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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement can be converted to metric (SI)

units as follows:

Multiply By To Obtain

cubic feet per second 0.02831685 cubic metres per second

Fahrenheit degrees 5/9 Celsius degrees or Kelvins*

feet 0.3048 metres

feet per second 0.3048 metres per second

pounds (mass) per cubic foot 0.01601846 grams per cubic centimetre

square feet 0.09290304 square metres

square feet per second 0.09290304 square metres per second

I,

* To obtain Celsius (C) temperature readings from Fahrenheit (F) re'id-

ings, use the following formula: C = (5/9)(F - 32). To obtain
Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.
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A REVIEW OF NUMERICAL RESERVOIR

HYDRODYNAMI C MODELING

PART I: INTRODUCTION

Reservoir Stratxif'ication and Its Importance

1. As the population of' the United States has increased over the

past few decades, there has been a corresponding increase in the demand

on water supplies. To help meet this demand, numerous impounding reser-

voirs have been constructed. The impoundment or damming of' a f'lowing

stream can signif'icantly af'fect the quality of' the water. This can hap-

pen as a result of' the direct increase in travel time required f'or water

to traverse the distance f'rom the headwater of' the stream to the dam as

well as the effect that stratif'ication plays in determining the quality

of' the water released f'rom the reservoir. The relationship between

density variations and quality parameters in the reservoir is a direct

result of' the influence of' stratification on the movement and mixing of'

water.

2. Stratif'ication or density variations in a reservoir can occur

as a result of' solute concentrations, suspended solids concentrations,

or temperature variations as a result of' surf'ace heat exchange. Surface

heat exchange is a function of' both short- and longwave radiation as

well as surf'ace conduction, evaporation, and precipitation. In the

remainder of' this report, the term "stratif'ication" will ref'er to density

variations due to thermal ef'fects.

3. At the beginning of' spring, a reservoir is essentially homoge-

neous. However, as the weather warms, the water near the surface also

warms due to an exchange of' heat f'rom the atmosphere to the water sur-

face. The warmer water near the surf'ace is then mixed downward, primarily

by wind action and diurnal cooling. By late summer, the reservoir will

attain maximum stratification (Figure 1). A warm upper layer (epilimnion)

of water resides over the cold deeper layer (hypolimnion) with a zone

5



EPILIMNION

METALIMNION
(THERMOCLINE)

HYPOLIMNION

RESERVOIR STRATIFICATION

Figure 1. Regions associated with thermal
stratification

between the two (metalimnion) in which a large density -radient exiLts.

As the weather cools during the fall, the surface temperature decreases,

resulting in denser water at the surface and a corresponding- convective

overturning. This mixing eventually results in an isotherr.al water body

that remains isothermal through the winter, except duri- perelo:f ice

cover. Such a cyclic variation of temperature is demon.itraed b, ,,

seasonal temperature profiles presented in Fixture 2.

Density Currents

4. The variation of the fluid density in a stratif eie ,

gives rise to what are known as internal density current: ,r r' :' ,.*

flow. Such flow refers to motions involving fluid mas-se. ,f +,-, f L.

phase. A heavier liquid flowing beneath a Ii-hter Iiqui " ,1 1- 1 i, r

6
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Figure 2. Temperature profiles of the west

basin of Horn Lake, B. C., during 1960

(taken from Slotta et al. 1969)

gas moving under a lighter gas will be subject to gravitational effects

that depend upon the differences between the two densities. Such flows

can be extremely important. Slotta et al. (1969) discusses an example

of a density current in the Watts Bar reservoir of the Tennessee Valley

Authority (TVA) system in which a coldwater density flow moves over

13 miles* upstream into the warmer waters of one of the arms of the

A table of factors for converting U. S. customary units of measure-

ment to metric (SI) units is presented on page 4.

7



reservoir. This bottom density current flows past a sewer outlet as

well as the outfall from a large paper mill. At anE time, sewa e and

mill waste were discharged into the coldwater current ani carried uT-

stream to the intake of a water plant. The situation :.s since teen

corrected by use of a variable level outfall for the sewauie and mi27

waste. The internal motions in reservoirs due to temperature variatlcnrs

or perhaps due to the inflow of sediment-laden streams tlus the un- --

standing and control of salinity intrusion in tidal estuarie.: are :.cnr

the most challenging of present-day problems dealin. with stralil n

flow.

Relationship of Water Quality to Hydrodynamics

5. The primary objective of a prediction of stratified flow in

reservoirs is to enable scientists to compute temperature distributions

and water transports insofar as they affect varicus water qualit

parameters. While the process of heat tranfer in bodies of water

nothing new, the prediction of the resulting multidimensional flow

phenomena in a reservoir for varying stream inouts as well as dam dis-

charges from varying levels is extremely difficult.

6. A substance (either chemical or biological) disperses through

a reservoir by convection and turbulent diffusion. in addition, the

substance is also acted upon by various chemical, biological, and zh:'s.-

cal rrocesses. An understanding of both the dispersion and The bes'cal

and biological processes is essential in any prediction cf wat er quality,

which is the ultimate goal to be sought, although not the -oal of this

study. it should be clear then that a problem of such sccpe calls for

a cooperative effort of a wide variety of scientific disciplines rano-

ing from meteorology, hydrology, and hydrodynamics to cher.istry and

biology.

Hydrodynamic Predictive Techni-ues

7. Tn an attempt to predict the hydrodynamics of q reservrir, one
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or perhaps a combination of three approaches may be taken--field

investigations, physical models, and mathematical or numerical models.

Field investigLtions may reveal what presently occurs in a water sys-

tem, but cannot predict what will result from changes due to new inputs

to the system. In addition, field investigations are usually relatively

expensive. Depending upon their complexity, e.g., large models of

river basins, estuaries, and bays, physical models can require signiifi-

cant investments of capital, long construction times, and long test

periods. However, physical models of reservoirs to address problems

such as near-field inflow selective withdrawal and pumpback character-

istics of specific outlet structures and geometries are far less expen-

sive to construct and operate. Depending upon approximations made to

the governing equations of motion and the solution technique employed

to solve the equations, numerical models can often provide relatively

low cost and highly flexible models. However, it should be remembered

that, as with many physical models, numerical models must be calibrated

and verified before confidence can be placed in results obtained from

them. Data from both field studies and physical model tests are used to

assess the reasonableness of numerical predictions and to aid in the

further development of mathematical descriptions of observed physical

processes. However, the steady advances in computer technology over

the past two decades (Table 1) indicate the potential for even greater

economical use of more widely applicable numerical models in the future.

In a -practical sense, a combination of the most desirable features of

both physical and numerical models will probably continue to provide the

best approach for solving most hydrodynamic problems.

Types of Numerical Models

8. Numerical hydrodynamic models can differ widely, depending

upon such things as the solution technique applied to the governing

differential equations representing the physical processes, the assump-

tions made in the derivation of the governing equations, whether the

phenomena are steady or time-varying, and the spatial dimensionality
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considered, with perhaps the spatial dimensionality being the most

commonly used delineator.

9. One-, two-, and fully three-dimensional numerical models that

provide for the simultaneous solution of the coupled turbulent velocity

field and the temperature field, subject to varying boundary conditions,

exist and are applicable in varying degrees to the problem of predicting

stratified reservoir hydrodynamics for use in developing water quality

predilctions. Perhaps thle earliest work in which computations for the

fluid density and the flow were coupled was the work of Welch et al.

(1966) in the development of the two-dimensional Marker and Cell code

commonly referred to as MAC. Paralleling the development of MAC and

the MAC-related codes, e.g., Chan and Street's (1970) SUMMAC, Slotta

et al.'s (1969) NUMAC, etc., have been a host of models that might be

described as control volume models. With this method, a reservoir is

divided into a number of horizontal layers extending over its breadth

and length. Homogeneity is then assumed in each layer. The result is

a one-dimensional model with variations allowed only in the vertical.

Governing differential equations are obtained 'by applying mass, momentum,

and heat balances for the control layers. Inf low and outflow boundaries

can be included quite easily in 8uch models. Parker et al. (1975) re-

viewed such one-dimensional reservoir models and concluded that such

models could be applied to larger, deep reservoirs where horizontal flow

has minimal impact on the vertical density structure. The primary ad-

vantage of such, a model is its ability to resolve long-term or seasonal

temperature profiles economically. However, it must be noted that such

one-dimensional models are not applicable to the problem with which this

study is concerned--predicting multidimensional flow fields within

stratified reservoirs for quality predictions.

10. Both two- and three-dimensional hydrodynamic models are dis-

cussed in detail in succeeding sections. Some of the models investi-

gated, such as the two-dimensional models of Edinger and Buchak (1979),

Waldrop and Farmer (1976), and Roberts and Street (3975), are directly

applicable to reservoirs, although in varying degrees; while others,

such as the two-dimensional depth-averaged models of Leendertse (1967),



Masch et al. (1969), and Reid and Bodine (1968), have no applicability

to the modeling of internal flows in stratified reservoirs other than

perhaps in the numerical techniques employed.

11. Three-dimensional hydrodynamic models have only recently

been developed to the state where application to complex geometries with

reasonable resolution for short simulation periods appears possible;

however, the cost is still prohibitive for simulations over long periods

of time. Thus, it appears that if one is only interested in the steady-

state flow and temperature field resulting from situations such as a

discharge of warm water from a power plant, three-dimensional modeling

appears feasible. However, if the interest lies in computing reservoir

hydrodynamics over a stratification cycle, i.e., several months, new

developments in solution techniques and the availability of larger and

faster computers must be realized before such modeling becomes practical.

Purpose and Scope

12. The need for a predictive capability--numerical models in

the area of stratified reservoir hydrodynamics--has been firmly es-

tablished. The purpose of the study described herein then is to select

the most applicable existing models and to provide recommendations for

additional developmental work needed to meet that need. Because of the

nature of the problem to be addressed, selected models must have the

capability of handling free surface variable density flows that are

time-dependent. PARTS II and III present a detailed discussion of the

theoretical basis and corresponding numerical techniques that are common

to all numerical hydrodynamic models. Three-dimensional hydrodynamic

models are discussed in PART IV, and two-dimensional hydrodynamic models

are discussed in PART V. In addition to an investigation of the theo-

retical limitations of various models, a limited attempt at analyzing

the actual performance of several models has been made. This was accom-

plished through model applications to a coldwater underflow in the I. 2.

Army Engineer Waterways Experiment Station (WES) Hydraulics Laboratory's

(eneral Reservoir Hydrodynamics (GRH) flume. These results are presented

12



in PART VI. Finally, conclusions off this study and recommendations for

additional developmental work needed to provide the Corps of Engineers

with computer models with the potential to provide a predictive capabil-

ity in the area of reservoir hydrodynamiics in an accurate and economical

ffashion are presented in PART VII.
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PART II: MATHEM~vATICAL DISCUSSIONS

Basic Equations and Approximations

13. The Navier-Stokes equations express the conservation of' mass

and momentum of a flo-w field and are the basic governing equations for

the solution of any fluid dynamnics problem. These equation.- written~ in

tensor notation are*3u 1

Continuity: ~ x

Momentum: 1 + -2 u + -h-.it I+ i 1  Jjk + X

where

0= water density

t = time

u. = tenser notation for velocity-

x. = tenisor notation of spatial coordinate

=acceleration of gravity

:k cyclic tensor
Q=Coriolis parameter

T =laminar .-tres-s tensor

= molec-ular eddy viiscosity

6 = Kronecker delta

and where

represents the viscous molecular stress arising as a result of the con-

tinuumn approach. It will be recalled from tensor theory that repeated

*For convenience, symbols are listed and defined in the Notation
(Appendix C).
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indices imply a summation and also that ciJk in the Coriolis term is

the cyclic tensor defined as

Eijk = 1 for an even permutation of ijk

= -i , for an odd permutation of ijk

= 0 , otherwise

For example, c123 = £231 = 
F312 

= 1 ; whereas, £321 £213 C132

and the Kronecker delta 6ij is defined as

6ij = 1 ,if i = j

= 0 , otherwise

In addition to the above equations, a conservation of energy equation

must also be written for fluid flow problems with thermal effects. With

the assumption of a constant specific heat and with the neglection of

viscous dissipative effects, one can write the energy equation as the

following transport equation for temperature T

T~ ~ 3(u ( D i -xLT

Energy: + 3. . + sources - 2sinks (3)
i iL

where D is equal to the diffusivity coefficient. This equation
ij

states that the temperature can change as a result of advection by the

flow field, molecular diffusion, and the actions of any sources and

sinks of heat. As a matter of fact, this same equation applies to the

transport of any constituent 0 , where 0 would replace T in the

equation and appropriate sources and sinks and boundary conditions

would be prescribed. For example, in the numerical modeling of the

hydrodynamics of an estuary, a similar transport equation for the salin-

ity would be required.

l. One additional equation remains to be written in order to

close the system. An equation of state expressing the density as a

15



function of the temperature and pressure (and salinity in estuarine

modeling) must be employed:

Equation of State: p = p(T,P) (W)

With the closure of the system, there exist six equations to be solved

for the six unknowns--density p ; three velocity components u , v

w ; pressure P ; and temperature T

Time averaging for turbulent flow

15. The above equations written with molecular values of viscosity

and diffusivity are only applicable in a practical sense to laminar

flow fields where the flow and thermodynamic variables do not exhibit

random irregular fluctuations in time. However, most fluids in moti.:n

exhibit such fluctuations and are referred to as "turbulent flows."

16. Following Reynolds, the approach normally taken to make thc

equations applicable to turbulent flows is to assume that the dependent

variables are composed of an average time-varying component plus a small

randomly varying component about the average value. This is illustrated

below.

U /

t U,

U-
U
i

Thus. one writts

u i(x~y,z~t) U u(x~y~z~t)l + u!(X~y~z ,t )

16



where

t+At/2

uui(xy,z,t) dt

t- At2

and

t+At/2

u!(x,y,z,t) dt = 0
t-At/2

u' = deviation between instantaneous velocity and time-averaged
velocity

u. = time-averaged velocity1

At = time step

With all the dependent variables written in' the form above, substitution

into Equations 1, 2, and 3 and then integration over the time increment

At produces the same form of the previous equations, but now written

with the time-averaged components as the dependent variables, plus the

additional terms

t+At/2

utf ulu dt

t-At/2

and

t+At/2

1 J T'u' dtAt/

t-At/2

where T' = deviation between instantaneous and time-averaged temperature

17. The first term is referred to as the turbulent Reynolds

stress, since the high frequency turbulent fluctuations manifest them-

selves as viscous stresses acting on the average component of flow.

'"sing Boussinesq's concept of eddy viscosity, the first, term is

written as

t +At/2
u'u' it =  + no iuznnation over i)Jt i 2} i-~A x xi)

t-t2

17



In analogy with the laminar flow case, ciJ is referred to as the

turbulent or eddy viscosity tensor.

18. In a similar fashion, the second term above, which arises

from the time averaging of the temperature equation, is commonly

written as

t+At/2J T'u! dt = A.
Tt Z jax
t-At2

where Ai j is called the "eddy diffusivity tensor" and T is the time-

averaged temperature.

19. The equations commonly applied to turbulent flcw problems

can now be written as

Continuity: Pu + = 0 5)

3t 3xi

a TU. ax.T=0

api a(puiu )
Momentum: - + x - + Pgi

ijkj k 3x j j.\axj xi

Energy: + i A sources sinks
at ax x ij ax. L.

Equation of State: P = (TP) (8)

where

p = time-averaged water density

P = time-averaged pressure

and where the assumption has been made that the eddy coefficients are

much larger than the molecular values; i.e.,

18



PE

C ij >> V

Aij >> Dij

Boussinesq approximation

20. Subject to the assumptions made in their derivation, the time-

averaged governing equations (Equations 5-8) are applicable to any turbi-

lent fluid dynamics problem. An approximation usually made when applying

the equations to hydrodynamic problems was first pointed out by

Boussinesq. When variations of temperature are small (At < +100C),

variations in density will be less than one percent. For example,

Edinger and Buchak's expression relating the density of water to the

water's temperature results in only a 0.15 percent increase in the den-

sity when decreasing the temperature from 200 C to 10'C. These small

variations can be ignored in general with one exception. The variability

of density in the gravitational term cannot be ignored. Hence, p is

treated as a constant in all places except the body force term.

21. With the Boussinesq approximation, the continuity and momentum

equations become

au.
Continuity: i- = 0 (9)

1

au (u u )
Momentum: + 1;P + P g.at x P0 1x 0P

(10)

2E ~ 1+
ijkajUk + p 0 ax + xI

where p is a reference water density. The energy equation and the

equation of state are not affected.

Conservative versus nonconservative

22. When the momentum equations are written as Equation 10, they

are known as the conservative form of the equations. If the convective
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term is expanded and Equation 9 is substituted, Equation 10 reduces to

3u. au.- -

+ 'L IL + 9 uat j ax 1 0 3 i 1 a ijk a

Pt axxIx

which is referred to as the nonconservative form. Analytically, the

two forms are equivalent. However, in numerical solutions of flow prob-

lems, they are not. As discussed by Leendertse (1967), a finite differ-

ence representation of Equation 11 does not conserve momentum of the

flow field; whereas, the identical numerical representation of Equa-

tion 10 does. As a result, most of the more recent numerical hydro-

dynamic models use the conservative form as opposed to the nonconserva-

tive form employed in many of the earlier models.

23. An interesting point is that in the laminar form of the

momentum equations, i.e., Equation 2, when the assumption of incompres-

sibility is made, researchers have historically neglected that portion

of the viscous term that contains the condition of incompressibility,

i.e., 2 u , even though they may have retained the conservative
3 '"' x - i

form of the convective terms. In the turbulent form of the equations,

there is no such inconsistency, since all molecular viscous terms are

neglected due to the assumption that the eddy viscosity is much larger

than the molecular viscosity. Therefore, the condition of incompressi-
2 u.

bility is not invoked in dropping the 2 1 6.. term in the turbulent

form of the equations.

Convective versus quasi-static

24. An assumption that is usually made in hydrodynamic models is

that vertical accelerations are negligible when ccmpared to the gravita-

tional acceleration. Neglecting viscous terms also, the vertical momen-

tum equation reduces to
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a1p

- =  
P9 (12)

where z is the vertical spatial coordinate and is positive downward.

Equation 12, of course, states that the pressure is hydrostatic.

25. When considering the coupling of the thermodynamics and the

hydrodynamics of a water body, a distinction must be made between con-

vective and, as labeled by Simons [1973), "quasi-static" models. Con-

vective models retain the complete vertical momentum equation and can

simulate in full detail the convective overturning of unstable water

masses, such as the upwelling of cells of warm water or perhaps the

plunging of a ccldwater inflow. Quasi-static models where the pressure

is hydrostatic eliminate vertical accelerations due to buoyancy effects,

which precludeq the explicit treatment of free convection associated

with unstable stratification. Convective overturnings can only be

handled as mixing along the vertical axis.

26. A commonly used technique is that of invoking a large verti-

cal diffusion of heat to counteract such instabilities. This results in

the removal of any unstable stratification the moment it occurs. Such

a technique is implemented by checking the vertical temperature profile

at each horizontal location after each computation. If at any point

lighter water lies below denser water, the profile is adjusted without

affecting the total heat content of the column.

27. As will be discussed in more detail in connection with the

numerical solution of the governing equations, models with the hydro-

static assumption require far less computer time than the fully convec-

tive models.

Spatial averaging

28. A solution of Equations 7, 8, 9, and either 10 or 11 consti-

tutes a fully time-varying, three-dimensional model with the only assump-

tion being the Boussinesq approximation. Such models do currently exist

and will be discussed in a later section. However, most hydrodynamic

modelers employ a spatial-averaging technique similar to the turbulent

time-averaging technique to yield either one- or two-dimensional models.
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As previously noted, che present state of the art is such that three-

dimensional models are not practical for enio-term simulations of th-

hydrodynamics of a reservoir.

29. The basic assumption in the spatial averaginrg of the three-

dimensional equations is that the dependent variables can le represented

by an average value over one or more of th~e spatial coordinates ,ius

some small random deviation, e.g., the velocity would be .ritten as

u. = u. + U(13)

where

x. +Ax./21 1

U . u. dx.
i 6x ] 1 I

1 x.-Ax. /2
1 1

x. +Ax. /21 1

/ u! dx. = 0Ax. f 1
1 x.-Ax./2

1 1

and

u. = time- and space-averaged velccity
1

nx. = spatial step1

u' = deviation between time-averaged velocity and t fice- and
1 space-averaged velocity

In an x , y , z coordinate system (with x referring -o t~ie], -

tudinal; y , the lateral; and z , the vertical), if i the te-

rration is over the width arid a width-avernged model resu. However,

if i = 3 , the integration is taken over the depth and a de.th-avera-ed

model will result. Many depth-averaged models have been 'eveloped since

Leendertse's (1967) work; whereas, laterally averaged models have onlv

been developed over the past five years or so. If the intesration is

performed over the complete cross section. a one-dimensional model with

variations allowed only in the longitudinal direction results. Such

models are not considered in this study.

30. As was done in the time-averaging of the instantaneous
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equations, expressions such as Equation 13 are substituted into the

turbulent time-avertged equations to yield a set of equations with the

time-averaj-ed and sratially a-verat-ed comonents of the flow and thermo-

dynamic varialles as de;enderit variables plus the additional terms

x.+Ax./2

A-Y- u!u. dx.

x. -Ax./21 J1

and

x. +Ax./21 1 YU

f TVu! dx.

x. -Ax./2
1 1

As in the time-averaging case, these terms are normally approximated by

x. +Ax. /2
1 1 3u. Tha

1 / -u!u! dx. = '. +

x1 Ax /2
1 1

and

x. +Ax. /21 1

1- f- T'u' dx i = A!
Axi  f ii ij x*

x.-Ax./2 1
1 1

where c!. and A!. are referred to as "eddy dispersion coefficients":L ij
by Holley (1969) to distinguish them from the turbulent eddy diffusion

coefficients arising from the time averaging, and T is the time-

averaged and spatially averaged temperature.

31. The resulting spatially averaged equations take different

forms, depending upon whether the averaging is performed over the depth

or the width. Since depth-averaged models are not applicable to the
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hydrodynamic modeling of stratified reservoirs, only the laterally

averaged equations, with B denoted as the width, are presented below:

Du. B
Continuity: .= (3 (l4)

1

u.B 3uuB
Momentum: 1 + xj 0x.it o 0 i

+-+ [B - + 1
0 0 1x.

TuB
Enr TB i D BC sorcs sink,,, (16)

Et 3x xs.

Equation of State: = 2 () (17)

where the Coriolis terms have been neglected, the water is assumed in-

compressible, and

where

1 = time-averatged and spatially averac-ed press

= time-averaged and spatially averagedl water den.-ity

Fik = sum of Lki ' £ , and i

C.. = sum of eddy diffusivities due to tine- and spiatial averating

32. A general discussion of both time averaging and spatial aver-
aging of the equations is presented in Ward and Espe 'y (1971), ,it addi-

tional details of depth averaging given by Leendertse (1967) and lateral

averaging by Blumberg (1975) and Edinger and Buchak (1970).

Vorticity-stream function notation

33. The governing equations written with the velocity and the

pressure as the dependent variables are often referred to as the prirai-

tive form of the equations. An approach that is often used in two-

dimensional modeling in the field of aerodynamics, although very rarely
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in hydrodynamics, is to write the equations with the stream function and

the vorticity as the dependent variables. With the vorticity defined as

the curl of the velocity, i.e., W = V x v , it can easily be seen that

if the velocity field is two-dimensional, e.g., v = ui + vJ , where

i , j and .. are unit vectors, the vorticity contains only one compo-

nent, namely 4k . Therefore, instead of being required to solve two

momentum equations for the velocities u and v , a single equation for

C and a Poisson equation for the stream function are solved. In other

words, the number of equations to be solved has in essence been reduced

by one. However, one must make additional computations to obtain the

velocity field from th# computed stream function. Still, when the

vorticity-stream function approach is applicable, it is probably faster.

Multiple outlets at a dam would, however, prohibit its use.

Subgrid-scale motion

3h. The eddy coefficients discussed above enter the equations due

to first of all the time averaging (diffusion coefficients) of the equa-

tions and then as a result of spatial averaging (dispersion coefficients)

to remove one or more of the independent spatial coordinates from the

equations. A similar coefficient arises as a result of averaging the

governing equations over the numerical grid upon which a numerical solu-

tion is sought. The numerical model cannot resolve small-scale local

circulation patterns or eddies unless the eddies extend over an area

covering several grid points. Thus, as discussed by Deardorff (1970),

an averaging operator is applied to the governing equations, with aver-

aging typically being over the grid volume of the numerical calculation

to filter out the subgrid scale (SGS) motions. Explicit calculations

are then made for the filtered variables after assumptions are made

about the SGS Reynolds stresses that arise from the averaging process.

All of this, of course, is completely analogous to the manner in which

turbulent and dispersive Reynolds stresses arose in the previously

discussed time and spatial c 'ging.

35. The total stress then is the sum of the molecular viscous

stress, the diffusive Reynolds stress, the dispersive Reynolds stress,
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and the SGS Reynolds stress. In practice, all of these are lumped into

one stress term with a single tensor eddy viscosity coefficient. Simi-

larly, the total diffusivity in the transport equation for temperature

is the sum of four components that are lumped together with a single

tensor eddy diffusivity coefficient.

36. In turbulent flow, these coefficients are not constant as in

laminar flow, but depend on the flow itself, i.e., on the processes

generating the turbulence. The determination of these eddy coefficients

in terms of the mean flow variables is a mnajor problem in hydrodynamic

modeling.

37. Up to this point, the eddy viscosity and diffusivity coeffi-

cients have been treated as second order tensors. Some researchers

actually allow for the tensrnr behavior as a function of the rate of

strain tensor of the mean flow field; however, the more common approach

is to neglect all off-diagonal terms and, furthermore, to consider the

two components in the horizontal plane to be equal. Some modelers allow

for a variation of these coefficients, but others take a rather simplis-

tic approach and treat them as constants over the computational field.

38. As noted by Lick (1976), the vertical eddy coefficients should

vary throughout the depth. Causes for their variations are related to

the following:

a. Stability of the water column.

b. Action of the wind on the surface.

c. Vertical shear in currents due to horizontal pressure
gradients.

d. Presence of internal waves.

e. Effect of bottom irregularities and friction on currents.

One often finds the vertical coefficients related to the stability of

the water column as a function of the Richardson number R.

R P az
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where z is the vertical coordinate and u is the mean horizontal

flow velocity.

39. Horizontal coefficients are generally much greater than verti-

cal coefficients. Based upon various surface dye experiments, primarily

in the oceans, it has been found that the horizontal coefficients are

prcportional to the scale of the turbulence raised to approximately the

4/3 power.
40. Lick indicates that in nonstratified flow, the eddy diffusiv-

ity is approxi[mately equal to the eddy viscosity, i.e., the Reynolds

analogy holds. Various forms that have been employed for thase coeffi-

cients will be presented later in discussions on individual models.

Boundary Conditions

41. As noted by Roache (1972), the thing that makes a particular

fluid flow problem unique are the boundary conditions that are prescribed.

Conditions at the surface of the reservoir, at solid boundaries, and at

both inflow and outflow boundaries must be specified in order to obtain

a solution of the governing equations previously presented.

Surface conditions

h2. In modeling the hydrodynamics of a water body, one of two

approaches is taken in the treatment of the water surface. The surface

is either treated as a free surface or as a rigid lid. In either case,

the heat flux at the surface must be specified as a boundary condition

on the temperature.

43. If the surface is treated as free, the assumption is made

that a water particle on the surface remains there, i.e., the surface

is a streamline. This then leads to the following kinematic condition:

+ u c + _L - W= 0(18)

for the computation of the water surface elevation, C~ . In addition,

the internal stresses in the fluid must equal those applied externally

to the surface. Considering a vertical-longitudinal two-dimensional (2-D)
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reservoir, for laminar flow the normal internal stress at the surface

T is
n

T -P + 2 [n2 + nn u + -w) + n

nT x z a z T

and the tangetial internal stress at the surface Tt can be expressed as

Tt = nxnz2u L - !w) + Q( u + -L) (n'- n2)

where, as illustrated in Figure 3, n and n are the x and zx z

n,,

Figure 3. Orientation of unit normal to the surface

components, respectively, of the outward unit normal vector to the sur-

face. The above expressions have been derived from the stress force

t given by

t = n • T

where, as noted, n is the unit normal to the surface and T iv the

laminar stress tensor for incompressible flow, given by

TF -P6 + 1/ui Uij ij + Ixj ax

Now the externally applied stress will be a normal stress as a result of
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atmospheric pressure and a tangential stress imparted by the wind;

therefore, the boundary conditions become

2n u ( aw Qu ~w 2 2)
x- k z a z _x wy:

and

-P = -P + 2 2 3u nnz + LW + n2 3
a I + ax \~ / z 3 z 2Z

where

TWI! = wind shear stress

P = atmospheric pressurea

Thus, in a strict application of the stress boundary condition, the

orientation of the surface, i.e., n and n , would have to be known.X Z

Since for a large water body the surface is at least locally flat, the

assumption of a flat surface is normally made so that

n = 0x

n = -1
z

The stress boundary conditions then reduce to

+ =TWI::

P = P -v

a a

hh. In addition, if the hydrostatic pressure assumption is made,

i.e., vertical accelerations are neglected, the above conditions take

the form below that is commonly found in the literature, where the

molecular viscosity p has been replaced by its turbulent eddy

counterpart, ec

v 3z WINDl

at free surface

a 2
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45. When the surface is treated as a rigid lid, it tbecomes in

essence a solid boundary, and the normal component of the velocity must

be zero. In addition, the pressure can no longer be prescrit:ed at 1h

surface, but rather must be computed. The pressure bcundar:y cornditio;

now takes the form of a derivative boundary condition, .e. , a Neurnoar.

condition as opposed to the Dirichlet condition for the free surface

case. The primary reason for assuming that the surfact, is a rit-id lid

is connected with stability problems encountered in the numerical solu-

tion of the governing equations and will be discussed later. It should

be obvious that with the rigid lid approximation, the effect on the

internal flow of the piling up of water cannot be accounted for.

Modelers such as Liggett, (1970) and Lick (1976) have employed the )ncept

in the development of lake circulation models. However, others such as

Eraslan* and Edinger** feel that the rigid lid approximation associated

with a uniform water surface assumption is not realistic in the develop-

ment of mathematical models for environmental flow conditions and that

the water surface elevation must be considered as an integral part of

the general solution of the hydrodynamic problem.

Solid boundaries

46. For viscous fluids, the fluid velocity is actually always

zero at a solid boundary; i.e., both the tangential as well as the normal

components are zero. This boundary condition is referred to as a "no-

slip condition." Although in theory such a condition must always hold

at a solid boundary, often in hydrodynamic modeling a slip condition is

employed. This condition is implemented by setting the component of the

velocity normal to the wall equal to zero but not the tangential; i.e.,

the flow slides freely along the solid wall. Theoretically, this implies

that the flow is inviscid. Therefore, proper boundary conditions for

a slip wall are that the normal velocity is zero as well as that the

vorticity is zero at the solid wall, since vorticity is created in

* Personal communication, May 1979, Arsev Eraslan, Chief Scientist,

Hennington, Durham, and Richardson, Knoxville, Tenn.
** Personal communication, May 1979, J. E. Edinger, J. E. Edinger

Associates, Inc., Wayne, Penn.
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v1L:(,i, re-ions. The tanrential component of velocity is then deter-

minei from the .ero-vorticity condition. However, it does not appear

that this is tihe apqroach uiually taken it, hydrodynamic modelint'. In

most cases, a : will be d iscu'ssed later, a stagglered grid is used in

cbt ni sing a nunerical solut i n such thlat the tangential component of th'.

velocity i:s not defi ed at the wall. Instead, its value must Ye -peci_-

fied outside the wall. The usual procedure taker by most hydrcldnaric

modelers for slip walls is tc set this value equal to its value inside

the field.

47. The maor reason f( r using, slip boundary conditions is

apjarently related to thc fact tat a relatively large grid spacing- is

normall; required in hlydrcdy,'niic mcdeling for economic reasons. I. *

such a g'rid s-paclng, near a solid boundary, if nc-sip conditions art-

applied, the loundary layer effes't extends farther into the field h.

it does in reality.

14. In addition to conditions being imposed on the flow field ;I

solid boundaries, information about the heat transfer must also Ic

specified. Either wall temperatures or the heat flux may be prescriled.

In all reservoir- or lake-type modeling that has been investigated, the

solid boundaries are assumed to be adiabatic, and thus the heat flux

through the boundary is set to zero.

Open boundaries

49. Open boundaries are exactly what the name implies, i.e.,

boundaries that are open such that fluid may either enter cr leave tl.

field within which a solution is sought. Such boundaries are knowni q.s

either "inflow" or "outflow" boundaries.

50. At forced open boundaries (inflows are always forced), either

flow, i.e., velocities, or water surface elevations (assuming a free s'ur-

face), must be prescribed as a function of time along with the *eMTera-

ture. Theoretically, rather than expressing either the flow or urface

elevations, one could specify a relationship between the two. ?uch a

boundary condition, hnown as a rating curve, is often prescribed at the

downstream end of one-dimensional unsteady flow models of riverflow. .

51. At outflow boundaries that are free rather than forced, e.g.,
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free flow from an opening at a dam, one cannot prescribe the flow

directly since it obviously is dependent upon conditions within the

computational field. In the temperature computations, an outflow bound-

ary is always considered free. A boundary condition that allows phenom-

ena generated in the domain of interest to pass through the boundary

without undergoing significant distortion and without influencing the

interior solution is needed. Since a physical law to prescribe such a

boundary condition does not exist, some kind of extrapolation from the

interior must be used. The most common methods used are either a

Sommerfeld radiation condition or perhaps one-sided differences when

employing finite differences to obtain umerical solutions.

52. The dispersion characteristics in one dimension of the waves

needed to prescribe the Sommerfeld radiation condition are known a.

where + is any variable anl C is te .  .. v,,'ty:"the wav,.

7ne disjper-sion characteri:t icsz are ., -n. ,kz 'n'. :

nt ,teneral :. a cons;tant. A simlifi'ati'r. f,:. .

r,'1lem is to a.:sumne that t.h,. ' -r . ..

. ,,e e ual to Ax!At (Ax ant - " .. c "

. r e ' , V ' -- ..
Mt 1 Ie I.'if r.. .i.

A rI(! , e,io' t,, :tr . , 4' , .'

fr he ihasp veici1:, riKIi. k s-............

v-l. -it, trrmr ne ,,r " , .



PART III: NUMERICAL DISCUSSIONS

53. The governing equations of fluid motion are nonlinear partial

differential equations, which in a strict mathematical sense, are classi-

fied as being of the parabolic type. However, outside the boundary

layer the equations exhibit a strong hyperbolic or wave character due to

the convective terms and, thus, are often considered as being of the

hyperbolic type. In any case, because of their nonlinearity, analytical

ilutions do not generally exist and one must resort to numerical methods

to obtain an approximation of the continuous solution of the differential

equations. Such methods include the use of finite differences and finite

elements.

Finite Element Method (FEM)

54. In the finite element approach, the field is divided into

finite elements, and the solution is approximated by a chosen function on

each element. This function contains free parameters, which are evalu-

ated by requiring the functiorn and perhaps certain of it: derivatives to

equal the solution and its derivatives at certain ront- oil the elemet..

if the parti.al differeritial equations can be exi-ressed in term.-, ri..,-

rral variational ir iniles, t:e variational i2te~r:iis over ets:., eaxie.t

are evaljated analytical'.isa fru,, t:;e chosen approximatioi, iiz~st .7

eaci -lement. :" i. te!rai: vor ,'ash ind v i ia e rle,,erit art, :.:,

over 1ti. t:,e e * e,<nt , l duce t le variat ,n i in* 1a .Qwr .- ':.' ,

* .ei i. .1h;: r''<.ilt ,.:,tirs: the, uz;:;o'w. val'ue: e' ;!, L t]: t. ,,'
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functions and the partial differential equations are evaluated or, each

element. This produces a set of simultaneous algebraic equation to be

solved for the values of the solution and perhaps some of its derivatives

at certain points on the elements.

55. The finite element approach is best suited to partial differ-

ential systems that can be expressed in terms of a variational principle.

In this case, the boundary conditions can be incorporated naturally by

means of Lagrange multipliers. For more general systems, particularly

nonlinear systems that are not expressible in terms of variational prin-

ciples, the finite element approach must use the method of weighted

residuals (6alerkin) whereby a functional form of the soluticn in each

element is assumed and integral moments of the partial differential equa-

tions are satisfied over the field as noted above. With this rrocedure,

the jartia. differential e4uations themseives are not actually satisfied.

.ourary conrditions are incorporated in the 'use zi functional form of

the suilution in the elements adjacent to the buoidaries.

56. The finite element method has en-e. its oreatest success in

the fieli of solid mechanics where for the mos_t :art vari4 tisnal rather

to.ari difference methusi are used. As i:,i <1 5) notes:

ihe reason for this is partily j 1 _ti. "he e ui-
f e .a of iasticity c-an he r.ut into a variationa'

fora ani engineer; ,av, found thi. to be t1e most I
bai; atra *etin t .... e inp: roximrat sons.

*r nad i t on , t he varia tIonal "; I rx: tons-- fin it e
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vl.a - in ra 'tie. lomicatfl .nres can, ea.siy

tr, ti in t:. s tno,; sinilc, 'tr'tl,2 'n tile solu-
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matrices that result from using differences. A common rebuttal by finite

element modelers to this criticism is that since implicitness is central

to the finite element approximation, implicit time differencing should

be employed to yield an unconditionally stable system and thus, the use

of larger time steps comipensates for the large computing times required

to invert the dense coefficient matrices each time step. However, it

should be remembered that in addition to stability considerations, one

raust first of all be concerned with the accuracy of the solution. When

using finite differences, it can be shown that as the computational time

step becomes increasing larger than that allowed by the Courant condi-

tion for gravity waves, e.g., in one dimension

At Ax

weeAt c=time step restricted by Courant condition

h = water depth

a corresponding increase in the number of spatial points per wavelength

must occur to retain the same level of accuracy in the amplitude and

phase of the computed wave. Leendertse (1967) indicates that from a

practical standpoint, generally the time step should not be greater than

3-5 times At cin the difference scheme he employs to compute vertically

averaged flows. Abbott (1979) and his colleagues at the Danish Hydraulic

Institute (DHI) have arrived at a similar conclusion for the difference

scheme that they employ. Edinger and Buchak (1979) have indicated that

for the laterally averaged case, the time step should not exceed 3-5

times the At computed from the internal wave condition given by

At < Ax
Ap gh
P

where

Ap change in water density
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Such an analysis of the error between the computed and analytic wave in

the FE4M has not been found in the literature.

58. In the de'elopment of a new model, an often stated disadvan-

tage of the finite element method is that the FORTRA14 coding is much

more cumbersome than with finite differences. Of course, if the model

already exists, such a disadvantage is of no concern to the user umiess

extensive modifications are required, in which case the cumlersomeness

of the coding might well become a major consideration in the model

selection.

Finite Difference Method (FDM)

59. The vast majority of the numerical hydrodynamic ::.eiael.,

whether they be one-, two-, or three-dimensional, empoy the use s,

finite differences to obtain solutions of the governing e ,iuaons f

fluid motion. In the finite difference method, Ie domain of the inde e'.-

dent variables is replaced by a finite set of points referred to I=i he;

or ,nesh points. One then seeks to deter,,ine approximate values

desired solutions at these points. The values at thie mesh .olnt %re

required to satisfy difference equations that are usially oLtanfd ly

replacing partial derivatives by partial difference quotients. -'e re-

sulting set of simultaneous algebraic e luatiens is then solved f-r tne

values of the solution at the mesh -ot. f e hounlaries Jo not

coincide with mesh points, then the finte enc roach ap

to the equations in a Cartesian coordi-it. e es inttro i

between mesh points to represent boundary i .

eQ. However, through coordinate tr'r' tuirre -)uiar Ion7-

arieis can he accurately handled while :4till :weakln- use of the siv

of finite .differences to obtain solutiots. .r .en'r'l

transformations, which will be discussei li, more .eti_ t th.

port, is a method developed by Thompson et al. J] -4 whict *-,r,1

curvilinear coordinates as the solution of two ell tic -or ore-

tial ejuations with Dirichlet Loundary conditin, oa Lin -

specified 'u; cunstant on the oundaries, and a distribution rf t:. :.r
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specified along the boundaries. No restrictions are placed on the irreg-

ularity of the boundaries, and fields containing multiple bodies or

branches can be handled as easily as simple geometries. Regardless of

the shape and number of bodies and regardless of the spacing of coordi-

nate --.nes, all numerical computations, both to generate the coordinate

system and t) subsequently solve the fluid flow equations, are done on

a rectangular grid with square mesh.

61. Since the boundary-fitted coordinate system has a coordinate

line coincident with all boundaries, all boundary conditions may be

expressed at grid points, and normal derivatives may be represented

using only finite differences between grid points on coordinate lines.

No interpolation is needed, even though the coordinate system is not

orthogonal at the boundary.

62. Linear transformations that allow for the physical dimensions

to be mapped between the values of 0 and 1 have been employed. For

example, as will be discussed later in PART IV, Lick (1976) maps the

vertical dimension in such a manner to represent bottom topographies

more accurately.

Discrete element concept

63. Eraslan employs a numerical technique that he labels "the

discrete element method." However from a conceptual stand]pOint, the

primary difference between the finite difference method as it is normally

applied and the discrete element method appears to be that the mathemati-

cal development of the discrete element method is based on employing the

control volume integral forms of the physical conservation principles;

whereas, the usual application of the finite difference method begins

with the continuum limit differential equations presented in PART II.

64. Eraslan indicates that the application of the discrete element

method to the solution of environmental fluid mechanics problems is based

on "he following procedure:

a. Divide the flow region into arbitrarily sized discrete
elements, preferably with geometrically simple (rectangu-
lar) enclosure surfaces except at the boundaries, such
that the finite number of discrete elements completely
spans the region.
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b. integrate the volume and ' rface area integrals of the

physical cunservationa e ju itions without assuming unifor:
values for the flow properties; over the surface areas.
This produoes a governin semidiscretized system of ordi-

nary differential t-qextisrn in time.

c. Apply proper interpolation teohriques for determining
transportive values of the flow propertic.; between dis-

crete elements.

651. As an example of the discrete element concept, consider the

one-dimensional problem illustrated in Figure 4. "Ieglecting frictional

~DISCRETE EL EMENT

DE 9FINED)Hp

i-1/2; i + 1/4
i - 1/4

Figure 4. One-dimensional discrete element

effects, the integral forms of the conservation of mass and momentum can

be written as

Continuity: - fff dV + ff • n dA = 0 (20)at A (0

fffff " ff
Momentum: -L- fcv o A dV + * • n dA = g f d-A (21)

at AJJffA3cv
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where

dV = differential volume
0

cv = volume of discrete element

A = Area of discrete element
cv

v = velocity vector

dA = differential area

f = force vector

Now define

S= ff u dA = volumetric flow rate
jA

Therefore, from Figure 4

ff A _=Gi-1/2 Gi+1/2JA

also,

fff dV (AxiA.) = AXB 1
Jo at i at

cv

where B. is the surface width and H. is the surface elevation.
1 1

Therefore, the discrete element equation for the conservation of fluid

mass becomes

3H 1
at Ax B (G i- 1 /2 Gi+1 / 2 ) (22)

Considering the surface integral for the momentum flux over the cross

section A. at the center of the element yields1

ffA 0  • n dA = u.G. + Reynolds stress terms
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Neglecting the Reynolds stress terms, which arise due to writing the

velocity as the sum of a time-averaged and spatially averaged component

plus its time and spatial deviations, the integral form of the momentum

equation applied to one-half of the discrete element becomes

at kx- (G~ i 1/2ui-1/2 - G iu .)

+ ?f&- [A ~/(H~~/ Hil A.(H. - H -1/)] (23)

66. Equations 22 and 23 both take the appearance of finite differ-

ence equations in which the time derivative has not been replaced by

differences. It appears that from a practical consideration, the primary

difference between the discrete element method and the application of

finite differences to the differential equation centers around what might

be called "the conservation oi geometrical properties," as reflected

through the definition of the divergence of a variable. In the equations

of motion, flux terms such as

AdA
ef v

appear. Considering the element below,

X

and working with only the x direction, the flux integral above can be

evaluated as
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112 . n 1A(A) +- (OA)_

Now, if one employs Gauss's Divergence theorem, the flux integral can

be written as

SA n dA = fff ( • ) dV0  (V •)i AxiAi

where V • ; is the divergence of 0 . The two previous expressions

can be equated, and one can derive an expression for the divergence over

the ith element as

> i [(#A)+ - (#A)]
A ii

or

(~7 * = A.~x )(24)
In the usual derivation of the differential form of the equations, the

divergence is written as

0 • - $(25)

Equation 24 might be referred to as the "geometrically conservative"

form of the divergence; whereas, the normal definition as given by Equa-

tion 25 would be referred to as the "geometrically nonconservative" form.

67. Note that physically the difference between the two forms is

that in the conservative form (Equation 2h), the area through which the

flux of 0 flows is that of the bounding faces through which the flux

actually occurs. In Equation 25, however, the influence of the respec-

tive areas on the flux through the boundaries is not allowed.

68. It appears that if the conservative form of the divergence is
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usid in expanding the vector form of the governinj dtffei'c tial equa-

tions, the finite difference method applied to those equations becomes

identical to the discrete element method if the same interpolation scheme

is used to provide values of the dependent variables at points where

they are not defined in the grid.

Finite difference spatial grids

69. The spatial grid in Cartesian coordinates most commonly used

by numerical hydrodynamic modelers appears to be one in which the water

surface elevation, temperature, and density are defined at the center of

a computational cell; whereas, the velocity components are defined on

the faces of the cell. Such a grid is illustrated below for a two-

dimensional problem.

V

h, p, T

0.U U
I, J)

V

With such a grid, the normal component of the velocity at solid bounda-

ries can easily be set to zero if the boundary is assumed to lie along

cell faces, which is the usual assumption.

70. With such a grid one obviously will need values of variables

at points wheve they are not defined in order to nmerically solve the

governing equations3. One solution is to utilize more than one grid,

with the variables defined such that a solution on one grid is used to

step the solution forward on another grid. As discussed by Simons

(1973), such a procedure can result in semi-independent solutions on the

different grids. The numerical error associated with the use of more

than one grid is known as a "grid dispersion error." The approach
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normally taken to provide the variables at net points where they are not
computed is to perform an interpolation within the grid. Simons shows
that conservation requirements are satisfied if the unknown values are
approximated by simple linear interpolation.

71. A grid often used in aerodynamic flow modeling has all vari-
ables defined at the same point, i.e., at the cell center. Such a grid
(shown below) has been employed by Waldrop and Tatom (1976) in their
three-dimensional hydrodynamnic modeling work.

J1 + 1/2-

_U, V, P, T. p

J - 1/2-

1-1/2 1 1+ 1/2

72. Still another grid is currently being employed by Thompson*
in the development of a model for use in selective withdrawal studies.

U. V
J + 1/2

P, T, p

J - 1/2

1-1/2 1 1+ 1/2

*Personal communication, April 1979, J. F. Thompson, Mississippi State
University, Mississippi State, Miss.
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In this grid, all velocity components are defined at the same point,

i.e., the cell corners; whereas, all thermodynamic variables are defined

at the cell center. Thompson indicates such a grid allows for a more

natural application of velocity and pressure boundary conditions i ( a

curvilinear coordinate system.

73. Most numerical finite difference hydrodynamic models employ a

constant grid size in each direction. However, models have been devel-

oped that allow for the size of the computational cell to vary over the

region within which flow computations are being made in order to increase

the resolution in certain areas. Examples are the 3-D models of Tatom

and Waldrop and Thompson's 2-D model that utilize, boundary-fitted coor-

dinates. As discussed by Roache (1972), there are two approaches to the

implementation of a variable computational mesh. One can merely solve

the given equations on a grid that has physically been constructed such

that the computational nodes are not evenly spaced, or one can transform

the equations and solve them in a transformed rectangular plane with

equal grid spacing, although the grid spacing is not equal over the phys-

ical region. Even though the two approaches might appear to be similar,

Roache indicates they are fundamentally different. When the untrans-

formed equations are differenced in the variable mesh, the result is a

deterioration of formal accuracy, but the transformed equations may be

differenced in a regular mesh with no deterioriation in the formal order

of truncation error relative to the transformed plane. Roache, there-

fore, states that the coordinate transformation approach, which can be

used for the purpose of aligning coordinates along physical boundaries

as well as increasing resolution in certain area,, is to be preferred.

As previously noted, Thompson's boundary-fitted coordinate technique

provides the most general such transformation that can be attained.

Time differencing

74. As previously noted, time integration is performed by finite

differences even in the finite element method. 7uch time differencin:

can basically be classified as either explicit or implicit. For either

type, one can construct first, second, or even higher order schemes;

although Kreiss (1975) indicates that second order schemes are to be
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preferred if one combines accuracy with considerations of economy and

simplicity. As an additional classification, one often finds time-

differencing schemes referred to as one- or two-step schemes.

75. In order that these concepts may be better understood, con-

sider the following basic equation:

2
-+ u -x = (26)

at ax2

76. If u is zero, this equation is the parabolic time-dependent

diffusion equation in which the dependent variable can change only

through the second order derivative dissipative term. If the diffusion

coefficient a is zero, the equation is a hyperbolic wave-type equation

in which 0 can vary only through advection by the velocity u

77. Assuming that is continuous and possesses continuous

derivatives, a Taylor series expansion in time yields

(t + At) = O(t) + At 2t + A t 2 12 + O(At 3 ) (27)
at 2 at22at2

thus, one can solve for a¢/at as

= O(t + At) - (t) + At E2j 4. (At2
at At 2 at2

or

=. *(t + At) - O(t) + O(At) (28)
at At

This is called a "forward difference" representation of the time deriva-

tive and as indicated by the notation O(At) is only first order.

Likewise, one can write the Taylor series as

-(t At) 0 *(t) - At -A + I + OAt3  (29)

at 2! at2
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so that

Jt At
Ii1 tt

which is 'LLn;as a La' '.warJ 'i fere . A:; witi, t.,.t .orw-rJ lif.er-

ence, ;uch an r i only a rs : or Lr ' n.e 1: onl subtr±act 

Equati n' from Equation 97, the fol lowi r, r, : lt:

?t =(t + At) - (t - At) +
at 2At

This expression is referred to as a "centered difference representat ion

and is a more accurate integration scheme as At-O , sin.,e it is of

second order in time.

78. Applying a forward differencing of the time derivative in

Equation 26 yields

n
n1 n + At 

)i i [_ ax

which is known as an "explicit time-integration scheme," since values at

the n + 1 time level can be computed directly from known values at

the previous time level n . In addition, such a scheme is labeled as

a one-step scheme, since only one sequence of computations is required.

79. Likewise, applying a backward differencing to the time

derivative yields

=n+l n i __ __+ 2n+li ~ A i t u i + 0 , 2] (33)
L ax

which is labeled as an "implicit time-integration scheme," since valuest h
at the i spatial point on the n + 1 time level are dependent upon
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dtia f OL e ~ r lt ~~a

The analyti 5011ot i On Of t hi.; e A-atitj j!_i f = on ,tarilt Ho.wever r *
nI+1 11-1

numerical solution usinig t'entered di ffereri,:' i:; f r
the following solutions are possible:
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2 ~ ~POSSIBLE NUMERICAL SOLUTION

I,~NA Y TIC''/ SOLUTION
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C 0 (37)

at a

As previously illustrated, a centered time differencing yields

_ n+l 11-i1 t2
= At+ + W(At3 )

at At 3 DO

whe five time levels would be required for a centered difference repre-

se-.ation of the third order time derivative. However, through a sequence

of time and spatial differentiation of Equation 37, one can show that

3 3
at 3  ax3

thus, a third order time-differencing scheme of the basic equation could

be written as

n+l n-1 = [l 3 + C3,t2 3 n

At ax 3 J

The only numerical hydrodynamic model found in the literature that is

of higher order than two in time is a vertically averaged model devel-

oped at the Danish Hydraulic Institute, which, according to Abbott (1979),

is "close" to third order.

Space differencing

83. As in the discussion on time differencing, either first,

second, or higher order differencing of spatial derivatives can be uti-

lized to create different order finite difference schemes. Once again,

Taylor series expansions in space yield the following expressions for

forward, backward, and centered differences of a spatial derivative:
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Centerted:

:uone can see thlat if a forward differenrie 'z -_ L- ace

anid time, a scheme that is com~pletely fis* 2 rt V

resuldts. Likewise, the use of centered dif:rn: 4 : Ljt: -!ace and

time results in an: L(tx ) schieme.

z.As withi centered differenCi4n- :).' _ e *atveo7 tme ise of

centered differen-~ec ,o replace spatial der'.vtives -an in a cor%-

putationai nTode. ':his is illustrated ly consierin5 tne so utior Of

where the analy tic solution is f "osat.Thus, sinlar to its

time counterpart, numierically the fol~winj zo~uts~sn can devweloli:

f POSSIBLE NUMERICAL SOLUTION

f %~ % % ~/~ ,ANAL YTIC SOLUTION

85. A najor problem associated with space differencing is the,

treatment of the nonlinear advective terms. The nonlinear terms tend to

generate higher harmonics, which can result in what Phiiii KT (I9C) called

a "nonlinear computational instability." As rioted by Roache (1972),

this problem is not unique to nonlinear systems, but can occur whenewer-1
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nonconmt:int coefficients appear in tihe differential equation. An effec-

tive :.ethod to sulpress hikh'er harmonics is to introduce eddy diffusion

or otninO. one scheme that tends to introduce artificial damping of

no. h ler har:.onics without atureciably affecting the long waves, i.e.,

the sclution of interest, is the two-ste Lax-Wendroff scheme which con-

>ines Lax's forward-in-time and centered-in-space scheme as the first

ste:. wit" a centered-i%-,ire and centered-in-space scheme for the second

stei.

o6. The use of either forward or backward spatial differences to

represent the advective terms of the transport equation is closely re-

lated to the characteristics of the hyperbolic equation. Consider the

case of a = 0 in Equation 26. The transport equation then states

that D /Dt = 0 along the characteristic direction given by dx/dt = u

Therefore, from the illustration below

n

dx
t u

n-1 - nn-

-i Ii+1

n n-i
i must be equal to , . If u is positive, the characteristic lies

as shown; whereas, if u is negative, it falls between i and i + 1
on the n - 1 level. The major problem in determining n is to deter-

n-. is odtr
mine ¢ 1 If linear interpolation is used between i and i - 1

n
the resulting expression for i corresponds to the use of a forward-

in-time arn oackward-in-space representation of the basic equation.

However, i u is negative and a linear interpolation between i and

i + I is employed, the resulting expression is equivalent to the use of

forward differences in the spatial derivative. If a linear interpolation

from i - i to i + 1 is used, centered differences result. In addi-

tion, one could use higher order interpolating schemes such as a qua-

dratic polynomial to interpolate between i - 1 , i , and i + 1 which
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jields Leith' 3 scheme (Roache 1972). This scheme is O(At, _ ) , eve:.

though only two time levels appear in the difference equation. It ?rX

be shown that this approach is equivalent to replacin tihe second orj" .

time derivative in the series expansion by a second order spatial

tive, as prtviously discussed.

67. One-sided differences, i.e., the forward or backward Sc-."..e. ,

introduce an artificial dissipation into the solution similar to t ,-

case where a # 0 ; whereas, centered differences do not introduceh

dissipation. However, the one-sided differences preserve what i 7iaheie

by Roache (1972) as the "transportive property," which is not t".t s

with centered differences. The transportive property is relate, t,

whether the parameter p is numerically advected solely in t.e direc-

tion of the flow, as theoretically it should be.

88. In the space differencing discussed above, o:iy first or

second order schemes have been discussed. However, higher order sa.ial

schemes can be developed and have been utilized, in particular in the

work of Abbott (1979). In the DHI models (Hinstrup 1977), Everett's

12-point interpolating polynomial in two dimensions is used to jenerate

a fourth order transport scheme that conserves mass, advects correctly

the center of mass, i.e., maintains the transportive property, has no

artificial dispersion (proportional to D 2/x 2), and in addition con-

serves third and fourth moments of the distribution of . A disadvan-

tage of such higher order schemes that extend over several grid points

is the difficulty encountered near boundaries.

89. Holly and Preissman (1977) present a method of constructing

higher order schemes that utilize only two grid points. Their method

ce o "und the use of Hermitian interpolating polynomials rather

than interp iating polynomials that extend over several net :,oints.

Hermitian polynomials are constructed such that not only the function

but also derivatives of the function are required to satisfy known con-

ditions at only two points. Numerical schemes based on this concept are

referred to as "two-point higher order" methods to emhasize the fa'I

that by using function derivatives, one can obtain hip-hrr order one-

dimensional schemes using information at only two points. In fa.,, the
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authors indicate that results from comparative studies show that the use

of derivatives to obtain a third degree interpolating polynomial is i.more

accurate than one using a third or fourth degree polynomial based on

additional points.

90. Such a method, of course, requires both the dependent variable

and its space derivative as initial and boundary conditions. However,

through an example application, Holly and Preissman (1977) show that the

inconsistencies introduced between the dependent variable and its deriva-

tives as estimated from initial given values of the variable will have a

minor influence on the results. Althouohi an extension of the method to

two dimensions is not presented, some preliminary computational results

are. The authors indicate tliat such an extension to two dimensions pre-

serves the favorable accuracy Iharoteristic u oserved in one dimension.

Consistency, con-

vergence, and stability

91. A finite difference schIeme s_; aid to be consistent if when

one expands the discrete syots., in :avlor's series form by retaining the

higher order terms, all the terms of the differential equation (with

possible additional terms) are generated. In addition, in the limit as

the time and spatial steps ' proaoh zero independently, all of the addi-

tional terms must go to zero.

92. In order for a numerical solution to be meaningful, it must

be a good approximation of the exact solution of the differential equa-

tions. Convergent finite difference schemes are those for which the

solution of the difference equations converges to the exact solution as

the size of time and spatial steps approach zero. The convergence of

finite difference solutions of the nonlinear equations governing fluid

motions cannot be proved analytically, and thus, one must resort to the

use of intuition or preferably a comparison of numerical results with

laboratory and/or field data to demonstrate that the numerical scheme

does indeed model the physical processes represented mathematically by

the governing differential equations.

93. In a rigorous, mathematical sense, a finite difference scheme

is stable if two solutions that are arbitrarily close to each other at a
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given time remain arbitrarily close for all time. In a practical sense,

one conbiders a particular scheme stable if the solutions do not grow

unbounded. For economic reasons, in the numerical calculation of space-

and time-dependent hydrodynamic problems, one desires to use as large a

space and time step as possible and still obtain the desired level of

accuracy and physical detail. However, in addition to these restric-

tions, the stability of the finite difference scheme dictates the size

of the integration difference steps that can be employed.

94~. Explicit finite difference schemes are conditionally stable;

i.e., stable computations will result so long as the space and time steps

satisfy what are known as "stability criteria." In free surface hydro-

dynamic modeling, the most i3evere of these criteria is usually the

Courant condition on a gravity wave,

t <Ax

which states that the time and spatial steps are restricted such that a

gravity wave will not propagate over more than one spatial step within

the prescribed time step. Additional stability criteria presented

below

At < A/

At < AZ 2/2A

At < Ax/F -gh

are related to the velocity of a fluid particle, the rate of diffusion,

and the speed of internal waves, respectively.

95. All or some of these restrictions may be eliminated by various

finite difference schemes. For example, fully implicit schemes can be

constructed that are unconditionally stable, at least in a linear sense;

whereas, mixed implicit-explicit schemes, such as that of Edinger and
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Buenak (1979), may be constructed to remove one or more of the more

severe criteria while continuing to be restricted by the less severe

ones. Each finite difference scheme has its own advantages and diffi-

culties, and which scheeme is best often depends upon the particular

problem. For example, one may be anle, from a stability standpoint, to

use an unlimited time step in an implicit scheme as opposed to perhaps

a rather small time step in an explicit scheme. However, if the physi-

cal character of the problem, such as rapidly varying input boundary

conditions, forcc,- the use o" a relatively small time integration step

in the implicit code, one may find that an explicit model is actually

more economical dute to the simplicity of the solution technliue.

96. Stability of a finite difference scheme car be related to the

concept of artificial viscosity or diffusivity, whic has been previously

discussed. Using Hirt's method of analysis, as opposed to th- more elab-

orate von Neumann analysis in which the growth of a Fourier component is

investigated (see Roache 1972), consider the stability of a forward-in-

time and centered-in-space representation of Equation 26:

%n+1 =n _uA t n n (tnl n n¢+€-2-x t i+l - 2i-_) ( + I - 2 i (38)

Replacing the discrete values above by a Taylor series expansion and

making use of the initial differential equation yields

at ax - t) a + 0(At) + O(Ax 2 ) (39)t x 2

It can be seen that as At and Ax-O , the above equation reduces to

the original differential equation; therefore, the difference scheme is

consistent. However, it will not be stable unless the effective dissi-

pative coefficient a - u 2At/2 is greater than zero, since the physical

nature of such a coefficient is to smear a disturbance. Thus, a ne.-ettive
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coefficient is a physical impossibility. The term -u 2At/2 is referred

to as the "negative artificial viscosity" or "diffusitivity" of the

scheme. One can now see why a forward time integration with centered

spatial derivatives will result in a completely unstable scheme when

applied to pure hyperbolic equations, i.e., a = 0 in Equation 26.

If backward differences (u > 0) are used to replace the spatial deriva-

tive, the effective dissipative coefficient becomes

Xe = a + uAx/2 - 2At/2e

Therefore, one-sided differences for spatial derivatives increase the

effective dissipative coefficient, which results in a more stable,

although theoretically less accurate, scheme.



1J2IV: THREE-DIMENSIONAL HYDRODYNAMIC MODELS

97. A relatively wide range of numerical three-dimensional hydro-

dynamic models currently exist. All that have been investigated utilize

finite differences to obtain numerical solutions of the governing equa-

tions and furthermore all employ explicit time differencing. The gen-

eral opinion in the past concerning the use of 3-D implicit schemes has

been that due to the extremely large matrices that have to be inverted

for a completely implicit model, such schemes would require excessive

computing time. In addition, apparently schemes such as Leendertse

(1967) employs in his two-dimensional work (alternating direction

implicit--ADI) have not been used for various reasons. First, such

schemes require all computational arrays to be in the computer's fast

memory for efficient computation, which would put a considerable re-

straint on the array sizes of a three-dimensional model. In addition,

such schemes place restrictions on the formulation of the finite dif-

ference representation of various terms in the equations.

98. The time-dependent and variable density three-dimensional

models of Simons (1973), Lick (1976), Leendertse et al. (1973), Waldrop

and Tatom. (1976), and Spraggs and Street (1975) are discussed in some

detail below. Other less general three-dimensional numerical hydro-

dynamic models exist, such as those of Gedney and Lick (1970), Liggett

(1970), and Bonham-Carter et al. (1973). However, for the computation

of flows in stratified reservoirs, only those models that are time--

dependent and allow for a variable density are of interest.

Simons' 3-D Lake Model

99. The modeling of stratified fluid flow may be accomplished in

two ways: (a) a layered model in which the fluid is made up of discon-

tinuous layers within which all fluid properties such as density and

viscosity are uniform and (b) a continuous model in which the density

is varied continuously. Historically, in numerical models developed

by meteorologists and oceanographers, the three-dimensional model has
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been viewed as a superposLition of layers of fluid separated I, mteri'tl

interfaces. The reason for this i.: 1,artly phy:icai, since luring cer-

tain periods a body of water may become so stratified thatt strong d'.-

sity discontinuities can exist. in thie other hand, if the vertical

resolution of the model is sufficiently large, any type of stratifi-

cation can be handled by a straightforward three-dimensional finite

difference grid, i.e., a sequence of rigid permeable horizontal levels.

100. Simons' (173) model is a multilayered model, which employs

the principles and terminology of layered models while retaining the

capability of treating the layers as being separated by permeable

rigid interfaces (either horizontal or sloping) as well as treating the

interfaces in the usual layered manner as moving material surfaces. The

equations for the layered system are obtained by vertical integration of

the governing equations (written in the conservative form) over each

layer as opposed to applying the equations at given levels and replacing

the vertical derivatives by finite differences. The primary dependent

variables are the layer thickness or vertical velocity and the layer-

averaged horizontal velocity components as well as the temperature.

101. Simons invokes the i3ousinesq approximation and assumes that

vertical accelerations are negligible; i.e., the pressure is hydrosta-

tic. With the assumption of the Boussinesq approximation, the equation

of mass continuity reduces to the incompressibility condition, which

implies that the vertical fluid motion is directly related to the diver-

gence of the horizontal flow. With the hydrostatic pressure assumption

replacing the vertical momentum equation, the vertical component of

velocity cannot be computed in the same manner as the two horizontal

components. Instead, the equation expre:;sing incompressibility is

integrated over a layer to yield an equation whose primary purpose is

to compute water displacements from a given distribution of horizontal

velocities. From this equation, one can determine either the displace-

ment of a material surface or the vertical velocity of the fluid through

a rigid interface, if g<iven the appropriate boundary conditions at the

free surface, at the interfac'-, and at the bottom. The computation

starts with the bottom layer and proceeds upward.
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102. The equation of state is such that the density is assumied

to be a quadratic function of the temperature. An eddy coefficient

model is employed to approximate the exchange of energyj between the

large-scale flow and the smaller turbulent eddies. It appears that

constant, but different, horizontal and vertical coefficients are

employed. Simons does indicate that the vertical eddy diffusivity

depends on the static stability 3p/ z of the water column, and he

allows it to attain very large values for unstable situations in order

to simulate the net effects of convective overturning.

103. The time integration scheme employed by Simons uses centered

differences, where the pressure gradient terms, the divergence terms,

the Concols terms, and the nonlinear terms are evaluated at a time step

centered between the old and new time, while the dissipative and diffu-

sion terms are evaluated at the old time step. Centered differences are

also used to replace spatial derivatives, and thus, the finite differ-
2 2

ence model is almost 0(At , Ax ).Linear interpolation is used to

provide values of variables at points where they are not defined.

104. An interesting aspect of Simons' model is his use of two

different time steps. The surface and internal computations are de-

coupled such that a small time step governed by the Courant condition

is used to compute the water surface elevations; whereas, a much larger

time step governed by the speed of a fluid particle is used to compute

the internal flow and the temperature. This is accomplished as follows.

The layer-averaged equations are added to create a vertically averaged,

i.e., one-layer, model for gross fluid flows, which are then used to

drive the free surface. The layer-averaged equations then use the re-

sults of the vertically averaged model to produce the internal flow

field. Simons indicated that in Lake Ontario, with a grid mesh of 5 kin,

the surface elevation and the vertically integrated flow were computed

with a time step of the order of one minute, while the internal flow and

temperature were predicted with a time step of the order of 30 min.

Leendertse's 3-D Estuary Model

105. This variable density model (Leendertse 1973) has been
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developed for the computation of the hydrodynamics of estuaries and

coastal seas. Some of the assumptions and formulations are not directly

applicable to freshwater reservoirs where density effect; are due to

temperature variations rather than salinity; however, it is believed

that such an extension would not be difficult.

106. The approach taken in the formulation of the equations is

similar to Simons (1973) in that tne basic three-dimensional equations

are integrated over a vertical layer to yield layer-averaged equations.

Unlike Simons, however, Leendertse's model does not allow movable mate-
rial interfaces. The water body i s represented by ri td oermeabl ehori-

zontal surfaces with the thickness of each interior layer constant in

space and time, although the thickness of each layer is not necessarily

the same. The top layer that contains the surface is, of course, rep-

resented by a time-varying and spatially varying thickness.

107. The basic three-dimensional equations are written in the

conservative form to insure that mass, momentum, etc., are neither

created nor destroyed by the computational scheme. Before the layer

integration is performed, the Boussinesq approximation is as:sumed and

the pressure is assumed to be hydrostatic. 'Theref'ore, as in Simons'

model, the vertical component of the fluid velocity must. be computed

from the layer-averaged condition of incompressibility.

108. Approximate eddy viscosity models that consider only the

diagonal components of the viscosity tensor are employed to represent

the subgrid-scale motions. The momentum and masfs dispersion QO< §'I-

cients are assumed to be constant in the horizontal dimension; of the

flow, although they can differ in the two directionrs. The verticui

exchange coefficients are calculated with a more i :ticote motel

that takes into account the vertical velocity, the con1 , rutio- -rn-

dient, and the stability of the flow accoriint to the K,:.ardso, ;:u' ,er.

109. Since the model was developed for :in ,,i ms:, or e"s! al

environment, the equation of state relate> the fluidi d i to he

salinity. If the model were to b, applied to ui fr:;wr*rTv..:,,;ent,

a new equation of state relating the density to temperature wu] I, of

course, need to be substituted. in additioni, surl-lehet exo'lmn
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would have to be accounted for through the surface boundary condition.

110. At the boundaries of the water body to be computed, all

diffusion coefficients are set to zero, as are the velocities perpen-

dicular to the boundary. In this manner, no mass fluxes or diffusive

transports of salt result. At the surface, the boundary stress due to

the wind is computed from a quadratic law. A similar quadratic expres-

sion employing the Chezy coefficient is used to represent the dissipa-

tion of momentum at the bottom through the bottom shear stress. When

employing the layer-averaged approach, interfacial shear stress terms

show up in the resulting equations for the layer-averaged variables.

As for the boundary stress specifications, a quadratic relationship

between the interlayer stresses and the velocity differences of adjacent

layers is assumed applicable.

111. The spatial grid used in the finite difference formulation

is similar to that employed by Leendertse (1967) in his two-dimensional

work where velocities are defined on the faces of a cell. However, the

water surface elevations, which are determined from an equation obtained

by summing the layer-averaged incompressibility equation over the water

column, are defined at the corners of the top layer of cells rather than

at the cell center as in the 2-D model. Pressure, density, and salinity

are defined at cell centers.

112. Centered differences are used for both time and spatial

integrations. Therefore, the resulting finite difference scheme is
2 2O(At $ tAX ) except that the diffusion terms are taken at the lower

time level, i.e., t =(n-l)At , since otherwise the computation becomes

unstable. Since centered differences are used to replace the time de-

rivatives, initial information at two time levels is required. To re-

duce the time-splitting tendency of such a scheme, a single forward

differencing step is used to obtain initial information on the second

time step.

113. Since an explicit time integration scheme has been utilized,

the basic stability criterion is once again the Courant condition.

Although the computations with the adopted scheme are extensive,

Leendertse indicates that the model is well within the range of
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.*. .,:.: t&i r -ii-lid assunrlton, the pressure i:s no ionzer

: . t . ur:a "-u. instead varie,. with the internal flow

'i:. .iitiinal equation m bst be derived ani subsequently:

r.t i- i t. e ur fta-e pres: ur. Once the surface pressure is

, :',eterm::ined from-: the hydrostatic

",..at o. for the curface pressure is deriveu by

t.u .:. yv':' -,, o' to vertically inteorated !romentum. equations

ni L.- in.c .1 o:r ver-tically intecrated continuity and hydrostatic

press ure e ourions. the form of this equation becomes

- ( + ( F(u,v,w,T)

w:ve s is t:e sJr"ace pressure. Lick indicates that even though a
5

ri,-id lid h:as leen assumed, one can compute surface displacements (ne-

-ecn the tranion. motion due to gravity waves) by interpreting; the

surface pressure as a pressure due to a height of water above or below

the location of the ric-id lii. The numerical solution of the pressure

loisson equation at each time step is accomplished by using the ADI

met anod.

118. The diagonal components of the eddy coefficient tensors are

used to account for the turbulent subgrid-scale motions. The horizontal

edd', coef'ficients are assumed constant, but the vertical eddy coeffi-

clen'. are a function of the temperature gradient and other parameters.

This hependence on temperature is given by

A =a- -

v is the vertical eddy diffusivity and a and , are con-V

lependinmr on the local conditions. The constant a is equal to

cal eddy diffusivity under neutral stabili'y conditions. Tri-

n'ues for A and S are 'O cn/sec and 200 cm /0 -sec, rei;pec-

V, I LiJckk :.indles a static ins tability in the mune manner as Imionr;

i.e., extensive mixinF is assumed.
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119. An interesting aspect of Lick's model is his use &f a Iinear

transformation in the vertical direction such that the X , y , z

Cartesian system is transformed to a x , y , o sytem wh"ere <

< I , with the bottom corresponding to j 0 and the top to 1

The o coordinate is defined by

h

where '%(x, y) is the depth of the water body. ith such a tra:s;r:'-

tion, irreo:ular bottoms can be handled more accuratel, and " f -i:

r'or exmirle, the usual finite difference recresentalllo-c

bottom of the CRH flume (epplications to be discussed I'ter .

below.

I III I 

However, the use of the tran :formation alove ei ollowin-

t:,ysical representation, wit, the actual n'e i: , xon: cex;

performed on a rectangular transformed -i

YI ; I o enotel, however, t:iut einoe the 'an.-,

: F ,'t[ , dh',nrI tr'nSf :'7.int- ' :.e .- )vertin' ,'.sl x: , :9 '' .,



derivatives of the deu)t -ire ncrl Hi:ie with respect to those iiffusive

terms containing only the ie tii an,_, tnus iros such erms.

120. Solid boundaries are taken as no-sli, impermeable, adia-

batic surfaces. A heat transfer condition proportional to the temper-

ature difference (surface tem!oerature minus equilibrium temperature)
and a wind-dependent stress are imposed at the surface. ..oral deriva-

tive pressure boundary conditions are derived from the appropriate

vertically integrated momentum equation. At open boundaries far from

the point of discharge of the river or plume, the normal derivatives

of the velocities and the temperature are zero.

121. As opposed to the layer-averaged approach of Simons and

Leendertse, Lick performs a straightforward finite differencing of the

governin4 3-D equations. A forward time-differencing integration scheme

is utilized along wit centered differences for the spatial derivatives.

Thus, the finite difference scheme is of the first order in time and

second order in space, i.e., 0(At, Ax 2 ) . The computational grid is

such that the hiorizontal velocity components, u and v , are defined

a- the cell corners with the vertical component defined at the middle

of the top and bottom face of the cell. The pressure and temperature

are defined at the cell center, except for the surface pressure, which

is computed at the center of the top face.

Waldrop-Tatom 3-D Plume Model

122. There are actually two versions of this extremely versatile

three-dimensional variable density model (Waldrop and Tatom 1976). One

employs the hydrostatic pressure assumption, and the other retains the

corplete vertical momentum equation. Both utilize the Boussinesq ap-

proximation and both neglect Coriolis effects. It appears from Waldrop

and Tatom (19T6) that the hydrostatic pressure version solves the non-

conservative form of the basic governing equations; whereas, Tatom and

Lmith (1979a) indicate that the conservative form of the equations are

solved in the version that does not make the hydrostatic assumption.

Both versions solve the governing equations transformed into orthogonal

65



curvilinear coordinates. This, of course, aliiwL :'or more accr,

modelin of curved boundaries such as river bends.

123. In the noniydrostatic version, tle*. pre ;ur' i wrtteA.

the sun of the hydrostatic pressure and th e iyn- :ic i'e'.'ce I/I v,

and a Poisson equation for the dtnamic resueis derivdfr oltI

over the complete 3-,) field. The Richardson iterativ- t riniquei,

ployed. It might be noted that in the P-oiLsson rressure equation;, ter:si

that involve the horizontal density gradients have be ele'tel. U)w-

ever, it does appear that horizontal density gradients, as reflecte,:

through the hydrostatic component of the pressure, are included in the

velocity computations from the momentum equation.

124. With the retention of the complete vertical momentun equa-

tion, a fully convective model that can handle buoyancy effects, i.e.,

unstable density profiles, is realized. The vertical component of the

velocity is now determined from the vertical momentum equation as

opposed to its sol ution from the incompressibility condition in the

hydrostatic version.

125. The effects of turbulence are included through the use of

eddy coefficients. The horizontal eddy viscosity coefficien t C H is

derived from a mixing length equation for open channels in the form

zB2  2  -
EH = O.16(z - z (B )2 ( - z)!(C - zB)3u + v 1Vzl

where

z = z B at the bottom

z = at the free surface

which provides the largest values of E H in deep regions with large

velocity gradients in the vertical; whereas, in shallow and/or low flow

regions cH  is small. The horizontal eddy diffusivity AH  is related

to the eddy viscosity by

AH  = 1.33 H

126. In turbulent flows, density stratification inhibits the
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vertical exchange of both heat and momentum as well as the mass of any

constituent. fhe Waldrop-Tatom models allow the vertical eddy coeffi-

cients to be functions of the stratification through their dependence

on tie Richardson number in the following manner:

E = H (1 + lOR )1/2v [Hi

A = A, (1 + 3.33R,)-3/2

where 2 -2

Ri = -(g/p)(Dp/az) u + v

It might be noted that although the eddy coefficients are allowed to

vary spatially, spatial derivatives of the coefficients have been

neglected in the model.

127. At solid boundaries, reflection boundary conditions are

imposed to simulate slip boundaries. Therefore, with solid walls as-

sumed to lie between the last two grid points, fictitious values of

dependent variables on the opposite side of a wall are set to prevent

mass, momentum, or energy transfer through the boundaries. Velocities

normal to the wall are set as the negative of the value immediately

inside in order to make the normal velocity zero at the wall, but the

tangential component is set equal to its value inside since with slip

walls, the wall does not influence the tangential flow. Derivatives

of the temperature normal to solid walls are set equal to zero to insure

no transfer of heat.

128. The velocity profile near the bottom is assumed to be loga-

rithmic. Thus, the equation below is used to help set the horizontal

velocity components at all grid points adjacent to the bottom in the

solution of the momentum equations:

-L- ln ( zB) + 8.51
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where

T = snear stress
0

(z - zB) = height above bottom

k = diameter of the average roughness

The actual values chosen are such that the finite difference represeita-

tion of the velocity gradients au/az and av/az near the bottom match

the gradient specified by the equation above. As noted, this is the

procedure for determining bottom velocities for use in the momentum

equations. However, in the transport equation for temperature, the

velocities at points adjacent to the bottom are determined from an

actual fit of the logarithmic profile rather than by forcing the proper

gradient. In the computation of the free surface, a control volume is

formed between the top grid plane and the free surface. Since the three

velocity components from previous computations at a particular time line

are known, the mass transported into and out of the control volume can

be computed. The free surface is then adjusted to insure conservation

of mass. In the current versions of the model, the time integration is

essentially a forward difference, but with an additional step that

Waldrop and Tatom (1976) indicate helps to stabilize the computations.

This is accomplished with the following scheme:

nF nn + ( a n - 1]

n+l n i(au\n  (au\n-1 At
u :u + L\-t!+1 \ I[ 7

where (au/at) n - 1  is saved from computations at the previous time step.

It would appear that this is equivalent to replacing the time derivative

at t = (n - 1/2)At by a forward difference between (n + 1)At and

nAt . Thus, the scheme is still only first order in time. Centered

differences are used in the diffusive terms, while one-sided windward

(either forward or backward, depending upon the direction of flow)

differences are used in the finite difference representation of the

advective terms. Thus, it would appear that the solution scheme is

O(At, Ax)

129. As noted in a previous section, the computational grid is

such that all variables are defined at the same point, with uneven
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spacing of those points allowed for more flexible resolution. Waldrop

and Tatom indicate that a transformation of the x , y , z coordinates

such that even increments in the transformed system produce uneven spac-

ing of the grid points in the physical system is employed. However,

details of the transformation are not discussed.

130. The Waldrop-Tatom model is capable of handling branching

systems through its modular concept in which the equations are solved

simultaneously in different branches or regions. The regions are con-

nected such that when there is free flow between regions, each region

uses previously computed information from the adjacent region as a

boundary condition. Of course, the fact that an explicit time-

integration scheme has been employed greatly decreases the difficulty

in incorporating such a concept. The handling of connecting branches,

i.e., connecting regions, in an implicit model would be much more dif-

ficult to accomplish. The capability of handling connecting regions,

allowing for a variable grid, and the use of curvilinear coordinates

makes the Waldrop-Tatom model extremely versatile.

Spraggs and Street's 3-D Model

131. The nonhydrostatic version of the Waldrop-Tatom model and

the three-dimensional model developed by Spraggs and Street (1975) are

the only 3-D numerical models studied that are fully convective models.

In other words, the complete vertical momentum equation is retained so

that buoyancy effects are modeled directly. As indicated by Spraggs and

Street, the primary use of the model is to simulate flows in which the

stratification induced by heated effluents sets up in a matter of hours.

No claim is made as to the usefulness of the present form of the model

for simulating flows over periods extending over the time required for

the formation of a natural thermocline. This is because of the exces--

sive computing time required due to the extremely small time step im-

posed by the explicit nature of the solution.

132. As in the vast majority of hydrodynamic models, the

Boussinesq approximation is made, which reduces the conservation of
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mass equation to the incompressibility condition. In addition, an eddy

viscosity model is used to simulate the transfer of energy from the

developing flow to small-scale turbulent eddies, i.e., the subgrid-scale

motions. These appear to be the only assumptions made to the basic

equations. It should be noted, however, that one important restriction

exists in the basic mathematical development of the model due to the

manner in which pressure gradients are handled in the horizontal momen-

tum equations.

133. A reduced pressure PR , which is a measure of the perturba-

tions in the system, e.g., caused by stratification and/or vertical ac-

celerations, is defined as

(P - Ph)
PR 3 Pr1)

where the hydrostatic pressure P is

Ph = (L - - Z)Prg

Pr is the density of a reference state, L is a reference depth,

t(x,y) is the water surface elevation, and z is the distance above

the reference bottom. With the hydrostatic pressure defined as above

in terms of a reference density that is not a function of (x,y), the

pressure gradient becomes

1 ;P p__R _
-~ - gPr ;xi ax 3xi

which does not allow for the effect on the flow of horizontal gradients

in the density. It appears that this restriction could be removed by

defining the hydrostatic pressure in terms of the spatially varying

density rather than of a constant reference density. Both Edinger and

Buchak (1979) in the modeling of stratified reservoirs and Hamilton

(1975) in the modeling of salinity-stratified estuaries have indicated

that the horizontal density gradients are quite important in modeling

variable density flows.
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134. As is usually the case when the hydrostatic pressure assump-

tion is not made, a Poisson equation for the reduced pressure PR is

derived by taking the divergence of the vector momentum equation and

combining with the time derivative of the incompressibility condition.

Derivative boundary conditions on the pressure at solid walls are

derived from the momentum equations; whereas, the pressure itself is

prescribed at the free surface. The solution of the pressure from the

three-dimensional Poisson equation is obtained through the iterative

method called point Successive-Over-Relaxation (SOR). Spraggs and

Street indicate that the pressure solution usuallj converges within

50 iterations. Such a solution of a 3-D Poisson equation at each time

step constitutes a major portion of the total computation time of the

model. Thus, one can see why the hydrostatic pressure assumption has

been so popular in the past in the development of hydrodynamic models.

135. The mathematical model is rendered dimensionless through

the introduction of three length scales, Lx I Ly , and Lz , such

that any physical problem is mapped to the interior of a unit cube.

Thus, in the numerical model, there are six length parameters--L ,
xI

Ly , -z , Ax , Ay , Az . The first three are defined as above,

while the second three are determined by the number of computational

cells within the unit cube. If L Ax = L Ay = L Az , the numericalx y z

model is undistorted, and the computational cells in the physical

problem are cubes. Generally, the horizontal length scales will be

much larger than the vertical length scale giving rise to a distorted

model in which L Ax L Ay # LzAz .x y z

136. The free surface elevation is computed from the kine-

matic boundary condition

at -x w-y

where the vertical coordinate is positive downward. The solution of

the free surface is obtained through the following ADI scheme, which

is one iteration of the Peaceman-Rachford scheme with an acceleration

parameter of 1.0:
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n At n+l(+1, 1n+l

ij ij 2 Lu\ 2Ax ij
J 2 ji +2i +

22Ay i

n ,,,- L\ 2+yw/ +

n+1 At un+l 1_+1l,1J1 + vn+l

CiJ = iJ 2  u 2y iJ

1n+ 1 n~l{i,j+l L 1i +-l r n+l]

2Ay ?Ij +

From the above solution technique, it can be seen that since velocities

at the n + I time level are required, they are computed before the

computations for the free surface are made.

137. The Spraggs and Street model is the only 3-D model investi-

gated that allows for tensor eddy coefficients, i.e., the off-diagonal

terms are not neglected. The form of the eddy viscosity tensor selected

by Spraggs is a function of the rate of strain S , i.e.,

SiJ 
= QAxiAxj(Sn Sun)

1/2

where the Reynolds stress is

u! u' = -E., S.. (no summation over i)
i j ij ij

and the rate of strain tensor Sij is

au. 3u
Sij 3xj i x i

As Spraggs and Street note, there is some question as to the v.i]o,, of

the scaling parameter 2i , since the range of problem.; that miht b~e

simulated could extend from laboratory flume dimensions to .;evera1

hundred kilometres in the field. A value of 2 = 0.O1 wao. u.d ly
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Spraggs and Street in the initial testing of the model. The eddy dif-

fusivity is similarly defined such that

u ! T ' 
D-T g .

where a is the turbulent Prandtl number. It should be noted that
p

Spraggs did not allow for the effect of stratification, through the

Richardson number, on the eddy coefficients in his initial work, but

did indicate that such a modification would be made later.

138. The computational grid employed is one such that the

velocity components are defined on the cell faces; whereas, the

thermodynamic variables are defined at the cell center. Thus, the

grid is in essence a grid similar to that employed by Leendertse (1967).

139. Boundary conditions at solid walls are treated as no-slip.

Thus, the normal velocity at a wall is set to zero, and its value at

one grid point outside the wall is set as the negative of its value

at the first interior point. Tangential velocities are not defined

at the wall. However, itL order to model the effect of a no-slip

wall, its value at one grid point outside the wall is taken to be

the negative of its value at one grid point inside. Both inflow

and outflow boundaries are assumed to be forced. At the surface,

velocities are set using a wind stress condition. The temperature

field at all boundaries except the free surface is assumed to have

a zero gradient; whereas, surface temperatures, of course, are

determined from the surface he t exchange determined by prevailing

atmospheric conditions.

140. In the solution of the velocity and temperature fields,

forward differences are used to replace time derivatives. Roache's

second upwind differencing scheme is used to replace the advective

terms. Thus (see Figure 5),

Q DOU n u. upaR - 'L'L(x I. Ax

where aR and aL depend on the sign of the convecting velocities.
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Figure 5. Definitions for upstream differencing

For example, if u i-/ 0 -,

u. 'i+1 /2

U L u i-1/2

a B ij
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Centered differences are employed in the representation of the diffu-

sive terms. Therefore, the finite difference scheme is in essence

0(At,Ax) Various schemes of higher order were investigated by

Spraggs and Street, e.:., the leapfrog, the Adas-Bashford, and Pron's

(see Roache 1972) second order schemes. The leapfrog scheme was di-

carded because of the time-splitting nature of the solution, while

Fromm's method was not used due to the large percentage of boundary

cells encountered in 3-D modeling where the method uses centered spatial

differencing. Such a scheme was found to be unacceptable near bound-

aries with large forced outflows. A similar conclusion was arrived at

during computer experimentation with the 2-D Edinger and Buchak (1979)

model (page 01.). Spraggs and Street indicate that the necessary coding

for the Adams-Bashford method remains in the basic numerical model for

future development and testing.

Eraslan's 3-D Discrete Element Model

141. Eraslan* is currently working on a fully three-dimensional

heat-conducting hydrodynamic model for the Oak Ridge National Labora-

tory. The code will be a fully convective model with the complete

iertical momentum equation retained. The basic solution technique will

employ an explicit time-differencing scheme along with the previously

discussed concept of discrete elements. Therefore, his formulation will

employ integral forms of the governing conservation equations applied to

variable-sized discrete elements that span user-specified flow regions.

At the present time, there is no published information on the develop-

ment of the model.

Blumberg and Mellor's 3-D Model

142. After the initial writing of this report, a three-

dimensional heat-conducting coastal model developed by Blumberg and

* Personal communication, May 1979, Arsev Eraslan, Chief Scientist,

Hennington, Durham, and Richardson, Knoxville, Tenn.
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Mellor (1979) at Princeton University was brou;rt t,,

tile author. I, appears that the model is in ain e'trl0 c

tion, with only preliminary tests in the uif of

made.

143. The basic equations solved are statements the-

tion of fluid mass, momentu, and energy along with1 th! co1:' : .' rvt i.

salt equation. The energy equation is written in ter. of teTjrA":1 r

and thus the equation of state relates the fluid density to 'Lo -

perature and salinity. The basic Boussinesq and hydrostatic pressure

assumptions are made.

144. The model employs two concepts previously discussed in con-

nection with the Simons and Lick models. Similar to the Simons model,

the external flow is computed separately from the internal flow. The

external mode, an essentially two-dimensional calculation, requires a

short integrating time step; whereas, the three-dimensional, internal

mode can be executed with a long step. The result is a fully three-

dimensional code that includes a free surface. Similar to the Lick

model, the vertical coordinate is transformed into a o coordinate

system with 20 levels in the vertical. The model developers state,

"With such a transformation, the environmentally important continental

shelf, shelf break, and slope can be well resolved." Furthermore, the

model allows for variable grid spacing in the a coordinate for in-

creased resolution in the surface and bottom layers.

145. Rather than employing the same concept of eddy coefficients

as utilized by all the other models investigated, a second moment model

of small-scale turbulence as developed by Mellor and Yamada (1977) is

employed. Diffusive-type terms proportional to second derivatives in

the basic equations are retained only in the vertical lirection. The

developers indicate that they believe relatively fine vertical resolu-

tion results in a reduced need for horizontal diffusion; i.e., horizon-

tal advection followed by vertical mixing effectively acts as a horizon-

tal diffusion in a real physical sense.

146. At the surface, the wind stress, net heat flix, and net

evaporation-precipitation freshwater flux are accounted for. Bottom
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boundary conditions on the velocity components are supplied by matC:.in:-

the solution to the logaritiLmic law of the wall.
147. Time differencing is the conventional leapfrog techniquv.

However, the scheme is quasi-implicit, since the vertical diffusive

terms are evaluated at the forward time level. Thus, small vertical

spacing is permissible near the surface without the need to reduce tie

time increment or restrict the magnitude of the mixin;I coefficients.

The spatial differencing is not discussed, but Blumber- and Mellor

1979) state that the overall solution is accurate to the second order

in space and time.

148. As previously discussed, leapfrog time differersin- intro-

duces a tendency for the solutions at even and odd time lines to split.

The time-splitting here is removed by the use of a weak filter where

the solution is smoothed at each time step by

Fn .Fn + a Fn+l -
2 F n + Fnl

where a = 1/10 and F is a smoothed solution. This technique intro-s

duces less damping than either the Euler backward or forward steppinF

techniques (see Roache 1972).

77



'A.RT V: TWO-DIMENSIONAL VERTICAL FLOW hYDRODYNAM IC 14I:LLL

149. Various two-dimensional numerical hydrodynaml.c modeic have_

been studied and rang e from vertically averag ed models to lat erally

averaged models to pure two-dimensional vertical-lons.iludinaQ ot in

which the width is constant. There are many two-di,:ensional vertically

averaged estuarine models in existence. H-jwever, since s3uch- motels are-

not apulicable to stratified reservoir flows In whici the al1lswarce f )

a variable density and variations in the vert ical dir2ct ion are

the,,- are not Jis3cus-sed here. Thie only interest in cc,,ch ne sin

t ion with this studv was in the numerical tecsnniques enployeJ.

tue mijdels ot olied, excep~t for one that employs toie finite elemen,

m:ethot), utilize the finite difference method for soivin- -mce gvi

-pc os ntike atll of the 3-T) motels, which w;er,,e ex -. li cit -o e

o; tue_ ,odsel; ezploy an implicit or :ierha,.s sen1-1mu-1cit4,t

Inte,-rat ion scheme: sc t.-at "Ime s3teps much larc-er t han t-a - iven I-

th ?caarenito all 1owed. A ife.w of "lhe 2--I vertical mooes n

vtcsti-;,ated were developed orit.inally for application to reservoirz n

tous surface heat exciian c , and thie variability of density witn temprea'

ture are treated. The 'Edir er and iBuchak (1979), Waldro', and Farme

1)),and Roberts and Street (195) otels are exa.-qle _,.

vertical models, such a.; thos'e of Hamilton "1975) and -oer -

were initially developed for salinity-: stratified eanuaris ant a

tional modificaLtions wouldt needed f. " applicatio)n e'

-lit ional lens ity- varyin - I that "0 * id ' lew n la 1

have been invos.-ti -atel ar! ncld I s

Le-rton, King-, ani 1 rlol, 1 a73 id 1

H-i' '1 mnI

150. Hailonod~ 'e l wlt "- e

*Personal coramani cat ion, Ajr i1 1 7
State- University, -i- ~itt
** Prsoa Icannoun 1 at ion, 1



I il§Tr' rat. and .,i nity alan,- an (_ stuary - tr

wi :t anid ;e-,t>:1,l itl t rtan ulari cross ,section, i. (. o $

J,~1reo tile .:od( 1 is, '''r ca j urii tu the 1ai

2:.l der.;l ia thle tt, el(-rt''iiaisit i uus

t~i Na'~ C a:'.;~eou' an] -alt 1 otweer''

Is"' 7' n ''' t~a.iu u velocities and sa linitie:s o!'t:.!

o~i t~iat a coritinu-s. otp' roa2:1 allowl: L

M sotor. 'na ary Conlditions.

I. -:" 1 satior are rcodce_ to -a set of luterall'.'

AVer't o1a "'ios' outlined. 'he only difference iler.,

is *-,',t tire wit . is -o~a function of the vertical coordinate ani,

tosderi'v--Lrvcso: jt"Ie width with respect to the ver- -cal coordinate

z tl' SerOJ. ri csli-laterally avera-ed equat'ions, with thle

oolJ.AolInslj aprroxin.ation and toe hy'drostatic pressuare assump-tio~n, are

WrI :,100% in nor-ronservative fcir~s. Salinity is related to the dens -ity1

t o'a linear equation of state.

1 2 . o usmary, conditions at the head of freshwater flow cons.,ist

o:* islVelocityl Pro:'il1e and z:ero salinity. At the ocean bo-undary,

the tidal elevation is; pres-cribed as a function of tine, and the sali nity

iS 31)Ccifid to be that of the ocean. It does not appear that Hamiilton

1ellneates an inflow and an outflow boundary at the octan end. To con-

s erve sa,,lt, the vertical salinity Fradient at the estuary surface and

thle b'el is set to zero. Surf mce wind stress is- neglected, and the bet-

resjs assumed to obey the quadratic friction law such that the

5 o tress is related to the velocity at a distance above the bottom

coprosentativo of tile fris-tional layer, e~.,1 m.

153. ;,s in all hydrostatic models, tile vertical componient of

velocity 1.3 obtained 1-y solving- the laterally averaged incompressibility

condition. from the l otto!,,, upward. The equation for the free surface is

o'stained by verilically integrating- tile inconmpressibility equation. One

r-estriction ips' on the free surface by the code logic is that the

sri:eeleva'~ion doe,. not differ by more tlian the vertical t-rid spacing'

(asas~'dto be cons-tant) between successive horizontal grid points.



154. The finite difference grid is such that salinity, the verti-

cal velocity, and the vertical eddy viscosity and diffusivity are de-

fined at the center of' a cell; whereas, the horizontal velocity is de-

fined at the cell corners. This is illustrated below.

8, 81h, K

S__IV,__ 2'K,

155. The time integration is a comtinationr for wa r, a nd 'ba c R-r

time-differencing scheme such that the rliffiisiv - and frcinlterm-,

in the conserv ation of salt and :scnmentum eqaia- erctie

taken at the n + 1 time level, whle1 all other terms :such as the

advective terms are taken at the n time level. '?ratiai differ(ences

are replaced by centered differencesz, exceorr in the ol t

term of the conservation of salt equatio-n, i.e., uOs/'Ax , In wh

Ha{mmilton appears to make use of Reache's (197-) first u-pwirj, rencino-.

Thus, the finite difference scheme is in esse-nce O(At ,,x la>

stability criterion is the Courant conditilon. Th 'erefore, OVOI ~o

the scheme might be called a s.emi-implicit one IPecau-,e '_he 7ec .n

tive terms are taken at the n + 'time level, whii oh lee remr-y

diffusive-type s'tability crit(eria, the oohfe ord s-_: o

stability advantafr-es- over a purel:; 0 xjlcit Kme



Blumberg's 2-D Laterally Averaged Estuary Model

156. Like the Hamilton model, Blumberg's (1975) laterally averaged

maodel was developed for application to an estuary. Thus, the density

is related to the salinity through an equiation of state and, of coarse,

no surface heat exchange is included, since temperature is not modeled.

Unlike the Hamilton model, however, this model does not assume a

rectangular cross section and thus B = B(x,z).

157. Additional assumptions made to the basic equations, which

are written in conservative form, are that the pressure is hydrostatic,

the Boussinesq approximation is applicable, and that eddy coefficients

can be employed to represent the effect of subgrid-scale motions. Verti-

cal velocities are thus computed from the incompressibility condition,

and the free surface equation rE-,lts from a vertical integration of

the equation for incompressibility.

158. Boundary conditions imposed consist of the inflow of fresh

water with zero salinity at the head of the estuary; whereas, salinity

and tidal elevations are specified at the ocean end. Unlike Hamilton,

Blumberg allows for the ocean boundary to be alternately an inflow and

then an outflow boundary. When inflow occurs, the salinity is set to

be that of the ocean; during outflow, it is determined from an extrapola-

tion of values inside. To prohibit the flux of salt through the surface

and the bottom, the vertical salinity gradients are set to zero at those

locations. The boundary condition on the velocity at the surface is

determined from the wind stress. Similarly, the bottom stress determines

the boundary condition at the bottom. Extrapolation from the h~ydraulic

theory of flow in open channels allows the friction acting on a tidal

current, because of the estuary's bottom, to be expressed using the

quadratic law

T = kulul

where u is evaluated 1 m away and k depends primarily on the

boundary rouplimes s.



159. The basic finite difference grid is of the MAC-type sed by

Leendertse (1967). Pressure and salinity :tre defined at (-i, renters,

but velocities are defined on the faces of the cells. "vate" zrface

elevations are defined on columns corresponding to cell centers. i m-

ilar to the layered approach of Leendertse, the governing equations are

integrated vertically over each layer where the thickness of each layer

is constant except for the top one. The top layer, of course, contains

the influence of the surface gravity wave, and its thickness varies in

time and space.

160. Both a horizontal and a vertical eddy viscosity coefficient

as well as a horizontal and vertical diffusivity coefficient are com-

puted. The horizontal coefficients are computed from

A = qA~ 2Hk~

where

C = adjustable constant

while the vertical coefficients are related to the Richardson number in

the following manner:

A = k z2( - z)IuI( 1

and A

v
v I+R. i

where Av is the eddy diffusivity and cv is the eddy viscosity, k

is a constant whose value is -0.10 and Ri  is a critical Richardson
c

number taken to be 10. It should be remembered that Blumberg's model

was developed for an estuary. Therefore, the functional form of the

coefficients above are probably not applicable to deep reservoirs. As

was done in the 3-D quasi-static nqodels, the eddy diffusivity is assumed

large when unstable stratification develops. The salinity in the un-

stable layers is replaced by the averaged value of the adjacent layers.

161. The time-integration scheme is a centered difference or
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leapfrog scheme, except for the diffusive and frictional terms, which

are taken at the old time step. All spatial derivatives are replaced by

centered differences. Thus, as with the Simons 3-D model, the finite
2 2difference scheme is almost 0(At ,Ax2 ) As previously noted, the use

of centered differences in time and space results in a second order dif-

ference equation as the approximation to a first order differential

equation, and the solutions at odd and even time lines tend to split.

Blumberg attempts to remove this time-splitting through averaging re-

sults from three successive time steps with weights of 0.25, 0.50, and

0.25, respectively, every 25 time steps.

162. The centered difference time-integration scheme has the

property of not introducing artificial horizontal diffusion and vis-

cosity. Thus, to control nonlinear instabilities, damping must be input

into the scheme. This is the major reason for incorporating the ex-

pressions previously given for the horizontal diffusivity and viscosity,

AH  and ev , respectively.

Poseidon's 2-D Vorticity-Stream Function Model

163. There are no published reports on Poseidon's* 2-D, longi-

tudinally and vertically dimensional, variable density model. The major

reasons for noting the model's existence are first because it is the

only hydrodynamic model discovered that is based on the vorticity-stream

function representation of the governing equations and secondly, because

of the manner in which the advection terms,

(uO) + (vO)

x- 3y

where is vorticity, are numerically modeled. As noted before, the

basic problem with these terms is that of achieving numerical stability

without numerical diffusion. The Poseidon code uses a flux-corrected

transport algorithm called SHASTA (Sharp and Smooth Transport Algorithm).

* Personal communication, May 1978, Personnel of Poseidon, Inc., Calif.
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Fluxes are first advected according to a scheme that is stable but dif-

fusive, e.g., the two-step Lax-Wendroff algorithm. Then the amount of

numerical diffusion is computed at each grid point, and the appropriate

amount of antidiffusion flux is applied to each cell, provided no new

extrema are created. A discussion of SHASTA is given by Boris and

Book (1973). Again it should be noted that such a model would not be

applicable to a reservoir containing multiple outlets.

Slotta et al.'s 2-D NUMAC Model

164. A group directed by Slotta (Slotta et al. 1969) at Oregon

State University has developed the computer model NUMAC (Nonhomogeneous

Unconfined Marker and Cell) for analyzing transient, incompressible,

variable density, viscous flows with a free surface. As the name im-

plies, the model is based upon the MAC method developed by Welch et al.

(1966), which uses a mixed Eulerian-Lagrangian scheme. In this scheme,

the velocity and pressure are considered as Eulerian variables defined

at the mesh points of a fixed grid, but the density is considered a

Lagrangian variable localized to fluid particles. It appears that the

major differences between NUMAC and MAC lie in NUMAC's ability to better

handle inlets and outlets and in the use of the SOB technique for

solving the Poisson equation for the pressure.

165. The basic Navier-Stokes equations for laminar flow written

in the vertical and longitudinal directions, in the conservative form,

are solved along with the conservation of mass equation. The Boussinesq

approximation is not made, and thus, the density is actually solved for

from a transport equation with p as the dependent variable. However,

the incompressibility condition is still invoked in the derivation of

the Poisson equation for the pressure.

166. Many different types of boundary conditions are allowed.

At material boundaries, the normal component of the velocity vanishe!;.

At a free surface, the boundary conditions are that the normal and

tangential components of the stress must vanish. Two inlet, velocity

boundary conditions are allowed. One holds the inlet velocity constant,
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while the other requires the normal derivative to vanish. The normal

derivative of the density at an outlet is set to zero. Both slip and

no-slip solid boundaries are allowed with the derivative boundary con-

dition on the pressure determined from the momentum equation.

167. The finite difference scheme is basically one in which the

time derivatives are replaced by forward differences and the spatial

derivatives by centered differences. However, it does appear that

Roache's (1972) second windward-type differencing is used in the eval-

uation of momentum flux terms such as 3(puv)/Dy , etc. Thus, theoret-

ically, the scheme is close to 0(At, Ax2 ) .

168. As noted previously, the MAC calculations are a combination

of Eulerian and Lagrangian steps. The NUMAC computation cycle is sum-

marized in the following steps:

a. Compute new densities from the mass transport equation.

b. Using new densities, solve Poisson equation for the
pressure.

c. Using new densities and pressures, calculate new veloc-
ities from momentum equations.

d. Move the Lagrangian particles by use of the new
velocities.

e. Calculate new densities and viscosities at the mesh
points by averaging the densities and viscosities of
the particles that now surround each mesh point.

f. Compare this density with the value computed in step a.
If different, go to step b with these densities. If
they are essentially the same, continue.

. Recompute the pressure from the Poisson equation.

h. Recompute the velocities from the momentum equations.

i. Move the particles using velocities from step h.

j. Increment the time and go to step a.

169. Several stability criteria for this explicit .scheme are pre-

sented; however, once agIain the basic criterion if related to the speed

of a gravity wave.

170. Obviously, NUMAC, or any of the related MAC codes, is an

extremely powerful numerical model for analyzing variable dens ity flid

flows, since the model is fully convective. However, oomputing time
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required for long-term transient problems are excessive due to the

explicit time differencing plus solving a Poisson equation for the

pressure. Slotta indicates that one time cycle on a (Control Data

Corporation) CDC 6600 computer requires 7 sec for a problem with

800 cells and 3000 particles.

Norton, King, and Orlob's 2-D Vertical
Flow FE4 Model--MA-7

171. Under a contract with the Walla Walla District of the U. S.

Army Corps of Engineers, Water Resources Engineers, with Norton and King

as principal investigators, developed two 2-D hydrodynamic models using

the finite element method for obtaining numerical solutions of the gov-

erning flow equations (Norton, King, and Orlob 1973). One of the models

is a variable density, laterally averaged model that describes the be-

havior of velocity, temperature, and pressure in the vertical plane.

172. The basic equations solved are the 2-D lateially averaged

horizontal and vertical momentum equations along with the continuity

equation reduced to the incompressibility condition as a result of the

Boussinesq approximation and an energy equation written in terms of

temperatures. These four equations along with an equation of state

relating the fluid density to the temperature are solved for the five

unknowns--u , v , T , P , and p

173. The exchange of energy to the unresolvable turbulent eddies

is accomplished through the use of eddy coefficients, which are treated

as constants within each element but can vary from element to element.

It should be noted that unlike most models, the off-diagonal terms of

the eddy viscosity tensor are retained.

174. The equations are written in the nonconservative form with-

out the usual hydrostatic approximation. Thus, the complete vertical

momentum equation is retained and the model is a fully conve.tive model.

175. The goverriing equations are solved by the finite elemet

method using dalerkin's method of weighted residuals. A mized set of

basic 'm'tions is ernrloyed in the overall permutation . .tfdrat ic

funct.n " r<'1r u:e for all state variables excemt. res:ure w irre u



linear function is used. The linear pressure function implies a con-

stant element density, which is calculated as a function of average

nodal temperatures. An implicit, Newton-Raphson computation scheme is

employed to achieve a solution to the set of nonlinear equations that

define the model. The resulting computer programr accommodates tri-

angular and/or quadrilateral isoparametric elements.

176. Both a bottom stress term and a wind shear term are incor-

porated in the bottom and top row of elements, respectively. The use

of the isoparametric formulation with interelement geometric slope con-

tinuity allows the user to specify slip or parallel boundary flows. In

addition, no-slip walls can be easily handled since zero values of u

and v would be inserted at the proper nodes of boundary elements. The

surface heat flux at the air-water interface is computed through the use

of the coefficient of surface heat exchange and local equilibrium tem-

perature as calculated from meteorological data.

177. A recent version of the model accounts for the movement of

the free surface, alt: Dugh in a very limited fashion, since the movement

must be stipulated by° the user. The free surface pressure boundary con-

dition is based upon the assumption of a locally ". surface so that

the pressure boundary condition is for atmospheric pressure. The model

developers are currently incorporating into the model a procedure for

internally computing the location of the free surface utilizing the

atmospheric pressure boundary condition.

178. As noted in previous discussions, finite element models for

transient problems require large computing times. Therefore, such

models may not be applicable to the simulation of the natural stratifi-

cation cycle of a reservoir for economic reasons.

179. It might be noted that although laterally averaged models

provide a better representation of real reservoirs than pure 2-1 models,

the momentumi flux through an outlet at the dam is not accurately modeled.

In the horizontal momentum equation, the horizontal advection of momen-

tum is represented by p o(u B)/ x , where u is the laterally averared

velocity in the x direction. In actuality, the momentum flux passing

a cross section is not p u21 , but instead is given by the integral
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B
Po 2 dy

0

Using a procedure borrowed from open channel hydraulics, one can set

B

p u dy = p u 2B

0

where a is referred to as a "momentw correction factor." For the

plan and side view of a reservoir near the dam, the u-velocity profile

would be

BT

The discharge Q is a. umed known and is equal to uB H = uBH , where
0

H is the height of opening at the darn. Thus, u = Q/BH and

u = Q/B H . Therefore,
0B

f ~~dy =/
f
0 0

0

(B-B , then

2 (,)2

mar.. t., [nt,.21over B is zero except on B 0 The above o ,t,0

r to yield

B
0

J- . .,u.. , , u ch larrer t.}r.in .) riar "hc ,L"I 'i i
0

.... ..~~ ~~~.. ....... .......... "....... ..... "' 'r.... .. ilII



a value of 1.0 is reached. However, the usual procedure is to assume a

value of 1.0 everywhere, in which case the flux of momentum at the down-

stream boundary is not properly modeled.

Thompson's 2-D Model--WESSEL

180. This is a laterally averaged 2-D model that is currently

being developed to assist the Corps in selective withdrawal studies.

Because of the concern for the quality of water downstream of reser-

voirs, there is a growing effort to control the quality of water re-

leased from reservoirs. The concept of controlling the quality released

from a density-stratified impoundment is called "selective withdrawal."

Because the quality of water and its density can vary from the surface

to the bottom of a lake, it is often possible to selectively withdraw

the most desirable qualities. A basic problem is to determine before

construction whether the design of an outlet will provide the desired

selective withdrawal characteristics.

181. An empirical method developed by Bohan and Grace (1969) can

be utilized for selective withdrawal predictions for simplified outlet

and approach geometries. However, for complex geometries, physical

and/or mathematical models are required.

182. Thompson's model utilizes the concept of boundary-fitted

coordinates to obtain a solution of the governing flow equations on a

nonorthogonal curvilinear coordinate system. The coordinate system is

generated from the elliptic generating system

xx 
+ Cyy 

= P

Ixx + nyy = Q

where P and Q are functions chosen to cause the F , p coordinate

lines to concentrate as desired. With one coordinate bein, specified

as constant on the boundaries and a distribution of the other c pecifiec,

a coordinate system that follows all boundaries, no matter how



irre,-uLar, results. A rather detaiLEdi:c,. i t , a i

c.1 I ' oE: 3In (t _iS, I9. i o.i l i n, an- n v f' r' erericu. -

soriL. Tio,'us work wit+!, th he t zthe wr-

oite.

18 . The next step is the develoopment of a num:eriCa1iodei t-

solve the governing, fluid flow equations on the coordinate -

puted above. Such a model will be able to accurately model the in-

fluenc- of boundary geometry on the developing flow.

184. The basic laterally averaged 2-D equations solved in

Thompson's model are the Navier-Stokes equations, mass conservation,

energy conservation, and an equation of state relating temperature and

density. These equations are transformed to the j , system in a

fully geometrically conservative form such that the finite difference

representation is equivalent to the discrete element method. Essen-

tially nc assumptions other than assuming an incompressible fluid aie

applied to the basic equations; e.g., the Boussinesq approximation is

not made and the model is fully convective with the vertical velocity

obtained from the full vertical momentum equation. In the vicinity of

outlets, vertical accelerations may become large and a solution of the

full vertical momentum equation is probably required.

185. The pressure is computed using Chorin's method. This method

is based upon the concept that if a fluid is incompressible, the func-

tion of the pressure is to insure that the velocity field satisfies the

incompressibility condition, i.e., V • v = 0 . An iterative algorithm

for the pressure field is thus set up such that

(Is+1  n 5 V '~

(F ) = ( n) -s

where the pressure field at time stepn is letermined such that the

velocity field at time step n + 1 will satisfy incompressibility. She

advantage of Chorin's method over the use of a Poisson equation is; that

only velocities are required on the boundaries, rather than pressure

and/or velocity derivatives.
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186. The finite difference grid is such that both velocity com-

ponents are defined at cell corners, while the y rs.;cure, temperature, anri

density are defined at the center of a cell. It should be noted that

the transformation of the equations into the boundary-fitted coordinate

sysLem is such that all computations are performed on a rectangular

(,) grid with square grid mesh.

137. The model being developed will be extremely general so that

any number of inlets and/or outlets can lie on any boundary. In addi-

tion, any number of bodies can lie in the interior of the field, with a

constant coordinate line following each body. Boundary conditions can

be either slip or no-slip on solid boundaries, with the option of either

specifying wall temperatures or the heat transfer rate at such

boundaries.

188. The basic finite difference scheme utilizes second order

backward differences to replace time derivatives and centered differ-

ences to replace spatial derivatives. The model will allow the option,

however, of selecting windward differencing of advective terms. The
2 2

finite difference scheme is thus fully implicit and of O(At , A& ) or

almost O(At2 , A 2 ) , depending upon whether Roache's (1972) first or

second differencing is employed. The SOR iterative method with a vari-

able optimum acceleration parameter field is utilized to obtain a

solution.

189. With such an unsteady, fully convective, variable density,

free surface model that models the flow phenomena in a natural coordi-

nate system that fits the boundaries of the field, a wide range of hy-

draulic phenomena can be accurately simulated. However, due to the

fully implicit nature of the solution and the resulting iterative solu-

tion technique, the computing time required for long-term simulations

will probably be large. For selective withdrawal studies in which only

the steady-state solution is sought, the computing cost should not be

a major factor.

Roberts and Street's 2-D Reservoir Model

190. Roberts and :treet's (1975) variable lensity 'iodel i:vulte

9]



1111 1i, 'heiron eh ~tri ';

acsf iite -ii ''renzecr s,,-)ntion ill-,a -4d dd

* model us-e all essentially the sosinea as enl~1i% the

are flow reduced to two dimensions-. The m.,odel i-, t:-us -. irJ--

vertical-long-itudinal model in which a var-.in!, wi ruii not -3 11 V

191. With the hydrostatic pressure as.:sumption, ",e t

velocity is solved from the condition of anot.i.n~ nd 1 I~rie

vertical diffusivity is invoked to simnulate convectivre Overurr: ,

which c:annot be dealt with explicitly. 'Jnlike some of th.e ;,,,drustatoc

models that integrate the incompressibility equat ion over th e vert ical

to yield an equation for the free surface, Roberts !-,ni Itreet determinie

the free surface directly from. the kinematic 1nsaninary c,-.dilc a' tlle

surface. As in the 3-D Srgsand ft root mcdel in inlici t u o

of the surface equation is obtained. mo)ne ag-ain, howver, uscf

the lack of couplin:- between the velocity,. field and frhe e su f-ac a-

time level n + 1 , the Courant condition is still the u'.a

stability criterion.

1)21. Limited-slip solid boundaries are asued he -.el--cc 1'-I

irtlio--onal to the boundary !L; Let tocr , hut the -tangeOntial velocit.-y

i.- is lfined by- the Chezy-Mannins foimulsi for boundary sh-ear stressc': -I,

that the proper velocity profile near ,te boundary can beahiv.

Forced flow boundaries, of course, requirio te peiio -f the

velocity. Pt solid boundari-s, ten erat-17 s radien--,,r

to model an adiabatic wall.

193. At the free surface, th blo :nlarho oh mnl

determined by tlie wind stress , and ten nIrratureL7 are i-leernu c 1

suirface heat-exerianc-e equat ion.

194. The basic, finite differene 41tn.I'a ,,

utilizes f.,rwarJ di :ferencine- in sine

space, except for the advec- lye( termis w' "rc o h I /
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upwind differencing is utilized. The overall solution is, thus, almost

of o(At, Ax2)

Waldrop and Farmer's TVA 2-D Reservoir Model

195. Waldrop and Farmer's (1976) model is an explicit laterally

averaged hydrodynamic model for analyzing flows in stratified reservoirs

or long river reaches. The model is designed to accommodate hourly

changes in boundary conditions consisting of dam discharges, tributary

inflow conditions, steam plant intake and discharge conditions, river

inflow rates and temperatures, meteorology and wind shear.

196. Very little detailed published material on the model exists,

although Waldrop and Walter Harper of TVA are currently in the process

of writing such a report. It should be noted that Harper has been respon-

sible for most of the coding and testing of the model; thus, the model.

should probably be called the Waldrop-Harper model. From the limited

material available, it appears that the nonconservative form of the

laterally averaged fluid flow equations and the temperature transport

equation, in which the Boussinesq approximation and the hydrostatic

pressure assumption have been made, are solved. The effect of turbu-

lence is included through eddy coefficients, which are modeled by using

a mixing length theory as in Waldrop and Tatom's 3-D model. The retard-

ing effect of stratification upon vertical mixing is included by damping

the vertical eddy coefficients as a function of the local Richardson

number.

197. Free surface boundary conditions on the temperature and

velocity are provided by the specification of the surface heat flux and

the wind shear, respectively. The surface heat flux qs is prescribed

as a quadratic function of the temperature, given as

2
= a(t)4T + b(t)*T + C(t)

where a , b , and c are coefficients dependent upon meteorological

conditions, and T is the surface temperature; wind shear is given bys
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T*(UD C WIND -Us)4/ 3

where C is a coefficient, UWIND is the wind velocity, and U is the

surface water velocity.

198. The basic finite difference grid appears to be a 2-D version

of the 3-D model, and thus, solid boundaries are treated as in that

model. In other words, slip boundary conditions are assumed at vertical

walls; whereas, a limited-slip condition is applied at the bottom by

using a logarithmic profile to set the velocity near the bottom. With

such a technique, the bottom never actually lies on a grid point.

199. With the same basic finite difference scheme as employed in

the 3-D model; i.e., a form of forward differencing in time and centered

differencing in space, except for Roache's (1972) first windward differ-

encing of advective terms, the basic scheme is probably of O(At, Ax)

Edinger and Buchak's Laterally Averaged
Reservoir Model--LARM

200. Edinger and Buchak's (1979) LARM (Laterally Averaged Reser-

voir Model) is a numerically efficient 2-D laterally averaged free surface,

variable density, heat-conducting model developed for the Ohio River Divi-
sion, U. S. Army Corps of Engineers, for use in simulating flows in
stratified reservoirs. As noted by Edinger and Buchak, "Such a model

is needed in long, narrow reservoirs that exhibit density flow, epilim-

netic wedges and titled isotherms and in deep power plant discharge

canals with bottom intrusion of cold water and backwater density wedges

from such discharges to rivers."

201. In the initial development of the model, it was anticipated

that its primary use would be for long-term simulations extending over

a natural stratification cycle of a reservoir. Thus, it was deemed

necessary to develop a solution technique that would allow for time

steps significantly larger than those imposed by the free surface

gravity wave. To allow this, finite difference techniques have been

employed to solve the governing equations such that the water surface
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elevations are computed implicitly. The velocity components in the

longitudinal and vertical directions are then computed explicitly, and

finally the temperature field is computed implicitly. The density is

then, of course, computed from an equation of state. Unlike the Roberts

and Street (1975) model, which also implicitly computes the water sur-

face, Edinger and Buchak's model couples the internal flow and the free

surface, and thus, the scheme has been found to be stable so long as the

volume of water entering a finite difference cell within a time step is

less than the volume of the cell.

202. Edinger and Buchak utilize the layer-averaged concept of

Leendertse and Simons. The governing equations that are solved are thus

laterally and layer-averaged 2-D equations with layer-averaged variables

as the dependent variables. The equations are written in the conserva-

tive form with the Boussinesq and hydrostatic approximations. In addi-

tion, eddy coefficients are utilized to model the influence of

turbulence.

203. The horizontal coefficients of eddy viscosity and eddy dif-

fusivity are assumed to be constant; whereas, in a recent development,

the vertical eddy diffusivity and eddy viscosity--related to the in-

ternal friction coefficient that results from the layer averaging and

replaces vertical viscous terms as related to second derivatives--are

allowed to be dependent upon the Richardson number. The form of this

functional dependence is

A = A (1 + 3.33R)-3/2
v v 1

o0

Unstable stratification is modeled by allowing e v to increase to the

diffusive stability limit of Az 2 /2At when R. < 0 .1
20h. As in other hydrostatic models, the vertical component of

the velocity is obtained from the incompressibility equation, with the

solution beginning at the bottom and progressing up the column of
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layers. An equation for the water surface elevation is then obtained

by summing the layer-averaged incompressibility equation over the water

column. This equation takes the form

a( B) = a 3(u.BH)
t layers ax

where is the deviation from the top of the top layer of fluid,

positive downward. Edinger and Buchak then replace the time derivative

by a backward difference to yield an implicit solution for C . How-

ever, the velocities are unknown at the n + 1 level. This problem is

overcome in the following manner. The horizontal momentum equation

takes the form

D(uBH) -F"t gBH =F
at ax

in which a forward time differencing is used in relation to all the

terms comprising F , while the aC/ax term is taken implicitly, i.e.,

at the n + 1 time step. The expression for (uBH) from the momen-

tum equation is then substituted into the finite difference form of the

free surface equation. The resulting difference equation then contains

the unknowns C+2 n+l n+l i.e., a Lridiagonal system results,theunnows i+l ' i ' i-1

which can be efficiently solved by che Thomas algorithm.

205. With such a coupling of the internal flow and the free sur-

face computations, the Courant stability criterion is removed. The time

step is now limited by the internal flow speed, pius perhaps diffusive

criteria, rather than the speed of the surface gravity wave. It is the

removal of the Courant condition that makes the Edinger and Buchak

(1979) model so attractive with regard to long-term simulations of

stratified reservoirs.

206. With the free surface elevations computed at the n + 1

time step, the horizontal velocity component is then computed explic-

itly, followed by an explicit computation of the vertical component.

The temperature is then computed from its transport equation, usinp;

the new velocities. This, however, now requires an implicit solution

96



for the temperature since if the velocity in the advective term is taken

at the (n+l) level, the temperature must be taken at that level also;

i.e., terms such as 9(uBHT)/3x are taken completely at the new time

level. To avoid having a 2-D implicit computation, which would require

either an iterative solution or perhaps the use of an ADI scheme, the

horizontal diffusive term is taken at the n + 1 time level, but the

vertical diffusive term is taken at the old or n time level. The re-

sulting difference equation takes a tridiagonal form also and thus is

solved in the same manner as is the free surface equation.

207. Spatial derivatives are replaced by centered differences in

all terms, except the advective terms in the temperature equation where

Roache's (1972) first windward differencing is used. In addition, in

computer experimentation with the model, it was concluded that windward

differencing is also required in the momentum advective terms in cells

adjacent to forced outlets. This will be discussed later in connection

with application of the model to the GRH flume. Since the windward dif-

ferencing is Roache's first kind in which simple forward or backward

differencing is utilized, it appears the solution scheme is O(At, Ax)

As previously noted, such a scheme preserves the transportive property

but not the conservative property and in addition is only of the first

order. If Roache's second upwind differencing had been employed, the

resulting scheme would be almost O(At, Ax2 ) , and both the transportive

and conservative properties would be preserved. It might be noted that

by solving the temperature equation implicitly, the time step limit of

W/Az that can be more severe than u/Ax has been removed.

208. Boundary stresses at the surface and the bottom are incor-

porated directly into the layer-averaged equations through the following

expressions:

T W2WIND p -a a C

and

Tb 2 ulul
C
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where

C, = resistance coefficient (2.6 x 10- 3 )

Pa = air density (1.2 kg/m3 )
Wa = wind speed at 10-m height (msec- )

€ = angle between wind and reservoir axis

C = Chezy coefficient (m /2/sec)

209. With the use of the layer-averaged approach, the boundary

stresses are incorporated directly as terms in the equations, and bound-

ary conditions on the tangential velocity at the bottom cannot be pre-

scribed. In addition, with the MAC-type grid employed and with the

vertical velocity determined from the incompressibility condition, no

specification of the tangential velocity at a vertical wall is allowed.

Of course, at all solid boundaries, the normal component of velocity is

set to zero. In addition, all eddy coefficients are set to zero at

solid boundaries to prevent heat transfer at such boundaries.

210. The net rate of surface heat exchange is expressed by:

hn = -CSHE (T - FT)

where CSHE and ET are dependent upon shortwave solar radiation, air

temperature, dew point temperature and wind speed.
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PART VI: APPLICATION OF SELECTED MODELS TO THE GRH FLUME

211. Two of the 3-D models and three of the 2-D models have been

applied to a bottom density current problem in the Generalized Reservoir

Htdrodynamics (GRH) flume at WES. In addition, before this report was

published Arsev Eraslan provided results from application of the auto-

ma''c 2-D version of his general 3-D model.* The 3-D models were that

of Spraggs and Street (1975) and the Waldrop-Tatom (1976) model; while

the 2-D models were LARM, the TVA model, and the RMA-7 finite element

model. The two attempts at a 3-D simulation, as well as the TVA's 2-D

simulation, were made by the respective model developers at the request

of WES, with the Waldrop-Tatom simulation being made by Tatom at WES

on WES's Texas Instrument-Advanced Scientific Computer (TI-ASC) computer.

The simulations with LARM were conducted by Edinger and Buchak on the

CDC 7600 computer located at Boeing in Seattle, Wash. In addition, WES

personnel have made similar computations on the CYBER 176 located at

Kirtland Air Force Base, N. Mex. The application of the finite element

model RMA-7 was made by Bob MacArthur at the Hydrologic Engineering

Center (HEC) on CDC equipment located at Berkeley University and on a

Prince 550 minicomputer located in Lafayette, Calif.

212. The primary reason for application of the models to the

bottom density flow problem was to provide an assessment of relative

economy of the more promising models and their ability to simulate a

real problem that commonly occurs in reservoirs, whether it be as the

result of a coldwater inflow or the plunging of a sediment-laden stream.

With an application to a laboratory flume, test conditions could be

accurately controlled and temperature and velocity profiles readily ob-

tained. Although temperature data are available, as far as is known, a

detailed set of reservoir field data including velocities and results

from dye tracer tests does not exist. It seems reasonable to believe

that if a mathematical model can accurately simulate laboratory

* Personal communication, March 1980, Arsev Eraslan, Chief Scientist,
Hennington, Durham, and Richardson, Knoxville, Tenn.

99



cornditions, thie expectatioll of rea orut e' el 1 cutions is, t,

Tllis is t'ue because the ole c'li ug c't ct. in thel imatematic :: odels

is in the specification of' tihe eddy coel'ficient;. Thus, although ai,

accurate simulation of a laboratory test may not Justify a-t quantitative

confidence in the ability of the model to yieid similar acuracy in the

field, it does demonstrate qualitatively the model's ability to simulate

basic flow phenomena.

Description o" DXI 'loix and 'est Coritons

213. A photog raph of the iil{ flum-,e is provided in Fioure o. -i e

flumie is 24.36 m long with :a 0.91-m x 0.9:- cross section at tile down-

stream end. The cross section at the upstream end is 0. :2 m x 3. 30 m

Figure 6. The Generalized Reservoir H{ydrodynamicc IRi- V oi ,e
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and linearly grows in width over the first 6.10 m to a cross section

0.30 m deep and 0.91 m wide. The bottom of the flume is horizontal for

the first 6.10 m and then drops a total of 0.61 m linearly over the fi-

nal 18.29 m of the flume. Both plan and side views are given in Fig-

ure 7. The water in the flume was at rest and homogeneous at the initia-

tion of the test, with the temperature being 70.6°F. Cold water was

input at 0.46 m from the upstream end at a temperature of 62.0°F. A

baffle restricted the cold water to enter over about the bottom 0.15 m

of the cross section. The inflow rate was 0.00063 m3 /sec with the out-

flow rate at the downstream end being the same. The outflow was removed

from a port with a 2.54-cm diameter located 0.15 m above the bottom of

the flume and 0.46 m rrom either side. Thus, as previously discussed,

the 2-D laterally averaged models will not accurately model the momentum

flux from the system. In fact, neither will a 3-D model unless the lat-

eral and vertical dimensions of a cell are of the same size as the port.

0.30-1 .91m

6.10r 18.29

a. PLAN VIEW

T
0.30MI

0.91m

b. SIDE VIEW

Figure 7. Schematic of GRH flume

Observed Flow Phenomena

214. The coldwater input was dyed for easy visual observation.

The basic flow phenomena that developed was the classical density
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and turbulent flow, rather than bei:ng completely laminar.

216. Using Harleman's equation for the average velocity of a

laminar density underflow,

U= 0.375 
R /2 AP hDS1

e (P DF

where

hDF height of density underflow, ft

S = slope

R = Reynolds numbere

Ap/p = 0.001121

a value of U = 0.012 m/sec is obtained. If the equation for the aver-

age velocity of a turbulent density underflow is used, i.e.,

L h S
u= ~-P DF

p f(l +

where f , the nondimensional friction factor, is taken as 0.003, cor-

responding to a Chezy value of 55 m /2/sec, and as suggested by Harleman

a = 0.43 ; a value of U = 0.04 m/sec is computed.

Application of Three-Dimensional Models

217. The flow in the flume is essentially a two-di ._nsional flow,

except, of course, in the vicinity of the outlet. However, as an aid

in the assessment of 3-D models, an attempt at applying both the Spraggs

and Street (19T5) and the nonhydrostatic version of the Waldrop-Tatom

(1976) models to the coldwater inflow problem has been made. As dis-

cussed below, neither of these attempts was very successful.

Application of

Spraggs and Street's THERMAC

218. Dr. Lynn Spraggs at McGill University made an application of

THERMAC with the computing facilities available to him in Montreal, f
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Canada.* After i.ivestigation without success into the use of time

'--Vs larger than that allowed by the Courant condit±on, Spraggs Coll-

cluded that using the existing 3-D THERMAC model to simulate the flow

in the flume was not economically feasible. His work with the larger

time steps included different schemes for temperature acceleration,

rigid-lid approximations and differential time-steppinr. His estimate

for simulating 30 min of real time in the flume is 25 to 40 hr of CPU

ce~ra .~c:5n~unit t1ir.e -In a -m r,- , I .

t n ' 1 t 7 : u ..' e r i a > i : rh e : . e 1 t : a ': l l o w ~ f c " m _ : .a h .a r < i r : . ; . s ; . s .

:w:1 §cU .eIf'crt, 'tn eXl mccl 3-2 1'!odel s c,

a! lieA t:) r±i:_'.tivel , Io C--t rh r' rV r ci:-:Ii !-s.

e'__ Ih~ comsiruted te::opraturc field 't c L r te:.te ....

S 12

70.92 70.07 70.43 70.48 70.47 70.50 70.50 70.50 70 50 '0.50 70.50 70.50 70.50

68.84 69.55 6978 70.08 70.10 70,39 70.49 70.5 70.5 705 705 70.5 705

FLOW IN 70 057--L9

54 14 57.43 63.20 65.79 67.93 69.16 70.12 70.46 70.5 70 5 70.5 70 5 705 70 5

64.32 66.15 67.68 68.99 69.98 70.44 705 70.5 70.5 705 70.5 705

69.26 69.97 70.26 70.48 70.5 705 70.5 70.5 70.5 70 5

70.5 70.5 70.5 70.5 70.5 70.5 705 70.5 b

AX 
= 

1.52 m
AY = 0.46 m 5

AZ = 0.076 m

4

Oin = 0.00063 m
3

/s Tin = 54.14 F 3

Gout = 0.00063 m
3

/S

2

Figure 9. THERMAC Model results after 549 cec, cooled jet

* Personal communication, November 1979, Lynn Spra7gs, ;c:CiiJ Univer-

sity, Montreal, Canada.

104



As can be seen, the simulation was conducted with outflow from the top

rather than the bottom. Spraggs indicates that the reason for the tem-

peratures of the cells at level 11 being greater than 70.6 0F is that

the simulation is unstable at the surface and continuity is not being

conserved. It should be ncted that in THERMAC the unstable stratifica-

tion resulting from the stair-stepping effect at the bottom is handled

in a fully convective manner, since the complete vertical momentum

equation is retained and buoyancy effects are thus convectively modeled.

220. Spraggs also made an additional simulation with a heated

bottom inflow. Resulting temperatures are presented in Figure 10. The

simulation shows that the model seems to be performing correctly. How-

ever, a much longer simulation time is required before definitive con-

clusions can be drawn.

12

73.65 71.26 70.72 70.55 70.S1

FLOW OUT
75.01 72.89 70.96 70.59 70.52 70.50

FLOW IN 9
86.86 77.41 72.89 71.01 70.61 70.50 70.50

71.09 70.70 70.55 70.51 70.50 .

70.51 70.50 70.501 7

6

5 
Tin = 86.86 W F

4

3

2

Figure 10. THERMAC Model results, heated jet
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Application of
Waidrop-Tatom 3-D PLUME

'21. As previously roted, the ap l ication 31' tht noiihydrustatic

version of the Waldrop-Tatom model to the den:- !tjy undt-['iiw prolen

the GRH flume was made by Tatom and "'mith (1l"i't) Sn the i Ac computor

located at WES.

222. The numerical schernatization of the fluri e is iilustrated in

Figure 11. As shown, the varying width at thte upstream end is modeled

with three regions, each with a constant width. The axis of the flume

is considered to be a plane of syiunetry so that only half of the flume

in the lateral direction is modeled. As can be seen from Figure 11, the

bottom never falls on a grid point, and solid walls are assumed to lie

halfway between the last two rows of points. Variable grid spacing in

all three dimensions is allowed in the model for extra flexibility.

Very little documentation of the code has been published.

23. Initially, it was realized that excessive computing time

would be required if the time step was restricted by the Courant condi-

tion. With a lateral spatial dimension of '(.62 cm and a maximum depth

of 0.91 m, the Courant criterion restricts the time step to be less than

approximately 0.025 sec. Therefore, the initial decision was made to

model the problem using a rigid-lid assumption to allow for larger time

steps. Latom incorporated this by forcing the water surface to remain

at its initial level and specifying a derivative boundary condition at

the -:urface on the dynamic pressure. The results did not resemble the

lerisity underflow observed in the flume. Basically, the coldwater in-

flow .ended to spread over the complete depth of the flume and no flow

reversal was computed.

224. It was then decided that the rigaid-lid assumption was not

appropriate, and the derivative pressure boundary condition was replaced

with a pressure boundary condition that corresponded to a free sur!'ace.

Actually the surface was allowed to be free only in the longitudinal

direction; i.e., no transverse variations were allowed. Applying the

Courant condition only to the longitudinal direction gives a stability

restriction such that the time step must be less than about 0.50 sec. A
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time step one-tenth of this, i.e., 0.05 ;see, was then employed. With

the problem set up in this fashion, there still was no real improvement

in the computed flow field. In addition, the computing time was exces-

sive. Approximately 12 to 15 hr of CPU time on the TI ASC computer would

have been required to simulate 30 min of real time ir. the flume.

225. Various portions of the code were investigated in an attempt

to resolve the inability of the model to properly simulate the density

underflow; e.g., molecular values of the eddy coefficients corresponding

to laminar flow were used instead of the turbulent opei. channel coeffi-

cient model, differencing of the convective terms near the bottom was

changed, and the pressure boundary condition at the surface was modified.

The first two changes above made little or no difference. When the pres-

sure boundary condition was changed such that the dynamic pressure at

the first row of grid points inside the fluid was set to zero, some

improvement was noted. A slight flow reversal was computed above the

density underflow. However, the temperature of the water near the bot-

tom was too high and the underflow moved much too slowly.

226. At this point, Tatom decided again to invoke the complete

rigid-lid assumption to allow for a much larger time step but to retain

the zero dynamic pressure condition at the surface. Results from this

run and a list of input parameters are presented in Appendix A. The

general conclusion is that the density underflow is still not properly

simulated. As can be seen from the computed results, very little flow

reversal is computed, and the computed flow moves much more slowly than

observed in the flume. Only about 18-19 min is required for the density

underflow to traverse the complete length of the flume, i.e., 23.93 m,

but the model indicates a travel distance of only approximately 9.14 m

in 33 min. Since funding provided for this application was limited, the

reason for the inability of the model to properly compute the density

underflow has not been determined. It should be noted that in a mathe-

matical sense a Dirichlet-type boundary condition i.e., setting the

dynamic pressure equal to zero at the surface, is not allowed when impos-

ing the rigid-lid approximation.

227. As described in Tatom and Smith (1979b) in an attempt to
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reduce the CPU time required by 3-D PLUME, Tatom and Smith recoded por-

tions of the model to better utilize the vector features of the ASC

computer. From the results presented in Appendix B, it can be seen that

this effort resulted in a 56-percent reduction in CPU time over the

original version of the model that utilized the automated vector fea-

tures of the machine.

Application of Two-Dimensional Models

Application of

Edinger and Buchak's LARM

228. Because the Corps funded the initial development of LARM, an

early version of the basic computer code was available for computer ex-

perimentation by WES personnel. During this experimentation, several

general changes wer,- made to LARM. These centered around making the

model more general in the specification of inflows and outflows.

229. During the application of LARM to the GRH flume, as well as

in the computer experimentation, it was observed that a common occur-

rence at the downstream boundary in front of an outlet was that of a

flow reversal. Various steps were taken to try to alleviate this prob-

lem, includi.g an attempt to incorporate a momentum correction factor

and a momentum sink term under the assumption that perhaps the improper

modeling of the momentum flux through an outlet was causing the problem.

In addition, in an effort to create a larger pressure gradient near the

outlet to force the flow in the proper direction, the hydrostatic pres-
2

sure was decreased by 1/2 p u , i.e., the dynamic pressure. None of

these attempts proved successful.

230. Finally it was discovered that the use of centered differ-

ences in the convective terms of the x-momentum equation is unacceptable

near a forced outlet. This is related to the fact that centered differ-

ences do not possess the transportive property. This is illustrated by

the problem below in which the initial flow field is stationary and a

forced outflow with velocity U is prescribed.
0
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Using centered spatial derivatives and a forward time derivative, the

x-velocity at time t = At at (i-l/2,j) is

U12jt=At t=O At U 2 2 Uitl
=-/, Ui-l/2,j AX i r

With the flow field at t = 0 stationary,

t=At 0 At + U1 +Ui-l/2, j  AX 2 0 +

or, the initial computation for the velocity in front of the outlet

yields a flow reversal, i.e.,

ot=At At 2
i-1/2,j =  AX o

As noted by Spraggs and Street (1975), the use of windward differencing

near an outlet corrects the problem. Therefore, the original centered

difference representation of the horizontal advective term 3u 2BH)/ax

has been replaced with a one-sided difference near an outlet.

231. In the initial application of LARM to the (;RH flume by WES

personnel, it was bserved that the coldwater inflow in essence moved

to the dam in the horizontal plane in which it. entered. Thc reason for
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this was that in the original version of LARM, the eddy coefficients

were not treated as functions of the Richardson number and thus vertical

variations in density were not considered. Edinger and Buchak have

since modified LARM to allow for the Richardson number dependence pre-

viously presented. Thus, when an unstable stratification arises, i.e.,

R. < 0 , the vertical eddy viscosity and diffusivity are increased to1

their maximul values based upon the diffusive stability criterion. This

procedure forces either a maximum diffusion upwards or downwards depend-

ing upon whether the density of the cell is less than or greater than

the surrounding density. The results provided by Edinger and Buchak*

(and presented in Figures 16-30) were obtained from simulations in a

22.87-m flume rather than the actual length of the GRH flume traversed

by the underflow, i.e., 23.93 m. Values of the various coefficients

and other input parameters are presented in Table 2. A longitudinal

Table 2

LARM Input for GRH Flume Application

Parameter Value

Spatial step Ax = 1.524 m

Layer thickness H = 0.0762 m

Time step At = 5.0 see

Horizontal viscosity 1.5 x 10- 6 m /sec

Horizontal diffusivity 1.4 X 10- 5 m 2/sec

Vertical viscosity at 1.5 x 10- 6 m2 /sec
neutral stability

Vertical diffusivity at 1.4 x - 5  /sec

neutral stability

Chezy coefficient 70 m 12/sec
3Inflow 0.00063 m /sec

Outflow 0.00063 m /sec

Inflow temperature 62.0°F

* Personal communication, November 1979, J. E. Edinger and E. M. Buchak,

J. E. Edinger Associates, Inc., Wayne, Penn.
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spatial step of 1.524 m and a constant layer thickness of 0.0762 mn was

utilized. The schematization is presented in Figure 12. Approximrattly

5 sec of CPU time on a CYBER 176 was required to :iirnilate 10D mil.
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and those recorded, tends to substantiate the conclusion that the density

underflow is not being forced to "hug" the bottom enough. The stair-

stepped bottom appears to result in too much mixing of the coldwater

underflow with the warmer water lying below the next stair-step, which

results in higher computed outflow temperatures than those recorded. The

computed 2-D mass flux field for 60 min after initiation of the inflow

at 4-min increments is presented in Figures 16-30.

233. It should be realized that the above problem in the modeling

of the density underflow is not unique to LARM. Any model that represents

the bottom boundary in such a stair-stepping fashion will encounter the

sane problem of too much mixing and a resulting slower, thicker, and

warmer density underflow.

234. As a final note, the results presented here were computed

with windward differencing of the convective terms throughout the flow

field. Much smoother computations were realized than when centered

differences were used everywhere except near the outlet. A comparison of

the relative magnitude -f various terms in the horizontal momentum equa-

tion revealed that the convective terms are approximately the same magni-

tude as the density gradient terms. In real reservoirs, convective terms

usually dominate only in the backwater. In addition to the windward

differencing being employed, the upstream boundary condition was modified

to force the temperature in the most upstream column to remain at the

upstream temperature of 620F, which resulted in a slightly faster under-

flow current.

Application of Waldrop's TVA Model

235. Dr. Bill Waldrop and Walter Harper at the Tennessee Valley

Authority in Norris, Tenn., have made an application of the 2-D reser-

voir model to the density underflow problem in the GRH flume on the

computing facilities available to TVA and have provided results to WES.*

Two different runs were made. The first allowed the heavier inflow to

seek its own level at the upstream boundary, but in the second run, the

* Personal communication, November 1979, B. Waldrop and W. Harper, Ten-

nessec Valley Authority, Norris, Tenn.
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coldwater inflow was forced to enter the bottom layer, as was the case

in the Edinger and Buchak application. Figure 31 demonstrates that the

24 F

21
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8 . WALOROP
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O LEVEL
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Figure 31. Comparison of PVA computed 'K
recorded underflow :ptce¢,

computed itnderflow moves too slowly. Re ult frem ioth c in , 5

computed travel time in excess of 24 min, althou:h ilt sLhoutd 11c I ,ei

that the travel time for the underflow to travtrLt,. hc hocri zontL u on

of the flume agrees quite well with recorded results. lnce ".<i;-n t

would seem these results tend to substzantiate the prt2viou: .tatreucnlt,

made concerning the stair-stepping: effect of the botto:. Thic effect is

further indicated from the plct of computed versus i'ecorded outflow :em-

peratures presented in Figure 32. Computed velocity fields and isotherms
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Figure 32. Comparison of TVA computed and
recorded outflow temperature

from the first application are presented in Figures 33-37 at times of

6, 12, 18, 24, and 30 min after initiation of the inflow. Similar plots

from the second application are presented at 10, 20, and 30 min in Fig-

ures 38-40. The only results provided for a direct comparison of computed

and recorded velocities at a particular location are presented in Fig-

ure 41. There a comparison of the computed velocities at 10.67 m from

the upstream end at 10 min after initiation is made with recorded veloc-

ities at 11.43 m from the upstream end at 11 min after initiation.

236. As previously noted. the Waldrop model is an explicit FDM

and thus the time step at which computations are male is restricted by

the speed of the surface gravity wave. For thi, pplication, the maximum

allowable time step is computed to be about 0.50 sec. Waldrop indicates

that a time step of 0.30 sec was actually used, which resulted in 46 sec

of CPU time on a CDC 7600 computer for 6000 time steps.

237. As a final note, Waldrop has indicated that he also has en-

countered flow reversals in front of forced outlets. However, rather
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Figure 41. Comparison of TVA computed and

recorded horizontal velocities

than using windward differencing near the outlet, he reduces the pres-

sure by subtracting the dynamic pressure I/2 U' where V iz the0 U

outlet velocity, to force the flow in the proper direction. This is

easy to implement, since his basic computational cell, as is illustrated

below, has the velocity components defined at tne center of the cell

with pressures defined on the vertical fac-s.

U0

u,w, T

Application of

Norton-King-Orlob FEM--R'41A-7

238. The application of the Norton-King-Orlob FEM to the density
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underflow in the GRH flume was made by Bob MacArthur of the Hydrologic

Engineering Center (HEC) in Davis, Calif.* As in the previous model

applications, the initial conditions consisted of zero flows (zero veloc-

ity throughout) and isothermal water temperatures throughout at 70.60F.

After time zero, a constant coldwater inflow of 0.00063 m 3/sec at

62.0°F was imposed entering near the bottom of the flume as an upstrean

boundary condition. MacArthur indicated that a zero pressure, free dis-

charge boundary condition was prescribed at the outlet so the inflow

rate would equal the outflow and the free water surface would remain

horizontal. Values of the eddy coefficients used are presented in

Table 3.

Table 3

Values of the Turbulent Exchange Coefficients

Used for the GRH Flume Applications

Turbulent Exchange Coefficients
(Eddy Viscosity) Value

£ 10 lb-sec/ft2 (0.48 m 2/sec)

xx 0.004 lb-sec/ft2 (1.9 x 10- 4 m 2/sec)

Ex 10 lb-sec/ft2 (0.48 m 2/sec)yx2-4

E:yy0.01 lb-sec/ft2 (4.8 x 10- 4 m 2/sec)
YY

Turbulent Diffusion Coefficients
(Eddy Diffusivity) Value

D x2.0 ft2/sec (0.19 m 2/sec)

D 0.01 ft 2/sec (9.3 x 10 - 4 m 2/sec)

239. Using a time step of 3 min, a total time of 18 min was

simulated. Results furnished by MacArthur for the first three time steps

are presented in Figures 42, 43, and 44. The finite element network

used to simulate these results is shown in Figure 45. Although compara-

tive plots are not presented, MacArthur stated that travel times for the

* Personal communication, November 1979, R. C. MacArthur, Hydrologic
Engineering Center, Davis, Calif.
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coldwater plume to reach the outlet were usually about 18 to 20 min from

the time of initial inflow. However, outlet temperatures were several

degrees (OF) greater than the temperatures measured in the physical model

tests. In addition, the thickness of the plume and temperatures within

the bottom flow plume were greater than observed. This indicates more

vertical mixing is occurring in the numerical simulation than was occur-

ring in the GRH flume, which MacArthur attributes to the choice of the

vertical mixing coefficients.

240. An inspection o" the two-dimensional velocity field pre-

sented after times of 3, 6, and 9 min in Figures 42, L3, and L4, respec-

tively, reveals that the classical density underflow phenomenon has not

fully developed in the computed results. At the point where the flume

bottom begins sloping, the flow seems to be projected across in a hori-

zontal plane. One reason for this may be the large values assumed for

some of the eddy coefficients, e.g., the diagonal component in the x-

direction X= 0.48 m /sec . MacXrthur has indicated that the stability

of the model is extremely sensitive to the values used for these coeffi-

cients. Therefore, such large values were required to obtain stable

solutions.

241. The computer time on a CDC 7600 to simulate the results pre-

sented here required 42 sec of execution time to compute 18 min of flow

time. This compares with the approximately 5 sec required by LARM to

compute 30 min of flow time and 46 see required by the Waldrop explicit

model to also simulate 30 min of flow time.

242. After these initial runs, MacArthur made some comparative

runs, using the GRH flume geometry, for homogeneous flow conditions and

additional thermally stratified flow conditions. In each case, flows of

0.00063 m3 /sec were introduced with a linear velocity distribution in

the bottom element at the upstream end of the flume. Figure 45 presents

the finite element network used for the simulations. The homogeneous

case was run isothermally at a temperature of 50.5 0 F, while the nonhomo-

geneous case was started with an initial temperature of 50-5 0 F throughout

and an inflowing water temperature of 41.90F.

243. Velocity distributions produced by these comparative runs
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are presented in Figure 46 for three different time steps (after 3, 9,

and 18 min) at the two sampling stations indicated on Figure 45. The

effects of flow stratification are quite evident and appear to be quali-

tatively reasonable.

Application of
Eraslan's Discrete Element Model

244. After the initial writing of this report, Eraslan provided

results from applications of his model called FLOWER.* FLOWER is a

computer code for simulating fast-transient three-dimensional coupled

hydrodynamic, thermal and salinity conditions in the intake and dis-

charge zones of power plants operating on rivers, lakes, estuaries and

coastal regions. The general 3-D model contains an automatic 2-D later-

ally averaged version, which was used in the GRH flume simulations.

245. Eraslan indicates that the turbulent transport model of

FLOWER is completely closed; i.e., it utilizes the same turbulent (and

laminar) transport model for all time and spatial scales in applications

to vastly different problems, including the scales of physical models

as well as the scales of prototype conditions. Therefore, the user

never specifies any friction or turbulent diffusion coefficients.

246. Two separate simulations were made with the flume discretized

as shown in Figure 47. One was a coldwater inflow, while the other was

a hotwater input. The coldwater inflow simulation was the same as pre-

viously discussed, with the exception that the outflow was 0.00109

m3 /sec and the inflow temperature was 54.140 F. Therefore, the water

surface dropped slightly during the simulation. Figures 48-55 present

"snap shots" at 200-sec intervals of the velocity field with no exagger-

ation of the vertical component for 1600 sec after initiation of the

inflow. From an inspection of Figure 52, it can be seen that the com-

puted travel time required to traverse the flume is 16-17 min, which com-

pares reasonably well. with a recorded time of approximately 15 min for

these input conditions. Eraslan indicates that if the inflow had been

* Personal communication, March 1980, Arsev Eraslan, Chief Scientist,

Hennington, Durham, and Richardson, Knoxville, Tenn.
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Figure 47. Schematization of GRH flume in
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Figure 48. Velocities computed by Eraslan's Model at
T =200 sec, coldwater inflow
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Figure 49. Velocities computed by Eraslan's Model at

T 40 sec, coidwater inflow
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Figure 5Q* Velocities computed by Eraslan's Model at
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Figure 51. Velocities computed by Eraslan's Model at

T =800 sec, coidwater inflow
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Figurc 52. Velocities computed by Eraslan's Model at
T =1000 sec, coldwater inflow
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Figure 53. Velocities computed by Eraslan's Model at
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Figure 54. Velocities computed by Eras;1an's Model at
T =1)400 sec, coidwater inflow
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Figure 55. Velocities computed by Eraslan's Model at
T = 1600 sec, coldwater inflow 1

specified over only the bottom half of the cross section rather than

the complete section, a faster and less thick underflow current would

have resulted.

247. As noted above, an additional simulation was made in which

warm water at 70.6°F was input uniformly over the upstream end with the

water in the flume initially being stationary and homogeneous at a

temperature of 54.14°F. Figures 56-65 present "snap shots" at 200-sec

intervals of the resulting 2-D flow field for 2000 sec after initiation

of the inflow.

248. Since FLOWER is an explicit model, the time step is re- .]

stricted by the gravity wave stability criterion based upon the deepest

part of the flume. The results presented were obtained by Eraslan from

running FLOWER on a PDP-10 computer.

1c1
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Figure 56. Velocities computed by Eraslan's Model

at T = 200 sec, warmwater inflow
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Figure 57. Velocities computed by Eraslan's Model
at T = 400 sec, warmwater inflow
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PART VII: CONCLUSIONS AND RECOMMENDATIONS

249. Many diffe'ent types of numerical hydrodynamic models exist.

These range from steady to unsteady models with the physical problem area

represented by one, two, or three spatial dimensions. In addition, some

models consider the effect of temperature and/or salinity on the density

of the water; whereas, others treat the water body as being homogeneous.

Most numerical hydrodynamic models invoke the Boussinesq approximation

as well as the hydrostatic pressure assumption; however, there are

models that do neither and are thus able to convectively model buoyancy

effects. Some models allow for the movement of a free surface and its

subsequent effect on the internal flow; whereas, others impose a mathe-

matical rigid-lid approximation to enable larger time steps to be

employed in the numerical solution technique. A vast majority of the

hydrodynamic models employ the finite difference method to develop nu-

merical solutions, although there are existing models that employ the

finite element method for the spatial integration of the governing

fluid dynamic equations. The vast majority of numerical hydrodynamic

models handle the exchange of energy from the large-scale circulation

patterns to the small-scale unresolvable eddies through the use of eddy

viscosity and diffusivity coefficients. However, there are substantial

differences in the expressions used to relate these eddy coefficients

to properties of the mean flow field.

250. One-dimensional models are often applied to reservoirs where

the principal variation of flow characteristics is in the vertical

direction. The primary advantage of such models is their ability to

resolve long-term or seasonal temperature profiles economically. Such

models, however, are not applicable for predicting multidimensional flow

fields within stratified reservoirs for quality predictions. Therefore,

only two- and three-dimensional models have been investigated in this

study.

Conclusions on Two-Dimensional Modeling

251. In order for a numerical hydrodynamic model to be applicable
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to the prediction of flow fields in stratified reservoirs, it must first

of all be at least a two-dirlensional (verti .lo. tia dlr

preferably one that is laterally averaned t7 account for width hanj-<

along the axis of the reservoir as well as with depth. The model mst

be dynamic, i.e., time-dependent, and must If a heat-conducn.- model

that can handle unstable stratifications. In other words, .rf.e ea*

exchange and a sulsequent modeling of the temperature field and its

coupling with the flow field through its influence on the water denrsily

must be handled. In addition, since the model will be applied over

natural stratification cycles, during which significant flooding- 'an

occur, a free surface must Le allowed as opposed to the ricid-lid .T:rcx-

imation. These are necessary criteria. Considerations -f accuracy and

economy must naturally be taken into account also when selectin- a

for widespread use throughout the Corps.

252. Of the various two-dimensional mcdels investicated, six

models come close to meeting the required criteria outlined boe. -he-e

are the models of Edinger and Buchak; Waldrop; Thompson; Norton, Kinn,

and Orlob; Roberts and Street; and Slotta et al.'s NUMAC. The 'rit-ria

satisfied by these models are summarized in Tatle L. in addition,

althouch an in-depth investitat Ion has not teen made due to a ]ook of

published material as well as publication deadlines to be met, results

from Eraslan's 2-D simulations imply that it also meets these criteria.

253. Thompson's laterally averared model is being developed

primarily for near field selective withdrawal studies. The governin-

equations are solved implicitly using an iterative technique. Thus,

although the model will be a completel; general, fully convective model

that will accurately handle general boundaries through the use of

boune- ed coordinates, the computing costs for long-term simula-

tions will prudably prohibit its use over natural stratification cycles

in reservoirs.

254. The Roberts and Street model assumes a hydrostatic pressure

but does handle unstable densities by allowing for a large diffusion of

heat within the unstable water column. Of the six 2-D models that

satisfy the necessary criteria, this model and NUMAC are the only
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pure 2-D models. The other four solve the laterally averaged equations.

The major disadvantage of the Roberts and Street model lies in its use

of a numerical solution technique that restricts the time step to be

smaller than the time required for the surface gravity wave to traverse

a computational cell. Such a restriction can result in excessive com-

puter costs for applications extending over several months.

255. The Norton, King, and Orlob model is similar to the Thompson

model in that the complete vertical momentum equation is solved.

However, the Norton, King, and Orlob model uses the finite element

method to perform the spatial integration of the governing equations.

With the use of the finite element method, boundary geometry can be

accurately handled but computing costs may become excessive for long-

term simulations. Another disadvantage is that although a free surface

is allowed, modifications would probably be required to allow for large

fluctuations that might occur over a stratification cycle. Wi -I the

complicated coding of finite element models, it appears that iificant

modifications can often become major tasks.

256. The NUNAC model is based upon the MAC work k' Welch et a2-

and as such, like the Thompson and Norton, King, and Orloh) model., is

a completely convective model. Once again, however, the computing costs

for long-term simulations would be excessive. Not only is a two-

dimensional Poisson equation solved, but the basic compuuations utilize

an explicit solution technique with the maximum time step restricted

by the speed of the surface gravity wave.

257. The 2-D Waldrop model appears to be a well developed

laterally averaged hydrostatic model that can be directly applied in

its present form to predict stratified reservoir hydrodynamics. The

manner in which the bottom boundary condition on the velocity is

prescribed would seem to allow for a more accurate modeling of flow

near the bottom. However, the bottom is still in essence represented

in a stair-step fashion, which results in excessive mixing of density

underflows. This can be seen from the results of the application to

the GPH flume. The major disadvantage of the Waldrop model (and

Eraslan's discrete element model) is the gravity wave restriction on
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the time step as a result of the explicit finite difference scheme em-

ployed. As Waldrop has noted, if the boundary conditions are varying

rapidly enough to require input at time intervals on the order of the

maximum time step allowable by the Courant condition, explicit models

can often be shown to be more economical than implicit ones due to their

less complicated coding. However, if an extremely general model is

desired for use in long-term reservoir simulations during which

boundary input may or may not be rapidly varying, it appears difficult

to justify the selection of a model with the time step restricted by

the Courant condition.

25d. The ELInger and b ucliak model (LARM) is a laterally averaged,

hydrostatic xo jel ti,,t um nloys a unique method for removing the Courant

condition as a statility criterion. This is accomplished through a

coupling of tile w.tt ,r s urface computations and the internal flow such

that toe water .;or:>Lce' v coruted implicitly, while the internal com-

putations ar,- trf _,r.,ei 1 lxjicitly. Unstable stratifications nre in-

directly handle Ly fsrciny the maximum diffusion allowed by the

stability criterion into adjacent cells. Results from applications of

both tie Edinger and Thchak and the Waldrop 2-D models to the GRH flume

are encouraging. in addition, the results from the 2-D version of

Eraslan's 3-D code agreed quite well with the flow phenomena observed

in the flume for his input conditions.

259. There are several areas of the Edinger and Buchak model

that should be investigated for possible further development. With its

modular programming, significant modification of the model should not

be unduly difficult. These areas are discussed later. Because the

Edinger and Buchak model satisfies the necessary criteria--namely,

time-dependent, free surface, 2-D laterally averaged, variable density

and heat-conducting--and allows for unstable stratification and the

solution technique allows for economical long-term simulations, it is

the most logical 2-D model to select for further development to provide

the Corps with an accurate and economical predictive capability in the

area of reservoir hydrodynamics.
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Conclusions on Three-Dimensional Modeling

260. The state of the art is such that it does not appear any of

the three-dimensional models investigatea can be economically applied

for long-term reservoir simulations. However, since most reservoirs

actually exhibit a three-dimensional nature, undoubtedly the need within

the Corps for a three-dimensional predictive capability will increase

over the next few years. To satisfy this need in a practical sense,

new solution techniques as well as increased computing power must be

realized. In addition, one should consider making the hydrostatic pres-

sure assumption to remove the computing cost of solving for a nonhydro-

static pressure.

261. Neither of the 3-D models applied to the GRH flume yielded

very encouraging results. Spraggs was not able to simulate more than

600 sec with THERMAC due to the extremely long computing times required.

The nonhydrostatic version of the Waldrop-Tatom model was run with the

free surface frozen, which allowed a large time step to be used. How-

ever, the density underflow was not properly computed. After 33 min,

the model computed a travel of only approximately 10.06 m; whereas, only

18 min was required in actuality for the underflow to traverse the

complete length of the flume (23.93 m). Tatom feels that the problem

is related in some manner to the dynamic pressure computations. Th-re-

fore, if time and funds had permitted, it would have been interesting

to apply the hydrostatic version to the same density underflow problem.

Recommendations for Two-Dimensional Modeling

262. As noted above, it is believed that the Edinfrer and Buchak

2-D laterally averaged model offers the most promise in the area of

multidimensional stratified reservoir hydrodynamic modeling in the near

future. However, additional developmental work and modification,; are

needed to make the model more flexible and accurate; therefore, it i.

recommended that the following items be investigated during, the next year

for possible further development and incorporatiun into IARM:
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a. Th application to the density underflow in the 'RH
fPlane demonstrates the mixing effect of a stair-
stepped bottom. It is believed that a transformation
of the vertical coordinate, as is performed in Lick's
model, offers one solution to this problem. Particular
attention should be directed toward the neglection of
the cross-derivative terms resulting from the non-
orthogonal transformation.

b. LARM presently allows for the vertical eddy coefficients
to be functions of the Richardson number; however, the
horizontal coefficients are assumed to be constant. It
is recommended that an eddy coefficient model similar
to that of Spraggs or perhaps the simpler model employed
by Waldrop and Harper (or perhaps Eraslan's closed
turbulence model) be incorporated into LARM. This
should be relatively easy to accomplish, since the com-
puter code was initially programmed with such an
addition in mind.

c. LARM presently employs either windward or centered dif-
ferences to represent the advective terms in both the
momentum and the temperature transport equations along
with a forward time difference. Such a first order
transport scheme is adequate for continuous distribu-
tions. However, if instead of an essentially continuous
distribution, a slug of some quality constituent is to
be traced through the reservoir, large errors can result
from the use of such first order schemes. Therefore,
it is recommended that higher order transport schemes
such as those employed by DHI or perhaps the 2-point
scheme of Holly and Preissman be investigated for use
in the modeling of quality constituents, rather than
the scheme LARM presently uses for temperature.

d. It would seem that Waldrop's method of setting the
bottom boundary condition on velocity by matching a
logarithmic profile is quite realistic. It is recom-
mended that the use of such a boundary condition in
LARM be investigated. The layer-averaged approach
taken in LARM may make this difficult.

e. The horizontal grid spacing in LARM is constant. A
variable grid spacing would be useful to provide greater
flexibility in the resolution of a quality constituent
in a particular area. The difficulty in allowing this
and the subsequent errors that might occur should be
determined. Obviously, the linear averaging now
employed to provide values of variables at points where
they are not defined would have to be changed to reflect
a weighted average. Also, as discussed by Brown and
Pandolfo (1979), a nonuniform spatial grid can influence,
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In the use of numerical hydrodynamic models, the ini-
tial state of the system as well as time-varying
boundary conditions must be prescribed as input. The
nature of the hyperbolic equations being solved is such
that after a sufficient length of time, the effect of
the initial conditions becomes negligible. The time
simulated to remove initial condition effects is com-
monly referred to as the "start-up time." One way to
handle this problem is to compute a steady state before
imposing the time variation of the boundary conditions.
LARM presently can only compute a steady state as the
asymptotic convergence of a time-varying solution com-
puted by holding the boundary conditions constant. The
possibility of incorporating into LARM the capability of
solving the steady-state equations, as allowed by the
Norton, King, and Orlob FEM, should be investigated.
After the above modifications are made, in particular
Lick's transformation to allow for better representation
of the bottom, LARM should again be applied to the
density underflow problem in the GRH flume. In addition,
hopefully a good set of field data will be available by
then through EWQOS. Assuming an eddy coefficient nzodel
similar to that of Spraggs and Street (1975) has been
incorporated, these two applications should provide in-
formation on whether a single scaling parameter can be
used for a wide range of problems.

Recommendations for Three-Dimensional Modeling

263. Unlike the two-dimensional models, there are no three-

dimensional models that can economically be applied for long-term reser-

voir simulations. This is because all of the models are explicit, and

thus excessive computing tine is required. Imposing the rigid-lid

approximation removes the Courant condition on the time step, but results

in a Poisson equation .'or the pressure that must be solved, which can

be costly in itself. Making the hydrostatic pressure assumption helps

in that only a 2-D Poisson equation rather than a full 3-ID Poisson

equation must be solved. However, it is not believed that the rigid-lid

approximation is appropriate for models to be used over flooding cycles;

therefore, new solution techniques that allow for a free surface but

remove the speed of a gravity wave from the stability criteria must bc

devised.
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264. The Spraggs and Street (1975) model currently solves for

the free surface implicitly, but does not implicitly couple the internal

flow to these computations. It is recommended that a coupling similar

to that in Edinger and Buchak's (1979) work, but now in two dimensions,

be investigated during the next year. If this can be accomplished in

an efficient manner, long-term three-dimensional free surface hydrody-

namic modeling will have taken a giant step forward.
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APPENDIX A: NUMEBICkL RESULTS FROM APPLICATION OF
3-D PLUME TO GRH FLUME

1. The nonhydrostatic version of the Waldrop-Tatom (1976)* model

wag used to generate a numerical solution to the density underflow problem

in the GRH flume. Values of various input parameters are presented in

Table Al. In an effort to increase the computational time step, and

thereby reduce the number of steps required, the free surface was ini-

tially assigned zero slope and was "frozen" for all subsequent compu-

tations.

2. With a time step of 0.5 sec, the numerical solution was marched

forward for 4000 time steps corresponding to 2000 sec of real time in

the flume. Outputs of velocity, in terms of the u , v , and w com-

,)onents, and temperature, as taken from Tatom and Smith (1979a), are

presented at 0, 1000, and 2000 sec in Tables A2 through A13.

* eferences ec in ttr, -ppendixe2 of this report are listed in the Ref-

ert nces section rt the on of the main text.
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Table Al

3-D Flume Input

Par ame ter ri,

Inlet vul,;em)-ric flow rate 0 22:<:

!,xit volume(-tric 'low rat, e.so:.-

Inlet area0.

Dutlet area

Inlet velocity "t ec

Outlet velocity C).0 1-,l " /-ec

Initial ambient velocity, 0 ft,/-02

Inlet tei-perature 61-i7 0 1

Initial ambient te,%perature 7,).'7907

Inlet density 62.353bnft

Initial ambient density. 62.291' 3~

In-let equivalent diameter o.67 ft

Inlet kinematic viscosity 1.19 5 I ft 2 i -.,.

Inlet Reynolds number 2496

Chezy coefficient 1.5ft /ec

Fanninig friction factor 0. 02.

,Nater depth av inlet 1 ft

Water depth at ou-tlet 3 ft
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APPENDIX B: RESULTS OF VECTORIZATION OF 3-D PLUME

1. A series of benchi-iarF run. were carried out to comnare the

.erfornance of the scalar ani vector versions of 3-D PLU,.1:, (Tatom and

%ith 1 )" ,b). Buch runs were sll carried out with the K-Comiler on

t:..H;7C ASC Computer and cons-isted of two tyses: (a) numLerical con-

si-tency and (b) co,::putational speed.

.c:x:erical Consistency Results

2. Benchmark runs concerned with numerical consistency between

the scalar and vector proc:rams were relati-.,,ly short and included print-

-u. of variables not included in the normal output of either program.

3uch. -crintouts initially revealed a series of :minor discrepancies in the

vector version of the procram and also one previously undetected dis-

crepc.- in the :;calar vorsion. ftor such discrepancies were corrected,

numerical consi.ctency within one percent was achieved.

Computational Speed Results

3. Two types of timin< rums were carried out with both the vector

and scalar version: of the proi-ram. Tlhe firt type consist-d of only

the initialization comyutations plus one time step computation and was

desi7ned to provide a measure of initialization time. The second type

of run extended for 2000 time steps and was desioned to provide a mea-

sure ol' the computation time associated with each time step. The re-

sults of these tinin.7 runs (includin, compilation time) are summarized

-AL ie dl1.

As indicated in Table B1, the compilation ti:te for the vector

version of The prorram was approximately three times the scalar compila-

tion time, as would be expected because of the additional optimization

proceduores involved in vector compilation. The initialization times

were essentially equal. The time required for 2000 time steps with the

vector version was approximately 14h percent of the corresponding time

Ri



with the scalar version. It is important to note that in carryin'- OuTt

the timing comparison the amount of central memory (ver.sus exten-de,.

miemory) , as shown in Table 31, was not the saefor all runrs. 7cr tuer

3000-time step vector run, no central merio ry wu-i e --hilu for tice

corresponding7 scalar ru-n ce-ntral mremory somvprL-w- 11 Dut f t>.

totdd miemory. btecause f--tc-i times associated W4 t ' -, al mem7ory arle

smaller thian thie f'etch- ti!,es wit!, exztendiedl mem;os- by fins.t05 of api ro:-

imately UC, th-e ac-tual i;sumun i er C 05mm v- ets r~r

ov,,er the scalar .'m'. .. :m!~areae t-a tie5-Tesmtrl

t ism in coml tam icr a UI W~i aneu'lor a5:r2rftT.

cry, the vector zerio .SouiL.d:S approximately three times; as fas- i as

the scalar version. F or a ;orobuction run consistin,< of 2000N tine ses

thie computation time would Onuis 1to reduced from 2 300 sec to 6000 sec.



Table Bl

Comparison of Computation Time*

Scalar Vector
Central Extended Central Extended
Memory Memory Time Memory Memory Time

Item words words sec words words sec

Compilation 0 184,320 576.63 0 184,320 1,799.89

Initialization 4,096 106,496 3.74 4,096 131,072 3.26
and 1 step

Computation for 12,288 98,304 1,200.59 0 143,360 530.14
2000 steps

* Tatom and Smith 1979b.
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APPENDIX C: NOTATION

a,b,c Constants in expression for surface heat flux

A Area of discrete element

cv

AH  Horizontal eddy diffusivity

A. Cross-sectional area
1

Aij Eddy diffusivity tensor from time averaging

A! Eddy diffusivity tensor from spatial averaging

A Vertical eddy diffusivityv

B Width

B. Surface width1

B Width of opening at the dam

C Chezy coefficient; constant in expression for surface wind
stress; phase velocity

C* Constant in expression for surface wind stress

Cij Sum of eddy diffusivities due to time- and spatial-averaging

CSHE Coefficient of surface heat exchange

C Discrete element volume
v

dv Volume of a discrete element
0

Dij Diffusivity tensor

ET Equilibrium temperature

f Nondimensional friction factor

f Force vector

F,f Arbitrary variables

F Smoothed solution in leapfrog schemes

gsgi Acceleration due to gravity

G Volumetric flow rate

Cl



h Water depth

hDF Height of density underflow

h Rate of surface heat exchange
n

H Height of opening at the dam; water depth

H. Surface elevation1

i,j,k Unit vectors

J Boundary point

k Coefficient in expression for bcttom friction; diameter of

average bottom roughness

k Constant = 0.10

Lx,Ly Length scales

L Reference depth; length scale

n Unit normal vector to the surface

n x,n Components of outward unit normal vector to the surface

P Pressure; function to control coordinate spacing

P Time-averaged pressure

P Time-averaged and spatially averaged press

P Atmospheric pressure
a

P h Hydrostatic pressure

PR Reduced pressure

P Surface pressure
5

qs Surface heat flux

Q Function to control coordinate spacing,; discharge through

the dam

R Reynolds numbere

R. Richardson number

R. Critical Richardson number1 c

C2



S Salinity; slope of reservoir bottom

SijSmn Rate of strain tensor

t Time

t Stress force vector

T Temperature

T' Deviation between instantaneous and time-averaged temperature

T Time-averaged temperature

T' Difference between time-averaged temperature and time- and
space-averaged temperature

T Time-averaged and spatially averaged temperature

T Surface temperature5

u,v,w Velocity components

u. Tensor notation for velocity1

u. Time-averaged velocityi

u! Deviation between instantaneous velocity and time-averaged
i velocity

u. Time- and space-averaged velocityi

u! Deviation between time-averaged velocity and time- and
1 space-averaged velocity

U Average velocity of density underflow

U Outlet velocity0

UWIND Velocity of the wind

i Velocity vector

w Wind speeda

x,y,z Cartesian coordinates

x. Tensor notation of spatial coordinates
i

z B Elevation of reservoir bottom

C3



OL Arbitrary variable; constant in an expression for vertical
eddy coefficient dissipative coefficient

CL Turbulent Prandtl number

p

a Momentum correction factor; constant in an expression for
vertical eddy coefficient

Fk,k Sum of 6kk ' k,1 

Ap Change in water density

At,Ax. Time and spatial steps

At Time step restricted by Courant conditionc

6.. Kronecker delta
ij

E H Horizontal eddy viscosity

C ij Eddy viscosity tensor as a result of time averaging

6!. Eddy viscosity tensor as a result of space averagingI3

E ijk Cyclic tensor

c Vertical eddy viscosity
v

Water surface elevation; vorticity

P Molecular eddy viscosity

,n Nonorthogonal curvilinear coordinates

p Water density

p Time-averaged water density

P Time-averaged and spatially averaged water density

a Air density

popr Reference water density

o Transformed vertical coordinate

TT °  Bottom shear stress

T. ,T Laminar stress tens3or
ise

.. ormai internal stress at the ;urfncre
n

014|



Tt Tangential internal stress at the surface

TwTWIND Wind shear stress

€ Arbitrary variable; angle of wind with reservoir axis

2 Scaling parameter in an expression for the eddy viscosity

tensor

Qj Coriolis parameter

W Vorticity

V a/ax i + D/ayj + a/azk

C5



In accordance with letter from DAEiN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technic-al Publ icat ions, a facsimile caitalog
card in Library of Congress RARC format is reproduced
below.
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