
Specill hopert 81- IEY/

' 0 I

A PROCESS CONTROL SYSTSM
FOR HIWLETT-PACKARD SIRMES I

21XX COMPUTIRS

J. R. Bowman, 0. Q. Thormen,
and D. E. Carrell

40

SOF

* Approved for public release; distribution unlimited.

8415

ERRATA SHEET

Special Report 81-1

A PROCESS CONTROL SYSTEM FOR HEWLETT-PACKARD SERIES 21XX COMPUTERS

J. R. Bowman, G. Q. Thorsen, and D. E. Carrell

The following corrections should be made to subject report.

PAGE NO. LINE NO. CORRECTION

12 2 \-llue vice vlaue

12 9 FO 1 S 5 vice FOL I S 5

0 11
14 11 values range from 2 through 2 ...

vice values range from 20 through 2..

18 13 Delete range of -32768 to 32767

21 11 Where X is a state number 0 - X < 31.
vice Where X is a state number O F X F 31.

23 12 IF I R 3 OR AF 5 S vice IF 1 R3 OR AF 5 S.

28 11 (right ST3 AF 10 T ST 1 TH 2 VAR A=A + 1$.
column) vice ST3 AF 10 ' ST 1 TH 2 VAR A=A+I$.

'p.

Approved for public rsleaie; di-tributiov ujilW _ ied..---

; A PROCESS CONTROL 4YSTEM FORUWLETT-PACKARD
nwa nxx COmPUTERs. .

"Tohn R •oBowman, Gregory Q./h~orsen0 Douglas E./carreull

ICI
__w - -

Bur-oS and- Surgery
ii5lZ524:$h4/2O11

Naval Air Systems Command
W43-13 :5 V-

1i

Approved by Released by

Ashton- Graybiel, M.D. Commander W. M. Houk, MC, USN
Assistant for Scientific Programs Commanding Officer

'¶ Aug5O
-0

Naval Aerospace Medical Research Lal' aratory
Naval Air Station

Pensacola. Florida 32508

/

z•//9.

SUMMARY PAGE

THE PROBLEM

The Vision Research Division of the Naval Aerospace Medical Research Labora-
tory, needed a computer system t control psychophysical experiments that would
remove the need for in-depth knowledge of complex computer languages by investi-.
gators. It was required that this system utilize a Hewlett-Packard 2100 series
computer.

FINDINGS

The State Diagram System (SDS) was developed to solve this problem.
SDS iE a tool that can be used by investigators in designing and running psy-
chophysical experiments on Hewlett-Packard's HP-2100 series computers. SDS,
as presently designed, is capable of running only those eXperiments that use
discrete inputs and outputs. The system offers the investigator a high level
lan,,uage with which he is already familiar or can easily learn, . us removing
the burden of solving these types of problems using more complex computer
languages. Written In FORTRAN IV language SDS is an interactive system that
does not require assembling or compiling of its programs. The system accepts
source language stattiments from either the system console or disc files and allows
the program to be run Immediately upon completion of this input process. While
SDS does not solve all if the problems encountered in computerizing psychological
experiments, its modular design shouli ease such future modifications as derthng
with continuous variables, calling external programs, and controlling multiple
experiments.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Ms. Rachel Gadolin, Ms. Karen Venner,
and Mr. Delbert Turner, Aerospace Psychology Department, and Mr. Stanley
Sulcer, Visual Aids Branch, fcr their efforts in assembling this report.

The current address for Mr. G. Q. Thorsen is 5315 Bellview Avenue, Pensacola,
Florida 32506.
The curreat address for Mr. D. E. Carrellis 721 N. State St. Apt. 7C, Jackson,
Mississippi 39201.

ii

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. OVERVIEW OF HARDWARE 2

Mfi. OVERVIEW OF SOFTWARE 3

A. Hewlett-Packard Real-Time Executive (RTE-lI) 3

B. State Diagram System 3

IV. NOTATION SYSTEM 7

V. THE SDS INSTRUCTION SET 8

A. Job Control 8
Accession Vor

B. Transitional YTIS GA&,' 1 10

C. Modifying or Identifying t".'.:. 17

D. Logical 25

E. Input/Output 25

VI. USING THE SDS C...................................1 " . 28

A. Introduction tr) RTE-U1 28

B. Prc ramming the SDS 30

C. Running SDS Programs 40

D. Using Disc Files OPIN and OPOUT 40

VII. THE SDS LOG 40

APPENDIX A. In-Core Multitasking Using RTE-II A-1

APPENDIX B. SDS Program and Subroutine Listings B-1

APPENDIX C. SDS Quick Reference Guide C-1

APPENDIX D. RTE-II Initialization Procedure D-1

APPENDIX E. Creating Disc File OPIN E-1

APPENDI:X F. SDS Errors F-1

APPENDIX G. Sample SDS Program Run and Log G-1

fit

I. INTRODUCTION

Investigators in the Vision Research Division of the Naval Aerospace
Medical Research Laboratory desired to use existing equipment to control
on-going and future experiments. This equipment included two Hewlett-
Packard computer systems (HP-2100, HP-21MX). each containing a multi-
programmer (HP-6840) and an assortment of input/output equipment. There
was no high level language oriented towards process control, and personnel
had to learn complex computer languages in order to use the equipment to
control experiments. This language barrier was time consuming and often
led to delays or minimum use of the computer for experiment control. The
following computer system requirements were estatlished by the Vision
Research Division to alleviate this problem:

A) Develop a high level language that can be used to program existing
computer hardware systems to controi psychophysical experiments.
This language should be written in, ternmq that invo3tigators are
familiar with and should be easily lea-Ted by those who may be
unskilled in the use of complex computer languages.

B) Implement this system using a high level language such as FORTRAN
in order to facilitate changes to other computers in the future.

C) Design the system to control any experimcnt capable of being
controoUed by the multiprogrammers' digital input/output cards.

SD) The system should be an interactive system that does not require
assembling or compiling of the user's program prior to running.

E) The system should be caosble of communicating with basic input/
output devices such as the conscle, line printer, paper tape reader,
and paper tape punch.

F) Design the system using a modular concept to facilitate future
additions of such features as analog input/output or multiple experi-
ment capabilities.

The Stite Diagram System (SDS) was designed and developed to sath'fy
the above raquiremerts. SDS is an eve-.t driven, table oriented, real-timro
system that operates under Hewlett-Packard's real-time executive RTE-II.
SDS is accurate to withIn one tick of the RTE -II clock which runs at a frequency
of 100 Hz. The purpose of this report is to define the capabilities and limitations

of this system.

11. OVERVIEW OF HARDWARE

SDS was designed to be used on the Hewlett-Packard HP-2100 or HP-
21MX computer system which includes the following peripheral equipment and
logical unit assignments:

A) Console - logical unit 1.

B) Disc - logical unit 2 and 10.

C) Mag Tape - logical unit 8.

D) Multiprogrammer - logical unit 9.

E) Lin, Printer - logical unit 6.

F) Paper Tape Reader - logical unit 5.

G) Paper Tape Punch - logical unit 4.

The console, disc, magnetic tape, and multiprogrammer are raquired for
the SDS. The paper tape reader, paper tape punch, and line printer are
optional equipment; however, the omission of any equipment or changing of
l, gical unit assignments mity require minor modifications in the software.

The multiprogrammer, HP-6940B, is an input/output (7/O) control unit
that converts a single computer I/O channel into 15 1/0 channels if all of its
capabilities are utilized. In the existing SDS system, only two chbnnels, an
event sense card and a relay output card, are utilized. The event sense card
monitors 12 data input lines and notifies the computer when a change
occurs 4u the level of these lines. The relay output card contains 12 output
relays that can be energized or de-energized by the computer. In addition
to the multiprogrammer, HP-6940B, it is possible to install up to 15 extender
units, PP-6941B, which would have the capability of converting a single computer
I/O channel into 240 I/O channels. It should again be noted that any change in
the existing multiprogrammer capabilities would require modifying the soft-
ware.

The multiprogrammer is capable of housing the following types of I/O
cards in either the main unit or the extend6r units:

A) Event sense.

B) Digital input for counter with interrupt.

C) Digital 1/0.

2

D) Dligtal input only.

E) Analog output.

F) Timers.

G) Pulse counters.

The number of each of these cards is optional and, as can be seen by the types
of cards available. the need of co3tly special interface devices to control an
experiment could very often be eliminated. Refer to Hewlett-Packards HP-6940B
Operating and Service Manual for detailed descriptions of the capabilities
of aach of these cards.

11I. OVIMRVIEW OF SOFTWARE

A. Hewlett-Packard Real-Time Executive (iTE-I7)

Multiprogramming using the RTE-11 system requires that programs be
installed in the system during system generation if more than two programs
are required in core at any given time. Since SDS was designed in a
rioddlar manner, it was desirable to develop a method by which these modules
or tasks could be loaded into core simultaneously, using RTE-U's loader.
This capability would elim.nate the requirement of a new system generation
each time SDS was modified. To accomplish this, eight dummy programs
were installed during system generation. These programs were named T1XXX
through T8XXX, indIcating the task numbers and complying with the ISA
FORTRAN Extension Ptckage requirement that the last three characters must
be X's. This requirement only exists in RTH-I when the event Sense Inter-
face routine is being used to schedule tasks. These dummy programs can be
any simple programs, as shown in Appendix A, and serve only to establish
Mn Segment maps in the system. Word eight of these ID Segment maps contain
the primary entry points of programs T1XXX through T8XXX and is the only
word that needs to be altered before scheduling the tasks. Subroutines NTASK
and NTSK1 through NTSK8 modify word eight of these ID Segment maps at run
time, thus allowing up to ten programs to be loaded into core by RTE-II's loader.
Refer to Appendix A for a detailed description of this process. With this excep-
tion, the RTE-fl system is intact and is described in the RTE-I1 operating
manual.

P. State Diagram System

SDS was developed to provide automatic control of psychophysical experi-
ments, using discrete inputs and outputs. Similar to SKED and ACT-INTER-
ACT systems available for DEC and NOVA computers, a high level language
familiar to investigators is used, thus eliminating their need for in-depth
knowledge of complex computer languages. The fundamental idea behird SDS
is that experiment• using discrete inputs and outputs can be broken down into

3

basic elements that modify the subject's environment. These badic elements
usually deal with the presentation of stimuli, the detection of responses, and
the measurement of elapsed time, which makes them easily automated using the
computer. In addition to automating experiments SDS logs each event on
magnetic tape, thus allowing off-line analysis of the experimer t's data at a later
data. SDS was designed in a modular form, as shown in Figure 1, to facilitate
future modifications such as multiple experiment control or the ability to control
experiments using continuous variables. A brief description of each of the
programs used in SDS follows. Listings of the programs and subroutines of

SDS are included in Appendix B.

Program OPCOM is the operator communications program. OPCOM accepts
the SDS source language statements from either the disc or the system console.
OPCOM decodes each line of source language statements and calls upon program
DOOPS to load each decoded instruction into the proper tables of the experitent
controller program EXPR. When the end of the source language statements is
reached, the complete program has been decoded and loaded. OPCOM then
schedules program SDS to start the experiment.

Program DOCPS is used to communicate the decoded SDS instructions
between programs OPCOM and EXPR. This orogram crosses the foreground
boundary into background and sets up the proper tables with each decoded
instruction supplied by OPCOM.

Program RDWRT perfrirms read and write functions to disc files OPIN
and OPOUT, respectively. If instructed to read source language statemeDts
from the disc, RDWRT opens disc file OPIN, reads single lines of source language
statements, and passes each line to program OPCOM for decoding. This process
is performed unMil the end of disc file OPIN is reached. RDWRT also writes
each line of source language stattements in disc file OPOUT. This write
function occurs when the system console or when disc fil OPIN is usad for
inputting source language statements. The results of this write function is
that file OPOUT always contains a copy of the most recent SDS program. File
OPOUT can be saved for future use or can be transferred to disc file OPIN for
running the same SDS program using the disc as an input device. In addition
to creating disc file OPIN in this manner RTE-U's editor can be used to create
or modify source language programs named OPIN.

Program SDS performs the functions of in ial~zation, starting experi-
ments, and ending experiments. Prior to OPCOM accepting source language
statements from either disc or the system console program SDS is called upon
to initialize all variables and tables within the system. When notified by OPCOM
to start an experiment program, SDS issues the start of experiment event code.
When notified by program EXPR that the experiment has ended program, SDS
terminates all active programs, including Itself, and returns control to RTE-II's
file manager program FMGR.

4

w f
>S

w Sn

w 0 k

w C
Ia

L.U m

ccI

L7Lid
5--

When a switch closure occurs on any ono of the 12 event sense data input
lines, the event sense interface routine, EVSNS, schedules program RESP.
Program RESP then dotermines which input liae caused the interrupt, issues
a response event code, and passes the switch number to program EXMR.

Program TSC-D mainitains a time event schedule. When a requested
time has elapsed, program TSCHD issues a time event code and passes the
necessary information needed to service the time event to program EXPR.

Program IOTSK performs I/O operations requested by the experiment
controller task EXPR. The I/O operations that can be performed by SDS are
input from the paper tape reader and output to the system console, line printer,
and paper tape punch.

Each event that occurs during the running of an SDS program is logged
on the magnetic tape with sufficient information to Identify the event. This
function Is performed by program LOGG on a low priority basis.

Program NXP!R is the overall experiment controller program. EXPR is
driven by the start of experiment, response, time, and relational events. This
program takes action on these events as directed by the SDS Program. Upon
rompletion of the SDS program, EXPR notifies program SDS to terminate all
active programs.

6

1

IV. NOTATION SYSTEM

Prior to describing the instruction set of SDS it is Important that the
notation system be introduced. This system of notation should be studied
carefully because proper diagramming of the experiment and using proper
notation result in the programming function being accomplished automatically.

The state is the basic unit of the notational system and is used to repre-
sent one element of a discrete input/output experiment. The ctate diagram
is drawn in Figure 2. The state number is drawn into the box in the upper
right corner of the state diagram as represented by the X. The Ys repreaent
one or more of the SDS input/output instructions, substate instruction, then
instruction, initialize veriable instruction, dimension statement, or the stim-
tilus instruction. The Z represents any one of the four basic instructions
of the SDS that will cause a transition from the state, and the -, represents
the direction of program flow or transition. The four instructions that will
cause a transition in the SDS are the AFTER, FOLLOM'tING, IF, and modi-
fied IF instructions. A transition is the exiting from on'e states and the
entry into the designated next state and is considered to be an instantaneous
event.

yt

tz

Figure 2. State Notation Svytem

7

One strate can be a substate of another state. The oubstate notatlon is to
draw the state diagram nested within another state as shown in Figure 3
In thia example sC&te 2 is a substate cf state 1 as denoted by the use of the sane
left oorder line and by the fact that state 2 is drawn within the boundary of
state 1. It should also be no*-1 that the SUBSTATE instruction SS 2 has been
entered in the upper left corner of state 1. State 3 is a substate of state 2
for tht same reasons and is included in this drawing to demonstrate the capa-
bilities of multiple nestings.

SS2 2

SS3 3..
Y,

Y 13

Z

zI z--

Figure 3. Substate Notation

"Yhe direction of program flow is represented by the (right arrow).
"When states are connected by an -, as shown in Figure 4, the THEN statement
should be entered in the upper left corner of the state.

8 --.. tji-i

Both the SUBSTATE instruction and 'he THEN instruction are implied by the
manner in which they are drawn. For example, if a state is drawn within another
and uses its left border, the SUBSTATE instruction is implied, and if two states
are connected by an arrow, the THEN instruction is implied. It is not neces-

sary to write these instructions in the upper left corner of each state; hcwever,
caution should be taken when translating the state diagram into the actual SDS
program.

SS2 .. Y
TH-3 y,Y
Y 2
Y

zz z z

Figure 4. Cr~n:w,,(na State Notation

This concludes the basic SDS notation system. It is recommended that
this section be reviewed after reading Section V describing the SDS instruc-
tion set. The success in using the SDS lies in the care taken in diagramming
the experimer.z. Since each instruction used within a state is written into the
diagram, the programming function is merely to transform the diagram into
proper SDS source language format.

V. THE SDS INSTRUCTION SET

There are five categories of intructions in the SDS instruction set.
These are job control, transitional, modifying or identifying, logical, and
input/oatput instructions. Job control instructions determine the beginning
and the end of th- p.rogram and the end of each line of source language state-
ments. Transitional instructions define the event that will cause a transition
from one stata to the next state. Modifying or identifying instructions modify
or identify vwriables, states, substates, stimuli, or direction of program flow.
Logical instructions supply the capability of tying two or more transitional
instruction, together in a single state though the use of a logical OR or a
logical AND. Input/output instructions are used to con!trol input/output to or
from the system console, paper tapo reader, paper tape punch, and the line
printer.

A. Job Control - there are three job control statements in the SDS language.
These statements are $, NEW, and END. Each of these instructions is usid in
every source language program.

9

pr 1?.$-The $ is used to terminate each sourc languave lina in anSDS program. The operator communication program ui,19 the $ to delineate

the and of ince. If the $ ie omifted, the operator communications program willcombine two or more lines of code, racultirig in program errors.

2. NEW - The NEW instruction is required by the SDS to initiate a
dialog concerning the source of Input of source language code. The instruction
must be the first statement in every source language program and is written as:

NEW$

3. END - The END instruction is required by the SDS to iritlate adialog c:ncerning running of the program. The instruction must be the laststatement in every source language program and is written as:

END$

B. Trans tional - There are four transitional instructions in the SDS Language.These instructions are AFTER, FOLLWTNG, IF, and a modified IF or rtiptional
instruction. These instructions determine when the SDS program will exit
one state and make a transition to the next state in the program.

1. AFTER - The AFTE instruction leaves the state it is in and makes
a transition to the next state in the program after passage of a designatedamount of time. The AFTER instruction is written as:

AF AXAY

Where X is a constant, a variable, or an element of an array; the value of X
must be greater than 0 and must not exceed 32767; and Y is one of the designatorsT, S, M, or H that designate ticks (109 of ms), seconds, minutes, or hours,respectively. If X is ariable or an array element, it is considered to be Xnumber of seconds and must have been previounly defined in the SDS program.NOTE: When writing source language programs using .he SDS, it is necessary
to comply with certain syntax restrictions to inform the operator communicationsprogram of the beginning and end of source statenents. One such restriction is
the use of the delineator blank which will be designated by the symbol A inall of the following examples. When creating source language programs, whetherby using the editor or by input from the console keyboard, this delineator must
be used as shown in each instruction description. It should also be noted that
every instruction within a source language program must be separated by a
blank. Tbe SDS operator communication package is searching the sourcelanguage line to find characters that indicate that an instruction has been
reached, such as the two characters AF in the AFTER instruction. It then skips
all characters until a blank is found which allows the instruction AFTER to bewritten in its entirety if so desired. With the exception of input/output
instructions only the first two characters of each instruction need be typed.
When using input/output ihistructions, the three designated characters must be
typed.

10

Examples of AFTER instruction:

AF 5 T - exit this state after 5 ticks of the clock (50 ms)

AF 8 S - exit this state after 8 seconds

AF 3 M - exit this state after 3 minutes

AF 2 H - exit this state after 2 hours

AF A S - exit this state after A seconds

AFTER 1 T - exit this state after 1 tick of the clock

AFXYZLMN 1 T - exit this state after 1 tick of the clock

NOTE: SDS ignores misspelled words if the first two characters are correct
and there are no imbedded blanks.

The AFTER instruction is diagrammed in Figure 5 in which state #1 will exit
after 3 minutes.

y

SAF3, 3M

Figure 5. Diagramming the AFTER Instruction

2. FOLLOWING - the FOLLOWING instruction leaves the state it is in
and makes a transition to the next state in the program upon occurrence of
a designated count X of a designated state Y that must be a state other than
itself. The FOLLOWING instruction is written as:

FOL X S Y

i1

Where X is a constant, a variable, or an element of an array designating the
desired count; the vlaue of X must be greater than 0 and must not exceed 32767,
S is the character S; and Y is a constant, a variable, or an element of an array
designating the state number of the state that is going to be counted. If X or
Y is - v ariable or an array element, it must have been previously defined in
the SD-' program. The state number designated by Y must be a valid state
number other than its own.

Examples of FOLLOWING instructiol,:

FOL 1 S 5 - exit this state following the occurrence of 1 state #5

FOL A S 3 - exit this state following the occurrence of A state #3

FOi- 3 S A - exit this state following the occurrence of 3 state #A

FOL A S B - exit this state following the occurrence of A state #B

FOL 1 S 5 - exit this state following the occurrence of 1 state #5

FOLLOWING 1 S 5 - exit this s'ate following the occurrence of 1 state #5

The FOLLOWING instruction is diagrammed in Figure 8 in which state #1 will
exit following the occurrence of five state #3. Note that states #2 and #3
oscillate between each other overy second.

S SA2
YY

YTH ^3 I2 .2'-"T A 2 •

AF^ A .A AF^AIAS1

FOLA5A^SA3---

Ftaure 6. Diairamming the FOLLOWING Instruction

12

3. ~si IF -TebstateF insthprogramn leaves the siate It is in ard makes a
tratisiion to the next state in the program upon occurrence of a designated
number X of correct responses whose number Y is also designated in the
instruction. The basic IF instruction is written as:

IF X RY

Where X is a constant, a variable, or an element of an array designating the
desired count; the value of X must be greater than 0 and mz1st not exceed 32767;
R is the character R; and Y is a constant, a variable, or an element of an array
designating the response number desired. If 7 is a variable or an array element,
it must have been previously defined in the SD3 program. If Y is a variable or
an array element, it must have been a valid response number previously defined
in the SDS program.

NOTE: Response numbers range from respone #1 through response #12 which
have a direct relationship to the bit position of the respone word. For example,
response #4 ip.lies the fourth bit of the response word.

Examples of basic IF instruction:

IF 3R 5 - exit this state if 3 response #5 occurs

IF A R B - exit this state if A rnsponse #B occurs

IF A(1) R B(4) - exit this state if A (1) response #B (4) occurs

IF A (D) R B (E) - exit this state if A (D) response #B (E) occurs

The basic IF instruction is diagrammed in Figure 7 in which state #1 will exit if
response #4 occurs 5 times.

Y LL

IF,, 5 R,,4 A-

Figure 7. Disagramming the Basic IF Instruction

13

Another form of the IF instruction is the binary IF instruction which is
designed to detect multiple responses. The binary 71 instruction leaves the
state it is in and makes a transition to the next state in the program upon
occurrence of a designated number of correct response patterns whose bits are
also designated in the instruction. In the basic IF instruction, as previously
stated, the response number implies the bit position of the response word as
shown in Figure 7; however, if the response number 3 was designated in the
binary IF instruction, it would be made of bits 0 and 1 whose values are 2 and
21, respectively. The decimal value must be used to designate the proper value
for the desired multiple respons,. In the response word there are 12 bits whose
values range from 2o through 211 as shown in Table I. The binary IF instruction

is written as:
IF X RB Y

Where X is a constant, a variable, or an element of an array designating the
desired count; the value of X must be greater than 0 and must not exceed 32787;
RB are the characters RB; and Y is a constant, a variable, or an element of an
array designating the response pattern desired; the value of Y must be greater
than 0 and must not exceed 409E. If X or Y is a variable or an array element,
it must have been previously defined in the SDS program.

Table I

BIT Values Used in Multiple Response Word

BIT # VALUE RESPONSE #

0 1 1
1 2 2
2 4 3
3 8 4
4 18 5
5 32 8
6 64 7
7 128 8
8 256 9
9 512 10

10 1024 11
11 2048 12

Examples of binary IF instruction:

1", 1 RF 3 - exit this state if 1 response pattern 3 occurs

IF A RB 3 - exit this state if A response pattern 3 occurs

IF A(1) RB 3 - exit this state if A(1) response pattern 3 occurs

14

a -~~ - ~ -~ -

IF A(B) RB 3 - exit this state if A(B) response pattern 3 occurs

IF A RB B - exit this state if A response pattern B occurs

The binary IF instruction is diagrammed in Figure 9 in which state #1 will
exit if response pattern 2049, bit 0 and bit 11, occurs five times.

4. IF (modified) - The modified IF instruction or relational instruc-
tion leaves the state it is in and makes a transition to the next state in the pro-
gram upon the satisfaction of the relationship of its two variables. The optional
relational operators are EQ, NE, LT, GT, LE, and GE, and the respective mathe-
matic functions are eqwud to, not equal to, less than, greater than, lesws than or
equal to, and greater than or equal to. The relational instruction is wittMen as:

IF X ZY

Y
Y

IFA 5 R8A2049

Fi&ure 8. Diagrammnnin the Binary IF Instruction

Where X is a variable or an array element that has been previously defined in

the SDS program; the value of X must be in the range of -32768 to 32767; Z is
one of relational operators EO, NE, LT, GT, LE, or GE; and Y is a variable
or an array element that has been previously defined in the SDS program;
the value of Y must be in the range of -32768 to 32767.

Examples of relational instruction:

IF A EQ C - exit this state if A is equal to C

IF D GE Y - exit this state if D is greater than or. equal to Y

IF A LT B - exit this state if A is less than B

15 4

The relational instruction Is diagrammed in Figure 9 in which state #1 will
exit if variable A is equal to variable B.

Y
Y

1FA AEQxB

Figure 9. Diagramming the Relational Instruction

C. Modifying or Identifying - There are six instructions that can modify or
identify direction, variables, array size and content, stimuli, and states rela-
tionship to other states; i.a., state or substate. These instructions are THEN,
VARIABLE, DIMENSION, STIMULUS, STATE, and SUBSTATE, respectively.

1. THEN - The THEN instruction determines the direction the
program will follow in the SDS program and is written as:

TH X

Where X can be a constant, a variable, or an element of an array designating
the next state to be entered when an exit is made from this state. If X is a
variable or an array element, it must have been previously defined in the SDS
program. The state number designated by X must be a valid state number.

Examples of THEN instruction:

TH 2 - when this state exits, go to state 2

TH A - when this state exists, go to state A

TH A(1) - when this state exits, go to state A(1)

16

TH A (B) - when this state exits, go to state A (B)

THEN 2 - when this state exists, go to state 2

The T-EN instruction is diagrammed in Figures 10 (a) and 10 (b). InFigure 10 (a) the THEN instruction is written in the upper left corner of

the state diagram, and in Figure 10 (b) the THEN statement is implied by
the arrow. Both Figures 10 (a) and 10 (b) perform the same function,

which is to go to state #2 when state #1 exits after one second.

THA2 L Y
Y Y
Y

A A -F -

Figure 10 (a). Diagramming the THEN Instruction
Using Written Notation

y i Y 2
Y Y

AF ALAS AFA IA^S

Figure 10 (b). Diaeramming the THEN Instruction
Using Tmvlied Notation

17

2. VARIABLE - The VARIABLE instruntion is used to define one or
more variables to be used in the SDS program. The instruction must be the
last instruction in a line of source statements used to describe a state. There
are 25 variables available to the user, and they must be designated as A through
Y. Variable Z is presently being used by the SDS. The VARIABLE instruction
is written as:

VARX=Y or VAR X=Y, X=Y, etc.

Where X is one of 'he letters A through Y used to designate the desired vari-
ables and Y is a constant, a variable, or an element of an array defining tho• vaJ-e
of the designated variable. If Y is a variable or an array element, it must have
been previously defined in the SDS program. The value of Y must be in the
range of -32788 to 32787.
range of -32788 to 32767
Examples of VARIABLE instruction:

VAR A =1 - variable A is set equal to 1

VAR A = B - variable A is set equal to B

VAR A = B(1) - variable A is set equal to B(1)

VAR A = B(C) - variable A is set equal to B(C).

VAR A(1) =1 - array element A (1) is set equal to 1

VAR A(B) = 1 - array element A(B) is set equal to 1

The VARIABLE instruction is diagrammed in Figure 11 in which variables
A and B are both set equal to five.

VARA=5,8--5 L

AF A I hS 4

Figure 11. Diagramming the VARIABLE Instruction

18

3. DIMENSION - The DIMENSION instruction is used to define up to
four arrays. The combined size of the four arrays must not exceed 200 words.
The array defined must be named by any one of 28 available names which are
the characters A through Z. All arrays must be defined using a DIMENSION
instruction prior to any attempt to address an element of the array. The
DIMENSION instruction is written as:

DIM XY

Where X is the name of the array and must be any one of the 26 characters
A through Z; and Y is the number of words in the array. It should be again
noted that if more than one array is defined, the combined total of the size Y
of all of the arrays must not exceed 200 words.

Examples of DIMENSION instruction:

DIM A, 50 - array named A is defined as being 50 words long

DIM B, 150 - array named B is defined as being 150 words long

NOTE: The combined size of arrays A and B does not exceed 200 words in
length.

The DIMENSION instruction is diagrammed as shown in Figure 12 in which
two arrays are named A and B and are defined as being 50 and 150 words in
length, respectively.

DIM,, A, 50
DIM, 8,150

A FA i AT

Figure 12. DiagramminR the DIMENSION Instruction

19

- -.

4. STIMULUS - The STIMULUS instruction is used to issue a desired

stimulus during a state. The stimulus is turned on when a state is entered
and is turned off when a state ends. The value of the stimulus data word
determines which and how many stimuli will be issued. The decimal value
must be used to designate the proper value for the desired stimuli. There are
12 bits in the stimulus word and their values are as shown in Table U.

Table UI

BIT Values Used in Stimulus Word

BIT # VALUE STIMULUS

0 1 1
1 2 2
2 4 3
3 8 4
4 16 5
5 32 8
6 64 7
7 128 8
8 256 9
9 512 10

10 1024 11
11 2048 12

The STIMULUS instruction is written as:

ST X

Where X As a constant, a variable, or an element of an array designating the
desired stimuli. If X is a variable or an array element, it must have been pre-
viously defined in the SDS program. The value of X must be greater than 0 and
must not exceed 4095.

Examples of STIMULUS Instruction:

ST 1 - issue stimulus bit 1 during this state

ST 3 - issue stimuli bits 1 and 2 during this state

ST A - issue stimuli bits in variable A during this state

ST A (1) - issue stimuli bits in array element A (1) during this state

ST A (B) - issue stimuli bits in array element A (B) during this state

20

NOTE: If the characters ST are confusing because of the STATE instruction, the
characters SB can be used to replace ST in the STIMULUS instruction.

The STIMULUS instruction is diagrammed as shown in Figure 13 in which
stimulus bit #1 is turned or. du!. ng the entire time state #1 is active.

SBA I I

AF A :As--

Figure 13. Diagramming the STIMULUS Instruction

5. STATE - The STATE instruction is used to assign a state number
to each state. It must be the first instruction in every source line, and X must
be a constant greater than V and less than 31. The STATE instruction is written
as:

ST X

STATE X

Where X is a state number 0 F X F 31.

6. SUBSTATE - The SUBSTATE instrustion is used to declare
another state to be a substate of the state in which the SUBSTATE instruction
appears. The SUBSTATE Instruction is written as:

SU X

Where X is a constant and must be a v' alid state number of an exisdng state in
the program in which the SUBSTATE inr.'i'Tuction appears. The characte." SS
can be used to replace the characters Sý Y; it is desired. The value of X must
be greater than 0 and less than 31.

Examples of SUBSTATE instruction:

SU 4 - state 4 is a substate of this state

. .21

SU 3 - state 3 is a substate of this state

SS 3 - state 3 is a substate of this state

The SUBSTATE Instruction is diagram•,ed in Figure 14 (a) in which state
#2 is declared to be a subetate of state #1, Figure 14 (b) makes the same
declaration except it implies that state #2 is a substate of state #1 by the fact
that they both use the same left border and state #2 is nested within state #1.

SS^ý2 L•

SA2

AFA iAT

Figure 11(q). Diagramming the SUBSTATE Instruction
Usiri, Written Notation

IT

Y

AFA i AT

Figure 14(b). 'TagrumminX the SUOTATE Instruction
Using Imulied flotation

22

D. LOGICAL - There are two LOGICAL instructions that allow the user tc
logically connect two or more of the transitional instructions together within
a single state. These instructions are OR and AND and are written as:

X OR YorX OR Y OR Z, etc.

X AND YorX ANO Y AND Z, etc.

Where X, Y, and Z are any of the transitional instructions as previously
described.

NOTE: The use of LOGICAL instructions requires the use of a state table
entry for each element X, Y. or Z and will therefore reduce the maximum
number of states from 30 to 30 minus the number of logical instruction elements.

Examples of LOGICAL instruction:

IF 1 R3 OR AF 5 S - exit this state if 1 response 3 occurs or after
5 seconds

IF 1 R 2 AND FOL 1 S 5 - exit this state when 1 response 2 occurs and
1 state 5 has been performed

The LOGICAL instruction is diagrammed in Figure 15 in which state #1
would exit if 1 response 3 occurred or after 5 seconds elapsed.

Y
Y

I FA I^RN3
OR

AF45AS

Figure 15. Diagramming the LOGICAL Instruction

23

E. INPUT/OUTPUT - There are three output instructions that allow output
of variables or arrays to the line printer, paper tape punch, and the console
CRT. There is one input that allows input of variables or arrays from the
paper tape reader. These instructions are PTR, PUN, CRT, and RDR and
are written as:

X A

X A.B;C etc.

X D*

Where X is one of the input/output instructions PTR, PUN, CRT, or RDR; A,
B, or C is any variable; and D* is the name of any array that has been previously
defiv..1 using a DIMENSION instruction.

Ex•.,ple:; of INPUT/OUTPUT instruction:

P•±P. A* - print array A on line printer

PUN A - punch variable A on paper tape punch

CRT A; B; C - print variables A, B, and C on console CRT

RDR A* - read array A from paper tape reader

The INPUT/OUTPUT instruction is diagrammed in Figure 16 in which variables
A, B, and C are printed on the line printer during state #1.

PTRAA; B;C I

AFI LAS

Fizure 16. Dlagramminq the INPUT/OUTPUT Instruction

24

This concludes the description of the SDS instruction set. It is recom-
mended that Sections IV and V be reviewed prior to proceeding to Section VI
which describes the running and u-e of the SDS. For a list of all available
lnstructions in the SDS refer to Appendix C which describes each set of
instructions in detail.

VI. USING THE SDS

A. Introduction to RTE-IU

The SDS runs under control of Hewlett-Packard's RTE-II real-time oper-
ating system and can be started from either RTE-f1 or from RTE-fl's file manager
program FMGR. The procedure used to initialize RTE-II on the HP-2100 is
descrioed in detail in Appendix D. When RTE-11 is initialized, it automatically
schedules program FMGR to be run. PROGRAM FMGR prints the following wel-
come message on the CRT.

SET TIME
:SV,4
TE, *
TE, *****WELCOME TO THE SDS PLEASE TYPE RU, OPCOM WHEN YOU'
TE,*****ARE READY TO BEGIN USING THE SDS
TE, *

If the correct time, day, and year is to be maintained by RTE-II the

system must be given this information prior to running the operator cow.-
munications program. To set the real time clock enter the following command:

SYTM, YEAR, DAiY, HOUR, MINUTE, SECOND

where:
year is a four digit year.
day is a three digit day of the year i.e., I to 365.
hour, minute, second is the current time of a 24-hour clock.

The last character in the above message is a colon (:) which is the
prompt character for the FMGR program and indicates that FMGR is ready to
accept input from the keyboard. The RTE-1I system expects the FMGR program
to be used within approximately five minutes. If no use is made of the FMGR
program within this time, RTE-11 terminates the program. As previously
stated, however, the SDS will run under RTE-I1 or FMGR, and the termina-
tion of program FMGR merely changes the method of starting the SDS. If
FMGR has not terminated, the user must type RU,OPCOM to start the SDS
otherwise he must type *RU,OPCOM.

25

S~~~~~~ ~~~~~ ~ .+.L..L.h~I~..a.h.ii.

B. Programming the SDS

The SDS is programmed through the operator communications program
OPCOM. When the FMGR command RUOPCOM is entered on the keyboard, the
character @ is printed on tho CRT. The @ is the prompt character for the SDS.
The required job control instruction NEW$ must then be entered on the key-
board, which tells OPCOM to prepare for entry of a new program. OPCOM
then prints the message, "INPUT FROM DISC??", which must be given a yes
or no answer. If the reply to this question is yes, OPCOM uses the program
contained in disc file OPIN as input, otherwise it expects the operator to input
the program from the keyboard. Procedures for creating programs for disc
input from file OPIN are described in detail in Appendix E. For the purpose of
discussing programming the SDS, it will be assumed that the reply to the
above question was no and that the program will be entered through the key-
board. Following each line of input from the keyboard that is properly ter-
minated by the job control instruction $,OPCOM will take action as necessary
and then print its prompt character @ indicating that the system is ready for
the next line of input.

Since the SDS was written to be used by investigators familiar with
schedules of reinforcement, the following pages will use examples of program-
ming the SDS with which they are familiar. These examples show varxous
schedules of reinforcement as described in A Primer of Operant Condition
ina, by G. S. Reynolds (1), and include the state diagram and the source
language program.

The first example given is that of a continuous reinforcement schedule
(CRF) (1, p. 36). Continuous reinforcement is reinforcement that occurs
every time a correct response occurs. This procedure would be diagrammed
and programmed as shown in Figure 17.

26

TH A2 12 a~
THA I

IF IR AI

L HA AFA IOAT

RU, OPCOM

N'EW$

INPUT FROM DISC??
NO
S

STL Er 1 RI TH 2$

ST2 AF 10 r SB 1 TH 1$

ENDS

Figure 17. Diagram and Program fo." a CRF Schedule

If the program in Figure 17 were used, it can be seen that upon every
occurrence of response #1 a transition would be made to state #2 in which stim-
ulus #1 would be Issued for 10 ticks of the system clock (100 ms). After 100 ms
had elapsed a transition would be made back to state #1 where another response
#1 would be awaited. A program such as this would tie up the SDS since it has
no means of getting out of the continuous loop. Figure 18 shows two ways to
exit this continuous loop. The first method uses the following instruction as
a counter, and the second method increments a variable during each pass
through the loop and tests for the variable being equal to a preset count using
the modified IF instruction.

27

SSA -Ss2 L2V AR A= .B= 50 ...

TH^3 12 [i3: TH3 "-,[2 IST.I '
A 7L TH^2 -'l VAR A=A+I! [~TH^2 I

IF, 1,^Rl U-| A, 0_ I F^ iýR^-I AF IOT

FOLA50^SA3 IFAAAEQ^B

RU, OPCOM RU,OPCOM

NEW$ NEWS

INPLrr FROM DISC?? INPUT FROM DISC??
NO NO

STI FOL 50 S 3 SS 2$ ST1 IF A EO B SS 2 VAR A=#, B=50$
a 0
ST2IF 1R 1TH 3$ ST2 IF 1R 1TH 3$
@ 0
ST3 AF 10 T ST I TH 2$ ST3 AP 10 T ST 1 TH 2 VAR A=A+I$
0 c
END$ END$

Flgure 18. Methods of leaving Cnnt1n-ous Loop

28

A fixed-ratio schedule (FR) requires that a fixed number of responses be
received for every reinforcement (1, p. 67) Figure 19 describes an FR schedule
that issues a reinforcement stimulus after each count of 10 response #1. The
program will terminate after 50 reinforcements have been issued.

S SA2 2

1{~~IF1 ,,oR I-L_ AF^O

FOLA50ASA3

RU, OPCOM
@

NEWS

INPUT FROM DISC??

NO

9TI FOL 50 S 3 9S 2$

ST2 IF 10 R 1 TH 3$

ST3 AF 10 T ST 1 TH 2$

END$

F1t•ure 19. Diigram Rnd Progtram for FR Schedule

29

... -

A varicble-ratio MVR) schedule is a schedule in which the number of
responses requJred for one reinforcement varies from the number of responses
required for othex reinforcements (1, p. 87). The number of responses required
for each reinforcement are irregular br t are usually repeating numbers. Figure
20 describes a VR schedule in which the variable-ratio table is read in from the
paper tape reader. When the entire table has been used, the table pointer is
reset and the schedule is then repeated. This process is continued until it has
been performed 50 tiLs.

OSA^3 L2

SS, 4ATHA3AVARA 6=1 L3

RDRAA* V4 8=6"l

ST

FOLFO S0 S -

F.LA__. .A SA

RU, OPCOM

NEW$

INPUT FROM DISC??

NO
ST1 AF I S TH 2, OIM A.10 RDR A*$

ST2 FOL 50 S 3 SS 3$

9T3 FOL 0oS 5 SS 4 TH 3 VAR B=l$

ST4 IF A(B) R I TH 5S
@

IT5 AF 10 T TH 4 ST 1 VAR B=B+l$

END$

Figure 20. Diawrsm and ProRram for VR Schedule

in

- -_~~. , -

A fixed-interval (FI) schedule has a constant time delay before a
response can be reinforced (1, p. 87). Figure 21 describes an FT schedule
that Issues a reinforcement stimulus after 10 seconds have elapsed if response
#1 occurs. The program will terminate after 50 reinforcements have been issued.

SSA 2

TH 3 TH^4 73 ST^A 4

: :F^ 0 _ I IF 1^R^lr • AF^10^T -

FOL,50AS^4

RU, OPCOM

NEWS

INPUT PROM DISC??
NO

STI FOL 50 S 4 Sý, 7$

ST2 AF 10 S TH 3$

ST3 IF 1 R I TH 4$

ST4 AF 10 T ST 1 TH 2$

ENDS

FiRure 21. DIagram and Program for PI Schedule

31

A variable interval (VI) schedule varies the amount of time delay required
before a response can be reinforced. Figure 22 describes a VI schedule that
issues a reinforcement stimulus, after A (B) seconds have elapsed, if response #1
occurs. The program will terminate after 500 reihforcements have been issued.

SSA3 L2

SSA4ATHA3AVARAB=i 3

IDIM AA,1O :J TH^5 4 ITH^6 15 Asr^

I .. AF^lfS A- AF^2A(B)^S I-1 IF. I••1' F IT

FOLA IOASA6

FOLA 5OAS A3

RU, OPCOM
@
NEWS

INPUT FROM DISC??
NO

STl AF 1 S TH 2 DIM A. 10 RDR A*$

ST2 FOL 50 S 3 SS 3$

ST3 FOL 10 S 6 95, 4 TH 3 VAR B=1$

ST4 AF A (B) S TH 5$

ST5 IF 1 R i TH 6 VAR B=B+I$

ST6 AF 10 T ST 1 TH 4$

ENDS

Figure 22. Diagram and Program for VI Schedule

32

?A

A schedule in which a reinforcement occurs with a response only if a

designated amount of time has elapsed since the occurrence of the last response

is a differential reinforcement of low rates of responding (DRL) schedule

(1, p. 94). Figure 23 describes a DRL schedule in which a reinforcement

stimulus is issued if and only if 30 seconds have elapsed since the last response.

The technique of using the THEN instruction should be noted since it is an

effective means of making conditional branches. No master counter is used in

this diagram for simplification of the drawing.

SS, 2ATH^A^VARA A=4

TH3VRAA1TH A5 F4 TH AI 5
FOLA.LASA3 ST 1A

IF iR AFIOT OR ,IFR -I AFIT

AFA 30AS

RU, OPCOM

NEW$

INPUT FROM DISC??
NO

STI FOL 1 S 3 OR AF 30 S 98 2 TH A VAR A=4$

ST2 IF 1 RI TH 3$
@

ST3 AF 10 T VAR A'-'$

ST4 IF 1 R 1 TH 5$

ST5 AF 10 T ST 1 TH 1$

END$

Ftgure 23. Diagram and Program for DRL Schedule

33

~. - -. •. ..-. *.. -..-.•.- , ,- • = .=,. I '2 :,-.-.2:)L'•• = •

A schedule in which a reinforcement occurs with a designated number
of responses and only if a designated amount of time has not elapsed is a differ-
ential reinforcement of high rates of responding (DRIP) schedule (1, p. 94).
Figure 24 describes a DRH schedule In which a reinforcement stimulus is issued
if and only if 10 response #1 occur before one second has elapsed. If one second
elapses before the 10 responses occur, the response counter is reset and no
reinforcement stimulus is issued. So master countdr is used in this diagram for
simplification of the drawing.

SSA2 ^TH^ AAVAR^ A=:I

TH4l

'FA OA A A AFA,'AT
AFA i^ S

AAA

RU, OPCOM

N'EW$

INPUT FROM DISC??

NO

STi FOL 1 S 3 OR AF 1 S SS 2 TH A VAR A=l$
@

ST2 IF 10 R 1 TH 3$

@ST3 AF 1 T VAR A=4$

ST4 AF 10 T ST 1 TH 1$

ENDS

Figure 24. Diagram and Program for DRH Schedule

There are more complex known schedules of positive reinforcement, but since
most of these schedules can be reduced to variations of response ratios and time
intervals, combined with differential reinforcement of low or high rates of respond-
ing when necessary (1 p. 67) , no other schedules of reinforcement will be discussed
in this section. Every form of each instruction was not shown in the preceding
examples. Refer to Section V, the SDS Instruction Set, for additional programming 4
and diagramming information. Appendix F describes possible errors that may occur
when programming SDS and should be reviewed prior to using the system.

34

C. Running SDS Programs

Figures 17 through 24. used in describing programming SDS, each include an
END$ instruction as the last instruction in the source programs. When this instruction
is received by the operatoz communications package, the message "START EXP.?" is

printed on the CRT. A yes or no reply must be entered on the keyboard when this
question is asked; otherwise, SDS will wait approximately 32 seconds and assume the
answer was yes. If the reply is , OPCOM creates an output file named OPOUT that
contains a copy of the source program that was input from the console keyboard. OP-
COM then instructs SDS to run the experiment. If the repl7 to the start experiment
question was no, OPCOM creates an output file named OPOUT that contains a copy of
the source program that was input from the console keyboard. OPCOM then instructs
SDS to terminate the program Figures 25 and 26 are examples of use of the yes
or no reply given by the user to the question, START EXPERIMENT??. When an
SDS program terminates properly, the message "END OF EXPERIMENT 1" is printed
on the CRT and the system is suspended. The entry *GO,OPCOM must be entered
on the keyboard in order to te,*minate all programs and return to RTE-IIls FMGR.

35-.L-. .- -- - - -- - - -- - -

SSA2

sHA3 2 1

AF j Z AFA 'A i

A aA

FOL^50ASA3

RUOPCOM

NEWS

INPUT FrOM DISC??
NO
@

ST1 FOL 50 S 3 SS 2$

ST2 AF 1S TH 3$
@

ST3 AF 1 S TH 2$

ENDS
START EXP?
YES

END OF EXM. 1

*GO, OPCOM

Figure 25. Programming and Running an SDS Program

36

SSA2

AF^ 'AI AF^

FOLA50SAS3-

RU, OPCOM

@
NEWS

INPUT FROM DISC??
NO
@

STI FOL 50 S 3 SS 2$

ST2 AF 1 S TH 3$
@
ST3AF 1iS TH 2$

END$

START EXP?
NO

"*GO OPCOM

Figure 26. Programming and Not Running
an SDS Program

- . .37.

..

r]

D. Using Disc Files OPIN and OPOUT

When the operator communications program OPCOM reaches the ENDS ins'tuction,
as previously mention.d it creates an output file named OPOUT that contains a
copy of the source program. OPCOM also moves the file OPOUT into the file
OPIN when it terminates the SDS program. This automatic loading occurs to
enable multiple runs of the same program without having to retype the prog-ram
from the console keyboard. Figure 27 shows an example of a multiple run where
the first run was input on the keyboard and the second run was input from the disc.

AFA 20AS

:RU.OPCOM :RU, OPCOM
@ 0
NEWS NEW$

INPUT FROM DISC?? INPUT FROM DISC??
NO YES
@ 0
ST1 AF 20 S$ NEW$
C C

ENDS ST1 AF 20 S$
START EXP? @
YES ENDS
END OF EXP 1 START EXP?

YES
*GO OPCOM END OF EXP.

*rO, OPCOM

Figure 27. Multiple Runs of Program
Usine Innut File OP,,,4

38

The following procedure can be used to save the source program in OPOUT
for later use. After terminating the SDS issue the following FMGR command:

ST, OPOUT, NAME

Where

is the FMGR prompt 'haracter not typed by the user;

ST is the FMGR store command:
OPOUT contains the source file;
and NAME Is any unused file name selected; i.e.. FILE, SAVE, JOB1, etc.

There are several methods to create a file that can be used in OPIN as

an input file to OPOOM. These methods are discussed in detail in Appendix F.

VII. THE SDS LOG

The SDS log program is a low priority program that collects data concerning
all events. Program LOGG writes the data on magnetic tape when one of its two
buffers is filled and at the end of any SDS vrogram. The time of the beginning
and end of the experiment, the beginning and end of each state, and the !:Cur-
rence of all responses is logged on the magnetic tape. This allows the user to
determine precisely what events took place during the experiment and to collect
statistical data by using off-line prograris after the experiment has been com-
pleted. The format of bach log event is shown in Table III. A sample SDS
program run including a copy of the log is described in Appendix G.

TRhbl MI

Format of Log for Each Event

End

Word Start of Exp. Start of State End of State Resps. of State

1 1000 2000 3000 4000 5000
2 Exp. # Exp. # Exp. # Exp. # Exp. #
3 N/A State # State # State # N/A
4 N/A N/A N/A Bit # N/A
5 losof ms l0sofms losof ms 10sof ms losof ms
6 seconds seconds seconds seconds seconds
7 minutes minutes minutes minutes minutes
8 hours hours hours hours hours
9 day of day of day of day of day of

year year year year year

39

NOTE: Word two of each event, the experiment number, was included to facili-
tate future expansion of the SDS system to control multiple experiments. Words
five thru nine give precise time of day and day of year only If the proper time and date
were set up using RTE commands: otherwise, they are relative to the initial
values of words five thru nine.

40

VIII. REFERENCE

1. Reynolds, G. S., A Primer of Operant Conditioning. Second Edition. Glenview.
Illinois: Scott, Foresman and Company, 1975.

i

't 41

-v.. .. --- a

):

APPENDIX A

IN-CORE MULTITASKING USING RTE-II

A-1

APPENDIX A

IN-CORE MULTITASKING USING RTE-fl

SYSTEM GENERATION

The approtch used to accomplish the desired multitasking capabilities
required that 1 new system be generated that included eight dummy programs.
These programs were named T1XXX through T8XXX. These names were
selected to identify them as tasks (T), to number them (1-8), and to meet the
requirement of the event sense interface routine that the last three letters be
Xs. Since these programs are included only for the purpose of generating ID
segments and are never executed, their contents can be any valid instructions.
It is important to keep them as short as possible because they are .oreground
resident prgrams and therefore are wasted core. The programs used in this
generation were all identical except for the NAM statement and included the
following code:

ASMB,R,L
NAM T1XXX, 1.4

BGN1 HLT
END BGNI

Each of these programs required only one word of core and is non-executable
due to the HLT instruction. If the programs were scheduled before their ID
segments were modified, as discussed later in this Appendix, a memory protect
violation wculd occur in the system which serves as a dasirable warning.

1) Gensating these tasks into the system requires several entries in the

answer file f e the on-line generator, RTGN2. These entries are:

Program input phase

REL %TlXXX
REL, %T2XXX
REL, %T3XXX
REL %T4XXX
REL %T 5XXX
REL, %T6XXX
REL, %T7XXX
REL, %T8XXX
REL,%NTSK

2) The interrupt table included ent tees assigned to unused device select
codes for future modifications and uses, such as driver debugging and for
setting up pointers to the desired ID segments.

"A-2

38,PRG.T1XXX
37,PRG,T2XXX
40,PRG.T3XXX
41 ,PRG,T4XXX
42,PRG,T5XXX
43,PRG,T8XXX
44,PRG,T7XXX
45 ,PRGT8XXX

Upon completion of the system generation three goals have been achieved.
First, the dummy programs are in core and will issue a memory protect warn-
ing when used improperly. Secondly, an ID segment has been generated for
each of the dummy programs which will be used to load multiple programs into
core using the RTE-IU loader. Each of these programs required one word of
foreground core, two words in the device reference table, one word in the
interrupt table, and 22 words for the ID segment. Third, a pointer to each of
the programs has been set up in the interrupt table.

In order to describe the use of the multitasking technique, two programs
will be used. These programs named PROGA and PROGB contain the following
code.

FTN4,L
PROGRAM PROGA
DIMENSION NAM (3)
DATA NAM/2HPR,2HOG,2HB /
WRITE (1, 10)

10 FORMAT ("TEST PROGA")
CALL EXEC (9,NAM)
END
ENDS

FTN4,L
PROGRAM PROGB
WRITE (1, 10)

10 FORMAT ("TEST PROGB")
END
ENDS

Assuming these programs had been compiled and relocatable programs
were available, any attempt to load and run them in-core in a single partition
using RTE-II's loader would fail. For example, if a procedure was used as
follows:

:LG,I
MR, %PROGA
MR, %PROGB

:RU,LOADR, 99,1

A-3

The loader would accept both relocatable programs, load them into background,
show both of them on the load map, but allow only PROGA to be run. On the
other hand, if the two programs were loaded separately, the programs would
load and ruix but would not be contained in core simultaneously.

If program PROGB were modified and made a subroutine, as shown below,
both PROGA and PROGB would be in core simultaneously, but when PROGA
attempted to execute the CALL EXEC (9,NAM) an error would occur because
PROGB would have no ID segment. Getting both programs into core simul-
taneously is necessary; therefore, PROGB would need to be modified as
follows:

FTN4,L
SUBROUTINE PROGB
WRITE (1,10)

10 FORMAT ("TEST PROGB")
END
ENDS

In order to have the capability of scheduling PROGB, an ID segment
generated for one of the dummy programs will now be modified to point to
PROGB. To accomplish this PROGA must be modified as follows:

FTN4,L
PROGRAM PROGA
DIMENSION NAM (3)
DATA NAM/2HT1, 2HXX, 2HX /
WRITE (1, 10)

1 0 FORMAT ("TEST PROOA"I)
CALL NTSKI
CALL EXEC (9, NAM)

END
ENDS

The call to subroutine NTSK1, discussed later in this Appendix, would
modify program T1XXX's ID segment to point to PROGB. PROGB can now be
scheduled using the CALL EXEC (9,NAM); however, it must now be referred
to as T1XXX. Using this technique as many as nine programs can be in a single
partition simultaneously. In this case, for example, PROGA and T1XXX
THROUGH T8XXX could be installed in a single partition, remnving the neces-
sity to swap programs to and from 'he disk in order to muitiprogram. This
approach was desirable in the State Diagram System primarily because of the
cverhead in swapping programs in and out of coro.

There were two options available when attempting to modify ID segments
using subroutine NTSK1. The first was to contain the code required to modify
the ID segment and the code to establish the pointer to the program being
installed, PROGB in the above example, in a single subroutine. The second

A-4

option was to contain the code required to modify the ID segment in one sub-
routine and to have as many as eight subroutines to generate pointers to programs
being installed. Since the latter method consumed less core, it was selected
for use in SDS.

The following subroutine was generated to establish pointers to those
programs being installed in core simultaneously.

ASMB, R, L
NAM NTSK , 6
EXT NTSK,PROGB, .ENTR
ENT NTSK1

NTSK1 NOP
JSB .ENTR
NOP
JSB NTSK
DEF *+3
DEF ONE
DEF PROGB
JMP NTSK1 ,I

ONE OCT 1
END
END$

Subroutine NTSK1 gets the entry point address of the program being installed,
PROGB in the above example, and passes it to subroutine NTSK for installation
in the ID segment of T1XXX as designated by the first parameter labeled ONE.
As can be seen, a similar subroutine would be required to install other pro-
grams. For example, by changing all NTSK1 to NTSK2 and replacing those
underlined words in the program with PROGCM TWO, PROGC, TWO, and 2,
respectively, the subroutine would install PROGC in core using T2XXX's ID
segment.

The following subroutine was generated to modify the ID segments of
TIXXX through TBXXX. It can be included in the system during system
generation or it can be loaded using RTE-II's loader.

ASMB,R,L
NAM NTSK, 8
ENT NTSK
EXT $LIBR,$LIBX, .ENTR,EXEC

ARG BSS 2
NrSK NOP

JSB .ENTR
DEF ARG
LDB ARG,I GET TASK NUMBER
ADB TABA SET UP INDEX
JSB $LIBR DROP FENCE
NOP

A-5

LDA BREGI GET INT TABLE POSIT

ADA INTBA SET UP INDEX
LDB, AREG, I GET ID SEG ADR
SSB,RSS NEGATIVE?
JMP ADONE NO
CMB ,INB YES MAKE IT POS.
STB AREGI AND PUT IN TNT TABLE

ADONE ADB B7 ADJ TO WORD 8
LDA ARG+l GET TASK ADR
ADA =B3 ENTRY POINT
STA BREG,I INSTALL TASK
JSB $LIBX UP FENCE

S~DEF NTSK
J"MP NTSK, I RETURN

TABA DEF *

OCT 36
OCT 37
OCT 40
OCT 41
OCT 42
OCT 43
OCT 44
OCT 45

AREG EQU OB
BREG EQU 1B
INTBA EQU 1854B
D7 OCT 7

END
END$

Subroutine NTSK receives the desired task number and task entry point from
subroutines NTSK1-NTSK8. This information is then used to modify word eight
of the desired ID segment, making it point to the task being installed. For the
State Diagram System no attempt was made to change the name words in the ID
segment. If calling PROGB, T1XXX, after the task installation is undesirable
words 13, 14, and 15 of the ID segment must be modified to contain PR, OG,
and Bb, respectively. This would not be a difficult task and subroutine NTSK
could easily be modified to attain this goal.

i

A-6

12

APPENDIX B

SDS PROGRAM AND SUBROUTINE LISTINCS

. - ----- -- -- -- ----1

"OPCOM T=O0003 IS ON CR)O002 USING 00024 8LKS R-OQ0o

0001 FTH4
0002 PROGRAM OPCOM
0003 COMMON J,IARAY(72),IVT(90),ISNIV,NBRI
0004 COMMON NBR2,NBR3,HBROI,IREL,ITERM,KY
0005 COMMON LIHE(15),IAFLG(5),IHDAY(15)
0006 DIMENSION HAM(3),IPRM(5),IAHS(2),HAMI(3)
0007 DINENSION 191(1),12(36)
0008 DIMENSION I97(10), 188(12),189(14), I810(12), 1811(14)
0009 DIMENSION I1 1 (16), HAM2(3), IRB(3)
0010 EQUIVALENCE (IRB(1),HBRI),(IR (2),HBR2),(IRB(3),HBR3)
001t DATA NAM/2NT4,2HXX,2HX /
0012 DATA NAMI/2HSD,2HS ,2H /
0013 DATA NAM2/2HT6,2HXX,2HX /
0014 DATA IB/2H @/
0015 DAFA IB?/2HST,2HAR,2HT ,2HEX,2HP?/
0016 DATA 108/2HBA,2HD ,2HOP,2HER,2HAT,2HOR/
0017 DATA I89/2HOU,2HTS,2HID,2HE ,2HTA 2HBL,2NE /
0018 DATA IB10/2HHO,2H O,2HCT,2HAL,2H N,2HBR/
0019 DATA 18itl/2HBA,2ND ,2HN9,2HHA,2HRY,2H F,2HMT/
0020 DATA 1813/2HIN,2HPUJ,2HT ,2MFR,2HOM,2H D,2HIS,2HK ,2H??/
0021 C INITIALIZE VARIABLES
0022 J =o
0023 IDISK,,0
0024 1 SHa0
0025 IREL-O

002 6 INEW-O
0027 DO 1 !.1,5
0028 1 IAFLG(I)-0
0029 C ENTRY POINT FOR NEW STATE
0030 1 IAHORmO
0031 IFLGmO
0032 DO 5 1.l,15
0033 5 LINE(I)=O
0034 DO 3 r1m,90
0035 3 IVT(I)=O
0036 HTERM=O
0037 C KY IS VAR TABLE PTR
0038 KV=I
0039 C ENTRY POINT TO CONTINUE A STATE
0040 7 ITERM-O
0041 C PROMPT OPERATOR TO IKPUT NEXT LINE
0042 CALL FXEC(2,tIBI,t)
0043 C READ A LIVIE AND POSITION PROPERLY
0044 C IF OISK FLAG IS SET READ FROM DISK
0045 IF(I ID',ýK. HE.1)GO T(C 11
0046 IPsO
0047 C SKED RDWRT FOR READ
0048 CALL EXEC(9,MiAM2,IP)
0049 C GET CLASS NJMBE; THEN READ A RECORD
0050 CALL RNPAR(IP'FM)

B-2

a- 71 -. hM*i jaa .~ -

0051 CALL EXEC(21, IPRM(2), 182,36)
0052 DO 8 1=1,36
0053 ICONDIAND(IB2(),1774008)
0054 IF(ICOND.EQ .220006) B12(I)=22040B
0055 IF(ICONO.EQ . 220008) IBK= 1+ 1
0056 IF(ICOHD.EQ.220008)GO TO 87
0057 ICONDOIAND(IB2(1),3778)
0058 IF(ICOND.EQ.446)IBK=I+l
0059 IF(ICOHD.EQ.44B)GO TO 87
0060 8 CONTINUE
0061 GO TO 89
0062 87 DO 88 IIBK,36
0063 88 1B2(1)-200408
0064 C WRITE RECORD ON CRT
0065 84 CALL EXEC(2,1,IB2,36)
o066 GO TO 13
0067 C READ RECORD FROM KEYBOARD
0068 1 CALL EXEC(1,4018,fB 2,-72)
0069 C IF HEW FLAG IS CLEAR RDWRT TASK IS HOT INSTALLED
0070 13 IF(IHEW.HE.1)GO TO 12
0071 IPtIa
0072 IPrI
0073 ICLAS"O
0074 C SEND A RECORM TO RDWRT
0075 CALL E(EC(20,0,I82, 36,JDUM,IDUM, ICLAS)
0076 C DO NOT WRITE HEWS RECORD
0077 IF(IS2(I).EQ.2HNE>GO TO 12
0078 C SKED RDWRT FOR WRITE
0079 CALL EXEC(9,NHA2,IP.,[PIICLAS)
),090 C COHDX STATE RECORD AND PUT IN IARAY
0081 12 J l1
0082 DU 9 I1=,36
0093 IARAY(J1)=IAND(IB2(I),1774008)
0084 ,ARAY(JI)xISHFT(IARAY(JI),-8)

00 05 "ARAY(J 1 + I) =1 AHD(182(I), 3778)
0086 9 Jl=J1+2
0087 J =0
0088 C TERMINATING CHAR IN LINE ?
0089 DO 10 1-1,72
0090 IF(IARAY(I).EQ.448) .J=J+I
0091 IF(IARAY(I).EQ.448) GO TO 15
0092 10 CONTINUE
0093 C NO TERMINATING CHAR IN LINE THEN SET FLAG
0094 NTER4=I
0095 CALL SKPSP
0096 IF(ITERM.EQ.2)GO TO 7
0097 C NEW ?
0098 15 iF(IARAY(J) EQ.116B) GO TO 70
0099 C END ?
0100 IF(IARAY(J).EQ.105B) GO TO 85
0101 C STATE ?
0102 1? IF(IARAY(J).NE.1238) GO TO 20
0103 C STATE LOGIC
0104 CALL SKPSP
0105 IF (ITiRM.NE.,- GO TO 102C,
0106 C IF STATE FLAG IS SET THIS MUST BE SUBSTATE OR STIMULUS

B-3

-;i44

0107 IF(IFLG.EQ.1)GO TO 451
0108 IF (IARAY(J).HE.1248) GO TO 451
0109 CALL SKTNB
0121 IF(ITERA.NE.O) GO TO 1020
0111 TAHOR=O
0112 IF(HTERM.YEQ.I0))IFLG- T20
0113 CALL NORTY
0114 IF(I TER HE .0)GO TO 10TO 30
0115 [SH,,,BR2

0116 CSTATE NUMBER WITHIN LIMITS ?
0117 IF(ISN.GT.30) GO TO 802
Oils GO TO 30

0119 20 IF(NTERM.NE.t) GO TO 802
0120 C IF ?
0121 30 IF(I3ARAY(,J).EQ.I B)GO TO 100)
0122 C AFTER ?OG
0123 IF(IARAY(J).EQ.10 8)GO TO 200
0124 C AFOLLOWING ?
0132 IF(IARAY(J.)EQ.I6O8) GO TO 300
01t2 6 CAHD/OR?

0127 IF(IAMOR.NE.1) GO TO 400
0128 J=J-2
0129 GO TC(103,203,303,A 03),LIHE(I T)
0130 C GO TO THEN LOGIC SINCE NONE OF ABOYE WAS TRUE
0131 C EEW LOGIC
0132 70 CALL SKPSP
0133 IF(ITERM.HE.O)GO TO 1020
0134 CF(IARAY(J).HE.1O5B) GO TO 800
0135 CALL SKPSP
0136 IF(ITERM.NE O)GO TO 1020
0137 IF(IARAY(J).NE.12?8) GO TO 800
0138 ILPR(1)=I
0139 C CEW OK CALL SDS TO CLEAN HOUSE AND INSTALL TASKS
0140 C SD NOT PERFORM HEWS TWICE
0141 IF(IC EW.EQ 1 ,I)GO TO 6
0142 CALL EXEC(9,NA BI,IPRM())
0143 Cval
0144 C SET NEW FLAG
0145 IHEWMI

0146 1F(INE)O
01$7 G T 6I
0158 ICLASL O
0149 CALL EXEC(20,SS82,36,JPUMIDUM,ICLAS)
0150 C SKED RDWRT FOR HEWS WRITE
011 CALL EXEC(9,HAM2,IP,IP1, ICLAS)
0152 CALL ESPEC(3,ttSP, I
0153 CALL EXEC(2,L, IB 3, 18)
0154 CALL EXEC(I.4OI8,IAHS,2)
0153 C SET DISK FLAG IF READ FROM DISK
0156 IF(IANS. EQ. 2HYE) ID ISK=l
0157 GO TO 6
0158 C END LOGIC
0159 85 CALL SKPSP
0 160 IF(ITERM.NE.O)GO TI 1020
0161 IF(IARAY(J).NE.1168) GO TO ROO

0162 CALL SKPSP!

0163 IF(ITERMN.E.O)GO TO 1020

B-4

.t .- "

0164 IF(IARAY(J).NE.1048) GO TO 800
0165 C END OK CALL SDS WITH NECESSARY PARMS

0166 CALL EXEC(2,t,1 7,10)
0167 CALL EXEC(1,4018,IANS,2)
0168 C START EXPERIMENT ?
Oi69 IF(IANS.EQ.2HHO)GO TO 92
0170 C SET START FLAG
0171 ISTRT=1
0172 IPRM(1)01
0173 1 PRM(2)"0

0175 IPRM(4)=O
0176 IPRM(5)n0
0177 CALL EXEC(tO,NAMI, IPRM(1), IPRfl(2), IPRH(3), IPRM(4), IPRR(5))
0178 92 CALL EXEC(7)
0179 CALL EXEC(3,110I8,1)
0180 IPM3
0181 CALL EXEC(9,NAM2,IP)
0182 IF(IANS.HE.2HNO)CALL EXEC(6,NHAMt)
0183 CALL EXEC(6)

0184 GO TO 9999
0185 C FIF LOGIC
0186 C IF LOGIC
0187 too CALL SKPSP
0188 IF(ITERM .E .O)GO TO 1020
0189 IF(IARAY(J).NE. i06B) GO TO 790
0190 1F(IANOR.NE.o) GO TO 103
0191 C TYPE=l
0192 LINE(l)-1
0193 GO TO 105
0194 103 IVT(KVY)1
0195 KV=KV+3
0196 105 CALL SKPI
0197 ,F(ITERM.NE.O)GO TO 102.0
0198 C GET COUNT
0199 CALL N8RTY
0200 IF(ITERM.NE.O)GO TO 1020
0201 IF(IAHOP.NE.O) GO TO 108
0202 C SET UP COUNT
0203 LINE(4)=HBR1
0204 LINE(5)=HBR2
0205 LINE(6)=NBR3
0206 GO TO 110
0207 108 CALL SYARA
0208 C RELATIONAL FUNCTION ?
0209 110 JFLG=.J
0210 IF(IARAY(J).NE.1228) GO TO 175
0211 CALL SKPSP
0712 IF(ITERM.NE.O)GO TO 1020
0213 C NO - MULTIPLE RESPONSE '

0214 IF(JFLG-(J-1).NE.O)GO TO 112
0215 IF(IARAY(J).EQ.1O28)LINE()w-1
0216 IF(IARAY(J).EQ.t028) CALL SKPSP
0217 C NO - GET RESPONSE NUMBER
0218 112 CALL NBRTY
0219 IF(IANOR.NE 0) GO TO 113
0220 C SET UP OPERAND

B-5

4

0"221 LINEC7)wHBRl
0222 LINE(8)NHBR2
0223 LINE(9)-HBR3
0224 GO TO 115
0225 113 CALL SVARA
0226 IVuIV+9

0227 115 KKat
0228 GO TO 1010
0229 C OR ?
0230 611 IF(IARAY(J).HE.1178) GO TO 135
0231 C OR LOGIC
0232 CALL SKPSP
0233 IF(ITERM.NE.O)GO TO 1020
0234 IF(IARAY(J).NE.1228) GO TO 800
0235 IF(IANOR.HE.0) GO TO 120
0236 C SET UP OR TYPE AND PTR
0237 LINE(2)=2
0239 118 LINE(3)aIV
0233 IAHORm1
0240 130 IVT(KV+t)=0
0241 CALL SKPSP
0242 1F(ITERM.HE .0)GO TO 1020
0243 GO TO 30
0244 120 KVwKV-8
0245 I VT(KV)=2
0246 125 KV=KV+I
0247 IVT(KV puIV
0248 KV=KY+7
0249 GO TO 130
0250 C AND ?

0251 135 IF(IARAY(J).HE.101t) GO TO 400
0252 C AND LOGIC
0253 CALL SKPSP
0254 IF(ITERM.HE.0)GO TO 1020
0255 IF(IARAY(J).HE.1168) GO TO 800
0256 CALL SKPI
0237 IF(ITERM.HE.0)GO TO 1020
0258 J = J - I

0239 IF(INOR. HE.O) GO TO 140
0260 C SET UP AND TYPE AND PTR
0261 LIHE(2)-1
0262 GO TO 118
0263 140 KVmKV-8
0264 IVT(KV)1
0265 GO TO 125
0266 C MULTIPLE RESPONSE LOGIC
0267 145 CALL SKPSP
0268 IF(ITERM NE.O)GO TO 1020
0269 J J-1
0270 IRB(1)m0
0271 IRB(2)=0
0272 IRB(3),0
0273 Iw0
0274 IF(IANOR. HE.0) GO TO 147
0275 C SET UP TYPE
0276 LIHE(I)=-I
0277 GO TO 150
0278 147 KVuKV-6

B-6

- ~ i

0279 IYT(KYV)-l
0260 KY"KV+6
0261 130 1I0+1
0282 151 CALL SKPSP
0207, IF(ITERM.HE.0)GO TO 1020
0294 DO 153 K1,8
0285 1F(UARAY(J).EO.(47+K)) GO TO 155
0286 153 CONTINUE
020? GO TO 160
0268 155 CALL NBRO
0209 IRB()w"NBRO1
0290 160 IF(IARAY(J).HE.548) GO TO 164
0291 IF(I.GE.3) GO TO 806
0292 GO TO 150
0293 164 IF(I.LT.3) GO TO 806
0294 J=J-1
0295 165 IF((IPHOR.NE.0)GO TO 16?
0296 C SET UP OPERAND
0297 LINE(?)-IRB()
0298 LINE(8)-IRB(2)
0299 L INE(9)u I R8(3
0300 GO TO 170
0301 166 IF(IANOR.HE.O)GO TO 16?
0302 LINE(4)=HBR1
0303 LIHE(5)-HBR2
0304 LINE(6)-NBR3
0305 GO TO 110
0306 167 CALL SYARA
0307 I V +V9
0308 170 CALL SKPSP
0309 KK=2
0310 GO TO 1010
0311 C; EQUAL ?
0312 175 IF(IARAY(J).EQ.1059)GO TO 180

0313 C HOT EQUAL ?
0314 [F(IARAY(J).EQ,1168) GO TO 184
0315 C. LESS THAN ? LESS THAN OR EQUAL ?

0316 IF(IARAY(J).EQ.114 6) GO TO 187
0317 C GREATER THAN ? GREATER THAN OR EQUAL
0318 IF(IARAY(J).NE.10?B) GO TO 800
0319 177 CALL SKPSP
0320 IF(ITERM HE.Q)GO TO 1020
0321 C GREATER THAN ?
0322 IF(IARAY(J) EQ.1248) GO TO 179
0323 C GREATER THAN OR EQUAL ?
0324 IF(IARAY(J) NE.10580)GO TO 800
0325 IREL=8
0326 Gn TO 19o
0327 179 IREL=6
0328 GO TO 190
0329 C EQUAL LOGIC
0330 180 CALL SKPSP
0331 IF(ITERM.HE O)GO TO 1020
0332 IF(LARAY(J) NE.1218) CO TO 800
0333 IRELm4
0334 GO TO 190 4)

0335 C HOT EQUAL LOGIC

B-7

"0336 184 CALL SKPSP
0337 1 FITERN. HE O)GO TO 1020

0338 IF(IARAY(J).HE1059) GO TO 800

0339 IRELa9
0340 GO TO 190
0341 187 CA6L SKPSP
0342 IF(ITER.HNE.O)GO TO 1020
0343 C LESS THAN ?
0344 IF(IARAY(J).EQ.1248) GO TO 189

0345 C LESS THAN OR EQUAL ?
0346 IF(IARAY(J) HE.105) GO TO 800

0347 IREL%7
0748 GO TO 190
0349 189 IRELal
0350 GO TO 190
0351 C SET UP RELATIONAL TYPE
0352 190 IF(IANOR.NE O)GO TO 191
0353 LINE(l),IREL
0354 GO TO 192
033 191 IVT(KV-6)nIREL
0356 192 CALL SKPSP
0357 IF(ITERM HE.O)GO TO 1020

0358 CALL NBRTY
03w ,9 SET UP OPERANO
0360 IF(XANOR HE.O)GO TO 193
0361 LIt4E(7)a H8RI
0362 LINE(S)" NBR2
0363 LIHE(9)aHBR3
0364 GO TO 194
0365 193 CALL SVARA
0366 I V-*+9
0317 194 KK,4
0368 GO TO 1040
0369 C **e,********$,, ***$,*$*,****,, e*****'$,$$**** AFTER
0370 C AFTER LOGIC
0371 200 CALL SKPSP
0372 IF(ITERM HE.O)GO TO 1020
0373 IF(IARAY(J).HE.1068) GO TO 790
0374 IF(IAHOR.HE.0) GO TO 203
0373 C SET UP AFTER TYPE
0376 LINE(1)-2
0377 GO TO 205
0378 203 IVT(KV)"2
0379 KV"KV+3
0380 205 CALL SKPI
0381 IF(ITERM . HE .O)GO TO 1020
0382 CALL HBRTY
0383 IF(HBRI.HE. t) GO TO 166
0394 IF(ITERM.HE .0)GO TO 1020
0385 C TICKS ?
0386 IF(IARAY(J).HE.1248) GO TO 213
0387 HBRZ"-HBR2
0380 GO TO 166
0389 C SECONDS "
0390 213 IF(IARAY(J) EQ.1239) GO TO 166
0391 C MINUTES ?'
0392 IF(IARAY(J) NE.I1SB) GO TO 220

--.. B-8

0393 H8BR2HBR2*60
0394 GO TO 166
0395 C HOURS ?
0396 220 IP(IARAY(J).NE.110B) GO TO 800
0397 HaR2-HBR2*3600
0398 GO TO 166
0399 C ,**..,**..*. ***** ******e**,*s***" FOLLOWING
0400 C FOLLOWING LOGIC
0401 300 CALL SKPSP
0402 IF(ITERMHE.O)GO TO 1020
0403 IF(IARAY(J).HE.1t?8) GO TO 790
0404 IF(IAHOR.HE.O) GO TO 303
0405 C SET UP FOLLOWING TYPE
0406 LINE(I)w3
040? GO TO 305
0408 303 IVT(KV)-3
0409 KVmKVY3
0410 305 CALL CKPt
0411 tF(ITERM NE O)GO TO 1020
0412 CALL NBRTY
0413 IF(ITERM.HE.O)GO TO 1020
0414 IF(IANOR.NE.0) GO TO 308
0415 C SET UP COUNT
0416 LIHE(4)=NBRI
041? L IHE(5)mHSR2
0418 L INE(6)HBR3
0419 GO TO 632

0420 308 CALL SVARA
0421 C, FOLLOWING STATE
0422 632 IF(IARAY' J) NE.1238) GO TO 8g0
0423 CALL SKPI
0424 LF(ITERM HE.O)GO TO 102()
0425 CALL HNRT'f
0426 C YES GO SET UP OPERAND
0427 JaJ-I
0428 GO TO 165
0429 C THEN ? SUBSTATE '

0430 C * THEN
0431 400 IF(1ARAY(J).HEt24B) GO TO 45
0432 C THEN LOGIC
0433 CALL SKFSP
0431 IF(ITERM.HE.O)GO TO 1020
0435 IF(IARAY(J) NE.110B) GO TO 800
0436 CALL SKPI
043? IF(ITERM NE.0)GO TO 1020
0438 CALL NBRTY
0439 C SET UP NEXT STATE
0440 t. HE(10)-NBR1
0441 LINE(11)-NBR2
0442 LIHE(12)mNBR3
0443 KK-3
0444 GO TO 1010
0445 C SUBSTATE ? STIMULUS '

0446 450 IF(IARAY(J) NE.1238) GO TO 901)
0447 CALL SKPSP
0448 IF(ITERK.NE O)GO TO 1020
0449 451 IF(IqR1AY(J).Eg.1248) GO TO 500

B-9*1
..................... l.h!SM1

'0450 1k IARAY(J).EQ.1028) CO TO 500
0451 C SUBSTATE LOGIC
0452 452 IF(IARAY(J)EQ .1258) GO TO 455
0453 C CAN BE WRITTEN AS SUBSTATE OR SS90 SOK IT
0454 IF(IARAP(J).E. 12389)GO TO 800
0455 455 CALL SKPI
0456 IF(ITERM HE o0)GOo tO 1020
0457 CALL NORTY
0458 C SET UP SUSSTATt. NUMBER
0459 IF(H9R2.GT.30)oO TO 802
0440 LIHE(13)ug46R2
0441 KK-4
0462 GO TO 1010
0443 C STIMULUS LOGIC
0444 500 CALL SKPSP
0465 CALL MIRTh'
0466 JaJ -1I
044? 505 IPRM(1)m3
0468 IPRM2)uIRe(1I
0469 IPRM(3)uIRB.2)
0470 IPRN(4)'1R9(3)
0471 IPRM(5)NISH
0472 CALL EXEC(9IMAMDIPRM(l)IPRM,'2).IPRM(JY)IPRII(

4)tIPRM(S))
0473 CALL SKPSP
0474 KK=5
0475 GO TO 1010

046C INITIALIZE VAI~RABLE LOGIC
0477 900 IF(IARAY(J)-HE ,1268e) GO TO 950

0479 LIt4E(15)uIV
0480 901 CALL 9KP1
0481 IF([TERM NE.0) GO TO 1020
0482 CALL NORTY
0483 IF([TERM.HE.0) GO TO 1020
0484 K'/uKV+3
0485 CALL SYARA
0436 J.J-1j-
048? CALL SKPSF'
0488 IF(ITERM.NE .0) GO TO 1020
0 4 81 1k ARAfl J) .MHE .71158) GO TO 800
0490 CALL SKPSP
0491 1k ITERM.ME.Q) GO TO 1020F0492 1F(IARA'v¼J) .EQ9.556)IVT(KY-6)u-l
0493 IF(IARAY(J) .EQ0.5589)J -J+lI
0494 IF(IARAY(J) .EQ0.539)J aJ +1
0495 CALL NORTY
0496 CALL SYARA
049? IF(NBRI.EQ.1)CO TO 902
0498 IF(IVT(KY-9).EQ.-l)IYT(KV-3)u-NHR1
0499 GO TO 905
0500 902 IF(IVT(KV-9).EQ.-1)IVTKKV-2)am-HBR2
0501 905 IVT(KV-9)-9
0502 IV-IV+9
0503 KK=6
0504 GO TO 10 10
0505 903 IF(IARAY(J) EQ 546) GO TO 910
0506 IF(IARAN J) EQ 539).J')+l
0507 IF(IARAY'0J-1) EQ.538) 6O To 904

B-10

olop IF(IARAY(J).NE.53B) GO rO 400

0509 J-J.1
0510 1YT(KY-9)a- I
0511 904 CALL NBRTY
0512 CALL SVARA
0513 IF(NBRI. EQ. 1) GO TO 906
0514 IF(IYT(KV-12).EQ.-l) IYT(KY-3>u-MBRl
051 GO TO 90
0516 906 IF(IYT(KV-12).EQ.-1)1vT(KY-2)=-NBR2

0319 KKx7
0520 ~GO TO 11

0521 97 IF(IARAY(J) HE .548) GO TO 400
0522 IVT(KV-11)8I
0523 [VT(KV-10)s I
0524 909 J a.)-I
0525 GO TO 901
0526 910 1 VT(KV-8) al
0527 IVT(KV-?)mIV
0528 GO TO 909
0529 C INITIA~LIZE ARRAY LOGIC
0330 950 IF(IARAY(J).HE.1048)GO TO 960
0531 CALL SKPI
0532 IF(I TERM .NE.0)GO TO 1020
0533 00 951 1-1,3
0534 IF(IAFLG(1).EQ.O)GO Ti) 952
0535 951 CONTINUE

II0536 GO TO 802
0537 952 IAFLG(I),IARAY(J)
0538 CALL SKPSP
0539 IF(ITERM NE.0)GO TO 1020
0540 Ir:IARAY(i).NE.34B)ITERMat
0541 CALL SKPSP
0542 IF(ITERM.HE.O)GO TO 1020)
0543 CALL NORT'?
0544 HUDSaNBR2
0145 1a1t* 3
0546 IF(I EQ, 3)It4DAY?(I)x27
0547 IF(I.ME. 3)IHDAY(I)mIDAY(1-5)+
0548 11HDAYI1-1)zNUDS
0549 ENDAY(1-2)=IHDAY(I)IHc.AY(1-1)-I
0550 IF(IHDAY(1-2).GT.226)GO TO 802
0551 KK-7
0552 GO TO) 1010
0553 C OUTPUT TO CRT ?
0554 960 IF(IARAY(J).HE.103B)G') TO 965
0555 C TYPE 2 IS CPT OUTPUT
0556 1 T YP Ea2
0557 C SET UP YAR TABLE FOR INPUTeOITPUT
0558 963 CALL SKPI
0559 IF(ITERM NE.0)GO TO 1020
0560 IVT(KV)-6
0561 I'IT(KV+l)=ITYPE
0162 IYT(KV+2)=o
0563 LINE(14). ITYPE
0564 LIHE(15)mlV

0565 162 CALL H8RT'?

B-1lI

0566 KV'.KY+3I0567 CALL SVARA
0568 IVu I +6
0569 KK=8
0570 GO TO 1010
0571 961 IF(lARAY(J).NE.738)QO TO 400
0572 CALL SKPSP
0573 IF(ITERMHE,0)GO TO 1020
0574 IVT(KV)w6
0575 tVYTCKVi.1)mlTYPE
0576 IYT(KY+2).0
0577 IVT(KV-4)utV
0578 GO TO 962
0579 C INPUT FROM READER ?
0580)63 tF(IARAY(J).NE.122B)GO TO 967
0591 ITYPEm3
0582 GO TO 963
0583 C OUTPUT TO PUNCH OR PRINTER 1'
0584 967 IF(IARAY(-J).NE.1208)GO TO 800
0585 C OUTPUTr TO PUNCH?
0586 .J -j +
058? IF(IARAY(J)NHE.i258)GO TO 969
0589 GOTO 963
05998G ITO963
0590 C OUTPUT TrO PRINTER?
0591 969 IF(IARAY(J).HE.1248)GO TO 8300
0592 lTYPEm3
0593 GO TO 963
0594 790 IF(I ANOR .EQ ,O0)GO TO 9 00
0595 J- 2
0596 GO TO (103,203,303,103),L1HE(l)
0597 C INCORRECT OPERATOR
0598 800 CALL EXEC(2,1.I98812)
01599 GO TO 6
0600 C OUTStDS TABLE
0601 802 CALL EXEC(2.1,189,14)
0602 0 TO 6
0603 C NO OLTAL HUMBER
0604 '3)4 CALL EXEC(2,1.I810.12)
0605 GO TO 6
0606 C INCORRECT BINARY FORMIAT
0607 806 CALL EXEC(2,1, 181, 14)
0608 GO TO 6
0609 C CALL DOOPS TO CHANGE A SINGLE STATE
0610 1000 IF(ISN.EQO.) GO TO 6
0611 C VAR TABLE FLAG CK'D HERE ALSO EX 20 AND DOOPS IF HEEDED FOR IVAR
0612 IF(KV.EQ.1I)GO TO 1005
0613 ICLASxO
0614 1PRW(I)mSO
0615 LPRII(2)=KV-1
0616 IPRM(3) IY- IPRII'.2)
061 CALL EXEC'(20.0, [VTTPRM(2) .J DUM, IDUM, ICLAS)
0618 CALL EXEC(9 HA,IPRM(IIPRM(2) 1PRM(3),ICLAS)
0619 1005 IFLGw0
0620 ICLAS~o
0621 1 PRM(I)=I
0622 IPRtI(2)m&ISN
0623 IPRI(3)-35

B-12

0624 1 PRM(4)uI V
0625 CALL EXEC(20,Q,L1NE,35,JDUM.IDUMICLAS)
0626 CALL EXC9NMIR~)IR()IR()IR()ILS
0627 GO TO 6

0629 10 10 IF(ITER?4.EQ.t)GO TO 1000
0629 IF(I TERM EQ .2)GO TO 7
0630 GO TO (611.611,450,611. 40O,903.907,96l ,611)AKK
0631 1020 IF(ITERfl.EQ.2)GO TO7
0632 GO TO 800
0633 9999 END
0634 ENDS

8-13

"SKPI T,00004 IS ON CR00002 USING 00002 BLKS R=0013

0001 FTH4, L
0002 SUBROUTI"E SKPI
0003 C R OUTII4E SKIPS CHARS UHTIL SPACE OCCURS THEN FINDS KEX1

0004 C CHAR AFTER THE SPACE AND RETURNS WITH CORRECT PTR IN LOC J

0005 COMPMON J,IARAY(?2),IVT(90>,ISH, IVDN Rl

0046 COMNON NBR 2 ,NBR3,NBROI,IREL,ITERM', KV

0007 COMMON LIHE(t5),oAFLG(5),IHDAY(lS)

000• o 10 JmJ+1
4009 IF(J.GT,72) GO TO 30

0010 IF(UARAY(J).EO.4
0) GO TO 20

0011 tF(IARAY(J),EQ.
4 4B) GO TO 40

0052 GO TO 10

001,3 20 J ,J-1
0014 CALL SKPSP

0015 RETURN
0016 30 ITERM"2
001? RETURN
001I 40 ITERMot
0019 RETURN
0020 END

0021 ENDS

B-14

- 4.t .; .4&i

"SKTHS T,100004 IS ON CRO0002 USING 00002 BLKS Ru0013

0001 FTH4,L
0002 SUBROUTINE SKTHB
0003 C ROU'i*IHE SI'.IPS ALL CHARS UNTIL HUMBER IS REACHED THEN RETURNS
0004 C WITH COPRECT PTR IN LOC J
000! COMMON I,IARAYe72),IVT(90),ISN,IV,NBRt
0006 COMMON HBR2,NBR3,HBRUI,IREL,ITERMKV
0007 COMMON LIHE(t5),I% FLG(5),INDAY(13)
0008 to CALL SKPSP
0009 IF(ITERM.EQ.1) RETURN
0010 IF(ITERM.EQ.2) RETURN
0011 DO 15 K=1,12
0012 IF(IARAY(J) EQ.(47+K)) GO TO 20
0013 13 CONTINUE
0014 GO TO 10
0015 20 RETURN
0016 END
0017 ENDS

B-15

*SKPSP T=00004 IS ON CRO0002 USING 00002 BLKS R=0012

0001 FTH4, t.

0002 SUBROUTINE SKPSP
0003 C ROUTINE SKIPS SPACES AND UPDATES PTR IN LOC J. IF 72 CHARS
0004 C ARE COUNTED THE FLAG ITERM IS SET TO 2. IF A TERMINATING
0C05 C CHAR IS REACHED THE FLAG ITERN IS SET T3 1.
0006 CONMON J,IARAY(72),IVT(90),ISNIV,HBN R
0007 COMMON NBR2,NBR3,NBRO1 ,IRELITERM,K',,
0008 COMMON LIHE(t5),IAFLG(5),IHDAY(15)
0009 10 JnJ+t
0010 IF(J.GT.72) GO TO 30
001t IF(IARAY(J).EQ.448) GO TO 40
0012 IF(IARAY(J).Eg.408) GO TO 10
0013 RETURN
0014 3v, ITERM=2

0015 RETURN
0016 40 ITERM-l
0017 RETURN
0018 END
0019 ENDS

B-16

"HBRTY T=00004 IS OH CRO0002 USING 00006 BLKS Rz0053

0001 FT44 , L
0002 SUBPOUTIJHE NBRTY
0003 C ROUTINE SETS UP PROPER NUMBER TYPE, DI,02 IN kDS NBR:,NBR2,N JR3
0004 COflMCN J,IARAY(?2),IVT(90),ISN,IV,HBR!
0005 COMlMON NBR2 NBR3,NBRO1, IREL, ITERPKV
0006 COMMN4 LINE(1), 1 IAFLG(5),IHDAY(15)

0007 10 DO 15 Kul,10
0008 IF(IARAY(J).Eg.(579+K)) GO TO 50
0009 15 CONTINUE
001C C A(V ?
0011 !F(IARAY(J41).E9.50B) GO TO 60
0012 1F(IAPAYtJ+I).EQ.528) GO TO 70
0013 C VARIABLE LOCI.,
0014 HBR1v2
0015 NBR3"O
0016 N6R2- IARAY(J)-1008
0017 CALL SKPSP
0018 RETURN
0019 70 DO 75 aI ,5
0420 rF(IARAY(J),EQ.IAFLG(*I))GC TO 80
0021 75 LONTINUE
0022 ITERMul
0023 RETURN
0024 80 1=I*3
0025 NBRI5
0026 NBR2"INDAY(:)
0027 NBR3[HNDAY(1-1)
0028 CALL SKPI
0029 RETURN
0030 50 HBRI=1
0031 NBR3UO
0032 NBR2-IARAY(J)-608
0033 51 CALL SKPSP
0034 IF(ITERM. O.1) RETURN
0035 IF(ITERM.EQ.2) RETURN
0036 DO 52 K=1,10
0037 IF(IARAY(J).EQ.(47+K)) GO TO 54
0038 52 CONTINUE
0039 RETURN
0040 54 HBR2-NBR2*10+(IAPAY(J)-608)
0041 GO TO 51
0042 C A(V) AID A(C) LOGIC
0043 60 00 90 I=1'5
0044 IF(IARAY(J).EQ.IAFLG(I))GO TO 92
0045 90 CONTINUE
0046 ITERNu=
0047 RETURN
0048 92 1aI*3
0049 HBR2-INDAY(I)
0050 J =.J +2
0051 DO 62 Kat,1O0
0052 IF(IARAY(J)Ell.A47+K)) GO TO 64
0053 62 CONTINUE

.- 17

0054 NOR 1 =4
0055 HBR3-IARAY(J)-1008
0056 CALL SKPSP
0057 IF(ITERN.EQ.I) REiURN
0058 IF(ITERM.EQ.2) RETURN
0039 IF(IARAY(J).NE.518)ITERM -I
0060 CALL SKPSP
0061 RETURN
0062 64 HBR1-3
0063 HBR3-l ARAY(J)-608
0064 65 CALL SKPSP
0065 IF(ITERM.EQ.1) RETURN
0069 IF(ITER. EQ.2) RETURN
0067 DO 66 K=,I,10
0068 IF(IARAY(J).EQ.(4?+K)) GO TO 69
0069 66 CONTINUE
0070 IFUIARAY(J).NE.51B) ITERM=I
0071 CALL SKPSP
0072 RETURA
0073 69 HBR32N8RZ*10+(IARAY(J)-6oB)
0074 GO TO 65
o075 END

0767 ENDS

B-18

o - - - - - - - .-

"NBRO T=00003 IS OH CRO0002 USING 00024 BLKS Ru0000

0001 FTN4, L
0002 SUBROUTINE HRRO
0003 C CONVERTS AN ASCIt NUMBER TO AN OCTAL VALUE
0004 COMMON J,IARAY(72),IVT(90),ISN,IV,NBR1
0005 COMMON HBR2,HBR3,HBRO1, IREL, ITERM,KV
0006 COMMON LINE(15),IAFLG(5),lNDAY(15)
000? NBRO1=O
0008 10 DO 15 Kul,8
0009 1F(IARAY(J).EQ.(47+K)) GO TO 20
0010 15 CONTINUE
0011 RETURN
0012 20 NBRO INB R01*8+(I ARAY(J)-60)
0013 CALL SKPSP
0014 IF (ITERM.EQ.1) RETURN
0015 IF (ITERM.EQ.2) RETURN
0016 GO TO 10
0017 END
00113 ENDS

I9

St B-1 9

Li

4SYARA T*OOOO4 IS ON CR00002 USING 00002 BLKS RzOOII

0001 FTN4 ,L
0002 SUBROUTINE SYARA
0003 C ROUTINE SETS UP 3 WDS IN VAR TABLE C LYT) EQUAL TO VALUES
0004 C IN HBRIaHBR2, AND NHR3.
0005 CUMM~ON .JIARAY(72),IVT(90),ISN,IY,NBRt

0006 COMMON NBR2,H8R3,NBRO1DIREL,ITERMtKV

0007 COMMON LIHE(15', IAFLG(S), INDAY(15)I
0009 IVT(KV)wNBRl
0009 KY=KV4I
OOLO IVT(KV)xoBR2
0011 K V mKVY+
0012 IVT(KV)-wHBR3
0013 KV=KV+l
0014 RETURN
0015 END
0016 END$

B -20

"OSDS T=00003 IS OH CR0O002 USING 00004 BLKS R=O00oo

0001 FTH4 L

0002 PROGRAM SDS

0003 COMMON ISTAB(15,30), STFL(4,30),MRESP(3,30)
0004 COMMON IPCHT(4), ISCB(7,20>),IND, IVAR(2, 226)
0005 COMMON IRESP(12),IAFLG(5), INDAY(15), IV1T7 20)),ILOG(IO)
0006i COMMON TREQ(30), ITREQ(2, 30), ITTOP(5),ITOP.,INXT,TR
0007 COMMON INDXR, IPRM(5), ISTJJ
0008 COMMON ISVST, IBUF(180)
0009 DIMEHSION NAM(3),NAMA (3), IPRAM(5)
0010 DATA NAMe'2HT2.2HXX,2HX /
0011 DATA NAMI/2HTl,2H'X,2HX /
0012 CALL RMPAR(IPRAM)
0013 IF(IPRAM(I).LT.100)GO TO 3
0014 1PRAN(1)=IPRAM(1)-100
0015 GO TO 56
0016 3 DO I =t. 15
0017 DO I J-l,30
0018 1 1 STAB(1,J 1 =0

0019 DO 2 I1i,4
0020 DO 2 Jul,30
0021 SSTFL(I,.J)=0
0022 DO 5 1al 3
0023 D0 5 .J= 1 30
0024 5 MRE3P(I,J)=0
0025 DO 15 1 1,7
0026 DO 15 10,2)0
0027 15 1 Ca(I,J) =)
0o2s DO 20 I1= ,2
0029 DO 20 J=1,226
0030 2) I YAR(IJ)=o
0031 DO 25 I=1,12
0032 25 IRESP(I)uO
0033 DO 30 1I1,15
0034 30 1 tDAY(I= u0
0035 DO 35 I=-1,200

0036 35 IVT(I)=0
0037 DO 40 I11,5
0038 40 [AFLG(I)=O
0039 I TOPU)
0040 tNNTal
004 1 TRm) 4
0042 1NDXR-0
0043 j J= 1
0044 DO 45 1=1,180
0045 45 IBUF(I),so
0046 DO 5' I=1 3)
0047 50 TREQ(1)-0.0
0049 DO 55 1=1,2
0049 DO 55 J=1.30
0050 55 ITRE9(I,J)0
0051 CALL NTSKI
0052 CALL NTSK2
0053 CALL NTSK3
0054 CALL HTSK4

8-21

0055 CALL NTSK3
0056 C'AL L N TS K
005?7 CALL H TS K7
0058 CALL EXEC(i,0,1)
0 93 9 56 CALL RMPAR(IPRAfl

006.) CALL M¶PNRI
0061 DO 39 o ., 12
0062 CALL EVSNS(1.I-I,0,NAMI,IERR)
0063 IF(IERR.EQ. 1)GO TO 59
0064 59 C ONT IN UE
0065 CALL EXEC(9..NAMIPRAfl(l),IPRAM(2),IPRAM(3),tPRAM(4),IPRAM(5))
0066 CALL E ,E C (7
0067 CALL MPNRfI
0068 END~
0 0691 E14D s

0-22

*EXPR T-00003 IS ON CRO0002 USING 00024 BLKS R-0000

0001 FTH4
0002 SUBRUUTINE EXPR
0003 COMMON ISTAB(15,30),ISTFL(4,30),MRESP(3.30)
0004 COMMON IPCNT(4), ISCB• 7, 20), IND, IVAR(2, 226)
0005 COMMON IRESP(12), IAFLG(5), INDAYý 15), IVT(20o0),ILJG(10)
Q006 COMMON TREQ(30), ITREQ(2, 30), ITTUP(5), ITOP, INXTTR
0007 COMMON INDXR, IPRM(5),IST,JJ
0003 COMMON ISYST, IBUF(180)
0009 DIMENSION ISTIM(9),IPRAM(5),IVFLG(5),HAM(3)
0010 DATA IP/2!
0011 DATA Nfl/2HT3,2HXX,2HX /
0012 C GET PARMS
0013 CALL RMPAR(IPRHM)
0014 DO 10 I"1,5
0015 10 IPRM(I)m>IPRAN(I)
0016 C IPRM(1) a I START EVENT LOGIC
0017 C 2 RESPONSE EVENT LOGIC
0018 C 3 TIME EVENT LOGIC
0019 :
0020 C
0021 C ILOG(1) a ID NUMBER
0022 C c2) v EXP NUMBER
0023 C (3) a STHTE NUMBER
0024 C k4) a RESP BIT NUMBER
0025 C (5) THRU (1t) = TIME AN4D YEAR

0027 GO TO (t00,20o,300),IPRM(1)
0028 C START EVENT LOGIC
0029 100 ISTSWmI
0030 ILOG(2)=IPRM(2)
0031 CALL EXEC(II,ILOG(5), ILOG 10))
0032 ILOG(1)=10' 0d
0033 C LOG START OF EXPERIMENT
0034 ILOG(3)no
0035 1LOG(4)u')
0036 1Pa2
003? CALL LOGDA
0038 ISSFL"0
0039 ILAST*O
0040 ISUPER=O
0041 HS-IPRM(4
0042 105 IFLGuO
0043 I ST=NS
0044 IF(:STAB(14,IST) GT.O)CALL INITL
0045 IF(ISSFL.GT.O)GO TO 110
0046 CALL IHSCB(IND)
0047 110 ISUPER=ILAST
0048 IF(ISUPER.LE.0)GO TO 111
0049 IF(ISCB(4,I3UPER).HE.INnD)ISCB(4,ISUPER)=IND
0050 111 ILAST=INDC
0051 IF(ISTAB(13,1ST).EQ 0)GO TO 120
0052 CALL INSCB(INDSS)

B-23

0053 C SET UP COUNT OPERAND AND NEXT STATE
0054 120 CALL EVVAR(ISTAB(0,I9ST),NS,,))
0055 ISCB(1, IND)'NS
0056 LOGAOvs)
0057 CALL EYVAR(ISTAB(4, IST), ICT,)
0058 CALL EVVAR(ISTAB(7,IST),IOP,O)
0059 C RELATIONAL TRANSACTION ?
0060 IF(ISTAB(I,IST).GT.3)GO TO 197
0061 C IF, IF R9, OR AFTER TRANSACTION ?
0062 IF(ISTAB(1, IST)NE.3)GO TO 125
0063 C FOLLOUING TRANSACTION - SET UP FOL TABLE FROM OPERAND
0064 ISTFL(4, 1OP)mIND
0065 GO TO 145
0066 C IF OR AFTER TRANSACTION ?
0067 125 IF(ISTAB(I,IST).GE.O)GO TO 130
0063 C IF RB TRANSACTION - SET UP RESP AND MRESP TABLES
0069 MRESP(3,IST)-INO
0o7) ti RESP(, IST)-IOP
1)071 RESP(2, IS T)-OP
0072 J ,
0073 DO 126 [a1,12
0074 1 TE 3-1 AND'1 o , J
0075 IF(ITES.GT.()IRESP 1r)2-1[3T
0076 126 J=!SHFTkJ,1
0077 GO TO 145
0079 C AFTER TRANSACTION '
Q079 13)0 1F(ISTAS(I,IST). NE .)GO TO 140')
0080 C TF TRONSACTIOH - SET UP RESP TABLE f
0081 IRESP(IOP)=IND
0082 I SCBS(,IND)-IOP
0083 GO TO 145
0084 140 IF(ISTAB(l. IST).NE.2)GO TO 50

00o 5 C AFTER TRANSACTION - SET UP COUNTER MAKE TIME REQUEST
0086 CHLL SCHEDk ICTIND, INDXR)
0097 ISCB(6..IN D)uIHDXR
0088 GO TO 150
0089 145 ISCB(6,IND)=ICT
0090 150 ISCB(2,IND)=IST
0091 ISCB(3,IND)=ISUPER
0092 ISCB(4, IND)=INDSS
0093 C LOGICAL FUNCTIONS ?
0094 IF(IFLG EQ. I)GO TO 152

0095 IF(ISTAB(2, IST).EQ.0)GO TO 165
0096 IFLGal
0097 152 IF(ISTAS(2, IST).HE.0)GO TO 160

0098 C LOGICAL FUNCTION - SET UP AND/OR PTR AS + OR -AND
0099 ILAS=ILAST
0100 IF(ISTAS(2,ISVST).EQ.I)ILAS=-ILAST

0101 IFLGuQ
0102 iSCB(5,IND)-ILAS
0103 IST=ISCB'2, ILAST)
0104 GO TO 165
0105 C GET INDEX FOR AND/OR SCB
0106 16 0 CALL INSCB(INDX)
0107 IHDAO-INDX
0109 IF(ISTAB(2, IST).FQ I)INDAO=-IHDX
0109 ISCB(5, IND)=INDAO

B-24

0110 IND IODX
0111 C MOVE MINOR STATE FROM VARIABLE TABLE

0112 ITEMPw30
0113 161 IF(ISTAB(1,ITEMP).EQ.0)GO TO 164

0114 ITEMPzITEIIP-t
0115 0 To 161
0116 164 DO 162 tu1,15
0117 162 ISTAS(I, ITEMP) ISTAB(IIST)
0118 IPTRoISTAB(3, ITEMP)
0119 D0 163 Iul,9
0120 163 ISTAB(I,ITEMP)-IVT(IPTR-1+I)
0121 ISVST-'IST
0122 IST"ITEMP
0123 LOGAOwl
0124 C LOG START OF STATE
0125 165 ILOG(t)=20009
0126 CALL EXEC(11, ILOG(5), ILOG(10))
0127 ILOG(3)-IST

0128 1 LOG(4)-0
0129 CALL LOGDA
0130 IF(LOGAO.EQ.I)'O TO 1.20
0131 K=I
0132 C STIMULUS ?
0133 1Z
0134 CALL EVVAR(ISTFL(, IST),IlJD,O)
0135 IF(IWD.EQ .O)GO TO 170
0136 CALL ONOFF(K, IYD , I
0137 C STATE HAVE A SUBSTATE ?
0133 170 IF(ISTAB(3,16 T).EQ.O) GO TO 185
0139 IHD-INDSS
014o I N D $S- 0

0141 ISSFLFI
0142 NS1 ISTAB(i3.,IST)
0143 GO TO 105
0144 185 ISSFL0L
0145 C START OF EXPERIMENT FLAG SET "
0146 IF(ISTSW EQ. I)GO TO 1?5

0147 GO TO 40)0
0148 195 1STSWLJ O)
0149 GO TO 400
0150 C RELATIONAL TRANSACTION - SET UP COUNTOPERAHDAND PTR SCB
0151. 9 7 CALL EVWAR(ISTAB(4,IST),INDXl,-l)
0152 CALL EVVAR(ISTAB(7, IST), IHDX2,-i1)
0153 ISCB(6,IHD)UINDXI
0154 ISCB(7, IND)=INDX2
0155 IVAR(2, IHDXi)=IHD

0156 IVAR(2. INDX2) IHD
0157 JFmO
0158 IVFLG(1)n10
0159 DO 198 IF=2,5
0160 IF(IVFLG(IF).EQ.O)JF=I
0161 IF(IVFLG(IF).EQ.O)IVFLG(IF)=IND
0162 IF(JF.EQ. I)GO TO 199
0163 199 CONTINUE
0164 199 GO TO 150
0165 C RESPONSE EVENT LOGIC
0166 200 ILOG(4)uIPRM(2)

B-25

0167 IF(IRESPCILOG(4)).LT 0-)GO TO 21o
0168 IHDu1RESP(ILOG(4))
0169 ILOG(1)u40o00

01'70 C LOG RESPONSE EVENT
0171 1LOG(3)=ISCB(2,1 HD)
01?? CALL LOGDA
0173 C INCORRECT RESPONSE ?

0174 IF(ISCS(t' INO).NE, ILOG(~4))GO TO 500)
0175 C DECREMENT COUNT - COUNT COMPLETE ?

k0176 205 ISC8(6,IHD-)a[SC8(6,IND)-1
0177 IF%,ISCB(fi,IHO).NE.0)GO TO 500
0178 IFLAGw1

10179 C SE5T UiP TO EXIT
0180 GO TO 215
0181 210 JNDXm-!RESP(ILOG(4))
0182 7B!TP.IIRESP(1,INDX)
0183 IBCKxIAND(ILOG(4),IBIT'))
0184 IF(I9CK.EQ.0)GO TO 212
OAS r~RESP(1,1 NOX)uIEOR(IB8ITPI LOG(4)
0186 212 ILOG(l)=40008
0 187 ILOG(3)ISCB(2, IHD
0188 CHLL LO~JDA
0199 C LOG MlULTIPLE RESPONSE EVENT
0190 1NDuflRESP(3, INDX'
0191 1F(tiRESP(1,tHDX).NE.())G0 TO 500
0192 C RESET MU1~LTIPLE RESPONSE
0193 I1RESP(l INDX)=tIRESP,'2, INDX)
0 194 GO TO 205
0195 CEXIT LOGIC
0196 213 IF(ISC9(5,1140) GE.O0GO Ti) 231

0 197 13SSF G z1
0198 I3=ISCB(3, IHO)
0199 14=ISCB(4, 1140
0200 15=-ISCt' 5, IND
0201 IF(13 EO.0"GO TO 246
0 20Z I F(I SCB9(4~ 13) EQ. IHD)ISCB(4, 3)w15
0203 246 1 F(14. EQ .) GO TO 247

10204 1 F(I SC8(3 14). EgIHD)ISCB(.3,I4)=13

0205 24? IF(ISC8(5,15).HE.-IND)GO TO 248
0 20 i;SCB'(5,I5)-o
020? GO TO 249
0208 248 IPTR=15
0209 241 I.F(-I3CB(5,IPTR).LT.IPTR)GO TO 242

0210 1 PT Ra- ISC 8(5 , I PT R
t 0211 GO TO 241

0212 242 IF(-ISCB(5, IPTR) EQ IND)lSr9(3, IPTR)=1SC8(5, IND)

0213 2-4 9 IF(ISTABI1, ISCB(2, IND)) EQ.3)GO TO 232

0214 GO TO 220
0215 231 1ISS F G-
0216 H sm o
0217 2232 ISYSSaISCB('4,IHD)
0218 220 GO0 T0 (22 1,222,223,216,216,224)AIFLAG
0219 C EXIT RESPONSE
0220 221 IF(IRESP(LOG(4)).LT. OýGO TO 208
0221 IRESP(ILOG(4) =-0
0222 GO TO 224
0223 208 13a-IRESP(ILOC(4)
0224 DO 209 1x1 .3

B-26

0225 209 NRESP(L IS)mO
0226 IRESP(ILOG4))=0
0227 GO TO 224
0228 C EXIT FOLLOWING
0229 222 IST=ISCB('29 1ND)
0230 ISTFL(4,1ISVST)sO
0231 GO TO 224
0232 C EX IT AFTER
0233 223 I TREQ(2, ISCB(6, INDfl)-I
0234 ISCB(b6,.IND)=()
0235 GO TO 224
0236 216 IF(IFLAG.EQ.5)GO TO 2-24
0237 IVAR(ISC8(6,1H0),2)'0)
0238 224 [SVST=ISCB(2, IND)
0239 ISVAOwISCB(S, IND)
0240 IF(ISSFG NiE 0)CO TO 4223
0241 HguISCBWIIHD)
0242 225 IS4=ISTFL(4,ISVST)
0243 IFUIS4,EQ.0)G0 TO 230
0244 ISCO(4,1S4).LSCB(6,19¼'-1
0245 TO1'<~S4.E0G 1230)
0-246 IHDmIS4
0247 IFLG-=6
0241 LFLAa=2
0249 CGO TO 215
0250 230 ISSFC=1
0251 Ku-1)
0252 12
0253 CALL EVVAR(ISTVL(1,ISVST),IWD,0.'
0254 IF(IUD EQ .0)GO TO 235
0255 CALL ONOFF(K, IWO, I)
0 256 233 IF(IFLG.EQ. 7)GO TO 236
025? TLAST-ISCO(3, IND
0258 IF(IFLG.EQ.6>IFLGz=?
0259 236 ISCO(2,IND)Qo
0260 ISC8(5, IHD)sO
0261 ISCOCI, IND)aO
0262 IF(LSVST. E.25)ISTAB(1, ISVST)=Q
0263 CALL EXEC (11 ,I LOG(53), ILOG(10)
0264 LLOG(I)=30006,
0265 C LOG END OF STATE
0266 1L0G(3)-1sv3T
0267 ILOC(4)xo
0268 CALL LOGDA
0269 C AND/OR STATE TO CLEAR ?
0270 IF(ISVAO.LE.0)GO TO 2240
0271 IAOFG 1
0272 IHD=ISVAO
0273 GO TO 255
0274 C SUBSTATE TO CLEAR7
0275 2 40 1IF(I SilSS EQ .0)CGO T0 2 45
0276 IF(ISCB(2,ISVSS) EQ.o AND IFLO EQ.3)GO TO 245
0277 IND=ISYSS
0278 GO TO 25.5
0279 C NEXT STATE TO INSTALL

8-27

0280 245 IF(HS NE.0)GO TO 105

0281 IF(ISCB(3,IHD).ME.0)IFLG=3
0282 ISS.ISCB(3, IND)
0283 IF(ISCB(2,ISS).NE.O)GO TO 400
0284 C END OF EXPERIMENT *?
0285 CALL EXEC(Il,ILOG(5),ILOG(10))
0286 CALL EXEC(12,NAM,4, 1,-t00;
0287 WRITE(1, 250)ILOG 2)
0288 250 FORMAT("ENO OF EXP.",I6o/)
0289 ILOC(I)-'40008
0290 C LOG END OF EXPERIMENT
0291 ILOG(3)mo
0292 ILOG(4)-0
0293 CALL LOGDA
0294 GO TO 500
0295 C SUBSTATE CLEAR LOGIC
0296 255 IST=ISCB(2, IND)
0297 IF(ISTHE.O)GO TO 252
0298 IF(IAOFG.EQ.I)GO TO 251
0299 GO TO 245
0300 251 IAOFG-O
0301 GO TO 240
0302 C RELATIONAL TRANSACTION ?
0303 252 1F(ISTAB(I, IST).LE.3)GO TO 260
0304 IF(I$CB(7, IND).LT. 0)GO TO 256
0305 IVAR(ISCB(7, IND),2)20
0306 256 IFLAG-4
0307 GO TO 220
0308 26%) IF(ISTAg(1, IST).LT.O)GO TO 263
0309 O'0 TO (261,262,22')),ISTA8(t,IST)
0310 C RESPONSE EVENT
0311 261 CALL EVVAR(ISTAB(7,IST),ILOG(4),0)
0312 IFLAG-i
0313 GO TO 220
0314 C AFTER EVEHT
0315 262 IFLAG=3
0316 GO TO 220
031? C MULTIPLE RESPONSE
0318 263 BP=ISTAB(IST,8)
0319 IMASKaI
0320 DO 264 1a1. 12
0321 ICK=IAND(IBP, IMASK)
0322 IF(ICK.EQ.1l)IMR-IRESP(I
0323 IF(ICK.EQI)IRESP(I)sO
0324 264 IBP=ISHFT(IBP,-l)
0325 MRESP(IMRR,3)=O
0326 IFLAG=6
0327 GO TO 220
0328 C TIME EVENT LOGIC
0329 300 CALL EXEC(I1, ILOG(5), ILOG(10))
0330 IHDmIPRMIk2)
0331 IFLAG=3
0332 GO TO 215
0333 C RELATIONAL EVENT LOGIC
0334 400 IF(IVFLG().NE.10)GO TO 500
0335 401 IF(IVFLG(IP).EQ.O)GO TO 402

B-28

0336 1 p I p+ I
033? IHDXuIVPLG(IP-1)
0338 IST=ISCB(2,INDX)
0339 I'TYPEuISTAB(1, IST)-3
0340 405 IF(ISC9(7,IHDX).LT.0)G0 TO 406
0341 1 VBEIVAR(I, ISCB(7, INDOX)
0342 GO TO 40)?
0343 402 IF(IP.GE.5,)GO TO 403
0344 p =I p+ I
0345 GO TO 401
0346 40)3 IP=2
0347 GO TO 500
0348 406 IVB=-ISCB(?,IHDX)
0349 407 I'h~mIVAR(1, ISCS(6, INDX))
0350 GO TO(4l0,415, 420,425,430N,435), ITYPE
0351 410 IF(1YA.EQ.IV6)GO TO 450
0352 GO TO 4 75
0353 413 1F(I VA. LT.I YB)GO ro0 4530
0354 G 0 TO0 475
0355 420 F (I VA .G>i I VS)GO TO0 450
03510 GO0 TO 47't5
0357 423J IF(IYA.1E.IVS)GO TO 450
0)358 GO0 T0 4 70
-)3593 430 r F(I VA .GE .reG) Go TO 450
0360) GO TO 47 5
0361 435 1 F(I VA . HE .I\V'6)GO TO 45SO
0362 GO TO 475
0363 430 [F(ISCB(6, IOX)~. GT.)IVAR. ., TSC8(i, LNOX))u

0364 IF(!SCB(7, IHOX . Gr)IYAR(2,ISCB(?, IND:ý4 K'-')
0365 INDINDX
0366 FAx
0367 GO TO 215
0369 475 1 F(I P.LT .6)GO TO 400
0369 IF(IP GE.6ý1Pme'
0370 500 CA~LL EXEC(6,0,2)
0371 RETURN
0372 END
0373 EHDS

B- 29

IONOFF TwQ003 IS ON CR0Q0002 U80;1; 00002 BLKS R20000

0001 FTH4 L
0002 SUGROUTINE ONOFF(K,IWD.J)
0003 COMMfON ISTAB(L,30),ISTFL(4,30),PRESP(3,30ý
0004 COMMfON IPCNT(4), ISCO(7, 20), IND, IVQR(2,226)
0005 COMMhON 'R-P 1)I F G 3 ,tDP (5 ,Y (0)lO (O
0006 COMIMON TRE(30),ITREQ(2,30),ITTOP(. 5),1TrOP, I NXTTR
0007 COMMOh IHDXR,IPRM(5>,iSr,J4
0008 COMMON ISYST. I8UP(80;
0001 Dý'I1ENSIaH IUD(I
0010 ENU~miu
0011 ICHAN-4
0012 'IF(J.i E. 2)EI C N= Z
0013 IF(K .EQ.0)GO TO 10o
0014 CALL D0L(INUM, ICHeH, IUD, IWD~ IERR)
00 11 Go TO 20o
0016 100 lCGMPIEOR(.17?77776,IWO)
0017 CALL DiOL(INUM ICHeAN !COMP, IUD, IERR)
0018 20 Q RETURN
0019 E HD
0020 W

B-30

'ItISCS T200003 IS ON CR00002 US1N'r. 00001 BLKS R=00vO

0001 FTH4,L
0002 SUBROU:TINE INSCB(."RTN)
0Qý03 COMMlION ISTAS(1.'J,30),ISTF'L(4,30)d¶RESP(3,30)
0004 COMMlON IPCNT(4), ISCB(7, 20), IND,. IVNRC 2, ?--36)
0003 COMIMON [RESP(la),rAFLG(5),INDAY(1.5),IYT(:2o0),ILOG(10)
0006 COMlMON T REG (30),1TREQ(2 ,30),1TTOP(5),rrOF rHXrrR
0007 COMMON INDXR,IPRM(5),1'3T,JJ

voooC OMM ON ISVST, ISUF(180)
0009 DO 100 I=1,20)
0010 IF(I3C8(2, I .EQ. 0)IRTN=I
0011 IF(IS8CB(2,f).EG~O'' TO 2oO
0012 100 CGHTZHUE
001! 200 ISCB'.2,f)-i
0014 RETURN
(M015 E14D
~006 END$

B-31

*OoPS rzOeO03 IS ON CR00002 USING 00024 BLKS RxZOOO

0901 FTH4,L
0002 SUBROUTINE~ DOOPS
0003 COMMION ISTAB(15,30),ISTFL(4,30),MRESP(3,30)
0004 COMMtON I PCNT(4),IS CB(7, 20),1HDIVAR(2,226)
0005 COMMION IRESP(12),IAFLG(5).IHDAY(13),IYT(200),ILOG(l0)
0006 COMIMON TREQ(30),ITREQc.Z,3O),ITTOP(5>,ITOP,1HXT,.TR
009? COMION IN DXR, IPRI(5),IS TJJ
0008 COMMION ISVST,I8UF(180)
0009 D1IMEHSiq IREC(90)1 IPRAII(5)

0010 CALL RMPAR(IPRAPI)
0011 IF(IPRAH(l).EG.3>G0 TO 56
0012 1F(IPRAI(1).EQ.5O)GO TO 64)

0014 DO 30 lot , 1
4 0 t5 3v ISTHB(I, IPRAM(2))=IREC(1)
0016 DO 31 lml6,20
0 0 t7 31 rAFLGI 1-15)xIREC(I
0 018a DO 32 1n2 1, 35
0 019 32 1ND A Y(1-20)uIREC(I)
0020 GO TO Si)
0021 50 DO 55 1*1,3
0022 55 ISTFL(1, IPRAr1(5))*IPRAPI(1+1)
0023 GO TO 80
0024 60 CALL EXEC(21,IPRAMt(4),IRECIPRAf1(2>)
0025 DO 70 Ilu,IPROM(2)
0026 70 1 YT(IPRAI(3)+ I-1I)-sIREC(I
0027 SO CALL E>XEC(6)
0028 RETURN
0029 END

0030 EHDs

B-32

"EYVAR rm00003 IS ON CR00002 USING 00003 BLKS R=000()

0001 FT H4 L
0002 SUBROUTINE EVVAR(rADR,IRTN,IFLG)
0003 COMIMON ISTA8(15,30),ISTFL(4,30),MRESP(3,30)
0004 CGMMON IPCHT(4),ISC9(7,20),IHD,IVAR(2,226)
0005 COMMON IRESP(12),tAFLG(3),INDAY(15),IVT(200),ILOG(10)
0006 COMMON TREQ(30),ITREQ(Z,30),ITTOPCS5),ITOI',INXT,TR
0007 COhMON INDXRIPRM(S),ISTJJ
OC09 COMMON ISVSTI IUF(180)
0009 DIMENIO51N IADR(3)

0010 IF(IADR(1).EQ.0))IRTHAO
0011 IF(IADR(l).EQ.0)GO TO 5()0
0012 IF(IFLG.LT 0)GO TO 90
0013 GO TO (1,2,3,4),IADR(1
0014 C GET CONSTANT VALUE FROM WORD 2
0015 i IRTN-IADR(2)
0016 GO TO 500
0017 c USING PTR IN WORD 2 GET VALUE FROM VARIABLE TABLE
0018 2 IRTNaIVAR(1,IADR(2))
00,19 GO TO 50o
0020 C USING PTRS IN WORDS 2 AND 3 GET VALUE FROM VARIABLE TABLE
0021 3 INDXmIADR(2l)-l+IADR(3)
0022 IRTH=IVAR(1, INDX)
0023 GO TO 500
0024 4 IHDX=IVAR(IADR(3))+IAOR(2)-t
0025 IR T HaI YAR (I, INDX)
0026 GO TO 500
002? 90 GO TO (100),100,300,400),IADR(l)
0028 100 IRTH=IADRC2)
0029 GO TO 300
0030 300 1 RTHal ADR(2)+ IADR(3)- I
0031 GO TO 500
0032 400 IHDX=IVAR(1,IADRC'3))
0033 IRTH=IADR(2+IHDX-1
0034 300 RETURN
0035 E HD
0 03 6 ENDS

B-33

"INITL T=00003 IS ON CRO0002 USING 00003 BLKS R=000o

0901 FTN4 L
0002 SUBROUTINE INITL
0003 COMMION ISTAB(15,30),ISTFL(4,30),MRESP(3..30)
0004 COMMION I PCHT(4),ISCB(7, 20 1 ND, VAR(2,226)
0005 COMMfON IRESP(12),rAFLG(S),INDAY(15),IVT(200),ILOG(10)
0006 COMMONO 'REQ(30))ITREQ(2', 30),ITTOP 5S), ITOP, IHXTTR

0007 COMIMON I NDXR, IPRl(5 ý,IS T ,JJ
0009 COMMON ISYST, IBUF(180)
6009 DIMENSION IPARM(5), HAM(3
0 01L0 DATA NAM/2HT7,2HXX,2HX /
0011 IsUuso
0012 lF(I TA (14, I ST).NE .I)G TO 60)
0013 IND~mISTAB(15,IST)
0014 41) CALL EVYAR(IV9T(tNDX+3)YIEO,-1)
0015 ILGTH=IYT(INDX)
0016 CALL EV"'AR(IVT(IHDA+6), IRTNH 0)
0017 ISUM=lSUM+LRTN
0018 IF(!LGTH HE.12)GO TO) 50(
0019 ':ALL EYVAR(IVT(IHDX+9), IRTN,0
0020 ISUti=ISUti+IRTN
0021 50 IVAR(I, 1Eý)zISIJH
0022 F(IVT(INDX+2).E9.0)GO TI) 500
09)23 INOXxIVT(INDX+2)

0025~T GO004

0027IF(ISTA8(14,1ST) .iT.5)GO TO 500
0029 EPARI(t)m1STAB(14,IST)-l
0029 IPARII(2)mISTF4B(13,IST)
0030 IPARI1(3)-O
0031 IF(I'YT(ISTAB(15,IST)+3).EO.5)IPARM(3)-1
0032 CALL EXAEC(24. NAN l'ARM(I ,IPARMNI 2), IPARN(3))
0033 500 RETURN
0034 ENHD
0035 END$

B-3

B -lag

"RE5P ToOO003 IS ON CR00002 USING 00002 OLKS Ru0000

0001 FTN4, L
0002 SUBROUTINE RESP
0003 COMMON ISTAS(15,30),ISTFL,(4,30),MRESP(3,30)
0004 COMMON I PCHT(4), ISCB(7,20>,!ND, IVAR(2,226)
0005 COMMON IRESP(12),IAF'LG(5),INDAY(15),IYT(200),ILOG(I0)

*0006 COMMON TREQ(3O),IrREQ(2,30),ITrOPc5),IT0PaHXrrR
0007 COMMON I ND XR , IPR M(5)1 ST ,J J
0008 COMMON ISVST, IBUF(1SO0
0009 DIMENSION NPAM(3),LPRAi1(5)
0010 DATA~ NAM/2HT2, 2HXX, 2HX/
0011 CA~LL RtIPAR(IPRAM)
0012 CALL EXEC(ii, ILOG(5), ILOG(10)
0013 tPRAM(2)- IPRAt1(3 >4
0014 IPRAM(1()::2
0015 CALL EXEC(24,NAM,IPRAfI(1),IPRAM(2))
0016 CALL EXEC(6)
0017 RETURN
0016 END

0019 END$

B-35

ILOGG T=00003 IS ON CR00002 USING 00Q02 SLKS R=O000

0001 FTN4 L
0002 SUBROUTINE LOGG
0003 COMMON ISTAB(153o3),ISrFL(4,30).MRESP(3,30)
0004 COMMON IPCNT(4).ISCB(73 20)11NDIVAR(2,226)
01403 COMMON IRESP(12),IAFLG(5),INDAY(15),IVT(200),ILOG(10)
0006 COMMON TREQ(30).ITREQC2,30),ITTOP(5),IrOP,rHXT,TR
000? COMMION INDXR,IPRM(5),IST,JJ
0008 COMMON ISVSTD IBUF(180)
0009 DIMENSION IPRAM(5)
0 010 CALL RMPAR(IPRAM)
0611 C IPRAM(i) w STARTING ADDRESS
0012 C IP RAMI(2) u LENGTH
0013 C IPRAM(3) = IF END OF EXPERIKENT
0014 CALL EXEC(2 1 lOB, IBUF(IPRAM(1)), IPRAM'2))
0015 IF(IPRAM(3).HE.3)GO TO 10
0016 C WRITE END OF FILE AND REWIND TAPE
0017 CALL EXEC(3,1108)
0018 CALL EXEC(31 4108)
0019 10 CALL FjXEC(6,0,2)
0020 RETURN
0021 END
0022 END$

8-36

LOGOA rzoooo3 is uH CR00002 U'SING 00006 OLKS R-0000

0001 FTN4,L
0002 SUBROUTINE LOGDA
0003 COMIION ISTAS(15, 30), ISTFL(4, 30)P1RESP(3,30)
0004 COMMION IPCNT(4), ISCB(7, 20), IND, IYAR(2, 226)
0005 COMhMON IRESP(12),IAFLG(5),INDAY(15),IVT(200),ILOG(I0)
0006 COMMlON TREG(30),1TREQ(2, 30),1TTOP(3), 1TOP,IN XT, TR
000? COMMlON rHDXR#!PRM(5),ISTJJ
0008 COMMPON ISVST1 IBUF(180)
0009 D IMENS ION HAM(3
0010 DATA NAM/2HT5,2HXX,2HX
0011 rCK=ILOG(1)/10008
0012 K -
0013 DO 5 tu.JJJJ+8
0014 IBUF(I)uILOGCK)
0015 5 K-K+l
0016 ~j j 2j+ 9

0017 IF(JJ. EQ.181)GO TO 10
0018 IF(JJ. EQ.91)GO TO 20
0019 GOj TO 30
0020 10 rPRN(1)=91
0021 IPRfl(2)=')0
0022 IPRM(3)=ICI(
0023 IF(ICK .E 0. 5)GO TO 40
0024 JJ=l
0023 GO TO 45II0026 20 rPRM(l Ij

1027 !PRM(2)m90
0028 LPRM(3)=ICK
0029 IF(ICK .E 0. 3 GO Tlj' 3 1
0030 GO TO 45
0031 30 IF(ICK NE.5)Go TO so
003;- IF(JJ. GT .91)GOTO 40
0033 31 1 PRf¶(I I
0034 IPRi(2)VJ J- 1
0035 P PM (3>5
003b GO TO 45

0037 40 IPRI(1)m9

0033 IPR M (2)JJ -9 1
0039 1IPRI(3)=5
0040 45 CALL EXEC(24,NIAM,IPRN(1),IPRM(2),IPRN(3))
0041 50 RETUR~N

0042 END

0043 ENDS

B-37

r "ROWRT TuO0004 IS ON CR00002 USING 00012 BLKS R=0084
0001 FTH41 L
00,02 SUBROUTINE ROURT
0003 COMMNON ISTAB(15,30),ISTFL(4,30),MRESP(3,30)
0004 COMMON IPCNT(4 > ISCB(7, 2-0 ',IND, IVAR(2, 226)
0005 COMMON IRESP(12), IAFLG(5), INDAY(15), IVT :200), ILOG(10)
0006 COMMON TREQ(30), ITREQ(2,30), ITTOP(5),ITOP,INXT,TR
0007 COMMON ItHDXR, !PM(5),IST ,J J
0009 COMMON ISVST,IBUF(180)
0009 DIMENSION NAMI(3),IDC8I(t44).LINEA(36)
0010 DIMENSION IDCB(144),HAM(3),LINE(36),IPRAtI(:5)
0011 DATA NAM12HOP, 2HIN, 2H
0012 DATA NAMI/2HOP,2HOU.2Hr /,IOP/0O',1OPH/O/
0013 CALL RMPAR(IPRAM)
0014 IF(IPRAM(I).EQ .I)GO TO 30
0015 15 EF(tOP.EO .1)GO TO 10
0016 tOPul
0017 CALL OPEH(IDCB,IERR,HAM)

0018 i) ICLAS-0
0019 CALL REAOF(IOC9, IERR, LINE, 36
0020 1 F(LINE(1). EQ. 2HEN)IOP-0
0021 EF(LINE(1).E0.2HEN)CALL CLOSE(IDC8,IERR)
0022 CALL EXEC(20,0,LINE,36,JDUM,IDUM,ICLAS)
0023 IPRAII(2)uICLAS
0024 CALL PRTNUIPRAM)
0025 30 IF(IERR.LT.0)WRITE(1,100))IERR
0026 100 FCN':1AT("RDWRT ERROR" , 16
0027 CALL EXEC(6,0, 1)
0028 CALL RMPAR([PRAM)
0029 IF(IPRAM('.)EQ I GO TO 30
0030 IF(IPRAM(1).EQ.1')GO TO
0031 IF(1PRAM(1).EQ.J)GO TO 20
0032 GO TO 11I
0033 20 CALL OPEN(1DC9,IERR,NAM)
0034 CALL OPEN(IDwBI9,IERR,NAMI)
0035 21 CALL READF(IDC8I,IERR,LIr4E,36)
0036 IF(IERR.EO.-I2)IEhD-I
4037 IF(IERR.EO.-12)GO TO 23
0038 CALL hJRITF(IDCB, IERR, LINE, 36)
0039 IF([EHNDE. I)GO TO -I
0040 23 CALL CLOSE(I DC 81 ,IERR)
0041 CALL CLOSE(IDC8, IE R R
0042 GO TO 113
0043 ýO Ir(IOPN.EO. 1)GO TO 40
0044 IOPHE1
0045 IF(IPRAM(2).EQ.1)GO TO 35
0446 CALL OPEH(IDCB1,IERR,NArI)
0047 GO TO 40
0048 35 CALL OPEN(IDCBI,IERR,HAMI)
0)49 37 CALL POSNT(IDC91 IERR,l1

0030 IF(IERR.EQO)GO %t 37
0051 CALL POSNT(IDC8I , IERR,-2
0052 40 CALL EXEC(21,IPRAM(3),LIHEA,36)
00o5 CALL URITF(IDC81,IERRLIHEA,36)
0054 IF(LINEA(l).EQ.2HEN)IOP~uo
0055 IF(LINEA(I) E9 .2HEN)CALL CLOSE(IDCBI,IERR)
0056 GO TO 30
0057 115 1F(IERR.LT %.))RITE(1,100)ýIERP,
0058 CALL EXEC'6)
0059 END
0060 ENDS B -3B8

"TSCHD T=00003 IS ON CR00002 USING 00003 BLKS R=000o

0001 FTN4, L
0002 C THIS SUBROUTINE YILL 2E USED TO SCHEDULE TASK EXPR WHEN
0003 C DESIRED TIME HAS ELASPSED. TASK EXPR WILL BE INSTALLED
0004 C IN CORE BY HTASK AS T2XXX.
0005 SUBROUTINE TSCHD
0006 COMMON ISTAB(15,30), ISTFL(4,30),MRESP(3,30)
0007 COMMON IPCHT(4), ISCB(7,20),IHD, IVAR(2,226)
0008 COMMON IRESP(12), AFLG(5),INDAY(U5),IVT4.200),ILOG(1O)
0009 COMMON TREQ(3IT),ITREQ(2,30),ITTOP(5),ITOP..I 4XTTR
0010 COMMNH IHDXR,IPRM(5),I.S T,.JJ
0011 COMMON 1SVST, IBUF(180
0012 DIMENSION HAM(3)
0013 DATA NAM/2HT2,2HXX,2HX /
0014 C PICK UP PARAMETER FROM TOP REQUEST.
0015 10 IPRM(1)=3
0016 IPRM(2)"ITREQ(2, ITOP)
0017 C GO SCHEDULDE TASK EXPR
0018 IF(ITREQ(2, ITOP).EQ.-1,GO TO 12
0019 CALL EXEC(24,NAM,IPRM(,),IPRM(2)>
0020 C DELETE TOP REQUEST
0021 12 ITREQ(2, ITOP)-O
0022 C SET UP TOP REQUEST TO POINT TO NEXT REQUEST
0023 IHXTxITOP
0024 IF(ITREQ(1, ITOP).EQ O)GO TO 25
0025 ITOPsITREQ(1,ITOP)
0026 C TIME REQUEST OF 0 OFFSET GU BACK AND SKED EXPR WITH HEW PARMS
0027 IF(TREQ(ITOP).EQ.0.0)GO TO tO
0028 IF(TREQ(ITOP).LT.100.)GO TO 15
0029 C SET UP PROPER TIME FOR EXEC CALL
0030 J=2
0031 ITR"TREQ(ITOP)/100.
0032 GO TO 20
0033 15 j -zI
0034 ITR2TREQ(ITOP)
0035 C SCHEDULE TSCND AFTER ITR ELASPSED TIME
0036 20 CALL EXEC(12,0,JO,-ITR)
0037 GO TO 10
0038 25 I TOPO
0039 CALL EXEC(6)
0040 RETURN
0041 ENDS
0042 ENDS

B-39

' I

4DELT T=00003 IS ON CR00002 USING 00003 OLKS R=0000

0601 FTN4 ,L
0002 C SUBROUTINE DELT IS USED TO CkLCULATE THE DIFFERANCE IN
0003 C TWO TIMES. THE STARTING TIME IS LOCATED IN LOCATIONS
0004 C ITTOP(1) THRU ITTOP(5) AND THE ENDING TIME IS LOCATED IN
0005 C ITIMECI) THRU ITIME(3). THE CALCULATED DIFFERANCE IS
0006 C RETURNED IN LOCATION DELTA AND IS IN 10'S OF MS.
0007 SUBROUTINE DELT(DELTA)
0008 COMMON ISTAB(15*30),ISTFL(4.30),MRESP(3,30)
0009 COMMON IPCNT(4),ISCB(7,20),IHDIVAR(2,226)
0010 COMMON IRESP(12),IAFLG(3),INDAY(I5),IVT(200),ILOG(I0)
0011 COMMON TREQ(30)),ITREQ(2,30)oITTOP(5)1 ITOPAINXT,TR
0012 COMMON INDXR, IPFM(5), IST,JJ
0013 COMMON ISYST, IBUF(180)
0014 DIMENSION IBASE(5),IDELTi(5)
0015 DATA IBASE/100,60.60,24,1/
0016 C CALCULATE DIF IN ITTPI AND ITIME
0017 DO 10 Ja1,4
0018 IDELT(J)=ILOG(J+4)-ITTOP(J)
0019 IF(IDELT(I. GE .0)GO TO 10
0020 ILOG(J+3)*ILOG(J+5)-i
0021 ILOG(.J+4)mILOG(J+4)+IBASE(J
0022 IDEL.T(J)=ILOG(J+4)-ITTOP(J)
0023 10 CONTINUE
0024 C CONVERT TO 10 OF' MS
0025 DELTA-IDELT(I)+(IDELT(2)*100.)
0026 DELTA=DELTA*(IDELT(3)*6000.)
0027 DELr~u0ELTA4(IDELT(4)*360000.)
0028 100 RETURN
0029 E ND
0030 END$

B -40

SSCHED T=0003 IS OH CRO0002 USING 00005 BLKS R=0000

0001 FTN4, L
0002 C SUBROUTINE SCHED IS USED TO THREAD IN TIME REQUESTS AS
0003 C THEY OCCUR. THE IHI T IAL TIME REQUEST CAUSES TASK TSCHD
0004 C TO BE SCHEDULED.
0005 SUBROUTINE SCHED(ISCHED,INDX,INDXP)
0006 C VARIABLES USED IN THIS SUBROUTINE ARE DESCRIBED AS FOLLOWS1
0007 C ISCHED- TIME REQUEST PASSED TO SCHED
0008 C INDX- INDEX INTO SCS PASSED TO SCHED
0009 C INDXR- INDEX INTO ITREQ AND TREQ PASSED TO CALLING PROG
0010 COMMON ISTAB(15,30), 1STFL(4, 30),MRESP(3,3n)
OO6 1 COMMON IPCNT(4),ISCB(7,20),IHD, IVAR(2,226)
0012 COMMON IRESP(12),IAFLG(5),IHDAY '15),IVT('2o0),ILOG(10)
0013 COMMON TREQ(30),ITREQ(2, 30),ITTOP(5),ITOPIHXTTR
0014 COMMON IHDXRIPRM(5),ISTJJ
0015 COMMON ISVST, IBUF(190)
0016 DIMENSION HAM(3),ITTP(5)
0017 DATA NAM/2HT3,2HXX,2HX /
001 C TREQ- ARRAY OF TIME REQUESTS IN 10 OF MS
0019 C ITREG- PARALLELL ARRAY TO TREQ -INDEX TO TREQ AND SCB
0020 C ITTOP- TIME OF TOP REQUEST
0021 C ITOP- POINTER TO TOP REQUEST
0022 C INXT- POINTER TO NEXT ENTRY IN ITREG AND TREQ
0023 C ITR- TIME REMAINING IN 10 OF MS OR IN SEC
0024 C ITIME- ARRAY TO STORE CURRENT TIME IN
0025 C IYEAR- CURRENT YEAR
0026 C
0027 C GET TIME REQ AND PTR TO SC8 INTO PROPER ARRAYS
0028 IF(ISCHED.LT.O)GO TO 3
0029 TREQ(IHXT)-ISCHED*100.0
0030 GO TO 3
0031 3 TREG(IHXT)=-ISCHED

0032 5 ITREQ(2,IHXT)=INDX
0033 C
0034 C GET CURRENT TIME
0035 CALL EXEC(11, ILOG(5), ILOG(10))
0036 C
0037 C SEE IF THERE IS A TOP ENTRY
0038 C
0039 IF(.TOP.NE.O)GO TO 20
0040 C
0041 C NO SO SET UP VARIABLES FOR A TOP REQ
0042 C
0043 DO 10 I1t,5
0044 10 ITTOP(I)-ILOG(I+4)
0045 IrTOP=IHXT
0046 TR-TREQ• IHXT)
0047 TREQ(INXT •-0
0048 ITREQ(, INXT)-()
0049 IF(rR.LT. 100.)GO TO 12
0050 J :2
0051 ITRuTR/100.
0052 GO TO 15
0053 12 Jwl
0054 1TR-TR

B-41

, -l..I~in~ l

F0053 C

0056 C
0057 C SKED TSCHD TO BE RUN AFTER OFFSET OF ITR

0058 C
0059 1i CALL EXEC(12,NAM,J,O,-ITR)
0060 C
0061 GO TO 40
0062 C
0063 C YES THERE WAS A TOP ENTRY SO SEE IF THIS REG IS LESS
0064 C
0045 20 CALL DELT(DELTA)
0066 TIMEmTR-DELTA
0067 DIF"TIIE-TREQ(IHXT)
0068 :CK=sTOP
0069 IF(DIF.LT.0.0)GO TO 60
0070 TREQ(ICK)=DIF
0071 DO 30 In1,5
0072 30 ITTOP(I)"ILOG(1+4)
0073 35 ITREQ(1, INXT)uITOP
0074 ITOPuItXT
0075 C
0076 C SKED TSCHD TO BE RUN AFTER HEW TOP TIME
00?7 C
0078 TRuTREQ ITOP)
0079 IF(TR.LT. 100.)GO TO 25
0080 j N2

0081 ITR=TR/t 0 .
0082 GO TO 26
0083 25 J =t
0084 ITRzTR
0085 26 CALL EXEC(12,,HAfJ,0,-tTR)
0086 C
0087 C UPDATE PTR TO NEXT
0088 c
0099 40 1HD XP" I HXT
0090 DO 43 J-1,30

0091 IHUM-J
0092 IF(ITREG(2, J) EQ .0)J 30
0093 45 CONTINUE
0094 50 INXT=IHUM
0095 GO TO 100
1096 61) TREQV HXT)"-D IF
0097 IF(ITREQ(I, ICK). EQ.0)GO TO 70
0098 IPREV-ICK
0099 ICK=ITREQ(l, ICK)
0100 DIFuTREQ(ICK)-TREQ(IHXT)
0101 1F(DIF.LT0.0.)GO TO 60
0102 TREQ(ICK)-DIF
0103 ITREG(1,IPREV)uIHXT
0104 ITREQ(1, IHXT)=ICK

0105 GO TO 40
0106 70 ITREQ(1, ICK)-IHXT
0107 ITREQ(1, IHXT) 0

0108 GO TO 40
0109 100 RETURN
0110 END

0111 EHND

B-42

_ _ _ --

APPENDrX C

SDS QUICK REFKRRCH GUIDE

APPENfltX C

SDS QUICK REIMRRNCE GUIDI

APPENDIX C

SDS QUICK REFERENCE GUIDE

This appendix contains summary information about each of the SDS instructions.

1. JOB CONTROL

$ -- used to terminate each source program line
NEW$--required first instruction in an SDS program
END$--required last instruction in an SDS program

2. AFTER transitional

AFKT
AFKS
AFKM
AFKH
AFVS
AF A(K) S
AF A(V) S

Where K = a constant value ranging from 1 to 32767;
V= any variable A-Y containing from 1 to 32767;

A (K) = any constant eleme..t of any array A-Z containing from 1 to
32767;

A () = any variable A-Y element of any array A-Z containing from
1 to 32767;

T = ticks of system clock in 10s of ma;
S = seconds;
M = minutes;

and H = hours.

3. FOLLOWING transitional

FO KS K
FOVSK
FO A(K) S K
FO A(V) S K

FOVSV
FOV SA(K)
FO V S AV)
FO A(K) S V
FOA(K) SA(K)
FO A(K) S A(V)
FO AMV) S V
FO A(V) S ACK)
FO A (V) S A(V)

C-2

I~d

Where K = a constant value rarging from 1 to 32767 when defining i
count;

K = d constant value ranging from 1 to 30 when defining a state
number other than Its own;

V = any variable A-Y containing from 1 to 32787 when deflning
a count;

V = any variable A-Y containing from 1 to 30 when defining a
state number other than its own;

A (K) = any constant element of any array A-Z containing from 1 to
32787 when defining a count;

A (K) = any constant element of any array A. " containing from 1 to
30 when defining a state number other than its own;

A (V) = any variable A-Y element of ary array A-Z containing from
i to 32767 when defining a count;

A CV) = any variable A-Y eleme'-' of any array A-Z containing from 1
to 30 when defining a state number other than its own.

4. IF transitional

IFKR K
IFVRK
IF A (Y) R K
IF A (V• K
r vRV
IF V R A(K)
IF V R A(V)

IF A (K) R V
IFA(K) RA(K)
IFA(K) RA(V)
IF A(V) RVIF A (V) R1 A (K)
IF A (V) RA(V)

Where K = a constant value ranging from 1 to 32767 when defining acount:
K = a constant value ranging from 1 to 12 when defining a

response bit number;
V = any variable A-Y containing from 1 to 32767 when defining

a count;

V = any variable A-Y containing -'orom 1 to 12 when defining aresponse bit number;
A (K) = any constant element of any array A-Z containing from 1

to 32767 when defining a count;
A CM) = any constant element of any array A-Z containing from 1

to 12 when defining a response bit number;
A (V) = any variable A-Y element of any array A-Z containing from

1 to 32767 when dafining a count;
and A (V) = any variable A-Y element of any array A-Z containing from

1 to 12 when defining a response bit number.

C-3

5. IF transitional (binary)

IF K RB K
IF VRB K

IF A (K) RB K
IF A(V) RBK
IF V RB V
IF V RB A (K)
IF V RB A(V)
IF A(K) RBV
IF A (K) RB A (K)
IF A (K) RB A (V)
IFA(V) RBV
IF A (V) RB A (K)
IF A(V) RB A(V)

Where K--a constant value rarging from 1 to 32767 when defining a
count:

K = a constant value ranging from 1 to 4095 when defining a
multiple response pattern;

V any variable A-Y containing from 1 to 32767 when defining
a count;

V = any variable A-Y containing from 1 to 4095 when defining
a multiple response pattern;

A (K) = any constant element of any array A-Z contai-;nig from 1 to
32767 when defining a count;

A (K) = any constant element of any array A-Z containing from 1 to
4095 when defining a multiple response pattern;

A(V) = any variable A-Y eJ)inent of any array A-Z containing from
1 to 32787 when defling a count;

A (V) = any variable A-Y element of any array A-Z containing from
1 to 4095 when ,affinlng a multiple response pattern.

6. IF modified (relational)

IF V ZV
IF A (K) Z V
IF A (V) Z V
IF V X A(K)
IF V Z A(V)
IFA(K) ZA(K)
IF A (K) Z A (V)
IF A (V) Z A (K)
IF A(V) Z A(V)

C-4

Where V = any variable A-Y containing from -32768 to 32767;
A (K) = any constant element of any array A-Z containing from

-32788 to 32767;
A(V) = any variable A-Y elemient of any array A-Z containing from

-32768 to 32767;
and Z = any one of the relational operators EQ, NE, LT, GT, LE, or GE.

7. STATE modifying or identifying

ST K
STK

Where K a constant value ranging from 1 to 30 except in programs
using the logical instruction in which case the 30 would be
reduced by one for each additional element of the logical instruction.

8. THEN modifying or identfyfing

THYK
TH'
TH A (K)
TH A(V)

Where K = a constant equal to the next desired state number;
V = any var'able A-Y containing a value equal to the next

dasired state number;
A (K) = any constant element of any array A-Z containing a value

equal to the next desired state number;
and A (V) = any variable A-Y element of any array A-Z containing a

value equal to the next desired state number.

9. VARIABLE modifyinll identifying

VAR V=K
VAR V=V
VAR V=A (K)
VAR V=A (V)
VAR A (K) =K
VAR A (K) =V
VAR A (K) =A (K)
VAR A (K)=A (V)
VAR A CV) =K
VAR A (V) =V
VAR A (V) =A CK)
VAR : (v) =A (V)
VAR V=K, A(K)=V. A(V)=A(K) etc.
VAR X=X+K

C -5

S.• • : .' 1 • .

Where K = a constant value ranging from -32768 to 32767;
V = any variable A-Y to be initialized;
V = any variable A-Y containing a value ranging from -32788

to 32767;
A (K) = any constant element of any array A-Z to be initialized;
A (K) = any constant element of saiy array A-Z containing a value

ranging from -32768 to 32767:
A (V) = any variable A-Y element of any array A-Z to be initialized;
A (V) = any variable A-Y element of any array A-Z containing a

value ranging from -32788 to 32767;
and X a either V, A (K), or A (V).

10. DIMENSION modifying or ideztifyijn

DIM A ,L

Where A = any array name A-Z;
and L = the length of the array which cannot exceed 200 words.

If more than one array is dimensioned (maximum of four)
the combined total of the size of the arrays cannot exceed
200 words.

11. STIMULUS modifying or identifying

ST K
ST V
ST A (K)
ST A (V)
SB K

SB V
SB A (K)
SB A (V)
Where SB = an optional character set for the character 93t ST;

K = a constant value ranging from 1 to 4095;
V = any variable A-Y containing a value ranging from 1 to

4095;
A (K) = any constant element of array A-Z containing a value

from 1 to 4095;
and A (V) = any variable A-Y element of any array A-Z containing a

value ranging from 1 to 4095.

12. SUBSTATE modifying and identifying

SU X
SS K

C-6!

Where SS = an optiona) character set for the character set SU;

and K = a constant value ranging from 1 to 30 and is equal to a
state number that iF. defined in thu SDS prugram.

13. AND/OR logical

X ORY
X OR Y OR Z etc.
XANDY
X AND Y AND Z etc.

Where X, Y, and Z = any of the transitional instructions.

NOTE: The use of LOGICAL instructions requires the use of a state table
entry for each element X, Y, or Z and will therefore reduce the maximum
number of states from 30 to 1U minus the number ofl additional logical instruction
elements.

14. CRT, PTR, PUN, RDR ilnput/ou!t

CRT V
CRT A (K)
CR~T ,MV)
CRT V; A(K); A (V); V etc.
CRT A*

Where V = any variable A-Y;
A (K) = any constant ele~ment of any array A-Z;
A (V) = any variable A-Y element of any array A-Z;

and A* = any entire array A-Z.

NOTE: The instructions PTR, PUN, and RDR are written in the same format
az, the Instruction CRT.

C-7

APPENDIX. D

RTE-II INITIALIZATION PROCEDURE

D-1

APPENDIX D

RTE-rT INITIALIZATION PROCEDURE

The procedure used to operate the HP-2100 computer using the RTE-II
operating system it described in Table D-I. When the RTE-II system is
initially brought up, it runs its file manager program FMGR which, in turn,
runs a transfer file that produces the message in Figure D-1.

Table D-I

Initializing Procedure for RTE-tI

1. Insert the disc cartridge eontaining the SDS system into the disk
drive and move the disc load-unload switch to the load position. Wait for
the "Drive Ready" light to illuminate.

2. Set P register to 777508.

3. Set S register to 0.

4. Depress External Preset, Internal Preset, and Run switches. The
computer should halt with 1020778 in the display register.

5. Depress the Run switch and the SDS welcome message should be
printed on the computer console.

6. The SDS is now ready to be used as described in this report.

SET TIME
:SV,4
TE, *****
TE,***** WELCOME TO THE SDS PLEASE TYPE RU ,OPCOM WHEN YOU
TE***** ARE READY TO BEGIN USING THE SDS.
TE,

Figure D-1. The SDS Welcome Message

D-2

The last line in this welcome message contains a colon (:) which is the
pr rapt character for the file manager program FMGR. The prompt character
(:) indicates that the system will accept any valid FMGR command. The system
expects use of the file manager program within a five minute period, and if this
use does not occur, the PMGR program will automatically be terminated by RTE-U.
When the FMGR program is terminated by RTE-U1, the message in Figure D-2
is sent to the CRT, and the system is now ready to accept any RTE-II commandg.

V/ SET TIME
:SV,4
TE, ***
TE,***** WELCOME TO THE SDS PLEASE TYPE RU ,OPCOM WHEN YOU
TE, ARE READY TO BEGIN USING THE SDS
TE,

#END FMGR

Figure D-2. Automatic Time-Out of FMGR

The SDS can be run from either the FMGR program or RTE-II. If in
FMGR mode, as implied by the prompt character colon, the user should type
RU,OPCOM to run the SDS. If in RTE-U1 mode, as implied by no prompt
character, the user should type *RU ,OPCOM to run the SDS. Actually, any
key could be struck in place of the asterisk but the asterisk is used in this
description for the sake of simplicity. For a more detailed description of using
the FMGR and RTE-II commands refer to Hewlett-Packard's manuals related to
Real-Time Executive, Batch/Spool Monitor, and Overating System. Other
manuals that may be helpful are the RTE-IT and Batch-Spool Monitor Pocket
Guide, and the Operating and Service Manual for the HP-2100 computer.

D-3

APPENDIX E

1 CREATING DISC FELE OPIN

"H i

APPENDIX E

CREATING DISC FILE OPIN

There are two methods. other than using the SDS, that may be used to
create the dirc file OPIN that can be used for input of source programs to the
SDS. The first method is using the FMGR store command. This requires opera,-
ting under the FMGR program, as designated by the colon prompt character, and
that no disc file named OPIN exists. If a disc file named OPIN exists, it may be
purged by the FMGR command PU ,OPIN. The procedure in Figure E-1 can be
used to create a disc file OPIN using the FMGR store command. Figure E-1 also
exhibits the procedure for running this newly created file.

PU, OPIN
ST, 1, OPIN

NEW$
STi AF 10 S TH 2$
ST2 AF 10 S$
ENDS

NOTE: After typing the END$ instruction the user must type a control D. This
is accomplished by depressing the CTRL key and the character D simultaneously.

: RU,OPCOM

NEWS
INPUT FROM DISK??
YES

NEW$

ST1 AF 10 S TH 2$

ST2 AF 10 S$

ENDS
START PXP?
YES
END OF EXP. 1
*GO, OPCOM

The second method used to create the disc file OPIN is to use the RTE-II
program EDITOR. This requires operating under the FMGR program, as

designated by the colon prompt character, and that no disc file named OPIN
exists. If a disc file named OPIN exists, it may be purged by the FMGR com-

'I

mand PU. OPIN. The procedure shown in Figure E-2 can be used tn create a
disc file OPIN using the EDITOR program. Figure E-2 also exhibits the proce-
dure for running this newly created file.

:PU,OPCOM
RU, EDITOR

SOURCE FILE?
/ enter a blank and carriage return
EOF
/ NEWS note that each line is preceded by a blank
/ STI AF 10S TH 2$
/ ST 2 AF 10 3$
/ END$
/ECOPIN ends editor creates file OPIN
END OF EDIT
:RU, OPCOM

NEWS
INPUT FROM DISC??
YES

NEWS

ST1 AF 10 S TH 2$

ST2 AF 10 S$

ENDS
START EXP?
YES
END OF EXP. 1
*GO, OPCOM

NOTE: Refer to Hewlett-Packard's Batch/Spool Monitor and Editor manuals
for more information on store command and editor commands.

E-3

APPENDIX F

SDS ERRORS

1*t F-i

--- -- -- -- - - ----

APPENDIX F

SDS ERRORS

The operator communications program reports source langudge errors
immediately following the line in which the error occurred. There are two
basic error messages printed on the CRT when an error occurs during the
source language input of an SDS program. These messages are, "Bad
Operator", and "Outside Table". For information concerning any other error
messages refer to the appropriate Hewlett-Packard manual.

TLj "Bad Operator" message occurs when the source language line
violates the proper input format for instructions as described in Section V,
the SDS Instruction Set. Some examples of these types of errors are shown
in Figure F-1.

RU,OPCOM

NEW$
INPUT FROM DISK??
NO
@

ST1 AF TER 1 S TH 2$ --------- embedded blank in AFTER
BAD OPERATOR

STI AFTER 1 S TH 2$
@
ST2 A 1 S TH 3$ ------------- AF instruction incomplete
BAD OPERATOR
@
ST2 AF 1 S TH 3$

ST3 AF 1 S TH4$ ------------- no blank following TH
BAD OPERATOR
C

ST3AF ISTH 4$

ST4 AF 1 S VAR A=l TH 5$ ------- VAR instruction out of order
BAD OPERATOR

ST4 AF 1 S TH 5 VAR A=-$

ST5 CRT A AF 1 S$ ----------- AF instruction must follow ST5
BAD OPERATOR

ST5 AF 1 S CRT A$

END$
START EXP?
NO
*GO OPCOM

'I F-2

Figure F-1 is not meant to give a complete list of all possible bad

operator errors; it does, however, give examples of some of the most common

,ni•ors. Note that when errors occur, retype the correcid line in order to cor-

rect the error. Review the SDS Instruction Set, Sectior. V, if bad operator

errors occur that are not easily recognizud, checking for proper format of all

instructions in the line in which the error occurred.

The "Outside Table" error occurs when a val'e has been :ssigned to a

dimension P.et.ment, a state nuL~ber, or a substate number that is larger

than the maximum number allowed. Some examples of these types of errors

are shown in Figure F-2.

RU,OPCOM
S
NEW@
INPUT FROM DISC??
NO
S
ST _4 YF 10 S TH 32$ ----------- state number larger than 30

OUTSIPE TABLE
S

ST1 AF 10 S TH 2 SS 31$--------- substate number larger than 30

OUTSIDE TABLE
@
ST1 AF 10 S TH 2 DIM A,300$ ------ array size greater than 200 words

OUTSIDE TABLE
S

ENDS
START EXP?
NO
*GO, OPCOM

F-3

APPENDIX G

SAMPLE SDS PROGRAM RUN AND SAMPLE LOG

,I
G- 1

APPENDIX G

SAMPLE SDS PROGRAM RUN AND SAMPLE LOG

SAMPLE PROGRAM RUN

The program used in the sample is 3 fixed interval (FI) schedule with a
master counter in state #1 to limit the number of reinforcements to five. The
CRT instruction in state #3 is used to show that the program did execute states
#2 and #3 five times. Figure G-1 describes the necessary state diagram and is
also a copy of the console after the run is complete.

G-2

r -

SSA2AVARAA=-

CRTAA la ST,,. i1
TH^,3 '-' VAR^A=A÷I'-l

... AF 5 S• , AF A^T--'J

FO L,5^AS^31-4

:RU, OPCOM

NEWS
INPUT FROM DISC??
YESC

NEW$

ST1 FOL 5 S 3 SS 2 VAR A=O$

ST2 AF 5SSTH 3CRT A$

ST3 AF 10 T TH 2 ST 1 VAR A=A+I$

END$
START EXP?
YES

a

2 output from CRT A instruction
3
4

M OF EXP 1

*GO, OPCOM

Figure G-1. Diagram of Sample Program

rA-3

SAMPLE LOG

The sample log shown in Figure G-2 was written on the magnetic tape
during the running of the program described in Figure G-1. Table G-1
describes the log events sequentially in terms of log entries. Refer to Section
VII, the SDS Log, for contents of various log entries.

Table G-I

Log Events from Log in Figure G-2

Elapsed time

Log entry # Event since previous entry

1 start of experiment
2 start of state #1 10 ms
3 start of state #2 10 ma
4 end of state #2 5 seconds
5 start of state #3 10 me
6 end of state #3 110 ms
7 start of state #2 10 ms
8 end of state #2 5 seconds
9 start of state #3 10 ms

10 end of state #3 110 ms
11 start of state #2 10 me
12 end of state #2 5 seconds
13 start of state #3 10 ms
14 end of state #3 110 ms
15 start of state #2 10 ms
1i end of state #2 5 seconds
17 start of state #3 10 ms
18 end of state #3 110 mu
19 start of state #3 10 ms
20 end of state #2 5 seconds
21 start of state #3 10 ms
22 end of state #1 25 seconds 840 mns

since it began
23 end of state #3 10 ms
24 end of experiment 25 secor-As 860 ma

since it began

G-4

SAMPLE

REC# 00001
001000 000001 000000 000000 000126 000010 000007 000010*
000335 002000 000001 000001 000000 000127 000010 000007*
000010 000335 002000 000001 000002 000000 000130 000010*
000007 000010 000335 003000 000001 000002 000030 000130*
000015 000007 000010 000335 002000 000001 000003 0(C000*
0000131 000015 000007 000010 000335 003000 000001 000003*
000000 000000 000016 000007 000010 000335 002000 000001*
900002 000000 000001 000016 000007 000010 000335 003000*
000001 000002 000000 000001 000023 000007 000010 0n0335*
002000 000001 000003 000000 000002 000023 000007 000010*
000335 003000 000001 000003 000000 000015 000023 000007*
000010 000335 *

REC# 00002
002000 000001 000002 000000 000016 000023 000007 000010*
000335 003000 000001 000002 000000 000016 000030 000007*
000010 000335 0(12000 000001 000003 000000 000017 000030*
000007 000010 000335 003000 000001 000003 000000 000032*
000030 000007 000010 000335 002000 000001 000002 000000*
000033 000030 000007 000010 000335 003000 OOOOCI 000002*
000000 000033 000035 000007 000010 000335 002000 000001*
000003 000000 000034 000035 000007 000010 000335 003000*
000001 000003 000000 000047 0U0035 000007 000010 000335*
002000 100001 000002 000000 000050 000035 000007 000010*
000335 00.000 000001 000002 000000 00000b 000042 000007*
000010 000335 *

REC# 00003
002000 000001 000003 000000 000051 000042 000007 000010*
600335 003000 000001 060001 000000 000063 000042 000007*
000010 000335 003000 000001 000003 000000 000064 000042*
000007 000010 000335 005000 000001 000000 000000 000064*
000042 000007 000010 000335 *

Ftiguire G-2. Octal Listing of SDS Log

G-5

1c.mITY CL.ASMIPICATION Of T.,S PAGE (V . ef , 00a,--. e.

A •eState Dlagram Sytemr (SDS) was developed to solve this problem.
DS Is a.tool. that can be used by Investigators in designing and runninng p7-

:ohysical experiments on' Hewleft-Packard'lr PP-2100 series computers[. SDS,
t0 Presently designed, is capable of running" only those experiLments that use

slcrota inputs and outputs.. The, system- offers the InvestLtgator- a- high level

anguage with which he is already familiar or can easily learn, thus removing
burden of solving these types of preblems using more, complex computer
puages. Written in, FORTRAN IV language 5D$ is an interactive system that

os not require assembling or compiling of its Drograms. The system accepts
ca- language- statementr from- either the system' console or-disc foles and allows

program to be run immediateiy upon completion of this input process. While
DS does not solve- all of ther prot lems encountered in computerizing psychological

eriments., its modular design should ease such future modifications as dealing
with continuous variables, calling external programs, and controilin multiple
experiment.

5 ,N 0102- LF. I It.6601

UNCLASSIFED
SUCURITY CLASSIFICATION OF TMIS1 FA~G(Mlf" 00114 SMOM4u)

ACCUT•TY CLASMIFICAION OF TMIS PAG1 (VWhmwt anm•,0.

'-he State Diagram System (SDs) was developed to solve this problem.
DS Is a- tool. that can be used by investigators in designing and running psy-

hysical ixperimona on' Hewleft-Packard's HP-2100 series com1uters. SDS,
ar prosenvdy designed, is capable of running only those experiments that use
screto inputs and outputs-. The' system offers the investigator a- high level

anguage with which he is already familiar or can easily learn, thus removing
burdmn of solving these types of problems using" more' complex comouter

guages. Written in FOWTTAN MV language SDS Is an interactive system that
oss not require assembling or compiling of its programs. The system accepts

es, language- statement. from either the system- console or- disc ies and allows
program to be run immediatelr upon completion of this Input process. While

5D8 does not solve- all of ther proS lea.s encountered In computerizing psychological
eriments, its modular- design should ease such future modiflcatLons as dealing

th continuous variables, calling external programs, and controlling multiple
experiments.

.5, N 0 102- .. L0 4.46601

UNCLASS7ID
SECURITY CLASSIFICATION OF "MIS PALGE(fl DOeE ittered)

,--

