreeergy > contains H = <hjsecesh > if and only if

.
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each hi is a member of G. Two groups are equal if and only if each con-
tains the other. Therefore, the polynomial-time membership test gives

polynomial-time inclusion and equality tests for permutation groups.

The following important corollary to Theorem 1 is used by E. Luks

[6] in his polynomiai-time, bounded~valence graph isomorphism test.

Corollary l: Let G be a permutation group on {l,ses,n} éenerated by
Bysesesgye Let H be a polynomial-time recognizable subgroup of G, whose
index in G is at most a polynomial in n. Generators for H can be found

in polynomial time.

Proof: The sequence of groups G2 H > Hy 2 e+¢ > o= I, where H, is the
subgroup of H that fixes the letters l,...si» can be used just as the
sequence G 2 G) > e+ 2 G was used in Theorem l, with two changes. The
first is that row 0 may have a polynomial number of entries instead of
at most n. The second is that to test whether two elements X and y of G
are in different cosets of G/H, the permutation x-ly has to be tested

for membership in H.

Straight-Line Prograns

By a straight line program we mean a sequence of instructionms

hl bee o.hm in which

hjhk wi.th jlk < i. or

gj- vhere gj is a generator.

Not every permutation x in G can necessarily be expressed by a

o iy RN i - i it o S G P
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polynomial-length word in the 8;» however, our next theorem states that

every x can be expressed as the result of a short straight-line program.

Iheorem 2: Let G = <gjseeesg > be a group of permutations on {lyeaesnle

There is a polynomial p such that each permutation x in G can be com-

puted by a straight-line program hjseessh = X, where m < p(n).

Prxoof: Using the polynomial-~time procedure of Theorem 1, combute a table
of strong generators for G. Before the algorithm begins, form a
directed acyclic graph with k leaves, ome for each of the generators,
and no edges. As the table is built, new products are formed. Each
time a product is formed, add a new node to the dag in such a way that

the sons of this node correspond to the factors of the product.

When the procedure terminates, a polynomial-size dag will have been
formed and every permutation represented by a node in the graph will
have an obvious polynomial-length straight-line program to compute it.
Since each permutation in G is the product of exactly n strong genera-

tors, each can be computed by a polynomial-length straight~line program.

0
Group-Theoretic Applications

Let H be a subgroup of a permutation group G on {ls...sn}. H is
Dormal in G if g-lﬂg =H for any g in G. The pnormal g¢losure of H in G
is the smallest normal subgroup, K, of G that contains H. To illustrate
the wuscfulness of the sift and close operations we present a
polynomial-time algorithm to compute generators for the normal closure

of H in G.
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Theorem 3: Let 'H = <hl""'ht> be a subgroup of G = <g1.....gk>. Gen-
erators for K, the normal closure of H in G, can be computed in polyno-

mial time.

Proof: Form a table T of strong generators for H using the algorithm of

Theorem 1. In order to get generators for K we will modify T until it

is a table of strong generators for K.

Since H is a subset of K, and K is normal in G, each product of the
form gzlhgi. where 8; is a generator of G and h is a coset representa-
tive from T, should be in K. 1In order to achieve this we will take
every such product and sift it into T. The following program takes T
and augments it using the sift and close steps until T has the property
that for all h in T, and for all generators g; of G, the product g-ilhgi
is expressible in canonical form using representatives of T.

while there is an x in T
not processed by this loop

do -1
for each g.: sift(g. xg.)

1 1 1
close T

The mwain loop is executed at most a polynomial number of times.

Since sifting and closing are polynomial-time operations, the whole pro-

gram runs in polynomial time.

Let Group(T) stand for the group generated by the permutations in
the table T. Certainly Group(T) contains H. A simple induction proves
that the T produced by the above algorithm contains only permutations
that are generated from products of the form x or g-i'lxgi where x is an
element of the ncrmal closure of H in G. Therefore, if Group(T) is nor-

mal in G, then it is the smallest normal subgroup of G that contains H.
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To see that Group(T) is normal in G, observe that for each genera-
tor g, of G, and each generator x of Group(T), the product g;lxgi is in
Group(T). Let Xy seeesXx  be some of the generators of Group(T). For
each generator 8 of G, define x} to be gzlxjgi. an element of Group(T).

LN

If y = X XgeeeXys then

-1 !
8i YBj T Bj Xpccc¥p8j

' -1
T X8 ¥ ¥pBy
1 LI |

Xpott*mBi B
1 )
X)e+X s an element of Group(T).

1

It is not hard to see from this that if g is any element of G and y is
any element of Group(T), then g-lyg is an element of Group(T). There-

fore, Group(T) is the normal closure of H in G.

The derived subgroup G' of a group G 'is defined to be the group

generated by all products of the form a-lb-lab. where a,b are elements
of G. The group G is "called solyable if the sequence
G D G' Deeed G(i)D--- terminates at I. Solvable groups play an impor-
tant role in the study of field extensions and ultimately relate to the
conditions under which a polynomial equation has a solution in radicals.

Using the normal closure algorithm we can get a polynomial-time test for

solvability.

Theorem 4: Let G = <gs+e+98,> be a group of permutations on {lyeaasnl}e

In polynomial time G can be tested for solvability.

Proof: It is a fact, which we don't prove here, that the derived sub=-

group of G is equal to the normal closure in G of the subgroup generated




- 12 -

-1 -1 .
i gj gigj. By forming all such products,

and computing the normal closure, the derived subgroup of G can be com-

by all products of the form g

puted in polynomial time.

If the sequence G 2> G' De++ converges to I, then it does so within
a polynomial number of steps, since IG(i)/G(i+I)I 2 2. If the sequence
doesn't converge to I, then for some polynomially pbounded i,
G(i) = G(i+1). The derived groups can be computed, and group equality

can be tested in polynomial time. Therefore, it can be determined, in

polynomial time, whether the sequence converges to I. Hence, G can be

tested for solvability in polynomial time.

In [4], [5], and [6] a relationship has been established between
certain graph isomorphism problems and the problem of computing genera-
tors for the intersection of two groups. Given an arbitrary pair of
groups, G=<g;ses.»g,>» and H=<h1.....hr> we do not know whether it is
possible to compute generators for their intersection quickly. There
are, however, certain situations in which the intersection can be found

in polynomial time.

The theorem proved in section 1 that computes coset representatives
for the quotient groups Gi/Gi+l relies on four properties of the tower

Gy @ ¢** 2 G, =1 for its polynomial running time. They are
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( i)the number of groups is polynomial in n,
( ii)generators for Gy are known,

(iii)the size of Gi/Gi+1 is bounded by a polynomial in n, and

(N

( iv)there is a polynomial-time test to determine if a and b from

G; are from the same coset of Gi/G

i+l*
Any tower that satisfies these four conditions we call polynomizlly

accessible. Using this definition we can restate the first theorem.

Theorem 5: Let Go D ees D Gr = 1 be a polynomially accessible tower of
groups. Coset representatives for the quotients Gi/Gi+1’ for

i¥0yeeesr-1, can be determined in polynomial time.
This allows us to prove the main theorem of this section.

Iheorem f: Let G and H be any two polynomial-time recognizable groups. v

Let S be a group for which generators are known. If S contains both G
and H, and there are two polynomially accessible towers, one from S
through G to I, and the other from § through H to I, then generators for

GnH can be found in polynomial time,

Proof: Let §=Hy> ese > B, =H=2H el ;=1 and

rtl

S = G0 D ese D Gp =G0 G D vee DG =1 be the two towers, Con-

p+l q-1
struct an s x q table whose i,jth entry is the group GinHj‘ Each entry
is 8 recognizable group since it is the intersection of recognizable

groups.

Both ’"j/Hj+1' and ,Gi/ci+1| are bounded by some polynomial p(n).

Consider the two groups Ginllj and Ginﬂj+l' Let a and b be distinct

D T T
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coset representatives of X = (Ginﬂj)/(cinﬂj+1). The elements a and b
are both from the group Hj' Furthermore, if a-lb vere an element of
Hj+1’ it would also be an element of GinHj+1‘ Since a and b are from
different cosets of X it follows that a-lb is not in Hj+1' Therefore, a

and b are distinct coset representatives of Hj/H Hence

e
l(cinHj)/(GinHj+1)| is less than or equal to IHj/Hj+ll < p(n). Simi-

larly, I(GinHj)/(Gi+1nHj)l < p(n).

Let P be any path in the table beginning at S, moving only one row
down or one column across at a time, passing through GnH, and ending at
I. This path P describes a polynomially accessible tower of groups from

S through GnH to I.

For example, the tower S > Hl > Hy 2 eee > Ho> GlnH ]

see D Gan > GnH o G NH 2 eee 51 can be uvsed to get generators for

ptl
GnH in polynomial time.

A natural conclusion that we can draw from this theorem is that
many group intersection problems lie in NPncoNP. For example, this will

be the case whenever we know that G and H

(1) 1lie under a common group S, and

(2) there exists a chain of groups between S and G, and a chain

between S and H whose indices are polynomially bounded.

The reason computing GnH, for such G and H, is in NPncoNP is that one
can use nondeterminism to guess generators for S and for each of the

groups in the chains, Towers from G to I, and from H to I can be

TN

oy
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obtained by fixing letters, and then the algorithm in Theorem 5 can be

used to verify the guesses.
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