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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement can be converted to metric (SI)

units as follows:

Multiply By To Obtain
cubic feet per second 0.02831685 cubic metres per second
Fahrenheit degrees 5/9 Celsius degrees or Kelvins#*
feet 0.3048 metres ;
feet per second 0.3048 metres per second

pounds (mass) per cubic foot  0.01601846  grams per cubic centimetre
1
square feet 0.09290304  square metres |

square feet per second 0.09290304 square metres per second f

| * To obtain Celsius (C) temperature readings from Fahrenheit (F) read-
; ings, use the following formula: C = (5/9)(F - 32). To obtain
Kelvin (K) readings, use: K = (5/9)}(F - 32) + 273.15.




A REVIEW OF NUMERICAL RESERVOIR
HYDRODYNAMIC MODELING

PART I: INTRODUCTION

Reservoir Stratvification and Its Importance

1. As the population of the United States has increased over the
past few decades, there has been a corresponding increase in the demand
on water supplies. To help meet this demand, numerous impounding reser-
voirs have been constructed. The impoundment or damming of a flowing
stream can significantly affect the guality of the water. This can hap-
pen as a result of the direct increase in travel time required for water
to traverse the distance from the headwater of the stream to the dam as
well as the effect that stratification plays in determining the quality
of the water released from the reservoir. The relationship between
density variations and quality parameters in the reservoir is a direct
result of the influence of stratification on the movement and mixing of
water.

2. Stratification or density variations in a reservoir can occur
as a result of solute concentrations, suspended solids concentrations,
or temperature variations as a result of surface heat exchange. Surface
heat exchange is a function of both short- and longwave radiation as

well as surface conduction, evaporation, and precipitation. In the

remainder of this report, the term "stratification” will refer to density
variations due to thermal effects.

3. At the beginning of spring, a reservoir is essentially homoge- »
neous. However, as the weather warms, the water near the surface also ’
warms due to an exchange of heat from the atmosphere to the water sur-
face. The warmer water near the surface is then mixed downward, primarily i
by wind action and diurnal cooling. By late summer, the reservoir will

attain maximum stratification (Figure 1). A warm upper layer (epilimnion)

of water resides over the cold deeper layer {(hypolimnion) with a zone
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Figure 1. Regions associated with thermal
stratification

between the two (metalimnion) in which a larre density rradient exists.
As the weather cools during the fall, the surface temperature decreases,
resulting in denser water at the surface and a correspondings convective
overturning. This mixing eventually results in an isotherr.al water boedy
that remains isothermal through the winter, ecxcept durin, reriods of ice
cover. Such a cyclic variation of temperature is demon:strated by the

seasonal temperature profiles presented in Figure 2.

Density Currents

. The variation of the fluid density in a stratified reoerviir
gives rise to what are known as internal density currentc or otrat 77004
flow. Such flow refers to motions invelving fluid masses of *he ure '

phase. A heavier liquid flowing beneath a liyrhter liquid ~r o Yeavier
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Figure 2. Temperature profiles of the west
basin of Horn Lake, B. C., during 1960
(taken from Slotta et al. 1969)

gas moving under a lighter gas will be subject to gravitational effects
that depend upon the differences between the two densities. Such flows
can be extremely important. Slotta et al. (1969) discusses an example
of a density current in the Watts Bar reservoir of the Tennessee Valley
Authority (TVA) system in which a coldwater density flow moves over

13 miles* upstream into the warmer waters of one of the arms of the

* A table of factors for converting U. S. customary units of mesasure-
ment to metric (SI) units is presented on page L.




reservoir. This bottom density current flows past a sewer cutlet ac
well as the outfall from a large paper mill. At ~re time, sews; e and
mill waste were discharged into the coldwater current and carried up~
stream to the intake of a water plant. The situastion :.z since Leen
corrected by use of a variable level cutfall fcor the seware and mill
waste. The internal mections in reservoirs due to temperature variaticns
or perhaps due to the inflow of sediment-laden streams 7lus the unler-
standing and control of salinity intrusion in tidal estuari=: are =rmone
the most challenging of present-day problems dealine witn stratificd

flow.

Relationship of Water Quality tc Hydrodynamics

5. The primary objective of a prediction c¢f stratified flow in
reservoirs is to enable scientists to compute *emperature distribution
and water transports insofar as they affect varicus water quality
parameters. While the process of heat tran.fer in toeodies of water is
nothing new, the prediction cf the resultings multidimensiocnal flow
phenomena in a reservoir fer varying stream inruts as well as dam 3is-
charges from varying levels is extremely difficult.

©. A substance {either chemical ¢r biclegical) disperses through
a reservcir by convection and turbulent diffusion. In addition, the
substance is alsc acted upcn by varicus chemical, Yiclogical, and phys
cal rrocesses. An understanding of both the dispersicn and the chenlcal
and biclogical processes is essential in any predicticon ¢f water quality,
which is the ultimate goal to be sought, althcugh not the -~cal of this
study. It should be clear then that a problem of such sccpe calle for
a cooperative effort of a wide variety of scientific discirlines ranyg-
ing from meteorology, hydrolcegy, and hydrodynamics tc chenistry and

biclogy.

Hydrodynamic Predictive Technijues

7. In an attempt to predict the hydrodynamics of a reserveir, one




or perhaps & combination of three approaches may be taken--field
investigations, physical models, and mathematical or numerical models.
Field investigetions may reveal what presently occurs in a water sys-
tem, but cannot predict what will result from changes due to new inputs
to the system. 1In addition, field investigations are usually relatively
expensive. Depending upon their complexity, e.g., large models of

river basins, estuaries, and bays, physical models can require signifi-
cant investments of capital, long construction times, and long test
periods. However, physical models of reservoirs to address problems
such as near-field inflow selective withdrawal and pumpback character-
istics of specific outlet structures and geometries are far less expen-
sive to construct and operate. Depending upon approximaticns made to
the governing equations of motion and the solution technique employed

to solve the equations, numerical models can often provide relatively
low cost and highly flexible mcdels. However, it should be remembered
that, as with many physical models, numerical models must be calibrated
and verified before confidence can be placed in results obtained from
them, Data from both field studies and physical model tests are used to
assess the reasonableness of numerical predictions and to aid in the
further development of mathematical descriptions of observed physical
processes. However, the steady advances in computer technology over
the past two decades (Table 1) indicate the potential for even greater
economical use of more widely applicable numerical models in the future.
In a practical sense, a combination of the most desirable features of
both physical and numerical models will probably continue to provide the

best approach for solving most hydrodynamic problems.

Types of Numerical Models

8. Numerical hydrclynamic models can differ widely, depending
upon such things as the soluticn technique applied to the governing
differential equations representing the physical processes, the assump-
tions made in the derivation of the governing equations, whether the

phenomena are steady or time-varying, and the spatial dimensionality
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considered, with perhaps the spatial dimensionality being the most
commonly used delineator.

9. One-, two-, and fully three-dimensional numerical models that
provide for the simultaneous solution of the coupled turbulent velocity
field and the temperature field, subject to varying boundary conditions,
exist and are applicable in varying degrees to the problem of predicting
stratified reservoir hydrodynamics for use in develcping water quality
rredicticns. Perhaps the earliest work in which computations for the
fluid density and the flow were ccupled was the work of Welch et al.
(1966) in the development cof the two-dimensicnal Marker and Cell ccde
commonly referred to as MAC. Paralleling the development of MAC and
the MAC-related ccdes, e.g., Chan and Street's (1970) SUMMAC, Slctta
et al.'s (1969) NUMAC, etc., have been a host of models that might be
described as control volume models. With this method, a reservoir is
divided into a number of horizontal layers extending cover its breadth
and length. Homcgeneity is then assumed in each layer. The result is
a one-dimensional model with variations allowed only in the vertical.
Governing differential equaticns are obtained by applying mass, momentum,
and heat balances for the contrcl layers. Inflow and cutflow boundaries
can be included quite easily in Such models. Parker et al. (1975) re-
viewed such one-dimensional reservoir models and concluded that such
models could be applied to larger, deep reservoirs where horizontal flow
has minimal impact on the vertical density structure. The primary ad-
vantage of sucl a model is its ability to resolve long-term or seasonal
temperature profiles economically. However, it must be noted that such
one-dimensional mcdels are not applicable to the problem with which this
study is concerned--predicting multidimensional flow fields within
stratified reservoirs for quality predictions.

10. Both two~ and three-dimensional hydrodynamic models are dis-
cussed in detail in succeeding sections. Some of the models investi-
gated, such as the two-dimensional models of Edinger and Buchak {1979),
Waldrop and Farmer (1976}, and Roberts and Street (1975), are directly
applicable to reservoirs, although in varying degrees; while others,

such as the two-dimensional depth-averaged models of Leendertse (1967),

11
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Masch et al. (1969), and Reid and Bodine (1968}, have no applicability
to the modeling of internal flows in stratified reservoirs other than
perhaps in the numerical techniques employed.

11. Three-dimensional hydrodynamic models have only recently
been developed to the state where application to complex geometries with
reasonable resolution for short simulation periods appears possible;
however, the cost is still prohibitive for simulations over long periods
of time. Thus, it appears that if one is only interested in the steady-
state flow and temperature field resulting from situations such as a
discharge of warm water from a power plant, three-dimensional modeling
appears feasibie., However, if the interest lies in computing reservoir
hydrodynamics over a stratification cycle, i.e., several months, new
developments in solution techniques and the availability of larger and

faster computers must be realized before such modeling becomes practical.

Purpose and Scope

12. The need for a predictive capability--numerical models in
the area of stratified reservoir hydrodynamics--has been firmly es-
tablished. The purpose of the study described herein then is to select
the most applicable existing models and to provide recommendations for
additional developmental work needed to meet that need. Because of the
nature of the problem to be addressed, selected models must have the
capability of handling free surface variable density flows that are
time-dependent. PARTS II and III present a detailed discussion of the
theoretical basis and corresponding numerical techniques that are common
to all numerical hydrodynamic models. Three-dimensional hydrodynanic
models are discussed in PART IV, and two-dimensional hydrodynamic models
are discussed in PART V. 1In addition to an investigation of the theo-
retical limitations of various models, a limited attempt at analyzing
the actual performance of several models has been made. This was accom-
plished through model applications to a coldwater underflow in the U, &,
Army Engineer Waterways Experiment Station (WES) Hydraulics laboratory's

teneral Reservoir Hydrodynamics (GRH) flume. These results are presented




in PART VI. Finally, conclusions of this study and recommendations for
additional developmental work needed to provide the Corps of Engineers

with computer models with the potential to provide a predictive capabil-
ity in the area of reservoir hydrodynamics in an accurate and economical

fashion are presented in PART VII.

13
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PART I1: MATHEMATICAL DISCUSSIONS

Basic Equations and Approximations

13. The Navier-Utokes equations express the conservation of mass
and momentum of a flow field and are the basic governing equations for
the soluticn of any fluid dynamics problem. These equations written in

tensor notation are¥*

3p ﬁoul
inuity: =+ ——= =1

Continuit "t Yo (1)

i

RIS dMepu,u,) 3
Momentum: - + \pulgj = :3;-+ o - e Q.pu, + —1LL )
Momentum: —= % . LT et x, )
where
¢ = water density

t = time

and where

TiJ

represents

tinuum approach.

tenscor notation for velocity

tensor nctation of spatial cocordinate
acceleration of gravity

cyclic tensor

Coriolis parameter

laminar stress tensor

molecular eddy viscosity

Kronecker delta

du, u 5 dly
1, - = L5
" 9x axi 3" 3x, 1}

}

the viscous molecular stress arising as a result of the con-

It will be recalled from tensor theory that repeated

* For convenience, symbols are listed and defined in the Notation

(Appendix C).

14
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indices imply a summation and also that Eijk in the Coriolis term is

the cyclic tensor defined as

Eijk =1, for an even permutation of 1ijk
= -1 , for an odd permutation of 1ijk

0 , otherwise

For example, 5123 = 5231 = 5312 = 1 , whereas, 5321 = 6213 = 6132 = -1
and the Kronecker delta 6ij is defined as
Gij =1, 1if 1=}

0 , otherwvise

In addition to the above equations, a conservation of energy equation
must also be written for fluid flow problems with thermal effects. With
the assumption of a constant specific heat and with the neglection of
viscous dissipative effects, one can write the energy equation as the

following transport equation for temperature T :

aT
alD, . —
Energy: - + a(Tui) = < ljéﬁj) + sources - sinks (3)
SNETEY: 3t Bx, Dx,
where D, is equal to the diffusivity coefficient. This equation

ij

states that the temperature can change as a result of advection by the
flow field, molecular diffusion, and the actions of any sources and
sinks of heat. As a matter of fact, this same equation applies to the
transport of any constituent @ , where @ would replace T 1in the
equation and appropriate sources and sinks and boundary conditions
would be prescribed. For example, in the numerical modeling of the
hydrodynamics of an estuary, a similar transport equation for the salin-
ity would be required.

14. One additional equation remains to be written in order to

close the system. An equation of state expressing the density as a

15
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function of the temperature and pressure (and salinity in estuarine

modeling) must be employed:

Equation of State: p = p(T,P) (L)

With the closure of the system, there exist six equations to be solved
for the six unknowns~-density p ; three velccity components u , v ,
w ; pressure P ; and temperature T .

Time averaging for turbulent flow

15. The above equations written with molecular values of viscosity
and diffusivity are only applicable in a practical sense tc laminar
flow fields where the flow and thermodynamic variables do not exhibit
random irregulér fluctuations in time. However, mest fluids in moticn
exhibit such fluctuations and are referred to as "turbulent flcws."

16. Following Reynolds, the approach normally taken tc make the
equations applicable to turbulent flows is to assume that the dependent
variables are composed of an average time-varying component plus a small
randomly varying component about the average value. This is illustrated

below.

Thus. one writes

ui(xaysZQt) = Ei(xa.\'azyt) + u:‘l(xaysz,t)

16




where
t+at /2
G& = %? ui(x,y,z,t) dt
t-4t /2
and
t+AL /2
%{ u{(x,y,z,t) dt = 0
t=At/2
ui = deviation between instantaneous velocity and time-averaged
velocity
E; = time-averaged velocity
At = time step

With all the dependent variables written in the form above, substitution
into Equations 1, 2, and 3 and then integration over the time increment
At prcduces the same form of the previous equations, but now written
with the time-averaged components as the dependent variables, plus the

additional terms

t+AL /2
1 -
At uiu‘j dt
t-At /2
and
t+AL/2
i 'yt
At T'u' dt
t-At/2
where T' = deviation between instantaneous and time-averaged temperature .

17. The first term is referred to as the turbulent Reynolds
stress, since the high frequency turbulent fluctuations manifest them-
selves as viscous stresses acting on the average component of flow.
"'sing Boussinesq's concept of eddy viscosity, the first term is

written as

+AL/D — —
Lt ot/ au, A,
Iy u'u‘ dt = Li) Y + ;;* (no summation over i)
& o N 1 1]
t=At/2 .
17




In analogy with the laminar flow case, cij is referred to as the
turbulent or eddy viscosity tensor.

18. 1In a similar fashion, the second term above, which arises
from the time averaging of the temperature equation, is commonly

written as

t+4t/2 _
i "y = T
at Thuy at = A o,
t=At/2
where A is called the "eddy diffusivity tensor" and T is the time-

ij
averaged temperature.
19. The equations commonly applied to turbulent flew prceblems

can now be written as

3 35;1
Continuity: SE-+ Sxi =0 (5)
3pu, a(p—uiajl 5 -
Momentum: ey + % = - 3;—-+ ogi
J i

_ _ (6)

_ 3 du, du,

- 2655 yPyy o, €13 %, * 2%,

=  3Tu, =
Energy: -g%+ L= '2% (Aij g%-)+ 2 sources - 2 sinks (7)
i J

Equation of State: p = o(T,P) (8)

where %
; time-averaged water density |

= |
P = time-averaged pressure

and where the assumption has been made that the eddy coefficients are

much larger than the molecular values; i.e.,

18




€ >> U

i3
Ry > Dy

Boussinesq approximation

20. Subject to the assumptions made in their derivation, the time-
averaged governing equations (Equaticns 5-8) are applicable %o any turbtnu-
lent fluid dynamics problem. An approximation usually made when applying
the equations to hydrodynamic problems was first pointed out by
Boussinesq. When variations of temperature are small (At < 1;0°C),
variations in density will be less than one percent. For example,
Edinger and Buchak's expression relating the density of water to the
water's temperature results in only a 0.15 percent increase in the den-
sity when decreasing the temperature from 20°C to 10°C. These small
variations can be ignored in general with one exception. The variability
of density in the gravitational term cannot be ignored. Hence, p is
treated as a constant in all places except the body force term.

21. With the Boussinesqg approximation, the continuity and momentum

equations become

3ui
Continuity: P 0 (9)
i
du, a(u,u,) = -
i) ) P
Momentum: + = -+ =g
—_ 3t BxJ po Bxi Py 1

(10)

du, du
— 1 3 < i J)
- 2e, ., + — — e, \7—7 +
i3k 3% by axy [1j\axy  xg
where po is a reference water density. The energy equation and the

equation of state are not affected.

Conservative versus nonconservative

22. When the momentum equations are written as Equaticn 10, they

are known as the conservative form of the equations. If the convective
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term is expanded and Equation 9 is substituted, Equation 10 reduces to

du. u - -
i, - i 1 9P (o) . —
—=+u = - =—— 4+ (=) g. -2 .0
ot J ij Py axi po i ijk juk
(11)
du. du
+Lsa €:5\3 ‘“'a1
OO X‘j id Xj Xi

which is referred to as the nonconservative form. Analytically, the

two forms are equivalent. However, in numerical solutions of flow prcb-
lems, they are not. As discussed by Leendertse (1967), a finite differ-
ence representation of Equation 11 dces not conserve momentum of the
flow field; whereas, the identical numerical representation of Egqua-
tion 10 does. As a result, most of the more recent numerical hydro-
dynamic models use the conservative form as opposed to the nonconserva-
tive form employed in many of the earlier models.

23. An interesting point is that in the laminar form of the
momentum equations, i.e., Equation 2, when the assumption of incompres-
sibility is made, researchers have historically neglected theat portion
of the viscous term that contains the condition of incompressibility,
i.e., % u ;;% 6ij , even though they may have retained the conservative

J
form of the convective terms. In the turbtulent form cf the equaticns,
there is no such inconsistency, since all molecular viscous terms are

neglected due to the assumption that the eddy viscosity is much larger

than the molecular viscosity. Therefore, the condition cf incompressi-
du,
bility is not invoked in dropping the % u §§L 517 term in the turbulent
'j Ae

form of the equations.

Convective versus guasi-static

2L, An assumption that is usually made in hydrodynamic models is
that vertical accelerations are negligible when ccmpared te the gravita-
tional acceleration. Neglecting visccus terms also, the vertical momen-

tum equation reduces to
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%}zi= og (12)
where 2z 1is the vertical spatial cocrdinate and ic positive downward.
Equation 12, of course, states that the pressure is hydrostatic.

25. When cconsidering the coupling of the thermodynamics and the
hydrodynamics of a water body, a distincticn must be made between con-
vective and, as labeled by Simons {1973), "quasi-static'’ models. Con-
vective models retain the complete vertical momentum equation and can
simulate in full detail the convective overturning cf unstable water
masses, such as the upwelling of cells c¢f warm water or perhaps the
plunging of a ccldwater inflow. Quasi-static mcdels where the pressure
is hydrostatic eliminate vertical accelerations due to buocyancy effects,
which precludes the explicit treatment of free ccnvection associated
with unstable stratification. Convective overturnings can only be
handled as mixing along the vertical axis.

26. A ccmmonly used technique is that of invoking a large verti-
cal diffusion of heat to counteract such instabilities. This results in
the removal of any unstable stratification the moment it occurs. Such
a technique is implemented by checking the vertical temperature profile
at each horizontal lccation after each computation. If at any pcint
lighter water lies below denser water, the profile is adjusted without
affecting the total heat content of the column.

27. As will be discussed in more detail in connection with the
numerical solution of the governing equations, models with the hydre-
static assumption require far less computer time than the fully convec-
tive models.

Spatial averaging

28. A solution of Equations 7, 8, 9, and either 10 or 11 consti-
tutes a fully time-varying, three-dimensional model with the only assump-
tion being the Boussinesq approximation. Such models do currently exist
and will be discussed in a later section. However, most hydrodynamic
modelers emplcy a spatial-averaging techhique similar to the turbulent

time-averaging technique to yield either one-~ or two-dimensional models.
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As previcusly noted, the present state of the art is such that threc-
dimensional models are nct practical for lcne-term zimalations of the
hydrodynamics of a reserveir.

29. The basic assumpticon in the spatial averaging of the three-~
dimensional equations is that the dependent variables can te representei
by an average value over one or more of the spatial ccerdinates jplus

some small random deviation; e.g., the velccity wculd be written as

where
X, +Ax. /2
i i
o~ 1 —
u, = —— u, dx.
i Axi i 1
X, ~0x./2
i i
+
X Axi/2
1 T -
B, u; ax; =0
xi—Axi/2
and
Si = time- and space-averaged velccity

Axi = spatial step

u! = deviation between time-averaged velocity and time- and
space-averaged velocity
Inan x , ¥y , z ccordinate system (with x referring tc the lonri-
tudinal; vy , the lateral; and = , the vertical), if i =7 , the Iite-
cration is over the width and a width-avercged medel resul*s. However,
if 1 = 3 , the integration is taken over the depth and a depth-averayed
model will result. Many depth-averaged models have been ileveloped since
Leendertse's (1967) work; whereas, laterally averaged models have only
been developed over the past five years or so. If the integration is
performed over the complete cross secticn. a one-dimensional model with
variations allowed only in the longitudinal direction results. Such

mcdels are not considered in this study.

30. As was dorne in the time-averaging of the instantanecus
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equaticns, expressions such as Equation 13 are substituted into the
turbulent time-averuped euquations to yield a set of equations with the
time-averased and srvatially averaged compenents of the flow and thermc-—

dynamic variatles as dejendent variables plus the additicnal terms

x. +h0x. /2
i i
l ——
X ulu! dx,
b, i73 i
x.-Ax./2
i i
and
x.+Ax, /2
i i
1 T
8 T ui dx
x.-Ax, /2
i i

As in the time-averaging case, these terms are normally approximated by

X, +0x./2
i i = =
du, du
1 P b = 1
- ulul dx, = !, |— +
Axi i75 i i3 \ox, axi
X, “bx, /2 J
i i
and
xi+Axi/2 )
L T'u! dx, = A!, oL
Ax ., i i iJ Bxi

1
xi-Axi/Q

where ei, and Ai. are referred to as "eddy dispersion coefficients"
by Holley {1969) to distinguish them from the turbulent eddy diffusicn
coefficients arising from the time averaging, and % is the time-
averaged and spatially averaged temperature.

31. The resulting spatially averaged equations take different
forms, depending upon whether the averaging is performed over the depth

or the width. Since depth-averaged models are not applicable to the
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hydredynamic modeling of strutified reservoirs, only the laterally

averaged equations, with B denoted as the width, are presented below:

aﬁiB
Continuity: o ) (1k4)
i
u, B du.u,B =
Momentum: + - - i 3PB
—_— at ax 9 X,
J o i
ce Sa.  ou
R S S SR S c
* * o 3x Brlj 3x * X, (15)
(¢} o J J i
= aTu,B x
sfe T 5 . of . )
Energy: 5t B = B, (Bbij BXJ) + }E sources - }E sinks (16)

(17)

TN
—
=31

~

Equaticn cf State: ¢ =

where the Coriclis terms have been neglected, the water is assumed in-

compressible, and

where
P = time-averared and spatially averared press
0 = time-averaged and spatially averaped water dencity
.., = sum of ¢ e and
ij kg * ke > #nd W
cij = sum of eddy diffusivities due tc time- and sratial averaping

32. A general discussion of both time averagring and spatial aver-
aring of the equations is presented in Ward and Espey (1971), witl addi-
tional details of depth averaging given by Leendertse (1967) and lateral
averaging by Blumberg (1975) and Edinger and Ruchak (1079).

Vorticity-stream function notation

33. The governing equations written with the velccity and the
pressure as the dependent variables are often referred te as the primi-

tive form of the equations. An approach that is often used in twe-

dimensional modeling in the field of aercdynamics, although very rarely




- ~

in hydrodynamics, is to write the equations with the stream function and
the vorticity as the dependent variables. With the vorticity defined as

>
the curl of the velocity, i.e., w =V x e s 1t can easily be seen that

~

if the velocity field is two-dimensional, e.g., 5 = ui + v} , where

i, J and . are unit vectors, the vorticity contains only one compo-
nent, namely c; . Therefore, instead of being required to solve two
momentum equations for the velocities u and v , a single equation for
t and a Poisson equaticn for the stream function are solved. In other
words, the number of equations to be sclved has in essence been reduced
by one. However, ore must make additional computations to obtain the
velocity field frem tlhe computed stream function. Still, when the
vorticity-stream function approach is applicable, it is probably faster.
Multiple outlets at a dam would, however, prohibit its use.

Subgrid-scale motion

34, The eddy coefficients discussed above enter the equaticns due
to first of all the time averaging {diffusion coefficients) of the equa- |
tions and then as a result of spatial averaging (dispersion coefficients)
to remove one or more of the independent spatial coordinates from the
equations. A similar coefficient arises as a result of averaging the
governing equations over the numerical grid upon which a numerical solu-
tion is sought. The numerical model cannot resolve small-scale local
circulation patterns or eddies unless the eddies extend over an area
covering several grid points. Thus, as discussed by Deardorff (1970),
an averaging operator is applied to the governing equations, with aver-
aging typically being over the grid volume of the numerical calculation
to filter out the subgrid scale (SGS) motions. Explicit calculations
are then made for the filtered variables after assumptions are made
about the SGS Reynolds stresses that arise from the averaging process.
All of this, of course, is completely analogous tc the manner in which
turbulent and dispersive Reynolds stresses arose in the previously
discussed time and spatial =~ -aging.

35. The total stress then is the sum of the molecular viscous

stress, the diffusive Reynolds stress, the dispersive Reynolds stress,
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and the SGS Reyneolds stress. In practice, all of these are lumped into
one stress term with a single tensor eddy viscosity coefficient. Simi-
larly, the total diffusivity in the transport equation for temperature
is the sum of four compcnents that are lumped together with a single
tensor eddy diffusivity coefficient.

36. In turbulent flow, these coefficients are not constant as in

laminar flow, but depend on the flow itself, i.e., on the processes
generating the turbulence. The determinaticn of these eddy coefficients
in terms of the mean flcw variables is a major problem in hydreodynamic
modeling.

37. Up to this point, the eddy viscosity and diffusivity coeffi-
cients have been treated as second order tenscrs. Some researchers
actually allow for the tensor behavior as a functicn of the rate of
strain tensor of the mean flow field; however, the more ccmmon approach
is to neglect all off-diagonal terms and, furthermore, to consider the
two components in the horizontal plane tc be equal. Some medelers allow
for a variation of these coefficients, but others take a rather simplis-
tic approach and treat them as constants over the computational field.

38. As noted by Lick (1976), the vertical eddy coefficients should
vary throughout the depth. Causes for their variations are related tc

the following:

a. OStability of the water column.

b. Action of the wind on the surface.

c. Vertical shear in currents due to horizontal pressure
gradients.

d. Presence of internal waves.

e. Effect of bottom irregularities and friction on currents.

One often finds the vertical coefficients related to the stability of

the water column as a function of the Richardson number Ri
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where 2z 1s the vertical coordinate and u 1is the mean horizontal
flow velocity.

39. Horizontal coefficients are generally much greater than verti-
cal coefficients. Based upon various surface dye experiments, primarily
in the oceans, it has been found that the horizontal coefficients are
prcportional to the scale  of the turbulence raised to approximately the

L/3 power.

Lo. Lick indicates that in nonstratified flow, the eddy diffusiv-
ity is approximately equal to the eddy viscosity, i.e., the Reynoclds
analogy holds. Various forms that have been employed for thz2se coeffi-

cients will be presented later in discussions on individual models.

Boundary Conditions

41. As noted by Roache (1972), the thing that makes a particular
fluid flow problem unique are the boundary conditions that are prescribed. '-
Conditions at the surface of the reservoir, at solid boundaries, and at N
both inflow and outflow boundaries must be specified in order to obtain
a2 solution of the governing equations previously presented.

Surface conditions

k2. In modeling the hydrodynamics of a water body, one of two
approaches is taken in the treatment of the water surface. The surface
is either treated as a free surface or as a rigid 1id. In either case,
the heat flux at the surface must be specified as a boundary condition
on the temperature.

43. If the surface is treated as free, the assumption is made i
that a water particle on the surface remains there, i.e., the surface t

is a streamline. This then leads to the following kinematic condition:

klq 3 8 _ L=
&t vV 5y w=20 (18) :
for the computation of the water surface elevation, § . In addition,

the internal stresses in the fluid must equal those applied externally

to the surface. Considering a vertical-longitudinal two-dimensional (2-D)
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reservoir, for laminar flow the normal internal stress at the surface

T is
n

l 2 3u Ju ow 2 ow
= - + — —_— —_— —_—
Tn P 2u nx X nxnz (32 * 3x) + nz az]

and the tangetial internal stress at the surtace T, can be expressed as

. du _ dw 323&22)
Ty = 0,028 (5 ~ “z) et Bx) (nz - Py

where, as illustrated in Figure 3, nx and n,are the x and =2

S S S
Figure 3. Orientation of unit normal to the surface

components, respectively, of the outward unit normal vector to the sur-
face. The above expressions have been derived from the stress force
t given by

- ~ Py
t=n+T

~

-y
where, as noted. n is the unit normal to the surface and T 1is the

laminar stress tensor for incompressible flow, given by

Ju, au
= - SN SR
TiJ Pdij + u(axj + QXi)

Now the externally applied stress will be a normal stress as a result of
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atmospheric pressure and a tangential stress imparted by the wind;

therefore, the boundary conditions become

du 3w (au v 2 2\ _
enen M\ox "2/ T P\a t ax) (gz - nx)'- Tyrs

and
- 2 du du 3w 2 dw
-Pa =-P 2“[%x = T nxnz(az * ax) + 1, 821
where
TWIKD = wind shear stress
P = atmospheric pressure

a
Thus, in & strict application of the stress boundary condition, the

orientation of the surface, i.e., nx and n, , would have to be kncwn.

Since for a large water body the surface is at least locally flat, the

assumption of a flat surface is normally made so that

The stress boundary conditions then reduce to

u oW\ _
u(az * %)= T

L, 1In addition, if the nhydrostatic pressure assumption is made,
i.e., vertical accelerations are neglected, the above conditions take
the form below that is commenly found in the literature, where the
molecular viscosity u has been replaced by its turbulent eddy

counterpart, ev .

at free surface

#
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45, When the surface is treated as a ripid 1id, it becemes in
essence a solid bocundary, and the normal component cof the velccity must
be zero. In additicn, the pressure can nc longer be preccrived at the
surface, but rather must be computed. The pressure boundary ccnditicon
now takes the form of a derivative boundary cendition, i.c., a Neumnmur
condition as cpposed tc the Dirichlet conditicen fer the free surface
case. The primary reascon for assuming that the surface is a rigid 1lid
is connected with stability problems enccuntered in the numerical sclu-
tion of the governing equations and will be discussed later. Tt should
be obvious that with the rigid 1id approximaticon, the effect on the
internal flow of the piling up of water cannct bve accounted for.
Modelers such as Liggett (1970) and Lick (1976) have employed the >ncept
in the development of lake circulation mcdels. However, others such as
Eraslan* and Edinger*¥ feel that the rigid 1id approximaticn asscciated
with a uniform water surface assumption is not realistic in the develcp-
ment of mathematical models for environmental flow ccnditicns and that '
the water surface elevation must be considered as an integral part cf '
the general soluticn of the hydrodynamic preblem.

Sclid beundaries

L6, For viscous fluids, the fluid velccity is actually always
zerc at a sclid boundary; i.e., beth the tangential as well as the ncrmal
components are zero. This becundary conditicn is referred to as & "ne-
slip condition.”" Although in theory such a cenditien must always held
at a solid boundary, cften in hydrodynamic modeling a slip conditien is
employed. This condition is implemented by setting the component cf the
velocity ncormal to the wall equal to zero but net the tangential; i.e.,
the flow slides freely along the solid wall. Theoretically, this implies
that the flow is inviscid. Therefore, proper boundary ccnditions fer
a slip wall are that the normal velocity is zero as well as that the

vorticity is zero at the solid wall, since vorticity is created in

*  Personal communication, May 1979, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.

#%  Personal communication, May 1979, J. E. Edinger, J. E. Edinger
Associates, Inc., Wayne, Penn.




vicreeous rerions, The tanpential component of velcecity is then deter-
mined from the zero-vorticity conditicn. Hewever, it does nct appear
that this is the appreoach usuully taken in hydredyvnamic medeling. 1In
most cases, ar will be discursed later, a stagrered grid is used in
cbhtaining 4 numerical sclutieon such that the tangential compenent of tie
velocity iv net defined at the wall., Instead, its value must lbe speci-
fied cutside the wall. The usuul procedure taken by most hydrodyvnamic
medelers for slip walls is to set this value equal to its value inside
the flield.

47. The majer reanscn for using slip beundary conditicns is
aprarently related to the fact that a relatively large grid spacing is
normally required in hydroedynamic moedeling for economic reasons. Wit
such a grid spacing near a sclid tecundary, if nc-slip conditicns are
aprlied, tnhe tocundary layver effect extends farther intc the field *lan
it dces in reality.

L8. 1In additicn to conditicns being impesed on the flow field i
sclid boundaries, information atcut the heat transfer must alsc te
specified. Either wall temperatures or the heat flux may be prescrited.
In all reservoir- cr lake-type mcdeling that has been investifated, the
solid boundaries are assumed to be adiabatic, and thus the heat flux
through the boundary is set te zerco.

Open boundaries

La. Oren beundaries are exactly what the name implies, i.e.,
boundaries that are cpen such that fluid may either encer cr leave tihe
field within which a scluticn is scught. Such boundaries are known arc
either "inflow" or "cutflow" boundaries.

50. At forced open boundaries (inflows are always forced), either

flow, i.e., velocities, or water surface elevations {assuming a free cur-

face), must be prescribed as a function of time along with the tempera-
ture. Theoretically, rather than expressing either the flow or surface
elevations, one could specify a relationship between the two. uch a
boundary condition, lnown as a rating curve, is often prescribed at the
downstream end of one-dimensional unsteady flow models of riverflows.

51. At outflow boundaries that are free rather than forced, e.g.,
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free flow from an opening at a dam, one cannot prescribe the flow
directly since it obvicusly is dependent upon conditions within the
computaticnal field. In the temperature computations, an cutflow bcund-
ary is always considered free. A boundary ccndition that allows phenom-
ena generated in the domain of interest to pass through the boundary
without undergoing significant distortion and without influencing the
interior solution is needed. Since a physical law tc prescribe such a
boundary condition dces not exist, come kind of extrapoclation from the
intericr must be used. The mest common methods used are either a
Ssommerfeld radiation condition or perhars one-sided differences when
employing finite differences to ottain numerical scluticns.

2

. The dispersion characteristics in cne dimensicen of the wavecs

needed tc¢ prescribe the Scmmerfeld radiaticn conditicon are known ar
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PART III: NUMERICAL DISCUSSIONS

53. The governing equations of fluid motion are nonlinear partial
differential equations, which in a strict mathematical sense, are classi-
fied as being of the parabolic type. However, outside the boundary
layer the equations exhibit a strong hyperbolic or wave character due to
the convective terms and, thus, are often considered as being of the
hyperbolic type. In any case, because of their nonlinearity, analytical

Jlutions do not generally exist and one must resort to numerical methods
to obtain an approximation of the continuous solution of the differential
equations. Such methods include the use of finite differences and finite

elements.

Finite Element Method (FEM)

5h. In the finite element approach, the field is divided into
finite elements, and the solution is approximated by a chosen function on
each element. This function contains free parameters, which are evalu-
ated by requiring the function and perhaps certain of ites derivatives to
equal the solution and its derivatives at certain points on the element.
if the partial Jdifferential eguations can be expressed in terms 7 inte-
sral variational princijles, tne variational intewrals over euct e enmernt
are evaluated analytically froum tne chosen approximation functions ou
each ~lement. The intexrais sver each indivilual element are iern cwmmed
over 4.l tne ecements Lo produce the varlational integral over the entire
Sledt. Thiv resalt contalns the unknown values of G oolat oo anr per-

nape osome o te deravatives at oal.s tnhe polnts o dased above Qo tne feter-

mination of Lo saramelers oan the approximat ine Cwotione . e varia-

clonas interral 0 tren mindmized in terms of there point vl e Cle
cLutionoand derivatives jnvodveds 18 the part o 1ierent lal e o L
anticet e oextresae G terme of variational jrincipies, ten U et
Soweiwnted rend biagys P erRin maat te dred, Here s o0
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functions and the partial differential equations are evaluated on each
element. This produces a set of simultaneous algebraic equation to be
solved for the values of the solution and perhaps some of ites derivatives
at certain points on the elements.

55. The finite element approach is best suited to partial differ-
ential systems that can be expressed in terms of a variational principle.
In this case, the boundary conditions can be incorporated naturally by
means of Lagrange multipliers. For more general systems, particularly
nonlinear systems that are not expressible in terms of variational prin-
ciples, the {inite element approach must use the method of weighted
residuals (Galerkin) whereby a functional form of the soluti~n in each
element 1s assumed and integral moments of the partial differential equa-
tions are satisfied over the field as noted above. With this rrocedure,
the tartial differential egquations themselve: are not actually satisfied.
Houndary conditions are incorporated in the aocuamed functional form of
the soulution in the elements adjacent to the boundaries.

56, 'The finite element method has enjoyed its oreatest success in

J

the rield of solid mechanics where for the mout part variazticnal rather

than Jdifference methols are used., As Fix (1479 notes:
"The reason for this is partly phycicul.  The ejui-
“ivns of elasticity cun be put intoe o variationus
form and engineers nave found this te be the most
phycleally natural cetting to formulate approximatlions.

noadidition, the varistional -aypsroxirations--finite
elemento--have olher properties that ure of rreat
valuae tnopractice.  Cemplilcatel boundaries can easily
v treated dn o tnls osettinesy singslaritiecc In the solu-
+

it
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Lne arrroximation; and, in
terl it Wit dicher order nethols with increased re-
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putine time o regquaires for su h time-depengent protien.. 1t micsht be
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matrices that result from using differences. A common rebuttal by finite
element modelers to this criticism is that since implicitness is central
to the finite element approximation, implicit time differencing should

be employed to yield an unconditionally stable system and thus, the use
of larger time steps compensates for the large computing times required
to invert the dense coefficient matrices each time step. However, it
should be remembered that in addition to stability considerations, one
must first of all be concerned with the accuracy of the solution. When
using finite differences, it can be shown that as the computational time
step becomes increasing larger than that allowed by the Courant condi-

tion for gravity waves, e.g., in one dimension

Atc < Ax
Ygh
where
AtC = time step restricted by Courant condition
h = water depth

a corresponding incresse in the number of spatial points per wavelength
must occur to retain the same level of accuracy in the amplitude and
phase of the computed wave. Leendertse {1967) indicates that from a
practical standpoint, generally the time step shculd not be greater than
3-5 times Atc in the difference scheme he employs to compute vertically
averaged flows. Abbott (1979) and his colleagues at the Danish Hydraulic
Institute (DHI) Phave arrived at a similar conclusion for the difference
scheme that they employ. Edinger and Buchak (1979) have indicated that
for the laterally averaged case, the time step should not exceed 3-5

times the At computed from the internal wave condition given by

EXZ
p

where

Ap = change in water density
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Such an analysis of the error between the computed and analytic wave in
the FEM has not been found in the literature,

58. 1In the de-elopment of a new model, an often stated disadvarn-
tage of the finite element method is that the FORTRAN coding is much
more cumbersorie than with finite differences. Of course, if the moiel
already exists, such a disadvantage is of no concern to the user unless
extensive modifications are required, in which case the cumberscmeness
of the coding migh* well become a major consideration in the model

selection.

Finite Difference Method (FDM)

59. The vast majority of the numerical hydrodynamic nodels,
whether they be one-, two-, or three-dimensional, empioy <he use of
finite differences to obtain solutions of <he governing equatlions of
fluid motion. In the finite difference method, the domain of the indepern-
dent variables is replaced by a finite set of points referred to as nes
or mesnh points. One then seeks to determine approximate valuss Tor i
dezired solutions at these points. The values at the mesh noinis are
required to satisfy difference equations that are usually ottalned L1y
replacing partial derivatives by partial differernce Juotients. The re-
sulting set of simultaneous algebraic equations 13 then sclved fur tne
values of the solution at the mesh pointa. I vhe boundaries 4o not
coincide with mesh points, then the finite 1ifference approach appriied
to the equations in a Cartesian coordinite srstem rejulrer interpolation
between mesi points to represent boundary conditlons.

60. However, through coordinate transformations, irresular tound-
aries can be accurately handled while =till makine uvce of the simrliciy

of finite differences to obtalin solutions. e

3t oseneral of cuaeh
transformations, which will be discussed i more detzil later in the »e-
port, is a method developed by Thompson et al. (1974, which renorates
curvilinear coordinates as the solution of two ellijtic partinl Jdifferer-
tial equations with Dirichlet boundary conditions, one cnordinate tein.-

specified ns constant on the boundaries, and a distribution of the olier

(%)
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specified along the boundaries. No restrictions are placed on the irreg-
ularity of the boundaries, and fields containing multiple bodies or
branches can be handled as easily as simple geometries. Regardless of
the shape and number of bodies and regardless of the spacing of coordi-
nate _ .ne3s, all numerical computations, both to generate the coordinate
system and t., subsequently solve the fluid flow equations, are done on

a rectangular grid with square mesh.

£.. Oince the boundary-fitted coordinate system has a coordinate
line coincident with all boundaries, all boundary conditions may be
expressed at grid points, and normal derivatives may be represented
using only finite differences between grid points on coordinate lines.
No interpolation is needed, even though the coordinate system is not
orthogonal at the boundary.

62. Linear transformations that allow for the physical dimensions
t0 be mapped between the values of O and 1 have been employed. For
example, as will be discussed later in PART IV, Licx (1976) maps the
vertical dimension in such a manner to represent bottom topographies
more accurately.

Discrete element concept

63. Eraslan employs a numerical technique that he labels "the

discrete element method." However from a conceptual standgoint, the

primary difference between the finite difference method as it is normally

applied and the discrete element method appears to be that the mathemati-

cal development of the discrete element method is based on employing the
control volume integral forms of the physical conservation principles;
whereas, the usual application of the finite difference method begins

with the continuum limit differential equations presented in PART IT.

6L4. Eraslan indicates that the application of the discrete element

method to the solution of environmental fluid mechanics problems is based

on the following procedure:

a. Divide the flow region into arbitrarily sized discrete
elements, preferably with geometrically simple (rectangu-
lar) enclosure surfaces except at the boundaries, such
that the finite number of discrete elements completely
spans the region.
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Integrate the volume and oiurfuace area integrals of the
physical conservation e justions without assuming uniform
values for the flow properties over the surface areac.
This produces a governings semidiscretized system of ordi-
nary differential eguations in time.

Apply proper interpolation techniques for determining
transportive values of the flow propertic; between dis-
crete elements.

Ie)
.

6%. As an example of the discrete element concept, consider the

one~-dimensional problem illustrated in Figure 4. leglecting frictional

DISCRETE ELEMENT

‘\\\\\\§£3££;_-—“—_’. i+ 172
O T T T T T
i-1/2 ]

i-1/4

Figure 4. One~dimensional discrete element

effects, the integral forms of the conservation of mass and momentum can

be written as

Continuity /]f dV ff rAldA=O (20)
Momentum: [fjvdv +[/ -r;dA=gf/ ? dA (21)
A
cv
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where
dVO = differential volume
cv = volume of discrete element
Acv = Area of discrete element
3 = velocity vector
dA = differential area
% = force vector

Now define

G = [f u dA = volumetric flow rate
Acv

Therefore, from Figure L

also,

5 3 _ i
oY fjf av, =57 (BxgA;) = Mx;B, 3=
Ccv

where Bi is the surface width and Hi is the surface elevation.
Therefore, the discrete element equation for the conservation of fluid

mass becomes

!

3t Ax By (Ci—l/Q - Gi+1/2) (22)

Considering the surface integral for the momentum flux over the cross

section Ai at the center of the element yields

ff \>r\>r *n dA = uiGi + Reynolds stress terms
A
cv

39




Neglecting the Reynolds stress terms, which arise due to writing the
velocity as the sum of a time-averaged and spatially averaged component
plus its time and spatial deviations, the integral form of the momentum

equation applied to one-half of the discrete element becomes

3

G,
i-1/4 2
ot axg Gio1/2%-1/2 ~ Giui)

’ fiZ [Ai‘l/2<hi—l/2 ) Hi—l/h) ) Ai(gi - Hi-l/h)] (23)

66. Equations 22 and 23 both take the appearance of finite differ-
ence equations in which the time derivative has not been replaced by
differences. It appears that from a practical consideration, the primary
difference between the discrete element method and the application of
finite differences to the differential equation centers around what nigh+t

be called "the conservation or geometrical properties,” as reflected

through the definition of the divergence of a variable. In the equations

S -
-/j ¢.ndA
A
cv

appear. Considering the element below,

of motion, flux terms such as

3

'
—— — =

32

and working with only the x direction, the flux integral above can be

evaluated as




-

]] 3+ nan= (s8), - (68)_
ACV

Now, if one employs Gauss's Divergence theorem, the flux integral can

be written as

ff i-ﬂdA=fff (Vv + 3) av
A [o]
cv cv

fir

>
(v - ¢)1AxiAi

where V - 3 is the divergence of ¢ . The two previous expressions

can be equated, and one can derive an expression for the divergence over
.th

the i element as

(v 3), = =2 Len), - (om)_)

Ax_A,
i1

or
2\ _ 1 (3(¢a)
(V : °)i Y ( ax )i (2b)

In the usual derivation of the differential form of the equations, the

divergence is written as
v.p=22 (25)

Equation 24 might be referred to as the "geometrically conservative"
form of the divergence; whereas, the normal definition as given by Equa-
tion 25 would be referred to as the '"geometrically nonconservative" form.

67. Note that physically the difference between the two forms is
that in the conservative form (Equation 24), the area through which the
flux of ¢ flows is that of the bounding faces through which the flux
actually occurs. In Equation 25, however, the influence of the respec-
tive areas on the flux through the boundaries is not allowed.

68. It appears that if the conservative form of the divergence is
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used in expanding the vector form of the governing dillerocortial equa-
tions, the finite difference method applied to those equations becomes
identical to the discrete element method if the same interpolation scheme
is used to provide values of the Jdependent variables at points where

they are not defined in the grid.

Finite difference spatial grids
69. The spatial grid in Cartesian coordinates most commonly used

by numerical hydrodynamic modelers appears to be one in which the water
surface elevation, temperature, and density are defined at the center of
a computational cell; whereas, the velocity components are defined on

the faces of the cell. Such a grid is illustrated below for a two-

dimensional problem.

/?M'T '

~—fie U " u

With such a grid, the normal component of the velocity at solid bounda-

ries can easily be set to zero if the boundary is assumed to lie along
cell faces, which is the usual assumption.

TO0. With such a grid one obviously will need values of variables
at points wheie they are not defined in order to numerically solve the
governing equations. One solution is to utilize more than cone grid,

with the variables defined such that a solution on one grid is used to

step the solution forward on another grid. As discussed by Simons
(1973), such a procedure can result in semj-independent soclutions on the
different grids. The numerical error assoniated with the use of more

than one grid is known as a "grid dispersion error." The approach

.

L2




normally taken to provide the variables at net points where they are not
computed is to perform an interpolation within the grid. Simons shows
that conservation requirements are satisfied if the unknown values are
approximated by simple linear interpolation.

Tl. A grid often used in aerodynamic flow modeling has all vari-
ables defined at the same point, i.e., at the cell center. Such a grid
(shown below) has been employed by Waldrop and Tatom (1976) in their

three-dimensional hydrcdynamic modeling work.

J+1/2
Lu,v,P, T.p
J #
J-1/2
1-1/2 1 1+112

T2. Still another grid is currently being employed by Thompson*

in the development of a model for use in selective withdrawal studies.

u,v
J+1/2
P.T,p
J
J-1/2
1-1/2 [ 1+1/2

®* Personal communication, April 1979, J. F. Thompson, Mississippi State
University, Mississippi State, Miss.
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In this grid, all velocity components are defined at the same point,
i.e., the cell corners; whereas, all thermodynamic variables are defined
at the cell center. Thompson indicates such a grid allows for a more
natural application of velocity and pressure boundary conditions in a
curvilinear coordinate system.

73. Most numerical finite difference hydrodynamic models employ a
constant grid size in each direction. However, models have been devel-
oped that allow for the size of the computational cell to vary over the
region within which flow computations are being made in order to increase
the resolution in certain areas. Examples are the 3-D models of Tatom
and Waldrop and Thompson's 2-D model that utilizes boundary-fitted coor-
dinates. As discussed by Roache (1972), there are two approaches to the
implementation of a variable computational mesh. One can merely solve
the given equations on a grid that has physically been constructed such
that the computational nodes are not evenly spaced, or one can transform
the equations and solve them in a transformed rectangular plane with
equal grid spacing, although the grid spacing is not egual over the phys-
ical region. Even though the two approaches might appear to be similar,
Roache indicates they are fundamentally different. When the untrans-
formed equations are differenced in the variable mesh, the result is a
deterioration of formal accuracy, but the transformed equations may be
differenced in a regular mesh with no deterioriation in the formal order
of truncation error relative to the transformed plane. Roache, there-
fore, states that the coordinate transformation approach, which can be
used for the purpose of aligning coovrdinates along physical boundaries
as well as increasing resolution in certain areas, is to be preferred.
As previously noted, Thompson's boundary-fitted coordinate technique
provides the most general such transformation that can be attained.

Time differencing

74L. As previously noted, time integration is performed by finite
differences even in the finite element method. Juch time differencinge
can basically be classified as either explicit or implicit. For either
type, one can construct first, second, or even hiygher order schemes,

although Kreiss (1975) indicates that second order schemes are to be

Lk
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preferred if one combines accuracy with considerations of economy and
simplicity. As an additional classification, one often finds time-
differencing schemes referred to as one- or two-step schemes.

T75. In order that these concepts may be better understood, con-

sider the following basic equation:

2
R, 0,28 (26)
at X 8)(2

76. If u 1is zero, this equation is the parabolic time~dependent
diffusion equation in which the dependent variable ¢ can change only
through the second order derivative dissipative term. If the diffusion
coefficient a 1is zero, the equation is a hyperbolic wave-type equation
in which ¢ can vary only through advection by the velocity u .

T7. Assuming that ¢ 1is continuous and possesses continuous

derivatives, a Taylor series expansion in time yields

2 .2
ot + At) = ¢(t) + At %% + A—;—?—% + o(At3) (27)
3t

thus, one can solve for 3¢/9t as

2
%% - 4(v ¥ Azg = o(t) , %E é—% + 0(at?)
ot

or

3 _ ¢(t + At) - ¢(t)
yal At + 0(at) (28)

This is called a "forward difference" representation of the time deriva-
tive and as indicated by the notation 0(At) is only first order.

Likewise, one can write the Taylor series as

2 .2
_ - .. 30 . atS 3% 3
o(t - 8t) = ¢(t) - ot 3 + 51— o2 + 0(At”) (29)
45




so that
3y Pty - Pl - .
LINEE AL 2Ly A {509
Jt At

which is known as u "backward Jdifference.’” Az with the forward 1iffer-

ence, such an expression is only a tirst order aohere. 1t cne subtracte

BEquation 09 from Equation ST, the following reoulte

Wt o+ - t - P
Jo_gt e A gt = 8 e (51)

This expression is referred to as a "centered difference" representation
and is a more accurate integration scheme as At-+0 , since it is of
second order in time.

78. Applying a forward differencins of the time derivative in

Equation 26 yields

n
2
o7t = o e at]-u 28 (32)
i X 2
X i

which is known as an "explicit time-integration scheme," since values at

the n + 1 time level can be computed directly from known values at

the previous time level n . In addition, such a scheme is labeled as

a one-step scheme, since only one sequence of computations is required.
79. Likewise, applying a backward differencing to the time

derivative yields

5 n+l

n+l _ n 3¢ I ¢

¢ T 4y *Atjiu gl o —5 (33)
ax N

which is labeled as an "implicit time-integration scheme," since values

.th

at the i spatial point on the n + 1 time level are dependent upon
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9% 9 _
Lt Ca =0 (37)

As previously illustrated, a centered time differencing yields

n+l n-1

2 3
3 _ 9 T -9 T 6739, Lo, 3
= (At”)
ot At 3 3

at
whe five time levels would be required for a centered difference repre-
sen.ation of the third order time derivative. However, through a sequence

of time and spatial differentiation of Equation 37, one can show that

3

2% _ .3 2% .
at> ax> ¥

thus, a third order time-differencing scheme of the basic equation could

be written as

n
3,.2 .3
PR St DU Y S eh/ NS i )
At Ax 3 Bx3

The only numerical hydrodynamic model found in the literature that is

of higher order than two in time is a vertically averaged model devel-
oped at the Danish Hydraulic Institute, which, according to Abbott (1979),
is "close" to third order.

Space differencing

83. As in the discussion on time differencing, either first,
second, or higher order differencing of spatial derivatives can be uti-
lized to create different order finite difference schemes. Once again,
Taylor series expansions in space yield the following expressions for

forward, backward, and centered differences of a spatial derivative: i

L9




tackwara:

Centered:

.nus, one can see that if a

and time, a scheme that is completely first order, i.:=.,

results. Likewize, the use

t o= — L
i C
L -
3 i el
A T
= - +
o o
3¢ i+l i-2 <
— = — + OlET
ax N

RN : .

forward diftference s used In LCLh Srace

Ol

<O
>
(a4
-
=
>
-

of center=d differences in votun cpace and

. . 2 2 .
time resuls in an  0{At7,8x") scheme.

2 A
S, As with centered

differencin: of time derivatives, the uase of

centered differencec Lo replace spatial derivatives can rosult in a com-

putational mode. This i3 illustrated ty considering the soiuticn of

where the analytic solution

af _
Ix 0

is f = sonstant . Thuc, similar to its

time counterpart, numerically the followin. scluticn can develop:
J 3

f POSSIBLE NUMERICAL SOLUTION
2T A A A A PO
AN AN
f 1 N NS N N\ L ANALYTIC SOLUTION
i 1
i-1 i it

85. A major problem
treatment of the nonlinear
generate higher harmonics,
a "nonlinear computational

this problem is not unique

associated with space differencing is the
advective terms. The nonlinear terms tend tc
which can result in what Fhillips (13959) called
instability." As noted by Roache (1972),

to nonlinear systems, but can occur whenever
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nonconstiant coefficients appear in the differential equation. An effec-
tive wethod to suppress hirher harmonics is to introduce eddy diffucion
or smeothinge.  Une scheme that tends to introduce artificial damping of
e Hicher harmonics without aprreciably affecting the long waves, i.e.,
the solution of interest, is the two-step Lax-Wendroff scheme which com-
binec Lax's forward-in-time and centered-in-space scheme as the first
step with a centered-in-tvine and centered-in-space scheme for the second
step.

56. The use of either forward or backward spatial difrerences to
reyresent the advective terms of the transport equation is closely re-
lated to tne characteristics of the hyperbolic equation. Consider the
case of o = 0 in Equation 26. The transport equation then states
that D¢/Dt = 0 along the characteristic direction given by dx/dt = u

Therefore, from tue illustration below

n
n ¢|
25 = u
dt
n-1
on—?
-1 i i+1
¢? must be equal to ¢2—l . If u 1is positive, the characteristic lies

as shown; whereas, if u 1s negative, it falls between i and i + 1

on the n -1 level. The major problem in determining ¢? is to deter-
mine ¢2_l . If linear interpolation is used between i and i -1 ,
the resulting expression for ¢? corresponds to the use of a forward-
in-time ar 1 sackward-in-space representation of the basic equation.
However, i: u 1is negative and a linear interpolation between i and

i + 1 1is employed, the resulting expression is equivalent to the use of
forward differences in the spatial derivative. If a linear interpolation
from 1 -1 to 1+ 1 1is used, centered differences result. In addi-
tion, one could use higher order interpolating schemes such as a qua-

dratic polynomial to interpolate between 1 -1, 1, and i + 1 which
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vields Leith's scheme (Roache 1972). This scheme is O(Atg, LxT), evern
though only two time levels appear in the difference equation. 1

be shown that this approach is equivalent to replacing tne second corder

time derivative in the series expansion by a second order spatial deriva-

tive, as previously discussed.

57. One-sided differences, i.e., the forward or btackward sci.mesn,
introduce an artificial dissipation into the solution similar to thie
case where o # 0 ; whereas, centered differences do not introduce thi.
dissipation. However, the one-sided differences preserve what iz lzbeled
by Roache (1972) as the "transportive property,”" which is not the cace
with centered differences. The transportive property ic relatel t=
whether the parameter ¢ 1is numerically advected solely in the direc-
tion of the flow, as theoretically it should be.

88. In the space differencing discussed above, only first or
second order schemes have been discussed. However, higher crder siatial '
schemes can be developed and have been utilized, in particular in thle
work of Abbott (1979). In the DHI models (Hinstrup 1977), Everett's
12-~-point interpolating polynomial in two dimensions is used to generate
a fourth order transport scheme that conserves mass, advects correctly
the center of mass, i.e., maintains the transportive property, has no
artificial dispersion {proportional <o 32¢/Bx2), and in addition con-
serves third and fourth moments of the distribution of ¢ . A disadvan-
tage of such higher order schemes that extend over several grid points
is the difficulty encountered near boundaries.

89. Holly and Preissman {1977) present a method of constructing
higher order schemes that utilize only two grid points. Their method
ce .. '~und the use of Hermitian interpclating polynomials rather
than interp.iating polynomials that extend over several net points.
Hermitian polynomials are constructed such that not only the function
but also derivatives of the function are required to satisfy known con-
ditions at only two points. Numerical schemes based on this concept are
referred to as "two-point higher order" methods to emphasize the fa-t
that by using function derivatives, one can obtain hisher order one-

dimensional schemes using information at only two points. 1In fact, the
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authors indicate that results from comparative studies show that the use
of derivatives to obtain a third degree interpolating polynomial is uore
accurate than one using a third or fourth degree polynomial based on
additional points.

90. Such a method, of course, requires both the dependent variable
and its space derivative as initial and boundary conditions. However,
through an example application, Holly and Preissman (1977) show that the
inconsistencies introduced between the dependent variable and its deriva-
tives as estimated from initial given values of the variable will have a
minor influence on the results. Althougn an extension of the method to
two dimensions is not presented, some preliminary computational results
are. Thne authors indicate that such an extension to two dimensions pre-
serves the favorable accuracy characteristics observed in one dimension.

Consistency, con-
vergence, and stability

91. A finite difference scheme (s sald to be consistent if when ‘
one expands the discrete system in Taylor's series form by retaining the
higher order terms, all the termus of the differential equation (with

possible additional terms) are senerated. In addition, in the limit as
the time and spatial steps =pproaczh zero independently, all of the addi-
tional terms must go to zero.

92. In order for a nuwmerical solution to be meaningful, it must
be a good approximation of the exact solution of the differential equa-
tions. Convergent finite difference schemes are those for which the
solution of the difference equations converges to the exact solution as
the size of time and spatial steps approach zero. The convergence of
finite difference solutions of the nonlinear equations governing fluid
motions cannot be proved analytically, and thus, one must resort to the
use of intuition or preferably a comparison of numerical results with
laboratory and/or field data to demonstrate that the numerical scheme
does indeed model the physical processes represented mathematically by
the governing differential equations.

93. In a rigorous, mathematical sense, a finite difference scheme

is stable if two solutions that are arbitrarily close to each other at a
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given time remain arbitrarily close for all time. In a practical sense,
one considers a particular scheme stable if the solutions do not grow
unbounded. For economic reasons, in the numerical calculation of space-
and time-dependent hydrodynamic problems, one desires to use as large a
space and time step as possible and still obtain the desired level of
accuracy and physical detail. However, in addition to these restric-
tions, the stability of the finite difference scheme dictates the size
of the integration difference steps that can be employed.

94, FExplicit finite difference schemes are conditionally stable;
i.e., stable computations will result so long as the space and time steps
satisfy what are known as "stability criteria.” In free surface hydro-
dynamic modeling, the most severe of these criteria is usually the

Courant condition on a gravity wave,

Ax
/eh

At <

which states that the time and spatial steps are restricted such that a
gravity wave will not propagate over more than one spatial step within
the prescribed time step. Additional stability criteria presented

below
At < BAx/u
At < AZ2/2A

At < Ax/ %Q gh
are related to the velocity of a fluid particle, the rate of diffusion,
and the speed of internal waves, respectively.
95. All or some of these restrictions may be eliminated by various
finite difference schemes. For example, fully implicit schemes can be
constructed that are unconditionally stable, at least in a linear sense;

whereas, mixed implicit-explicit schemes, such as that of Edinger and
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Buchak (1979), may be constructed to remove one or more of the more
severe criteria wiile continuing to be restricted by the less severe
ones. Each finite difference scheme has its own advantages and diffi-

culties, and which scheme is best often depends upon the particular

problem. For example, one may be able, from a stability standpoint, to
use an unlimited time step in an implicit scheme as opposed to perhiaps
a rather small time step in an explicit scheme. However, if the physi-
cal character of the vroblem, such as rapidly varying input boundary
conditions, forces tiie use of a« relatively small time integration step
in the implicit code, one may find that an explicit model is actually
more economical due to the simplicity of the solution teﬂﬁnique.

96. Stabllity of a finite difference scheme car be related to the
concept of artificial viscosity or diffusivity, whici has been previously
discussed. Using Hirt's method of analysis, as opposed to th= more elab-
orate von Neumann analysis in which the growth of a Fourier component is
investigated (see Hoache 1972), consider the stability of a forward-in-

time and centered-in-space representation of Equation 26:

ntl _ .n_udt /fnon Atoa (. n n n
L Ty (¢i+l ¢i-1> * oax (¢i+l - eey Y ¢)i-l> (38)

Replacing the discrete values above by a Taylor series expansion and

making use of the initial differential equation yields

2 2
%—%+u%=(a—u2At>§;—%+O(At) + 0(ax°) (39)

It can be seen that as At and Ax»*0 , the above equation reduces to

the original differential equation; therefore, the difference scheme is
consistent., However, it will not be stable unless the effective dissi=-
pative coefficient o - u2At/2 is greater than zero, since the physical

nature of such a coefficlent is to smear a disturbance. Thus, a nerative
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coefficient is a physical impossibility. The term —ueAt/Q is referred
to as the "negative artificial viscosity” or "diffusitivity" of the
scheme. One can now see why a forward time integration with centered
spatial derivatives will result in a completely unstable scheme when
applied to pure hyperbolic equations, i.e., « = O in Equation 26.

If backward differences (u > 0) are used to replace the spatial deriva-

tive, the effective dissipative coefficient becomes
2
a, =@ + uAx/2 - u“At/2
Therefore, one-sided differences for spatial derivatives increase the

effective dissipative coefficient, which results in a more stable,

although theoretically less accurate, scheme.
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t.0 2 IV:  THREE-DIMENSIONAL HYDRODYNAMIC MODELS

97. A relatively wide range of numerical three-dimensional hydro-
dynamic models currently exist. All that have been investigated utilize
finite differences to obtain numerical solutions of the governing equa-
tions and furthermore all employ explicit time differencing. The gen-
erel opinion in the past concerning the use of 3-D implicit schemes has
been that due to the extremely large matrices that have to be inverted
for a completely implicit model, such schemes would require excessive
computing time. In addition, apparently schemes such as Leendertse
(1967) employs in his two-dimensional work (alternating direction
implicit--ADI) have not been used for various reasons. First, such
schemes require all computational arrsys to be in the computer's fast
memory for efficient computation, which would put a considerable re-
straint on the array sizes of a three-dimensional model. In addition,
such schemes place restrictions on the formulation of the finite dif-
ference representation of various terms in the equations.

98. The time-dependent and variable density three~dimensional
models of Simons (1973), Lick (1976), Leendertse et al. (1973), Waldrop
and Tatom (1976), and Spraggs and Street (1975) are discussed in some
detail below. Other less general three-dimensional numerical hydro-
dynamic models exist, such as those of Gedney and Lick (1970), Liggett
{(1970), and Bonham-Carter et al. (1973). However, for the computation
of flows in stratified reservoirs, only those models that are time-

dependent and allow for a variable density are of interest.

Simons' 3-D Lake Model

99. The modeling of stratified fluid flow may be accomplished in
two ways: (a) a layered model in which the fluid is made up of discon-
tinuous layers within which all fluid properties such as density and
viscosity are uniform and (b) a continuous model in which the density
is varied continuously. Historically, in numerical models developed

by meteorologists and oceanographers, the three-dimensional model has
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been viewed as a superposition of layers of fluld separated ty mnaterinal
intertaces. The reason for this ic partly phyrical, since during cer-
tain periods a body of water may become so stratified that strong Jden-
sity discontinuities can exist. OUn the other hand, if the vertical
resolution of the model is sufficiently large, any type of stratifi-
cation can be handled by a straightforward tiree-dimensional finite
difference grid, i.e., a sequence of ripgid permeable horizontal levels.

100. Simons' (1973) model is a multilayered model, which employs
the principles and terminology of layered models while retaining the
capability of treating the layers as being separated by permeable
rigid interfaces (either horizontal or sloping) as well as treating the
interfaces in the usual layered manner as moving material surfaces. The
equations for the layered system are obtained by vertical integration of
the governing equations (written in the conservative form) over each
layer as opposed to applying the equations at given levels and replacing
the vertical derivatives by finite differences. The primary dependent
variables are the layer thickness or vertical velocity and the layer-
averaged horizontal velocity components as well as the temperature.

101. Simons invokes the Boussinesq approximation and assumes that
vertical accelerations arve nesli;iible; i.e., the pressure is hydrosta-
tic. With the assumption of the Bous:sinesq approximation, the equation
of mass continuity reduces to the incompressibility condition, which
implies that the vertical fluid motion is Jdirectly related to the diver-
gence of the horizontal tlow. With the hydrostatic pressure assumption
replacing the vertical mom~ntum equation, the vertical component of
velocity cannot be computed in the same manner as the two horizontal
components. Instead, the equation expressing incompressibility is
integrated over a layer to yield an equation whose primary purpose is
to compute water displacements from a given distribution of horizontal
velocities. From this equation, one can determine either the displace-
ment of a material surface or the vertical velocity of the fluid through
a rigid interface, if piven the appropriate boundary conditions at the
free surface, at the interfacr, and at the bottom. The computation

starts with the bottom layer and proceeds upward.

0




102. The equation of state is such that the density is assumed
to be a quadratic function of the temperature. An eddy coefficient
model is employed to approximate the exchange of energy between the
large-scale flow and the smaller turbulent eddies. It appears that
constant, but different, horizontal and vertical coefficients are
employed. Simons does indicate that the vertical eddy diffusi;ity
depends on the static stability 3p/3z of the water column, and he
allows it to attain very large values for unstable situations in order
to simulate the net effects of convective overturning.

103. The time integration scheme employed by Simons uses centered
differences, where the pressure gradient terms, the divergence terms,
the Coriolis terms, and the nonlinear terms are evaluated at a time step
centered between the old and new time, while the dissipative and diffu-
sion terms are evaluated at the o0ld time step. Centered differences are
also used to replace spatial derivatives, and thus, the finite differ-

2, Ax2) . Linear interpolation is used to

ence model is almost O0(At
provide values of variables at points where they are not defined.
10k. An interesting aspect of Simons' model is his use of two
different time steps. The surface and internal computations are de-
coupled such that a small time step governed by the Courant condition

is used to compute the water surface elevations; whereas, a much larger

time step governed by the speed of a fluid particle is used to compute
the internal flow and the temperature. This is accomplished as follows.
The layer-averaged equations are added to create a vertically averaged,

i.e., one-layer, model for gross fluid flows, which are then used to

drive the free surface. The layer-averaged equations then use the re-
sults of the vertically averaged model to produce the internal flow
field. Simons indicated that in Lake Ontario, with a grid mesh of 5 km,
the surface elevation and the vertically integrated flow were computed *
with a time step of the order of one minute, while the internal flow and

temperature were predicted with a time step of the order of 30 min.

Leendertse's 3-D Estuary Model

105. This variable density model (Leendertse 1973) has been
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developed for the computation of the hydrodynamics of estuaries and
coastal seas. Some of the assumptions and formulations are not directly

applicable to freshwater reserveoirs where density effects are due to

temperature variations rather than salinity; however, it is belleved

that such an extension would not be difficult.

106. The approach taken in the formulation of the eguations is
similar to Simons (1973) in that thne basic three-dimensional cquations
are integrated over a vertical layer to yield layer-averaged ejuations.
Unlike Simons, however, Leendertse's model does not allow movable mate-
rial interfaces. The water body is represented by rigid prermeable hori-
zontal surfaces with the thickness of each interior layer constant in

space and time, although the thickness of each layer is not necessarily

o

the same. The top layer that contains the surface is, of course, rep-
resented by a time-varying and spatially varying thickness.

107. The basic three~dimensional equations arc written in the
conservative form to insure that mass, momentum, ete., are neither
created nor destroyed by the computational scheme. Before the layer

integration is performed, the Boussinesq approximation is assumed and

the pressure is assumed to be hydrostatic. Therefore, as in Simons'
model, the vertical component of the fluid velocity must be computed
from the layer-averaged condition of incompressibility.

108. Approximate eddy viscosity models that consider only the
| diagonal components of the viscosity tensor are employed to represent
| the subgrid-scale motions. The momentum and mess dicspersion coeffi-
cients are assumed to be constant in the horizontal dimensions of the

flow, although they can differ in the two directicns. The vertical

exchange coefficients are calculated with a mcre scophisticated molel
that takes into account the vertical velocity, the concentration -ra-
dient, and the stability of the flow accorliinys to the Hirhardoson nwriier.

109. Since the model was developed for an cctuanrine or coastal ﬂ
environment, the equation of state relate: the fluid density to the
salinity. If the model were o be applied to o fresiwater onv.oronment,

a new equation of state relating the density to temperature wouli, of

course, need to be substituted. In addition, surface heat exchan-e
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would have to be accounted for through the surface boundary condition.

110. At the boundaries of the water body to be computed, all
diffusion coefficients are set to zero, as are the velocities perpen-
dicular to the boundary. 1In this manner, no mass fluxes or diffusive
transports of salt result. At the surface, the boundary stress due to
the wind is computed from & quadratic law. A similar quadratic expres-
sion employing the Chezy coefficient is used to represent the dissipa-
tion of momentum at the bottom through the bottom shear stress. When
employing the layer-averaged approach, interfacial shear stress terms
show up in the resulting equations for the layer-averaged variables.

As for the boundary stress specifications, a quadratic relationship
between the interlayer stresses and the velocity differences of adjacent
layers is assumed applicable.

111. The spatial grid used in the finite difference formulation
is similar to that employed by Leendertse (1967) in his two-dimensional
work where velocities are defined on the faces of a cell. However, the
water surface elevations, which are determined from an equation obtained
by summing the layer-averaged incompressibility equation over the water
column, are defined at the corners of the top layer of cells rather than
at the cell center as in the 2-D model. Pressure, density, and salinity
are defined at cell centers.

112. Centered differences are used for both time and spatial
integrations. Therefore, the resulting finite difference scheme is
O(Atz, Ax2) except that the diffusion terms are taken at the lower
time level, i.e., t = (n-1)At , since otherwise the computation becomes
unstable. Since centered differences are used to replace the time de-
rivatives, initial information at two time levels is required. To re-
duce the time-splitting tendency of such a scheme, a single forward
differencing step is used to obtain initial information on the second
time step.

113. Since an explicit time integration scheme has been utilized,
the basic stability criterion is once again the Courant condition.

Although the computations with the adopted scheme are extensive,

Leendertse indicates that the model is well within the range of
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toisson equation at each time step is accomplished by using the ADI

118. The diagonal components of the eddy coefficient tensors are
used to account for the turbulent subgrid-scale motions. The horizontal
eddy ceoefficients are assumed constant, but the vertical eddy coeffi-
cients are a function of the temperature gradient and other parameters.

This lependence on temperature is given by

=
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wiers A iz the vertical eddy diffusivity and a and 8 are con-
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stan*s Jdepending on the local conditions. The constant a 1is equal %o

the vertical eddy diffusivity under neutral stabili'y conditions. Tvpi-
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ol ovalues for a and B8 are S0 em”/sec and 200 om”/®C-sec, respec-

tivelys.  Liek handles a static instability in the same manner as Cimonsg

i.e., extensive mixing is assumed. ]
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119. An interesting aspect of Lick's model i3 his use of a linear

Lir
transformation in the vertical direction such that the =z Ne Z

Cartesian system is transformed toa x , y , 0 system where O < 7
< 1 , with the bottom correspondins to ¢ = 0 and the top t o1 ]

The o coordinate is defined by

Q
i}
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+
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where n{x, y) 1is the depth of the water body. With sucn s trar
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derivatives of the Jepth ure neslirivie with respect to those diffusive
terms containing only the dertn und thus lrops such terms.

120. So0lid boundaries are taken as no-slip, impermeable, adia-
batic surfaces. A heat transfer condition proportional to the temper-
ature Jifference (surface temperature minus equilibrium temperature)
and a wind-dependent stress are imposed at the surface. Normal deriva-
tive pressure boundary conditions are derived from the arpropriate
vertically integrated momentum equation. At open boundaries far from
the point of discharge of the river or plume, the normal derivatives
of the velocities and the temperature are zero.

121. As opposed to the layer-averaged approach of Simons and
Leendertse, Lick performs a straightforward finite differencing of the
governing 3-D equations. A forward time-differencing integration scheme
is utilized along witn centered differences for the spatial derivatives.
hus, the finite difference scheme 1s of the first order in time and

. . 2
second order in space, i.e., O0(At, Ax

) . The computational grid is
sach that the norizontal velocity components, u and v , are defined
a> the cell corners with the vertical component defined at the middle
oI the top and bottom face of the cell. The pressure and tenperature
are defined at the cell center, except for the surface pressure, which

is computed at the center of the top face.

Waldrop-Tatom 3-D Plume Model

122. There are actually two versions of this extremely versatile
three-dimensional variable density model {(Waldrop and Tatom 1976). One
employs the hydrostatic pressure assumption, and the other retains the
cormplete vertical momentum equation. Both utilize the Boussinesq ap-
proximation and both neglect Coriclis effects. It appears from Waldrop
and Tatom (1976) that the hydrostatic pressure version solves the non-
conservative form of the basic governing equations; whereas, Tatom and
Zmith (1979a) indicate that the conservative form of the equations are

solved in the version that does not make the hydrostatic assumption.

Both versions solve the governing equations transformed into orthogonal




curvilinear coordinates. This, of course, allows Jor nore accuriateo
modelings of curved boundaries such as river bends.

123. In the nonaydrostatic version, the pressure 1o writien oo
the sum of the hydrostatic pressure and the dynamiec prescure 1/0 ;v: ,
and a Foirson equation for the dynamic pressure is derived Tor -~olution
over the complete 3-D' field. The Richardson iterative technique 1o enm-
ployed. It might be noted that in the rolsson pressure equation, termo
that involve the horizontal density gradients lLuve been neglectei,  lHow-
ever, 1t does appear that horizontal density gradients, as reflectes
through the hydrostatic component of the pressure, are included in the
velocity computations from the momentum equation.

12Lk. With the retention of the complete vertical momentum egqua-
tion, a fully convective model that can handle buoyancy effects, i.e.,
unstable density profiles, is realized. The vertical component ot tle
velocity is now determined from the vertical momentum equation as
opposed to its solJution from the incompressibility condition in the
hydrostatic version.

125. The effects of turbulence are included through the use of
eddy ccefficients. The horizontal eddy viscosity coefficient ¢ is

H
derived from a mixing length eguation for open channels in the form

ey = 0.16(z ~ z.)° (¢ - 2)/(c - zB)IB\/uZ + v¥/32

where

1}

zB at the bottom

Z at the free surface

Z

2
which provides the largest values of EH in deep regions with large
velocity gradients in the vertical; whereas, in shallow and/or low flow
regions €y is small. The horizontal eddy diffusivity AH is relateqd
to the eddy viscosity by

AH = 1.335H

126. In turbulent flows, density stratification inhibits the
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vertical exchange of both heat and momentum as well as the mass of any
constituent. The Waldrop-Tatom models allow the vertical eddy coeffi-
cients to be functions of the stratification through their dependence

on the Richardson number in the following manner:

-1/2

€, T &y (1 + lORi)

_ -3/2
A= AL (1 + 3.33Ri)

where

R, = -(g/0)(30/32) (8 Vu® + V2/3z>_2

It might be noted that although the eddy coefficients are allowed to
vary spatially, spatial derivatives of the coefficients have been '
neglected in the model.

127. At solid boundaries, reflection boundary conditions are
imposed to simulate slip boundaries. Therefore, with solid walls as-
sumed to lie between the last two grid points, fictitious values of
dependent variables on the opposite side of a wall are set to prevent
mass, momentum, or energy transfer through the boundaries. Velocities
normal to the wall are set as the negative of the value immediately
inside in order to make the normal velocity zero at the wall, but the
tangential component is set equal to its value inside since with slip
walls, the wall does not influence the tangential flow. Derivatives
of the temperature normal to solid walls are set equal to zero to insure
no transfer of heat.

128. The velocity profile near the bottom is assumed to be loga-
rithmic. Thus, the equation below is used to help set the horizontal
velocity components at all grid points adjacent to the bottom in the

solution of the momentum equations:

2 - 2
u =T /o ﬁln <————k B>+8.‘5
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where
To = snhear stress
(z - zB) = height above bottom
k = diameter of the average roughness

The actual values chosen are sucli that the finite difference representa~
tion of the velocity gradients 2du/dz and 3v/9z near the bottom match
the gradient specified by the equation above. As noted, this is the
procedure for determining bottom velocities for use in the momentum
equations. However, in the transport equation for temperature, the
velocities at points adjacent to the bottom are determined from an
actual fit of the logarithmic profile rather than by forcing the proper
gradient. In the computation of the free surface, a control volume is
formed between the top grid plane and the free surface. ©Since the three
velocity components from previous computations at a particular time line
are known, the mass transported into and out of the control volume can
be computed. The free surface is then adjusted to insure conservation
of mass. In the current versions of the model, the time integration is
essentially a forward difference, but with an additional step that
Waldrop and Tatom (1976) indicate helps to stabilize the computations.

This is accomplished with the following scheme:

n -1
oo, [(au), (auy ]
4 "u+[at)+<at ]2

where (au/at)n_l is saved from computations at the previous time step.
It would appear that this is equivalent to replacing the time derivative
at t = (n - 1/2)At by a forward difference between {(n + 1)At and
nAt . Thus, the scheme is still only first order in time. Centered
differences are used in the diffusive terms, while one-sided windward
(either forward or backward, depending upon the direction of flow)
differences are used in the finite difference representation of the
advective terms. Thus, it would appear that the solution scheme is
o(At, Ax) .

129. As noted in a previous section, the computational grid is

such that all variables are defined at the same point, with uneven
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spacing of those points allowed for more flexible resolution. Waldrop

and Tatom indicate that a transformation of the x , y , 2 coordinates

such that even increments in the transformed system produce uneven spac-
ing of the grid points in the physical system is employed. However,
details of the transformation are not discussed.

130. The Waldrop-Tatom model is capable of handling branching
systems through its modular concept in which the cquations are solved
simultaneously in different branches or regions. The regions are con-
nected such that when there is free flow between regions, each region
uses previously computed information from the adjacent region as a
boundary condition. Of course, the fact that an explicit time-
integration scheme has been employed greatly decreases the difficulty
in incorporating such a concept. The handling of connecting branches,
i.e., connecting regions, in an implicit model would be much more dif-
ficult to accomplish. The capability of handling connecting regions,
allowing for a variable grid, and the use of curvilinear coordinates

makes the Waldrop-Tatom model extremely versatile.

Spraggs and Street's 3-D Model

131. The nonhydrostatic version of the Waldrop-Tatom model and
the three-dimensional model developed by Spraggs and Street {1975) are
the only 3-D numerical models studied that are fully convective models.
In other words, the complete vertical momentum equation is retained so
that buoyancy effects are modeled directly. As indicated by Spraggs and
Street, the primary use of the model is to simulate flows in which the
stratification induced by heated effluents sets up in a matter of hours.
No claim is made as to the usefulness of the present form of the model
for simulating flows over periods extending over the time required for
the formation of a natural thermocline. This is because of the exces-
sive computing time required due to the extremely small time step im-
posed by the explicit nature of the solution.

132. As in the vast majority of hydrodynamic models, the

Boussinesq approximation is made, which reduces the conservation of
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mass equation to the incompressibility condition. In addition, an eddy
viscosity model is used to simulate the transfer of energy from the
developing flow to small-scale turbulent eddies, i.e., the subgrid-scale
motions. These appear to be the only assumptions made to the basic
equations. It should be noted, however, that one important restriction
exists in the basic mathematical development of the model due to the
manner in which pressure gradients are handled in the horizontal momen-
tum equations.

133. A reduced pressure PR , which is a measure of the perturba-
tions in the system, e.g., caused by stratification and/or vertical ac-

celerations, is defined as

(P -7)

R pr

where the hydrostatic pressure Ph is

P, = (Lz -z - Z)Drg

pr is the density of a reference state, Lz is a reference depth,
t(x,y) 1is the water surface elevation, and 2z 1is the distance above
the reference bottom. With the hydrostatic pressure defined as above
in terms of a reference density that is not a function of (x,y), the

pressure gradient becomes

which does not allow for the effect on the flow of horizontal gradients
in the density. It appears that this restriction could be removed by
defining the hydrostatic pressure in terms of the spatially varying
density rather than of a constant reference density. Both Edinger and
Buchak (1979) in the modeling of stratified reservoirs and Hamilton
(1975) in the modeling of salinity-stratified estuaries have indicated
that the horizontal density gradients are quite important in modeling

variable density flows.
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134. As is usually the case when the hydrostatic pressure assump-

tion is not made, a Poisson equation for the reduced pressure PR is

derived by taking the divergence of the vector momentum equation and |

combining with the time derivative of the incompressibility condition.
Derivative boundary conditions on the pressure at solid walls are
derived from the momentum equations; whereas, the pressure itself is
prescribed at the free surface. The solution of the pressure from the
three-dimensional Poisson equation is obtained through the iterative
method called point Successive-Over-Relaxation (SOR). Spraggs and
Street indicate that the pressure solution usually converges within
50 iterations. D3Such a solution of a 3-D Poisscon equation at each time
step constitutes a major portion of the total computation time of the
model. Thus, one can see why the hydrostatic pressure assumption has
been so popular in the past in the development of hydrodynamic models.

135. The mathematical model is rendered dimensionless through
the introduction of three length scales, Lx s Ly , and LZ s such '
that any physical problem is mapped to the interior of a unit cube.
Thus, in the numerical model, there are six length para.meters---Lx , {
Ly s LZ s, bx , Ay , Az . The first three are defined as above,
while the second three are determired by the number of computational
cells within the unit cube. If LxAx = LyAy = LZAz , the numerical
model is undistorted, and the computational cells in the physical
problem are cubes. Generally, the horizontal length scales will be
much larger than the vertical length scale giving rise to a distorted

model in which LxAx # LyAy # LZAz . 4

136. The free surface elevation ¢ is computed from the kine-

matic boundary condition

where the vertical coordinate is positive downward. The solution of
the free surface is obtained through the following ADI scheme, which

is one iteration of the Peaceman-Rachford scheme with an acceleration

parameter of 1.0:
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From the above solution technique, it can be seen that since velocities
at the n + 1 time level are required, they are computed before the
computations for the free surface are made.

137. The Spraggs and Street model is the only 3-D model investi-
gated that allows for tensor eddy coefficients, i.e., the off-diagonal
terms are not neglected. The form of the eddy viscosity tensor selected
by Spraggs is a function of the rate of strain Smn , 1.e.,

)1/2

€;, = QAx, Ax (s s

J mn mn

i

where the Reynolds stress is

u{ u' = -¢.. S5., (no summation over i)

and the rate of strain tensor Si is

J
au, du
P
i] x(j xi

As Spraggs and Street note, there is some question as to the value of
the scaling parameter Q , since the range of problems that mirht le
simulated could extend from laboratory flume dimensions to several

hundred kilometres in the field. A value of I = 0.01 was used by
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Spraggs and Street in the initial testing of the model. The eddy dif-

fusivity 1is similarly defined such that

u! 7' = -a_¢, 9T
i pij ij
where ap is the turbulent Prandtl number. Tt should be noted that
Spraggs did not allow for the effect of stratification, through the
Richardson number, on the eddy coefficients in his initial work, but
did indicate that such a modification would be made later.

138. The computational grid employed is one such that the
velocity components are defined on the cell faces; whereas, the
thermodynamic variables are defined at the cell center. Thus, the
grid is in essence a grid similar to that employed by Leendertse (1967).

139. Boundary conditions at solid walls are treated as no-slip.
Thus, the normal velocity at a wall is set to zero, and its value at
one grid point outside the wall is set as the negative of its value
at the first interior point. Tangential velocities are not defined
at the wall. However, iu order to model the effect of a no-slip
wall, its value at one grid point outside the wall is taken to be
the negative of its value at one grid point inside. Both inflow
and outflow boundaries are assumed to be forced. At the surface,
velocities are set using a wind stress condition. The temperature
field at all boundaries except the free surface is assumed to have
a zero gradient; whereas, surface terperatures, of course, are
determined from the surface he:.t exchange determined by prevailing
atmospheric conditions.

140. In the solution of the velocity and temperature fields,
forward differences are used to replace time derivatives. Roache's
second upwind differencing scheme is used to replace the advective
terms. Thus (see Figure 5),

(a_ag“ R T ML
ax i Ax

where aR and QL depend on the sign of the convecting velocities.
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Centered differences are employed in the representation of the diffu-
sive terms. Therefore, the finite difference scheme is in essence
O(At,sz) . Various schemes of higher order were investigated by
Spraggs and Street, e.;n., the leapfrog, the Adams-Bashford, and Fromm's
(see Roache 1972) second order schemes. The leapfros scheme was dis-
carded because of the time-splitting nature of the solution, while
Fromm's method was not used due to the large percentare of boundary
cells encountered in 3-D modeling where the method uses centered spatial
differencing. Such a scheme was found to be unacceptable near bound-
aries with large forced outflows. A similar conclusion was arrived at
during computer experimentation with the 2~D Edinger and Buchak (1979)
model (page 9L). Sprages and Street indicate that the necessary coding
for the Adams-Bashford method remains in the basic numerical model for

future development and testing.

Eraslan's 3-D Discrete Element Model

141. Eraslan* is currently working on a fully three-dimensional
heat-conducting hydrodynamic model for the Oak Ridge National Labora-
tory. The code will be a fully convective model with the complete
vertical momentum equation retained. The basic solution technique will
employ an explicit time-differencing scheme along with the previously
discussed concept of discrete elements. Therefore, his formulation will
employ integral forms of the governing conservation equations applied to
variable-sized discrete elements that span user-specified flow regions.
At the present time, there is no published information on the develop-

ment of the model.

Blumberg and Mellor's 3-D Model

142, After the initial writing of this report, a three-

dimensional heat-conducting coastal model developed by Blumberg and

*  Personal communication, May 1979, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.
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Mellor (1979) at Princeton University was brousht to the wteens!

the author. Tt appears that the model 1s in an early ctoce o7 qarr o0 -
tion, with only preliminary tests in the Sultf or lMexle. navi
made.

143. The basic equations solved are statements Hf the invrvo-
tion of fluid mass, momentum, and energy along with th: conseprvatio
salt equation. The energy equation is written in term: of tempoeratuare,
and thus the equation of state relates the fluid density to both tem-
perature and salinity. The basic Boussinesq and hydrostatic pressure
assumptions are made.

14h4. The model employs two concepts previously discussed in con-
nection with the Simons and Lick models. Similar to the Simons model,
the external flow is computed separately from the internal flow. The
external mode, an essentially two-dimensional calculation, requires a
short integrating time step; whereas, the three-dimensional, internal t
mode can be executed with a long step. The result is a fully three-
dimensional code that includes a free surface. Similar to the Lick
model, the vertical coordinate is transformed into a o coordinate
system with 20 levels in the vertical. The model develorers state,
"With such a transformation, the environmentally important continental
shelf, shelf break, and slope can be well resolved." Furthermore, the
model allows for variable grid spacing in the ¢ coordinate for in-
creased resolution in the surface and bottom layers.

145. Rather than employing the same concept of eddy coefficients
as utilized by all the other models investigated, a second moment model
of small-scale turbulence as developed by Mellor and Yamada (1977) is
employed. Diffusive-type terms proportional to second derivatives in
the basic equations are retained only in the vertical direction. The
developers indicate that they believe relatively fine vertical resolu-
tion results in a reduced need for horizontal diffusion; i.e., horicon-
tal advection followed by vertical mixing effectively acts as a horizon-
tal diffusion in a real physical sense.

146. At the surface, the wind stress, net heat flix, and net

evaporation-precipitation freshwater flux are accounted ror. RBottom il

16




boundary conditions on the velocity components are supplied by matciin.-
the solution to the logarithmic law of the wall.

147. Time differencing is the conventional leapfrog technique.
However, the scheme is quasi-implicit, since the vertical diffusive
terms are evaluated at the forward time level. Thus, small vertical
spacing is permissible near the surface without the need to reduce the
time increment or restrict the magnitude of the mixins coefficients.
The spatial differencing is not discussed, but Blumberes and Mellor
(1979) state that the overall solution is accurate to the second order
in space and time.

148. As previously discussed, leapfrog time differer-ins intro-
duces a tendency for the solutions at even and odd time lines to split.
The time-splitting here is removed by the use of a weak filter where

the solution is smoothed at each time step by

Plo=pt e 2 (Fn+l - 2F" 4 F”‘l)
S 2 S

where o = 1/10 and FS is a smoothed solution. This technique intro-

duces less damping than either the Euler backward or forward stepping

techniques (see Roache 1972).
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PART V: TWO-DIMENSIONAL VERTICAL FLOW hYDRODYRAMIC MUDELD

—

149. Various two-dimensional numerical hydrodynamic models have

[

been studied and range from vertically averaged moiels to laterally
averaged models to pure two-dimensional vertical-longitudinal moiels in

which the width is constant. There are many two-dimensional vertically
Y X

averaged estuarine models in existence. However, since such nmolels are

9]
e
o
o
3

not aprlicable to stratified reservoir flows in which the allowan
a variable density and varlations in the ver*tical Zirecticn are ~rucinl,

they are not liscussed here. The only interest in zuch moilels in connec-
tion with this study was in the numerical tecimnigues employed. ALl o

the models studied, except Tor one that smploys tie inite elenent

method, utilize the finite difference method for solivin:s *he geverning
c-D egquations. nlike all of the 3-D models, which were explicit models,
some of the -0 models =nmploy an implicit or perhaps zen

interration scheme so that time steps much larrer <han

che Jourant conlition are allowed., A Tew of the 2-0 vertical

vestisuted were developed orisinally for application to reservoirs, ani
thus surface heat exchange and the variability of density with temperz-

ture are treated. The Zdinrer and Buchak (1979), Waldrop and Tarmer

(1276), and Roberts and Street (1975) models are examplez. ther J-)
vertical models, such as those of Hamilton (19735) and Rlwriber. (17
were initlally developed for salinity-stratified cotuaries anl 23ii-

tional modificetions would be needed for application Lo reservoira.  Ai-

ditional lensity-varyin. madels that concider Tlow in o voertiesl lans

have been investisated arnd include those o0 Tho

Norton, Hins, and Oriob (1973), and Slotter ot owl, LAY,

150,  Hamilton's (1237%) =D model war ioveloroi ‘o rrpvecent the

AL

*  Personal communication, April 1979, . . Thon Pooioniy
State ‘niversity, Missiscippl State,
®¥*  Dapsonal communication, May 1978, 7 ° Yoy o, Talir




e o current and calinity along aun estuary of varyvin:s
wiilth and deptin Lut with o rectancular cross section, l.e., B #F B0y .
ature oFf the model 1s the nuwnerical approach to the busic equntlon:,
which conatders the deptiu=dependent variables aus continuows. 7hic

I contrast with luyercd nodels where the equations are intesrateyr oor

ne serarate Luyors cand excnunce of nomentun and calt between oo s

tarteieterized in terme of the meun velocltieo and salinities of i
fuvers, cdamilton indleuaten that a continuan apiroach allows totter
Lrestient and vbotton houndary conditions.

154, The o cqantions are reduced to o set of laterally

avera ted D=L equations as previously outlined. The only difference here
is wnat the width 1s ot a function of the vertical coordinate and,
thus, deriveiives o0 the width with respect to the ver® ical coordinate

z  uare Zero.  Tne resulting laterally averarsed equations, with tiie
soulosinesy approximation and the hydrostatic rressure assumption, are
written in nonconservative foirm. Salinity is related to the density
throwsn g linear equation of state.

152, Zoundary conditions at the head of freshwater flow consist

of a vertical veloclty profile and zero salinity. At the ocean boundary,
the tidal elevation ic prescribed as a function of time, and the salinity
i3 specified to be that of the ocean. It does not appear that Hamilton
delineates an inflow and an outflow bouncary at the ocvan end. To con-
serve sult, the vertical salinity gradient at the estuary surface and

the bed is set to zero. OSurfice wind stress ic neglected, and the bet-

¢ oo stress is assumed to obey the quadratic friction law such that the
routom stress is related to the velocity at a distance above the bottom

representative of the frictional layer, e.~., 1 m.

153. As in all hydrostatic models, the vertical component of
velocity is obtained 'y solving the laterally averaged incompressibility
condition from the tottom upward. The equation for the free surface is
obtalned by veruically integrating the incompressibility equation. One
restriction imprzed on the free surface by the code logic is that the
sarface elevatlon doeg not Jdiffer by more than the vertical grid spacing

{assumed to be constant) between successive horizontal grid points.
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i 154. The finite difference grid is such that salinity, the verti-

‘ cal velocity, and the vertical eddy viscosity and diffusivity are de-
3
fined at the center of a cell;, whereas, the horizontal velocity igc de-

fined at the cell corners. This is illustrated telow.
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155. The time integration is a comtina*icn forward and backward

—

1

time-differencing scheme such that the 4iffusive und frictional terms

in the conservation of salt and momentum eguaticns, resrectively, are
taken at the n + 1 time level, while all other termc such as the
advective terms are taken at the n time level. Cratial differences

are replaced by centered differences, excent in the heorizental advective
term of the conservation of salt equaticn, i.e., uds/% , in which
Hamilton appears tc make use of Reache's (1072) first upwind 4iffeorencing.

\

Thus, the finite difference scheme is in essence O0O(At,Ax] The basic

stability criterion is the Courant cendition. Therefore, even *tlourh

the scheme might be called a semi-implicit cne btecause the second derviva-
tive terms are taken at the n + 1 time level, which deces remove
diffusive-type stability criteria, the scheme nrrobally offers no ron)

stability advantares cover a purely explicit ccheme.




Blumberg's 2-D Laterally Averaged Estuary Model

156. Like the Hamilton model, Blumberg's (1975) laterally averaged
model was developed for application to an estuary. Thus, the density
is related to the salinity through an equation of state and, of course,
no surface heat exchange is included, since temperature is not modeled.

Unlike the Hamilton model, however, this model does not assume a

rectangular cross section and thus B = B(x,z)

157. Additional assumptions made to the basic equations, which
are written in conservative form, are that the pressure is hydrostatic,
the Boussinesq approximation is applicable, and that eddy coefficients
can be employed to represent the effect of subgrid-scale motions. Verti-
cal velocities are thus computed from the incompressibility condition,
and the free surface equation re-lts from a vertical integration of
the equation for incompressibility.

158. Boundary conditions imposed consist of the inflow of fresh '
water with zero salinity at the head of the estuary; whereas, salinity
and tidal elevations are specified at the ocean end. Unlike Hamilton,
Blumberg allows for the ocean boundary to be alternately an inflow and
then an outflow boundary. When inflow occurs, the salinity is set to
be that of the ocean; during outflow, it is determined from an extrapola-
tion of values inside. To prohibit the flux of salt through the surface
and the bottom, the vertical salinity gradients are set to zero at those
locations. The boundary condition on the velocity at the surface is
determined from the wind stress. Similarly, the bottom stress determines
the boundary condition at the bottom. Extrapolation from the hydraulic
theory of flow in open channels allows the friction acting on a tidal
current, because of the estuary's bottom, to be expressed using the

quadratic law
T = kulul

where u 1is evaluated 1 m away and k depends primarily on the

boundary roughness.




159. The basic finite difference grid is of the MAC-type iced by
Leendersse (1967). Pressure and salinity :ure defined at cell centers,
but velocities are defined on the faces of the cells. Water curfuce
elevations are defined on columns corresponding to cell centerz. Oim-
ilar to the layered approach of Leendertse, the governing eguations are
integrated vertically over each layer where the thickness of each layer
is constant except for the top one. The top layer, of course, contains
the influence of the surface gravity wave, and its thicknessc varies in
time and space.

160. Both a horizontal and a vertical eddy viscosity coefficient
as well as a horizontal and vertical diffusivity coefficient are com-

puted. The horizontal coefficients are computed from

A e =(%)Qa_u|
H vz/ lox

jee]

where
C = adjustable constant
while the vertical coefficients are related to the Richardson number in

the following manner:

R 1/2
= k2,2 z\ |3u i
A, = k2 (l"h)‘az l-Ri
c
and A
v

v 1 +R,
1

where Av is the eddy diffusivity and €, is the eddy viscosity, kl
is a constant whose value is ~0.10 and Rj is a critical Richardson
number taken to be 10. It should be remem%ered that Blumberg's model
was developed for an estuary. Therefore, the functional form of the
coefficients above are probably not applicable to deep reservoirs. As
was done in the 3-D quasi-static models, the eddy diffusivity is assumed
large when unstable stratification develops. The salinity in the un-

stable layers is replaced by the averaged value of the adjacent layers.

161. The time-integration scheme is a centered difference or
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leapfrog scheme, except for the diffusive and frictional terms, which

are taken at the old time step. All spatial derivatives are replaced by

centered differences. Thus, as with the Simons 3-D model, the finite

difference scheme is almost O(Atg,Ax2)

. As previously noted, the use
of centered differences in time and space results in a second order dif-
ference equation as the approximation to a first order differential

equation, and the solutions at odd and even time lines tend to split.

Blumberg attempts to remove this time-splitting through averaging re-
sults from three successive time steps with weights of 0.25, 0.50, and
0.25, respectively, every 25 time steps.
162. The centered difference time-integration scheme has the
property of not introducing artificial horizontal diffusion and vis-
cosity. Thus, to control nonlinear instabilities, damping must be input
into the scheme. This is the major reason for incorporating the ex-
pressions previously given for the horizontal diffusivity and viscosity, '

AH and €, o respectively.

Poseidon's 2-D Vorticity-Stream Function Model

163. There are no published reports on Poseidon's* 2-D, longi-
tudinally and vertically dimensional, variable density model. The major
reasons for noting the model's existence are first because it is the
only hydrodynamic model discovered that is based on the vorticity-stream
function representation of the governing equations and secondly, because

of the manner in which the advection terms,

d(uzg) , alve)
X * Yy

where ¢ 1is vorticity, are numerically modeled. As noted before, the
pasic problem with these terms is that of achieving numerical stability
without numerical diffusion. The Poseidon code uses a flux-corrected

transport algorithm called SHASTA (Sharp and Smooth Transport Algorithm).

* Personal communication, May 1978, Personnel of Poseidon, Inc., Calif.
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Fluxes are first advected according to a scheme that i1s stable but dif-
fusive, e.g., the two-step Lax-Wendroff algorithm. Then the amount of
numerical diffusion is computed at each grid point, and the appropriate
amount of antidiffusion flux is applied to each cell, provided no new
extrema are created. A discussion of SHASTA is given by Boris and

Book (1973). Again it should be noted that such a model would not be

applicable to a reservoir containing multiple outlets.

Slotta et al.'s 2-D NUMAC Model

164%. A group directed by Siotta (Slotta et al. 1969) at Oregon
State University has developed the computer model NUMAC (Nonhomogeneous
Unconfined Marker and Cell) for analyzing transient, incompressible,
variable density, viscous flows with a free surface. As the name im-
plies, the model is based upoﬁ the MAC method developed by Welch et al.
(1966), which uses a mixed Fulerian-lagrangian scheme. 1In this scheme,
the velocity and pressure are considered as Eulerian variables defined
at the mesh points of a fixed grid, but the density is considered a
Lagrangian variable localized to fluid particles. It appears that the
major differences between NUMAC and MAC lie in NUMAC's ability to bhetter
handle inlets and outlets and in the use of the SOR technigque for
solving the Poisson equation for the pressure.

165. The basic Navier-Stokes equations for laminar flow written
in the vertical and longitudinal directions, in the conservative form,
are solved along with the conservation of mass equation. The Boussinesqg
approximation 1s not made, and thus, the density is actually solved for
from a transport equation with p as the dependent variable. However,
the incompressibility condition is still invoked in the derivation of

the Poisson equation for the pressure.

166. Many different types of boundary conditions are allowed.

At material boundaries, the normal component of the velocity vanishes.
At 8 free surface, the boundary conditions are that the normal and
tangential components of the ctress must vanishi. Two inlet velocity

boundary conditions are allowed. One holds the inlet velocity constant,

8l




while the other requires the normal derivative to vanish. The normal

derivative of the density at an outlet is set to zero. BRoth slip and

no-slip solid boundaries are asllowed with the derivative boundary con-
dition on the pressure determined from the momentum equation.

167. The finite difference scheme is basically one in which the
time derivatives are replaced by forward differences and the spatial
derivatives by centered differences. However, it does appear that
Roache's (1972) second windward-type differencing is used in the eval~-
uation of momentum flux terms such as 8{puv)/dy , ete. Thus, theoret-
ically, the scheme is close to 0O(At, Ax2) .

168. As noted previously, the MAC calculations are a combination
of Eulerian and Lagrangian steps. The NUMAC computation cycle is sum-
marized in the following steps:

Compute new densities from the mass transport equation.

|

b. Using new densities, solve Poisson egquation for the

pressure.

c. Using new densities and pressures, calculate new veloc-
ities from momentum equations.

d. Move the Lagrangian particles by use of the new

velocities.

e. Calculate new densities and viscosities at the mesh
points by averaging the densities and viscosities of
the particles that now surround each mesh point.

f. Compare this density with the value computed in step a.
If different, go to step b with these densities. 1If
they are essentially the same, continue.

g. Recompute the pressure from the Poisson equation.

h. Recompute the velocities from the momentum equa’ions.

i. Move the particles using velocities from step h.

J- Increment the time and go to step a.

169. Several stability criteria for this explicit scheme are pro-

sented; however, once again the basic criterion is related to the speed
of a gravity wave.

170. Obviously, NUMAC, or any of the related MAC codes, is an
extremely powerful numerical model for analyzing variable density fluid

flows, since the model is fully convective. However, computing timeco
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required for long-term transient problems are excessive due to the
explicit time differencing plus solving a Poisson equation for the
pressure. Slotta indicates that one time cycle on a (Qpntrol Data
Corporation) CDC 6600 computer reguires 7 sec for a problem with

800 cells and 3000 particles.

Norton, King, and Orlob's 2-D Vertical
Flow FEM Model--RMA-T

171. Under a contract with the Walla Walla District of the U. £.

Army Corps of Engineers, Water Resources Engineers, with Norton and King
as principal investigators, developed two 2-~D hydrodynamic models using
the finite element method for obtaining numerical solutions of the gov-
erning flow equations (Norton, King, and Orlob 1973). One of the models

is a variable density, laterally averaged model that describes the be-

havior of velocity, temperature, and pressure in the vertical plane.

172. The basic equations solved are the 2-D laterally averaged
horizontal and vertical momentum equations along with the continuity ',
equation reduced to the incompressibility condition as a result of the
Boussinesq approximation and an energy equation written in terms of 4
temperatures. These four equations along with an equation of state 3
relating the fluid density to the temperature are solved for the five ' 4
unknowns--u , v, T, P, and p .

173. The exchange of energy to the unresolvable turbulent eddies
is accomplished through the use of eddy coefficients, which are treated 4
as constants within each element but can vary from element to element.
It should be noted that unlike most models, the off-diagonal terms of
the eddy viscosity tensor are retained.

174. The equations are written in the nonconservative form with-
out the usual hydrostatic approximation. Thus, the complcte vertical
momentun equation is retained and the model is a fully convective model.

175. The governing equations are solved by the finite element
method using Galerkin's method of weighted residuals. A mized set of

basic functions is employed in the overall permutation. .undratic

functions are used for all state variables except preussure where n




linear function is used. The linear pressure function implies a con-
stant element density, which is calculated as a function of average
nodal temperatures. An implicit, Newton-Raphson computation scheme is
employed to achieve a solution to the set of nonlinear equations that
define the model. The resulting computer program accommodates tri-
angular and/or quadrilateral isoparametric elements.

176. Both a bottom stress term and a wind shear term are incor-
porated in the bottom and top row of elements, respectively. The use
of the isoparametric formulation with interelement geometric slope con-
tinuity allows the user to specify slip or parallel boundary flows. In
addition, no-slip walls can be easily handled since zero values of u
and v would be inserted at the proper nodes of boundary elements. The
surface heat flux at the air-water interface is computed through the use
of the coefficient of surface heat exchange and local equilibrium tem-
perature as calculated from meteorological data.

177. A recent version of the model accounts for the movement of
the free surrace, alt:ough in a very limited fashion, since the movement
must be stipulated by the user. The free surface pressure boundary con-
dition is based upon the assumption of a locally ¢°. . surface so that
the pressure boundary condition is for atmospheric pressure. The model
developers are currently incorporating into the model a procedure for
internally computing the location of the free surface utilizing the
atmospheric pressure boundary condition.

178. As noted in previous discussions, finite element models for
transieat problems require large computing times. Therefore, such
models may not be applicable to the simulation of the natural stratifi-
cation cycle of a reservoir for economic reasons.

179. It might be noted that although laterally averaged models
provide a better representation of real reservoirs than pure 2-D models,
the momentum flux through an outlet at the dam is not accurately modeled.
In the horizontal momentum equation, the horizontal advection of momen-
tum is represented by poa(SQB)/ax , where 1 is the laterally averared
velocity in the x direction. Tn actuality, the momentum flux passing

. . =2 . . . .
a cross section is not oou B , but instead is given by the integral
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Using a procedure borrowed from open channel hydraulics, one can set
B

-2 _ =g
pofu dy = BpOuB

O

where B 1is referred to as a '"momentum correction factor." TFor the
plan and side view of a reservoir near the dam, the u-velocity profile
would be
AR : -
—-.'BO'O—

N

The discharge Q 1is a. umed known and is eqgual to EBOH = EBH , where

H 1is the height of opening at the dam. Thus, u = Q/BH and
u = Q/BOH . Therefore,
B

oV (Q P
<B0H> dy = 8 BH) B
[¢]

and, if one writes the integral as a sum of integrals over Po and

(B-B ) , then
Q

2 2
(5%) 2 = #() »

‘“v;1al over B is zero except on RO . The above oo

¥ to yleld

, + 15 much larcer than 1.0 near the dam an

"o
in come manner with tiee z oohordinate apotrean »of the oo




a value of 1.0 is reached. However, the usual procedure is to assume a
value of 1.0 everywhere, in which case the flux of momentum at the down-

stream boundary is not properly modeled.

Thompson's 2-D Model--WESSEL

180. This is a laterally averaged 2-D model that is currently
being developed to assist the Corps in selective withdrawal studies.
Because of the concern for the quality of water downstream of reser-
voirs, there is a growing effort to control the quality of water re-
leased from reservoirs. The concept of controlling the quality released
from a density-stratified impoundment is called "selective withdrawal.'
Because the quality of water and its density can vary from the surface
to the bottom of a lake, it 1s often possible to selectively withdraw
the most desirable qualities. A basic problem is to determine before
construction whether the design of an outlet will provide the desired
selective withdrawal characteristics.

181. An empirical method developed by Bohan and Grace (1969) can
be utilized for selective withdrawal predictions for simplified outlet
and approach geometries. However, for complex geometries, physical
and/or mathematical models are required.

182, Thompson's model utilizes the concept of boundary-fitted
coordinates to obtain a solution of the governing flow equations on a
nonorthogonal curvilinear coordinate system. The coordinate system is

generated from the elliptic generating system

where P and @ are functions chosen to cause the § , n coordinate
lines to concentrate as desired. With one coordinate being specified
as constant on the boundariss and a distribution of the other specified,

a coordinate system that follows all boundaries, no matter how

9




irrecular, results. A rather detailed dicceuusion of i merisd and it
rosaitle application to hydroiynamic probtlom. 1o pres-rcel by Joonoaon
and Thompson {19737, Tnonwalition, an extoncive list of retferences ie-
soriving Tnorgoon's work with the tecohniguae 1o wresentea i the work
cited.

182, The next step is the develcpment of a numerical model oo
solve the governing fluid flow equations on the coordinate =z sterm com-

ruted above. Such a model will be able to accurately model the in-
fluenc. of boundary geometry on the developing flow.

184. The basic laterally averaged 2-D equations solved in
Thompson's model are the Navier-Stokes equations, mass conservation,
energy conservation, and an equation of state relating temperature and
density. These equations are transformed to the & , n system in a
fully geometrically conservative form such that the finite difference
representation is equivalent to the discrete element method. Essen-
tially nc assumptions other than assuming an incompressible fluid are
applied to the basic equations; e.g., the Boussinesq approximation is
not made and the model is fully convective with the vertical velocity
obtained from the full vertical momentum equation. 1In the vicinity of
outlets, vertical accelerations may become large and a solution of the
full vertical momentum equation is probably required.

185. The pressure is computed using Chorin's method. This methed
is based upon the concept that if a fluid is incompressible, the func-
tion of the pressure is to insure that the velocity field satisfies the
incompressibility condition, i.e., V » v = 0 . An iterative algorithm

for the pressure field is thus set up such that

s+).

n n —n+l ©
)., = AV -
(7)) = ) o)
where the pressure field at time step n is determined such that the
velocity field at time step n + 1 will satisfy incompressibility. The
advantage of Chorin's riethod over the use of a Poisson equation is that
only velocities are required on the boundaries, rather than pressure

and/or veloclity derivatives.
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ﬁ 186. The finite difference grid is such that both velocity com-

ponents are defined at cell corners, while the pressure, temperature, and

v Suipacly

density are defined at the center of a cell. It should be noted that

ovimamg

the transformation of the equations into the boundary-fitted coordinate
i system is such that all computations are performed on a rectangular

(¢ , n) grid with square grid mesh.

187. The model being developed will be extremely general so that

any number of inlets and/or outlets can lie orn any boundary. In azddi-

tion, any number of bodies can lie in the interior of the field, with a
constant coordinate line following each body. Boundary conditions can
be either slip or no-slip on solid boundaries, with the option of either
specifying wall temperatures or the heat transfer rate at such
boundaries.

188. The basic finite difference scheme utilizes second order
packward differences to replace time derivatives and centered differ-
ences to replace spatial derivatives. The model will allow the option,
however, of selecting windward differencing of advective terms. The
finite difference scheme is thus fully implicit and of O(Atg, Agg) or
almost O(At2, A£2) , depending upon whether Roache's (1972) first or
second differencing is employed. The SOR iterative method with a vari-
able optimum acceleration parameter field is utilized to obtain a

solution.

189. With such an unsteady, fully convective, variable density,
free surface model that models the flow phenomena in a natural cocordi-
nate system that fits the boundaries of the field, a wide range of hy-
draulic phenomena cin bte accurately simulated. However, due to the
fully implicit nature of the solution and the resulting iterative solu-
tion technique, the computing time required for loag-term simulations
will probably be large. For selective withdrawal studies in which only
the steady~state solution is sought, the computing cost should not be

a major factor.

Roberts and Street's 2-D Reservoir Model

120. Roberts and Ctreet's (1975) variable Jdensity model 1o piite
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ticne beins che droppins 070 the lateeal dimension ol the acoornion of

sure distrivution, oliminatin: rtoe ool for oo cernrns

ure equation und the ~ttenliant costly solutinon wrocodure, The

tasic finite difference zril, solution techniaue, anl eday visessi<y
model are all essentially the sume as employed in the 3-7 moiel, tuz
are now reduced to two dimensions. The model 1o trnus = pure 2-0
vertical-longitudinal model in which a varying wiith is not allowel.
191. With the hydrostatic pressure assumption, the vertir~al

velocity ic solved from the condition of incomuressibhility, and = lurse
vertical diffusivitynis invoked to simulate convective overturni-i,
which cannot be dealt with explicitly. Unlike some of the nydrostatic

models that integrate the incompressibility equation cver the vertical

O

to yield an equation for the free surface, Roberts ani Ttreet devermine

the free surface directly from the Kinematic

surface. As in the 3-D Spra;s and Ttraet

er, an inplicit =olution
of the surface equation is obtained. ¢nce again, however, uscause cf

the lack of couplings between the velocity

time level n + 1 , the Courant condition
stability criterion.

192, Limited-slip solid boundaries are acoumed. The vrelocity
orthoronal to the boundary is set te zere, but the tansential velocity
i defined by the Chezy-Mannin: formula Tor bourdary shear stress cuch

1

that the proper velocity profile near <he boundary can be achieveld.
Forced flow boundaries, of course, require the srvecification ~f he
velocity. At solid boundarics, temperature aradients are ze* to zord
to model an adiabatic wall.

193. At the free surface, th . velocity boundary conli+ion i
determined by the wind strecs, and t@m;oratures are determinei by
surface heat-exchance equation.

194. The basir finite difference ;cieme for & internal Ciow

utilizes forward -li ferencine in wime and centered ji:Tcrencine o

space, except for the alvec'ive terms where Ronche's (1070 vocond
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upwind differencing is vtilized. The overall solution is, thus, almost
of 0(at, Ax?) .

Waldrop and Farmer's TVA 2-D Reservoir Model

195. Waldrop and Farmer's (1976) model is an explicit laterally o
averaged hydrodynamic model for analyzing flows in stratified reservoirs
or long river reaches. The model is designed to accommodate hourly
changes in boundary conditions consisting of dam discharges, tributary
inflow conditions, steam plant intake and discharge conditions, river
inflow rates and temperatures, meteorclogy and wind shear. ]

196. Very little detailed published material on the model exists,

although Waldrop and Walter Harper of TVA are currently in the process

of writing such a report. It should be noted that Harper has been respon- r
sible for most of the coding and testing of the model; thus, the model 'H
should probably be called the Waldrop-Harper model. From the limited i

material available, it appears that the nonconservative form of the
laterally averaged fluid flow equations and the temperature transport
equation, in which the Boussinesq approximation and the hydrostatic
pressure assumption have been made, are solved. The effect of turbu-
lence is included through eddy coefficients, which are modeled by using
a mixing length theory as in Waldrop and Tatom's 3-D model., The retard-
ing effect of stratification upon vertical mixing is included by damping
the vertical eddy coefficients as a function of the local Richardson
number.

197. Free surface boundary conditions on the temperature and ﬁ
velocity are provided by the specification of the surface heat flux and
the wind shear, respectively. The surface heat flux g is prescribed

as a quadratic function of the temperature, given as
a = a(t)sT> + b(t)aT_ + C(t)
S s S

where a , b, and c¢ are coefficients dependent upon meteorological

conditions, and TS is the surface temperature; wind shear is given by
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T = Cx(Uyryp = Us

WIND

where C 1is a coefficient, UWIND is the wind velocity, and Us is the
surface water velocity.

198. The basic finite difference grid appears to be a 2-D version
of the 3-D model, and thus, solid boundaries are treated as in that
model. In other words, slip boundary conditions are assumed at vertical
walls; whereas, a limited-slip condition is applied at the bottom by
using a logarithmic profile to set the velocity near the bottom. With
such a technique, the bottom never actually lies on a grid point.

199. With the same basic finite difference scheme as employed in
the 3-D model; i.e., a form of forward differencing in time and centered
differencing in space, except for Roache's (1972) first windward differ-

encing of advective terms, the basic scheme is probably of 0{(4At, Ax) .

Edinger and Buchak's Laterally Averaged
Reservoir Model--LARM

200. Edinger and Buchak's (1979) LARM (Laterally Averaged Reser-

voir Mpdel) is a numerically efficient 2-D laterally averaged free surface,

variable density, heat-conducting model developed for the Chio River Divi-

sion, U. S. Army Corps of Engineers, for use in simulating flows in
stratified reservoirs. As noted by Edinger and Buchak, "Such a model
is needed in long, narrow reservoirs that exhibit density flow, epilim-
netic wedges and titled isotherms and in deep power plant discharge
canals with bottom intrusion of cold water and backwater density wedges
from such discharges to rivers."

201. In the initial development of the model, it was anticipated
that its primary use would be for long-term simulations extending over
a natural stratification cycle of a reservoir. Thus, it was deemed
necessary to develop a solution technique that would allow for time
steps significantly larger than those imposed by the free surface
gravity wave. To allow this, finite difference techniques have been

employed to solve the governing equations such that the water surface
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elevations are computed implicitly, qne velocity components in the
longitudinal and vertical directions are then computed explicitly, and
finally the temperature field is computed implicitly. The density is
then, of course, computed from an equation of state. Unlike the Roberts
and Street (1975) model, which also implicitly computes the water sur-
face, Edinger and Buchak's model couples the internal flow and the free
surface, and thus, the scheme has been found to be stable so long as the
volume of water entering a finite difference cell within a time step is
less than the volume of the cell.

202. Edinger and Buchak utilize the layer-averaged concept of
Leendertse and Simons. The governing equations thet are solved are thus
laterally and layer-averaged 2-D equations with lasyer-averaged variables
as the dependent variables. The equations are written in the conserva-
tive form with the Boussinesq and hydrostatic approximations. In addi-
tion, eddy coefficients are utilized to model the influence of
turbulence.

203. The horizontal coefficients of eddy viscosity and eddy dif-
fusivity are assumed to be constant; whereas, in a recent development,
the vertical eddy diffusivity and eddy viscosity--related to the in-
ternal friction coefficient that results from the layer averaging and
replaces vertical viscous terms as related to second derivatives--are
allowed to be dependent upon the Richardson number. The form of this

functional dependence is

-3/2

=3
"

Avo(l + 3.33Ri)

-1/2

™
n

evo(l + IORi)
Unstable stratification is modeled by allowing € to increase to the
diffusive stability 1limit of Az2/2At when Ri <0 .

204. As in other hydrostatic models, the vertical component of
the velocity is obtained from the incompressibility equation. with the

solution beginning at the bottom and progressing up the column of
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layers. An equation for the water surface elevation is then obtained
by summing the layer-averaged incompressibility equation over the water

column. This equation takes the form

3(gB) _ 3 (uBH)

ot 2 layers 9x

where g 1s the deviation from the top of the top layer of fluid,
positive downward. Edinger and Buchak then replace the time derivative
by a backward difference to yield an implicit solution for ¢ . How-
ever, the velocities are unknown at the n + 1 1level. This problem is
overcome in the following manner. The horizontal momentum equation

takes the form

3 (uBH) g _
3t~ BB 5 = F

in which a forward time differencing is used in relation to all the
terms comprising F , while the 93z/39x term is taken implicitly, i.e.,
at the n + 1 time step. The expression for (uBH)n+l from the momen-
tum equation is then substituted into the finite difference form of the
free surface equation. The resulting difference equation then contains
the unknowns c?:i ) c?+l 3 g?ri
which can be efficiently solved by the Thomas algorithm.

, i.e., a tridiagonal system results,

205. With such a coupling of the internal flow and the free sur-
face computations, the Courant stability criterion is removed. The time
step is now limited by the internal flow speed, pius perhaps diffusive
criteria, rather than the speed of the surface gravity wave. It is the
removal of the Courant condition that makes the Fdinger and Buchak
(1979) model so attractive with regard to long-term simulations of
stratified reservoirs.

206. With the free surface elevations computed at the n + 1
time step, the horizontal velocity component is then computed explic-
itly, followed by an explicit computation of the vertical component.
The temperature is then computed from its transport equation, using

the new velocities. This, however, now requires an implicit solution
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for the temperature since if the velocity in the advective term is taken
at the (n+l) level, the temperature must be taken at that level also;
i.e., terms such as 9(uBHT)/3x are taken completely at the new time
level. To avoid having a 2-D implicit computation, which would require
either an iterative solution or perhaps the use of an ADI scheme, the
horizontal diffusive term is taken at the n + 1 time level, but the
verticel diffusive term is taken at the 0ld or n time level. The re-
sulting difference equation takes a tridiagonal form also and thus is
solved in the same manner as is the free surface equation.

207. Spatial derivatives are replaced by centered differences in
all terms, except the advective terms in the temperature equation where
Roache's (1972) first windward differencing is used. In addition, in
computer experimentation with the model, it was concluded that windward
differencing is also required in the momentum advective terms in cells
adjacent to forced outlets. This will be discussed later in connection
with application of the model to the GRH flume. Since the windward dif-
ferencing is Roache's first kind in which simple forward or backward
differencing is utilized, it appears the solution scheme is o(at, Ax) .
As previously noted, such a scheme preserves the transportive property
but not the conservative property and in addition is only of the first
order. If Roache's second upwind differencing had been employed, the
resulting scheme would be almost O0O(At, Ax2) , and both the transportive
and conservative properties would be preserved. It might be noted that
by solving the temperature equation implicitly, the time step limit of
W/Az that can be more severe than u/Ax has been removed.

208. Boundary stresses at the surface and the bottom are incor-
porated directly into the layer-averaged equations through the following

expressions:

C*

_c* 2
Tyinp = 5 Pa Wy €08 ¢

and

!'
I
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where
Cx = resistance coefficient (2.6 x 1075)
P, = 8ir density (1.2 kg/m3)
W, = wind speed at 10-m height (msec_l)
¢ = angle between wind and reservoir axis
C = Chezy coefficient (ml/e/sec)

209. With the use of the layer-averaged approach, the boundary
stresses are incorporated directly as terms in the equations, and bound- |
ary conditions on the tangential velocity at the bottom cannot be pre-
scoribed. In addition, with the MAC-type grid employed and with the

vertical velocity determined from the incompressibility condition, no 1

specification of the tangential velocity at a vertical wall is allowed.
Of course, at all solid boundaries, the normal component of velocity is ‘
set to zero. In addition, all eddy coefficients are set to zero at !
solid boundaries to prevent heat transfer a% such boundaries. '

210. The net rate of surface heat exchange is expressed by: i
h_ = -CSHE (T_ - ET) |
n s

where CSHE and ET are dependent upon shortwave solar radiation, air

temperature, dew point temperature and wind speed.
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PART VI: APPLICATION OF SELECTED MODELS TO THE GRH FLUME

211. Two of the 3-D models and three of the 2-D models have been
applied to a bottom density current problem in the Generalized Reservoir
Hydrodynamics (GRH) flume at WES. In addition, before this report was
published Arsev Eraslan provided results from application of the auto-
matic 2-D version of his general 3-D model.¥* The 3-D models were that
of Spraggs and Street (1975) and the Waldrop-Tatom (1976) model; while
the 2-D models were LARM, the TVA model, and the RMA-T finite element
model. The two attempts at a 3-D simulation, as well as the TVA's 2-D
simulation, were made by the respective model developers at the request
of WES, with the Waldrop-Tatom simulation being made by Tatom at WES
on WES's Texas Instrument-Advanced Scientific Computer (TI-ASC) computer.
The simulations with LARM were conducted by Edinger and Buchak on the
CDC 7600 computer located at Boeing in Seattle, Wash. In addition, WES

personnel have made similar computations on the CYBER 176 located at

Kirtland Air Force Base, N. Mex. The application of the finite element
model RMA-T7 was made by Bob MacArthur at the Hydrologic Engineering :‘
Center (HEC) on CDC equipment located at Berkeley University and on a 1
Prince 550 minicomputer located in Lafayette, Calif.

212. The primary reason for application of the models to the
bottom density flow problem was to provide an assessment of relative ‘
economy of the more promising models and their ability to simulate a i‘
real problem that commonly occurs in reservoirs, whether it be as the
result of a coldwater inflow or the plunging of a sediment-laden stream.
With an application to a laboratory flume, test conditions could be

accurately controlled and temperature and velocity profiles readily ob-

tained. Although temperature data are available, as far as is known, a
detailed set of reservoir field data including velocities and results !
from dye tracer tests does not exist. It seems reasonable to believe

i
that if a mathematical model can accurately simulate laboraticry E
i

*  Personal communication, March 1980, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.
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conditions, the expectation of reasonable vield applications is Justirlea.
This 1s true because the only scaling: et'fects in the mathematicnl models
is in the specification of the eddy coefficients.  Thus, althougsh an
accurate simulation of a laboratory test may not justity a guantitative
confidence in the ability of the model to yleld similar accuaracy in the
field, it does demonstrate qualitatively the model's ability to simulate

basic flow phenomena.

Dezeription of GHH Flume and Test cJonJitions

213. A photograph of the ukil flume is provided in Figure 0, The
flume is 24.33 m long with a 0.91-m x O.9i-m cross section at the jown-

stream end. ‘The cross section at the upstream end is J.30 m x J.30 =

Figure 6. The Generalized Reservoir Hydrodynamics (GRH) rlune
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and linearly grows in width over the first 6.10 m to a cross section
0.30 m deep and 0.91 m wide. The bottom of the flume is horizontal for
the first 6.10 m and then drops a total of 0.61 m linearly over the fi-
nal 18.29 m of the flume. Both plan and side views are given in Fig-
ure 7. The water in the flume was at rest and homogeneous at the initia-
tion of the test, with the temperature being T70.6°F. Cold water was
input at 0.46 m from the upstream end at a temperature of 62.0°F. A
baffle restricted the cold water to enter over about the bottom 0.15 m
of the cross section. The inflow rate was 0.00063 m3/sec with the out-
flow rate at the downstream end being the same. The outflow was removed
from a port with a 2.54-cm diameter located 0.15 m above the bottom of
the flume and 0.46 m trom either side. Thus, as previously discussed,
the 2-D laterally averaged models will not accurately model the momentum
flux from the system. In fact, neither will a 3-D model unless the lat-

eral and vertical dimensions of a cell are of the same size as the port.

o.3°"'I ( 0.91m
| 6.10m 1

18.29m

1

a. PLAN VIEW

0.30!!1}:

b. SIDE VIEW

Figure 7. ©Schematic of GRH flume

Observed Flow Phenomena

214. The coldwater input was dyed for easy visual observation.

The basic flow phenomena that developed was the classical density

101




Teptn o te dnrRest o L N S L N S ‘ . .
witnoocus overlyites intermnedina. o o . : ot

Wl v O opericipe anotnen . . N .

streaks to determine veloceity o proiier pil e v e v Ty

I T AT T IS T U Teaan et .
pattern albove tThe donnity adertiow,

Pioure o,

- +
[
X an
S %
. A
>
3
T &
11
4
N 15N BN i Lot Loy : R M '
Croat ot et ive ) C CLow W Co v et
owerer, u . e W i
. (XY * IS i M ! ! v A v .
for the Tl ol . ot ' :
—{\
I3 N s M \' MR . M v PR ’
oi water of .0 ~ 10 R O 1 P N A T AR TR RS

indicates a value of 1300 is the critical Revnobds nunber for turtadens

flow. Thus the flow is probably in the transition sone belween Tarinar

102




-

and turbulent flow, rarher than being completely laminar.
216. Using Harleman's equation for the average velocity of a

laminar density underflow,

B 1/2
T = 0.375 &2/° (ﬁ—p—h s)

e DF
where
hDF = height of density underflow, ft
S = slope
Re = Reynolds number
Ap/p = 0.001121

a value of U = 0.012 m/sec 1is obtained. If the equation for the aver-

age velocity of a turbulent density underflow is used, i.e.,

G- [she DEZ
p f(1+ a)

where f , the nondimensicnal friction factor, is taken as 0.003, cor-

responding to a Chezy value of 55 ml/g/sec, and as suggested by Harleman

a = 0.43 ;3 a value of U = 0.0l m/sec is computed.

Application of Three-Dimensional Models

217. The flow in the flume is essentially a two-di...nsional flow,
except, of course, in the vicinity of the outlet. However, as an aid
in the assessment of 3-D models, an attempt at applying both the Spraggs
and Street (1975) and the nonhydrostatic version of the Waldrop-Tatom
(1976) models to the coldwater inflow problem has been made. As dis-
cussed below, neither of these attempts was very successful.

Application of
Spraggs and Street's THERMAC

218. Dr. Lynn Spraggs at McGill University made an application of
THERMAC with the computing facilities available to him in Montreal,
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Canada.* After ~:_. .uvestigation without success into the use of time
*..ps larger than that allowed by the Courant condit.on, Spraggs cou-
cluded that using the existing 3-D THERMAC model to simulate the flow

in the flume was not economically feasible. His work with the larger

time steps included different schemes for temperature acceleration,
rigid-lid approximations and differential time-stepping. His estimate
for simulating 30 min of real time in the flume is 2% to LJ hr of CFU

(central trocessine unit) time on a LU OO0, Therefore, Gnolo ovoolouo

tiaat nwnerical seheres thut aliow Tor o

LT mSL
levicea tefore an explicly 3-0 model such ac I T} L
arvlied to relatively lonv-term reservdir
219, Spraccs was oable 1o simulate only U0 e of the Tlize povot-
lem.  The computed temperature fleld at oar sec 1o rresented Inorlouve
- — 1 —_ ] 12
1
70.92 | 70.07 [ 70.43 | 70.48 | 70.47 | 70.50 | 70.50 | 70.50 | 70.50 | "0.50 | 70.50 | 70.50 | 70.50
- —4 - FLOW OUT
68.84 | 69.55 {69.78 [70.08 } 70.10] 70.39) 70.49| 705 | 705 | 705 705 | 705 | 705 .
Tt
FLOW IN — o | g
54 14 |57.43 163.20 |65.79 | 67.93 |69.16 | 70.12 [ 7046 70.5 | 705 | 705 | 706 | 705 | 705 |
l 8 s
6432 |66.15 | 67.68 | 68.99 | 69.98 { 70.44 | 705 | 70.5 | 705 | 705 | 705 | 705
i |
7
69.26 | 69.97 | 70.26 [70.48 | 705 | 705 | 705 | 705 | 705 | 705 1
6
705 | 705 | 705 | 705 | 705 | 705 | 705 [ 705
AX =152 m
AY =046 m 5
AZ = 0.076 m
4
. d
Qin = 0.00063 m3/s, Tin = 54.14 'F 3
Qout = 0.00063 m?/s
2
1

Figure 9. THERMAC Model results after 549 sec, cooled jet

*  Personal communication, November 1979, Lynn Spraggs, Mce3ill Univer- ‘
3ity, Montreal, Canada. ]
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As can be seen, the simulation was conducted with outflow from the top

rather than the bottom. Spraggs indicates that the reason for the tem-
peratures of the cells at level 11 being greater than 70.6°F is that
the simulation is unstable a‘ the surface and continuity is not being
conserved. It should be ncted that in THERMAC the unstable stratifica-
tion resulting from the stair-stepping effect at the bottom is handled
in a fully convective manner, since the complete vertical momentum
equation is retained and buoyancy effects are thus convectively modeled. {
220. Spraggs also made an additional simulation with a heated
bottom inflow. Resulting temperatures are presented in Figure 10. The
simulation shows that the model seems to be performing correctly. How-
ever, a much longer simulation time is required before definitive con-

clusions can be drawn.

L2

[T —] — ] e

1n
73.65 [71.26 | 70.72 | 70.55 ] 70.51

—4—» FLOW OUT
75.01 | 72,89 | 70.95 | 70.59 | 70.52 | 70.50

[

FLOW IN — 80 9
86.86 | 77.41 | 72.89 | 71.01| 70.61 | 70.50 | 70.50

21.09 {70.70 | 70.55 | 70.51 | 70.50 8
70.51 { 70.50 | 70.50 7
6
[}
5
Tin = 86.86° F

w
[

Figure 10. THERMAC Model results, heated jet
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Application of
Waldrop-Tatom 3-D PLUME

221, As previously noted, the application oo the nonhydrostatic

version of the Waldrop-~Tatom model to the denvity undertiow protlem 1
the GRH flume was made by Tatom and Umith (1979a) on the 71 AUC computer
located at WES.

222. 'The numerical schematization of the flume 1s i1llustrated in
Figure 11. As shown, the varying width at the upstream end is modeled
with three regions, each with a constant width. The uxis of the flume
is considered to be a plane of symmetry so that only half of the flume
in the lateral direction is modeled. As can be seen from Figure 11, the
bottom never falls on a grid point, and solid walls are assumed to lie
halfway between the last two rows of points. Variable grid spacing in
all three dimensions is allowed in the model for extra flexibility.

Very little documentation of the code has been published.

223. Initially, it was realized that excessive computing time
would be required if the time step was restricted by the Courant condi-
tion. With a lateral spatial dimension of (.62 cm and a maximum depth
of 0.91 m, the Courant criterion restricts the time step to be less than
approximately 0,025 sec. Therefore, the initial decision was made to
model the problem using a rigid-1lid assumption to allow for larger time
steps. fatom incorporated this by forcing the water surface to remain
at its initial level and specifying a derivative boundary condition at
the surface on the dynamic pressure. The results did not resemble the |
lensity underflow observed in the flume. Basically, the coldwater in-
flow tended to spread over the complete depth of the flume and no flow
reversal was computed.

22L. It was then decided that the ripid-1id assumption was not
appropriate, and the derivative pressure boundary condition was replaced
with a pressure boundary condition that corresponded to a free surtace.

Actually the surface was allowed to be free only in the longitudinal
direction; i.e., no transverse variations were allowed. Applying the ;
Courant condition only to the longitudinal direction gives a stability

restriction such that the time step must be less than about 0.50 sec. A

106




S
0871
S

> W e~ e A W e N e

wa3sAs PTJIF TBUOTSUSWIP~d3aYy], °IT aandtyd

-

4 1#
NOI9 NOI93Y
.._— 4. ; 5
—
14
13
e I#F
NOIOI  NOIOH |
]
[}
t
sad__ 4
.M\ \_...\ L uw L "u
’ I " 8t




time step one-tenth of this, i.e., 0.05 sec, was then employed. With
the problem set up in this fashion, there still was no real improvement
in the computed flow field. In addition, the computing time was exces-
sive. Approximately 12 to 15 hr of CFU time on the TI ASC computer would
have been required to simulate 30 min of real time in the flume.

225. Various portions of the code were investigated in an attempt
to resolve the inability of the model to properly simulate the density
underflow; e.g., molecular values of the eddy coefficients corresponding
to laminar flow were used instead of the turbulent opei channel coeffi-
cient model, differencing of the convective terms near the bottom was
changed, and the pressure boundary condition at the surface was modified.
The first two changes above made little or no difference. When the pres-
sure boundary condition was changed such that the dynamic pressure at
the first row of grid points inside the fluid was set to zero, some
improvement was noted. A slight flow reversal was computed above the
density underflow. However, the temperature of the water near the bot-
tom was too high and the underflow moved much too slowly.

226. At this point, Tatom decided again to invoke the complete
rigid-1lid assumption to allow for a much larger time step but to retain
the zero dynamic pressure condition at the surface. Results from this
run and a list of input parameters are presented in Appendix A. The
general conclusion is that the density underflow is still not properly
simulated. As can be seen from the computed results, very little flow
reversal is computed, and the computed flow moves much more slowly than
observed in the flume. Only about 18-19 min is required for the density
underflow to traverse the complete length of the flume, i.e., 23.93 m,
but the model indicates a travel distance of only approximately 9.1k m
in 33 min. Since funding provided for this application was limited, the
reason for the inability of the model to properly compute the density
underflow has not been determined. It should be noted that in a mathe-
matical sense a Dirichlet-type boundary condition, i.e., settiig the
dynamic pressure equal to zero at the surface, is not allowed when impos-
ing the rigid-1id approximation.

227. As described in Tatom and Smith (1979b) in an attempt to
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reduce the CPU time required by 3-D PLUME, Tatom and Smith recoded por-
tions of the model to better utilize the vector features of the ASC
computer. From the results presented in Appendix B, it can be seen that

this effort resulted in a 56-percent reduction in CPU time over the

original version of the model that utilized the automated vector fea-

tures of the machine.

Application of Two-Dimensional Models

Application of
Edinger and Buchak's LARM .

228. Because the Corps funded the initial development of LARM, an
early version of the basic computer code was available for computer ex-
perimentation by WES personnel. During this experimentation, several
general changes wer> made to LARM. These centered airound making the
model more general in the specification of inflows and outflows. '1

229. During the application of LARM to the GRH flume, as well as .

in the computer experimentation, it was observed that a common occur-

rence at the downstream boundary in front of an outlet was that of a !
flow reversal. Various steps were taken to try to alleviate this prob-
lem, includi.g an attempt tc incorporate a momentum correction factor
and a momentum sink term under the assumption that perhaps the improper
modeling of the momentum flux through an outlet was causing the problem.
In addition, in an effort to create a larger pressure gradient near the .
outlet to force the flow in the proper direction, the hydrostatic pres-
sure was decreased by 1/2 p u2 , i.e., the dynamic pressure. None of
these attempts proved successful.

230. Finally it was discovered that the use of centered differ-
ences in the convective terms of the x-momentum equation is unacceptable
near a forced outlet. This is related to the fact that centered differ-

ences do not possess the transportive property. This is illustrated by

the problem below in which the initial flow field is stationary and a

forced outflow with velocity Uo is prescribed.
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Using centered spatial derivatives and a forward time derivative, the

|
x-velocity at time t = At &t (i-1/2,3) is r
t=at  _ =0 _at e 2 670, pt=0 ?'

i-1/2,3 i-1/2,] AX i,J i-1,J p

With the flow field at t = O stationary,

Al 4
TR [ S WY [
i-1/2, 8X 2 ¥

or, the initial computation for the velocity in front of the outlet }i

yields a flow roversal, i.e.,

Gt oAt 2 §
i-1/2,) LaxX "o 3

As noted by Spraggs and Street (1975), the use of windward differencing
near an outlet corrects the problem. Therefore, the original centered :

difference representation of the horizontal advective term 8(u2BH)/3x |

has been replaced with a one-sided Jdifference near an outlet.

231. In the initial application of LARM to the GRH flume by WES

personnel, it was ooserved that the coldwater inflow in essence moved

to the dam in the horizontal plane in which it entered. The reason for
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this was that in the original version of LARM, the eddy coefficients
were not treated as functions of the Richardson number and thus vertical
variations in density were not considered. Edinger and Buchak have
since modified LARM to allow for the Richardson number dependence pre-
viously presented. Thus, when an unstable stratification arises, i.e.,
Ri < 0, the vertical eddy viscosity and diffusivity are increased to
their maximum values based upon the diffusive stability criterion. This
procedure forces either a maximum diffusion upwards or downwards depend-
ing upon whether the density of the cell is less than or greater than
the surrounding density. The results provided by Edinger and Buchak#*
(and presented in Figures 16-30) were obtained from simulations in a
22.87-m flume rather than the actual length of the GRH flume traversed
by the underflow, i.e., 23.93 m. Values of the various coefficients

and other input parameters are presented in Table 2. A longitudinal

Table 2
LARM Input for GRH Flume Application

Parameter Value
Spatial step Ax = 1.52Lk m
Layer thickness H = 0.0762 m
Time step At = 5.0 sec
Horizontal viscosity 1.5 x 10_6 m2/sec
Horizontal diffusivity 1.4 x ]_O-5 m2/sec
Vertical viscosity at 1.5 x 10-6 me/sec

neutral stability
Vertical diffusivity at 1.4 x 107 m2/sec
neutral stability
Chezy coefficient 70 ml/2/sec
Inflow 0.00063 m3/sec
Outflow 0.00063 m3/sec
Inflow temperature 62.0°F

*  Personal communication, November 1979, J. E. Edinger and E. M. Buchak,
J. E. Edinger Associates, Inc., Wayne, Penn.
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spatial step of 1.524 m and a constant layer thickness of 0.0762 m was
utilized. The schematization is presented in Figure 12. Approximately

5 sec of CPU time on a CYBER 176 was required to simulate 30 min.
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Figure 13. Comparison of LARM computed and recorded underflow speed
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and those recorded, tends to substantiate the conclusion that the density
underflow is not being forced to "hug" the bottom enough. The stair-
stepped bottom appears to result in too much mixing of the coldwater
underflow with the warmer water lying below the next stair-step, which
results in higher computed outflow temperatures than those recorded. The
computed 2-D mass flux field for 60 min after initiation of the inflow

at L-min increments is presented in Figures 16-30.

233. It should be realized that the above problem in the modeling
of the density underflow is not unique to LARM. Any model that represents
the bottom boundary in such a stair-stepping fashion will encounter the
same problem of too much mixing and a resulting slower, thicker, and
warmer density underflow.

234, As a final note, the results presented here were computed
with windward differencing of the convective terms throughout the flow
field. Much smoother computations were realized than when centered
differences were used everywhere except near the outlet. A comparison of
the relative magnitude -f various terms in the horizontal momentum equa-
tion revealed that the convective terms are approximately the same magni-
tude as the density gradient terms. In real reservoirs, convective terms
usually dominate only in the backwater. In addition to the windward
differencing being employed, the upstream boundary condition was modified
to force the temperature in the most upstream column to remain at the
upstream temperature of 62°F, which resulted in a slightly faster under-
flow current.

Application of Waldror's TVA Model

235, Dr. Bill Waldrop and Walter Harper at the Tennessee Valley
Authority in Norris, Tenn., have made an application of the 2-D reser-
voir model to the density underflow problem in the GRH flume on the
computing facilities available to TVA and have provided results to WES.*
Two different runs were made. The first allowed the heavier inflow to

seek its own level at the upstream boundary, but in the second run, the

*  Personal communication, November 1673, B. Waldrop and W. Harper, Ten-
nessee Valley Authority, Norris, Tenn.
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coldwater inflow was forced to enter the bottom layer, as was the case

in the Edinger and Buchak application. Figure 31 demonstrates that the
24['

!
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LEVEL
gt
6+
3
0 1 1 { 1 1 }
4 8 12 i6 20 24

TIME AFTER INITIATIHON OF RUN, MIN
Figure 31. Comparison of TVA computed -
recorded underflow upeca
computed underflow moves too slowly. Reusults from both ue inilente n
computed travel time in excess of 2L min, althougsh 1t should boe nted
that the travel time for the underflow to traverce the herizontadl portion
of the flume agrees quite well with recorded results. ‘nee asain it
would seem these results tend to substuntiate the previous ctatements
made concerning the stair-stepping effect of the bottow., This effect is
further indicated from the plct of computed versus recorded outflow tem-

peratures presented in Figure 32. Computed velocity filelds and isotherms
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Figure 32, Comparison of TVA computed and
recorded outflow temperature

from the first application are presented in Figures 33-3T7 at times of
6, 12, 18, 24, and 30 min after initiation of the inflow. Similar plots
from the second application are presented at 10, 20, and 30 min in Fig-
ures 38-40. The only results provided for a direct comparison of computed
and recorded velocities at a particular location are presented in Fig-
ure L4l. There a comparison of the computed velocities at 10.67 m from
the upstream end at 10 min after initiation is made with recorded veloc-
ities at 11.43 m from the upstream end at 11 min after initiation.

236. As previously noted, the Waldrop model is an explicit FDM
and thus the time step at which computations are maie is restricted by
the speed of the surface gravity wave. For thi. pplication, the maximum
allowable time step is computed to be about 0.50 sec. Waldrop indicates
that a time step of 0.30 sec was actually used, which resulted in L6 sec
of CPU time on a CDC 7600 computer for 6000 time steps.

237. As a final note, Waldrop has indicated that he also has en-

countered flow reversals in front of forced outlets. However, rather
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than using windward differencing near the outlet, ne reduces the prec- 1

o

sure by subtracting the dynamic pressure l/EQUZ where U i the
outlet velocity, to force the flow in the proper Jdirection. This iz »
easy to implement, since his basic computational cell, as is illustrated
below, has the velocity components defined a!l the center of tlie cell

with pressures defined on the vertical facso.
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Application of
Norton-King-Orlob FEM--RMA-T

238. The application of the Norton-King-Orlob FEM to the density
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underflow in the GRH flume was made by Bob MacArthur of the Hydrologic
Engineering Center (HEC) in Davis, Calif.* As in the previous model
applications, the initial conditions consisted of zero flows (zero veloc-
ity throughout) and isothermal water temperatures throughout at 70.6°F.
After time zero, a constant coldwater inflow of 0.00063 m3/sec at

62.0°F was imposed entering near the bottom of the flume as an upstream
boundary condition. MacArthur indicated that a zero pressure, free dis-
charge boundary condition was prescribed at the outlet so the inflow
rate would equal the outflow and the free water surface would remain
horizontal. Values of the eddy coefficients used are presented in

Table 3.

Table 3
Values of the Turbulent Exchange Coefficients

Used for the GRH Flume Applications

Turbulent Exchange Coefficients

(Eddy Viscosity) Value
€x 10 lb—sec/ft2 (0.48 m2/sec)
€xy 0. 00k lb—secgft2 (1.92X lO_Ll me/sec)
€ x 10 1b-sec/ft- (0.48 m /sec&
€yy 0.01 lb-sec/rt° (4.8 x 107" n®/sec)
Turbulent Diffusion Coefficients
(Eddy Diffusivity) Value
D, 2.0 £t°/sec (0.19 m°/sec)
Dy 0.01 ftg/sec (9.3 x lO—h m2/sec)

239. Using a time step of 3 min, a total time of 18 min was
simulated. Results furnished by MacArthur for the first three time steps
are presented in Figures L2, 43, and L4. The finite element network
used to simulate these results is shown in Figure 45. Although compara-

tive plots are not presented, MacArthur stated that travel times for the

* Personal communication, November 1979, R. . MacArthur, Hydrologic
Engineering Center, Davis, Calif.
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coldwater plume to reach the outlet were usually about 18 to 20 min from
the time of initial inflow. However, outlet temperatures were several
degrees (°F) greater than the temperatures measured in the physical model
tests. In addition, the thickness of the plume and temperatures within
the bottom flow plume were greater than observed. This indicates more
vertical mixing i1s occurring in the numerical simulation than was occur-
ring in the GRH flume, which MacArthur attributes to the choice of the
vertical mixing coefficients.

240, An inspection of the two-dimensional velocity field pre-
sented after times of 3, 6, and 9 min in Figures 42, L3, and LL, respec-
tively, reveals that the classical density underflow phenomenon has nct
fully developed in the computed results. At the point where the flume
bottom begins sloping, the flow seems to be projected across in a hori-
zontal plane. One reason for this may be the large values assumed for
some of the eddy coefficients, e.g., the diagonal component in the x- ’

direction €,. = O.48 me/sec . MacArthur has indicated that the stability

of the modelX?s extremely sensitive to the values used for these coeffi-
cients. Therefore, such large values were reqguired to obtain stable
solutions.

2kl. The computer time on a CDC 7600 to simulate the results pre-
sentel here required 42 sec of execution time to compute 18 min of flow
time. This compares with the approximately 5 sec required by LARM to
compute 30 min of flow time and 46 sec required by the Waldrop explicit
model to also simulate 30 min of flow time.

2Lb2. After these initial runs, MacArthur made some comparative
runs, using the GRH flume geometry, for homogeneous flow conditions and
additional thermally stratified flow conditions. In each case, flows of
0.00063 m3/sec were introduced with a linear velocity distribution in
the bottom element at the upstream end of the flume. Figure 45 presents
the finite element network used for the simulations. The homogeneous
case was run isothermally at a temperature of 50.5°F, while the nonhomo-
geneous case was started with an initial temperature of SO:BOF throughout
and an inflowing water temperature of h41.0°F.

243, Velocity distributions produced by these comparative runs
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are presented in Figure 46 for three different time steps (after 3, 9,
and 18 min) at the two sampling stations indicated on Figure L45. The
effects of flow stratification are quite evident and appear to be quali-
tatively reasocnable.

Application of
Eraslan's Discrete Element Model

24L. After the initial writing of this report, Eraslan provided

results from applications of his model called FLOWER.*¥ FLOWER is a
computer code for simulating fast-transient three-dimensional coupled
hydrodynamic, thermal and salinity conditions in the intake and dis-
charge zones of power plants operating on rivers, lakes, estuaries and
coastal regions. The general 3-D model contains an automatic 2-D later-
ally averaged version, which was used in the GRH flume simulations.

245. FEraslan indicates that.the turbulent transport model of
FLOWER is completely closed; i.e., it utilizes the same turbulent (and
laminar) transport model for all time and spatial scales in applications '
to vastly different problems, including the scales of physical models
as well as the scales of prototype conditions. Therefore, the user
never specifies any friction or turbulent diffusion coefficients.

24k6. Two separate simulations were made with the flume discretized
as shown in Figure 47. One was a coldwater inflow, while the other was
a hotwater input. The coldwater inflow simulation was the same as pre-
viously discussed, with the exception that the outflow was 0.00109
m3/sec and the inflow temperature was 54.14°F, Therefore, the water
surface dropped slightly during the simulation. Figures 48-55 present
"snap shots" at 200-sec intervals of the velocity field with no exagger-
ation of the vertical component for 1600 sec after initiation of the
inflow. From an inspection of Figure 52, it can be seen that the com-
puted travel time required to traverse the flume is 16-17 min, which com-
pares reasonably well with a recorded time of approximately 15 min for

these input conditions. Eraslan indicates that if the inflow had been

* Personal communication, March 1980, Arsev kraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxviilc, Tenn.
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Figure 47. Schematization of GRH flume in ?.
Eraslan's application t
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Figure 48. Velocities computed by Eraslan's Model at
T = 200 sec, coldwater inflow

137




el M et e

—» 0.01 M/SEC

TIME = 400.0 SEC

1 10 19
1.0
10
- — = —— — L 4 [ [ 4 [ 4 [ » » » » »
o« > - - e >~ [ J  J »> > *> > » L J * [ ] »
——————3 - - - » > » » > »
7
W > - - » - » - . > a
E 0.5
»
w L 4 » > > > L d L)
-3
L » L 4 » L 4 -
4 3 * a
s -
1
0 1 i I ! <
0 5 10 15 20 25
METRES
Figure L49. Velocities computed by Eraslan's Model at
T = 400 sec, coldwater inflow
-#= (.01 M/SEC TIME = 600.0 SEC
10 i 10 19
_ 1o
——— — — — — — — — * > [ L] » L4
» . - - —— e a— T - » * . . -
—e b > > . . - [ L4 [
»
g S ———" -+ - . . [
505 -
3 e d - » > > >
2 . - . »
g » .
$ -~
1
0 1 1 1 —1 J
0 5 10 15 20 25
METRES
Figure %0. Velocities computed by Eraslan's Model at

T = 600 sec, coldwater inflow
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Figure 51. Velocities computed by Fraslan's Model at
T = 800 sec, coldwater inflow
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Figure 52. Velocities computed by FEraslan's Model at
T = 1000 sec, coldwater inflow
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Figure 3. Velocities computed by Eraslan's Model at
T = 1200 sec, coldwater inflow
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Figure 54. Velocities computed by Fraslan's Model at
T = 1400 sec, coldwater inflow
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Figure 55. Velocities computed by Eraslan's Model at
T = 1600 sec, coldwater inflow
specified over only the bottom half of the cross section rather than
the complete section, a faster and less thick underflow current would
have resulted.

247. As noted above, an additional simulation was made in which
warm water at 70.6°F was input uniformly over the upstream end with the
water in the flume initially being stationary and homogeneous at a
temperature of S54.14°F. Figures 56-65 present "snap shots" at 200-sec
intervals of the resulting 2-D flow field for 2000 sec after initiation
of the inflow.

2L8. Since FLOWER is an explicit model, the time step is re-
stricted by the gravity wave stability criterion based upon the deepest
part of the flume. The results presented were obtained by Eraslan from

running FLOWER on a PDP-10 computer.
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Figure 56, Velocities computed by Fraslan's Model
at T = 200 sec, warmwater inflow
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Figure 57. Velocities computed by Eraslan's Model
at T = U00 sec, warmwater inflow
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Figure 58. Velocities computed by Eraslan's model at T = 600 sec,
warmwater inflow
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Figure 59. Velocities computed by Fraslan's model at T = 800 ser,
warmwater inflow
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Figure 60. Velocities computed by Eraslan's Model
at T = 1000 sec, warmwater inflow
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Figure 62. Velocities computed by Eraslan's Model
at T = 1400 sec, warmwater inflow
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Figure 63. Velocities computed by Fraslan's Model
at T = 1600 sec, warmwater inflow
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PART VII: CONCLUSIONS AND RECOMMENDATIONS

2LY. Many different types of numerical hydrodynamic models exist.
These range from steady to unsteady models with the physical problem area
represented by one, two, or three spatial dimensions. In addition, some
mcdels consider the effect of temperature and/or salinity on the density
of the water; whereas, others treat the water body as being hcmogenecus.
Mcst numerical hydrodynamic models invoke the Boussinesq approximation
as well as the hydrostatic pressure assumpticn; however, there are
models that do neither and are thus able to convectively model bucyancy
effects. OSome models allow for the movement of a free surface and its
subsequent effect on the internal flow; whereas, cthers impose a mathe-
matical rigid-1id approximation to enable larger time steps to be
emplcyed in the numerical solution technigue. A vast majcrity cf the
hydrodynamic models employ the finite difference method to develop nu-
merical solutions, although there are existing models that employ the
finite element method for the spatial integration of the governing
fluid dynamic equations. The vast majority of numerical hydrodynamic
models handle the exchange of energy from the large-scale circulaticn
patterns to the small-scale unresolvable eddies through the use of eddy
viscosity and diffusivity coefficients. However, there are substantial
differences in the expressions used to relate these eddy coefficients
to properties of the mean flow field.

250. One-dimensional models are often applied to reservoirs where
the principal variation cf flow characteristics is in the vertical
direction. The primary advantage of such models is their ability to
resclve long-term or seasonal temperature profiles economically. Such
models, however, are not applicable for predicting multidimensional flow
fields within stratified reservoirs for quality predictions. Therefore,
only two- and three-dimensional models have been investigated in this

study.

Conclusions on Two-Dimensional Modeling

251. 1In order for a numerical hydrodynamic model to be applicable

k7




tc the prediction of flow fields in stratified reservecirs, it must first
cf all be at least a two-dimensicnal (vertical-lonyitudinal) reodel and
preferably one that is laterally averared te account for width ohtan--r
alcng the axis of the reserveir as well as with depth., The model must

be dynamic, i.e., time-dependent, and must le a heat-conducting medel
that can handle unstable stratifications. In other words, surface reat
exchange and a sutsequent modeling of the temperature field and i+-:z
coupling with the flow fielld through its influence on ihe water dencity
must be handled. In addition, since the model will be aprlied cver
natural stratification cycles, during which significant flocdin., ~an
ccewr, a free surface must be allowed as cpposed te the rigid-iid arirox-
imation. These are necessary criteria. Consideraticn: of accuracy and
econcmy must naturally be taken into account alsco when zel

fer widecpread use throughout the Corps.

252. Of the various two-dimensional mcdels investirated, six
models ccome clese to meeting the required criteria ocutlined akeve. There
are the mecdels of Edinger and Buchak; Waldrop; Thompson; Norton, Kins,
and Orlob; Roberts and Street; and Slotta et al.'s NUMAC. The criteria
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satisfied by these models are summarized in Tatle U,
althoush an in-depth investisation has not teen made due tc a lack °F
published material as well as publication deadlines tc be meil, results
from Eraslan's 2-D simulations imply that it alsc meets these criteria.

253. Thompson's laterally averared model is being develcped
primarily for near field selective withdrawal studies. The governine
equations are sclved implicitly using an iterative technique. Thus,
although the model will be a completel; general, fully convective model
that will accurately handle general boundaries through the use cof
bound . ~ed coordinates, the computing costs for locng-term simula-
tions will prooably prohibit its use over natural stratificaticn cycles
in reservoirs.

254, The Roberts and Street model assumes a hydrostatic pressure
but does handle unstable densities by allowing for a large diffusion of
heat within the unstable water column. Of the six 2-D models that

satisfy the necessary criteria, this model and NUMAC are the only
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pure 2-D models. The other four solve the laterally averaged equations.
The major disadvantage of the Roberts and Street model lies in its use
of a numerical solution technique that restricts the time step tc be
smaller than the time required for the surface gravity wave to traverce
a computational cell. Such a restriction can result in excessive com-
puter costs for applications extending over several months.

255. The Norton, King, and Orlob model is similar tc the Thomycson
model in that the complete vertical momentum equation is solved.
However, the Norton, King, and Orlob model uses the finite element
method to perform the spatial integration of the governing equations,
With the use of the finite element method, boundary geometry can be
accurately handled but computing costs may become excessive for long-
term simulations. Another disadvantage is that although a free surface
is allowed, modifications would probably be required to allow for large
fluctuations that might occur over a stratificaticn cycle. Wi n the
complicated coding of finite element models, it appears that ¢ ificant
modifications can often become major tasks.

256. The NUMAC model is based upen the MAC work « ~ Welch et al.
and as such, like the Thompson and Norten, King, and Orlob models, is
a completely convective model. Once again, however, the computing costs
for long-term simulations would be excessive. Not only 1is & *weo-
dimensional Poisson equation solved, but the basic compucations utilize
an explicit solution technique with the maximum time step restricted
by the speed of the surface gravity wave.

257. The 2-D Waldrop model appears toc be a well developed
laterally averaged hydrostatic model that can be directly applied in
its present fcrm to predict stratified reservoir hydrodynamics. The
manner in which the bottom boundary condition on the velocity is
prescribed would seem to allow for a more accurate modeling cf flow
near the bottom. However, the bottom is still in essence represented
in a stair-step fashion, which results in excessive mixing cf density
underflows., This can be seen from the results of the application to
the GRH flume. The major disadvantage of the Waldrop model (and

Eraslan's discrete element model) is the gravity wave restriction on




the time step as a result of the explicit finite difference scheme em-
plored. As Waldrop has noted, if the boundary conditions are varying
rapidly enough to require input at time intervals on the order of the
maximum time step allowable by the Courant condition, explicit models
can often be shown to be more economical than implicit ones due to their
less complicated coding. However, if an extremely general model is
desired for use in long-term reservoir simulations during which

boundary input may or may not be rapidly varying, it appears difficult
to justify the selection of a model with the time step restricted by

the Courant condition.

258, The Edinger and buchak model (LARM) is a laterally averaged,
hydrostatic model that employs a unique method for removing the Courant
condition as a stabtility criterion. This is accomplished through a
coupling of the water surface computations and the internal flow such
that the water surface o cormputed impliecitly, while the internal com-
putavionsg are jertorned explicitly. Unstable stratifications arc in- '
directly handled vy furcing the maximum diffusion allowed by the
stability criterion into adjacent cells. Results from applications of
both the Edinger and Fuchak and the Waldrop 2-D models to the GRH flume
are encouraging. In addition, the results from the 2-D version of
Eraslan's 3-D code agreed quite well with the flow phenomena observed
in the flume for his input conditions.

259. There are several areas of the Edinger and Buchak model
that should be investigated for possible further development. With its
modular programming, significant modification of the model should not
be unduly difficult. These areas are discussed later. Because the
Edinger and Buchak model satisfies the necessary criteria--namely,
time-dependent, free surface, 2-D laterally averaged, variable density
and heat-conducting--and allows for unstable stratification and the
solution technique allows for economical long-term simulations, it is
the most lcgical 2-D model to select for further development to provide

the Corps with an accurate and economical predictive capability in the

area of reservoir hydrodynamics.




Conclusions on Three-Dimensional Modeling

260. The state of the art is such that it does not appear any of
the three-dimensional models investigated can be economically applied
for long~term reservoir simulations. However, since most reservoirs
actually exhibit a three-dimensional nature, undoubtedly the need within
the Corps for a three-dimensional predictive capability will increase
over the next few years. To satisfy this need in a practical sense,
new solution techniques as well as increased computing power must be
realized. In addition, one should consider making the hydrostatic pres-
sure assumption to remove the computing cost of solving for a nonhydro-
static pressure.

261. ©Neither of the 3-D models applied to the GRH flume yielded
very encouraging results., OSpraggs was not able to simulate more than
600 sec with THERMAC due to the extremely long computing times required.
The nonhydrostatic version of the Waldrop-Tatom model was run with the "
free surface frozen, which allowed a large time step to be used. How-
ever, the density underflow was not properly computed. After 33 min,
the model computed a travel of only approximately 10.06 m; whereas, only
18 min was required in actuality for the underflow to traverse the
complete length of the flume (23.93 m). Tatom feels that the problem
is related in some manner to the dynamic pressure computations. Therre-
fore, if time and funds had permitted, it would have been interesting

to apply the hydrostatic version to the same density underflow problem.

Recommendations for Two-Dimensional Modeliug

262. As noted abo.e, it is believed that the Edinger and Buchak
2-D laterally averaged model offers the most promise in the area of
multidimensional stratified reservoir hydrodynamic modeling in the near
future. However, additional developmental work and modifications are
needed to make the model more flexible and accurate; therefore, it i-
recommended that the following items be investigated duriny the next year

for possible further development and incorporation into LARM:
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Th2 application to the density underflow in the ©GKH
©1lame demonstrates the mixing effect of a stair-
stepped bottom. It is believed that a transformation
of the vertical coordinate, as is performed in Lick's
model, offers one solution to this problem. Particular
attention should be directed toward the neglection of
the cross-derivative terms resulting from the non-
orthogonal transformation.

LARM presently allows for the vertical eddy coefficients
to be functions of the Richardson number; however, the
horizontal coefficients are assumed to be constant. It
is recommended that an eddy coefficient model similar

to that of Spraggs or perhaps the simpler model employed
by Waldrop and Harper (or perhaps Eraslan's closed
turbulence model) be incorporated into LARM. This
should be relatively easy to accomplish, since the com-
puter code was initially programmed with such an
addition in mind.

LARM presently employs either windward or centered d4if-
ferences to represent the advective terms in both the
momentum and the temperature transport equations along
with a forward time difference. Such a first order
transport scheme is adequate for continuous distribu-
tions. However, if instead of an essentially continucus
distribution, a slug of some quality constituent is to
be traced through the reservoir, large errors can result
from the use of such first order schemes. Therefore,

it is recommended that higher order transport schemes
such as those employed by DHI or perhaps the 2-point
scheme of Holly and Preissman be investigated for use

in the modeling of quality constituents, rather than

the scheme LARM presently uses for temperature.

It would seem that Waldrop's method of setting the
bottom boundary condition on velocity by matching a
logarithmic profile is quite realistic. It is recom-
mended that the use of such a boundary condition in
LARM be investigated. The layer-averaged approach
taken in LARM may make this difficult.

The horizontal grid spacing in LARM is constant. A
variable grid spacing would be useful to provide greater
flexibility in the resolution of a quality constituent
in a particular area. The difficulty in allowing this
and the subsequent errors that might occur should be
determined. Obviously, the linear averaging now
employed to provide values of variables at points where
they are not defined would have to be changed to reflect
a weighted average. Also, as discussed by Brown and
Pandolfo (1979), a nonuniform spatial prid can influence
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the numerical stability, o vLhe trancport ojuaation.
Recall also the deterioration o8 tie troa.coa® Don ore
assocliated with variable -rifo,

LARM models a single reuzi, i.ec., L oo
major axis of the reservoir. . jeoiraule
is the ability to simultaneoucsly model o
o' the reservoir as well as its major arms v tritua-
taries, l.e., to allow for o« tree stractuare oy ocranche:
network. The possibility of making [ARM -« maitifuanction
model should be considered.

The applicability of LARM at the downotremwm ona of i
reservolr near the dam is questionable due Lo tne hydro-

static pressure assumption us well as the naccurate
modeline of the momentum flux throwh toe oulliet.  The

nydrostatic pressure assumption iu protully accoptatle,
except in the Immediate viceinity of the outlev; wherems,
the inaccurnte modeline of the momenturn Th
result 0f the model beins lese than three-dimencicona.
misht extend for ceveral auan widtho.,  The oe o0 g
momentum correction fact s to bhetter model the moment.on
flux near the dam chould be invesiirated., 1n addition,
the couplings with LAY < o model that o more appli-
catle near Lthe vieinity fF an outlet, e, Honan and
arace (106)), to provide the downstrean boun fary 2on-

dition Yor LARM micnu be concidoered.

AFERTET

LARM has been developed siucn tiot the acer b to
"hard wire," i.e., physically ctomge oode statements,
the model for esch appiicntion, altnown 'he verasion
being run by Wikl perconnel was been modified o pro-
vide a slichtly more seneral nmodel. [t ic not Lelieved
that the current approach of Uorelng 4 user to changre
code statement. for ecach sy lication o acceptable in
A model to be made available to ull Corps Division and
District offices. Theretore, LARM shouli te made
sufficiently general co that it can be applicd to u
wide range of problems strictly throurh a change of
input data only.

In the modeling of real rescrvoirs, e oftern encountor.
side embayments that contribute ecsentinlly notiing ta
the momentum of the flow field, btut must otill e
accounted for as storare areqs in the convervation of
mass,  More accurate computations would be realiced if
LARM allowed far the specification of two wiithe. ne
for the total width that s currently input, which
would continue to be usedl in the continuity equation.
The other woulid be a width corresponding te the actunl
flow areas for use in the momentum equation.
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J- In the use of numerical hydrodynamic models, the ini-
tial state of the system as well as time-varying
boundary conditions must be prescribed as input. The
nature of the hyperbolic equations being solved is such
that after a sufficient length of time, the effect of
the initial conditions becomes negligible. The time
simulated to remove initial condition effects is com-
monly referred to as the "start-up time.”" One way to
handle this problem is to compute a steady state before
imposing the time variation cf the boundary conditions.
LARM presently can only compute a steady state as the
asymptotic convergence of a time-varying solution com-
puted by holding the boundary conditions constant. The
possibility of incorporating into LARM the capability of
solving the steady-state equations, as allowed by the
Norton, King, and Orlob FEM, should be investigated.
After the above modifications are made, in particular
Lick's transformation to allow for better representation
of the bottom, LARM should again be applied to the
density underflow problem in the GRH flume. In addition,
hopefully a good set of field data will be available by
then through EWQ0OS. Assuming an eddy coefficient nodel
similar to that of Spraggs and Street (1975) has been
incorporated, these two applications should provide in-
formation on whether a single scaling parameter can be
used for a wide range of problems.

Recommendations for Three-Dimensional Modeling

263. Unlike the two-dimensional models, there are no three-
dimensional models that can economically be applied for long-term reser-
voir simulations. This is because all of the models are explicit, and
thus excessive computing time is required. Imposing the rigid-lid
approximation removes the Courant condition on the time step, but results
in a Poisson equation for the pressure that must be solved, which can
be costly in itself. Making the hydrostatic pressure assumption helps
in that only a 2-D Poisson eguation rather than a full 3-D Poisson
equation must be solved. However, it is not believed that the rigid-lid
approximation 1s appropriate for models to be used over flooding cycles;
therefore, new solution techniques that allow for a free surface but
remove the speed of a gravity wave from the stability criteria must be

devised.
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264. The Spraggs and Street (1975) model currently solves for
the free surface implicitly, but does not implicitly couple the internal
flow to these computations. It is recommended that a coupling similar
to that in Edinger and Buchak's (1979) work, but now in two dimensions,
be investigated during the next year. If this can be accomplished in

an efficient manner, long~term three-dimensional free surface hydrody-

namic modeling will have taken a giant step forward.
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APPENDIX A: NUMERICAL RESULTS FROM APPLICATION OF
3-D PLUME TO GRH FLUME

1. The nonhydrostatic version of the Waldrop-Tatom (1976)% model
was used to generate a numerical solution to the density underflow problem
in the GRH flume. Values of various input parameters are presented in
Table Al, In an erfort to increase the computational time steyp, and
thereby reduce the number of steps required, the free surface was ini-
tially assigned zero slope and was "frozen" for all subsequent compu-
tations.

2, With a time step of 0.5 sec, the numerical solution was marched
forward for 4Q00 time steps corresponding to 2000 sec of real time in
vhe flume. Outputs of velocity, in terms of the u, v , and w com-
nonents, and temperature, as taken from Tatom and Smith (1979a), are

presented at 0, 1000, and 2000 sec in Tables A2 through Al3.

*¥ References use!l in thr appendixes of this report are listed in the Ref-
erinces section 2t the ond of the main text.
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Table Al
3-D Flume Input
Parameter alue
Inlet voluwn=stric flow rate YRR tu T nen

Exit volumetric flow ratc
inlet area

Jutlet area

Inlet velocity

Jutlet velocity

Initial ambient velocity
Inlet tenmperature

Initial ambient temperature
Inlet density

Initial ambient density
Inlet equivalent diameter
Inlet kinematic viscosity
Inlet Reynolds numnber
Chezy coefficient

ranning friction factor
Jater depth at inlet

Wdater depth at outlet

N.IRPRE v T nen
0.5 77
3,25 040
UL NS Ct sec
0,0891% ™+ /sec
0 ft/zec
£1.97°F
T0,T79°F

62,353 1bm/ft°>

(W%

62.295 lbm/ Tt
0,67 I

1.19 « 13 2t/ zee
2496

13.75 v /see
0.007 97

1 rt

3 ft
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APPENDTX B: RESULTS OF VECTORIZATION OF 3-I PLUME

1. A series of benchmark runs were carried out to compare the
verfornmance of the scalar and vector versions of 3-D PLUME (Tatorm and
Jeith 1979%) . Such runs were £1l carried out with the K-Compiler on
the WED ASC Computer and consisted of two tyres: (a) numerical con-

sistency and (b) coumputational speed.

Numnerical Consicstency Results

2. Benchmark runs concerned with numerical consistency between

the scalar and vector prosrans were relati-ely short and included print-

cuts of variables not included in the normal output of either program.

~

Sucn rrintouts initially revealed a series of rminor Jdiscrepznciec in the

vector version of the prosram and also one previously undetected di

6]

crevsnes in the scalar version., After such Jdiscrepancies were corrected,

numerical consistency within one percent was achieved.

Computational Speed Results

3. Two types of timing runs were carried out with both the vector
and scalar versions of the progsram. The fir:zt type consisted of only
the initializetion computations plus one time step computation and was
desipned to provide a measure of initialization time. The second type
of run extended for 2000 time steps and was designed to provide a mea-
sure of the computation time associated with each time step. The re-

sults of these timing runs (including compilation time) are summarized

L. As indicated in Table Bl, the compilation time for the vector
version of *he program was approximately three times the scalar compila-
tion time, as wouli be expected because of the additional optimization
proceduares involved in vector compilation. The initiali-ation times
were essentially eqnal. The time required for 2000 time steps with the

vector version was approximately Ll percent of the corresponding time




with the scalar version. It is important to note that in carryins o

the timing comparison the amount of central memory (versus exteniled

riemory ), as shown in Table Bl, was not the samne for all runs. For in

2000-time step vector run, no central nmemory was used; wille for tue

11 percent of the

corresponding scalar ran central memory compri.

totul memory. Becuuse fotoli times ascoclated witi ceniral mencr) ar

ut

Voo

smaller than the fetch times with extended menory by & factor of aprrox-

imately C, the ovenent In performance o7 ¢ sector versi
i 3 e
over the scalar verslion Lo oonmewunat orester e Sh~uercent redu

tion in computation fime o+e2d,  With an ejuzl portion =7 contrar me
ory, the vector vercion sinould be approximately three times as Uast
thie scalar version. ¥or a production run consisting of 4000 *ime <t

the computation time would tnus te reduced from 2L30 sec to 300 sec.

P




- ~ S ——
Table Bl
Comparison of Computation Time*
Scalar Vector
Central Extended Central Extended
Memory Memory Time Memory Memory Time
Jtem words words sec words words sec
Compilation 0 184,320 576.63 0 184,320 1,799.89
Initialization 4,096 106,496 3.7 L,096 131,072 3.26
and 1 step
Computation for 12,288 98,304 1,200.59 0 143,360 530.1k4

2000 steps

* Tatom and Smith 1979b.




APPENDIX C: NOTATION

a,b,c Constants in expression for surface heat flux
A Area of discrete element

AH Horizontal eddy diffusivity

Ai Cross-sectional area
AiJ Eddy diffusivity tensor from time averaging
A{J Eddy diffusivity tensor from spatial averaging
AV Vertical eddy diffusivity
B Width
Bi Surface width

Bo Width of opening at the dam

Chezy coefficient; constant in expression for surface wind
stress; phase velocity

c* Constant in expression for surface wind stress
Cij Sum of eddy diffusivities due to time- and spatial-averaging
CSHE Coefficient of surface heat exchange
Cv Discrete element volume
dvO Volume of a discrete element
Dij Diffusivity tensor
ET Equilibrium temperature
f Nondimensional friction factor
£ Force vector

F,f Arbitrary variables
F Smoothed solution in leapfrog scheme
£1+8 Acceleration due to gravity

G Volumetric flow rate ‘




DF

W] MmN

or

Water depth

Height of density underflow

Rate of surface heat exchange

Height of opening at the dam; water depth
Surface elevation

Unit vectors

Boundary point

Coefficient in expression for bcttom friction; diameter of
average bottom roughness

Constant = 0.10

Length scales

Reference depth; length scale

Unit normal vector to the surface

Components of outward unit normal vector to the surface
Pressure; function to control coordinate spacing
Time-averaged pressure

Time-averaged and spatially averaged press
Atmospheric pressure

Hydrostatic pressure

Reduced pressure

Surface pressure

Surface heat flux

Function to control coordinate spacing; discharge through
the dam

Reynolds number
Richardson number

Critical Richardson number

c2
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WIND

Salinity; slope of reservoir bottom

Rate of strain tensor

Time

Stress force vector

Temperature

Deviation between instantaneous and time-averaged temperature
Time-averaged temperature

Difference between time-aversged temperature and time- and
space-averaged temperature

Time-averaged and spatially averaged temperature
Surface temperature

Velocity components

Tensor notation for velocity

Time-averaged velocity

Deviation between instantaneous velocity and time-averaged
velocity

Time- and space-averaged velocity

Deviation between time-averaged velocity and time- and
space-averaged velocity

Average velocity of density underflow
Outlet velocity

Velocity of the wind

Velocity vector

Wind speed

Cartesian coordinates

Tensor notation of spatial coordinates

Elevation of reservoir bottom




k,%
Ap

At , A,
i

At
c

6. .
1J

iJ
1]

ijk

o] ©

o

Arbitrary variable; conctant in an expression for vertical
eddy coefficient dissipative coefficient

Turbulent Prandtl number

Momentum correction factor; constant in an expression for
vertical eddy coefficient

Sum of ¢ , and y

ke * k2
Change in water density

Time and spatial steps

Time step restricted by Courant condition

Kronecker delta

Horizontal eddy viscosity

Eddy viscosity tensor as a result of time averaging
Eddy viscosity tensor as a result of space averaging
Cyclic tensor

Vertical eddy viscosity

Water surface elevation; vorticity

Molecular eddy viscosity

Nonorthogonal curvilinear coordinates

Water density

Time-averaged water density

Time-averaged and spatially averared water density
Air density

Reference water density

Transformed vertical coordinate

Bottom shear stress

Laminar stress tensor

wormal internal stress at the surtace

cl

S D

T




Tt Tangential internal stress at the surface
Tw’TWIND Wind shear stress
¢ Arbitrary variable; angle of wind with reservoir axis
Q Scaling parameter in an expression for the eddy viscosity
tensor 5
Q,j Coriolis parameter
7] Vorticity

v 8/3x i + 3/3yj + 9/3zk

NS

C5
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