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SUMMARY

A combined vehicle/air cushion landing system dynamic model recently devel-

oped by Boeing Company exhibits unstable behavior for certain operating conditions.

The objectives of this study were 1) to ascertain the reason for this instability

and to isolate the important physical effects involved, 2) to suggest means to

alleviate the instability, and 3) to assess the validity of the model and results

obtained. The model considered consisted of a vehicle constrained to move verti-

cally and supported by an inelastic trunk whose side elements were unrestrained

and whose end elements were frozen.

The stability was investigated by linearizing the model state equations. This

was done by simplifying the model such that the vertical motion and the pressure re-

sponses were considered to be those of quasi-coupled mechanical oscillators. Use

of this approach enabled the stability behavior to be described in such a way that

the influence of each system parameter could be seen.

For the model studied, instability occurred when operating conditions were such

that the side trunk elements first contacted the ground. This contact shuts off the

air flow under the side elements, while still allowing flow under the frozen end

elements. This flow combination substantially alters the system pressure response,

which in turn causes a destabilization of the vertical motion. T10 instability

could be eliminated by arranging the trunk so that the side and end elements con-

tact the ground simultaneously and then by venting the air cushion directly to

atmosphere through a constant area orifice.

Stability calculations were also made for a trunk with all elements frozen,

and for this model the stability behavior was quite different than for the un-

restrained model. This result illustrated that the stability is sensitive to

X



trunk geometry changes which accompany changes in pressure and altitude. It

appears that the best stability bphavivr can be achieved by allowing both side

and end elements to be as unrestrained as possible (this could be accomplished,

for example, with a bellows arrangement at each "corner" of he trunk) and by

simultaneously venting the cushion directly to atmosphere.

Results obtained for the trunk model considered appear physically reasonable.

The response is similar to that exhibited by self-excited oscillators; the energy

source here appears to be the power needed to provide the input trunk flow. In

comparing the model analyzed to an actual trunk, we note that the restraining in-

fluence of the trunk curvature (in the horizontal plane) which would exist at the

"corners" of a single piece trunk has not been taken into account here. For a

trunk whose side elements are substantially longer then the end elements, the

model analyzed in this study should be adequate, but test verification of this

conclusion would be desirable.

A useful result is that the analysis approach employed provides a systematic

technique with which a given trunk/vehicle system may be designed so as to pro-

vide acceptable stability.

xi



vrz -

SECTION I

INTRODUCTION

Presented is an analysis of the stability characteristics of the Air Cushion

Landing System dynamic model developed by Boeing Co. (Ref. 1). The combined ve-

hicle/ACLS model exhibits an unstable oscillatory motion for certain operating con-

ditions. The objectives of the work were to determine which model parameters are

most important in governing vehicle stability, to provide a physical interpreta-

tion of these effects, and hence to assess the physical believability of such ef-

fects. Potential means of alleviating the instability were also addressed. The

work represents a continuation of an analysis supported by Boeing Company and con-

ducted during November - January 1979-80 (Ref. 2).

The sys.em considered was a plunge mode model with vehicle and trunk parame-

ters representative of the Jindivik aircraft (Figure 1). Although this model is

considerably simplified relative to the complete six degree of freedom ACLS model

described in Reference 1, it does exhibit similar stability characteristics. Thus,

an understanding of the behavior of this simple system should enable the important

effects on stability to be uncovered. In order to make the present report as self

contained as possible, some of the work reported in Reference 2 is included herein.

In the following sections are presented the system model equations, the linear

stability analysis techniques (and their verification), interpretation of the model

stability behavior, and some parametric results which indicate means of alleviating

the instability.

A primary objective of the work was the development of stability analysis meth-

ods which would display directly the influence of the various system parameters on

stability. Although this was accomplished, the resulting mathematical description

is complicated due to the large number of individual parameters involved. Thus, to

properly explain model stability behavior, a detailed discussion of the stability

relations has been necessary.

1.
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SECTION II

MODEL STABILITY BEHAVIOR

1. System Model

The plunge mode model considered is shown in Figure 1. The dynamics are de-

scribed by four states: trunk and cushion pressures Pt and Pc and altitude h

and vertical velocity w = -h (w is measured positive downward). The system equa-

tions of motion are given below and represent a simplification of the Boeing model

described in Ref. 1:

P = .RT (W - W - w kt Vt tr tc ta - Pt Vt/Vt ()
kRT (W + W

c = Vc cu tc - Wca) kPc Vc /Vc (2)
-2DL

S{L3 (Pt - Pa + WDMp) + (ya-o)(PcPa)} + g + M

h= -w (4)

V t  2DAs (5)

Vc 2D[Z0(Ya + Y) - Acv (6)

where D is the length of the single trunk element on each side of the vehicle.

The motion, as governed by these equations, is heavily dependent on the trunk

geometric parameters which are shown in Figure 1. These are:

L = width of trunk in contact with ground (in.)

Yo = horizontal distance from inner trunk attachment to ground contact point,

or if not in ground contact, to the horizontal tangency point (in.)

A = trunk cross-sectional area (in.2 )

Acv = fraction of As used in cushion volume calculation (in.
2)

Zo = distance from bottom of vehicle to ground (in.)

Z ofs = distance from vehicle bottom to trunk bottom when trunk not in ground

contact (in.)

3.



These geometric parameters are functions of the pressure ratio P (P " P )/
r c a

(Pt" Pa), with Pa the ambient pressure, and the altitude ratio Zr = 0o/Zof s ,

where Zo = h - h0 and Zof s = z ofs (Pr). The dependence of these geometric para-

meters on pressure and altitude ratios Pr and Zr is shown in Figures 2 and 3 for

the inelastic trunk model considered here. These dependencies will be shown to

have an important effect on the vehicle motion.

The various air flows which govern cushion and trunk pressure change are cal-

culated using the compressible flow relations given below:

~ C2g y' [tPa 2 /Y( Pa t ]y+ 1 -
Wca CAca PcRT YI _ L I-

qP c 2/y P c

W tc =CA tc P t RT Y-1 P

14ta =CA ta Pt1 RT y-1i jtL - ( Y.~ (9)

tj 2 2/y~ ,PtY1]

W CAcu Pc R - c)(p (10)

where, for the system under consideration, the area flow coefficients are given by:

CAca = 1.8 D Zgap (in. )

CA tc = 18-163

CAta = 17.73

CAcu = 90.72 (12 h - h CU)

where Zgap = 0 when the trunk contacts the ground and Zgap = Zo - Zof s otherwise.

The cushion to atmosphere end flow (i.e., out of the paper, Figure 1), Wcu, is de-

fined in terms of the altitude hcu, which is the distance from the vehicle c.g. to

the bottom of the end trunk sections. These end trunk sections are assumed to be

4.
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frozen. Note that the trunk to cushion and trunk to atmosphere flows Wtc and Wta

depend only on the associated pressure differences, whereas the cushion to atmo-

sphere and cushion end flows Wca and Wcu depend in addition on the altitude. It

will be seen later that these flow/altitude sensitivities dominate the vehicle

stability. All of the flows are defined by equations (7-10) to be positive. The

signs (negative indicating flow out of) are taken into account in the system equa-

tions. The system equilibrium, or operating point, is defined by equations (1)-(4)

with all derivatives zero,

Wtr - tc - ta 0

-Wcu + Wtc - W = 0

2D L
F- [L3(Pt-Pa) + (Ya-Yo) (Pc-Pall = g +

Due to the nature of the flow relations and the trunk geometric parameters,

the system is highly nonlinear and difficult to analyze analytically. The stabil-

ity of small motions about equilibrium was assessed by Boeing by numerically cal-

culating the Jacobian matrix and associated eigenvalues. For the present system

the plunge mode eigenvalue variation with trunk flow rate Wtr is shown in Figure 4.

The flow rate Wtr = 758 lb/min corresponds to the initial contact of the trunk with

the ground, which is accompanied by a gross instability. As the trunk flow is in-

creased, accompanied by a larger portion of the trunk being in ground contact, the

motion is less unstable until at Wtr : 900 lb/min stability once agan ensues. The

exact cause of this behavior could not be easily found from the numerical stability

results since the influence of each of the many parameters involved was difficult

to isolate.

In the following section, two analytical techniques used to assess this be-

havior are described and verified, i.e., demonstrated to yield the same stability

informatioi as calculated numerically and shown in Figure 4. Then, these techni-

ques are used to explain the reason for the observed model behavior.

7.
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2. Techniques Used in Stability Analysis

a. System stability matrix

In order to see clearly the effect of individual parameters on the system

stability matrix, the elements nf the system matrix were determined analytically

as described here. First, each of the four states (denoted for simplicity as xi,

i = 1 to 4) was assumed to be comprised of its equilibrium value xio plus some

small deviation 6xi from equilibrium,

xi = xio + 6xi  i = 1 to 4. (11)

These variational forms were substituted into the system equations (1) - (4) and

the results were linearized to yield four linear first-order differential equations

for the 6xi, of the form

{6x i = [A] {6xi} (12)

where [A] is the 4 x 4 Jacobian matrix. This procedure was algebraically compli-

cated by two things: first, the flow relations given by equations (7) - (10) are

unwieldy, so the variational procedure was applied to a simplified form of these

relations obtained using the leadinq terms in the flow relations. This simplified

model is summarized below:

Wca 1.8 D Zqap (.04826) Pc lb/sec
a

W tc .8765 Pt (Apt p Apc) lb/sec

Wta . .8556 Pt (at lb/sec

W cu 90.7 (12h--h cu)(.04826)Pc afp-) ' lb/sec

where APt Pt - Pa and APc = Pc - Pa

9.



These relations are generally accurate to within 10 or 15% when compared to

equations (7) - (10). In the final Jacobian matrix, the flow rate variations are

expressed as fractions of the actual equilibrium flow rates as calculated using

the complete flow relations, so the above inaccuracy is not significant.

A second source of algebraic complexity lay in the dependence of the geometric

parameters Yo0 L3, is' Acv' etc. on the states Pc, Pt, and h. The variations in

these parameters which accompany variations in the states Pto Pcs and h were cal-

culated using the chain rule to write everything in terms of the primary dependent

variables,

2 ( ) .L) 6Pc + ( ) Pt + a( ) h (13)
9Pc Pt 3h

where ( ) stands for any of Yo' L3' As, Acv' Vc' Vt' or Z ofs  Since the trunk

geometry information is given in terms of Pr and Zr, rather than in terms of PCs

Pt' and h explicitly, the individual partial derivatives appearing in equation (13)

were calculated in terms of partial derivatives with respect to Pr and Zr from
z

a 1 ar (Zr Ofs) a(
c to r Zfs r /

3P5-" Tr aP-- (14)

12 (

h Zofs aZr

The twelve is included in the last of these because Zof s has units of inches, while

h is in feet. In a fashion similar to the above, the variations in volume rates of

change were obtained from, for example,
Vt 6V t W V

6Vt a P + a c 6P - w

Note that the nature of equation (15) and the associated relation for 6 c means

that the volume derivative effects are really proportional to 6Pt and 6Ac; thus,

10.



the variational forms of the pressure equations (1) and (2) will actually end up

being simultaneous equations in 60t and 60c, with volume derivatives eliminated.*

The final form of the variational equations obtained using the above proced-

ure is given in Table 1, excluding the equation 6A = -6w. A detailed discussion

of the physical significance of the various terms appearing in these equations is

given in a later section. The purpose here is to present the result and to demon-

strate that the stability information is correctly calculated using this procedure.

In order to verify this procedure, stability results have been obtained for trunk

flow rates Wtr = 757 lb/min (just prior to ground contact), 758 lb/min (just after

ground contact), 840 lb/min (well after ground contact, vehicle still unstable),

and 950 lb/min (well after ground contact, vehicle stable). In each case, the

required partial derivatives were calculated using the tabular geometric trunk data

generated in the original Boeing numerical analysis, the first two equations in Table

1 were solved simultaneously, and the eigenvalues of the resulting Jacobian matrix

were computed. The results are summarized in Table 2, in which are shown the sta-

bility matrices and eigenvalues calculated as described above; for comparison, the

eigenvalues obtained in the Boeing numerical work are also shown. Agreement is seen

to be good, indicating that the present technique produces essentially the same re-

sults as a numerical variational procedure. This is not surprising; the details

have been presented mainly to ensure that no mistakes were made in the calculation

of the system matrices.

For each operating condition the complex conjugate eigenvalues describe the

plunge motion of the vehicle. The additional real, negative eigenvalues represent

highly damped subsidences which derive from the pressure response characteristics

of the system.

*In the orginal Boeing numberical work reported in Ref. 1, the volumes V and Vt
were included as states and modeled using a first order lag. Thus, thee were
six states in the Boeing linearized model.

11.



TABLE 1

LINEARIZED VARIATION EQUATIONS
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b. "Describing Function" Analysis*

A simplification of the technique presented in the preceding subsection is

possible by taking into account the nature of the present system behavior. If we

consider the case where the vertical motion is frozen, then small deviations from

equilibrium in trunk and/or cushion pressures will decay exponentially (and very

rapidly) back to the equilibrium level, as described approximately by the real, neg-

ative eigenvalues resulting for the system matrices given in Table 2. Thus, quali-

tatively the pressure response is similar to that of an overdamped mechanical oscil-

lator. The pressure and plunge motions can be partially decoupled by considering

the process to occur in the following sequence: (1) assume that the plunge motion

is approximately simple harmonic, h = sin wt; (2) this plunge motion and the associ-

ated velocity h = w cos wt are then considered to provide a harmonic forcing of the

cushion and trunk pressures, as defined by the terms a13, a14, a23' and a24 in the

linear'led equation (12); (3) responding to this input as would an overdamped oscil-

lator, the pressure output will also be harmonic with some gain and phase shift re-

lative to the input; (4) the output pressures Pc and Pt may then each be considered

to be linearly related to altitudeh and velocity h, for example, P = Sh + Ch; andc

(5) the altitude/velocity dependence of P and P then serve to define the stiffness

and damping in the linearized equation of plunge motion. At this point, the plunge

mode eigenvalues can be determined. This process is shown schematically below:

(LW (P t)

System Equation:) Pc , h3  "PRESSURE
(new notation) - - - - --- = P, H ][H I 

-v P ]h 8h t p ]

w= sin _t [Ph ] 6W inut__-in (over damped osc.)l

-~Cos h t> ~ h 2t output

VERTICALMOTIO wwh H tP = [B][H]
L.6h plunge mode -eigenvalues:

X = + i,

*So called because the approach is similar to that used in analyzing nonlinear con-

trol systems.

14.



Mathematically, the results obtained using the above procedure are now summarized.

Starting with the pressure equations,

t 11 Pt + 12 + aw + a14h (16)

P = P + a2P + a3w + a2h (17)
a 1t 22 c 23w (17

we differentiate equation (17) with respect to time and then eliminate Pt from the

result, yielding a second order differential equation for the cushion pressure PC

-c (l + a2P + aI  - a2 a ) h aa -a
(a11  a2 2)Pc (a11a22  a12 )Pc [a21a14 a11 a241

+ a23w + w [a21a1 , - a11a2 3 - a241 (18)

Now, assuming the altitude to vary harmonically, h = sin wt (and so w = -h =-w cos

wt), equation (18) takes the form

P - T P + AP = K sin wt + K cos Lt (19)

2
where Ks = a21a14 - a11a24 + a2 3 w

Kc w(a24 + a11a23 - a21a13)

T =a 1 1 + a22

A a1 1a2 2  a 21a12'

Note that T and A are the trace and determinant of the pressure system [P] subma-

trix defined at the beginning of this section. Thus, in this decoupling procedure

the real, negative eigenvalues A1 and A2 are given approximately by AIA2 = A and

XI + A2 = T. Equation (19) shows that a given vertical motion is in gtneral amp-

lified and phase shifted before acting as input to the pressure system. The above

equation can be solved to give the steady state pressure response to the harmonic

vertical motion,

P C C cos wt + S sin wt.
c

15.
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This may be rewritten in terms of h and h as

P = Sh + - h . (20)
C w

Also,

Pt a h Cw- a22S - a24] + h [S a22C + a2 3] (21)
21 a21 W

where

S [ (D-w2 )K5 - TwKc]

C = [ (D-w 2)K + TwK ]

and D = (A-w2 )2 + (Tw)2.

The output of the pressure system, expressed as equations (20) and (21), is now

put back into the vertical motion equation, and the result is written in the form

h + Dh + Fh = 0 (22)

where the damping term D and frequency term F are

a2(S C a32C=D a 3 t (S a 22 + a23 a+ 2

a2 1  23) W 33

F = a31 (-C - a22S - a24) + a32S + a34a 2122 2324

The complex eigenvalues corresponding to the vertical motion are then

D - + i [F - D2/411/2.(3
X3,4 = -2 D " (23)

Thus, if D > 0, the vertical motion is stable and if D < 0 it is unstable. In

practice, the plunge mode eigenvalues are calculated iteratively until the input

frequency w equals that obtained from the solution to equation (22). This formul-

ation is useful because the plunge moton is now described as that of a freely vi-

brating damped (or undamped) oscillator.

In order to verify this technique as a means of assessing the various parame-

ter influences on vehicle stability, the plunge mode eigenvalues as calculated

above are compared below to those given in Table 2 for the same four trunk flow

rates considered earlier.
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Simplified Model Eigenvalue Comparison

Approximate:
Wtr (lb/min) Equation (23) Exact (Table 2)

757 -1.8 ± 12.4i -2.1 ± 12.43i
758 6.55 ± 18.7i 4.81 ± 20.43i
840 3.15 ± 16.6i 3.23 ± 16.97i
950 -2.08 ± 9.8i -2.21 ± 9.8i

The agreement is good, indicating that the partial decoupling procedure used here

is valid. Use of this technique to analyze the cause of the unstable model behavior

is made in the following section.

3. Analysis of Model Stability Behavior

a. System equations

In this section, the observed stability behavior is explained in some detail,

first for the grossly destabilizing effect of first ground contact and then the

stabilizing influence of further increases in trunk flow rate. We start by con-

siderng the variational vertical force equation appearing in Table 1, which is

rewritten in the form (with the 6 's dropped)

-2.86

p 3L LVL3 + 15.2
2D pt [pto.Pt + '3 + AP DTt  + P c AP -Tc  (Y + Y

hL 3tco P[A to 9pc....... --------. 15.2

4.05 4.69-8.99
(24)

6.41
Yol - h LDl + h\Pt DL3 + AP 0

C APc-to- +  co a j
o rc---- 6.24
10.42 0 -14.02

Terms underlined with a sq,.T ;ly line are nonzero only after trunk/ground contact.

The magnitudes of the various partial derivative terms in L3 and Y are noted where

these terms appear in equation (24). Values above the corresponding term represent

17.



the case just prior to ground contact (Wtr = 757 lb/min), while those below refer

to just after ground contact (Wtr = 758 lb/min). The changes in the partial de-

rivatives reflect the direct sensitivity of L3 and Y to altitude following trunk/

ground contact.

The various terms in equation (24) describe the manner in which the net ver-

tical force on the vehicle changes due to small changes in the four states. The

term is due to direct damping as modeled in Reference 1; the damping force is pro-

portional to the area of trunk ground contact 20L 3 . Since L3 is essentially zero

just after ground contact, as well as before, this direct damping model has no in-

fluence on the system stability until L3 becomes appreciable, as it does for higher

trunk flow rates.

All of the terms, other than the direct damping, are related to the net press-

ure force on the vehicle and how this force changes as Pc' Pt, and h are varied

slightly. Physically, there are two distinct effects: (1) change in vertical

force due to changes in pressures; and (2) changes in vertical force due to charges

in the areas over which the pressures act. The latter of these is a result of the

alteration in trunk shape, with attendant area change, which accompanies a change

in pressure ratio, Pr and altitude ratio Zr* The former effect is what would be

observed if the trunk were completely rigid.

Pressure force changes due to area change dre governed by the partial deriva-

tive terms in equation (24). For example, prior to ground contact aYo/aPc = 6.41

in./psi. This indicates that if P, were increased slightly, the trunk would tend

to be pushed outward, thus increasing the distance Y to the horizontal tangency

point and, therefore, also increasing the cushion area (and net vertical force).

As another example, considering the influence of ground contact width L3, we see

that following ground contact aL3/aPt = 4.05 in./psi. Physically, as Pt is in-

creased slightly, the trunk is pushed inward and down, increasing the contact width

18.



and hence the area over which the trunk pressure Pt acts. The remaining partial

derivatives may be interpreted in an analogous fashion and all are physically

reasonable. The magnitudes of the various area change (i.e., partial derivative)

effects in equation (24) indicate that the sensitivity of trunk shape to trunk and

cushion pressures and altitude is very important in determination of the net press-

ure force characteristics.

Combining the various coefficients appearing in equation (24), the equation of

vertical motion for the cases before and after ground contact is given by

h + 6.109 P t 45.13 P = 0 (before contact)tc (25)

h - 9.06 P - 11.43 P + 52.5h = 0 (after contact)

The change in coefficients is due mainly to the appearance of the contact width

L3 effects of the ground contact and to a lesser extent the change in Y0 behavior.

These changes are not necessarily the cause of the unstable behavior and are viewed

at this point as merely indicating to what degree the trunk and cushion pressures

contribute to the net vertical force change. Note also that the net effect of the

altitude sensitivites of Y and L3 after contact is to stiffen the system and these

effects should result mainly in higher plunge mode frequency after ground contact.

To properly assess vehicle stability we must look at the variational forms of

the pressure equations. This will be done in much the same way as above and then

the vertical motion and pressures will be viewed as they interact together. We

first consider the variational equation for the trunk pressure, which from Table 1

is (with 6's dropped)
3.313 -5.14

[It + kto Ms I + [ kPto Ms]

t t so c
1.783 -1.742

_ .44 W . W 1.09 W 3.11kRT ) Pt[tr +a Wtco

tO- P L + to + P 2(Pt- Po (26)to trto to tooo
S3.11 + WrkP

2 (P to P)co AJso 5 h
5.30
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In this equation, terms involving equilibrium flow rates describe the variations

in At resulting from pressure variation and its effect on the various air flows

given in equations (7) - (10). For example, a slight increase in cushion pressure

P will decrease the trunk to cushion flow W tc which will cause P to rise (i.e.,

Pt > 0). Likewise, an increase in trunk pressure Pt will cause an increase in both

trunk to cushion and trunk to atmosphere flows Wtc and Wta which will, in turn,

cause Pt to drop (i.e., A t < 0). These effects are identical just before and just

after ground contact, so the instability cannot be attributed directly to them.

The terms in equation (26) which involve partial derivatives of trunk cross

sectional area A with respect to Ptf P and h arise from the rate of change of
s t C

volume effect in equation (1) (since Vt = 2D Ass Vt/Vt was replaced by A5/As in

this equation). This effect is a significant one and changes noticeably before

and after ground contact. Combining the coefficients in equation (26) results in

the following for the variational version of equation (1) (6 notation dropped) for

the cases before and after ground contact.

3.31 Pt - 5.14 P = -41.48 Pt + 26.08 P (before contact) (27)

1.783 P t 1.742 Pc -41.48 Pt + 26.08 Pc + 5.3w

(after contact)

The equation (2) defining cushion pressure rate of change Pc may be viewed in

a manner similar to the above. The variational form of this equation from Table 1 is

46.89 -20.65 62.4
[i k P  V lc I .+ kP co DV [kPco ")V (Pc v co cT C Pt IVc t  V co A (28)

20.7 -8.865 21.59

37.28 .455 -12o12-3---37.28 ..... . Wt .491 wt3.78

+kRT( t [I Wtco + Wtco Wcao o P tco + ___

+ (V I Pt+jP2(P - D P 1 c 2APco i co to- co go tco co

249.5 38;

_ cao a4 Wao
-2P,-P) Z 3P Th-C uT T -
to co go --- cJ go 20 1

0 202
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In equation (28), the trunk to cushion flow rate Wtco effect is similar to the

equilibrium flow effects in equation (26). For example, an increase in trunk

pressure Pt will increase the trunk to cushion flow rate, which will cause Pc

to increase (i.e., Pc > 0). Likewise, an increase in cushion pr:ssure will de-

crease Wtc , causing P c to be negative. The partial derivatives of cushion volume

Vc arise from the volume rate of change Vc /Vc term in equation (2). They are much

larger in magnitude than the corresponding terms in the trunk pressure equation (26)

because the cushion frontal area 2[Z (Ya + Y0) - A cv] increases much more rapidly

than does the trunk area As when a pressure variation occurs so as to push the

trunk outward (i.e., increase in Pc or decrease in Pt) .

A significant difference between the cushion and trunk pressure equations

is in the cushion to atmosphere flows W and W . Unlike the flows which govern
ca cu

trunk pressure rate of change, both of these flows are sensitive to altitude. In

addition, the cushion/atmosphere flow Wca is very sensitive to pressure change.

For example, an increase in cushion pressure will cause the trunk to be pushed

outward and upward, increasing the gap (Z gap) between the trunk and the ground,

in turii increasing the flow rate Wca; this will cause the cushion pressure to

drop (i.e., Pc < 0) much more quickly than would occur for a rigid trunk. An

increase in trunk pressure will cause a reduction in Z gap a reduction in Wca and,

hence, an increase in Pc (i.e., P> 0). For both of these flows, the influence of

pressure variations on the pressure portion of the flow rates will also appear, but

this effect is small compared to the altitude sensitivity. We further note that

the influence of pressure change on the cushion end flow Wcu variation is small

since, in the present model, the end elements are frozen and high enough off the

ground so that they never contact it. Thus, when the trunk-ground contact condi-

tion occurs, all of the numerically large terms inxeving the partial derivatives

of Z disappear, since W is then zero. Working out the coefficients in equa-gap ca

tion (28) before and after ground contact leads to
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-20.65 PPt + 46.89 PC 4318 Pt -9575 P + 62.4 w - 22049 h (before contact)

(29)

-8.86 Pt + 20.7 P c 133 P - 275.3 P + 21.6 w - 7531 h (after contact)

Here the gross difference between the two cases is clearly in evidence.

b. Stability assessment

Here we apply the "describing function" approach to obtain a qualitative de-

scription of the basic stability behavior before and after ground contact. This

is done through study of the phasing relationships which occur when a sinusoidal

vertical motion excites a sinusoidal steady state pressure response which, in turn,

is fed back into the vertical motion equation (25). There are two phase shifts of

interest in this analysis. The first occurs as in equation (19); i.e., a harmonic

vertical motion h = sin wt is amplified and phase shifted before its input to the

cushion pressure equation. If we write the right-hand side of equation (19) as Ks

sin wt + Kc cos wt = A sin (wt - i), then the input amplification A, = (Ks2 +

K c2)1/2 and the input phase shift 0I = tan -1 (-K c/Ks ). The I subscript indicates

input. A second amplification and phase shift occur as this input is fed through

the pressure system. The cushion and trunk pressure amplification and phase shift

are obtained from equations (20) and (21) as

Ao = 1/{ (A-(,
2
)
2 + (Tw)2 } o = tan - ("-T "

where the o subscript indicates pressure system output. The total phase shift,

i.e. the phase difference between the input motion h = sin wt and the output cush-

ion pressure will then be OT = 01 + 0o" Note that this result refers to cushion

pressure; the trunk pressure phase angle will be only slightly different.

To interpret the stability behavior using these phasing relations, consider

the effect of trunk and cushion pressures on the vertical motion as given by equa-

tions (25). It turns out that the amplitude and phase of P and Pt are about equal,
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so it is sufficient to consider the effect of only the cushion pressure PC' Equa-

tions (25) show that the plunge motion will be both statically and dynamically

stable if Pc as defined in equation (20) is proportional to -h and to -h. This

will ensure that the plunge motion damping and frequency terms D and F in equation

(22) both be positive. The stability may, therefore, be assessed directly from a

graph of the phase angle characteristics as sketched below:

sin ct (h)

input vertical

input to pressure ,

system :Z a, 0 - •cos Wt
oI \ T( h)

Outout P

The vehicle vertical motion h = sin wt is plotted along the vertical direction, and

vehicle velocity h along the horizontal direction, positive to the right. The in-

put to the cushion pressure equation and the resulting output are also shown sche-

matically. For static and dynamic stability the output P must lie in the third

quadrant.

Results of the phasing behavior for the cases before and after ground contact

are shown in Figure 5 with pertinent numerical values indicated at the top of the

Figure. The pressure system inputs are seen to be essentially the same in phase

and comparable in magnitude before and after ground contact. Both of these inputs

are dominated by the altitude sensitivity of the flows Wca and Wcu prior to ground

contact and Wcu after contact; these appear in the cushion pressure variational

equation (28). The other altitude and velocity effects in equation (26) and (28)

are relatively insignificant.
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Fiqure 5 - Pressure Phasing Relations Before and After Ground Contact
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The most noticeable difference occurs in the cushion pressure output; before

ground contact the cushion pressure output is phase shifted relative to the input

by only a small amount while, after ground contact, the phase shift is nearly 900,

and the amplification is also greater. The important result is that the output

cushion pressure ends up in the third quadrant of Figure 5 before ground contact

and in the fourth quadrant after contact. To see how this influences the stability,

note from equation (25) that for stability the net contributions from Pc and Pt

must be proportional to -h so that D > 0. This is the case if the output pressures

lie in quadrant III but not in quadrant IV, for which the pressure contributions

will be proportional to +h.

The reason for the phase shift differences may be seen clearly by considering

the cushion pressure response to be that of an overdamped mechanical oscillator

subjected to a simple harmonic input. Equation (19) is thus considered in the form

-222 5782

c- T P + APC = sin wt (30)

-41.3 370

Numbers listed above and below the T and A coefficients are for before and after

ground contact, respectively. Recall that T and A define the "pressure system;"

i.e., they represent completely the pressure response for the case of frozen ver-

tical motion. The real, negative eigenvalues which describe this response before

and after ground contact are as follows: before contact, we have A1,2 = -30, -212

while, after contact, X 1,2 = -13.2, -28.1. These results are only approximate since

they are calculated using the partial decoupling procedure involved in the "describing

function" analysis. However, the results of Table 2 indicate that these approximate

values are reasonably accurate. The critical damping ratios C associated with the

above system before and after ground contact are given by C = -T/2 4 D so that C =

1.46 before ground contact and 1.073 after ground contact. The large differences
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in the magnitudes of T and A before and after ground contact are a result of the

disappearance after contact of the cushion to atmosphere flow Wcal whose altitude

sensitivity prior to ground contact dominates the pressure system. Thus, filowing

ground contact, the pressure system is affected only by the trunk to cushion and

trunk to atmosphere flow pressure sensitivities. The effect of these characteristics

on output cushion pressure may be noted by inspection of the steady state solution

to equation (30),

sin (wt -tn 1 T
S TW 2 " tan- (-2)

Now, before ground contact, the product A of the real negative eigenvalues is very

large when compared to the square of the frequency w 12.4/sec of the vertical

oscillatory motion. Thus, the resulting motion is analogous to the forced response

of an overdamped oscillator subjected to a harmonic input whose frequency is well

below the undamped natural frequency of the oscillator. The attendant output phase

lag is relatively small. On the other hand, after ground contact occurs, the pro-

duct of negative, real eigenvalues A is very close in magnitude to the square of the

oscillator undamped natural frequency w 20/sec. Effectively, the oscillator is

being forced at a near resonant condition and the output phase lag will be close to

90'. This type of result will occur whenever the product of real eigenvalues is

close to the square of the frequency of vertical motion. It is important to note

here that the large, real eigenvalues characterizing the pressures before ground

contact are due almost entirely to the sensitivity of the cushion to atmosphere

flow Wca to altitude variation. When this effect is removed at ground contact,

the pressure response is considerably more sluggish. The W ca/altitude sensitivity

is in turn a result of the sensitivity of trunk geometry (specifically, the verti-

cal movement of the lowest point on the trunk) to changes in trunk and cushion

pressures. Thus, the importance of an accurate trunk shape model is evident.
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One would tend to infer from the above that the instability is a result of

changes in the "pressure system" which result in an effective resonant excitation

of the pressures with attendant large phase lag. However, if we look at the dy-

namic behavior which occurs when the trunk flow rate W, is increased, we see that

this is not really the case. Inspection of Table 2 shows that, at flow rates of

W 840 lb/min and 950 lb/min, the pressure system, as well as the input to thetr

system, have not changed very much when compared to the case Wtr = 758 lb/min.

Nevertheless, the stability characteristics are altered substantially. This appears

to be due largely to the shift in the cushion pressure sensitivity term a32 in the

vertical force equation, which changes sign as the flow rate is increased to 950 lb/min.

This is a result of combined decrease in the cushion width Y parameter and press-0

ure ratio P r' The result is that the cushion pressure force variation is dominated

by the area change (decrease) due to contact width L3 sensitivity to cushion press-

ure variation. In essence, at this operating condition, a small increase in cush-

ion pressure 6Pc actually results in a decrease in vertical pressure force. Thus,

although the pressure system output is not significantly different than for lower

trunk flow rates, the effect on the vertical motion is altered.

The above results indicate that the stability behavior involves a relatively

complex interaction of three things:

(1) the manner in which a simple harmonic altitude oscillation of the vehicle

serves to force the pressure system; for the present system and operating

conditions this input is dominated by the cushion to atmosphere flows W ca

and W
cu

(2) The pressure "system" itself, which governs the pressure response to a

given altitude input; the difference in response for the before/after

contact cases is a result of removal from the pressure system of the

pressure/altitude sensitivities to cushion/atmosphere flow Wca which

occurs at ground contact.

27.



(3) The manner in which the output pressures are converted to forces acting

on the vehicle; this is largely responsible for the gradual stabilizing

tendency of increased trunk flow rate as the cushion planform area sensi-

tivity overcomes the direct pressure sensitivity.

The above factors appear to govern the plunge mode stability. Isolation of

these factors, however, does not really uncover a physical source of the energy

increase which accompanies unstable motion. It seems that the present phenomenon

is similar to the classical self-excited vibration of systems excited by a uni-

directional energy source as occurs in flow-induced vibration and wheel shimmy,

for example. In this case, the Unidirectional energy source is the power required

to produce the input trunk flow W tr. Apparently, depending on system properties

as discussed previously, the vehicle motion may absorb energy from this input.

The system stability behavior may be changed by altering any or some of the

three characteristics described above. This is not necessarily a simple procedure,

since it may be difficult to alter the system in such a way as to affect only one

of the above properties. The effect of altering specific system properties on

vehicle stability, with emphasis on determining a way to eliminate or alleviate

the instability, is discussed in the following section. Then an assessment of the

adequacy of the present trunk geometry model is made.

Before going into these areas, a brief digression is made to show the influ-

ence of the damping model on stability. As noted in equation (3), the damping

force is proportional to the total area of trunk/ground contact 2DL3 with the pro-

portionality constant DMP = .24 lb sec/ft in the present study. We also note from

the variational form of the vertical motion equation, as given in Table 1, that the

damping term appears as a33 in the system matrices of Table 7, specifically

-2D
33 - M L3DMP
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Finally, note that in the describing function result given by equations (22) and

(23), this damping term a33 directly influences only the real part of the plunge

mode eigenvalue. In fact, equations (22) and (23) indicate that we may determine

the stability behavior which would occur without damping by simply adding -a331 2

to the real part which was obtained with damping included. A comparison of the

cases with and without damping included will show the importance of the damping

model in determining the overall stability behavior.

This comparison is shown in Figure 6 and is based on the original numerically

determined stability information generated by Boeing Co. As expected for flow rates

near first ground contact, Wtr 760 lb/min, the difference is slight because the

contact width L3 is very small. As Wtr increases toward 950 lb/min, the effect is

noticeable, although it is clear that the basic tendency of increased stability

with trunk flow rate occurs regardless of whether damping is retained in the system

equations. Thus, qualitatively the damping eifect is not of paramount importance.

c. Parameter change effects on stability

In order to further assess the stability behavior, the effects of altering

selected system parameters were investigated. This was done with the intent of

determining the degree to which the aforementioned three effects on stability

could be altered in such a way as to stabilize the vehicle.

(1) Effect of increased trunk flow coefficient.

It was noted previously that, mathematically, one reason for the unstable be-

havior following ground contact lay in the product of pressure system eigenvalues

being of comparable magnitudes to the product of the conjugate plunge mode eigen-

values, resulting in a near 90* phase shift between pressure system input and out-

put. One way to reduce this phase shift would be to alter system parameters so

that the pressure system response is much quicker (i.e., characterized by larger
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negative eigenvalues). Physically, this may be done by increasing the flow co-

efficients associated with the trunk to atmosphere and trunk to cushion flows Wta

and Wtc.

The effect of quicker pressure system response on stability following ground

contact was assessed as follows: the system operating point was first chosen to be

the same as before, and the flow coefficients CAta and CAtc were doubled. This

results in a required doubling of all flows, including Wtr and Wcu. The cushion

end flow Wcu was doubled in such a way that is altitude sensitivity Wcu/(h-hcu)

remained the same as in the nominal system.

Insofar as the system stability matrix is concerned, these changes have the

effect of doubling all terms in the pressure system submatrix [P], while leaving

everything else the same. The result is an approximate doubling of the pressure

system eigenvalues which causes changes in both the pressure system input and out-

put phasing (as well as amplitude). The overall effect on plunge mode stability

is a noticeable improvement; the plunge mode eigenvalues are X3,4 = 2.75 ± 18i, as

compared to A3,4 = 5.6 ± 20.8i for the original system. In terms of phasing the

change in pressure system shifts the input in a slightly destabilizing manner (i.e.,

increases 01) and the output in a stabilizing manner (i.e., decreases 00) such that

the total phase shift OT is reduced and the stability improved.

Physically, the required doubling of all flows would result in a considerable

increase in input power. This may represent an important design constraint. Never-

theless, the stabilizing tendency of quicker pressure system response appears sub-

stantial for this system.

(2) Effect of lowering operating pressure ratio.

Since the trunk geometry is very sensitive to pressure ratio Pr' calculations

were made for an equilibrium pressure ratio Pr = .3 (the nominal operating value is

Pr = .45) in order to deduce the dependence on Pr of the stability following ground
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contact. Physically, the lower Pr results in the trunk being moved downward and in-

ward and simultaneously moves the equilibrium altitude h upward. The operating

pressures were changed to Pc = 15.91 psi and Pt = 18.74 psi. The operating flows

at this pressure ratio are (in lb/sec) approximately Wtr = 20.12, Wtc = 12.88,

Wta = 7.24, Wcu = 12.88, and the equilibrium altitude h = 4.0267 ft (2.1 in higher

than when Pr = .45). The system equations which result are summarized in Table 3.

The various flow terms in the pressure equations are altered but not drastically.

The most notable difference is in the cushion end flow Wcu altitude sensitivity

effect, which is decreased in magnitude substantially. There are two reasons for

this:

(a) It was assumed that the trunk/cushion flow coefficient was

unchanged, so that Wtc changed according to the altered equil-

ibrium pressures Pc and Pt" Since at equilibrium following

ground contact Wcu = Wtc, the Wcu flow coefficient had to be

lowered to achieve this equality.

(b) The end cushion gap h-hcu is relatively much larger due to

upward movement of the equilibrium position. These effects

combine to reduce the ratio Wcu/(h-hcu) in the cushion press-

ure equation.

Application of the describing function approach for the case after ground

contact yields a plunge mode eigenvalue of A = 1.1 ± 14.4i, which indicates a

substantial improvement in vehicle stability. It is tempting to conclude that

operating pressure ratio has a substantial influence on vehicle stability. How-

ever, as discussed in the following subsection, the lowered W cu/altitude sensi-

tivity, which arose here as a requirement of altered equilibrium pressure ratio,

appears to be the dominant factor.
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(3) Effect of cushion end flow Wcu altitude sensitivity.

As a result of the behavior discussed in subsection 2 above, the influence of

cushion end flow Wcu characteristics on stability was next addressed. Physically,

this flow is necessary following ground contact in order that the cushion pressure

P c remain below the trunk pressure Pt" In the present system model, the trunk end

elements are modelea as rigid components whose lowermost point ih hcu from the cen-

ter of mass (hcu = 45.64 in nominally). The altitude sensitivity W /(h-h ) appear-
cu cu cu

ing in the cushion pressure equation, Table 1, is very large because of the small
gap h-hcu existing at equilibrium when the trunk first contacts the ground. This

sensitivity can be decreased without altering the net equilibrium flow (and, hence,

without alteriig any of the operating point parameters) by simultaneously decreasing

hcu and the flow coefficient in CAcu [following equation (10)]. This has the effect

of increasing the gap h-hcu while keeping the total flow area constant. Note that

the limiting cace W cu/(h-h cu) 4 0 is a physically reasonable one and represents a

direct venting of cushion to atmosphere through a constant area orifice (i.e.,

not under the end elements).

The effect of decreased cushion flow/altitude sensitivity was assessed para-

metrically by reducing the W cu/(h-h cu) coefficient by varying amounts, leaving all

other system parameters the same, and applying the describing function approach to

calculate the plunge mode eigenvalues following trunk/ground contact. The resulting

eigenvalues are shown in Figure 7 as a function of the factor K by which Wcu/(h-hcu)

was reduced. There is a substantial stabilizing tendency for Wtr 758 lb/min, i.e.

the first ground contdct condition. In fact, if the end cushion flow were replaced

by flow through a constant area orifice, the results for the three flow rates shown

indicate that the vehicle would be stable for all conditions following trunk/ground

contact.
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There are several reasons for this behavior. We note first that altering only

W cu/(h-h cu) by a certain factor K will alter the system matrix elements a14 and a24

by the same factor. Thus, the pressure system remains unchanged, but the input to
the system is altered. Since the W cu/(h-h cu) sensitivity dominates the pressure

system input, the resulting input is also reduced by K with approximately the same

phasing as originally. The reduction in input magnitude causes a like reduction in

pressure system output amplitude. Furthermore, these effects cause a noticeable

lowering in the plunge mode frequency, Figure 7. This, in turn, reduces the amount

of phase shift *o produced by the pressure system, since the square of the input

frequency w2 is then less than the product of eigenvalues of the pressure system;

i.e, the system is being forced below its "resonant frequency." The combined re-

duction in phase shift and pressure output magnitudes, when put into equation (22)

for vertical motion, result in a substantial improvement in stability. Similar

trends are noted for the increased trunk flow of Wtr = 840 lb/min. For the case

Wtr = 950 lb/min, there appears to be little effect of the Wcu/altitude sensitivity

since, for these higher flow rates, the other system parameters have changed enough

to alter the stability on their own.

The above discussion indicates that the dominant destabilizing influence for

operation after first ground contact is the presence of the large cushion flow-

altitude sensitivity, combined with the disappearance of the various sensitivities

associated with the cushion-atmosphere flow Wca. The latter causes a gross change

in the pressure system, which then responds much differently to the input due to

cushion flow W
cu

Of course, the validity of the above analysis and discussion rests on the

validity of the trunk geometry model used. Assuming the trunk model to be valid,

the calculated stability behavior appears reasonable and explainable.
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(4) Effect of frozen trunk model.

The previous results indicate that trunk shape sensitivity to trunk and cushion

pressure variations is significant. For the cylindrical inelastic trunk model con-

sidered, the trunk moves in and out (also up and down) substantially during the

plunge motion of the vehicle. For an actual single piece trunk, however, some

restraint of this trunk motion will be provided by the trunk assembly curvature

(in the horizontal plane), which is accompanied by a restraining tension in the

horizontal plane. For example, in the limiting case of a toroidal or doughnut-

shaped trunk, this horizontal tension would provide a significant restraining in-

fluence on trunk shape change. In fact, if the trunk material were truly inelastic,

trunk outward movement (as occurs in the present model, for instance, when cushion

pressure increases) would be difficult since such movement would have to be accom-

panied by stretching of the trunk. Thus, the trunk shape characteristics exhibited

by a doughnut-shaped trunk might be expected to be more like those of the Boeing

frozen trunk model than like those of the inelastic membrane model.

A preliminary assessment of the effect on stability of such trunk shape change

restraint was made by calculating the stability characteristics using the frozen

trunk geometry model developed by Boeing (Ref. 1). A second reason for making

calculations for a different type of trunk model was to determine whether the pre-

viously noted destabilizing tendency of the cushion end flow Wcu/altitude sensi-

tivity appears to be a general characteristic of air cushion landing systems or is

peculiar to the particular inelastic membrane model considered.

The key feature of the frozen trunk model relative to the membrane model is

that the trunk shape no longer depends on trunk and cushion pressures. Thus, in

the variational stability equations given in Table 1, all partial derivatives with

respect to P c and P t are deleted; the geometry parameters are calculated using the

free shape model with pressure ratio P = 0. For this frozen trunk model, the sta-

r
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bility behavior in the neighborhood of first ground contact was determined for sys-

tem parameters and operating conditions closely approximating those used in the in-

elastic membrane model analysis: all system flows were chosen to be the same as

those previously used at first ground contact. Then, the geometric parameter 'a

was increased to 4.76 in. in order to keep the equilibrium cushion volume V the

same as before (and to prevent the two trunk elements from "passing through" each

other). This resulted in an increase in equilibrium cushion pressure to PC = 16.063

psi and in equilibrium altitude to h = 4.193 ft. with trunk pressure Pt unchanged.

The cushion end flow W cu/altitude sensitivity was then made to be the same as before,

as were all other parameters.

For this system and operating point the partial derivatives with respect to

altitude required to determine the stability matrix were calculated for the cases

just before and just after ground contact. Since all partial derivatives with re-

spect to cushion and trunk pressure are zero for the frozen trunk, the stability

matrix was altered substantially when compared to the unrestrained model case. The

resulting stability matrix is shown below for the case preceding ground contact; the

two coefficients a24 and a34 shown in parentheses represent the only changes which

occur following ground contact.

-30.8 17 0 0

(-9576)
101.2 -226.2 46.6 -24076

[A] =(3041)

0 -23.6 0 0

0 0 -1 0

Of note is that the pressure system portion of this matrix (upper left hand 2 x 2

submatrix) is the same before and after ground contact. The changes in [A] are due

to (1) cutoff of the cushion to atmosphere flow Wca' which reduces the input a24 to

the pressure system, and (2) the altitude dependence of the geometric parameters Y0
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and L3 following ground contact (a3 4), which stiffens the plunge mode motion. The

four system eigenvalues resulting before and after ground contact are given below:

Before Contact After Contact

A = - 239.7 A, = -234.1
A2  = - 28.8 A2 = -24.2
A3,4 = 5.76 ± 50.3i A3,4 = .65 ± 63.6i

These results show predicted behavior which is much different than Lhat cal-

culated for the inelastic trunk model. In this case instability is predicted both

before and after ground contact. Moreover, the plunge motion is predicted to be

less unstable following ground contact, which is opposite the trend occurring for

the inelastic model. In assessing the cause of this behavior, we first note that

the pressure system eigenvalues A1 and A2 are close to those obtained for the in-

elastic model prior to ground contact (Table 2). Thus, the "mechanical oscillator"

used to represent the pressure system is roughly the same as for that case (for

which the plunge motion was stable). However, the oscillator used to represent

the vehicle plunge motion is now much stiffer due to restraint of trunk shape change.

This results in a near resonant condition in the pressure system when a harmonic

plunge motion is input. Furthermore, the magnitude of input to the pressure system

is much larger for the frozen model, e.g. compare magnitudes of a24 for the frozen

and unrestrained trunks. It, therefore, appears that the predicted unstable behavior

of the frozen trunk results primarily from the substantial stiffening caused by

trunk restraint. This is distinctly different than the unstable behavior of the

unrestrained model following ground contact, which is due mainly to changes in the

pressure system behavior.

In order to assess the influence on stability of the cushion end flow W cu/alti-

tude sensitivity, plunge mode eigenvalues were calculated for the frozen trunk model

following ground contact with Wcu/(h-h cu) = 0, which represents direct cushion to
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atmosphere throttling. In this case, the plunge mode eigenvalues were X3,4 -2.3

± 56i. This shows that the end cushion to atmosphere flow sensitivity to altitude

is destabilizing, the same trend exhibited by the unrestrained model. The reason

for this tendency for the frozen trunk is that, although the pressure system is

still operating in a near resonant conditon, the input to the system has been

shifted substantially and is much weaker. The phasing relations following ground

contact are shown below for both the nominal W cu/(h-h cu) and for W cu/(h-h) = 0:

SWcu/(h-h cu) = 0 si t

NOT TO SCALE
Wcu/ -cu)'=n .

PLUNGE MOTION

ii 
J nCost

in ~- out

(stable) (unstable)

out

Calculations similar to the above for the case just prior to ground contact and

with no cushion end flow/altitude sensitivity yielded plunge mode eigenvalues of

X3,4 = 2.6 ± 40i. This represents a noticeable reduction in the degree of insta-

bility and, although physically unrealistic, does indicate the degree to which the

stability is influenced by the end cushion to atmosphere flow.

Thus, the implication of these results is that the plunge mode stability will

be improved if the altitude sensitivity of cushion end flow can be minimized or

eliminated.
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" V

SECTION III

MODEL VALIDITY ASSESSMENT

1. Model Limit Cycle Behavior

All preceding discussion applies to infinitesimal motion as governed by the

linearized versions of equations (1) - (4). In order to verify these results and

to assess the influence of system nonlinearities on the response, equations (1)-(4)

were integrated numerically for several operating conditions. It was anticipated

that I it cycles would occur for operation near an unstable equilibrium condition.

An important objective of the numerical work was to determine whether the amplitude

of such limit cycles would follow the same trends as those outlined in Section 11.3.6,

"Parameter Change Effects on Stability." For example, consider operation at a trunk

flow rate Wtr slightly greater than that associated with first ground contact, for

which the original model was highly unstable. Now, by decreasing the cushion end

flow Wcu altitude sensitivity, the linear stability is improved (Figure 7), and it

might be expected that the associated limit cycle would be less violent than that

occurring for the original system. This behavior was checked by simulating the

motion at a trunk flow rate Wtr = 770 lb/min for both the original end cushion

flow/altitude sensitivity W cu/(h-h cu) 200 lb/ft-sec and for W cu/(h-h cu) reduced

by a factor of five. These results are shown in Figures 8 and 9, in which are

plotted the histories of altitude h, trunk pressure Pt, and cushion pressure Pc

for these two cases. In each case a limit cycle is approached in the first three

seconds of the simulation. The factor of five reduction in W cu/(h-h cu) results in

a vehicle motion h amplitude of about 40% that occurring for the original system.

Even larger reductions are noted in the pressure amplitudes. Thus, qualitatively,

both linear stability and nonlinear behavior are improved by the reduction in

cushion end flow/altitude sensitivity.
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There are several features exhibited in Figures 8 and 9 which are consistent

with the linearized results. For instance, the frequency of limit cycle motion is

essentially the same as that given by the plunge mode eigenvalue: for the nominal

case Wcu/(h-hcu) t 200 lb/ft-sec the limit cycle frequency obtained from the simu-

lation is approximately 17.8/sec, while for W cu/(h-h cu) reduced by a factor of five,

the limit cycle frequency is approximately 13/sec. These values are in good agree-

ment with the linearized results shown in Figure 7 for W = 757 lb/min. The impli-

cation is that system stiffness properties remain essentially linear during large

amplitude motion.

A second feature of the limit cycle behavior which is similar to that predicted

by the linear analysis is that the cushion and trunk pressure amplitudes and phasings

are about the same. The describing function results given by equations (20) and (21)

exhibit tnis behavior for most of the cases considered in this study. in addition

to this feature, the reduction in the ratio of pressure to altitude amplitudes which

occurs when Wcu/(h-hcu) is reduced is consistent with the describing function inter-

pretation that a reduction in W cu/(h-h cu) results in a reduction in input to (and

hence output from) the pressure system.

Additional simulation results are shown in Figures 10 and 11 for a trunk flow

rate Wtr = 840 lb/min. Figure 10 represents the nominal system, while the results

shown in Figure 11 represent a factor of four reduction in W cu/(h-h cu). In the

latter case the limit cycle amplitude is about half that predicted for the nominal

system. The qL itive features of the motion and pressure response at this flow

rate are consistent ith the linear results, as in the case Wtr = 770 lb/min.

The behavior at this trunk flow is more violent than at the lower flow rate

of 770 lb/min. The reason for this appears to be the influence of altitude on

system damping. Presumably, energy is fed to the motion when the altitude is near

its unstable equilibrium value and dissipated at altitudes away from equilibrium,
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so that on the average the energy change per cycle is zero. It appears that when

the equilibrium conditions are close to a stability boundary (e.g., at 770 lb/min),

less altitude oscillation is needed to provide a cycle by cycle energy balance than

when equilibrum is not near a stability boundary (e.g., at 840 lb/min).

A simulation was also made for trunk flow Wtr = 950 lb/min and in this case

a slight deviation from equilibrium was damped out, in agreement with the linear

stability results. We note that a limit cycle could probably be induced in this

case even though equilibrium is stable. For initial conditions which deviate sub-

stantially from equilibrium a large amplitude limit cycle may be possible. From a

practical standpoint, however, limit cycles would be most likely to occur for un-

stable equilibrium conditions.

2. Trunk Model

Several aspects of the trunk model were assessed, since the dynamic behavior

is sensitive to the dependence of trunk geometry on pressure and altitude.

a. Trunk Inertia

The trunk geometry model was developed based on a static force balance (Ref-

erence 1). As the vehicle undergoes plunge motion, the trunk moves in and out in

response to the pressure variations which accompany the motion. Thus, if trunk

inertia is appreciable the trunk geometry existing during the motion will differ

from that predicted statically. The importance .f this effect was assessed by

calculating the approximate frequency of a semi-circular trunk element under in-

ternal pressure as shown schematically below (the lowest mode displaced shape for

an inelastic trunk is also shown):

T T
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Using mass and geometric properties of the Jindivik trunk (density of 1 lb/yd
2)

and the approximate frequency relation w (T/p) /r, the natural frequency should

be in excess of 200-250 rad/sec. Since the plunge mode frequency is substantially

less than this, the trunk response will be essentially static, and trunk inertia

effects on vehicle response will be slight. This is especially true for the un-

restrained trunk, whose frequency is w < 20 rad/sec. Even for a trunk which is

restrained and therefore exhibits a nigher plunge frequency (e.g., the frozen model

where 6 - 50-60 rad/sec), the importance of inertia effects should still be slight

for the vehicle/cushion system considered here.

If the plunge mode and trunk natural frequencies were comparable, the resulting

trunk shape response would lag that calculated statically, and this in turn would

cause a change in the pressure system response, particularly the phasing of the

pressure system output. Rigorous modeling of the associated effect on vehicle sta-

bility would be difficult, because the lowest trunk mode damping would have to be

determined; practically, this could be best estimated through testing.

b. Trunk Curvature

The model analyzed in this study consisted of four trunk elements which were

physically isolated from each other: the two unrestrained side elements And the

frozen end elements (isolated elements are also a characteristic of the general

trunk model described in Reference 1.) This type of model should work reasonably

well if the side elements are long relative to the end ones. Nevertheless, for a

single piece trunk the curvature (in horizontal place) at the "corners" will pro-

vide some restraint due to the tensile forces developed in the horizontal plane.

Whether or not this would tend to destabilize the vehicle would depend primarily

on the relative changes in plunge frequency and pressure system response, as dis-

cussed previously in comparing the unrestrained and frozen models. Since for the
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system analyzed the stability appears better if the side and end elements are truly

isolated, the po~zibility of designing a trunk to exhibit this behavior should be

considered.

c. Other Effects

Several effects not included in the present model may be of importance and

are noted here. First, the flow areas for trunk to cushion and trunk to atmosphere

flows will change as the trunk comes into ground contact and a portion of the per-

forations are blocked. In the model studied here these flow areas were assumed

constant. Changes in these flow areas with altitude will alter the manner in which

the operating point (h,PcPt) varies with trunk flow W tr after ground contact. How-

ever, the destabilizing tendency occurring at first ground contact in the present

model should also appear with a variable flow area model, since the blocked area

at first trunk-ground contact would be very small.

A second effect not included in the present model was the interaction of trunk

pressure and fan performance. Such interaction has been noted experimentally by

Leland, et al (Reference 3). A result of such interaction would be a variable

trunk flow, Wtr = Wtr(Pt). This would alter the pressure system portion of the

variation equations given in Table 1. Qualitatively the result would be a quicker

pressure response; a slight increase 6Pt would cause a small decrease 6Wtr, which

in turn would contribute to a negative 6Pt. Thus, for the model analyzed the sta-

bility would be expected to improve slightly.

3. Effect of Pitch Motion

In the present study no attempt was made to include vehicle motions other than

vertical translation. The intent of the present section is to point out that ve-

hicle pitch will result in coupled motion/pressure characteristics which differ

from those exhibited in the plunge mode. For example, consider a vehicle undergoing

pitch motion with the c.g. fixed, as sketched below.
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h constant

I.-.. ground contact

The flow area between trunk and ground (which passes Wca) will be constant during

the pitching motion provided that no trunk/ground contact occurs. In this case

the air flows will have no sensitivity to the motion, and small pitch deflections

about equilibrium would be neutrally stable, since there is no "spring" in the

system.

On the other hand, if ground contact were to occur over a portion of the trunk

during the motion, then the cushion to atmosphere flow would be decreased, resulting

in a motion induced input to the pressure system. Furthermore, this area decrease

would occur twice during a single cycle of pitch, so that the motion induced input

to the pressure system would be at a frequency which is twice the pitch frequency.

The pressure response would also be at twice the pitch frequency. A limit cycle

would be expected to occur, since the trunk/ground contact moment would restrain

the motion. This type of behavior has been observed by Leland, et al (Reference 3)

in their testing of a scale model of the CC-115 aircraft. Analytical study of

this phenomenon would be complicated by the fact that the trunk/ground contact

properties would be nonuniform along the trunk section.
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SECTION IV

CONCLUSIONS

The vehicle/ACLS model studied is stable for operation with no trunk-ground

contact and unstable for a range of operating conditions for which no trunk-ground

contact occurs. The destabilizing influence of first trunk-ground contact is due,

on the one hand, to the cut-off of air flow beneath the side elements and, on the

other, to the strong altitude sensitivity of the remaining flow beneath the frozen

end elements. These effects combine to cause a substantial change in the trunk and

cushion pressure responses and hence in the vertical forces on the vehicle. The

effect is configuration dependent and sensitive to the trunk geometry variation

with pressure and altitude.

For this model the instability could be eliminated by ensuring that ground con-

tact of both side and end elements occurs simultaneously, and by also venting the

cushion directly to the atmosphere through a constant area orifice. The destabili-

zing effect predicted for the orginal model is physically reasonable and is similar

to the classical self-excited vibration phenomenon, with the power required to drive

the input flow Wtr as the source of energy.

The analytical approach used to study the stability behavior appears to pro-

vide a useful tool for design of systems of this type so that acceptable stability

behavior is achieved.
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SECTION V

RECOMMENDATIONS

For the inelastic model considered, the trunk and cushion pressures signifi-

cantly influence the trunk shape and hence the nature of forces acting on the ve-

hicle. For an actual trunk, and especially for one which may be unlike the present

model, measurement of these trunk shape characteristics would be useful in assessing

the validity of the trunk model used. For instance, static experimental determina-

tion of the dependence of ZO,Yo, and L3 on pressure ratio (Pc-Pa)/(Pt-Pa) for cases

with and without ground contact would enable the validity of a trunk shape model to

be assessed. Measurement of the free vibrational characteristics of the lowest mode

of trunk oscillation would also enable the importance of trunk inertia to be deter-

mined.

The possibility of improving stability behavior through feedback control may

be of interest. For instance, if the cushion were vented directly to atmosphere,

a variable orifice area could be used to vary the cushion to atmosphere flow so

as to augment stability (this possibility is suggested because of its relative

simplicity).
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