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A LINEAR PROGRAMMING MODEL FOR DESIGN OF
COMMUNICATIONS NETWORKS WITH
TIME VYARYING PROBABILISTIC DEMANDS

K O Kortanck. 1D N Lee. GG Polak

Depariment of Mathemaies
Carnegie-Mellon Universiy
Pittsburgh, Pennsvivaniu

J ABSTRACT }7“

b paper” argial msesiment costs are assumed known tor two kinds
ob cquipment stacks emiptoved 1o supply telecommunmicaions services tiunks
and switchimg tacthies. A network hyerarchy s detined which includes impor-
LNt cases ocourring m the ficld and also appearmg in the hterature A difYerent .
use o the classica! concept of the muarginal capacity of an addinonal trunk at ) ’2 )S 1n L‘ 4
preserthed blocking probabihts leads 1o o lincar programpung supply model L -
which wan be used tor compute the sizes ol all the high usage trunk groups G/?é} 4 ﬁ '
The sizes of the remaanmy trunk groups are approvimated by the lincar pro- . ) .
pramnung models. but can be determuned more gecurately by alternaie - :
methods once all ligh usage eroup sizes are computed. Fhe approach applies to o
Larger saale nenworks than presioush reported i the hierature and perniis

i

direcr apphicaaen of the duahty theory of lincar programmonng and s sensitivity

t
Aanadvses o the study and design of switched probabilistie communications net- / ; K
works with multple busy hours during the day Numerical resulis are presented ! ' 2

| ;

tor two examples based an hield dati one of which having been designed by

the mulb-hour engineering nmhnd/
1. INTRODUCTION: A DESIGN SYNTHESIS PROBLEM

In this paper we treat telecommunications networks where customer demands tor service
are specitied probabilistically between pairs of junctions according 1o different hours of the day.
Telephone traflic may flow over o direct route which joins two distinet junctions or over an
alternate route which is detined in prespecitied network routing hierarchy.  Networks which per-
mit alternat: routing of traffic are termed swirchied because switching operations are required to
alternately route a call. The network routing hicrarchy permits traflic which is blocked on a
direct route to be switched through other junctions. The switching process tends 1o smooth out
the peaks of traflic loads which accur throughout the network at different times of the day.
Consequently. Tess equipment may be required to service the overall traflic load on the network
than for a sinilar network without alternate routings.

An example of a network routing hicrarchy is given below in Figure 1. It consists of junc-
tions 1 through // and two different kinds of links joining certain pairs of junctions. A fink is
merely a dimensionless entity whose existence indicates that telephone calls, collectively termed
rraftrc, may How in either direction between the two junclions which it joins, without involving
any other junction than these two, A dashed line designates 4 direct link while a sohd line
designates a final link. 1 there is a direct link between a call-origination junction and a
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call-destination junction, then a telephone connection is tirst attempted on this link, the first
choice route. Should the first choice connection fail, then an attempt is made 10 alternately
route the call by way of final links, and in this case the traflic is referred to as overflow rrafhe.
Arrows i Figure 1indicate the overflow routing scheme.  In case no direct link exists between
a call onigin and destination, then the call is also routed along the final links. Should a connec-
ton on final routes fail. we say that the calt is "lost,” and the caller must try to place the call
again.

7’
’
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~
~. - e
- ~
\\ -
~ - -
—

~o

bt ks 10 A network hierachy with direel ( — — — — ) and final { ———)
links where overtlow from a direct hnk onto a tinal link s indicated by an arrow

The basic problem attacked in this paper is one of design synthesis: solve for least-cost
equipment changes in a given network routing hierarchy which are sufficient to meet altered
point-to-point customer demands for service during different times of day to within a prescribed
blocking probability. The emphasis is on the provision of a telecommunications service by an
optimal use of available equipment. The model we develop includes a probabilistic specification
of customer demand by time of day and includes alternate routings, where each direct link has
a uniquely specified aliernate route in the hierarchy. It is a nonlinear integer program P, which
takes as a basic "unit” of equipment the concept of a "trunk.” The terminology requires
elucidation.

In this paper a rrunk shall merely refer to a channel which is required in order for a tele-
phone call o transpire between two junctions in cither direction. As such, it is a dimensionless
quantity. The call carrying capucity of a trunk depends on the probabilistic mechanism underly-
ing customer calling patterns. For example, during a fixed hour a trunk could carry 60 one-
minute serially placed telephone calls. Under this discipline the total carried load during the
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hour is 3600 call-seconds, denoted 36 COS. Baxpressed another win . we observe that the proba-
bibty of a call bemg blocked is zcro. On the other hand should o demand tor 60 one-mmute
calls occur simultancoushy . then the offered oad s still 36 CCS. but only 0.6 CCS s actually
carried.  The blocking probability 1s now 39760

Acollection of trunks joining two distinet junctions is merely refereed 1o as a trunh 2roup
IS convenient to view a link as a trunk group. According 1o network engineermg principles. it
has been customary to assume that customer origimated calls are generated by Poisson process
and are assigned sequentiadly to o trunk groups These assumptions vicld an important properiy
which s fundamental to our development of a good lincar programnmiung approvnation to the
nonbinear integer program . namely. that the carried lToad on the fast trunk s monotonically
decreasing with the number of trunks, see Messerh [13]0 The necessary results upon which the
hinear programmung construction is based are proved in the Appendin

['he nonhinear and Tincar supply models of this paper employ certam concepls ol unit costs
with respect to both trunking and switching. The defimtion of "cost™ shall be himated 1o the
incremental investment cost of providing a trunk on the direct route between two junctions and
the incremental investment cost ol providing a trunk along the unigucly specilied abiernate
route connecting these two junctions.  In addition. we shall include unit switching ivestment
costs per CCS as a crude approximation for switching imvestments stemming from switchimg
calls from one trunk group to another.

Finally, we present linear programming solutions for two network hierarchies occurring in
the field, one of which has been designed using nonlinear steepest descent methods, sce Lisen-
berg (S| and Elsner 161 This section also contains a user’s guide for implementation of the
model

2. APPROACHES TO DETERMINE TRUNKING AND SWITCHING REQUIREMENTS
TO MEET DEMAND FOR SERVICE
Over the past 30 vears it appears that there have been at least two baste approaches to the
design synthesis problem discussed in the previous section.

The basic thrust of our paper proceeds according 1o what we term the fost approach to the
design problemy. Tt incorporates specific probability distributions for cach parcel of traflic, where
a parcel is merely that portion of traftic which follows specilic routes in the network. Ditterent
parcels experience different blocking probabilities, even on the very same trunk group. For
example. o given trunk group may accommodate customer originated traflic governed by the
Paisson probabilin distribution. and the group may also accomodate overflow traftic which is
“peaked.” i the sense that the mean of the distribution is Tess than its variance.  Tnvestigations
of the blocking probabilitics of individual parcels have been mude by Witkinson {2010 Katz 1121,
and more recentiy by Deschamps (4]

The pionecring work representing a probabilistic approach which has had widespread use
throughout the telecommunications industry is the 1954 paper by Truitt [19]). The generally
accepted name of the method reflects the fact that economic considerations are also part of the
analysis. The method is termed the "ECCS-method,” where the letter "E" stands for
"economic.” The method was introduced by Truitt for the simplest of routing hicrarchies con-
sisting of a triad of junctions with one overflow possibility, and one specific time of day (single
hour). The solved-for variables are the specific sizes of all trunk groups.

Further important extensions ol the ECCS-method occurred in three directions. brst,
more accurate refinements of the overflow distributions themselves were made following the
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“equivatent random method” of Wilkinson [20]. Sccond. more complicated network hierarchies
were introduced. see for example Rapp [15].0 The third advance involved mcorporating irattic
overflows and constraints on blocking probabilities for more than one tme of day in the same
cost mininnzation model. see Rapp 1131 and Fisenberg {51 Tt appears that 1t 18 necessary (o
consider overflow trattic for muluple tmes of day i order o determme trunk group sizes
which meet stated blocking probability constramts.  In addition. networks bused on hield data
hase been reported in Fisenberg 151 and Blsner {6] where potential cost savings may be realized
by icorporating multipie times ol day

I'he second maror approach to deternine levels of elecommunications equipment appeared
in the 1936 paper of Kalaba and Juncosa P Thei= approach is based on a lmear program-
nmimg model for a clussical routing problem having vaoaosle hink capactties. and as such s a large
saafe one Several contrasts to the first approach tembodied in the ECCS method)  are
apparent.

First. the parcels of tratlic i the Kalaba-Juncosa model are deterministic. Traflic originat-
e ol junction 7 and lerminating at junction 7 is a given constant, «,. Scecond. demands are
specified for cach year tor other relevant time period) . in contrast to a specification tor multiple
“hours” within a fixed time period. Consequently. link capacities may be specified tor ensuing
tuture periods, but the impact of multiple busy periods within a given period has not been
maodeled.

In spite of severe deterministic assumptions. the pioneering lincar programming model of
Tuncosa and Kalaba can theoretically accommodate atl conceivable routing possibilities. for their
traflic variables are indesed by an origin-destination point pair and also an intermediate switch-
mg point, over all possible triads.

About S years after the Juncosa-Kalaba paper, a series of papers written by Gomory and
Hu on communication network flows appeared in the SIAM Journal [8], [9], [10]. Their work
occuried over a d-vear period and expanded significantly the size of the linear programming
network models that could be treated computationally. They were able to combine features of
generalized  linear  programming  decomposition  techniques  with  efficient  Ford-Fulkerson
methods for solving network subproblems. Gomory and Hu also stressed the importance of
including communications demands indexed by time, such as time of day, . They proceeded
under the reasonable assumption that the time variable assumes only a finite number of values.
Alternatively, one could employ a continuous load curve with time-of-day varying demand.

Gomeory and Hu dlustrated thair computational approach on a 10-node. 20-arc network
with demands for two different ume periods, and a given set ol unit capacity texpansion) costs.

Based on discussions with engineers in the ficld. principally from the Long  Lines Com-
pany of AT & T, we have found that both approaches have had significant impact in the actual
design of telecommunications networks. The completely deterministic approach (the second
approach) has been particularly important in delineating tirst choice, second choice. ete. alter-
nate routes hetween pairs of Junctions to be used in detining a network hierarchy. Once a net-
work hicrarchy is established. cconomies of scale are then achievable according 1o optimal use
of the underlying probabslity distributions of originating and alternately routed customer traflic

A\ convemient charactertization of a4 network hicrarchy, very usetful to our approach. is
introduced i the next section,
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3. CHARACTERIZATION OF A NETWORK HIFERARCHY
3.1. The Hierarchy Matrix

Guven a network hicrarchy such as Figure [0 let us list the junctions, termed pomrs. as
Prop oL, where g ois apositive integer. By a calfing parr we shall mean an ordered pair of
distinet points (w.h)."a ™ being referred to as origm and "B as destination.

In Section | we detined what is meant by direct and final links. Any two distinet points
may or may not be joined by a link, but no two points can be joined by both a direct and a final
link. Each link may carry traflic tor cach of its two calling pairs. since traflic may flow in ecither
direction between the two points 1t joins.  For any calling pair ta.h) we assume that a call can
be routed via a unigque sequence ol final links, which we shall term the final rounng of the catlling
pan ta.bhy,

Let us list the set of final links by the positive integers. J = 1, 2, ... K. We dist the sel
of calting pairs also by positive integers. i = 1. 2, ..., N, where Ny = ¢lg = 1) is the total
number of calling pairs in the network.

For purposes of algebraic representation we display final routing as a matrix which has a
row for cach calling pair + and a column corresponding to cach final link. /. We term this
matrix the ferarciy marrix, denoted [ ;1. and specify the entry in the i-th row and J-th column
to be a nonnegative integer defined as follows:

the integer-valued position of the J-th final link in the final routing of
(h m., = fealling pair « if final J belongs to this sequence

0. otherwise.

Observe that the row indices of the nonzero entries in the J-th column represent all the calling
pairs which utilize tinal J in the final routing of calls. We denote the set of these nonzero
indices 1.

A certain subset of the calling pairs may also be served by direct links, such as the ones
drawn as dashed lines in Figure 1. These calling pairs are known as Aigh wsage calling patrs, and
the direct links as high usage links. The case where there are no high usage links nuy be
treated without loss of generality as one with high usage links having 0 number of trunks. bach
high usage link provides a direct. first choice route exclusively for traftic between its endpoints.
in both directions, while the remaining nonhigh usage calling pairs rely solely on final routing.
Overflow traffic from a high usage calling pair shall merely follow the uniquely specified tinal
routing for the pair.

Fach high usage link s associated with two high usage calling pairs, cach with the same
points. but oppositely ordered. Thus, if there are M number of high usage finks. there are 24
number of high usage calling pairs. and 2.3 is an even integer. Observe also that N, as the
product of an odd and an cven integer, is itself an cven integer. and so for some integer
NN = 2N

This discussion  suggests  relabelling  the calling  pairs using  the integers — N\, oL

2. L E 20 00N Forinstance, | and -1 represent pairs of the same two points, but with
opposite ordering. meaning the opposite direction for traffic. Let us further specity that the
integers Moo 110 MWoare reserved for high usage pairs. Since existence of final
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Links is assumed and no calling pair is jomed by both o direct and a final hink. 1t follows that
Vo< N Moreover. s o nonhigh usage calling par it and ondy it il > AL

Consider Frgure 1 for the purposes of illustration. There are 8 nodes, so there are 8(8

Vo= 56 calling pars. Thus N = 3072 = 280 There are 7 tinal hinks, and 8 high usage hinks.
henee 16 high usage pairs, labelled &0 70 000 10120 000 8 The renining calling
panrs. labelled 280 0000 9090 00 28 are serviced only by final routing. A portion of the

hicrarchy matriy s given i Labte T The tull matniy has 56 rows. and 7 columns.

LABLE 10 Porton of the Hierarcty Muartrix of Figure |

—

; Final Link and Its Integer Index 4
Tb Calling Pair AB T\ ACTAD TBE [ Ccr ]G | o
; and s Integer — e - —
‘ Indey R 3 4 N 6 7
S A T TR T
‘ A i . :
UGB 33 ]2 0 oo 0
B -2 3 2 0 0 | 0 0
of. 1) { 2 0 0 1 0 0 0
(WA | k | ¢ 0 2 () 0 0
(B.F) 2 1 2 0 0 3 0 0
(B.() 3 1 2 0 (} 0 3 0
‘ t1r) 9 0] l 1 () 0 2 0 L
By labelling the high usage hinks by the integers 10000 Mowe can have link 7 correspond
o the high usage pairs fand </ We then relabel the final links as M+ 1 000 M+ AL and

relabel the rows and columns of the ierarchy matrin in the same manner as we did the calling
pairs and tinal links, respectivels . Thus, N orefers to the first row in the matrix, and (M + 1)
the first column. but this departure from orthodox notation is compensated for by added con-
venienee. Inpractice itis only a matter of defining two label vectors.

To summuarize the listings, when we write "link (or trunk group) L." "high usage link /",
and “final link J" it shall be understood that L € {1, ... M+ K}, I €{l. ..., M}.and J €
IM + 1, ..., M+ K} respectively. Similarly for "calling pair j" and "high usage calling pair
ityef=N =10 Nand € (=M. ... =11, ..., M) respectively.

3.2, Classifving Point-to-Point Offered Loads

For cach calling pair y there is a nonnegative demand for trafhic denoted . termed or-
gmatig traffic Trathic is usually stated in units of erlangs, or in hundred call-seconds per hour
[CCSTE as discussed in Section 1.

Lot/ be afined final link. Traftic parcels offered 1o J consist of two types: overflow traftic
from high usage calling pairs, and final-routed traftic from nonhigh usage calling pairs. The
types are distinguished because of their different probability distributions, as seen in the newt
sechion
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Because  of  this  distinction, it is  useful 1o separate 11, into  two  subsets:
Ny =17 €1, 1] < M), ie. the high usage calling pairs overflowing onto final link J. and
M= 1j €1, : il > M. ic. those nonhigh usage calling pairs utilizing J in their final rout-
ing. Clearly.
H, =1y )
and

YN nj=o

Two simple examples from Figure 2 below illustrate this classification, where in both
networks (a) and (b) final links are designated by 2 and 3. Network (b) has no high usage cal-
ling pairs, while in (a) the single high usage link is denoted by 1.

Numbering Scheme tor pairs in (4) and (b):

Calling pair Index Number
(pips) -3
(pap)) -2
(pr.py) -1
tpy.p:) 1
(p.ps) 2
(pa.p3) 3

Frov ke 20 Fwo tniads

In G, 1Y =11 = (=11}, while 11} = {=2,2}, and 11} = {=3.3}. In (b), 1Y = 11¥ = 4, while
i=1{-2. -1, 1. 2Yand 1! = {3, =1, 1, 3}

4. THE FORMULATION OF A NONLINEAR SUPPLY MODEL
4.1. Blocking Probabilities and Overflow Tratlic

The call discipline is one of the factors in determining the relationship between the
offered load to a trunk group and its carried load. Another key factor in determining carried
loads is the assumption that customer originated traffic is Poisson distributed with arrival rate
denoted by AL see Messerli [13]. Fortunately, there is strong cvidence to suggest that the
number of calls occurring in a fixed. small time interval can be adequately modeled as a Pois-
san probability distribution. With these assumptions the distinction between a trunk group’s
offered load and carried load can now be made precise.




8 KO RORTANEK. DN TR AND GG POLAK

Assume that calls are assigned sequentially to a trunk group consisting of # trunks. Let A
denote the average customer arrival rate according to the Poisson distribution. The only
assumiption required o1 customer calling time is that it has finite mean w. Otherwise, it may be
arbitranly distributed. Under these conditions the probability that all of the « trunks in the
group are busy s given by the classical brlang B-formula

(Y} Blna) = (u"'/n!),’z(u”//\!).
N

tor =0, 1, ... where «a = A with ity unis tertmed erlangs. The history of the original
Friang formula and its important generadizations may be found in Gnedenko-Kovalenko |7} and
Syski [18).

An erlang is thus a measure of the flow of tratfic per unit time. In the traffic engineering
Hierature an erlang is one call-hour per hour, or equivalently 36 CCS per hour. The "hour” as
the unit of time is so standard, it is usually dropped, and one says an erlang is 36 CCS. The
value "¢" in the Erlang formula is termed the mean of the offered load to the given trunk
group. The expected overflow traffic is then aBna). With traftic flowing in both directions,
similar formulas apply.

Suppose for some integer 1 — M <0 < M. a wraffic intensity «, from high usage calling
pair i is offered to high usage link [ consisting of x; number of trunks. where [ = |i].
{Through the paper we shall alwavs take / = /1 in that context.) According 10 {2) above. the
probability that all x; trunks are busy is B(x;.q, + « }, recalling traffic intensity ¢ , running in
the reverse direction shares the trunks on /. Hence, ¢, B(y,.a, + a ) is the expected amount
of traflic overflowing to the first link, J, in the final route sequence of i Final link J, however,
carries other parcels of traftic as well, as seen in Section 3.2: overflows from the other high
usage calling pairs represented in HY. and raflic from the nonhigh usage pairs represented in
[1). We next formalize the idea of the quality of service of the network and introduce a useful
assumption on the marginal capacity of a trunk group.

4.2. Network Quality of Service and an Assumption on Marginal Capacities

The important benefits of being able to compute changes in equipment stock to meet
changes in demand were recognized much earlier by Kalaba and Juncosa {1t], Gomory and Hu
{8}, [9]. [10] and others. Fortunately. incremental studies on the network hierarchy introduced
in Section 3 permit certain simplifying assumptions that make computations attractive. These
assumptions relate to the concept of the marginal capacity of an additional trunk at a prescribed
blocking probability. The resulting supply model is an optimization which is much simpler than
would be possible when constructing a network ab initio. The assumptions and model are now
presented.

DEFINITION: Assume Q;, the traffic offered 1o a given link L at time ¢, has a fixed pro-
bability distribution, and let m(Q[) denote its mean. Given that L coasists of x; number of
trunks, let u, (x;,Q;) denote the mean of the overflow distribution. The carried load is that
portion of the offered load which does not overflow. For the case that L is a final link J, the
quality of service p ; of final link Jis defined by p, = 1 — p . where

pgo= Max - e
' mtQp
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Since the overtlow is less than the offered load, p; lies between 0 and T The mean of the
carried load is m Q) — (v, Q). According o the network hicrarchy. overflow from any
final link is lost. Let us illustrate how these definitions are employed in caleulating carried
loads on serially connected final links. in a simple example consisting of final links 1. 2. and 3

as shown:
O——0——0—0

Assume that the only offered loads on 2 and 3 stem trom carried loads on | and 2. respectively
Assume that there is only one time of day 7, and one quality of service p. Thus.
ot Q) ,
— T = ),
m Q) f
and m(Qy. ) = m(Q)) — w,(x;. Q) for = 1,2 Hence, m(Q;,) = m(Q)p.J =1, 2and so
m{Q) = m(Q)p’.

A formal extension of this argument shows that for any final link J the mean of the
overflow from any high usage calling pair i € 11} is at least
(r, I

(3 aBxal + a' )p

providing 1} is nonempty and where p = maxip,{J = M + 1, ..., M + A}
Muarginal Capaciny Assumption

Let p be fixed. For cach J we assume that there exist two positive constants y, and b,
such that if 7% and 7~ are two offered loads having probability distributions, and m (%) > 0,

then
mi*%)
mylx, + < > Qi+
Y
(da) max <p(=1-p),
' miQ; +r* S f
and if 0 < m{(r7) £ b, then
mz™) _
polvu =\ 0 — 7
(4h) v < o
max —— ),
' m{Q) — 1~ s

where <x > is the smallest integer greater than or equal to v, termed the integer roundup of x.
and where x| is the largest integer less than or equal to v termed the integer part of vy, is
termed the marginal capacity of an additional trunk ar qualiny of service p.

Incquality (4a) states that when <m(r*)A ;> number of trunks are added (o final link J.
then at least an additional amount of traftic pr* is carried. Inequality (4b) states that when
[m(:7)/y,] number of trunks are removed from the trunk group, then the decrease in carried
traflic is at most pr~

We assume throughout that cach high usage group /7 consists of x; Gnteger) number of
trunks. and that cach final group J consists of x;, number of trunks, establishing what we term
the existing nerwork. IUis further assumed that the existing network can supply all service
demanded «; for all pairs 7 and all imes of day 1 with the provision of 4 quality of service p.
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4.3, A Noulinear Integer Programming Formulation for the Network Hierarchy of Section 3

The tirst task is 1o develop an expression for the sum of the trafhic parcels of Section 3.2
offered o a tinal link J of the existing nerworh.

4300 Sum ot Overflow Parcels Offered o Final J

Summing the mean overflows in (3} vields a lower bound for the mean towal overflow
traftic parcels otfered to trunk group J. Let this sum be denoted by L)' e,

_ \ tw o, U | Ty
(R} L) = % aBlyal +a op " —
\f L]
FE
. . . ) . - .
Yor cach final trunk group J. where we define ] —§ = O if &, = 0. (This convention shall be
L]

used throughout the paper.) Thus, a termin the summation stemming trom calling pair 7 1
automatically set to O it final link J does not belong to the final routing of 1. For the case that
s empiy . (5) automatically reduces to zero, a case. for example. which does not oceur in
Figure T An upper bound on the total overflow traflic to J is obtained by deteting the p-term
in expression (5).

4920 Sum o Parcels Ortered 1o Final J from Nonhigh Usage Calling Pairs

- [ . N . . .
For any A € Byt follows analogously 160 (4) that the expected portion of originating

. . . . . [ . . .
traflic parcel ¢) oftered to trunk group J s ¢/ p . provided that 11} is nonempty. Summing
all these parcels of traffic vields a sum which we denote L/ (1)

. [5:4 |
(&) l,/‘(l) = z “A'/’ o ! e

(YRR LY}

S350 4 Constramit on the Sum of A Tratfic Offered o Final

The maximum total expected oftfered load £, which tinal group J of the existing network
can service at blocking probability 1 p is the maximum. over all times of duv . of the sums
ol both types of expected offered load parcels. Accordingly,

7 o= maxid )y + L)y,

Our modeling approach is basically an incremental one involving (i) modified offered
loads a; for all pairs /. (i} modifications of the number of trunks 3,, L. =1, ..., M + K, and
(i) a modification in the network service quality . Under these three kinds of modifications,
we may define quite analogously to (5) and (6) the expressions

LGy and L,

and analogous 1o (7) write

(&) = man L)y« LG

Fhe difference £, 1) s the mean o the addimonal traflic distribution on final link / and
SO our assumption on capactties apphies  Theretore. b £, £ > 00 then by case (J). only
< (f, - Fy, > number of trunks need he added o final group /. where y,ois the marginad
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capacity of an additional trunk at blocking probability 1 5. Let )}, denote the integer number
of trunks required in group J in order to service initial demand £, at the new service quality .
Hencee, we obtain a feasibility requirement on the modified J trunk group size v,

9 Eyo b <y - )

where v s inteper.

If £,— E, < 0. then we invoke a stronger version of the marginal capacity assumption
regarding case (4b). We require that v~ = |E;, — £, a quantity which depends on the %, and
certain &, (high usage size) variables, lie within the 0 to b, range required in order for (4b) to
hold. In other words, when [, 1,1/ y,;| number of trunks are removed from Y, the result-
ing number of trunks,

Xp=1 - ”1?1 - E/]/Y./l

may be offered the moditied load at blocking probability (1 - 7).
bility requirement as (9) holds for this case too.

It follows that the same feasi-

The system ol inequalities (9), one inequality for each final group J, shall determine a set
of vonstraints for the nonlinear supply model, and we shall write these constraints in greater
detail when actually specifying the model. But, first we need to take account of the total
switched traffic in the network.

4.3.4. Accounting for Total Switched Traffic

Let us work with the modified loads a.
vice quality p.

modified number of trunks %;, and modified ser-

Let S, denote the total switched traffic throughout the network at time 1. We shall now
show that

- M+ A M P EVERE ™y
(10) S=Y YlaBx.a +a)e 7 )|—
J=M e = M ™y
1 &A
M A o, D ey
+ ¥ Y lap —
J=MAL A< R <A LY

The amount of overflow traffic from high usage calling pair /i destined for final J is
a/B{(x,.a' + a',). However, before this particular parcel reaches J it must be consecutively
switched at the point of origin, and the (7, — 1) points along the alternate route. Therefore.
in this case the amount of switched traffic is:

tm

(n a/B(xa'+a' )p
The same analysis applies to traffic from calling pairs served only by final routing. The
traffic switched due to the originating load a;, K € 1} requiring final J for completion is

Lim, b

(12) al p
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We now sum (11 over all high usage pairs and then over all finals. Similarly. (12) s
summed over all remaining pairs and then over all finals. Finally, summing these two vields

trm

4

S Cost Assumprions and the Nondimear Model

Analogous 1o Eisenberg [5] and Elsner 6] we shall invoke simplifying cost assumptions
for trunks and switching. We shall employ unit marginal investment costs per trunk and shall
use the same cost for augmenting a trunk group as for diminishing a trunk group.* We shall
denote the marginal cost per trunk for trunk group Lby ¢, >0, L=1. ... M+ KA.

Changes in swilching investment costs shall be approximated by using a marginal switch-
ing investment cost ¢ per CCS of switched traffic, as for example in Eisenberg (5],

In the absence of real data and analogous to Eisenberg (5] we can merely set ¢, = $1000
for cach trunk in group L. final or high usage. and also set ¢ = $62 (per CCS).

We are now readv to state the basic nonlinear programming supply model.

PROGRAM P: Assume an existing network {(Section 3) has demands «; for all pairs

j=-N ....=1.1..... N integer group sizes x; for high usage and final groups:
L =1, .. ..M+ K. and an overall network service probability p with marginal capacities y .
J=M+1..... M+ K. Let modified positive demands be denoted by ;. and let 5 denote a
modified service probability with marginal capactty y,. J =M + 1, ... . M + K. Assume that

¢; is the cost per trunk on trunk group L, L =1, ..., M + K, and that ¢ denotes the switch-
ing cost per CCS. Let £, be defined according to (7). Compute

A .
(13a) My =min Y ¢ % + ¢S
/-
from among nonnegative integers ¥y for L =1, ... . M + K und real $ which satisfy:
14 n nw|m.
{13b) Y @B(.a +at | =
Y] ™.
Al
ik o, 0|
-y~ J AJ -
+ z al:p + - E/ S 'YJ(XJ - Y_/)
M<h <N T

for cach final J and each 1. where Y is the required number of trunks in J for a p service pro-
bability, the B-function given in (2), and

M+ K ( D m
(13¢) > TlaBGal+a)p Y ) =2
J=M+l =M T,
1210
MA N T -
D YD M E/V AR N e BN
JaMel M<iki<N LV

for each &

“In practice. one rarely takes away casting eguipment. but merely waits unul the normal growth in messape volume
takes up the current slack
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Observe that the system of inequalitics (13b) is merely (9) with full detail of the terms £
showing the vy as variables. On the other hand (13¢) merely defines the maximum switched
traflic 10 the network according to (100,

[1 15 obvious that Program P is consistent because the ¥, variables may be taken arbitrarily
large as well as the S variable. P must have a finite minimum. Otherwise, some ¥ necessartly
become arbitrarily large and since all cost coeflicients are positive, the objective function would
arbitrandy increase which is a contradiction.

Program P is a nonlinear integer programming problem which can be well approximated
for practical purposes by a continuous convex program. In fact, even more can be done. Pro-
gram P can be approximated by a finite linear program based on the special convexity property
and monotonicity property of the Erlang B-function, see Messerli [13]. We focus now on how
the linear programming approximation is constructed.

S. A LINEAR PROGRAMMING APPROXIMATION TO THE NONLINEAR PRO-
GRAM P

5.1. The Convexity Properties of the Blocking Probabilities

In engineering practice. the definition of the "load on last trunk” with respect to a trunk
group ot size n + | which is offered the load "« " is defined by
(14 Dna)= Blnal— Btn + 1.a)

where the Erlang B-function is defined in (2}, for n =0, 1, ..., with B(Q.a) = 1. Observe
that D(n,a) > 0O for each nonnegative integer n. Messerli [13] gives a proof that for any fixed
a > 0, D(n,a) is strictly decreasing in the nonnegative integer variable n,

(1%) Din + la) < Dlna)

torn =10, 1, ...

For "d" fixed define the polygonal tunction B{(-.a) from the non-negative reals to the non-
negative reals by
(16) Bixa)=—=Dna)x + (n + DBna) — nBn + 1.a).
where # is the integer part, [x]. of x. Note that B(r.a) = B(r.a) for each nonnegative integer
,

The graph of the polygonal function B(-.a) reveals its convexity and monotonicity pro-
perties, which are basic for the construction of the linear program.

For each nonnegative integer # the left-hand side of (16) defines an affine function on the
nonnegative reals. The following cumulative-type expression for this affine function follows
from Charnes-Cooper [1], pages 352-353,

For a fixed nonnegative integer n

(7 ~Dnalx +n + DBtna) — nBn +Va)=1+ Zl(', - ¢ =)

p =0

for every real nonnegative x, where ¢ = 0 and ¢, = =Dra) forr=0_1, ...,
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As strongly suggested by Figure 3, the following proposition vields a uniquely determined
system of supporting hyperplanes for the epigraph A of the function B(-.¢). The proposition
and its three corollaries shall be proved in the Appendix.

(O,B(0,a))

(1,B(1,2))

I

]
?
B(1,a)-B(2,2) E
] . .
| (2,B(2,a))
P o0 S o e = - - -'L___-—— :
]
! E T~
! 1
: !
1 2 n

Bt ke 30 The polveonal Funcuon deternimed by the Friang
B-lunction on nonnegalive integers

PROPOSITION 1: Let A be the epigraph of BG.a), K =1{zx) € Ry 20 and
= > Bilva)). Let L be the set of all (zx) in R’ which satisfy the semi-infinite system of
Jincar inequalitics

"

(1% :*]22((,'~ ¢ My =)

r-n

forx=zOandn =01 2 .. ..
Then A = [ and A is nonempty.

COROLLARY I Let x be nonnegative real. The (B(~N.a).X) satisties cach inequality of
(18) strictly except for (i), the inequality indexed by [X] ie . the inequality

v
e P t((, ¢ =),
[

which it satisfies as an equality, and i) possibly the inequality indexed by [x] = 1 when
v 2 1. The latter inequality is satisfied as an cquality if and only if x is 4 positive integer.

COROLLARY 2. Let b be a positive integer and set A= A N [(zx)0 < v € 1)L Let
I be the set of all (2,.x) which satisfy
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1
=12 e, — ¢, My —r), x 20
b
forn=01..... V=1 Then A" =L

COROLEARY 3 (zx) € Ais an extreme point of A7 if and only it v is a nonnegative
integer and - = Blva).

In view of Figure 3. which reflects the basic integer convexity property (15), these results
are intuitively clear. They are formally proved in the Appendix.

S.2. The Key Approximation and the Linear Program
We now replace in Program P the B-function by the polygonal B-function. and the

integrality: conditions on the X, variables are removed. Finally, upper bounding constraints
Yy < b, oare imposed, where the }; are large positive integers.

The next step replaces each term a/B(x,.a/ + a',) in (13b) and (13¢) with the new vari-
able z; and requires that

a'B(x,a'+a',) < z.
The new approximation program so obtained, denoted P, is the following.

PROGRAM P': Same assumptions set as in P. Let 1} be large positive integers for high
usage links. Compute

A .
(19a) M, = min IZI URVEE S
from among reals ;. = and S which satisfy:
(19b) X, () € x5, where X, (1) =
\f/ Lt I " . tmy, b ™ R . .
Y h 1+ X &b —= = E + 9,07,
PR ¥ i e 4 o<\ T
Al
for ¢ach tinal J and each 1. and
(19¢) $(1) € S, where S(1) =
Wik M M+K
oy Wy [Ty o It Ty
)3 MEPE ’["‘ P YT laleme | IM
J=Ml - M Ty J=M+1 M<IKISN LY
1 #£0

for each 1. and

(19d) a Blx.a +a' ) <z

for each high usage calling pair /i and time 7, and
(19¢) 0 <y <

for cach high usage link /.
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It 15 obvious now in view of Corollary 2 that P’ is equivalent to the finite linear program
denoted LP', obtained by replacing (19d) with the finite system of linear inequalities

120 a Dwa +a )y, +z2alw+VDBwa +a')
—a vBw+ la +a')

for o= 0.1, ... b, - 1. and cach high usage pair i, and cach . It is cqually obvious that
Program LP’ s consistent and has a finite minimum since the & variables are bounded and all
cost coefhicients are positive. Hence P’ itself has optimal solutions.

We now use Corollary T oof Proposition | 1o discuss the cost effects due 1o using an
optimal solution of P'as a solution to the integer program P. If high usage size .i‘,' 1S not an
mieger. then (B(< X, @'+ a' ). <i4>) is in the epigraph of B(.a +a',) for cach 1.
where < 8,> is the integer roundup. The roundup introduces an increase in the total cost
associated  with high usage group 1 (<35> — )¢, where 0 < <¥7> ~ <1 An
offsetning cost effect from final groups J and switching S oceurs because from the monotonicity
ol Bt-.a + &' ). cach 27 does not increase.

Finally. in order 1o insure quality of service p, noninteger final group sizes X; should be
rounded up, thereby increasing total costs. Numerical estimates of these various offsetting cost
effects due to round up of trunk group sizes determined by Program P’ have not been obtained.
1t appears to us that such estimates must stem from numerical experiments on field data. Cer-
taindy. as strongly suggested by Figure 3 and Proposition 1 and its Corollaries, integer program-
ming pathologies from straightforward rounding processes do not occeur.

Because of the linear inequality system (20), Program LP" may be quite large and for
practical purposes it would be useful o obtain an equivalent satalter problem in place of LD
The nronotonicity of the B-function. essentially Corollary 1 of Proposition 1. suggests a useful
procedure.

5.3. Solving the linear Program LP’ Through Bounded Variable Reductions

Let LP;, be the bounded variable version of LP* obtained by replacing t19¢) with
(19¢") y < .{'/ < /3/

tor each high usage group. and in (20) restrict ¢ to: v =« ..., By | where oy and g, are
nonnegative integers such that 8, - | — «;, 2 2. The following is proved in the Appendix.

PROPOSITION 2: Under the above bounded variable assumptions:
() any optimal solution {(3). S* ()] of LP'y, is feasible for L. and
(1) if for cach high usage group /

(21} (1,<_§',.<[3/.

then this optimal solution is also optimal for Program LP'. Moreover, there exist ay. 8, and an
optimal solution of LP’ such that with respect to 57 of that solution, (21) holds.
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6. COMPUTER PROGRANM AND RESULTS

6.1. Implementation of the Model

For all but the simplest network hierarchies. the large size of LP’ of Section 5.2 warrants
the use of the bounded variable reduction program LP'y,. Thus., according to Proposition 2 in
Section 3.3, we may. in general, restrict ¥, in (19¢') to a range of 4 integers, that is,
B; - «a; = 3 tor cach high usage link /. This in turn restricts v to a range of 3 integers in (20).
We shall also specify that there are a finite number, 7, of periods (hours) during the calling
day. For LP',. the variables and constraints which occur are accounted for in Table 2.

TABLE 2. The Variables and Constraints of Program LPy,

Name Number Total
High Usage X M
. Final Xy K
Variable Switch S 1 MxT+K+M+1
Overflow 2 2m x T
(19b) KxT
(19¢) T
Constraint | (0, M xax 7| TX(K+6M+1)+2M
(19¢") M

For example. in Figure 1, A = 7, M = 8, and taking 7 = 3 we have a total of 64 variables and
184 constraints.

Let A€ < b denote the constraints system of LP'yyy. where £ = [(3,).5, (D17 Tt is easy
to see that 4 is a sparse matrix: indeed. roughly 98% of its entries are zeros. Thus it requires
some attention to enter each of these into its proper row and column. Figure 4 is a "blueprint”
for the matrix 4.

Calculating the entries of A requires computation of the erlang B-formula, (2) at integer
values. However, the factorial terms involved quickly become too large for direct computation.
Given some positive offered load a¢ and positive number of trunks n, the following recursion is
used:

aB(n — 1,a)

B(na)= w3 aBn=1.a) . B(0,a)=1.

The "load on the last trunk” D (n,a) which also appears in (20} merely requires computation of
B(na) and B(n + 1,a4).

We need data on both the existing network and the modified network. As a simplifying
assumption let us take p = g, meaning the quality of service is to be maintained at the same
level. The necessary data then consist of a/ and &, for each calling pair j and for each time ¢,
p. v, and ¥ for each final J, and the sizes of the links on the existing network. x; for each
link L. Observe that since 6 = p, ¥, = x, for each final J, see Section 4.3.3. The hierarehy
matrix introduced in Section 3.1 contains all the necessary information about final routing.
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1N
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w2 2 ? L sum
PUNSER F_M__J_,}L___Z'_\A_ ' 2M e o }—~2M~ 4K+M+1+r)</|‘."
1 1
(2014 84 |3 ¢ ~T
1 L=t
(19bp){ K g
{19¢) 1 1
e N | oo
EM+K+1 t=2
1 F
» Q L) [ ]
[ ] * L J
X 0 [
GM+K+1 £=T
. |
E
(19e) {ZM H S
1
SUM:

TX(6M+K+1)+2M

: High Usage Group
: Final Group

: Switch

: Overflow

onRd

ot ke 40 Structure of constraint A-matrix
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With matrix 4 arrenged as i Fgeure 4, the entries can be managed easily Note that the
Meck of the first A+ A+ P columns repeats atselt for cach time peniod whitc the werflow
hlock shilts 247 columins for cach consecutive ume period. For ¢ = 1, the first 63 + A+ |
rows of 4 can he filled by the fallowing piece of computer program. (Reter o Byure =0
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h
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1 Xy i : Z; |
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I i |
\5\ : | Z'_ i
X, I ! Z!, |
kvd 1 ! 7! !
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g | | i |
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|' Xz } : 2—2 }
g 1
| Z}Z : ] Z—Z ° I
| Xz i | Z! !
! 1 i !
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1 * | . i
| [ | )
| - | | . |
! I ] !
! t |
~ 1
! X e Zu,
X ¥ 1.
! ?f,M: l L!;J
: X! : \ Ly
I K,M: ! Z,'M :
! Xu  25m ‘
L le 'Z—M 1
—————— e < 75ty | f~——=—— """ === =T ===
X
o R :
: XM+2 : | I
i
1 ° P!
l [ |
] ° | ! AO |
e !
| 1 | ,
~ I ‘
: XM+KJ : !
e = U s e e . . ;
Szt . . . Z:A’
L o e o e L e e -
oo s Block of 1 onatiy eorresponding to 7 = 1 with vanabic in position of eoatries Block @ evnner

Z vomahles win nonzero coethicents determmed by permssible overflows accordimg 1o network pieri on
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Rows corresponding to (20):

FOR 7= 1 STEP | UNTIL M DO
FOR Ji= 1 STEP | UNTIL 3 DO
BEGIN

Al6*U — D) + L= —a'Dla, +J - 1,4 +a'),
Al6*(/— ) +J +3.1=—-a" D, +J~1.4a'+a'):
Al*UU =D +J 2M + K +1 + )=
Ale* (I =D +J+3. 2M + K +2— I]=—1
END:

Rows corresponding to (19b) and block A4, of Figure 5:
FOR.y= M + 1 STEP 1 UNTIL M + KDO A{5M + LIl= —vy,,

FOR .= 1 STEP | UNTIL M DO
FOR J;= M + 1 STEP 1 UNTIL M + K DO

BEGIN
AISM + J2M + K + 2~ [}=1F 7 _,; = 0 THEN 0
ELSE p(" ”'“;
AISM + J2M + K + 1 + I}=1F n ;= 0 THEN 0
ELSEp"" "

END.

The row corresponding 10 (19¢):
AlGM + K+ 1, M+ K+ 1]:=-1;

FOR £;= 1 STEP 1 UNTIL M DO
FOR Ji= M + 1 STEP | UNTIL M + K DO
BEGIN
AlM + K+ 12M+ K +2-Il=1F#7_, =0
THEN A[6M + K + 1. 2M + K +2 -]

ELSE Al6M + K + 1.2M + K +2— 11 +p™ # ",
Al6M + K +1.2M + K + 1+ Il=1F7n ;=0
THEN 4{6M + K + 1,2M + K + 1 + 1]
ELSE Al6M + K + 1.2M + K + 1 + 1] +p" "
END,
Computing the right-hand side of the constraint system is straightforward, aithough (19b)

involves E,, the maximum load offered to final group J during the calling day, and it is the sum
of many terms.
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6.2. Numerical Examples

The model was implemented on two test examples, and the resulting bounded vartable
fincar programs were solved at the Carnegie-Mellon University Computation Center on g
DEC-20 machine using single-precision arithmetic.

6.21. First Example: A Network Based on Califoraia Field Data

We apply Program P of Section 4.3.5 1o the network given in Eisenberg (51 and Elsner
fol. which in turn is based on Gardena, California field data. The hierarchical structure of the
network is given in Figure 6 below.

In this network there is only one originating office labelled py. and 43 terminating offices.
labelled py through pyi. This means that there is a demand for traffic associated with each of
the 43 calling pairs {pop)d, 1= 1 ..., 430 Al other ordered pairs of points are ignored.
Every calling pair is also a high usage calling pair. The high usage links are labelled by the
integers | through 43. and the finals by 44 through 87. Finals 45 through 87 which connect
office puy. the tandem switch, with each terminating office, are referred 10 as randem completing
groups. The overflow hierarchy is indicated in Figure 6.

Tandem Switch
P44
44 Tandem Completing
Final J 45740 87
_& Py ...... A3
-
’l’?¢2’”_/’ ———"/—
- T 43 -

Fictrt 6 A network hicrarchy based on Gardena. CA data. Fisenberg [5]

The hierarchy matrix, which has 43 rows (one for each calling pair) and 44 columns (one
for each final), consists only of a single column of 1's (for final 44) next to a square (43 x 43)
block with 2's along the diagonal. and 0's elsewhere. In fact. this hierarchy is so simple that
the matrix itself need not be stored, since several statements written in a computer code can
determine the entries of (19b) and (19¢).

Base Demand

We assume that the network is constructed ab initio, namely all the initial demands
between pairs of offices are zero and all initial trunk sizes are zero. According to (7), then, it
follows that £, = O for J = 44, .., 87.

Incremental Demand

Positive incremental demands @, in CCS for each calling pair 7 and ¢ are given in columns
2 and 3 of Table 3 below  Asn [S] and [6]. we take a marginal capacity of 30 CCS for all final
groups and neglect blocking probability on the final link 44, Similarly, unit costs are $1000 per
trunk and 962 swiching cost per CCS incurred only at the tandem switch. With these
specifications Program P ot Section 4.3.5 becomes the following one.
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al B(L.a" € 303, torr =1, 2

@ BILa) <M fori= 1. ... 43

i,
tort=1.2

and

43 .
Y B.a < Storr= 12

=l
where the x, are all nonnegative integers.

The above nonlinear integer program was approximated by the linear program derived by
the methods of Section S 20 which was then solved using suitable bounded variable reductions
based on Section 53 The bounds of the high usage group sizes were chosen by our prior
knowledge of Eisenberg's [3) and Elsner’s [6] solutions. An optimal linear programming solu-
tion so obtained is termed the incremented neework  Table 3 presents an incremented network
and includes the overflows from the high usage trunk groups to the final trunk group 44

Fable 4 compares the si2¢s of the high usage trunk groups occurring in our incremented
network with those compuicd in Fisenberg [S) and those computed in Fisner (6], Finaliv.
Table S gives some overall comparisons among the three sotutions.

Remarks oo Tables 3.4 and >

In Tables 3 and 4 each iinear programming-determined high usage group size x. except
#4313, satisfies either (a), <v> -~ x < 10 " or (b)), v - [x] < 10 ° and hence an integer 1s
reported. High usage group #43 is truncated to 3 decimal places as are all overflows, the final

group size. and tandem completing group sizes.

Eisenberg's multihour noninteger solution is not given in [S], and consequently the costs
in Table 5 mav be higher than for the noninteger solution.

EFisner’s descent algonthm obtains a solution with a lower total cost than an integerized
solution. The use of an approximation to the Erlang B-function (2) applicable to noninteger
high usage trunk group sizes may account for this difference.

6.2.2. The Second Example: Figure |'s Network Hierarchy

We solve Program 1P of Section 5.2 applied to the network hierarchy of Figure | of Sec-
tion | with the following specification of input data.

Base Demand

Traffic demand is assigned to all 56 pairs of points of Figurc 1 by daytime, evening, and
nighttime according to three basic kinds of pairs:
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TABLE 3 —Specification of Incremented Offered Load Demands for
Example [ and an Optimal Linear Programming Solution
with all Overflows from High Usage Groups

~— "'T T .ﬁ“"'%* e - B S |
| Offered Loads Overflow High Tandem-
f ([ r:)z; wes (es) Usage | Completing
‘ Hnur l Hour 2 Hour | Hour 2 [rl{l?li\ rrunljs
F T w0 130 7746 | 41978 | 4 7399 |
) 2 119 9 16.271 0.000 5 0).542
3 82 20 10.260 0.045 4 0.342
4 308 76 20.002 0.000 | 12 0.666
s 30 0 13.636 0.000 1 0.454
| 6 59 7 9.179 0.007 3 0.305
B 102 56 9.795 0.901 5 0.326
! 8 256 jot 21.305 1.632 | 10 0.710
9 366 230 22.406 0.838 | 14 0.746
10 469 310 20.256 0.598 | 18 0.675
1 1S 115 14595 | 14.595 5 0.486
12 144 34 16.871 0.013 6 0.562
13 206 335 3.691 | 44.757 | 11 1.491
14 310 650 0.270 | 89.490 | 19 2.983
R 284 319 13.718 | 24987 | 12 0.832
T 93 152 70721 33.258 5 1.108
B 17 24 5.452 9.599 1 0.319
.18 74 325 0.017 | 73.351 9 2.445
.19 102 158 4.424 | 23.041 6 0.768
P20 137 322 1.414 | 71.323 9 2377
]| D) 247 10.744 | 18.096 | 10 0.603
22 252 390 3.621 | 43919 | 13 1.463
P 445 194 21.335 0.006 { 17 0.711
P 176 86 19.99] 0.697 7 0.666
| 25 83 29 10.640 0.227 4 0.354
26 98 21 17.146 0.056 4 0.571
2 188 74 13.236 0.291 7 0.44]
| M 124 36 18.491 0.110 5 0.616
|29 54 25 7.253 0.700 3 0.241
P30 38 i 8.102 0.000 2 0.270
' 34 3 17 5.149 1.196 2 0.171
I D) 140 46 15.286 0.077 6 0.509
1 33 96 30 16.195 0.262 4 0.539
! 122 62 17.587 1.410 5 0.586
i3S 163 57 14.962 0.057 7 0.498
| 36 ( 163 72 14.962 0.247 7 0.498
37 296 238 17.134 4745 1 12 0.571
38 33 28 5.933 4.071 2 0.197
39 240 3 15.806 0.000 | 10 0.526
L4 136 7 13.783 0.000 6 0.459
4 54 4 7.253 0.000 3 0.241
4?2 52 35 6.546 2.063 3 0.218
43 206 9 13.108 0.000 8.997 0.436
Totals
of 6712 S154 | 508.643 | 508.643 | 306.997 30.921
iolumns

23
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TABLE 4. Comparison of Optmal High Usage Trunk Group Sizes
Compured by the Multihour Method, A Descent Method,
and Linear Programming for the Gardena Network

[ High Usage Group Sizes 1
Trunk e e —
Group | From Multibour | From Descent | From Linear

Method (5] Method {61 Programming

T 4 442 4
2| 3 5.25 5
3o 4 3.78 4
4 6 11.97 12
5 0 1.47 1
6 | 2.81 3
7 4 1 4.64 5
8 1 8 \ 10.32 10
Loy 12 | 14.10 14
|10 8 17.57 18
11 N 5.37 5
12 7 6.20 6
13 10 10.81 11
14 16 18.58 19
15 12 12.14 12
16 S 543 5
17 ) l 1.08 !
18 x 6 8.92 9
19 ! 5 5.74 6
20| 8 9.36 9
2 10 9.78 10
22 12 12.58 13
23 17 16.73 17
24 8 7.41 7
25 4 3.83 4
26 5 443 4
27 7 6.75 7
28 6 544 5
29 3 264 3
30 2 1.86 2
31 2 1.60 2
32 6 6.06 6
KR) § 435 4
34 6 5.40 S
35 7 6.92 7
36 7 6.93 7
37 12 11.84 12
38 2 1.77 2
39 10 9.70 10
40 6 590 6
4} 3 2.59 3
42 3 2.61 3

43 9 8 .48 8.997

Totals 287 30556 [ 306997
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TABLYE S, Comparisons of Total Number of Trunks, Switching
Cosis. and Towal Costs for the Multihour, Descent,
and Lincar Programming Solutions of the Gardena Nemwork

Network Multihour | Descent Linerar
Characteristics (5] [6] Programming
# High Usage Trunks 287 305.56 306.997
# Final Trunks 39 NA* 16.955
# Tandem Compl. NA NA 30.921
Switching Cost $44.640 NA $31.537
Total Cost $405.315 | $385.500 $386,410

*NA = not available

(1) each of the pairs C1,C) and (1) receive S00 CCS during daytime and 0 during the
other two periods.

{2} cach pair which includes exactly one of the pairs 4 or C receives 100 CCS during day-
time and O during the other two periods, and

(3} gcach pair which excludes both points 4 and C receives 75 CCS during daytime. 200
CCS during evening, and 100 CCS during nighttime.

These choices were imagined upon viewing poinis 4 and ( as “commercial” points and
viewing all other points as "residential” They represent particular choices of the inputs a;,
;=1 ..., 56, of Program LP. Analogous 1o the first example we assume that the cost per
trunk is $1000. that the switching cost is $62 per CCS, the quality of service is 0.99, and that
the marginal capacity of a trunk in a final group is 30 CCS. However, we did not neglect block-
ing on the final links. Using these inputs and the hierarchy of Figure 1. an optimal solution to
LP" was obtained termed the base network.

Incremented Demand

Assume that an increase in demand of 20% occurs uniformly among all of the 56 calling
pairs.  With all other inputs to LP’ remaining unchanged an optimal solution was obtained.
termed (as before) the incremented network.

Moreover, Program LP" was solved under three additional restrictions on the time .
namely. all high usage links be sized according to: (a) daytime loads. (b) evening loads, and
(¢) nighttime loads, respectively. These restricted solutions result from the requirement that
the network be “engineered” according 1o a tixed single hour, respectively. This is in contrast
1o the multihour solutions of the base and incremented networks, and provides a test of reason-
ableness of the multihour solutions.

For purposes of computer usage, the size of LP' was reduced by the bounded variable res-
trictions of Proposition 2 of Section 5.3. For example, setting the ¥, bounds in (19¢) at 25 for
each high usage group yields a 64 variable linear program with 1240 constraints. This program
was solved by solving a finite sequence of much smaller bounded variable programs (64 vari-
ables, 184 constraints). The results are given in Table 6 below.
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FABLE 6. Comprer Resulis of Four Solutions of Program 1P,
Secton 3.0 Base and Incremented Neoworks. and
Network Smgle How Designs. Base Demand ncremenied
SO0 Cost/Trunk, S62 Switching Cosv/CCS

arid 1099 Qualing of Service

- - e

i binks and Base !

s

Ju Untormby,

Incremenied 'L Single Hour Designs

|

_tnteger indey | Network Network | Dayame - Bvenimg i»_.\nghlumc 1
COaB 9 29830 35005 67925 1 43703 <5414
AC 1o K7149 104643 1 10431 L2y 111.400 -
AD I 82760 63467 | 69.622 63.339 67084
BE 012 14224 1704] 1 39273 21936 31.838
(i 13 10049 48000 | S9514 47 871 38343
CG id 40,049 48 000 ' 39514 47871 SRIREX]
CoCH s s284 | 63416 | 68775 . 63416 67 143
Hih Usage Links and Integer index -~ s
SN A 2 T y 0
BE A 2 : 9 C 2 .
BG 3 17 ‘ 2 | Y A i2
. 1 ° X 12 0 0
D s I8 o0 l T R
B, 6, 18 2 0 21 12
kG B 2 i 1 2 o
S T L ST 2 R R A ) IR S
P Total ‘ { ! ‘
Switched 849202 | 1017301 1 1376404 | 1013847 19105
Traflic | ! ' ‘ i
(cesy oo ! ‘
—_— e - e e - _ - - . VRSN U § -
" Toal T_ T —1
Cost JSSTH 0 SHI33 814023 SIIS40 , SI2900 |
L I S S |

Ohserve that the multihour (incremented network) solution has a total cost which is less
than each of the single hour design total costs, although the single evening hour solution is
only 94 Jarger than the multihour solution Apparently, the opportunity of engineering final
groups 4B and AC at another time, namely davtime, permits a slight saving in total cost

7. CONCLUSIONS

In tius paper it s recommended that lincar programming be used 1o solve for changes in
trunk group and switching cquipment requirements necessary to provide for altered demands
for tolecommumications services and altered demands for service qualities. Obtaining solutions
te s basic probiem iy a major goal of our supply model which seeks to minimize total tnere-
mental investments in both trunking and switching subject to these constraints,

The hincar programnung model distinguishes high usage trunk groups from final trunk
groups according to the role cach plavs in the network hierarchy. The important subset of high
usage group variables may be solved for by lincar programming, and. in general. the costs due
1o straghtorward integer rounding of these groups tend to be offsetting and integer round-oft
srocedures casily muintain overall network quahity of service
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Caution must be exerased. however, in the selection of the sizes of the tinal trunk groups
because of the use of the margimal capacity assumption in the hnear programnung model. In
practice. the actual values of the final group varables can be determune by methods which e
not depend on the margmal capaaty assumption, pincipally Witkinson'™s Fqunedent Randon
Method 128 1207 This method is needed because of the various pedkedness cifedts tht oo
N the probability distributions of whicrnately routed traflic, see also Deschiamps 4]

I'he quesuon of whether the lincar program P provides optinut soluons coveng miegra
numbers of ligh usage trunk group sizes is sl an open one. A related cass of nonhineas
mteger programs which are solvable as hinear programs s treated o Mever [T where vanous
ummoedutanty assumptions are made. These assumpuions do not apply in general o the class of
network problems treated i this paper. The results of our linear programming experiments on
two simple networks in the tield may stimulite research on this question.

We shall leave the linear programnung duality developments for a later paper. (U appears
that sensitivity and postoptimality analvses will be indeed usetul for network design synthesis
Fortunately. by Proposition | and its corollaries it appears that a much smaller st of active dual
variables will be required than the total number of constraints in program L]

Future work should also incorporate more than one alternate route i the networs hierar-
chv, even though tor many networks in the field the first and second choice routes are preem-
ment  Mamy networks given an the literature are included within the Iincr proce anmisyg
madels of this paper. Large scale network optimizations made availebic “hrces s the nwdehne
aprroach of ths papor seould enhance an etfective mtegration of the supphy mode ! wetis o disae-
grov ted ecnromeane demand model tor telecommunications services.

W copciude worh an observation shared by BEdward v Siver and Stephen v Samth,
cviossed anopersanagl correspondence, that there is an interesting cyuivdalence between tele-
phone enwimesnine and replenishment mventory svstems, see {Hoband (171 Perhaps the design
ot more comples tefecommunications network hierarchies may have application to the design of
more compley replenishment inventory systems.
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Appendix

PROOFS OF PROPOSITION 1, THREE COROLLARIES
OF PROPOSITION 1, AND PROPOSITION 2

PROPOSITION 1. Let A be defined as.
={tzar e Ry 2 0andz 2 Blxz),

Let £be the setof all tz.a ) in R which satisfy the semi-infinite system of lincar incqualitics
(n - | I zh,gm. My = rYand v 2 0
T
torn =01 ...
Then A = L.and A is nonempty.

) PROOP  Nonemptiness of A s most casily seen by observing that (1.0) € A since
HH),(I) = H“).(l' = l

Let tzv0 be an arbitrany pomt in A Assume throughout that # = [x]. the integer part of
voApplving 1161 of Section S T gives

2 Dtnalty + tn + DBULa) — uBtn + 1.4),

and hence from (171 we hase
(N =D N T T AN

Thus. (z20) satsties the particular inequalits of (1) indexed by the nonnegative integer /.
Consider now any integer n.n 2 n + 1 and write

" "
B(xar-1+A7= Y, —¢ Hx—-17r)
r=0
where A= Y (¢, — ¢ ) {x = r). Now for any integer r, 1 + 1 < r < n, it follows that
r=noa
Xx—r <0 because n € ¥ < n+ 1 < r. In addition, ¢, — ¢, | > 0 for each nonnegative
integer r, and therefore A" < 0 for each integer n, n 2 n + 1. Hence,

(3) ~12B(Ra)-1> B(Xa)— 1 +A]= Z((,—c,l)(}—r).

r={
for each integer n. n 2 n + 1.
(2) and (3) together show that (zx) satisfies all those inequalities of (1) indexed by

non 2 no We now check that (Z,v) also satisfies those inequalities indexed by nonnegative
integers v, 0 < n — 1.

It n =0, there is nothing to check for there are no such v For n 2 1, let » satisfy
0 < n < n - 1and write

Blxa) - | = zu = ¢ My =)+ A

¢ 0
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where AV = z ., My =17} For cach integer oo+ 1 < r < wit lollows tha
s
voor 2 0uandg > Bas before. Hence, AY 2 0, and hence,

- i
4 ol 2 Ba) 12 30 - v =)
[
for cach integer #, 0. < < n - 1. The latter finite system of incqualities (10) 1ogether with
(23 and (3) show that (z.x) satisties (1) implying A € L and in particular 1. is nonempty.

The other inclusion L. C A is trivial because any (z,v) in L satisfics in particular

s 1230 - =,

r

Using (16) and (17) again shows = = B(La). ic. Gx) € K.

COROLLARY 1. Let X be nonnegative real. Then (B(x.a), x) satisfies each inequality
of (1) strictly except for (i), the inequality indexed by [x], which it satisfies as an equality, and
(ii) possibly the inequality indexed by [x] — 1 when {¥] > 1. The inequality [x] -1 is
satisfied as an equality if and only if X is a positive integer.

PROOF: Let = = Btva). Application of (3) shows that (Z,¥) satisfies each inequality
indexed by noow 2 0+ strictly, where 7 = [X]. By (16) and (17) of Section 5.1, it follows
that (z.x) satisties the inequality determined by # as an cquality.

it only remains to prove that the inequalities indexed by nonnegative integers
non < on o= 2 are satistied strictly. There is nothing 1o check if # < 1. For a2 2 2. let n be
anyinteger 0 < n € n — 2. Then

Bxa)—=1=Y (¢, —¢ D E=D+[4+(c,~c, ) (x=m)

r=0

o
here 4 = 3 (¢ —¢ )X —r) Since n <5< 71+ 1t follows that (¢, — ¢
Py

2 0and 4 > 0. Hence,

£

DX =)

n

Bixa)-1>3 (¢ —¢ )(x—r)

r =)

for cach integer n, 0 < n €< n — 2.
The last assertion follows from ~xamining

. no
BGrar- 1=% (¢ -¢ V(=1 4, —c¢, )(&—q)
[t
where n = [¥] 2 1, for the inequality indexed by # — 1 is satisfied as an equality if and only if
X -n=0

It will be useful later to include upper bounds on the x-variables in the set A. The follow-
ing corollary states that in this case one only needs a finite number of the inequalities of (1).

COROLLARY 2. Let Fbe a positive integer and set K= A N {00 < v < V) Let
1. be the set of all (z.x) which satisfy
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N 1‘2\«, ¢ AN ooy 2 0

fon v [ i Then A /

pProot 1o ! Soar 0w b then by Proposinon 1A [ Sowe L
e porates the sememimnte system e todlows mmediidediy it f { On the other
il et T b whittan i £ then 0 v e band e b owhere - Il el I

Conomenrbersiup i [oamplies

S D Y IR I AN

Pee 017 totowed by (1o we tind that = 2 B0var implying (200 €A

On e oo and, s = b then necessarily oo B Moreonr,
P
D NI RS AR

S the rigit hand st cguals by (17
| D La)b + VB - 1) (b - DBula),
which s merely Lo Btl,wr Therefore, in this case
By .a!

nd ) - A s Thus, o ather case (oot o Asehich implies T sansties the entire e

ooy st U by Proposiion 1 Henceo (zov) € 10 and hence Lo Inercione.
! [ which scids A !.

COROLLARY 3 (2t is an eatreme point of K7 and onhy i v s oonennecatin e integer
and o - Broa

PROOT There are only wo variables 2 and v in the lincar mequality sysiem (10 Henee
extreme points can only oceur on the boundary of K at the intersection ol a pait ot incarly
indepeindent cquations. By Corollary 1 a pair of linearly independent cauations arise it and enly
v as o nonaegative mteger. and moreover, cach nonnegative integes does sausty two tadya-
cent bnearh mdependent cquations. This includes the speaial cases of the endpornts where for
e addional meauahin 2 s used and at TBEL g P the mequalin v €0 Fas used

SEOPOSTTION U nder the bounded variabic assumptions ouade m Secion 03
G aee apumai scluton TGS G0 of LPgy, s feasible for LP7and
Gy e each hugh aasee group |

NE gy, < oAt e 3,

Men this Catimal solat 0 s aiso optimal tor program LPY Moreover there ex st i and un
e cobdion TP such that with respect 1o ¥, of that sotution, (241} halds

PROOE 1T c1ad) s sirictly satishied tor any 1 and high usage cathie pait 5 then Tmiay e

Joct st s ower honnd without aftectng feasthility. Thus ’.l\,.‘.'\' i vptimal tor
[ LIV ;oMo g a0 b each ugh usage calling pane o By Covoliais 1 tor cach

- JR
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high usage calhing par o (2.4, satshies (200 for every nonnegative iteger  Since =7 € 27" and
OB and U900 are aiteady satistied 51 follows that 10400 8% 02701 satsties all the constrames
LP. This proves ()

The st part of t tollows trom hnear programming duality theory  Because of €210 the
wo dual vatiabics stemnung respedtinely from the two bounding consiraints on X, are both
sero Hence. one mas delete these constramts in L Py, und the same dual optimal solution pre-
vaills - Theretfore, by duabity {‘.i,.).S“. (7)) s opumal for the relaxed-varable constramed pro
gram LP The remmmng statemeni of part (i) foliows from Corollary 1 and the fact that the
NONLCRALNV Y inlegeis a L 8, satisty 3, t gy 22
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ABSTRACT

A system deteriorates due 1o shocks recenved at rundom umes. cach shock
causing o rundom amount of damage which accumulates over tme and may
result ina system faiture. Replacement of a fuled system s mandatory, while
an operable one may also he replaced. In additon, the shock process causing
system detenioration may be controlled by continuous preventive mamtenance
expenditures  The joint problem of opumal mainienance and replacement s
analvzed and 1t s shown that. under reasonable conditons. optimal mainte-
nance rate is decreasimg i the cumulative damage level and that bevond o cer-
tain critical level the syvstem should be replaced. Meaningtul bounds are esty-
blished on the optimal policies and an illustrative example s provided

1. INTRODUCTION

In this section, we first introduce the reliability problem treated in this paper, provide a
background in terms of the relevant literature, and summarize our assumptions and results.

A. Problem Statement

Consider a system that receives shocks at random points in time, each shock causing o
random amount of damage which accumulates over time. As the cumulative damage level
increases. the rate at which the system gencrates revenue declines and the probability of its
faiture increases. Replacement of a failed system is considered mandatory, while an operable
one may also be replaced. a forced replacement being costlier than a voluntary one. In addition
1o replacement, the damage process can also be influenced by preventive maintenance expendi-
tures: higher expenditure rates buffer the system more effectively. and hence decrease probabil-
istically the frequency of occurrence of shocks as well as their severity. Our problem is to
determine an optimal policy that specifies a sequence of replacement and maintenance expendi-
ture schedules so as to maximize the expected discounted net profit generated by the svstem
over an infinite planning horizon.

33
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B. Background Literature

The eatensive hiterature on control of stochastically deteriorating systems has been sur-
veved by McCall {10] and Pierskalla and Voelker 1111, Of particular relevance here is the work
by Tavlor [15]. Feldman [6.7] and Abdel-Hameed and Shimi [1] on optimal replacement of
system that 1s subject to shocks and failure, based on the theory of optimal stopping in Murkoy
processes. On the other hand, Thompson [16] and Kamien and Schwartz [8] employ optimal
control theory o characterize the time pattern of optimal maintenance expenditures that retard
the system fallure rate. In the former class of models the only decisions available are whether
to replace the system or not, while in the latter class the state of the system at any ume is
described as being cither working or failed. Our model incorporates the essential features of
both of these two classes in that it allows tor varying degrees of preventive maintenance fn
addition to the replacement action) as well as ¢ more detatled description of system deteriora-
tion tin addition to 1ts description as working or failed). Our analysis is based on the methodol-
ogy of stochastic dynamic programming. as in Derman (3], Ross [13] and others. Some prelim-
inary work along these lines mav be found in Chikte (3} and Chikte and Kovzin (4.

C. Overview of Assumptions and Results

In Scction 20 we define the state of the system i terms of its cumulative dumage level,
which increases randomly due to occurrence of shocks and is influenced by continuous nuinte-
nance expenditure and imstantancous replacement actions. The probabilistic rate at which dam-
age aecumubates s assumed to be decreasing in the maintenance expenditure rate fAssumption
£ Upon recenving o shock, the system may fail instamaneously with a probability that is
assumed to be ancreasing in the resulting damage level but at a diminishing rate (Assumption
Py 0 the ssstem does tadh 1t must be replaced imstantancously by g new one at a fixed
costowhile. evenat it does not fwl, it may still be replaced voluntanily at a lower cost {Assump-
Hon /ta Y AR operating system continuously generates revenue at a rate which decreases, but
At dmunsshing rates as the cumulative damage level builds up CAssumption £0), Finally,
we dalso muoduce o condition CAssumption R which ensures g profitable svstem operation (as
i Fheorem 4

I Secion 30 we tirst show that the maximum infinite horizon expected discounted net
profit from system operation decreases at a diminishing rate as the cumulative damage level
incteases Chheorem 10 We then show that it is optimal to replace the system voluntarily as
soon s s cumudative damage level exceeds a critical threshold (Theorem 2). As 1o the
opumal preventne maimntenance pohicy, we show that the maintenance expenditure rate should
be reduced as the cumulative damage level builds up to the critical value (Theorem 3) Finally.
we derive On Theorem 3 meaningtul bounds on the optimal policy. In particular, we show
that postponement of voluntary replacement cannot be optimal of the extra profit from system
operation until the nest shock cannot justify the extra cost due to a possible tailure and replace-
ment ot that shock We also show that the opumal maimtenance expenditure rate is always
sty dess than the rate at which the system currently generates revenue.

Section 4 provides an example that allustrates the model and the results and Section 3
condludes the paper with some remarks on the tpe ol information required for implementa-
Hon

2. MODEL FORMULATION
In this section. we st estabhish the notation and define the basic components of our

model. then we present the assumptions made and finally we describe the overall model
dynanues
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A. Notation and Detinitions

Let a nonnegative caadons vartable Vo denote the cumulative damage Tevel of the system
i operation at ume ¢ 00 is the sum total of the damages suffered due o shocks recened
by the system by time 1.

The damage process affecimg Vo is controlled by means ol 1 continuous prey: ie
maintenance expenditure rate o= [0A] where (the budget) M < e« Maintenance 1~ .« med
at protecting the system from the undesirable environment so as to retard the rate ae which
shocks are received and o dampen the mugnitudes of damages intlicted by them 1l
Alar) > U be the probabilistie rate at which shocks occur if the maintenance rate is s Thus, of
the muintenance rate s a constant # through time, the time interval between successive shocks
s exponentally distributed with the mean /A Gn) o Let a nonnegative random variabie ) denote
the magnitude of damage caused by o shock and let GG {m) be the cumulatine distnibution
function of }. parametrized by the maintenance rate g Thus, Aten) D - G G| s the pro-
babilistic rate at which shocks causing damage i excess of 1 oceur if the maimtenance espendi-
ture tate s m

I X, = vis the dumage lesel ust prior to ume £ and if the system receives a shock at
time . causing an addiional damage of magnitude v (so that X, = 2 = v« 1) then the s aem
may fail instantancoushy with a probahiiity denoted by p(z), depending on the new cumulative
damage level 20 while with probabihiy [T - ptz)] it endures the shock and continues to operate
It the system fails at ume it must be replaced immediately by a new one at the toreed
replacement cost ¢ > 00 Fyen af the system survives the shock. it mayv still be replaced
instantaneously at a voluntary replacement cost € > 0. In either case. the replacement deci-
sion at tme 7 will be denoted as & = 1, while «, = 0 corresponds to the nonreplacement deci-
S10Nn.

I Y = v 2 0 lct r(x) 2 0 denote the instantancous rate at which the svstem gencerates
revenue from its operation  Suppose that future revenues and costs are discounted conting
ously at rate « > 0, so that ¢ "5 the present value of one dollar carned 7 ume umits Hiom
now

By o Creplacement and mamtenance) pohicy & we mean a pair (6,80 of functions of tne
system state v denoted as & 10 <0 — 101 and 8- 10,000 — J0. ML Here. the replacemen:
rule &, specifies replacement of the system oan state v which s mandatory if the svstem s
down) af &,0x) = 1. while 6,001 = G speaties the nonreplacement decision. Smularb . 0 e
SYSIEM s in state v the mantenance rude &, speaities a maintenance expenditure rawe oty -
[ 4] In hight of the results by Stone (T4 and Phiska 1121 on controlled jump processes. 1 s
reasonable 1o stipulate that a pevises the replacement and nuantenance decisions onh o <
times. depending on the state of the svstem then

Finally o let Fo0 0 denote the net expected discounted return from empioving the pelns -
over an mfinmite plannme honzon, starling with o ssstemoan state v - O Lot 1oy “p

Fotv) be the maxtmum possihle return obtnable A palicy &7 s sard 1o be oplimad o 0 0
= i) forall v 2 00 In order to characterize the optimal return tunchion b oand the opt !
policy 8* we need to muake certamn assumptions on the model parameters

B. Assumptions

Repardme the effectiveness of proventive manntenance expenditures i dampomny
“nock process, we assumie that hieher expenditure tates i protect the sestem hetter ondas <o
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result i lower probabibistic rates A () 1 G o fm ) ar which additional damages in excess of
amy given quantity v occur  CThis s analogous 1o the stochastic monotonicity assumption, as,
for example. m Derman [31) 0 As o the system failure process, it is reasonable to suppose that
the svstem may tarl only at shock times and that the probability p () of its failure increases in
the resulting cumulative danage level - but only at a decreasing rate. We state these probabilis-
L assumplions a8

Assumption P

(i) For any tixed v 2 0, Atm) [1 - GtvIm)] is continuous and nonincreasing in
mo€ [0.MI In particular, taking v = 0. A Gn) is continuous and nonincreasing in
m ¢ [0.M].

(i)Y The failure probability p(2) is nondecreasing and concave in the cumulative dam-
age level 2 2 0"

With respect to the economics of the system operation, we assume that an operating Sys-
tem In state v 2 0 generates revenue at rate #(x) which is nonincreasing and convex in the
cumulative damage level. This reflects a degradation in the system performance as the damage
accumulates but at a diminishing marginal rate. On the replacement cost side, we assume that
the cost C- of replacing a tailed system is higher than the cost C of a voluntary replacement of
a working system {(possibly due to the salvage value differential), thereby providing an incentive
to replace the system betore failure.  Also. to make this system operation and replacement a
worthwhile undertaking. it 15 essential that the cost ¢ of a voluntary replacement be compen-
sated for by the present value » (/o of the infinite hofizon revenue that a system maintained
in mint condition would generate. We summarize these cconomic conditions as

Assumprion F

(i) The revenue rate #{x) ts nonnegative, bounded, nonincreasing and convex in the
damage level x 2 0and r(0Ya > ).

Gid The replacement costs C) and Co satisfy C, > ¢ > 0.

The above assumptions. P and F, will be used to characterize properties of the optimal
value function b and the maintenance and replacement rules (in Theorems 1.2 and 3), while to
show that P is positive (in Theorem 4) and to provide bounds on optimal policies (in Theorem
S) we impose the tollowing simple and easily veritiable condition on the problem parameters,
which ensures that the overall operation of the system is a profitable one.

Assumption R, There exists an  m* € [0.M] such that m* £ lim r(x) and
Loy — m /e + A tm*) ] = Cs.

It says that the net expected discounted profit generated by a new system that is main-
tained at &« small enough expenditure rate m* until the next shock makes up for the cost of a
failure replacement that might be necessary. Generally speaking, if the revenues generated by
operating the system are "high” cnough in relation to the replacement costs, if the shock

“Hos posstble torelay Assumption P o by reguinng that gt be concave onh on the region of values of 2 on winch
240 s not equdl to one
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process is sufficienty "slow” and "mild” and if the failure probability is "small” enough, then it is
possible 10 make the system operation a profitable one: Assumption R constitutes one particular
set of such conditions.

C. The Model Dynamics

Under a policy 8 = (8,.8,), the cumuiative damage process | X,.r 2 0} evolves as a non-
terminating pure jump process as follows. If the state of the system in operation at time ¢ is
X, = x and if the replacement rule specifies §,{x) = | then the system is renewed instantane-
ously. yielding X,. = 0 at a voluntary replacement cost €y, while 6,(x) = 0 leaves the system
state unchanged until the next shock. Given Y,, = x 2 0, the maintenance policy specifies a
continuous maintenance expenditure rate 8,(x) € [0,M]. Then the sojourn time S in state x is
exponentially distributed with parameter A(8,(x}). During this interval, the system generates
revenue at rate r (x) and is maintained at an expenditure rate 8,(x) and thus yields

(n < . |
f“ J:) e lrtx) — mlduh tm)e My

= [r{x) = 8.0}/ |« + AB, ()]

as the expected discounted profit until the next shock. Similarly, the net return from the next
shock onwards will be discounted by the expected discount factor

(2) f“m e ABLx)) e N s = ABLx)) /e + X B(xN].

The next shock causes damage of magnitude y according to the distribution G (dyim), so
that the postshock state is X, ., = x + v. At that instant the system fails with probability
plx + v), in which case it must be replaced (i.e., 8,(x +y)=1) at cost C,, so that
X....,. = 0. If the system does not fail, which happens with probability [1 — p(x + y)], and if
5.y + v) = 1, the system is replaced at cost €, and X, ,,,, = 0, while if § ,(x + y) = 0 then
the system continues to operate in state X,,,,. = x + y. In any case, §,(X,,,,,) is the expen-
diture rate at which the system is maintained until the following shock, and the process repeats.

Our objective is to investigate an optimal decision rule 8 * = (3,,8,) which specifies the
replacement and maintenance decisions 8 (x) and 8,(x) as functions of the cumulative damage
level x at each shock instant, so as to yield the maximum expected discounted net return
bo*(x) = Vix) for each x 2 0. In the next section, we analyze this problem in the stochastic
dynamic programming framework.

3. OPTIMAL RETURN, REPLACEMENT AND MAINTENANCE

In subsection A below, we first provide the dynamic programming functional equation
satistied by the optimal return function ¥(x), which is then shown to possess, under Assump-
tions P and E, certain "nice" properties. In subsection B, we make use of these properties of V'
to characterize the structure of optimal rules 8, and 8 ;, while in subsection C, Assumption R is
employed to derive interesting bounds on 8, and 8 ;.

A. The Optimal Return Function

In order to analyze the optimal return V(x), we first define V,(x) as the maximum
expected discounted profit over an infinite time horizon, starting with a system in state x and
given that exactly n more shocks will eventually occur. This is analogous to the approach in
Lippman [8] and enables us to interpret n as the time index, yielding the Bellman dynamic pro-
gramming recursion in a discrete time format as follows.
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torallw =1, 2. . cand v 2 0,

3 oo = Max {1, () — ¢, U, )

1

where

(4 Cotvr = Max T b0 o),
w0 AL

and the operator £, 15 detined by
(5 b, ) =1{rtad) = m + f”. {1V, o+ ) [ = pix + )]
+ (b, 0 = Colpty + v Gldyim)l o + A (m)]
and
(6) boov) = Max[r(0)/a ~ . rix)al.

These equations may be interpreted as follows. 1t the system in state x facing n more shocks is
replaced voluntarily, the net optimal return would be V, (0) — (', since n more shocks still
remain. On the other hand, mantaming it at rate m vields [r{x) — ml/ja+x (m)] as the
expected discounted profit until the next shock. according to (1), If the next shock is of mag-
nitude v (determined according to G ldv!m)) . the optimal return from thenonis V, | (x + )
orovided the svstem  survives the shock (ie., with probability [l — p{x + »)]) and
bty = (s otherwise, discounted by the expecied discount factor Aim )}/ {a + X {m)], as in
2 Finally, with no more threat of future shocks (i.e., n = 0), maintenance expenditures are
annecessary and we may or may not replace the svstem, which will be operated from then
onwards without further deterioration.

LEMMA 1: Under Assumptions P and k. for each n = 0,1,2, ..., the functions V,(x)
and U, (x) are bounded, nonincreasing and convex in x 2 0.

PROOF: Boundedness tollows from
(7 ra 2 1,0 2 - M+ Cila + MM/ a. /

since r{0) is the highest rate of return oblainable, while, in the worst case, infinitely many
shocks occur and each requires a fuilure replacement in spite of employing the maximum possi-
bie muaintenance rate. To prove monotonicity and convexity of ¥, by induction on #, note
from (6) and Assumption E (i) that V', has these properties. Suppose that V, _, is nonincreas-
ing and convex. From (3) and Assumption E (i) we have V, | (x +v) 2 V,_, (0) — C,.
Using this. together with the induction hypothesis and Assumption P, it can be checked that,
for each y, the integrand in (5) is nonincreasing and convex in x. This, together with Assump-
non E (i) yields monotonicity and convexity of T,, ¥, | for each m. Since these properties are
preserved under the maximization operation, we have U, and hence V, nonincreasing and con-
vex
1

Q.E.D.

From the definition of V), it is easy to see that V, < FV, (foralln =12, ... ie., per-
mitting more shocks can not improve the total return obtainable. Thus, the sequence of func-
twons { Vo n=0.1,2, ... .} is bounded as in (7) and nonincreasing, so that ¥ = lim V, exists

n—ro

and 1s the maximum net expected discounted return over an infinite horizon, given that an
unlimited number of shocks will eventually occur. By standard contraction mapping arguments,
15 the unigue solution to the following functional equation, which is similar to (3) and (4).

(8) Fixt = Max{#(0) — ), Ulx)}, x 20

where
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9) Ulx)= Max T, Vix)
me [0Af]

and T, is the operator defined in (5).

Since the properties of U, and V), is Lemma | arc preserved upon taking limits as n—oo,
we have the following.

THEOREM 1: Under Assumptions P and E. the optimal value functions U{x) and } (x)
are bounded. nonincreasing and convex in x = 0.

B. Optimal Replacement and Maintenance Policy

From (8), it is clear that the optimal replacement rule 8, specifies the replacement deci-
sion 8, (x) =1 in state x if and only if V(x) = V(0) — (. Similarly, the optimal mainte-
nance rule 8, specifies in state x, the smallest expenditure rate 8, (x) which attains the max-
imum of T,V {x) in (9) over m € [0,M]; our continuity and compactness assumptions assure
the existence of this maximizer.

We first show that, in our model, the optimal replacement rule 8, has the well known
control limit form (as in the models of Derman [5], Ross [13], Taylor {15}, Feldman [6,7] and
others).

THEOREM 2: Under Assumptions P and E, there exists an x* €[0, 0] such that 8, (x)
= 1 if and only if x = x*
PROOF: By monotonicity of U and definition of 8,", we may define
(100 x*= inf{x 2 0:V(0) — C, = Ulx)}.
Q.E.D.

Next, we show that the optimal preventive maintenance expenditure rate is nonincreasing
in the damage level of the system. This may be viewed as a stochastic analog of the resuit of
Kamien and Schwartz [8] and Thompson [14], wherein the optimal maintenance rate is shown
to be decreasing in the chronological age of the system. Indeed, it is reasonable to expect a
reduction in continuous maintenance as instantaneous replacement becomes more imminent.

THEOREM 3: Under Assumptions P and E, the optimal maintenance rate §,(x) is
nonincreasing in x € [0,x*), where x* is given by (10).

PROOF: If x < x* then from (8) and Theorem | we have V(x) = U(x), which can be
seen to be equivalent to

11) aVix)= Max [rix)—m— flx.m)]
mel0.M]

where
12 flem) = V() — Vixty]
+ [Vlx+y) = VO) + C,) plx+y)) A(m)YG (dyIm).

Take x; € x; < x* so that we need to show that 8; (x;) 2> 8, (x,). We first show that
[/ (x;,m) — fix,.m)] is nondecreasing in m€ [0.M}. Now

”3) U.(Xz,m) - f(X|,”1)] =

o0

0 g (. xA (m) Gldy|m)
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where
A gy = [Hs) = Vlo+n ] = V) = Fix+)]
+ o) = HO) + Gl play +3)
= [y + 0y = VO + Gl plxy +3)
= [V = V)] + [V g+ — Vlo+e)] [T = plx+)]
' + [P oty — 50 + G [plo+y) — plo+y)l
By monotonicity and convexity of 1" (Theorem 1) and monotonicity of p (Assumption P (ii)),
the second term in the above expression is nonincreasing in ). Also monotonicity of V, con-
cavity of p and the inequality V(x) — V(0) + C,2 Vix) — V(O + C, 2 0 (since C; 2 C,
and } satisfies (8)) imply that the third term is nonincreasing in y. Thus, g (x;.x;,y) is nonin-
creasing in v, This, coupled with Assumption P(;) now implies that [f(x,,m) — fl(x;,m)] is
nondecreasing in m€ [0.M]. Since 8, (x) attains the maximum on the right hand side of (11),
the above implies that 85 (x|) > 8, (x,), whenever x, 2 x,, because otherwise we would have
[I’(_\':) - 5;(_\'3) - ‘/.(_\‘3.8;(7\'2))] - [r (,\']) - 82.(.\'2) - ./.(.\’1.82.(.\'2)”
< [r(,\’;) - 5;(\\‘[) - _/A(.\'Q,S;(Xl))] h lr(.x‘|) - 8;(.\']) - ./v(Xl.B;(X]))]
1.¢.
s [f(,\':) — 82.(.\'3) - _,.(.\'2,8;(X2))] + [f (.\’]) - 62.(A\|) '/'(,\‘1,82'()(1))]
’ < [rley) = 8500 ~ fIxn 8 e+ [rixy) =8, (x;, = £(x.86, ()],
contradicting optimality of 8, (x) when in state x.
Q.E.D.
Thus, by Theorems 2 and 3, the higher the state of deterioration of the system the less
should be the maintenance effort to prevent further deterioration and, as soon as the deteriora-
tion level exceeds a critical value, the system should be replaced by a new one.
C. Bounds on Optimal Policy and Return

So far, with Assumptions P and E. there is no guarantee that even the optimal policy will
result in a profitable system operation over the longrun. This is precisely the purpose of
Assumption R, as the following Theorem 4, shows and this fact will also be needed to establish
bounds on x* and 8, (x} in Theorem 5 below.

THEOREM 4: With Assumptions P, E and R, the optimal return V(x) is positive for all
x 2 0.

PROOQF: Consider a policy 8 = (5,,8,), where 8,(x) = | and 8,(x) = m* for all x > 0,
where m”* is as in Assumption R; thus & replaces the system at every shock and always specifies
the constant maintenance rate m* The total expected discounted return, starting in state x and
following this policy 8. is, therefore

Volx) = [ro=—m*l/la + Am*)] + Am*) [F0)=m*)/ lala +A (m*)]]
—Am*) K (x) + A(m*) KO al/la + A (m*)],
where

K =+ (= [ plactn) G ldvm®)
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is the expected replacement cost upon receiving a shock. Since (; 2 K(x) 2 K(0), we have
Falx) 2 [rix)=m*V e + Nm*) ] + A Yallr Q) —m*)/ [ + Nm*)]=C5) > 0,
by Assumption R. Since F(x) 2 Fi(x) for all x, the proof is completed.
Q.E.D.

Our final objective is to derive bounds on the optimal policy & *.

THEOREM 5: Under Assumptions P, E and R, we have
(15) x* < b,
where b = inf' B,
B={x20; ml?'ll(z)xl‘):” {lr(x)=ml/Ntm) — (Cy— (’,)ﬁ) plx+y)Gldylm)} < 0)
and
(16)  8,(x) < rix). x€[0,x*).
PROOF: To prove (15), in view of (8), it suffices to show that V(x) > U{x) whenever
x € B. Suppose x € Band Vix) = U(x). Now
UG) < Max | ro=m + [ Vl-pix + )]

+ V) — Gilplx + )N (m)Gldy lm)}/ la + A (m))
€ Vix) Max {Atm)/la + A(m)))
me{0.M]

+ mlg&‘):“ {rix) ~m +j:) [ Vix)

+ V(0) — Gylp{x + ¥) A (m)G (dy|m)}/la + X (m)]
< Vix) Max {Am)/[a + A(m)])
me [0,M)
+ mMﬁll {rix)—m— f() (Cy— Cplx + yIN(m)Gldy|m)}/ la + A (m)]
< Vix) Max a(m)/la + A(m)]
me[0.M]
< Vix),

yielding a contradiction. In the above argument, the first inequality follows from V(x + y)
< Vix) (Theorem 1)}, the third one from V{(x) = V(0) — C,, the fourth one from the fact
that x € B and the last one from V{(x) > 0 (Theorem 4). To prove (16) by contradiction, sup-
pose that 8, (x) = r{x) for some x€[0,x*). Then

Vix) = Ulx)
={rix) — 8;(x) + fum {(Vix + il = plx + )]
+ (V0 = Glpx + p)INB, () Gy |8, (x DY [ + A (65 (x )]
SAGBTEO e + MG [TV (x + ) [1=plx + 1]
+ [V(0) — Cilplx + WGy, (x))
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SAGTON o + A G NV (x)

+ J:"‘" (V) - C,— V(x)]px + »)Gldy s, (x)))
< VOG0 la + 265 (x))]

< Vix),

again yielding a contradiction. Here the first two equalities follow from the definitions of x*
and &, respectively. The first inequality follows from the hypothesis that 8,(x) > r(x), the
second inequality from monotonicity of V, the third one from x < x* and the last one follows
by positivity of }.

Q.ED.

The bound in (15) may be interpreted in terms of a "one-stage-look-ahead” stopping pol-
icy, as, for example, in Ross [13, p. 183]. Suppose we postpone the voluntary replacement of
an operating system until the next shock in the hope of "squeezing” additional revenue out of
it. However, such a postponement would involve the risk of a higher forced replacement cost
due to possible failure the next shock might cause. The first part of Theorem 5 in essence jux-
taposes these two conflicting factors in specifying an optimal replacement strategy. It asserts
that if the net expected revenue until the next shock, [r(x) — ml/A (m), cannot at the least

overcome the expected extra cost (C; — () fo p(x + y)Gldylm) due to possible failure
replacement at the next shock, for any choice of maintenance rate m, then it is best to replace
the system right away instead of waiting. The second part of the theorem says that "living
beyond one's means’ cannot be the best maintenance strategy, even in a favorable environ-
ment. i.e.. that the optimal maintenance rate is always strictly less than the rate at which the
machine generates revenues, as given in (16).

4. AN EXAMPLE

In this section, we illustrate the model and results by providing explicit solutions for a
specific example. Consider a system which fails when the cumulative damage first exceeds a
prespecified threshold ¢ (see, e.g., Buckland [2], Section 1-10), so that the failure probability
function p(-) is given by

(17 0if0<z<d
PEY=1 ifz:>d

which is trivially nondecreasing and concave on [0,d) as per (the footnote of) Assumption
P(ii). Suppose that the shock rate A(m) =\ > 0, independent of the maintenance rate
m€[0,M], and that each shock causes either zero damage (so that the system survives) with
probability m/M or damage of magnitude d (resulting in a system failure) with probability
1 — m/M, i.e., the distribution of damage caused by a shock is

(18) mIMif0<y<d
G(y|m)= 1 |fy>d

Then, A (m) [1 — G(y|m)} is (linearly) decreasing in m, as required in Assumption P(i). We
may take the economic parameters r, C, and C; to be arbitrary ones satisfying Assumption E,
although for expositional simplicity we take the reward function r{x) to be strictly decreasing
and convex in x (e.g., r(x) = ke ' with k > 0) and, to rule out trivial solutions, we suppose
that
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(19 [0 = r( /(@ +X) 2 C,.

The optimality equations (8) and (9) now become
(200 Vix) = Max {V(0) — C.U(x)}

where

Q1) (a +A) Ulx) = N‘“’c)l):” rx) = m +A[VxIm/M + (V(0) — C,) (1 — m/M)I).

The optimal solutions ¥, 8," and 8, depend upon relative magnitudes of certain problem param-
eters, as given in the following three disjoint and exhaustive cases. In each case, it can be
verified in a straightforward manner that the given solutions satisfy (20) and (21).

CASE (i): C;— C, > M/\.

In this case, the optimal return is the convex nonincreasing function given by
(22) [rix) = M/a if x € x*
VOO =10 - Mlja—C, if x > x*
where the critical replacement level x* satisfies
23y  r(x®) = r(0) —a C,.

In light of (19) and the strict monotonicity of r, we have x* < d and that x*is unique. As for
the maintenance rule, we have 8,(x) = M for all x€[0,x*), specifying the maximum mainte-
nance rate until replacement, since in this case the replacement cost differential is higher than
the maximum maintenance cost until failure.

In this case the solution turns out to be

24 [r(x) = Ml/a, 0<
Vix) = {lr(x) +A17(0) = M)/a = Cil}/ @ +1), X <
{r) — Ml/a - C, x >
where x* satisfies
(25 rix*)=1r0)—a C, -~ M +A1(C,— ()
and x satisfies
(26) r(x)=r(0) —a[C;— M/r].

Again, &, specifies replacement whenever x > x* The optimal maintenance policy 8, is of the
“bang-bang" type and is specified in terms of the switchpoint X (which is less than x* since
(Cy;— C)) £ M/A) as follows:

an Mif0<x<%
Pa(x) = 0ifx < x < x*

Frem (26), note that X is increasing in C,.
CASE Gii) C,- Cy < C, € M/\,

In this final case, we get
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(28) ' reOla + X)) + A0/ @ +0) — Cl/a x < x*
bl = r{M/a — ) =X Cyla X< xt

where the control limit x* satisties
: 129)  r(x*) = r(0) — (@ +A) C,
and identically zero maintenance rate {i.c., 8, (x) = 0 for all x € [0,x*)) is optimal.

In all three cases, from (23}, (25) and (29}, we observe that the optimal control limit x*
is decreasing in C, (or (C, ~ (C))) and increasing in C,. Similarly, the switch-point x at which
the optimal maintenance rate switches from M to 0 is increasing in C, (or (C,— Cy)} and
decreasing in ;. Thus, the higher the replacement cost differential (C, ~ C,), the greater
should be the intensity of preventive maintenance and replacement effort. For a concrete
example. consider d =1, rlx)=1-x and C; > 0 fixed. Then Figure 1 displays the
parametric behavior of the optimal critical value x* (shown by the solid line) and the optimal
switch point X {(shown by the broken line) as the forced replacement cost C, is varied.

Finally, notice that under optimal policy, in cases (i) and (ii) at most one replacement
ever lakes place. while in case (iii) the system is replaced at every shock. In short, our analysis
has delineated conditions under which it will be optimal to actually utilize the maintenance
capability available for buffering the system completely from shocks.

t

(Q+>\)C1 + — "

* 2o, + M-3(C,-C)) ]

1 e
] ’,’
! ,/’L§ = a(C,y-M/})
4 // ’
_-.L___.- R —— O S ST R ’.’_ . . —— e fe——— C2
C, M/ Cy + M/

bt R

5. CONCLUDING REMARKS

In this paper, we have integrated the problems of determining optimal preventive mainte-
nance and replacement schedules for a system that is subject to stochastic deterioration and
failure induced by a shock process. Under reasonable assumptions, we have proved that the
maximum obtainable return and the optimal policies have appealing features and we have iltus-
trated these by means of an example. We conclude the paper by discussing some implementa-
tional aspects of the model.

N
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In practice, the state of the system x may be observed in terms of some convenient surro-
gate measure of system efficiency, accuracy or wear such as the produciion (or revenue) rate,
fraction defective produced, energy consumption rale, etc. Accounting and financial informa-
tion may be used to estimate the discount rate and replacement costs ) and (', which depend
upon such economic factors as wage levels, prices and opportunity costs of lost production dur-
ing replacement delays.  Statistical estimation of the parameters A and G of the shock process
and the failure probability p would require observations on the system performance together
with simulation experiments. The numerical computation of optimal policy itself would require
discretization of the performance space and maintenance rates m, so that standard algorithms
such as the policy improvement routine (sce. e.g.. Ross [13]) can be employed. Given the
simple structure of the optimal policy, its implementation may be based on a control chart type

procedure by establishing control limits {x,.x;. ... x;} on the system deterioration level x, so

that, if x = v, the system should be replaced: otherwise if x,°, € x < x". it should be main-
tained at an expenditure rate m,, greater deterioration corresponding to smaller expenditures.

The selection of control limits may also be based on simulation studies.
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ABSTRACH

Lhis paper s a state-of-the-art review of the literature refated o optimal
mamienance models of systems subject 1o Tdure. The emphasis 1s on work ap-
peaning sinee the 1976 survey . "A Sunves of Maintenance Maodels: The Control
and Surverllanee of Detenorating Systems.” by WP, Pierskalla and J.A. Voelk-
er, published in ths journal

1. INTRODUCTION

Maintenance involves planned and unplanned actions carried out to retain a system in or
restore it to an acceptable condition. Optimal maintenance policies aim to minimize downtime
while providing tor the most effective use of systems in order to secure the desired results at
the lowest possible costs. Proper maintenance techniques have been emphasized over the past
two decades due to increased complexity of systems, increased quality requirements and rising
costs of material and labor. The two old concepts of maintenance: loving care (the reliability of
the ecquipment is directly proportional to the frequency of maintenance), and emergency
replacement {operate equipment until it is inoperable) may not be optimal. Both methods lead
1o improper maintenance, excessive breakdowns, and high costs. Since the 1965 and 1967 sur-
veys on maintenance by McCall and Barzilovich [315,34], a great deal of research has been
donc in the field of optimal maintenance modeling, involving the aspects of optimal preventive
and preparedness maintenance policies. Tables 1-3 give the references in various classifications.
Some references appear more than once in Table | because these papers consider two or more
topics related 1o maintenance models. Also, some papers are not referred to in Table 2 because
the topics of these papers were not concerned with any specific mode! type.

2. OPTIMAL MAINTENANCE MODELS

The literature related to optimal maintenance models is classified as follows:
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Optimal Maintenance Models

I, Deterministic Models
2. Stochastic Models
A. Under Risk
B. Under Uncertainty
1. Simple System
2. Complex System
a. Preventive Maintenance {(periodic, sequential)
or
b. Preparedness Maintenance (periodic. sequential,
opportunistic).

Optimization techniques employed for obtaining optimal maintenance policies include the
following:

Linear programming
Nonlinear programming
Dynamic programming
Pontryagin maximum principle
Mixed-integer programming
Decision theory

Search techniques

Heuristic approaches

The characteristics of each optimal maintenance model considered in this survey will be
explained briefly,

2.1 Deterministic Models
These models incorporate the following assumptions:

® The outcome of every maintenance action is nonrandom.
® Maintenance action restores the system to its original stale.

® The purchase price and salvage value of the system are taken as
given functions of its age.

® Aging (were and tear) increases the costs of operating the system.

® Aging failure is not necessarily operational failure.

® All failures are new, and can be observed instantaneously.

¢ By prolonging the operating life of the system through

maintenance, costs are incurred and benefits may increase.

The opumal maintenance policy for deterministic models is periodic and the times
between successive maintenance actions must be equal.

2.2 Stochastic Models Under Risk
Risk is @ ime-dependent property that is measured by probability. For stochastically fail-

ing equipment under risk, it is impossible to predict the exact time of failure; but the distribu-
tions of the time to failure of each component of the system are known.
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2.2.1 Simple System Preventive Maintenance Model (periodic, sequential)
[his model utilizes the Tollowing assumptions:

® [ he system time to failure is a random variable with known
distribution

® The systemis either operating or failed.

® luilure is an absorbing state.

® Maintenance action regenerates the system immediately upon
completion.

® The itervals between successive regeneration points are
independent random variables.

® The maintenance cost is generally higher if undertaken after

an operational failure than before.
The optimal policy for various assumptions is as follows:

® For systems with unlimited lifetime. the opumal preventive
maintenance policy is the strictly periodic one—i.c..
maintain system at fatlure or at an age 7.
whichever occurs first.

® For systems with constant lailure rate texponential) s maintain
at failure.

e [or systems with increasing faillure rate (Weilbull, gamma. ...,
cte., for some parameter values). maintain on progressive schedule.

® Lor systems with limited litetime {(process with a relatively
short liteume. or equipment subject to rapid technological
change) . the best preventive policy is the sequential one.
This sequental policy recaleulates the maintenance age
1oatter cach overhaul Tt actually attempts to
minintize the expected cost of system operation over the
remaining lite ot the process.

2.2.2 Simple System Preparedness Maintenance Model (periodic. sequential)
This model utilizes the following assumptions:

® The svstem time o farlure is a random variable with
known distribution.

@ The actual state of the system is known with certamty
onby at the time of inspection or mamienance.

® bailure is an absorbing state.

2.2.3 Complex System Preventive Maintenance Model (periodic, sequential.
opportunistic)

This model is an extension of 2.2.1 for complex systems. The optimal policy for various
assumptions is as follows:

® [f the parts constituting the complex system are interconnected
in such a way that they can be considered as stochasucally
and cconomically independent, then the optimal maintenance
policy for this complex system reduces to that of the simple
system, i.e.. employ a periodic or sequential preventive
maintenance policy for cach separate part.
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® |} mdividual parts cannot be considered as stochastically and
ceononucally imdependent. then a pohicy catled the
opportunistic mantenance pohcy witl be more effective. Under
this pohey . the maintenance of a single uninspected part
depends on the state of one or more continuously inspected
parts . The opportunmistic maintenance pohicy is advantageous
when the cost of i joint mantenance action s less than the
sum of the cost of the separate muarmenance actions.

® I 4 compley sysiem is composed o a large collection of
identical units of equipment. then a block maintenance
policy may be advantageous. Under this policy, cach unit
is replaced on fadure, and all units are replaced at
periodic mtervals, 12T 3T, .., without
regard toandividual unit age. Scheduled and unscheduled
maintenance can be combined. Consequently, this
policy 1y casier to implement, and results in lower administrative
and maintenance Costs,

2.2.4 Complex System Preparedness Maintenance Model
(periodic, sequential, opportunistic)

This model is an extension of 2.2.2 for complex systems. The optimal policy for various
assumpuons is as tollows:

® i the complex system is under continuous surveillance,
then this model reduces 10 the preventive maintenance
model described under 2.2.3.

¢ [f the complex system is not inspected, then the only
maintenance policy 1o secure the highest tevel of
preparedness is replacement.

2.3 Stochastic Models Under Uncertainty

For stochastically failing equipment under uncertainty, the exact time of failure and the
distribution of the time to failure are not known,

2.3.1 Preventive Maintenance Model for Simple and Complex Systems
The optimal policy for various assumptions is obtained as follows:

® When the system is new or failure data are not known,
the minimax techniques are applied.
® When information about the system (failure rate, . ...
etc. ) is partially known. Chebyshev-type bounds are applied.
® When subjective beliefs about the system failure are known,
Bayesian adaptive techniques are applied.

2.3.2 Simple (complex) System Preparedness Maintenance Mode!l

The technigues of minimax strategies. Chebyshev-type bounds and Bayesian adaptive poli-
cies can be applied to this model as explained under item 2.3.1.
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TABLE 1. General Classification

Type ) References o
24.29.30. 81, 104, 106,
241,242, 251, 253, 254,
259, 263, 280, 297, 337,
434,435,475, 482, 498, 518

Inspection

Maintenance 1.S-10. 13,15, 16, 24.
31-37. 41, 49-58, 60-70).
74-82. 89-97_101-1006,
115-120, 121-131, 146,
154-161, 161-169, 172,
177-183. 193, 202. 205
211,224, 233, 238,
242-252, 255-257, 266-277,
283-290, 295-301, 304,
315-329. 334-348. 359-382.
384-403, 408-421. 433, 438,
444-452. 470-475, 482-499,
502-513, 516

Reliability 2-8. 11-16,21-29. 38, 39,

49-71, 77-92, 108-119,

123-133, 147-156. 162-189,
197-213, 221-238, 241-245,
258-271, 277-294, 303-318.
314-317, 326-347. 352-369.
372-376, 385-392, 398, 408,
419, 431-438. 450-464,

494-500. 506, 511, 515-522

Optimization Techniques 5, 13, 18,42, 103, 140,
141, 188, 195,197, 219,
244 248, 252-256, 357-367,
383. 418, 442, 480, 487,
497

Decision Theory 15-20, 26-33, 34-51. 73-90,
99-117, 134-152, 158-162,
190-201, 217-228, 230-237,
243-251, 255-260, 273-276, \
294-297, 307-322, 3316-340,
355-360, 404-413. 422-430,
4309-443_ 455-469. 475-489.
S12-516. 523, 524
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PABLE 20 Classiticatton of Maintenance Models v Type

Stochastic, Under Risk
Preventive

Preparedness

Opportunistic

Stochastic, Under Uncertainty

References

B AT VIS R BT BT T

234,264, 335, 365, 366,
IR0 384, 394 395401,
442, 487

Jo00 13 1S 17, 2],
22-290 34-51. 6972,
TIROTI4-116. T19-124,
138-152, 173184, 225-240,
2510261-280, 323-352,
364-400. 4471486, 513-516
10032, 43,56, 73,81, 92,
HOO. 104, 106, 170,179,
211.0213.237, 241, 243,
253,259, 297300, 324,
3380342, 343, 369, 403,
411,435, 469, 485
1947199, 316, 353-355,
384,392,402, 437, 483,
493,511, 512

10018, 34,43, 75, 86, 90,
100,104, 105, 117, 118,
125,126, 132, 157, 167,
173,185,195, 209, 236,
252,255,373 417, 418.
422,433,436

TABLE 3. Classification by Type of Applicable
Optimization Technigues

Technique

References

Decision Theory

Dynamic Programming

Lincar Programming
Mixed-Integer Programming
Nonlinear Programming

Pontryagin’s Maximum Principle

Search Technigues
Simulation Techniques

14, 6-11, 14-39. 33-139.
142-190, 192-218. 220-226.
228-243, 245, 249-251.
259-337, 359, 361-370.
372-376, 385-387. 390-396.
400-441, 443-460. 463-479.
481, 483-496. 500-524
40-42. 191, 199219, 244,
246, 252, 255-258. 360, 442,
462. 480, 488

103. 271, 497

384-497

191,227, 247248, 257

SO 13,140, 141, 389, 447,
48

339,371, 377

374, 397, 499
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BOUNDS FOR STRENGTH-STRESS INTERFERENCE
VIA MATHEMATICAL PROGRAMMING*

Geung-Ho Kim

State University of New York
Buflulo, New York

ABSTRACT

Problems of bounding Pr (Y > }. when the distribution of” X is subject to
certain moment conditions and the distribution of Y is known 1o be of convex-
concave type. are treated in the framework of mathematical programming.
Juxtaposed are two programming methods: one is based on the nation of weak
duglity and the other on the geometry of 4 certain moment space.

INTRODUCTION

Let X and its cumulative distribution function F(-) represent the strength variation of a
certain system, and let Y and its c.d.f. G(-) represent the variation of the stress to which the
system is subject. When X and Y are statistically independent, the quantity R = Pr{X > 1} =

G(1) dF(t) is commonly referred to as the reliability of the system. The problem of
estimating R has been addressed in the literature in a variety of different contexts. Among
such contributions are Birnbaum and McCarty’s [2) nonparametric procedures for confidence
intervals, Govindarajulu’s [7) improvement on Birnbaum and McCarty’s work via asymptotic
normality of R, Church and Harris’ [4] parametric procedures for UMVU estimation and
confidence intervals, Enis and Geisser's [6] Bayesian inferences on R, and Bhattacharyya and
Johnson's [1] generalization to multicomponent systems. In this study, we are interested,
rather, in bounding R with respect to F for fixed G, and in determining the corresponding
extremal distributions F*

We note that this problem is a slight modification of the classical variational problem
underlying the Tchebycheff inequality; we need only replace G in the expression for R by a
fixed symmetric set characteristic function, and then maximize R subject 1o given values of the
first two moments of X. We note as well that both problems are special cases of what in Karlin
and Studden [9] (Ch. XID, are called "generalized Tchebycheff problems.” which are treated
there. essentially, by the duality theory of linear programming.

The fact that problems of the Tchebycheff type can be solved effectively in the framework
of linear programming theory has also been documented, for example, in lsii [8], Whittle [17],
and Pyne [13]. In this paper, we treat the optimization of R through programming approaches,
which, though kindred in spirit to the above, do seem to be especially well tailored to our
problem. when the further assumption is made that G is "strictly unimodal, i.e.. is strictly con-
vex to the left of some point, and strictly concave to the right.

*This rescarch was partially supported by the Air Force Office of Scienufic Research, through Grant #78-3518 10
lowa State Umiversity
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The tirst approach. essentiadly a lincar specialization of the weak duality argument of
David and Kim |51 recommends itsell for its simplicity, but fails when extremal distributions
do not exist The second approach, based on the geometry of a certain moment space. does
suceeed 1 such situanions, but is less direct. We note in passing that Brook’s [3] bounding of
moment generating functions offers still a third programming alternative for the optimization of
R In See. 2. we outline the lirst method in conjuncuon with a certain pair of linear programs
(P,.D) . and the second method in conjunction with a certain geometnically motiviated program
P, Sec 3 devoted to the tirst method., iltustrates the construction of extremal ¢.d.f7s. in the
contest of two simple examples. Sec. 4 illustrates the second method. using the examples of
See. 3

2. LINEAR PROGRAMMING FORMULATIONS
Detine the following classes of functions:

F The class of "generalized c.d. 8" F of the torm of . where ¢ 2 0 and /7 a c.d.f. on the
line.

. The class of discrete ¢.d.f7s £ on the line with at most #+1 jumps.

4. The class of c.d.1.’s ¢ on the fine that are strictly convex to the left of O, and strictly con-
cave to the right.

4.  The class of ¢.d.f.’s G on the line that are strictly concave on [0, o] and identically 0 oth-
i erwise.

94 =4 U4, Further, we assume that a G € & possesses probability density function
g,

For a given a-tuple (1) = (1), ... . h,{1)), where each i, (1) is a piecewise continu-
ous function on the line. let CHI[/{£))] denote the convex hull generated by /1 (1) when we
vary 1 over the line. For a given point. b = (b, ... .  b,) € CH[H(E)]. we formulate a linear
program,

Py maximize [ GU) dF(D)

(2.1a) subject to [ dF(r) = |
(2.1b) S o dar =6, 1<k <
Q2.2 and F € F

where G is a fixed c.d.f. in4§g

We note that the underlying space #in (2.2), being free from normalization, is a convex cone.
Exploiting the cone structure of both (2.1) and (2.2) in conjunction with standard dual cone
theory (Luenberger [10]. {p. 157), and Sposito [15], (p. 261)), we may write down a lincar pro-
gram formally dual to P;;

D;: minimize A g8/
2.3 subject toA g (N 2 G, M1 €k,
2.4) and A = (g Ay, .. A € F L
where g8 = (1.h) and n (1) = (1.4 {1)).
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Note first, by (2.1) and (2.3), that, if F"is feasible for P; and A" is feasible for [),, then
(2.5) J Gy arw < a0 n 07 ar = ap!.

T'heretore, (as suggested in David and Kim 3], and Pukelsheim [12]), if we find a feasible
solution pair (77*. A ™) that satisfies

(2.6) f I w! = Ganlar o = o,

then €F70 A %) is in fact an optimal pair for (2,.1;), and, certainly, F* satisfying (2.6) will need
1o concentrate its mass on the "set of osculation”

2.7 T ={r € )l apiz)! - Giz) =0},

whose cardinality is bounded usually by # + 2, when the functions {G(¢), n(1}} are linearly
independent on the line. (See Karlin & Studden [9].) Sec. 3 contains detailed demonstrations
on how to construct an extremal c.d.f. F* (which turns out to be supported at only » points in
one example. and (n—1) points in another example).

Now. with special reference to the sceond approach. consider the following program P,
an essentially finite dimensional version P
P maximize f G dFCD
subject to [ (1) dF() = b 1 < K < n

and F € #,.

The fact that P, and P; yield the same optimal value follows from the general considerations in
Rogosinski [14] and Mulhotland and Rogers [11]. The reduction of P, to Pj provides a usecful
geometric version of our problem. in that the class @ of P; generates the convex hull CH (']
of the trace

F={y=1(x.....x. x ) =#0), 1 <k < noand
Ny = G1), tor some 1 € L}
Hence, we are led to the equivalent program

Py s(u’p Nyed
R

where C = CHIUL. and ¥, = vl = b 1 S &k < omon. € B

See Van Slyke and Wets [16], and Pyne [13] for similar constructions.

Since the set Cin £, . is convex, the optimal value v, of £, may be obtained by asso-
ciating this valuc with a suitable supporting hyperplane H, of C at the boundary point
thy. ....b,. x}.1). Finding the equation for #, is not easy, however, since (' is known only
through I'. In Sec. 4 the problem of finding H, is attacked by considering H, as a certain hmit
of all hyperplanes in £, | that cut or touch the set 1"

3. ILLUSTRATION OF THE FIRST APPROACH

LEXAMPLE | We wish to tind the maximum rehiability R* of a system whose strength
distribution F is known to have mean 0 and variance b > 0, when the distribution of the stress
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to which the system is subject is given by a known continuous c.d.f. G in4§ We compute R*
via constructing of an extremal ¢.d.f. F* (Remark: There is no loss of generality in fixing the
common value of the mean of F and the mode of G at zero. If their common value is in fact,
say. a positive value M, then the corresponding F**is obtained by shifting F* obtained below to
right by M.) Specializing the program pair (P,.D;) of Sec. 2 to this problem, we find the pro-
gram pair

Py maximize J G ) dF(r)
subject to [ dF (1) = 1

(3D faruy =0
(3.2) [ rara = b
and F € %

I)//l minimize Ag + /\2 b
(3.3) subject toAg + A 1 + X122 G, ¥ € E).
and A= ()\(). Al )\3) € [:;

The osculating set T(A*) of Sec. 2 now is the set of 7’s where the parabola P(7) = A +
Af7 + A7 lving above the "convex-concave” funclion G (7) touches G (r). At such 7. the
derivatives P'(7) and G'(r) must coincide, and. since P'(7) is linear and G'(r) is either
"increasing-decreasing” if G € @, or "identically zero-decreasing” if ¢ € &,. there can be at
most two such 7's. We recall from Sec. 2 that the spectrum of F* must be contained in 7(A%).
Hence, in view of restriction (3.2), the spectrum of F* consists of exactly two points s and ¢
{with respective weights p and (1—p)), which, in addition, must be of opposite sign in view of
restriction (3., sav, s < 0 < 1.

Pooling all our findings and restrictions, we write down the following nonlinear relations
in the six unknowns s. L o AR AT and A T

(RTINS sp+all=py=10

(3 6) po+rl-p)=h

3.7 AS+HAITH AN =G), 1= 51
(3.8) AT+ A3 =g(7), 7 =31

(3.9) AL> 0.

Moreover, the optimality condition (2.6) adds the further requirement

(3.10) Gis)p + G(1) - (l—=p)=AJ+A3D

Solving (3.5)-(3.10) for the six unknowns reduces to finding a positive ¢ (and negative 5 =
h/ D satisfying

(31h 172lg () + g =/ - it + b/1) = GU) — G(=b/1).

For ¢ € 4 . relation (3.11) implics that r should be chosen such that the arca under the den-

sity ¢ ) between - b/1 and 1 equals the area of the trapezoid formed by the four points

Vi) (=h/r gl=b/2) . g}, (L0}, For & ¢ &, it turns out as well that we are to

cquale the arca under g () between (0 and ¢ with the area of the triangle formed by points
LC b/, g, (O]
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EXAMPLE 2. Here we consider a slight modification of Example 17 ie.. the restrictions
(3.1) and (3.2) are replaced respectively by

(3.12) [t = b,
(313) [ telara = b,

The osculating set 7(A ™) of Sec. 2 now is the set of #7s where the wedge B (r) = A5+
Atr + At ] Iving above G (7)) touches G (7). In view of the strict concavity of G (7} for 1 2
0 and the specification of T(A*) above, the set TA*) is reduced to a certain nonnegative sin-
gleton. which fact, in turn, implies that we should confine our scarch for an extremal /7 to the
class of degenerate ¢.d.f.s. However, since those /s that satisty (3.11) and (3.12) with h) =
hs cannot be degenerate, the weak duality method requiring, as it does. the cexistence of an
extremal ¢.d.f. /7% s not applicable in this case. Only in the trivial case by = by > O can we iy
f* through T 0e.. by weak duality.

4. ILLUSTRATION OF THE SECOND APPROACH

EXAMPLE . (Example 2 of See. 3) Specializing of the formulation of £, in See. 2 vields

y . . .
Py, sup vy
Vot

where
C=CHIUL I'={xlx;=1 xo=1(), and ;= G (1)
4.1 some ¢ € £}
and
4.2) o= lxlxy = b oxo= by, und xy € £}

Since no triple of distinct points of 1" can be colingar, any such triple determines as hyper-
plane that cuts or touches . The idea of our second approach is then to find a "best triple” that
viclds the highest hyperplane at b = (b,.h5) among the collection H of all "qualified” triples w.
In what follows. using the unimodality of (., we are able to reduce W to the collection 1 of
“gualitied” pairs v of distinct points in .

To see this in detail. we tirst introduce the notation 1S} tor the projection of the set S

into the plane vi = 0. Now partiion 1" into I and 170 where s the left side of 1.
corresponding to ¢ < 0, and 1" is the right side of ', corresponding to 1 = 0. and detine

o= Dwiw satisties the condition that b € CHING0,

o= {wiw ¢ i, und any two of the three points of w in

1", with the remaining pointin b}, and W = =1,
Also. define 16w h) = height at b of the hyperplane determined by a triple w. (Note that Py,
1s equivalent to find sup hiw.h)

]

Using essentially the convexaty of G (1) tor 1 < 0, it can be demonstrated that

LEMMA 1. For any triple w € B there is a triple w’ € B such that htw’h) =

nin-h). Hence. sup Atw b)) = sup hlw.b). Nextowe define the collection of pairs
R ' we W
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b= {vlone point of vin I and the other point in v
s U sand also b CHIITHEOTL

Using the strict concavity ol GO tor ¢ 22 00 we find

LEMMA 2 sup hiwh) = sup hiv.h).

W

Tooevaluate the right hand side ol the above, we need an explicit expression for Alvih):
Parametrizimg by the tacuted angle o between HHECH v and 1107 ), and redefining #r accord-
mgiyv. we write

a b)Y = G(-8 —ag tana) -8/ + o tan «)
Glo +8 cota) o tana/d + o tan «),
where
&= 1 2h hoyoa =1 2h+ b)) anda € tr, 7w/ 2).

A further reparametrization by p o= (3 + o tan o). tand redelining /# accordingly) | vields
43 miphy opGC Ay + (0 p) Gl /(- p)op€ (0 ]).
With the expression ¢4.3) for /i the monotonicity of G allows the conclusion that

sup adipih) (;/lr).

o
Morcover. it b= b then there does not exist an extremal ¢.d.f. achieving the optimal value

Gl of Py corresponding to the fact that Tis not bounded. 1 &, = b. > 0, however, there
isan extremal cd tdegenerate at b)) achieving Gl ),

LAYAVMPEL B (Example T oof See. 3 In this case. (1) and (4.2) of Example a are
replaced by
4.4 e vy =0 v=rand vo= GU) some 1 € K]

45 o= =00y = hoand ag = €KL

Followmg the analogous argument, we reparametrize v € 17 the moditication of b per-
tnent to 44 and (450 by 0|0 7). where the angle ¢ is between the line extending
TV and the v-axis.

Forgiven b = (0.5 by letting p = 1/2 tan #. we find

nip.hy = Glp +rip)) - Nrtp) - p)/2rip))
(4.6) + Glp = rtp)) - lp) + p)/2r(p)],
where rip) = (p7 + o)1

1C1s casy 1o cheek that Atpih) s concave on (- oo, 0] and convex on (0,00} in view of the fact
that G & Differentiating (4.6) with respect to pand setung it equal to O vields

47 clp 4 rlp)) v glp  rlp)y =G + v (p)) = Glp=riph)irip),

which s to be solved tor the p*in € 20 0] that maximized (4.6). We note that (4.7) doces
reduce to (31D withr = p + rip),
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BOUNDS AND ELIMINATION IN
GENERALIZED MARKOV DECISIONS

Gary J. Koehler

Micro Data Base Systems, Inc *
Lafayete, Indiana

ABSTRACT

In discounted Markov decision processes bounds on the optimal value func-
uon can be computed and used to eliminate suboptimal actions. In this paper
we extend these procedures to the generalized Markov decision process. In so
doing we forfeit the contraction property and must base our analysis on other
procedures.  Duality theory and the Perron-Frobenius theorem are the main
tools

I. INTRODUCTION

In this paper a finite state and action, infinite horizon, generalized Markov decision pro-
cess consists of a finite set of s states denoted by S a finite set of actions A, for each i € S: an
immediate reward ¢ for each i € S and ¢ € A, and a weighted "generalized probability" p) for
Ay

each i j € Sanda € 4, Letd= ’(1 4, denote the set of decisions. For 8 € A, ¢® refers to
=

the s x | reward vector where ¢”''' is the immediate reward for using action 8§ (/) in state ¢ and

P is the s X s generalized probability matrix associated with using decision 8. A generalized
Markov decision process requires that

S0

. Py >0foreachd € A
2. p(Ps) < | foratleastoned € A

3. D=lviv2 Pv+ Pt 3 €A 2O
where p(P) is the spectral radius of the square matrix P.

Let _,"f,,(-) and £) be defined over R® where
,Z,(v) = P.v+ o
and

Ay = V-Max L (v)
A A

where V-Max means vector maximization. Since each P; is isotone (i.e.. x > v implies Py 2
P, L, and Lare accordingly isotone. Notice that ¥ may not be a contraction mapping or
even an N-stage contraction mapping and thus may not possess a unique fixed point [2]. Since
D = @, it is easy to show that Znas at least one fixed point [7.8]. Let £ = {viv = _Fv}] be
the set of fixed points of ¥ We wish (o solve

“This rescarch was performed when the author was affiliated with the School of Industrial Engineering. Purdue Univer-
orty. West Lafayette, Indiana. %3
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v* = V-Min v.
Vi f

This problem is well defined and is motivated in [7,8].

Such problems were studied in [7] as a generalization of [8] and encompass traditional
discounted Markov decisions [6], the discounted processes investigated by Veinott [17] and the
more general processes resulting from the duals (o linear programs with (hidden) Leontief Sub-
stitution Systems and (hidden) essentially Leontief Substitution Systems. The latler two cases
include such applications as completely-ergodic nondiscounted Markov decision processes (9],
shortest path problems (with or without cycles), and the stopping model of Denardo and Roth-
blum {3].

It has long been known in the context of the traditional discounted Markov decision pro-
cess [10.12.13.15) and more recently in the discounted processes of Veinott [12] that bounds of
the torm [ < v* < u can be constructed and used to eliminate inferior actions from further
consideration as potential candidates of an optimal stationary policy {4,5.11,12,13,15].

In this paper we extend the development and usage of bounds on v* to the generalized
Markov decision setting. Since most results in the literature were developed using a contraction
argument and the generalized process does not usually possess this property, we must utilize a
slightly different set of machinery. We will rely heavily on duality theory and the Perron-
Frobenius theorem (see Varga [16] or Seneta [14]).

2. NOTATION AND PRELIMINARY RESULTS

Let x and » be two vectors. Wme x 2 v (respectively, x > ) if x, > (respectively,
X, >D_\‘, for every i. Also write x > vif x > vbut x # y. Let L(x) = {z:z < x} and if Tisa
et L(T) = U Lix). If Pisa square matrix, p (P} will denote the speclral radius of P. If

P > 0 and square thgn the Perron-Frobenius theorem gives us that Px = p(P)x for some x =
0 and p(P) > 0. (/-P) "exists and is nonnegative if p(P) < 1.

From [1.18] we have that v* is given by some 8* € A where p(Ps.) < | and v*
(=P ' " In lhlb papcr we are mlerestcd in finding v* by successively iterating ¥ That
is. v = "(") where v is an initial guess of v* Let C = {viv* = lim Z"(v)) be the set of all

o
starting points leading to v* under the successive application of ¥ C# @ since v € C. In
both the discounted Markov decision process and Veinott's discounted process (' = R* In
general. however, ¢ # R* [7.8]. A useful result obtained by Koehler [7,8] is that L (C) € (
so, since v* € (., Liv*) € C The following short example gives a case where L(v*) = (.
The problem is:

State  Action P ¢!
| 1 0 0 O
2 0o 1 0
2 1 1 0 0
[t is readily determined that v* = 0, D = F = {Ae:A > 0} and £1v*) = {xiv < 0} where e is a
vector of ones. For any starting vector v we get for n >2
) Max (0, v{)
< g 1) —_ . !
LW = lMax (O,V,‘,’)]
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where = land /=2 if nisevenand h = 2 and / = 1 if nis odd. Hence, £"(V") converges
if and only it v! € 0,ie.. v' € L(v*).

From a practical point of view, il is easy o pick a point of L (v*). For example, let v' =
Md where M << 0 and & > 0. Thus, since L{v*) may be C and picking points of L (v*) is
relatively easy, when we restrict attention to the case where v! € L (v*) we do so without much
practical loss of generality. In the previous section we defined D = {viv > Pyv + *, 8 € A} =
{viv > £1\)). We wish to express this set in one further way. Define the vector /¥ by

1= P =
-pPy =
where ij € Sand g € 4,. Let /' be a matrix having each f as a row where g € A4,, i € S
Corresponding to F', let ¢ be a vector of the ¢¢ values. Then we can write Das D = {viF'v >

¢}. The matrix F is essentially Leontief [7] and since p(P) < | for some & € A, the set
{x:Fx > 0. x > 0} is nonempty [18].

=

3. ELIMINATION OF SUBOPTIMAL ACTIONS

Suppose one has bounds ! and « such that / < v* < w. If action ¢ € A, is part of an
optimal policy, then the inequality v, > LPjv, + ¢/ must be tight at v*. Clearly then, if the
above inequality is never tight in the polytope B = {x:/ < x < u} it cannot be tight at v* and
should be eliminated from further consideration. A typical test for checking this condition is if
(1) TPy + ¢ < |

then a is suboptimal (see [5,11.12,13.15] for such examples).
A tighter test results directly from duality theory. The inequality v, > P v, + ¢/ is not
tight in B if and only if
(2) &> 0 and (1 ~ PO, — 1) < &
or

¢'<0and T filu,—1)>¢

IR
"

where ¢ = ¢/ = Lf1,.

Notice that the test in (1) can never eliminate an action when &' > 0 but that (2) allows
this condition. Anything eliminated by test (1) is removed by (2).

4. BOUNDS FOR THE GENERALIZED PROBLEM

We begin our development of bounds on v* by considering the restricted case where A =
{8} and p(P;) < 1. That is, we wish to determine bounds on v* = (I — P;) ' ¢*. Both Por-
teus [12] and, indirectly, Veinott [17] have investigated this case. Porteus first transforms the
process into an equivalent one where the new transition matrix I.’;, has all equal row sums
(which are necessarily less than 1.0). Once this has been accomplished, bounds such as
[10,12,13,15} can be computed. Here we do not transform the data.

For the time being, let us suppress 8. Let d > 0 but otherwise arbitrary. Let @ and b
satisfy
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3) ad < VT <hd
We wish 1o develop bounds of the form
4) /=v’""+(n/§v"gv'"‘+ﬁd=14

where & is a nonnegative integer. Here v/ =_/"(v") v" € C = R and lim v = v*

Since P* is isotone, from (3) we have
(5 aPtd < PPV - PR BPAL
Multiply (5) by P10 get
aPt g < PRIyt - PRl < ppht iy
and add this to (5). We get
all + PYPAd < PRIV — PR < b+ PYPAL
Repeating this procedure and taking limits gives
(6) all = P) "PAd < PAve — PRV < b1 — P) ' PAa.

PROPOSITION 1: Let v* = Pv* + ¢ where P > O and p(P) < . Let v*'= Pv"+ ¢
and ¢ > 0. a and b are such that

ad < V"' = v < bd
and & > 0 and integral, then
ad + vrnA § v* S-_.Bd + VIHA

where
B=20 ifp=0
Bxby ifb>0
Bxby ifb <0
and
a<0 ife=0
a<ay ifa>0
o g a; ifa <0
where
y(y) = Max (Min) x'P*d
subject to
xX'd—x'Pd=1
x'(/ = P) >0.

PROOF: We will prove the result for 8 and note that the proof for « follows in a similar
manner. Let v = o(/ — P) ' P'd > v* — v"** as given in (6). Then, by duality, v < Bd if
and only if x'(/ ~ P) > 0 implies Bx'(/ — P)d > bx'P*d. Notice that x'(/ — P) > 0 implies

x 2 0 since (1 = P) T> 0. Also, since p(P) < 1, using the Perron-Frobenius thcorem we
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get that x(/ — £)= 0 if and only if x = 0 and x’(/ — P) 2 0 whenever x 2 0 gives

X' = P) > 0. Thereissuchan x 2 0 {use x' = d'(] — P) '). Hence, 8 must satisfy
bx'Prd

= XU - Py

whenever x'(/ — P) > 0 with x 2 0. Enumerating the cases where 6= 0, b < 0 and b > 0

gives the results of the theorem. We need only show that the objective function of the linear

programs is bounded for all feasible points. Suppose this is not true. Then thereisarsvz 2 0

such that 2'd — z’'Pd = 0 or 2'(] = P)d = 0. Sinced > 0and '] = P) >0,:'(/ - P)=10.

This gives that = = 0, a contradiction,

B

A%

Some useful cases follow.

COROLLARY I: When 4 = 0,

;=

| —yq | — r

and when & = |

-_ 4 _

Y ] X I —r
where

¢ (r) = Max (Min) x'Pd
S.t.

xd=1

x'U=P)yz0.

Note that ¢ and r are both strictly less than 1.0.
COROLLARY 2: If dis an eigenvector of P with Pd = \d, then
}\l\
1—A"

y=y-=

Most of the bounds reported for discounted Markov decisions fall into one of the two
cases given above. Usually d is a vector of ones.

While determining ¥ or y is, in general, a nontrivial task, one can usually obtain useful
bounds on ¥ and y and use these. For example, the Perron-Frobenius eigenvector is a feasible
solution so

Y2
Also, as is commonly known,

. (Pd), (Pd),
Min 7 < p(P) £ Max T

!

]

The dual problems also provide bounds although one must obtain tight enough upper bounds to
be meaningful.

We now return our attention to determining bounds for the generalized Markov decision
process. In the following we assume v° € L (v*) so that
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[() = V(l

and

(M 17 = Max (17, v/

provides us with « lower bound to v* at each iteration. An upper bound is not as easy to
derive.

In the unlikely event that 8 * is known, one can use the upper bound developed in Propo-
sition | since
Pho(vh — v < bPy.d
plus
Pt vl — v < PR
gives
PLh vt ) — Phovt < b + Py PEd
or. in the limit,
Phov* — P! < bl - Py ) ' Phd.
That is.
v = Lv < b — Py)  PEd
The resulting bound is
(8) VS L)+ Bd < VTR 4+ Bd
where 8 is given in Proposition 1 and ¥ and y correspond to Ps.. For k = 0 weget v* < v+

Bdand for k = 1 weget v* < #,.(v)+ Bd < v'*' + Bd.

We realize, of course, that if 8* is known, one would ignore all other 8 € A and work
only with 8* A more reasonable case is if 8* is unknown but ¥;. is known. Since v < vy
v’ > v"for all nunless v’ = v* Hence, v''' — v” < bd implies b > 0. Thus, knowledge of
¥, - is sufficient for determining an upper bound on v*

As an illustration of (8) and the elimination procedure of (2) consider the following
example:

Example 1 State  Action P ¢!
1 1 0 2 2
2 0 1 3

2 1 2 0 -6

2 1 0 -3

3 0o 0 -1

Note that no P; has all its rows less than one. Here

v = {2

=

p(Pﬁ-) =0
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Let v’ = —10e. Then

SO

Let b =9and B =9. Then.

Fl s v < 66

Using the elimination procedure of (2) we get

State  Action ¢’ Test Value
1 1 7 9
2 9 9
2 1 -19 -18 Lliminate
2 -9 -9
3 0 0

Suppose neither 8 * nor ys- is known. Consider the following. Let A" € A such that §* €
4,8 € A" implies p(Ps) < 1 and if (/) = 8(i) for some & € A' for each i = 1, ..., s then
3 € A A special case is A'= {6%. After appropriate permutations we could write F =
(F), Fy) where F) corresponds to A’. The matrix F, is totally Leontief and has several desir-
able features, one of which is that the set {x:Fix = 0, x > 0} is empty [18]. Let F;= B - Q
where each column of Q looks like ¢, — f? where ¢ = 8(i) for some 8 € A’. B then has unit
vector columns and each row has at least one +1.

In a manner analogous to the procedures leading to (6) and (8) we can determine condi-
tions on 8 such that
(9 bP{d < (1 — Pyu
u <pd
for all 8 € A" and thus obtain an upper bound to 75.. System (9) can be written as
bd < Flu k=0
Bd

u

A

and
bQ'd < Flu k=1
u < Bd.

The following result follows:
PROPOSITION 2.

Let d > 0 and b satisfy
vt — v < bd
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where V' € L(v*) and v' = £'(W"). Let F| be constructed as given above. Then
VRS VIR Bd

ith =0and
B = b Max d'x

S.L

orif A =1and
B 2 b Max d'Qx

Sl
d'Fix =1
Fix >0
xz0

PROOF: Letg = bdif k=0and g = bQ'dif k = 1. Theng < Flu, u < Bd has a solu-
tion if and only if x > 0, Fix > 0 implies Bd'Fix > g'x. The rest follows as in Proposition 1
except here we note that the constraint set is bounded since {x:Fix = 0, x > 0} is empty.

The dual linear programs provide upper bounds to the solutions of the problems in Proposition
2 and these in turn are upper bounds to y;-. The bounds of Proposition 2 are used as

v < virh 4 gd.

The final case we consider is when no A’ can be determined due, perhaps, to the necessity
of knowing that 8* € A’ In such a case one is faced with the unpleasant task of determining a
y5 for each 8 € A where p(P;s) < | and then using the largest such value in determining 8.
This would involve solving

(10) Max x'Pid
s.t.
x'd — x'Pyd =1
xX'tI=-P) 20
x>0

for each 8 € A. Unbounded or infeasible problems can be ignored. While this procedure
would be a considerable task, if a decision problem is to be solved a large number of times with
only the ¢ elements changing, then it may be of value to determine a bound for 8 in this
fashion.

As an example, the optimal solution values to (10) for cach 8 € A of the problem in
Example | are:
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8 Value (k = 1)
(1,1) No Solution
1.2) No Solution
(1,3) 2
2.1) No Sofution
(2,2) No Solution
2,3) 1

Thus, without knowledge of * one would have to use 8 > 2b. Note also that A’ = ’[%] [%ll

and the procedure of Proposition 2 would have led to 8 > 2b also.

As a final note, it is not always possible to abstract a A’ © A containing all 8 € A having
p(Py) < 1 withned € A" having p(Ps) > 1. For example,

State  Action  Pj

1 1 00
2 01
2 1 10
2 00

we find that p(P;) < 1 only for 8 € “}] H] l%]] This set does not qualify for a A’ set since

8 = lfl has p(Ps) = | vet §(1) and 8(2) are represented in the set. Hence, one may have to
use (10) instead of Proposition 2.
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ABSTRACT

Recent rescarch s Ted to several surrogate multipher search procedures
tor use o primal branch and -bound procedure  As simgie constranned integer
prowrammine probiems the surrogate subproblems are also solved via branch-
and-bound - Thas paper desclops the snner plas between the surrogate subprob-
lem and the primal branch-and bound trees which can be exploited to produce
A number of computationa! cthicienues  Most muportant @ testarting pro
cedure which precludes the need e solve numicrous surrogate subproblems
cach node of woprimal boanchaond bound tree Fmpincal evidence suggests that
this procedure ereaty reduces totad camputation hme

1. INTRODUCTION

Consider the general integer linear programming problem:

(P) Min cx subject 1o Ay < b
vEeos

where S =[x > 0: Gx < h x satisties some discrete constraints), Here, 4 and G are m X n
and ¢ x 7 matrices respectively, with all vectors having the appropriate dimension.
The surrogate relaxanon of the problem (P) associated with any v 2 0 is
(P) Min c¢x subject 1o v(4x—h) < 0.
A

v

If we define the function

v (-} =The value of an optimal solution to problem () if one exists
and +oo if the problem is infeasible
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then clearly ¢ (PY)Y provides a lower bound on v (P) for any v 2 0. The best such bound is
achieved by the surrogare dual.

Max v (P}

D50,

Only in rare integer programs would one expect such a dual problem o directly produce a
solution to (P). Thus. the importance of duals in integer programming centers on their ability
to produce bounds for a branch-and-bound procedure. By careful partitioning of the constraints
of a problem into those which are relaxed Ax < b, and those which are enforced x € S, prob-
lems. (P4, can be created which are easicr to solve than (P). Thus the bound ¢ (P') is easier
to obtain, and searches over v 2 0 will produce improved bounds. The successful application
of duality in a branch-and-bound scheme can be seen to depend on the quality of these bounds
and the case of computing the bounds, since one must repeat the procedure over and over with
different candidate sets.

Recent research (see Karwan and Rardin [6]) has produced a number of surrogate multi-
plier search pincedures. Empirical results [S] suggest surrogate duals may close a significant
fraction of the gap between the values of the lagrangian dual and the primal problems.

In this paper, the intent is to more fully develop the inner play between the surrogate dual
and the primal in a branch-and-bound procedure. When the two are considered conjunctively a
number of advantages are gained beyond the providing of a bound by the surrogate dual. A
number of general observations will first be made with respect to the surrogate dual. Then
specific issues or parts of the general branch-and-bound procedure will be developed in their
relationship with the surrogate dual.

2. SURROGATE SUBPROBLEMS

Consider the surrogate relaxation of (P) for any v 2 0. Note that (P') is itself an integer
lincar programming problem with & single main constraint v(i4x—5) < 0. Thus, it is a knap-
sach problem with a set of side constraints, x € S. A number of solution techniques have
appeared in the literature for the case of § = {x: x > 0, x bounded above}. Basically these can
be divided into two categories. dynamic programming procedures and branch-and-bound or
implicit enumeration procedures. For 4 good review of the dynamic programming procedures,
see Garfinkel and Nemhauser [3]. 1t will soon become evident that a branch-and-bound pro-
cedure will be more convenient in solving (P'), because the relation between the primal and
knapsack branch-and-bounds can be exploited. Moreover, Cabot [1]. Kolesar [7], Fayard and
Plateau [2]. and Greenberg and Hegerich [4], among others, have developed branch-and-bound
procedures which proved computationally more efficient than the dynamic programming
approaches. Finally, Karwan and Rardin [6] have shown that each surrogate relaxation need
not be solved optimally. Only a feasible solution with value less than or equal 10 the incumbent
solution value of the surrogate dual is necessary for terminating the solution of (£*}). By solv-
ing (P*) via a branch-and-bound procedure such solutions are readily available, require no extra
computations, and lead to fewer iterations {(choices of v) in solving (1,). In a dynamic pro-
gramming procedure, however, a feasible solution is gencrally not available until optimality is
obtained so that (P') must be solved completely. For these reasons, and more to become
apparent upon seeing the inner play with (P), the remainder of this paper assumes surrogate
relaxation subproblems are best solved via a branch-and-bound procedure.
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Role of the Primal Incumbent in (PY(T))

In branch-and-bound procedure. the set of feasible solutions to (P) is partitioned into
independent subsets by an enumeration which places additional constraints on integer variables.
The unenumerated portion of (P) is represented by a list of candidate problems. each of which
1s simply (P) with certain additional constraints x € T appended. To facilitate the discussion.,
we define P(T) 10 be the same as (P) except that x is restricted to x € T. We also define
+ *(P) 1o be the value of the best currently known feasible solution to (P), i.e. the value of the
incumbent solution used to provide an upper bound on the optimal solution value.

Note that ¢ £D 7)) is being employed as a bound for some candidate problem P(T) in
the primal branch-and-bound procedure. However, v (P (7)) is a valid bound in P(T) for all
v 2 0. not just the v which maximizes v (P (T)). Thus, (D(T)) nced not be solved optimally
it (P T, for some v used on the way to solving (D(T)), is sufficient to fathom P(T) . i.e..
v(PUTYY 2 0 *(P).

Conversely, the value of the incumbent in the primal, v *(P), may be used as an upper
bound in solving any (P'). That is, if no completion of a candidate problem in (P*) can pro-
duce a solution with value less than v *(£) that candidate problem in (P') may be fathomed.
It all candidate problems in the knapsack (P*(T)) fail to produce a solution with value less than
e *(P), then it can be concluded that v (P*(T)) = v *(P) so that the candidate problem P(T)
may be fathomed in the primal.

3. CONDITIONAL BOUNDS AND BRANCHING VARIABLES

The rationale for the interaction between the two branch-and-bound procedures with
respect to conditional bounds and branching rules can perhaps best be understood via a 0-1
integer programming example. Later a procedure for the general case will be presented. Con-
sider Figure 1 which presents a branch-and-bound tree tor the problem (P (T)) where P(T) is
a given candidate problem from the primal tree. This tree may result from the application of
any branch-and-bound procedure for solving (P*(T)). The sciution is found at node 8 with
value +*. Since the full tree is shown and an optimal solution has been found. o' 0™, ... ¢
must all be > %

Now i number of important observations may be made. If #% is uccepted as the optimal
solution value for (D((T)) and the candidate problem P(T) is not able to be fathomed (v * <
v *(P)) then a branching variable must be chosen and a conditional bound computed for each
of the two new nodes created in the primal tree. Note that if v, is chosen as the branching
variable, then a valid bound on any solution to (P(TN{x:x,= 111 is given by
v = Minw" r'). Also, since v* was the optimal value of (P*(T)), + 2 ¢* So even though
v < p*(P), it is possible that the bound v 2 ¢ *(P) so that no completion of
P(T{x: x, = 1) will ever need be considered. It follows that x, is a good candidate for a
branching variable in the primal tree. Note that a conditional bound for branching on x, may
be taken as Min (0.0 . 0Y) for x, = 0 and Min & 0% 09 for x,= 1. One problem is that ali
of the end nodes for which x, is a free variable must be included (hence v7) in calculating both
bounds. ¥, is the only variable for which no free end nodes may exist, and we will choose it as
the branching variable.

What is required to implement the branching procedure suggested above is the saving of
the minimum vilue or bound on the end nodes for cach of the two sides of the tree defined by
the first branching variable. An end node may be recognized as one from which a fathonny
occurs  Thus, before fathoming it is necessary to determine which side of the tree one s on
check 10 see if the bound on that node is less than the saved bound for that side of the e
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and if necessary. replace that saved bound. Then after solving (P(T)) one will have » (P (T))
as the bound on one side (* in Figure 1), and a bound saved for branching on the nonoptimal
side of the tree (Min(e”, ") in Figure 1).

»1 = Bound on all completions
of (PY (TN{x:xq=1}))

S C{x:0<x<1,xinteger}

Ficvre 1 Example of o Branch-and-Bound Tree tar (700

4. INTERACTION OF THE SURROGATE SEARCH MASTER PROBLEMS

The two surrogate dual algorithms which appear most promising as discussed in Karwan
and Rardin [6] both keep a list of the x’s generated by each surrogate relaxation and solve a
master problem involving these x’s to obtain a new surrogate multiplier v. These master prob-
lems, one for each candidate problem in a primal branch-and-bound procedure, may te seen to
interact in such a way as to save a great deal of time in solving (Dy) at any proceeding node in
a primal tree.

Consider the primal branch-and-bound tree shown in Figure 2 for a 0-1 integer linear pro-
gramming problem. Assume that a master problem, or at least a list of the x' generated in
solving (D(d)) at node 0, has been kept and it is now time to branch on x,. Scan the master
problem at node 0 and place all x', i=1,2, ..., k which satisfy x{ = 0 in a new master problem
for solving (Dy(T)) at node 1 of the primal tree. All solutions x € S, x; =1 such that
ex < e (D) have been made infeasible by the optimal surrogate multiplier at node 0. If
one is to i 1v{D¢(@)) as a bound after branching on x;. then all of these x's must be
included in v master problem at node 1. This is valid since the candidate problem at
node 1 is a mo onstrained version of (£}, and all the x's put in the master problem satisfy
this extra constraint.
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This procedure may be continued as follows. In solving (Do (7)) at node 1, possibly more
Vs are generated. When branching to node 2. all x's in the master problem at node | with g
= 0 may be put in the master problem (o begin solving the surrogate dual at node 2.

Any candidate problem may be chosen to be explored next in 4 branch-and-bound pro-
cedure and a number of strategies have been suggested. The "last-in first-out” or LIFO pro-
cedure always chooses the most recently added member of the candidate list to explore. Refer-
ring to Figure 2. the nodes have been numbered in the order in which a LIFO procedure might
explore them. Hence, the order of branching is from node 0 1o node 1 to node 2 and 1o node 3
at which time node 3 is fathomed. ecither because the incumbent solution to (7) was exceeded.,
a feasible solution was obtained, or it was determined that x; = 0, xg = 0 and vy = | precluded
any feasible solution to (£). Thus "back-tracking” goes 10 node 4 which is also fathomed, lead-
ing back to node 5. In a LIFO procedure note that there are never more than two nodes at any
given level of the tree, a level being defined by the number of fixed variables or extra con-
straints on (P). For instance in Figure 2, the fathoming of nodes 2 and S must occur before
node 6 is chosen as the node from which to branch. In large integer programming problems,
wherc many x's from previous surrogate master problems are to be stored. storage can be a
main concern and it is minimized by using the LIFO branching procedure.

Ptk 2 Fxample of o Primal Branch-and-Bound Tree

The master problem interactions can be shown to be very cfficient in terms of a LIFO
branching procedure for (P). Again consider Figure 2 and the tollowing use of a "current
table” and a "save table.” At node 0. the master problem consists of the following x's, say for n
= dimension of x = 5,




-

YR M KARWAN AND R RARDIN
o001
X7 totr1o1l
01100
Xt 11010
Branching takes place to node . Those x’s which have v, = 0 (x' and x') are placed in the

"current table” for the “current” or next-to-be-explored candidate problem. The other x’s (x’
and x*) are placed in the "save table” and it is noted that at 1dvel 1 of the tree, the next open
slot in the save table is in row 3. Node [ is now explored and some new x’s are generated and
put in the current table which becomes

X' 00111
01100
00101

X"01011

Now it is time to branch to node 2, so those x's which have x4 = 0 remain in the current table,
re. xtand 27 x'and x* are placed in the save table and it is noted that the next open slot in
the save table at level 2 of the tree is 5.

The current table is now
01100
A 00101

and the save table is

B

xTorotor
XY 11010

-l
oo,
X" 01011

Assume that, in contrast to Figure 2, fathoming occurs at node 2. possibly after generating
some more x's. Now the current table can be cleared since it is no longer necessary to explore
any candidate problem with x; = 0 and xy, = 0. In fact, these x’s will never be generated or
needed again, since either x, or x, or both will always be fixed at 1 in any future candidate
problems. Now the LIFO branching procedure goes to node § with x; = 0 and x; = |. But
some of these x's are stored in the save table from the last slot in the save table (5~ 1 = 4)
back to the next available slot stored after the previous level, fevel 1, which is slot number 3.
These are put in the current table which is now

x' 0011

x" 01011
and the save table is now

x* 10101

x? 11010

Possibly more x's are generated at node 5 and placed in the current table. A fathoming then
occurs at node S and a "backtracking” takes place 10 node 6. The "other side” of level 2 has
been explored so the backtracking must be to level 1. The current table is again cleared and
the elements in the save table from the last slot to the first slot for level 1 savings (slot 1) are
placed 1in the current rable. The procedure continues, with only two lists being necessary 1o
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easily store. update, and use all of the ¥'s generated by solving surrogate relaxations throughout
the primal branch-and-bound procedure. Note that no x's will be regencrated using this pro-
©cedure, and again that once the current candidate problem is fathomed those x's mayv be taken
out of storage

The following is a formal outline for branching and fathoming while employing the
current and save tables in a LIFO branching procedure for a general integer lincar programming
problem. Let

L =current level in primal branch-and-bound tree

T, T, =1two new candidate problems created at level L, T, is
candidate problem chosen to explore next

SAVBND (L) =bound saved for candidate problem at level L which
is not being explored next

NXSV =next available slot of the save table

NXCR =next available slot of the current table

NSV (L) =next available slot of the save table at level L
in the primal tree

P =incumbent solution value to (P)

Branching:

If SAVBND (L) < ¢ *(P), place all xX’s from the current 1able
satisfving x € T/, , into the save table. updating NXSV. In
any case, et NSV (L) = NXSV and remove all x's satisfving
xy € T}y, from the current table. clesing up the current
table and updating NXCR. Determining if x € 77, is done
simply by checking the single component of x upon which the
branching occurred.

Fathoming:
Clear the current table by setting NXCR = 1. (If T, has
already been explored, SAVBND(L) = +oo.) If SAVBND(L) 2 v *(P)
replace NXSV by NSV(L—1) and L by L—1 until a candidate
problem is found to explore. Place rows NSV(L—1) to NSV(L)~-1
from the save table into the current table. Update NXCR.

After branching or fathoming more x’s are generated while solving (D¢(T)) and placed in
the current table until it is time to branch or fathom again.

Although formally developed here for a LIFO branching procedure. the current and save
table concept can be used for any primal branching procedure (c.g.. least lower bound) by scan-
ning a single save tlable for x's which satisfy the constraints on the present candidate problem
As seen above, this scanning is done very efficiently in the LIFO procedure by simply keeping
an indicator (NSV{L)) for each level (L) of the primal tree. In any case, when a candidate
problem is fathomed. the appropriatc x’s may be taken out of storage and will never be needed
or regenerated again.

5. COMPUTATIONAL ANALYSIS

A set of randomly generated 0-1 integer programming test problems (see Karwan [5]) was
used to demonstrate the developments discussed in this paper. A LIFO branching procedure
was employed in the primal branch-and-bound tree and the LRMP procedure. (see Karwan ang
Rardin (6]) was the surrogate dual multiplicr search procedure employed.
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Fable | presents the results of employing the above techniques on three problem sizes
with a low and a high density and tive replications per cell. One of the principal causes for
interest in surrogate duals is improvement in bounds. The percent of the LP to IP gap closed
by the surrogate dual, e,

WD) — e (LPY/ (P = (LP))

appears substantial.  The large range for a given cell is perhaps to be expected with such
unstructured randomliy gencrated problems.

Some measure of the efficiency of the interaction between the primal and the subproblem
branch-and-bound procedures is provided by the remaining columns of Table 1. As expected,
the principal part of all time spent on candidate problems is consumed in knapsack subprob-
lems. Values in column 8 range from 71%-82%. However, the number of knapsack subprob-
lems solved at any particular node is quite small (column 6). The small numbers are a conse-
guenee of the save table—current table scheme developed in Section 4. Another indication of
the efticiencey of the save table approach is the relation between the mean time to solve the first
surrogate dual (column 4) and the mean time to solve all surrogate duals (column 7). For
larger problem sizes the average surrogate dual—which begins with many x* saved from previ-
ous knapsacks —solves in 5-10% of the time for the first dual.

TABLE . Primal Branch-and-Bound Empirical Results
(Five Replications per cell)
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ABSTRACT
The paper provides @ new theoretical framework to dentity extreme solu-
uons of the two machine flow-shop problem. Some remarkable properties of

these solutions have been developed. As a result the problem of generating
mimmal solutions can be decomposed into a number of smaller subproblems

1. INTRODUCTION

The well known two machine flow-shop problem can be formalized as follows. Find a

permutation P = py, p>, ..., p, of numbers 1,2, ... . nthat minimizes
1 n
(1) T(P)= max |Y 4, + ¥ B,
[IESTAESNE] oyt ' —y
where 4,. B,, r= 1,2, ... .. n are given positive numbers. According to the flow-shop termi-
nology T(P) is the completion time of n items processed in a sequence p,, p», .... p, while

A, and B, are operation times of item r on machines 4 and B. Each item is to be processed
first on A4, then on B.

Let /= (1,2, ..., n) be the set of all items, and i and j two arbitrary items of I. Intro-
duce the following relation
(2) RGj) Y Imin(4,.8) < min(4,.8)].

Notice that R (i,j) or R (j,i) holds for every pair i,j € /. We say that P= p,, p>, ... . p, is an
R —sequence if

(3) i<j=> Rip.p) Vi jel

As shown in Section 2 every R-sequence minimizes (1). The set of R-sequences is usu-
ally a small portion of the set of all minimal solutions.

This paper examines the properties of extreme (minimal, maximal) solutions of the flow-
shop problem. It provides necessary and sufficient minimality conditions (Section 3) simpler
than those of [4] along with sufficient maximality conditions (Section 6). It introduces a critical
item concept (Section 4) that leads to several remarkable properties of extreme solutions. As a
result the problem of generating minimal solutions can be decomposed into several smaller
several smaller subproblems (Section 5).
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2. R-SEQUENCES
Let H be the set of all n-element permutations of 1,2, ..., n. We will use symbols
P. Q. P, Q. P 1o indicate those permutations. Let Q = oijm, and Q = ojim be two ele-
ments of 1.
LEMMA 1L ()= [T0Q) € T Yoijm. ojim € 11
PROOF: Duc o (1)
TQ) = mux[ I A4 +T@m), T4 +TG)+ ¥ B.Two)+ ¥ B,]*

TQ) = max[z A +TE). T A +TUD+ Y B, Ty + 3 B,],

Consider inequality

(4) TGy < TUD

which is equivalent to (2).7 The theorem holds since (4) implies 7(Q) < T(Q).
Let = p,. ps. ..., p, be an R-sequence
THEOREM 1: P minimizes (1).

PROOF: Consider an arbitrary sequence P € 11, P = P. Then P = up,pm for some
i < j. According to (3) and Lemma 1, Tloppw} < T(P). Hence, P along with every per-
mutation other than P can be eliminated from [l as nonoptimal. The well known Johnson’s
Algorithm [2] of constructing sequence P = p,.p>. ... . p, can be defined in the following
manner:

STEP I Find min(min 4, min B,).

STEP 2

(a) It the minimum s at 4, < B, define J = {p\) where p, is the element with
the smallest subscript among the elements of the set {ri 4, = Aql.

(b) It the minimum is at B, < 4, define J = {p,} where p, is the element with
the largest subscript among the elements of the set {718, = B,).

STEP 3. Replace ! by /--J and repeat Steps | and 2 until all elements of P are deter-
mined.

COROLLARY 1: Johnson's Algorithm produces an R-sequence.

*Tim). Tty Tty T are defined by (1) for sequences 7. o 1. 1 Hence,
Tty) =maxt4, + B+ B 4+ 4 +8)
Ftp)=max(4, + B+ B 4 + 4 +8)

’ . N
To see 1t subtract 4, + B, + 4, + K from both sides of (4)
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PROOF:; Let P= 1,2, ..., n. Assume that R(ij) does not hold for some i < j Then
min(A4,.B,) > min(4,,B,). Consequently, Johnson's Algorithm wifl place element j in front of
element i contrary to our assumption, Q.E.D.

Introduce the following notations:

E=A4,—-B.1 ={rir el E <0

I'=1{rir €l E >0} I"={rr el E =0}
Let P = p,. p>. ... . p, be an arbitrary R-sequence. Then the following obvious proper-
ties hold:

PROPERTY |: The elements of / are arranged in a nondecreasing order of the A4, and
precede the elements of /' that are arranged in a nonincreasing order of the B,.

PROPERTY 2: The elements of /" can be placed in any order as long as they do not pre-
cede (follow) an item with a smaller 4,(8,),

PROPERTY 3: Any subsequence of Pis an R-sequence.* Consider a sequence o0 C [,
and an R-sequence w, wherem C [ ~ 0.

PROPERTY 4: T(onw) < Tlonm)., Tlma) < Tlmwa) for all possible permutations 7" of
the elements of .
PROOF: According to (1)
Tom) = max[z A+ T@) ,Te)+ Y, B,l.

Tn)=max|Y A4, + T, T+ X B,].

- T

Hence, T(z) € T(x) = Tlon) < Tlon), Q.ED.

One can similarly prove T(mo) < T(ro). According to Property 4, to find a sequence
that minimizes (1), provided o is fixed, arrange the items that follow (precede) o in an R-
sequence.

This rule may not be valid if o occupies a middle position. Consider the following exam-
ple (Figure 1):

a
®

<

WO IN
[~ - N R

S N —

vt 1

*This does not mean that a subsequence of cvers optimal sequence s opumal (see Remark 1 Secnon 3)
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Assume that we are to find a sequence that minimizes (1) where ¢ = 3 occupies the second
place. Although 124 is the only R-sequence of / — ¢ = (1,2,4), 1324 is not the best sequence
since T(2314) = 29 < T(1324) = 30.

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

Define W(r) = T(m) - ¥ B, . form C I Then

(5) W(P)y=TP)- Y B = max

<u<n

7
4, + ‘;l E,,,].

r=1

Consequently, the minimization of (1) is equivalent to that of (5). As known W (P) is the idle
time of machine B while processing sequence P. Let o and = be two sequences, m# C | — o,

PROPERTY §: Wiom) > Wio)

PROOF: According to (5)
Wonrn) = max[W((r).z E, + W(‘rr)],Q.E.D.

Observe that Wionr) 2 Wi(r) may not hold. Consider two sequences P = oyim and
0 = oiym, define the following conditions:

(6) 4, < WP~ Y E,

'

(7 A, - B < WP~ YE — Wiy).

For P = o jim and Q = o ijm formula (7) becomes
(7a) A, — B < W(P)—-YE ~A,.

We will show

PROPERTY 6:
E<0=> {(6) e [W(Q) < WP,
E > 0=> {[(6) and ()] < [(W(Q) < W(P)I].

PROOF: Due to (5)
W(p) = male(«r).W(y) + YE. A + YE. W(m + ZE,],
‘o ry

ry

W(Q) = max[wur).A, + YE. W& + TE + E.Wim) + 25,].
o 4 iy
If £, <0 then W(Q) < W(P) whenever 4, + 3 E < W(P). On the other hand if
A+ X E > W(P) then W(Q) > A4, + T E > W(P). QED.

r

—_—— ]
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One can similarly prove case £ > (.
Assume that Pis an optimal sequence, which means that P minimizes (1) and (5).

COROLLARY 2: Qs optimal if and only if one of the following conditions hold:

1. e if £ €0, or
2 e M E > 0.

Consider the following example (Figure 2):

=

AEE

T
7

Brou kg 2

P = 1234 optimal and W(P}) =5 Leta =&, i= 2,3 Permutation 2134 is optimal due to
E.< 0, and (6) (3 <5 - 0). while sequence 3124 is not optimal (6 < 5—0).

Assume o = (1), y = (2), + = 3. Both conditions (6) and (7) are met (6 < 5 — (—1),
6 -4 < 5- (-1 - 3) Consequently, 1324 is optimal. Observe that neither 2134 nor 1324 is
an R-seguence.

REMARK 11 Although 1324 is optimal its subsequence 132 is not, since T(132) =
16 > T(123) = 14

Usually the number of optimal solutions far exceeds the number of R-sequences. Con-
sider the following case:

E > 0.¥i max B, < min 4,, B = B, ¥i # j.

While there is only one R-sequence the number of all optimal solutions (where the last
element is an item with the smallest 8,) is (n — 1),

4. CRITICAL ITEMS
Element u is a critical item of an optimal sequence P = ocum if

Wp)=4,+ 3L (or TP)=3 4, +2, B,].

7 Tl um

Assume in this section £, # 0, r € I Let P = o5 ,iujm 7w, be an R-sequence, and u its criti-
cal item. Suppose we move 1 upward in front of o ,i, or downward behind jw,. Will the result-
ing sequence be optimal? The following theorems resolve this issue.

THEOREM 20 Q = o uo,ijmm, is optimal if and only if
(8) E >0 B =8B, r¢u,u
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PROOF:
= | IfE, <0,and £, < 0, r € oo, Hence,
WOy =2 Wi 2 A4, + 3 > A, + Y E = WP,
o

R a]
contrary 1o the assumption, Q.E.D.
2. I £ < 0 one can show as before that W(Q) > WP, Q.E.D.
Since £, > 0and £, > 0 then B =2 B, (Property 1),
J.If B> B, then
W) 2 W uo,) 2 4, + Y E=4 + Y E +4,-B,>

T LT

> A4+ Y E +A4, - B= WP QED.

[

S ILAN

E > 0. £, > 0and B = B, imply (8) due to Property 1.

< Condition (8) along with Property 1 imply that Q is an R-sequence. One can similarly
prove the following.

THEOREM 3: Q' = o oaijm um, is optimal if and only if
(9 E, <0, 4,= 4, r € um,.

Consider sequences Q and Q of Theorems 2 and 3.

PROPERTY 7: 1. If Qis optimal then i is its critical item,
2. I Q is optimal then jis its critical item.

PROOF: The optimality of Q implies (8). Hence,

W(Q) 2 Wi usi) > 4+ Y E=A,+ 3 E=W(P)= W(Q) QED.

gy o

The proof of the second part is symmeltrical.
Due 10 (8) and (9)

W(Q) > Wir u), WQ) > Wlo o.ijmu).
Hence, u is no longer a critical item of Qor Q.

Suppose that we move element i of an R-sequence P = o o ,um im, ahead of its critical
item u. The following theorem resolves the optimality issue of the resulting sequence.

THEOREM 4. Q = o ioum 7, is optimal if and only if
(10 E,<0.FE <0, 0,=¢, 4,=A,.

i

PROOF:
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=: It E > 0, then (Property 5) W(Q) 2 Wirjiow) 2 4, + Y £ > A4, + YTk =
BTN [LERTEN
W{P), which is in contradiction with the optimality of (). Hence., £, < (0 This implies
E, <0.r €ad o umr,and 4, 2 A, (Property 1).
W) 2 W) 2 A, + 3E > 4, + Y E = WP,
"

a

Thus. W(Q) > W(P)ilo, = or 4, > A, QED.

< Duc to Property 1 (P is an R-sequence) condition (10} implies £, < 0, 4, = 4
r € umyi. Hence. Qs an R-sequence, Q.E.D.

tis

Optimal Presequences:

Given an R-sequence P = am € 11, then m is also an R-sequence (Property 3). Consider
a permutation (0 = om € 11

We say that o is an optimal presequence when Q = om is optimal. Q is uniquely deter-
mined for each o once Pis given. Hence. 1o find all optimal sequences it is suflicient 1o gen-
erate all optimal s-element presequences for each s < n—1, given an R-sequence P.

REMARK 2: According to Property 5 presequence oi may be optimal only if o is
optimal.

REMARK 3: Formulas (6) and (7) allow to determine the optimality of presequence o
provided
1. o is already known to be an optimal presequence.
2. Pis a known R-sequence.

Let P = aup be an R-sequence and wu its critical item. Consider another sequence Q.

THEOREM 5. If Qis optimal then
1. The elements of «u precede those of 8 whenever £, > 0, or
2. The elements of uB follow those of « whenever £, < 0.

PROOF:

CASE £, > 0: Let Q = o where o is an optimal presequence. Assume that au is a k-
element sequence (kK < n — 1), For cach s < k consider sets of s-element optimal prese-
quences o . According 1o Theorem 4 no element of 8 belongs to an optimal ¢ if s = 1. Due to
the same Theorem and Remark 2 this is also true tor s = 2,3, ..., A, QE.D.

The proof of second case is symmetrical.
5. GENERATING OPTIMAL SEQUENCES

Consider an R-sequence P = o iujm where the critical item u is the s-th element of P.
Theorems 2, 3 and Property 7 imply:

COROLLARY 3: If none of the conditions (8) and ( ' holds then v remains the s-th ele-
ment of every optimal sequence.
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Element u is also a critical item of every optimal sequence. To see it assume that
Q = aupB where a and B are permutations of elements of o and j7 , respectively. Then.
WQ)r 2 Wilau) 2 4, + ZI = A4, + Z[ = W(P)= WIQ).QED.

X

S50 Let P=apuy u,y ..., yu,a, bean R-sequence where none of (8) and (9) hold for criti-
cal items .1 €+ € ¢g. We will show that the problem of generating oplimal presequences
¢ C [ can be decomposed into ¢ + 1 separate subproblems. Consider an optimal presequence

O =gl ... a, Ugr,. 1 € g where . is a permutation of the elements of a, while
o, Ca, foreach0 < s < r. Then,
an W{P)=4,+3E - YE. 1 <1 <q

v,
Formulas (6) and (7) remain in their original form for + = 0 while for + 2 | they become
(6" 4, < B, - XE.
(7 A - B < B, — YE - Wiy,

where o, C «,.y, C a,. To illustrate the decomposition technique along with the generating
procedure consider the example of reference [3] (Figure 3).

A, B,
1 2 3
2 4 5
3] 6 |30
4 130} 4
5 4 1

Fratvre 3

P =12345 is an R-sequence, W(P)=4 and u, =3, u,=4. uy=75. Consequently,
ay= (1,2}, ay=a,=a;= ¢. Since the assumptions of Corollary 4 are met for all u, (they
automatically hold for u, and wu; since a, = a; = @) every optimal solution Q = ...345. It
only remains to find optimal one element presequences of a; since ay is a two element set.
Due to £, < 0. r € « it is sufficient to check (6). Presequence 2 is optimal since (6) holds
for i =2, o = ¢ (see Remark 3) in addition to the known optimal presequence 1. Conse-
quently, 12 and 21 are optimal arrangements of ay. There are only two optimal sequences
12345 and 21345*

5.2. Consider some critical item u of an R-sequence P where
1. (8) holds for some o i = iiy ... i, or
2. (9) holds for some jm, = jj, ... J.

According to Theorems 2 and 3 we can generate R-sequences, say, P, by arranging the ele-
ments of o ,iu or ujm, of Pin the following manner:

(12) (2T R 17 7 HY SRR Y SN BY Y X 1710

s

*The authors of [3] using a lexicographic search procedure examined fin this example) lower bounds for 9 prese-
yuences with the number of elements ranging from 3 10 S (in 7 presequences)
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In view of Property 7 the critical items are the last elements of the sequences of (12) and
the first elements of the sequences of (13).

To find the optimal permutations we apply the procedure of Section 5.1 to each P, assum-
ing that none of its critical items can be moved.

To ilustrate this case consider the following example (Figure 4):

1 2 3 4 5 6 7
A4 [3Ta]s[s]e]3]2
B [7 |7 [s4{a]2]1

Fratre 4
P = 1234567 is an R-sequence, W{(P) = 3. u,=1, u,=5.
The dashes indicate the critical items of P.

Since (8) and (9) hold for o, = (4) and jm | = (2) four R-sequences are generated (see
(12) and (13)).

P, = 1234567, P,= 2134567, P,= 1235467, P,= 2135467.

To generate optimal sequences out of P, observe that P, = agua uxx; where a, =&
ay=12.3.4) ay = (6.7). According to (6) and (7) the list of optimal arrangements of a; and
ay is 234, 243, 423 and 67, 76 respectively. Consequently, P, generates six sequences
1234567, 1243567, 1234567, 1423576, 1243576, 1423576.

To find the remaining optimal sequences we have to verify (6) and (7) for
a,;= (1,3,4), (2,3,5) and (1, 3.5) since a> = (6,7) is the same for all four sequences P,. The
total number of optimal solutions is 24 while the number of R-sequences is 4.

3

5.3. Consider the case when £, = 0 for r € /" # ¢. Lel Pbe an R-sequence. We can assume
(Property 1) that P = a3y where
F,<UO r€a E=0 rep E >0 rc¢€y.
Let ma): A, = A,. Consider sequence ay.
o

THEOREM 6: W (P) = max[W(ay).4, + Y E|

PROOF: Let u be a critical item of P. Examine three cases:
1. u €y. Then P= afyuy, and

W(Py= 4, + Z E=4,+ ZE, = Wilay).

iy, wy
2. u € a. The proof is similar to that of the previous case.
3. ueB. P=aB uf,y, and

WP = A, + YE=A,+ YE,.

.le




112 W SZWARC

Expression 4, + Y E, is maximal for v = v, Q.ED.

Theorems 2. 3. and 4 remain valid even for £, = Qaslongas E, # 0, forr € | — u.
We offer the following procedure of generating optimal sequences:
STEP 1: Delete set /° from 7 and find an R-sequence ay.
STEP 2 Apply the generating procedure of Section §.2 to sequence = where
ay it 4, + 21:‘, < Wilay),

avy it 4, + ZE, > Wilay).

STEP 3 For ecach sequence m generate n-element optimal sequences by placing the
remaining items of 8 in the appropriate places using formula (6).

To illustrate the procedure expand the example of Figure 2 by adding two new elements 5
and 6 where 4.= B. =8, 4,= B,= 5.

STEP I We already know that ey = 1234 is an R-sequence.

STEP 2 7 = 125834 since A< + 3 E = Wlay) = 5.

“w

Observe that w-= (3), and elements 5, 3. 4 cannot be moved. Handling set ay= (1,2)
we obtain two optimal sequences 12534 and 21534,

STEP 3. Conditon (6) tor i = 6. W(P) = Wilay) = S becomes
(14 N

Consider Figures 5 and 6 where the ZI;‘, are written on the margins of the tables (except

YE=0foro=4¢)

r

112 -1 213 |5 -2
2131513 111 2]-3
518 8]|-3 S (8|8 (-3
3|64 -] 3164 -1
4 161|312 4 1632
Forre S Fiat vi 6

According to (14) presequence o6 is optimal if and only if EE, < 0. Hence, element 6

tr
can be placed everywhere as long as it precedes element 4. Consequently, there are ten optimal
sequences.
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6. MAXIMAL SOLUTIONS

Fet P be an R-sequence produced by Johnson™s Algorithm. Tt as casy o see that a

reversed sequence Po=pooopo Cpo manimizes (1) Without loss of generality we can
assume po= 120 0000 nand
15) Fo>0 0 <00 FE <0, r 210+ 1
(]s . . <
: B < B < <H. A2 d 2 z A,

forsome 0 < 1 < n?
THEOREM 7 bBlement ror ¢+ 1is a eritical item of P

PROOFE: Detine
|

K= 1 I8

then.

WPy = max KA,

"

CASE 1 1 €< Then B, £ B, and B, < ., imply B < {
A < KA.y

..1. Consequently,

CASE 22 r+ 1 <i<n Theno 4, € 4, yand 4, | € B, | imply 4, £ B . Hence,
K < A, ;. Combining both cases we have

Ki<K.<...<KudK ., 2K 2...2K,
Fhus. W (P Y= max K, QLED.

Let w be the critical ttem of a reversed Johnson sequence P = 1,2 ... n TUis casy to see that
any sequence (0 = auwr maximizes (1) as long as « is a permutation of 1,2, ..., w—-1 while 8
Is a permutation of w+ 1. ... . n

COROLLARY 4: The minimum number of maximal sequences is (u- 1D n—u)! where
u=tort+1

Reversing 4 minimal (non R} sequence does not necessarily produce a maximizing
sequence  Consider the example on Figure 2. Although 1324 is minimal the reversed permu-

tation 4231 does not maximize (1 since 7(4231) = 21 < 74321y = 23 let P'=1.2. ... n
be a reversed Johnson's sequence. Consider a set of # — 1 — element permutations 7 of
numbers r € /- () Qtis obvious thatw = 1,2, ..., i—Li+1, ..., n maximizes Wim),

Due to Theorem 7

WPy = K, u= 1+l
where
(6) L 0< B, 4, =28 iftu=1
Lop 2 B4, < By it =1+

Tort ol 0 whiletort nnof < 0
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whife
. =
Wir)y - A5 A, /.
where

" TS
w o loru+l, it -

THEOREM 8 W) < H (P

PROOE  There are two cases
T Loy < wtheni<roand £2>00 Henee, WP Wim) = [>0.
20 > wthen WP = Hitx), QED.

1=t bFour sub cases are o be considered.

| =1t LY el =kl Y u=r4l, ov=0 4 u=r4l v= 42

WP Wigy= B 4 fease 1.4, A (case 200 B - A, lease 3
1. 10 lease B
I'he nonnegativity of B 0P Wi follows directly from

1 (16} for cases | and 3
2 (15) and (18) forcases 2and 4 (4, < B, B, < A, — case 2).

Let o be o permutation of numbers ¢ where Jis a proper subset of /. Theorem 8
immplies

PROPERTY & maxH(r) € max HWIP).
P

.

Property ¥ does notimply W) < W) To see it consider the following example

Froaory
(et /7= 123andeo = 13 Sull WiPLr=9< Wir)= 10
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A THEORETICAL AND COMPUTATIONAL COMPARISON
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1. FORMULATIONS: EQUIVALENT AND OPTIMAL

This paper provides a theorctical and computational comparison of alternative nved
integer  programming  formulations  for optimizaton  problems involving certain ipes of
cconomy-of-scale tunctons, Such functions arise in 4 broad range ol applications tram such
diverse areas as vendor sclection and communications network design. A "noastandard” prob-
fem formulkation 1s shown to be supernor 1 several respects to the traditional formulation of
problems in this class

This first secuon descritbes @ rigorous approach to formulating certain optiimization proh.
Jems through the use of "minimization models” [4.5.6] The minimization model concept s
then used as the basis for definimg a family of "equivalent” tormulations as well as a means of
defining an "optimal” formulation. Sections 2 and 3 establish the optimuality of a4 very compact
formulation for tuncoons belonging to a class of economy-ot-scale functions. Computational
results for & communications network problem are then given to ilfustrate the superionty of this

tormulation as compared o a "standard” tormulation of the probiem

The economy-of-scale property that we will consider s encountered 1 a broad varieiy ol
cost functions for goods rangig from doughnuts 1o telecommumcations links  Roughlv speak-
g a tunction s said to have an cconomy-ot-scate property it the cost (per umit) of a commed-
iy decreases of certain Tlarge” quantities of the commodity are purchased A sumple example of
such a cost function. but one which serves to illustrate some of the properties that we wish 1o
consider. s a “cheaper-by-the-dozen” function defined as tollows fet v, denote the number of
single units of a commodity with the cost per simede unit heing o posiive constant ¢ . et -
denote the (nonnegative. integer) number of dozens Geroups of 123 purchased. the price per
dozen being a posttive constant « - < 120, (So that it s cheaper 1o purchase a dozen than s to

T o was s e s Nt Sooon b e e e NMOS T N
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purchase 12 simgle unitstoand Tet A Go) fsee Brgure T or o vpicad A (0] denaote the “cheaper-
by-the-dozen” tunction that represents the vt cost ol purchasing ar feast v units. For
stmphicity i this example. vand v will be assumed to be continuous variables, Ttis casily seen
that A () can be compactly represented as

(NN Aa) = mn ol

Vo L anierer.

Lhat os, substtuting any constant « for van the nght hand side of G D ovields an opumization
problem Gn the varables voand v whose opumal value s precisely Ata). OF course, the
precewise-linedr function A Cvd can be represented in many other wavs, but, as will he seen. the
representation (1 1) as not onhy compact but alsoas useful i formulatng optimization problems
mvolving Aty

b w7 T PR POy B AR RN I

The RHS of €1 1) s an example of a muxed-mteger mummuzation model (MIMND i coneept
that was deseribed in 405,610 To detine this concept. suppose £ s a function from R into
t <+ <] and that the followmg equation holds for all v belonging 1o a subset S of R
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1.2y ) = nan o
subject to Iv==b BEW

Vo Gand vomiteger tor o ¢/,

where 7is 4 subset of 11 b, bis an element of R, and . A. and A are of dimensions
I x noom x nand mox | orespectively. (We will assume that the optimization problem on the
rhs on (1.2) has an optimal solution if 1ts feastble set s nonempty . and that the "optimal value”
is defined 1o be +oo if the feasible set is empty.)  The expression on the rhs of (1.2) is swd to
be & MIMM tor £ on S (Hor our purposes, it is convenient to assume that Sis comvex, although
tor the general theorctical development of MIMM'S given in [4]. this is not necessary).  As
noted in 14). the utility of MIMMs arises in part from the tact that for any set S € S the fol-
lowing two problems are cquivalenr:

t1.3) min )+ /(s)

sty €8S (vreT
and

tl 4 min ¢ + flxz)

A - A
1= b - Ax
v 2 0and y integer for i € [

The problems (1.3) and (1.4) are ¢quivalent in the sense that (1.3) has a feasible solution if and
only if (1.4) has a feasible solution. and (x*2*) is an optimal solution of (1.3) if and only if
there exists @ v* such that (v*3%2*) s an optimal solution ol (1.4, From a computational
point of view the transformation from (1.3) 10 (1.4) may allow the replacement of a piccewise-
hinear objective function term f(x) by a lincar objective function term ¢v. Thus, if an optimiza-
tion problem has only linear constraints and objective function terms for which MIMM's exist,
then this conversion procedure may be carried out rerm-byv-term until the original problem has
been transformed into a mixed integer program (MIP). Note, however. that although this MIP
will be equivalent to the original problem, equivalence may be destroyed if the integrality con-
straints on the newly added variables are deleted, a reluxation which is usually the first step of
an algorithm for the solution of an MIP. In particular, the relaxation of the integrality con-
straints of a4 MIMM will yield a parametrically defined family of problems (a fincar programming
minimization model (LPMM)) whose optimal value must be (see [4]) a convex function on all of
R'. Thus. this relaxation will mean that a nonconvex objective function term of the original
formulation 15 replaced by a convex approximation. In algebraic terms, defining

(1.5 f*x)Y = min oy

it follows that /* is comven on R' so that if / (as defined in (1.2)) is noncomex on 8 lin the
sense that there exist points v, xvoo v € Sand a x € (0.1) such that v = Ax; + (1 - A)x, and
SO > A )+ 00 A xs)then fand f* cannor coincide over all of § Gin particular, they
would not agree at v). The difference f(v) 17 () (which is always nonnegative because of
the relaxation of the constraints? will be termed the refaxation ervor of the LPMM at x

In the case of the MIMM (1.1}, for example. the optimal value function (for v 2 0} for
the LPMM obtained by refaxing the integrality constraints of €1.1) is casily seen to be the hnear
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lunction AY(y) 1Y The relananion crtor i thas particular case 1y thus the difference
hetween the values A Corand A *Cus tsee Freure 10 Note that this difference is posinve unless
s ananteger muttuple of 120 thor v - 00 Ay ACOuh = 00 but we are concerned here onldy
with nonnegative vatues of )

In comparing alternaimve MEMM formudations. o comparison ot the behavior of the refaxa-
tton errors ostablishes the refauve accuracy of the approximatons used 0 the hirst step of the
solution of the respective MIP'S Thus, o 77 s the optimal value Tunction of the contimuous
relaxation ot a ditferent MINM for f0oamd 270 > 2000 tor i v S twhich we write ae

£0 st then the MIMAM 01 20 may be considered to be at least as good twith respect to the
relasation error eriterion?) s the MIMM from which /77 was dernved Moveover b it can be
N .

ostablished that the megualinn 17 > 7% holds Tor @l convex functions /7% sabistyving f 2 /77,
then the MINMAL giving nise to £ will be oprmad Trom the stundpoint ot error .noa relaxation
~solution strategy . and will theretore be suid to be rclaxation-optimal on S CAS will be seen.
function may have more than one relaxatton-optinial MIMM . so additional MIMM criteria also
will be vonsidered. ) In order to more castly desertbe results of this type. 1t is convenient 1o
introduce some additonal terninology 1 /70 a tunction mapping @ convex set [ into
o< o] the comveny emvelope of Bron T twhich may be thought of geometrically as the furgess
convey function below fron 1o denoted by« Uha T is the function satisfying the relations

(1 o o Iy g forall v
(N ¢ttho ) s comvex on
(8 Wela) < e torall vo@ T and ¢is convex on 1

then gty < ¢ thoo I tor all vo¢ T

(In places where reference to the variable s not needed, we will write o™ (0.7 i place of
U Iy Exastence and unigueness of cC O T easily follow from the fact that the poimnt-
wise supremum of o family of convex functions s convex. Defining on 7the set of funcuons

CUn Ty = delgasconveson 1, ¢ < hi,

O T s simply the supremum of CA, T Tr might be noted that the domain T plays a very
signiticant role in determinimg the convex envelope. That is, the value of the convex envelope
at a particular point may be different for different choices of 70 This aspect of the convex
envelope will be taken up in Section 2

[he opumal value function of o EPMM | in addition to being convex. is also piccewise-
hnear (PLY. and v as also convenient o imtroduce some terminology for piccewise-linear fune

tions ot aosingle varable, which are our principal concern in this paper

W will say that a real-valued tunction 4 detined on a closed interval fego,] © R is a

precewnc-linear funciion on oo oo | wile breakpomes o, < oay o < a0 A s affime on each
subimterval fa o Sland e ) - hia Mot —a ) 2 [hta ) - hta itae ) for
[ L I tthat 15, the slope to the teft of o« differs from the slope to the right ot a )

I'he basic result that will be used to establish that certnn formulations vield conves
envelopes is the sufficiency part of the following theorem

THEOREM 12 Let ¢ be a Jower semi-continuous (1 ¢} function mapping fea | ointo
(oot with glae ) < w0 fory =0, ... p
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Let g7 be a convex piccewise-lincar tunction on oo, b with breakpoints a,, < o -
cap,and let g7 (0 < g0 tor v € fega,l A necessary and suflicient condition tor ¢ 1o
be the conves envelope of g on g, is that S a)) gla ) fore - 00 p

Proof”  To establish suffrciency, suppose that ¢« Cle oo,y Then for any ¢
fera o, ] there exists at least one pair «..a .y of breskpomnts such that ¥ e, 10 Choosing
A 001 such that v = Aa, + (1 Ada,y, we have tusing the convexity of & gy <
Alla) 4+ (- A 2le ) < Agla) + (1 A wla ) = Agtla b+ (1 A)
la, ) = gtk Thuse 20 < g* () for any v ¢ aga, ] establishing that ¢ o
(g, ln“,n/,lf

>

fo show necessity, suppose that glat g tay) = e > 0 Since ¢ Lscoand ¢7 s con-
tinuous. there exists @ &, € (0.a)) such that o, < v < oy, + a0 imphies gl 2 vt e, 2
and g* () < g¥ o) 4 ('yz = wln,,) ey 2

Now consider the P tunction £ (see Figure 2) with breakpoints at da.,. o, +
doo ey Loy and function vadues lan) = glad e 2 @lay v ag) - g leg, 2 AL Dl ) -

¢l ) =1, p). Note that Zla,) > ¢l ). but that 24x) = g*{x) for

len + 8., ] and that 2 is a convex function on la.a, ] Finallv, the relations &a,) =
lay) — €/2 and @lag + 84 = g¥la, + 80 < vl v €, = la,) e 2 imply ¢y 7
glag) — ey2 for x €lanay, + 8l so that SO0 < et for v ¢ fawa, ] Thus,
Z € Cle) foegoa, D) and gla) > g7 (). contradicting the hypothesis that ¢* (0

e laga, D) A contradiction may be similarly obtamed it @l > ¢l ) For an iterior
breakpoint «,, the construction of a suitable & is sinular (see Figure 30, exeept that the break-

points of ¢ (where it coincides with &7} are laken to be a . ... .« . «a TR
5 .....a, where 0<5, < minla . qat . a b s chosen so thatt delining
€ = gla,) — g*la)) > 0. we have., for v € [a & .o+ & 1. the incqualities giy) 2 gl )

€2 griv) < e*la,) + €,/2 Because of the change in slope at breakpomnts, it may be ventied
that ¢*ta ) < £la ), and thus a contradiction may be obtained

Note that for sufficieney, lower semu-continuity of ¢ s nor required I this paper we are
primarily concerned with the sufliciency part of this theorem. but 1t should be noted that in [4]
the lower semi-continuity  optimal value functions of MIMM'S was ostabhished under
rationality assumpuons on the coetlicients of the MIMM

It mught also be noted that the argument used i the proof can be used 1o show that ¢
does nor have o PLoconvex envelope if glee) = to or gla,b = +20 sinee this would mean
that £*la ) < gla ) or ¢* ) < gl ) tor any PL Tunction ¢” On the other hand. a PL con-
vex o envelope may exist af there are mteror pomts v oob e, a ] with the property that
viv) = »oo This wlows the domain of ¢ to have "gapy” on which ¢ may be thought of as being

v Such gaps often occur i optimal vadue functions of MIMM'S

From Fgure 1. one nught conjecture that A* s the conves enselope of A on R This iy
indeed true, and i Section 2 we will use the approach of Theorem | to establish a more gen-
eral result from which this tollows as a special case

2. THE UNBOUNDED CASE

In this section we will consider MIMM S tor a broad class of cconomy-ot-scale functions
that includes the cconomy-of-scale function A (v of the previous section  Spectfically . we will
develop relaxation-optimal MIMM's tor the class of tunctions whose elements may be
represented as optimal value functions ot the following 1y pe
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. .- . .+ Q.

iy aj $ ay a;*s i+
TR TS B I T PP B PR SRS P RO e

(2.1} 00 = min

sy 2

vz 0, v integer tor i € [

where o = (¢, ..., ¢, 20, a="(ay.....a,) >0,
and Tisasubset of {1, ... #»l.
t The case in which there are ¢ = 0 s not of cconomic interest, but is included for mathemat-

cal completeness. The sign restrictions on ¢ and ¢ do serve to guarantee the existence of an
optimal solution for all v, but. as shown in Appendix A, could be replaced by this hypothesis.
In the next section, where hounds on the voare assumed. it will be seen that these sign restric-
tions have greater significance 1 Note that the class of functions representable in the form
2 1) ancludes tixed-charge functions and cconomy-of-scale functions allowing several different
volume discounts tas opposed 1o only one in the case of A (v (The computational results in
Sectuon S deal with an example i which # = 3} For notational convenience we will assume
that the vanables have been ordered so that

2N ¢

P

va, =2 S oyad- =o€ < ca, o

from a cost viewpornt, this means that. on as per umi basis, the most "cconontical” purchase
quantity 1s a,. the next most cconomical is ¢». et and the right-hand side v represents the
mimimmum amount to be purchased
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Consder the continuous refavation of the MIMM m 2 1 which has the opumal value
funcuon detined by

(RY U =y
SEoav vy 20

Fhe tolowmg lemma states that 72 s linear on R and provides the basis for u proof of the
relanation-opumality of the MIMM on the RHS of (2.1)

TEMMA L Fory = R vy =0

PROOE Note that, for any x 2 0, the dual of (2. 3) may be writien as

124 Max v\

v

SsLvad £ ¢, v 20

By setting v"= vigoand v t= v = = 2= 0 and vro= roo we obtain primal and dual feasi-
\ E

hic solutions with commeon objeenve function value #,n. This is thus the opomal value, 71(y)

Having obtamed a closed form representation of /76 the relationship between f and /7 s

casthy estabhished.
THEOREM 2. The following relations hold between f, and f§
2% fox)r= o forx =k gy th=0.1....)

(2o 1=ty R

PROOF: Since /1) < /() for v € R (2.5) may be established by showing that, for

vk ocay th=001.2 0 000 (2.1) has a feasible solution with objective function value
f*ha ) = r; - hay = hcyo Such a feasible solution is obtained by setting vy = A and 1+, =
VL= =, = 0.

To prove €260, it suffices to show that for any x' € R!. there exist vy, 13 € R! such
that, for some A € (0.1, we have Axy + (0= A) xi =2 and fTX) = A/ () +
() A0, sinee any 4 € c*(f R must satisfy S S A+ - A) fG).
These quantities are obtained by taking xy = 0. x2 = A - a,. where A is an integer chosen such
that Aa, = AL and A such that (1 — ADdhey=x. Then Afj{x;) + (1=A) filx:) =0+
) Adriha, = rix = 1),

It is of some mathematical interest to note that the constraint @y 2 vin (2.3) is satistied
as an equahity by an optimal solution of (2.3). The observation may be used to establish that /¢
is also the convex envelope on R ! of the optimal value function in the corresponding equality-
constramed case

27 £ = nin ooy
SLoay = v
vz 0, voanteger tor g €

This result follows since £ (v) = fHx) for v = A gy th =01, ...). Since /T may be writ-
ten an the form (2. 3) with the constraint v 2 x replaced by av = v, it follows by the analog of

Theorem 2 that the moditicd MIMM s relaxation-optimal in the equality-constraimed case (2.7}
as well
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v

On the other hand. 1t s not always possible to establish relaxation-optimality 1t a positive
comstani s added to the RHS of the constramt with RHS vin (2.0 (pegative constants pose no
dithculty . as we will show in Sectton 30 An example illustruting the difficubties that may arise
I this case is givenan Appendix B However, it s possible 1o extend the results of this section
to the case i which nonnegative hounds are imposed on the variables. This case 1s taken up in
Section 3

Finally, i the case that the ¢ are all ranonal. Theorem 1 is a special case ol a result of
Blair and Jeroslow [2]. who considered a system of constraints and showed that the convex
cmyvetope of the opumal value function of the MIMM (for x € R")

(2.8} min ¢
sLoAv 2 4wy 2 00 v ameger for i €/,

comeardes with the optimal value function ol the continuous relaxation of the MIMM. The
thrust of the next section can thus be viewed as an extension of this result 1o certain cases in
which nonzero constants are allowed n the constraints of (2.8). (In general the Blair-Jeroslow
result does nor extend to the nonhomogencous case. as may be ascertained from the examples
in Section B}

3. BOUNDS ON ¥

For most integer programming codes, it is necessary to have bounds on the integer vari-
ables. I the range of the v variables in (2.3) is restricted by the imposition of bounds, then the
corresponding optimal value function on R! is piccewise-linear (where it is finite), but the
relaxation-optimality property of Section 2 may nonetheless be extended to this case. We first
consider the case ol upper bounds, and then the case of upper and lower bounds. As in Section
2 we assume that ¢ 2 0 and ¢ > 0. (By making some obvious extensions, the constraint
a > 0 may be removed, but as may be seen from an example in Appendix B, sign restrictions
on ¢ are needed in the bounded case to guarantee relaxation-optimality.)

Specitically, instead of the MIMM in (2.1} we first consider

(REW f-(x) = min cv

s.tay 2 x

¥, integer, i € [/

where ¢ 2 0, @ > 0, the ordering assumption (2.2) is assumed to be satisfied. and the u, are
nonnegative constants with w, integer for i € 1. To prove relaxation-optimality we will show
that the convex envetope of /5> on ) = (Qgul. denoted by ¢*(f5. D), is given by the optimal
value function of the continuous rclaxation:

(3.2) /3x) = min ¢y
sloay 2 v

0< vy <

(We are not concerned with x > au since f>(x) = f3x) = +oo for such x.)
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For notanonal convenience in stating a closed torm expression for ftv) we make the
tollowmg definitions.

h ’:‘Zuu.d = Z““ oo,
1

where it understood that b= 0and d,, = O
I'he tollowing is the analog of Lemma 1

LEMMA 2 ) = rtv - h) +d forh € 0 < b
(G=0,...n -1

PROOLF: The proof is analogous to that of Lemma [ For any x the dual of 270 15
given by

max vx — wuy

sova —w L oo 200w 20
In addition. tor anyv v e D. the optimal solutions of the primal and dual problems are as follows:

Hh << h osetv” = tori < j,sety* =0fori >+ 1, and choose 1% ., such that
vre= oot = o ford €4 and wr o= 0 for i > )

dit = XU se

Note from Lemma 2 that the breakpoints of f*s are contained in the set {h, . ... .h,1. B
applyving Theorem 1, we can obtain the following analog of Theorem 2:

THEOREM 3: The foliowing relationships hold between /> and /f*1:
(3.3) X)) =/ ifx=h (G =0.....n),
(3.4 S* = D).
PROOL: The relation (3.3) follows from considering the feasible solution with v* = u,

for + < yand v* =0 for i > j. The relation (3.4) then follows directly from (3.3) and
Theorem 1,

In a branch-und-bound algorithm in which the v, are used as the branching variables, the
formulation €3.1) has the additional very nice property of vielding a relaxation-optimal tormula-
ton ar cach node in the tree. since relaxation-optimality is nor affected by the imposition of
additional integer upper and lower bounds on the v, in (3.1}, This is because introduction of
nonncgative Imver bounds is equivalent to the addition of a negative constant 1o the RHS of the
constraint @y 2 x. Since a constraint of the form av 2 x — y. where y 2 0 implies an
optimal value of 0 for xe [0.y] in both the corresponding MIMA and its relaxation, it is casily
shown that a translation of variables leads 1o the following result (see Appendix C for details):

COROLLARY |1 For v 2 0, fet

/i) = min g

s.Loay 2

v,integer. e [,
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where 102 0 and 1 oand « are integer for e [ then the MIMM oS relaxanion-optimal on oy
mterval loau b, where a e {000l

In the next two sections we will compare these results 1o o "standard” approach 1o formu-
Latton that vields relination-optimal MIMM'S for quite general piccewise-lincar functions

4. AN ALTERNATE APPROACH

A standard and quite general approach to modelling continuous piccewise-linear noncon-
vex functions is 1o employ the so-called "A formulation” of separable programming with the
additional restrictions that at most two A, are allowed to be positive and that these must be
"consecutive” We will see that, while this approach also yields relaxation-optimal models, it
can. in contrast to the approach of Section 3. lead to computational difticulties in the absence of
spectal provisions for handling the variables.

Assume that /1s a piece wise-lincar function on [u,,_u,,! with breakpoints o, < o, <

< a,. NS possible to deal with 1os.c "precewise-linear” functions by a slightly different

formulation technigue (see [41). but. aside from the need for more complex notation. the
results are essentially the same.) Consider the following MIMM for 1

/7
(4.0 fiv) = min Y, fla,n,
ALh

10

I
s.h 2 N, =X\

=0

»
A=A 200=0,..p

iy

/\1) g 81]

Ay <511+81

2l

Yo =13 20andinteger G=0,... p=1

iU
and let £* denote the optimal value function corresponding to the continuous relaxation of the
RHS of (4.1). Note that /* € C(f, lag.a, ).

THEOREM 4 The MIMM on the RHS of (4.1) is relaxation-optimal on [m,.u,,\.

PROOF: Let ¥ € [y a,} and let A be chosen so that 1’ (X1 is obtained by setiing A, = A,
in the corresponding LPMM. so that fx)= 2/'(::,) A 2 Zv*(__/._a,,lm,,u,,]l N, 2
r'(,;.i‘,‘(n,.u,,h. Since f*e CLf, ["\\~“1v])~ this implies that /*(x) = ¢*(/f.x [un.(x{,“ and the

conclusion follows. .

While Theorem 4 implies that the standard MIMM will also be relaxation-optimal for a
continuous economy-of-scale function in the class considered in Section 3, the MIMM (4.1) has
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several computattonal disadvantages. One obvious disadvantage is its sheer size. since the
number of constraints and variables i (4 1) s determined by the number of breakpoints of /.
whereas this s not the case tor the formulatons of Secuons 2 and 3. A more subtle disadvan-
tage s the fatlure of the integer vanables 8 of (4 1) 1o directly reflect physical quantities. In
particular, the & all have cost coeflicients of 0 and. moreover, a 0 "hranch” on a 8, has no effect
on the allowable range of v vatues unless it has the fargest or smallest index of any 8, not vet
tined  Wiide these disadvantages mas be alleviated via the use of "Special Ordered Set” (SOS)
strategies for branching (see [T such strategies are ofien not available in MIP codes (see [3]).
In particular. SOS strategies are not fully implemented on the Univae FMPS-MIP code in use at
the Madison Academic Computing Center, and in the next section we compare results obtained
with EMPS and the tormulation approaches of Section 3 and 4. (It should be noted that the
use of an SOS strategy has the advantage of imposing disjoint upper and lower bounds on the
range of the vartable «vin (4.1) when SOS branching is performed. Branching on the v, in (3.1}
imposes upper bounds on v, but does not directly impose lower bounds. Lower bounds on the
range ol vmay be directhy imposed by adding to (3.1) constraints of the torm

2 ogy ooal,

plus addiional constrants of the form - < 1. By selecting the cocflicients ¢ to reflect max-
imum “surpluses” so that for any X e [0.ar]. a ¥ vielding an optimal solution to (3.1) for A = «
will satisty v 2 av - gz tor some fteasible = relaxation optimality will be preserved  This tol-
fows cuastly trom the tact that, by assumpnon. the opuimal value function of the MIMM remains
t-ix ) while the optimal value of the continuous relaxation, which cannotl increase bevond
U0 Gnospite of the added constraint) must also remain the same. Some theoretical
and computational aspects of such fower bound constraints as well as some ovier modelhing
r2tinements 1o deal with upper bounds on x are currently under investigation )

5. A COMPUTATIONAL COMPARISON

In this section we consider a comparison of solution times for different formulations of
the following communications network problems: determine the minimum cost network (see¢
Table 1) that meet specified demands (see Table 21 between six distinet pairs of cities (A B),
(A.C), (A D), (B.Cy. (B.D), and (C D), where the communication traflic between the ele-
ments of a city-pair may be routed via any acvclic path between the caities (there are S such
routes between cach citv-pair).

TABLE 1. Costs

cAre Single Channel 112 Channels | 60 Channels
TAB 789 75 T 7028.77 17690.40
CB-C {78 25 L 7992.07 21341.47
LD 1407.70 L 13232.38 42512.54
DA 65490 | 569763 13098.00
DB (045 60 | 9619.52 28022.08
LCA 123657 L 11500.10 35860.53

TABLE 2 Two Sers of Communications Demands

L('nyl’.nr ‘ Demand Set ] | Demand Set |
A-B i 2 4
B-( : 101 1)
«n 16 64
DA 5 5
i DB 2 [0)
IC-A 4 14
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Algebraically, this problem has the form:

0
min Y i, (x)
v

N

sUY so=ditk=1,....6)
1

z a=x =1, ...0.6)

Crhde o
N, o, 20,

th

where 2., represents the number of channels on the ;" path between the &' city-pair. d, is the
total number of channels needed by the A" city-pair, A4, is the set of pairs (j,k) such that the
corresponding path uses are 4, x s the total number of channels on arc . and /1 (x,) s the
minimum cost of feasing at least x, channels on are 7. (Note that the /i, are economy-of-scale
functions of the ype considered in Sections 2 and 3 with » = 3. For computational conveni-
ence the variables associated with single channels on arcs were assumed continuous. Because
of the fixed demands. bounds could be imposed on all variables. General integer variables were
decomposed into 01 varnables, since the FMPS-MIP code requires this.)

The computational results of Table 3 illustrate the dramatic difference in solution
behavior and times between the formulation approaches of Sections 3 and 4. The MIP code
used was the Univac FMPS-MIP code tevel 7R1) and the problems were run on the Madison
Academic Computing Center Univace 1110, For demand set I, the Section 3 formulation
requires only about 1/4 the computer time of the Section 4 formulation. For demand set 1.
the solution time for the Section 3 formulation is 15 seconds, whereas the FMPS system was
unable 1o solve the Section 4 formulation. Similar behavior was observed in runs using a
locatly developed MIP code. IPMIXD, which successfully solved both I-S and H-S, but failed to
solve either [-L or II-L because of storage overflows.

TABILE 3. Probiem Sizes and Solution Times

Problem Rows ('olumns« 0-1 Variables | Solution Time (Sec.) ;
[-s* 12 s ] 18 4 |
L+ 76 122 40 15 |
11-S 12 60 24 15

LII-L J 116 202 80 t ‘

denotes demand ser BS denntes “short” formataion
b odenotes Mlong” suandard B nulanon
£ EMPS sostem Toreed termimation of run with message "numeriedl crrors

A number of other versions of the problems were run in which some of the cost function
terms were modelled via the Section 3 approach and the remainder via the Section 4 approach.
In all cases the results were worse then those obtained via the Section 3 approach.

6. CONCLUSION

For piecewise-linear functions belonging to a broad class of economy-of-scale functions, a
compact mixed-integer programming formulation has been described. This formulation was
then shown to behave at least as well as any other mixed-integer formulation of the fuaction in
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terms of the approamation error resulting from the relaxation of integrality constrainms. More-
over g vomputational companson (using g communications network problen as a test problem)
showed the supeniority of the compact formulation over a standard mixed-imteger formulation
0! the same problem
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APPENDIX A

To jusufy the statement in Section 2 that the restrictions ¢ > 0 and ¢ 2 ) can be
replaced by assuming that (2.1) has an optimal solution tfor x 2 0, we consider the remaning
cases” (D) 7such that ¢ 2 0 and @ < 0 (2) i such that « < 0 and ¢ > 0, and (3) ¢ such that
¢ < Qanda < 0.

CASE 1. For those 7 such that ¢, = 0 and ¢, € 0, one may obtain an equivalent problem
by deleting the corresponding variables v from the problem, since, for any v 2 0. an optimal
soluticn may be obtained in which such v, = 0.

CASE 20 It there are ¢ such that ¢ < 0 and a, > 0, then clearly the objective tunction of
(2. 11 must be unbounded from below, so this case is ruled out by the existence of an optimal
solution

CASE 3 If. tor some i, ¢ < 0 and @, < O, then either all @ < 0, in which case (2.1) 1
infeasible for & > 0. or there exists at least one / such that ¢, > 0. In the latter case let
ro= min lodada, > 0band 1 = max lo, /e, < 00 u, < 0} It r < r° ) then, assuming
that the vanables are orderad so that ¢y > 0 and ¢ \/a, = r’. it may be seen from obvious
extensions of the preofs of Lemma | and Theorem 2 that the desired result hoids. On the
other hand. if + > r°, then the objecuve function of (2 1) s unbounded from below for all
This follows by leting r* = ¢,/u, and r = ¢, /a,.. noting that ¢/ -¢, < a,/—a,, and choosing a
rational # > 0 such that /-, < # < ay/-a,. from which 1t follows that ¢, + @# > 0 and
¢+ ¥ < 0 Now choose an integer M > 0 such that M# is integer and note that the rela-
nons a. - M +a,  MP > 0and M + ¢, - M# < 0 imply unboundedness.
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APPENDIX B

Here we consider several examples to illustrate the difticulties that can arise when one
atempts 1o extend the results of Scctions 2 and 3 by cither (1) inserting a positive constant on
the RS of the constraint involving x. or {2) relaxing sign restrictions in the bounded case, or
(3) allowing more than one constraint involving v in the bounded case.

The following illustrates the difticulties that may arise when a positive constani appears in
the RHS of a MIMM (see Figure 4):

ky(x) = min v, + 10y,

sty + 122 v+ 10

yi.ovs 2 0, v,y integer.

In this case. the convex envelope of &,(x) on R! is easily seen to have a value of 10 on {0,2].
sa that it does not coincide at v = 0 with the optimal value function of the continuous relaxa-
tion of the MIMM as given by:

min v, + 10y,

'

sLyyp+ 12y 2 x + 10

Yovs 20,

since k*,(0) = 10 - T < 10.

10
* [} [y \
2 12 Y

Fice ke 4 & 00 on {0.14)




rhs x:
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Note also that the addition of bounds does not help, since delining

Astx) = man oy + 10y,
sty + 12y, 2 x + 10
0<y £10
0y,
¥y integer

vields A (x) = A.(x) tor x € [0,12), and k,(x) coincides with its convex envelope on {0.12],

whereas the optimal value function of the continuous relaxation is again strictly less than &k (x)
at v = 0.

Now consider the following example in which a RHS constant is not present in the con-
straint involving x, but there are negative coefficients:

ki(x) = min —y, + 10y,

\);\»\
sty + 128, 2 x

0y €10
0 < ) <1
Voanteger.

Making the change of variables ¥, = 10 — v, we have

kix)=~10+ min v, + 10y,

(IR

sy + 128 2 x +10
OS R g 10
0 S Vo S 1

¥+, integer,

So that Aylx) = —10 + k-(v). Tt is easily seen that while & coincides with its convex envelope
on [0.12]. it differs from the optimal value function of the corresponding continuous relaxation

at v = ().

In our last example., we consider the case of rwo constraints with positive coetlicients and

Ayx) = miny; + 3>
S 2y, +4vy, 2 v
4y, + v, 2 v
0y, v |

¥ antegen
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In this case the optimal value tunction is finite tor v < 6, and 1s casily seen to have the values
Ofor v =10
Kylxy =4l for0 < x <3
2for3 < x €6
Thus, the convex envelope of A, on [0.6] ts simply x/3. On the other hand. for x = S the con-
tinuous relaxation of the above MIMM for A, 1S casily seen to have optimal value ¥/ 2 for v = 8
(choose v, = J.n= 1), and theretfore it does nor coincide with the convex envelope. which
has value 5/3 at v = §
APPENDIX C
We wish to establish relaxation-optimality in the case of both upper and lower bounds as
considered in Corollary 1. Define
(C.1) £3X) = min oy
1
s.t.ay 2 x,
1<y £
v, integer, j € [/
and
(C.2) f£31(x) = min cv
1
s.toay 2 x
I <y €,
where 1 2 0 and /. and u, are integer for i € I By making the substitutions v = = + [,
v =1 +alband 4= u — I, we have
fodx) = ¢ + min ¢z
st.az 21 0< <4, ¢ integer, i € [
= + frlr) = ¢l + fr{x = aD).
where

/() = min ¢z
st.oaz 21, 0 €z <4, znteger, [ € L

Simularly. %) = ¢ + [*.(x — al) where

1.0 = min ¢

st.a: 21, 02 €4
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ABSTRACT

In this work we consider spread of information which motivates the hearer
to perform some specified action. The tme to completion of an action 15 as-
sumed to be a random variable and the main focus is on the number of com-
pleted actuons by time o V(7). Some models. which reflect different degree of
centralization in the spread process, are analyzed and the distribution of V()
as well as that of some other stochastic processes of interest, are obtained. The
relevance to propagation of epidemics ts pointed out

All models dare solved by employing two interrelated concepts. namely. the
order statistics property ot stochastic processes and the binomial closure proper-
ty of collections of distributions.  In this respect. the work also serves as an
illustration of the application of these useful concepts

1. INTRODUCTION

In this work we shall consider several spread of information models. While the term
information is meant in 4 broad sense we are particularly referring to messages which motivate
the hearers to perform some specified action. This could be a marketing leaflet which stimu-
lates the reader to buy some commodity or a military call up order which requires the report of
its recepient at some predetermined place. The spreading itself could be carried out by a single
spreader {(possibly a source), by means of a hierarchy of spreaders or by anyone who has heard
the uformation. The models which will be discussed in this work corresponds to this varying
degree of centralization in the spread process.

All models start with a stngle initial spreader — having more than one would merely
require convoluting the results — and the spread rate is always of a homogeneous Poisson type.
The time 1o completion of the specified action is assumed to be a random variable, independent
from hearer to hearer, with a general cumulative distribution function # (). 1t should be noted
that an action need not involve physical efforts and may even be instantaneous so that f/(-) is
indeed. the c.d.f. of the period of time clapsed between the receipt of the information and the
completion of the action.

The quantity we are mainly interested in is the number of hearers who have completed
the action by time 7 or alternatively, the number of completed actions by time . Besides com-
puting the distribution of this stochastic process we shall also obtain the distribution of associ-
ated stochastic processes of interest such as the number of headrers up to time ¢ or the number

“Prosenth visttine the Department of Quantitative Methods, Uneversity ol Hhnois at € hicagn Crrcle
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of responsive spreaders or hearers up o time 7 (when the possibihity of “defection” is taken into
avcount)

1t s instructive 1o note that the above models bear relevance to propagation of epidemics.
The vocabulary should then be translated as tollows: Information-Discase. Spreader-Carrier.,
Hearer-Intectous, Source-Virus,  The specified action could be interpreted as any event of
mterest such as recovery or the less fortunate outcome.

For hiterature on spread of rumors see Dietz [3] and Bartholomew {21, A comprehensive
treatise on spread of epidemics can be tound in Bailey [1].

2. SOME PRELIMINARY RESULTS
Let us first present two concepts, which we shall use extensively in the sequel.

DEFINITION 1 A stochastic process with unit jumps, Y (1), is said to have the order
statistics (abbreviated: OS) property it conditioned on Y{r) = n, the unordered times of jumps
are distributed as a random sample of size # from a ¢.d.f. F,(-) which we shall call the kernal
cd.f.

NOTE. In this work we shall consider only processes with continuously distributed "inter-
jump” intervals so that F,¢) will always be a continuous function.

DEFINITION 2: A collection of discrete nonnegative distributions & 1s said to be binomi-
ally closed (abbreviated: BC) if for every P € Pand any 0 € y < 1 there exists a P € &Psuch
that

N ~ P, X|\., ~ Binomial (n, y) — X ~ P

or, restated. if .V is distributed according to 4 member of Pand the conditional distribution of X
given N = n.is Binomial with parameters (o, y). then the unconditional distribution of X is
also @ member of @

Of particular interest are collections which are parametric families of distributions depend-
ing on some parameter #. In this case the above definition can be reworded as follows:

DEFINITION 2" A parametric family of disl_ribulions P =P, ¢ €0} is said 1o be BC if
for every® € ® and any 0 € y < | there exists a9 € O such that

N~ P, X o Binomial (n, y) — X ~ P,
wheref =0, y).
The function # @, y) will be called the transformation function.
Examples of uniparametric BC families of distribution are:
1. The Poisson family of distributions
Py

P,ix)y=r¢ "7, x=0,1,2,.... 8 €6 =10, 00),

In this case the transformation function is
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H A y) =8y,

2. The Binomial family of distributions

Po(x) = [’flu\n—mk LVx=0,.. . ki #ea=101]

Here again

(2) B, y) =40y,

3. The Geometric family of distributions

Pi(x)=60-0), x=0.1,2 ....8 €6=101]

Here

(3 60, y)=U+y0 '- D] "

A useful tool for verifying whether a particular collection of distribution is BC is provided
by the following characterization theorem.

PROPOSITION 1: Let Pbe a collection of nonnegative discrete distributions and let @ be
the corresponding collection of moment generating functions where the m.g.f. associated with a
distribution Pis given by G(z) = Y z'P(x). Then Pis BC if and only if & is closed under a

v={)
linear transformation of its independent variabie, i.e., for every P € Pand any 0 € vy < |
there exists a P € %P such that

Glyz +1—y) = G(z)
where G{G) is the m.g.f. associated with P(P).

The proof of this Proposition is straightforward. When dealing with parametric families of
distributions we have the equivalent:

PROPOSITION 1" A family of nonnegative discrete distribution @ = {P,.0 € ©)is BCif
and only if for every ¥ € ® and any 0 < y < | there exists a# € © such that

(4) Gylyz + 1 —~y) = G;(2)

where G, is the m.g.f. associated with P,.

Due to the one to one correspondence between distributions and m.g.fs, the transforma-
tion function 8 (#,v) is the same function in both coliections.

COROLLARY: If the collection Pis BC then the collection &', formed by taking the
x-th convolution of each member of . is BC 100. The assertion is valid not only for positive
integers x but for any positive real x for which there exists a corresponding collection G of
proper m.g.fs. In the parametric family context we state that if?}’ = |P,. § € ®}is BC then so
is P = (P90 € O] where P/' is the x-th convolution of P, with itsetf. In this case the
rransformation function #(8,y) remains invariant under the operation, i.e.. it is independent of
x.
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The corollary follows immediately from Proposition 1 (or 1') due to the multiplicative
property of m.g s,

The following proposition relates the two concepts of OS property of stochastic processes
and BC property of collections of distributions.

PROPOSITION 2. 1If a stochastic process N{r}, with N(0) = 0, processes the OS pro-
perty, then the collection of distributions of N(¢), r 2 0:

P= Py, 1 2 0)

is BC.

PROOF: From the OS property of N(1), we can conclude that P(N(s) = j/N(1) = n)
= "l'l Fitsy (3 — F{s»H" " for all 0 € s £ rand all integers 0 < 7 € n {where 0" = 1),
Hence,

P(N(s)=j) = Zl';] F(s)(l — F7 '"SNPING)=mn), j=0,1,2, ....

n=1

Multiplying both sides by ' and summing over j from 0 to = we obtain after some manipula-
tions

Gyi2) =Gy, (2 Fls) +1 = F(s))
where G, ,,,(z) = Y z" PIN(/) = n), is the m.g.f. of the distribution of N (7).

n=1)

Hence. for every 1 2 0 and for any 0 < y < | there exists an s(0 € s < 1), such that
Gyinlzy =Gy, zy + 1 — y),

which is the solution of equation

(5) Fi(s)=1.

Such a unique solution does exist since F,(s) is continuously increasing from 0 to | in the
interval [0.t]. Proposition 2 now follows from Proposition 1.

We are now in a position to state the main theorem.

PROPOSITION 3: In an information spread process (of the type described in the Intro-
duction) let Y (¢) be the number of hearers who initiated an action up to time ¢ and let X{(r) be
the number of completed actions by time +. Then, if the stochastic process Y (1) possesses the
OS property, the distribution of X(¢) belongs, for all t 2 0. to the collection P =
{Py,, 1 20} -

PROOF: Assume that Y(¢) = n. Then, since Y (1) possesses the OS property, the unor-
dered points of time at which the n hearers received the information are distributed as a ran-
dom sample of size n from a c.d.f. F,(u). Moreover, the probability that a hearer who got the
message at time w(u < ¢) will complete the action by time ¢ is H(+ — u). Combining these
two facts we have

X (1) |yih=n ~ Binomial (n,p)

where
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(6) p=f MG wak .

Now. by Proposition 2, the collection 2 = {P,,,. + 2 0} is BC and hence, by the very
definition of this property, the distribution of X{r) belongs to Pas well.

3. HIERARCHICAL SPREADING

We begin with a simple model in which a single spreader circulates a piece of information
according to a Poisson process with parameter A i.e., the "interhearing” times are exponcntially
distributed with parameter A, Upon receiving the information, »ny hearer initiates an action
whose time to compietion is distributed according to a general c.d.f. /7(-). It is assumed that an
action can be initiated only when the information (which could be a leaflet or a form) has been
received directly from the initial spreader.

By assumption. N(¢) is a Poisson process. viz..

N (1} ~ Poisson (A1),

It is well known that a Poisson process possesses the OS property with a kernal ¢.d.f.,
u
Flu)= - 0<u <,

so that by Proposition 3 the distribution of X (/) belongs, for any ¢ 2 0. to the collection P =
{P\,,, t = 0}. This collection, however. is identical with the Poisson family of distributions
and therefore. by (1),

(7 X (1) — Poisson (A fn H(u)du]
since here

6 =Arand. by 6), y=p =+ [ Hudu
=Atand, by (6), y=1p - J, Huodu.

Thus,

(8) ELXl=x [ Hudu

and

(9) Gro(z) = expl—m-.—)fn'unmm .

Let us now drop the assumption that all hearers do act and introduce a probability a for a
hearer to be responsive and perform the action. The number of responsive hearers up to time 1
Y1), is again a Poisson process with parameter Aa which enables us 1o repeat the above argu-
ments with Aa instead of A. Therefore, by (71,

X (1) ~ Poisson lAu f“ H(u hlu'.

A natural extension of the above single spreader model is achieved by designating some
of the hearers as spreaders. These spreaders, however, do not perform the action. Specifically,
we have an initial spreader who begins at iime O to circulate the information among, what we
shall call, second generation spreaders These spreaders pass on the information to hearers who
perform the action. All sprcading is done according to a Poisson process with parameter A.
The total number of completed aciions by time ¢, can be expressed as

Nir

X,()=Y X, (1)

=1
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where

S s the number of sccond generation spreaders who have received the information by time
{,

X, (1) is the number of completed actions up to time 1 by hearers of the i-th second generation
spreader. By assumption,

S — Poisson (A1)

and hence, by the OS property of the Poisson process.

n

ar A1)

>
¢ n!

(10) Gt = % {f_ Gyo i (2)dy

n-0

= expl—)\l + A f” Gr.‘,(:)dy].
Substituting (9) into (10) yields,

: f)
At +AJ:' p AL oy \ II(ultludy

(rn Gy () = exp

with
dG\’:(,,(:)

(12) ElX ()] =
[X:(0)] dz

Ll = )cf” (t — u)H(u)du.

The total number of people who know the information by time ¢ (including second gen-
eration spreaders) can be represented as
Sty

Nyty = 3 (N, () +1)

=1
where,

N, (1)is the number of hearers of the /-th second generation spreader, up to time .

Noting that the m.g.f. of N, ,(t) is obtainable from the m.g.f. of X, (1), by setting H(u) = 1
(u 2 0), and since va(,,*,(:) = :GNM(,,(Z). the m.g.f. of N,{(¢) can be shown to be

(13) G\,"”(:) = expl-Ar + < - (1—¢ Al :))

with N,(r)

EIN,2 (] = ar + 207

If the possibility of "defection” is taken into account and we let | — 8 be the probability that a
second generation spreader does not spread and | — a be the probability that a hearer does not
perform the action, then, repeating the above arguments, we obtain

. L P B ‘/I( Vo
Gy, {z) = exp|—AB1 +/\/3L e L ‘ “dy

with
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ELY (0] =B [ (= 0 H G du.

We now proceed to consider a general spreading hierarchy. Thus, in a structure of order
k. the process starts at time 0 with an initial spreader who circulates the information among the
second generation spreaders, who pass it on to third generation spreaders and so on until the
k-th generation spreaders spread the message through the rest of the population who perform
the action. All spreading is assumed to be according 10 a Poisson process with parameter A and
the time to completion of the action has a c.d.f. H(-). Spreaders do not perform the action.

In order 1o obtain the distribution of X, (1) (the index k denotes the order of the spread-
ing hierarchy), we first make the observation that a second generation spreader replicates, with
regard to his branch, the role of the initial spreader for a structure of order & — 1. Hence,
using once more the OS property of the Poisson process, we obtain the recursive equation

(14) (i\k'!(,.(:)= expl—/\/ +A L G\-A(,,(:)dyl. k=2 3,4, ...

where G ,,,{(z) is given by (11).

Taking the derivative of (14) with respect to = and setting = = 1, yields a set of recursive
equations for the expectations of X, (¢) (k = 2, 3, ...). Solving these equations, while recal-
ling the initial value £(X,(r)) in (12), we find

A/x

(s Elx, ()= (t—p)* "Hpsdv, k=23, ....

(k — D!V

(In fact, both (14) and (15) also hold for kK = 1 which represents a single spreader model.)

For small 1, a higher order of the spreading hierarchy would not necessarily increase the
expected number of completed actions—since spreaders do not perform the action—but for
larger ¢ this will be the case. When ¢ tends to o it can be shown, using an Abelian argument
on Laplace transforms, that

E{X,.,(t)] — E1X,(1)] — oo, for any finite k.

1o
Similar arguments with respect to N, (r)—the total number of people who know the informa-
tion by time ¢ (including spreaders), yield the recursive equation
!
(16) GM.,“’(:) = exp[—Ar +/\:f” G\vkh,(z)dy], k=2 3. ...
where G\ () is given by (13). It can be shown from (16) and (13) that

k '
(17) EIN(D]= ¥ 9%)—

r=1

which indicates, as one would have intuitively expected, that the higher the order of the spread-
ing hierarchy, the faster the spread of the information.

It is interesting to investigate the behavior of X, (+) and N, (1) when kK — o For X, ()
we can get from (14) that

(18) Gy () =1 <> PIX.()=0l=1,
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which is not surprising since if everybody spreads there is no one 1o carry out the action. From
(16) we can obtain an integral equation for the mg.f. of N..{(1), the solution of which is,
a9 Gy o zr=e¢ M=zl =¢ "))
The m.g.t. in (19) corresponds to the distribution
PIN.(D=nl=¢e*0—-e )" n=01,2, .
Le..
(20} N. () ~ Geometric te M)
with
EIN.(D]= et = 1.
This result could have been obtained directly from (17).
An important generalization of the hierarchical spreading model arises when the spreading
rate of the initial spreader. which could be a source, is different from those of the subsequent
spreaders. Repeating the arguments in the above model, when the initial spreader circulates

the information according to a Poisson process with rate u, yields for X, (1) and N, (1} (which
correspond to X, {r) and N, (1), respectively, in the ordinary case)

(21} (i\__“,_(:)=cxp[—p.r +[.Lj:) G\A“.(z)d_v]
(22) ("\..("'(:) = cxp[—;u +us ﬁ G\,v“‘,(z)dv] k=123 ...
Differentiating (21) and (22) with respect to = and setting = = 1. vields

ra _ AR PR N = B

El (0l =pn T (= " THOG)dv = S ELY (D]
and

L (A1) n
N = By A o B opin o).
EIN (D] /\121 i X [N ()]

when A tends to oo, ¥, (1) behaves as X. (1), {sce Equation (18)). For N. (1) we have. recal-
ling (19),

Gy ) =c¢ ML=zl — ¢ M) ur,
which corresponds to the distribution,

PN, () =n) = [“/" +N” . ']p M=o M n=0,1. ...
That is.

(23) N . (1) ~ Negative Binomial

-
A

4. FREE SPREAD OF INFORMATION

In this model we make no prior designation of spreaders and assume that every hearer
may pass on the information in addition to performing the action. At first glance, it may look
contradictory that a person can do both simultaneously, but onc should bedr in mind our intro-
ductory remark that an action need not involve physical efforts. In fact, an action could even
be instantaneous in which case M () is the c.d.f. of the time until the action is taken,
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As usual the process starts at time 0 with an mtial spreader who circulates the informa-
tion according 1o a Poisson process with parameter A Any hearer of the information initiates
an action, whose time to completion is distributed according to a ¢.dA. /), and. simultane-
ously, goes on spreading the information at the same rate (Poisson with parameter A). The
number of hearers up to time £ V(1) should have the sume distribution as NV, (1) in the previ-
ous model, so that

(24) N — Geometric (¢ M)

This result is also obtainable by the following argument. The time at which the n-th person
received the message T, can be expressed as the sum of the successive "interhearing” periods
of the first n hearers. It can now be observed that these periods correspond. in reverse order,
to the "interfailure” periods of a system which is composed of n# units in paraliel each having an
exponential lifeume distribution. 7, is therefore distributed as the lifetime of this system. i.e..

PIT, <O =(1—e¢ ™). 120,
which, recalling the relation P(T, < 1) = PING) 2 n) . vields (24).
The process N (1) possesses the OS property |4] with a kernel ¢.d.f.
AU
(25) Fluy = £-=1
=1
Hence. the distribution of X (1) belongs. for any 1 2 0, o the collection P = {Py(,,. 1t = 0}
which coincides with the Geometric family of distributions. Therefore, using (3), we have

0<u <1

' |
(26) X)) — Geometric l[l + v’”f“)\ ¢ “‘H(u)du] l
with
ELX (1= f X e *H (u)du

since here

and, by (6),
2n y=p=(Ul~-e¢™*) lf“)\('“’H(u)du.

Let us now generalize the model by making the response of the hearers 1o both spreading and
acting probabilistic. More precisely, we assume that every hearer is either interested or unin-
terested. with probabilities 8 and 1 — 8 respectively. where uninterested hearers neither spread
nor act while those interested do spread but still may not perform the action with probability 1
B ¢ 2N

Letting ${r) be the number of interested hearers up to time ¢, it can be verified that S(r)
is the same type of birth process as N (1), only with A8 instead of A. Thus,
(28) S() ~ Geometric (¢ ).

Using the OS property of S(r) and the BC property of the Binomial family of distributions,
with transformation function #(9,y) = 8y it can be verified that

(29) X(I)L-”,.,, ~ Binomial (n,«p),
where

p=(1—-c 'f”)\ﬁ(' MY (4 ) du
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Applyving Proposition 3 and using (3) with® = ¢ " and y = «j we obtain
' l

Q30 X ) ~ Geometric ”l +u¢'”"LAB(' ”’“H(u)dul l

with

1
EIX(] =aer ) ABe *H(u)du.
(]

Like in the hierarchical spreading model we can now generalize this model by allowing the
rate of the initial spreader (which could be a source) to be different from those of the other
spreaders. Thus, if the initial spreader circulates the information according to a Poisson process
with parameter u . the distribution of N (1) should be identical to that of N.. (1) in the hierarchi-
cal spreading model (Equation (23)), i¢.,

N (1) ~ Negative Binomial |2, ¢ *|.

It can be shown that the process N (1) possesses the OS property with the kernel probability dis-
tribution function in (25). Furthermore, the m.g.f. of a Negative Binomial distribution with
parameters {(x,#) is the m.g.f. of a Geometric distribution with parameter #, taken to the power
x (x > 0). Hence, using the corollary of Proposition 1’, we can conclude that the Negative
Binomial family of distributions with parameter # € [0.1] is BC, for any x > 0 with # given by
(3}). Therefore, by Proposition 3,

X (t) — Negative Binomial

E_ JAT ! Au
o [l + ¢ f”)\e H(u)du

with

- P i SN ! y AN
ELX (0] = B¢ fxe H @

5. SPREAD BY A SOURCE

In this model. we have a source (some media) which, form time 0 on, transmits a piece
of information to a population of size N. Any member of the population may hear the infor-
mation in any interval (rr + Ar), independently of other members, with probability
AAr + 0(Ar), at which moment he initiates an action whose time to completion has a c.d.f.
H (). The distribution of the number of hearers up to time r. N (1), is

N (1) ~ Binomial (N,1 — ¢ *9,
since the ¢.d.f. of the time until any one of them will hear the information is given by
Luy=1—¢*, uz=0.
Moreover, the stochastic process N (1) possesses the QS property with a kernel ¢.d.f.
] — ¢ A
Flu) = —l— 0 u £t

— ¢ At

Applving now Proposition 3 and using (2) we obtain
{
X (1) ~ Binomial IN,c' m N H ) du
with

ELX()) = Ne ' X ervH (u)du,
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stnee here® = 1 - ¢ “and, by (6),

(b y=p=(—1 'f“u*"mumu.

Let us now relax the assumption that all the population is exposed o the source and
introduce a probability 8 that a member of the population will hear the information at all. We
further make the response of the hearers to the stimulus probabilistic and let « be the probabil-
1y that a hearer does initiate an action.

Denote by Z the number of people who are exposed to the source. Then,

Z — Binomial (N,8).

Given Z = m the conditional distribution of N (7)., the number of hearers (out of the m
exposed) up to time ¢, is

N(t)‘,,,,,, ~ Binomial (m, 1 — ¢ "),

Using the OS property of N (1) we can show, (like in the previous model—see Equation (29)),
that

X i s-m — Binomial (map), 0K n <m <N

where pis given by t31).
Applving Proposition 3 and then unconditioning with respect to Z (which amounts to one
more use of the BC property of the Binomial family of distribution) we finally obtain
X (1) ~ Binomial lN,aB e 0 LN et () d
wilh

ElIX()) = NaB e “j:})\ M H (u)du.

6. MORE GENERAL SPREAD PROCESSES

Throughout this work we have assumed that the spread rate is of a homogeneous Poisson
type. In this section we shall employ our procedure to solve the nonhomogeneous case.

Specifically, assume that the spread rate of any active spreader at time ¢ is a function of ¢:
A (r). Beginning with the single spreader model we have the well known result
N (1) ~ Poisson (A (1))
where

Ao = [N wdu

The nonhomogeneous Poisson process also possesses the OS property with a kernel c.d.f.

Alu)
Alr)

s0 that by following the arguments in the homogeneous case we can show that

Fu) = 0<u<x<1t

t
X (r) — Poisson lj:) AN H G~ w)du




14 MOBERG
with
fivei] = f‘/\tulh'(r - uldu
and
!
Gyoalz) = cxp|'(l - ,J‘”Mu)ll(l - u)du].

Conunuing to 4 hierarchical spread structure of order 2 we have

”

]

(I‘\‘.q(."

S A Al
Te — ). T G o) dy
& nt o Ny Gt

it

cxp[-—\m +LAU)G,,A,,(:)(1_V]

where Yt s the number of completed actions by time ¢ generated by a single spreader who
operates i the ume mterval ] The mg.f. of this r.v. is given by

Gy, 21 =cxp l—(l - ) J."A(u)ll([ - u)du].

In a similar way we can obtain results for higher orders of spreading structures.

Proceeding 1o the free spread model, the solution of the Kolmogorov backward equations

for the probabilitiecs P(NUl=nin = 0.1, 2. ... vields
N ~ Geometric (e '),

It can also be directly verified that N (1) possesses the OS property with a kernel ¢.d.f.

‘,\‘ul -1

Flu) = 0 u <t

(,\|ll _ ] '
Repeating the arguments in the homogeneous case we finally obtain here
’ -
X ) — Geometric [[l + L/\(u)(""“H(l — u)du] I
with

!
FlYin)= j:])\(u)("'“'ll(l — u)du.

Turning to the last model, in which the information is spread by a source, we now assume
that cach member of the population may hear the information in the interval (1.1 + A1) with
probability At1)Ar + o (A1), We then have

N(1) — Binomial (N, 1 - ¢ Y

and morcover, the process N (1) possesses the OS property with a kernel c.d.f.
1 — ¢ AN
Flu) = *—]—_‘T-U—”‘ 0w

Applying Proposition 3 yields here
'
X (t) —~ Binomial ‘N,f“)\(u)e MG~ u)du
with

ElX()] = Nf“)\(u)(’ NOOH G — ) du,
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As g matter of tact, our procedure can be used in this maodel 1o obtiin o complete general
solution.

Recalling our definition of [.0) as the c.df ol the time, since the beginning of the
transnussion of the information, until ¥ member of the population hears it we have

N} — Binomial (N1 (1)),

It is not difficult to observe that by 1ts very nature, the process N (1), possesses the OS
property with 4 kernel ¢.d.tf.
. L ()
Flu)=-—-_ 0<u <1t
L) D

Using our procedure, we finally obtaim
¥ ~ Binomial (N f #r0- wat. )
with

Elytnl=« f“lll/ whdl

Note that in this case the distribution of Y i) could wso have been obtained ditedts by
defining a "saccess.” for any member of the population. as the event of having ao omphshiod
the action by time ¢
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ABSTRACUI

In this work masamal Nash subsets are studied o order to show that the et
of cquihbrium pomnts of o bimatnx game s the fimte umon of ol such subscis
In addinon the extreme points of maximal Nash subsets are charadtertized
terms vf square submatrices of the pavoft matrices and dimension relations are

derved

1. INTRODUCTION

A bimatrin game s defined by a pair CLB) of real myn-matrices. A strategy for plaver |

]
|

D is an clement of $7(8), where 7 o= \p€R™ p 2 0, Z p. = 1i. Corresponding to the
I

strategy pair (pg) € 57 x S” the payofls are pdg’ and pBy’. respectively.

A pair (pg) € 85" x 8" s called an equilibrium point of the mynu-bimatrix game (1LB) il
plg’ = max ply’ and pfy’ = max pBy’. The set of all equilibrium points of (1,.8) which is
PNt IS
nonempty by a theorem of 1o F Nash 19,101 will be denoted by £ (1.B).

NOTATION: For a natural number m. let N, = {1. ..., ml. The clements of the
basis of unit vectors of R” are denoted by ¢, ... ¢,,. For a finite set S, 151 is the number of
clements of S0 The convex hull of 4 set S C R™ is denoted by conv(S), 1T ¢ C R™is a con-
vex sel. then we write ext (O dim(C) and relint(Ch for the set of extrenmie points of ¢ the
dimension of (the affine hull of) ¢ and the relative interior of €. respectively.

Let C1LB) be an myn-bimatrix game and let (pg) € 87 x 87 Tt is well-known (Cf{7].
thcorem 4) that {pg) € FULB)Y T Cip) C MUdy) and Clg) C Mp:B), where Cip) (the
carrier of  p = i€ N,op, >0l Clg)y = |je€IN,.gq >0, Miiy) =
e IN, e g = max ¢, dg't and Mip BY = {j € IN,. pBe! = max pBel).

The organization of the paper is as follows. Tn Section 2 we show that the set of equili-
brium points of a bimatrix game is the union of convex polvtopes. The equilibrium point sct
can therefore be constructed if we know the extreme paints of these convex polytopes. These
so-called extreme cquilibrium points are studied in the third section. As a by-product we find
that the set of equilibria is in fact a finite union. Finally | dimension relations are given for the
convex polytopes mentioned betore.

PRECKDIG  PaGE BLANK-NOT FILM:D
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2. THE STRUCTURE OF MAXIMAL NASH SUBSETS

DEFINITIONS. Lec €4,8) be a bimatrix game and let S C E(A4,.8). We call iwo equili-
brium points (pg). (p'.g €S S-imterchangeable it (pg) € S and (p'.q) € S, We call two
cquilibrium pownts mrerchangeableat they are £ 4 B)-interchangeable. We call S a Nash subser
for the game CLB)Y (f every pair of equilibrnium points in Sis S-interchangeable. A Nash subset
S called a maxemal Nash subser for the game C4LB) if there exists no Nash subset T C
FO1.8) such that Sas properhy contaned in 7

Lhe term masimal Nash subset was first introduced by G. AL Heuer and C. B. Millham in
141 3 b Nash. who already considered such sets in 1951 [10], called them  sub-solutions.
These authors showed that @ maxvimal Nash subset for an man-bimatrix game is a closed and
conven subset of 87 xS The followmg theorem implies that a maximal Nash subset is in
fact the Cartesian product of two convex polyvtopes.

THEFEOREM 1 Let C4.8) be an man-bimatrix game and let S be a maximal Nash subset
for the game (4.8)  Suppose that (p.g) € relinttS). Then § = K (g) x L(p), where K(g)
bpoe ST ) ¢ FCABY and Lpy = lg « S" (p.g) € ECA.BY are convex polytopes.

PROOE  let m,(8) = [p € §” there exists a ¢ € S with (pg) € S| and m.45) =
ly © 8. there exists o p € S” with (pg) € S} Since it is clear that $ = 7,(8) x 7.(8) the
theorem s proved it we cun show that 7 (S) = K(g) and m.48) = [ (p}. The inclusions
7 (SY O A (g)and 7.0S) C L{p) are immediate. Suppose that p ¢ K (§) and ¢ € 7,(5).
Smee ¢ ¢ rehnt 7 (S) . Theorem 6.4 of [11] implies that thereis a ¢ € m.(S8) and ax € (0.1)
sueh that ¢ = Ag + (L =Ng" From ¢ € 7.4S) € L{p) it follows tha p € Ntg). Also. p €
Ay, Hence. Atg) N Atg) # ¢ and Lemma 3.5 of [4] implies that A(g) = RK{g) N
Kig) Sopr Kigrand {p) x 7.8) C ECAB). If p @ m,(5), then convim ((S) U {p}) x
m A8} s a4 Nash subsct properly containing the maximal Nash subset S, This leads to a con-
tradiction S0 p < (8) and we have proved that K(g) C m,tS) In a similar manner. one
can show that L(p) 2 = (81 Finally, 1 s well-known that K (3) and L(p) are convex
polytopes. | i

The following Lemma can be proved in the same way as Theorem | in {2].

LEMMA | Let (4.8) be a bimatriy game 1€ C s a convex subset of £(4.8), then
every pair of equilibrium points in (s interchangeable

It is well-known that a maximal Nash subset 1s @ convey set not properly contained in any
other convex subset of the set of equilibrium points. This property is characteristic for maxi-
mal Nush subsets as we will prove now

THEOREM 2 Let C4.8) be a bimatriy game and let ¢ be a convex subset of F(A4.B)
not properly contatned 1n any other convex subset of EC4LB). Then Cis a maximal Nash sub-
set tor the game (4.8)

PROOF  (a) First we prove that .= {{p.¢) € EC4.B): there exists an (x.y) € E(A4.B)
with (x.¢). (pad € C}is a convex set. If (pg). (pg) € (., then there exist (xv), (XF) €
F(A4.B) such that (x.¢). (py) € Cand (v¢), (py) € . But then Ax + (1-A)X Ag +
(h-Alg), Ap + AO=M)p. Ay + (1 =A)p) € ¢ forall A € (0.1). In view of the foregoing
Lemma, we may conclude that Ax 4+ (1=A)x Ay + (1=A)) € E(A4.B)and Ap + (1-X)p,
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Ag + (1-a)g) € ECAB)Y for all A € (0.1). Consequenty, Alp.g) + (1 -A)pgy) € C, for
allb A € (0,1). (b) Also. Cis a Nash subset. If (pyg). (pg) ¢ (. then there exist (xy), (xy)
€ Et4.B) as in (a). Note that (x), (5,3) € (. So Lemma | implies (with (in the role of
O that (x3) € FC4.B). Similarly, (pg) € E(4.B). Since (pg), (x) € ECABY and (py).

(x.¢) € C, it ftollows that (pq) € . Similarly, {pg) € Coand (pg) and (pg) are (-

mnterchangeable (¢) Because Cis convex and € C it Tollows that ¢ = (. So. in view of
(h). Cisa Nash subset. Ttis obvious that, i addition, Cis a maximal Nash subset. |

COROLLARY 1 (Cf 2], Theorem 1): If C4,B) s a bimatrix game. then £ (4.8 is con-
vex it and only if £ 4.8} is a Nash subset.

REMARK 1. Let (4.8) be a bimatrix game and let (pg) € FC4.8). Since Hpg)) s a
Nash subset tor the game (4,8), we can, applyving Zorn’s lemmua. tind a maximal Nash subset
containing (p.g). Conscquently, every cquilibrium point of the game (A4,B) is contained in a
maximal Nash subset and £04,B) is the union of such subsets.

3. EXTREME POINTS OF MAXIMAL NASH SUBSETS

For a matrix game L. S, Shapley and R. N. Snow [12] characterized all pairs of extreme
optimal strategies of the plavers. We want to describe for the case of bimatrix games. the
extreme points of the maximal Nash subsets. Qur approach incorporates the work of H. W,
Kuhn (3] und O. L. Mangasarian [6].

DEFINITION: An equilibrium point of a bimatrix game (4, 8) is called an extreme equilt-
hrium point if 1t 1s an extreme point of some maximal Nash subset for the game (4,8).

In [6]. O.L. Mangasarian introduced, for an mxn-bimatrix game (4.8). the convex
polyhedral sets Py := {ip.B) € S”" x R. pBe! < B torall j € N,Jand Q, := [{g.a) € §" x
R. ¢ 49 < o foralli € IN,,}. These sets play also a role in the proof of the following

THEOREM 3. The set of equilibrium points of a bimatrix game is a (not necessarily dis-
Junct) union of a finite number of maximal Nash subsets.

PROOF: Let S be a maximal Nash subset for the game (4, B) and suppose that (pg) €
ext(S) and that (p.g) € relint{S). Then. by Theorem 1. we have p € ext{K(g)) and ¢ €
ext(L(p))  The reader can easily prove that this implies that (p.pBg) € ext(Py) and that
(q.pAq) € ext(Q) (Cf. [5]. Lemma 1). Hence. il (p.g) is an extreme equilibrium point of
the game (A.B). then (p.pBqy'.q.pAq’) € ext{Py) x ext(Q,). Since ext(Pg) and ext(Q,) are
finite sets, the number of extreme equilibrium points of the game (4, 8) is also finite. Hence.
the number of maximal Nash subsets is tinite. | |

REMARK 2. In [6]. O. L. Mangasarian called an element (pg.«. 81 € §” x 57 x R x R
an extremie equilibrium point of the mva-bimatrix game (LB) it (p.g)Y € ext{Py). (g o) € ¢xt
(O and pld+ B¢ = « + 8. Itis casy to show that a point (pg.«. ) is an extreme equili-
brium point in the sense of ). L. Mangasarian if and only i (p.g) is an extreme equilibrium
point in the sense of definition | and if furthermore o = pd¢’ and B8 = pBy'. Therefore.
Theorem 3 implies the Lemma on page 779 of [6].
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REMARK 3 The extension of Theorem 3 to the case of more than two plavers does not
necessaridy hold On page 3 of 120 HO N Chin, T Parthasarathy and 1T F. S Raghavan give an
cxample of noncooperative 3-person game, where all the plavers have the set 87 as strategy
space and where the set ol equilibnium points is equal to the (convex) set {1 =),
AL AL AN 8T x 8T % STA € (011 This set of eyuilibrium points is the union
ot an uncountable number of maximal Nash subsets.

For a prool of the followmng theorem, see Lemma 2 of H W Kuhn [S].

THEOREM 4. fet (4,81 be an mxn-bimatrix game. If (pq) is an extreme equilibrium
point of the game C4.8) and y 15 the number of clements ot the carrier of ¢, then there exists
a4 yvy-submatriy A of 4 such that [renumber, if necessary, the rows and columns of 4 in such
a way that As in the upper feft corner of ]

N KN -1
(1 the y + 1Y ox dy # Th-matrix A o= 1 ()l is nonsingular,
(2 q = (dett A1) 'ZI\' ity € Clg) and
i

[A is the cofactor of the element &, ]

(3 pAq = det (KDY dettK ),

An analogous statement can be formulated with respect to the connection of the vector p and
the number pBg with a certain square submatrix of B.

REMARK 4 Let (4,8) be a bimatrix game. Without loss of generality we may suppose
that 4 > O and B < 0. Let S be a maximal Nash subset for the game (4,B). Suppose that
{p.g) € relint(S) and that L(p) = {¢}. Note that the proof of Theorem 4 is based on the fact
that the rank of the matrix 4(S) = la, 1, yyoq 4 i+ Copr €quals |C(g)l. Using the fact that 4
> (. Theorem 4 (3) implies that dim L{p} = |C(g)| — rank 4(S). We shall see in Theorem
5 that a similar statement holds for sets L{(p) with more than one element. If K(g) = {p},
then dim K (g) = 1C{p)| = rank B(S), where B(S) := [b,],. ¢y vrinp

4. A DIMENSION RELATION FOR MAXIMAL NASH SUBSETS

The purpose of this section is 1o extend the dimension relations as given by C. B. Millham
in [8]. The relations derived below include, in contrast to the results in Millham’s paper. those
for the zero-sum case (Cf. [1], {3]).

LEMMA 2. Let (4,.8) be a bimatrix game and let S be a maximal Nash subset for (4,B8).
Suppose that {(p.g) € relint(S). Then, for all (pg) € S, C(py € CPB), Clg) S CG), {
M{A4.q) D M(A4.q) and M(p.B) D M(p.B).

PROOF: Suppose that p € K(g). p # p. Because p € relint K(g), there exist a i €
K(g)and ah € (0.1) such that p = Ap + (1—A)p. This implies that C(p) C C(p). Now.
for j € M(p.B),

PBq = pBel = ApBe! + (1 =N)jpBel < ApBG' + (1 -A)jiBG' = pBG'.

This is possible only if pBe! = pBg'. So j € M{(p.B) and we have proved that M(5.B) C
M(p.B). The other assertions arc proved in a similar way. ||

-
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DEFINITION: Let (4,8) be a bimatrix game and let $ be a maximal Nash subset for the
game 1. B). In view of Lemma 2. the matrices
A(S) = la,l, MO g Cop and B(S) = [hr/]r‘ Cipr e Map B
do not depend on the choice of the point (p.g) € relint(S). We call 4(S) and B(S) the §-

submatrices of 4 and B. respectively.

THEOREM 5: Let (4,8) be an myn-bimatrix game with 4 > 0 and B < 0. Let Sbe a
maximal Nash subset for the game (4,8). If (p.g) € relint(S),

then (1) dim L(p) = [Clg)| — rank 4(S)
and (2) dim K (g) = [C(p)| — rank B(S).

PROOI: We only prove (1), 1f L{p) has only one element, we are finished (Remark 4).
Suppose now that L (p) contains more than one clement. There is no loss of generality in sup-

poasing that Clg)y = {1, ..., yl, where y = [Ctg)]. Let d := y — rank A4tS). Choose a
basis x(1), ..., ¥(d) of Ker 4(§) := {x € R”: 4(S)x’ = 0} in such a way that. for each k €
IN,. ¢ + xX(k) > 0, where ¢ := (q,. .... ¢,). and pdq' — ¢,Aq’ > ¢ Ax(k)' for each i ¢
M{4:.q). where x (k) := (X(k),0, ... . 0) € R". We normalize the vectors ¢ + x(k) in such

a way that the normalized result y (k) is an element of §”. We leave it to the reader to show
that the vectors ¢, v(1). ..., v(d) are linearly independent vectors in L (p). Hence, dim L (p)
2 d. Suppose now that there exists a vector y{(d+1) € relint L{p) such that the vectors
y(y—yq, ..., v{d+1)— ¢ are linearly independent. Then, in view of Lemma 2, C (G (d + 1))
= Clg) and M43 (d+ 1)) = M(A.q). Soif T (k) := (p(k),, ..., y{k),), for each k €
IN, .. then 4 (K)Y/ pAy<k) — §/pAq') = 0. for each k& € IN,.,. This is impossible since
dim Ker A(5) = d Sodim L(p) = d ||

It is easy to prove that Theorem 1 in [8] is implied by Theorem 5.

For a matrix game A, the only maximal Nash subset is t~~ set S of all pairs of optimal
strategies for both players. In this case, the S-submatrix of 4 equals the essential submatrix of
4 (Cf. [3]. page 44) and the dimension relation for matrix games follows from Theorem 3.
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A CHARACTERIZATION OF THE VALUE OF
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ABSTRACT

Far the tanuly 10 consisiing ot those zeto sum Iwosperson wames which
have a value. the value-tunction on 73 s Charactenized by faur propertios called
abectiviny menotaom . svmmetny and sathoiena

INTRODUCTION

In a beautitful paper. oI Vilkas gave a characterization of the value-function. defined on
the class of all finite matrix games (21 In (1], pp. 60-65 this result was extended o the class of
all finite and semi-infinite matrix games.

The purpose of this paper s to deduce characterizing properties for the value-function on
the set of all determined two-person games. The organization ot the paper s as follows: the
necessary notation and definitions are given in sections 1 and 220 section 3, properties tor the
value-function are presented. which are shown in section 4 o be characteristic of this funcuon.

1. A (zero-sum) mwo-person game ts an ordered triple < YUY A >0 n o which Vand Y are
nonempty sets (called the pure strategy spaces of player T oand plasver Ho respectively) and
K XY x ¥ — Rsareal-valued function on the Cartesian product of Yand Y (calfed the pay
off function ot plaver 1),

20 Let < VY K> be a two-person game. For cach v 7Vt € V) et us denote the
probability measure on X CF Y with mass Tin v Qo) by ¢ te b et Py be the set of all convex
combinations of clements of {eo v ¢ V] dikewise let £, be the conves hull ol Je o v« )}
Then the two-person game < Py Py f, > with

Lol ) = ff/\'l\.\‘b dp ) de v Y tor cach (e ey o Py x Py

is called the c-muved extension of the game < X Y, K> The lower value sup, el By G

of  the game <P Py > s denoted by vOVE A and  the  upper value
int P, SUp, Fo o) is denoted by vOXY Y R Note that

\
—oo < VIV P RA) S VYA € oo,

IF VY YK = vEX YA for a game <X LA > then we say that the game is a determined
game. In that case. the common value is denoted by vEX LAY and called the value of (the ¢-
mixed extension of) <X, } A > The familyv of dete mined games is denoted by D.

I
‘s
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S HEONIS
3 I this section we want to look at some distinguished properties of the value-function
VoD — | o o] For this purpose we need some defimitions
DEFINITION ]
< LXK > where

The rranspose of o two-person game <2 XU YA > 8 the two-person game
A vy

= KNy v) tor cach Grov) ¢
DEFINITION 2

y x X
X

Let < YO LA > be a two-person game and let S be a nonempty subset of
Then we sayv that Soas swttaent tor plaver 1 the game < XY K> tor cach v s
there exasts a u ¢ Py such that

Yo
fa e ) 2 Ko forcach v € ),
Y.

DEFINITION 3 Let < Y YA > be a two-person game and et 7'be a nonemply subset of
We say that T sutticient tor plaver [T the game < X0V K >0t Tis sutticient for plaver |in
the game < VXY -RA'>.

THEOREM 1!

(P.1) ["Objectivity”]

Let
Y=

<X} A> be

a wwo-person game  and  suppose  that
fa}. Y =1{p}. Then <X VK> € Dand v(Y.Y.A) = K (a.b).
(P.2) ["Monotonicity"] Let <X, Y A> € D and <X Y.L.> € D and suppose thal
L 2K (i.e. Lixy) 2 Kxy) tor cach (va) € Y'x)).
VXYY L) 2 vV YA

Then
(P.3) I"Symmetry”] Let <V Y.K> € D

Then <Y X, -K'> € Dand v}y X -K) =
-v(Y LA

(P 4) ["Sufficiency™] Let < X, YK > be a two-person game, and ¢ = 5 C X and let
KA 5x Y — R be the restriction of A 1o §x Y. Suppose that S is sufficient for

plaver T in the game < X, YA >. Then <S Y RA'> € Diff <X, Y K> € Dand
VIV Y. A) =SS YR > i <S YK > € D

PROOF: (P.1) and (P.2) are obvious.

(P.3) follows from the fact that

—E ) = E teop) for each (uord € Pyx Py

Now et us prove (P.4)0 First we note that Py can be seen Gin an obvious manner) as a subset
of Py and thar £, s the restriction of £y to Pox P,y

Take « € Py, Then there exist n € IN, x'.\?
that ZI, po=1 and « ;
I

...... X" € X and py.p> p, € 10,00) such

=3 pe.. Since Sis sufticient for player [ in the game <X.Y.A> for
[

..... n}. ther

cach i € {1

e exists an «a, € P such that

Foloe e ) 2 KNxy) Tor cach v ¢

.

[ x ¢ S then we can take «

¢ ] letao= z/m Thena € Py and
1

Ey ey =Y phctee b 2 Y p Ao = Elae Moreach v v )
l |
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But then,
(i) yta ) 2 Bt e for cach oo € Pyand cach e € Py
This implies that

sup, o By tpeed = sup g EyGacr) forcach e € Py
and thus
(i VIS LAY = vV Y R,
From () we may also conclude that

inf, g Lt e) 2 ant) r, Fotee ) tor cach a € P,
and then
Gii) VIS YA = v E R

Now (P.4) follows from Gi) and Gii). ]

4. The following theorem shows that the properties (P 1)-(P.3) characterize the  value-
function v : ) — [—o0, oo},

THEOREM 2: let f: D — |=o0, o] be a function with the tollowing four properties:

Q.U X ={a}, Y=1{h] and if K is a recal-valued function on {Xx}.  then
X Y.R) = Klab).

Q2 Forecach < X.Y K> € D. <X VYL>¢€¢ DwithL 2 K . (X, Y.L) > /(X } K).
Q3 bForeach < XY K> € D f(YX.-K)=—f{Y LA},
QP VForcach <XV VK> € Dand <S8 Y. K'> € D where S C X, K'is the restriction
of K1 $xVY and where S is sufficient for player I in the game <X Y A > we
have f(S Y RK) = f[(X. Y K).
Then /(XY R) = vIX Y. K) for cach <X Y A > € N
PROOF: First we note that (Q.3) and (Q.4) imply
(Q.S)For cach <X, Y K> € Dand <X.T.K"> € D, where T'C ¥, K7 is the restric-
tion of K to Yx T and where T is sufficient for player 1 in the game <X, ).A >,
we have /(X T. K = /(Y Y K).
Now take an < XA > € D with vIX, Y, K) € (o0, 00} and tuke a real number ¢ such that
vIXY Y. K) > 10 We want to prove that /(X Y. K) 2 ¢ For this purpose we introduce the fol-

lowing ftive two-person games:

(1Y <X U fa), Y. I.> where a € X and where L) = Kv) for cach ()
€ XxYand L{a.v) = tforcach v € )

() <X Uial.,¥.M> where My = minimum [Aveda) for cach (i)
E(Y U lahxY
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3 vty AL N S where b/ Y and where Niva )y - MOue) for cach
vl o (Y ot~ Yand YOuh) rtorcach v o v g
(B < lad Y Lo b Y s where Vs the restiiction of Mo ta) o< 0} v thly

(SY < da b h NS where N s the restrichion of N 1oty < Dh

Stnce vOXCY A > o there exists a e - Pyosuch thia
ooy Lo v -0 D taao toreachy o)

Hence. Vs sufficient for plaver Tin the game < 4V 2 lar b0 -0 By (P 3 and (Q.4) we man
conclude that

Q6 <V U lab.bl> ¢ Dand 7000 qal b by fEVY A
I tolows from (Q 1) that
QM et ilN
In the game <fal.} U 1AL N > the set AL as sullicient tor plaser 1 hecatse
fyte e Nilga) - toreachy ¢}
Then < {uiy U AN > Dainview of (P 3 and (f 410 now (Q 51 imiplies
QRY sGal Y U bl N = pUal el v
In the game < VU lal Y U TAL N > the set tad is suflicient for plaver T because for cach
Ve
= Fyte, e 2 N forcachy < ) U (AL
By (P.3) and (Q.4) we obtain. <X U {ai. Y U AL N> o Dand
Q9 (VU fal.y Udblovy = rlalt U thiNy,

It is casy to see that Yos sufticient tor player Hin the game < VU faf. Y U 1AL N> Hence.
by tP.3)and (P33 <X U ja)l, Y. > ¢ Doand then by (Q.3):

Q10 (X U lal M)y = (Y U lal, YU bl N
Now L 2 Mand then by (Q.2) we hanve
QD) /Y U tal Yl 2 1oV U el Y AD,

Combining (Q.6)-(Q.11) we obtain: (X Y A) 2+ Thus, we have proved that 1V YA 2
for each < X, YA > € Dwith v, LAY ¢ (oo oo] and cach 1 < V(X ) KD But then

(Q12) fLY YR 2 v Y A forcach <X YA > ¢ D
It follows from (Q.3), (Q.12) and (P 3) that
QI /X YK)= /(Y YA < vEYA) = vV YA foreach < VYA > € D

Properties (Q.12) and (Q13) imply the conclusion of the theorem B
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MANPOWER MODELING IN COST EFFECTIVENESS
STUDIES OF USAF PROGRAM TO REDUCE
THE INCIDENCE OF HEART DISEASE*

Chfford C Petersen

Purdue Universin
West Latavene, Indiana

ABSTRACT

Planming o o cardiovasculir disease reduction program, soon to be imitist-
cd by the Umited States A Foree., has required an evalugtion of ats expected
vost cftectiveness During the course of this evalualion. it was necessary o
consudet manpower Tows and thetr expected changes o respoase 1o the disese
reduction program  This paper describes several manpower models that were
apphed a4 simiple expected value equilibrium model, 4 cross-sectional model
that considered the length of service of personnel. and a stafling model used
to opurmize the allocation of paramedics o the many Air Force bases of vanious
sizes The redevance ot these models o the cost effectiveness evaluation s
shown but the detaded cost etfectiveness resulis are not presented

Analyses are being performed to evaluate the cost effectiveness of a U.S. Air Force health
program that is soon to be initiated. The "Health Evaluation and Risk Tabulation® (HEART)
program will be directed toward cardiovascular discase that strikes several hundred Air Force
personnel annually and results in a considerable loss of personnel through death and disability.

THE HEART PROGRAM

In very general terms, the HEART program will involve processing all military personnel
in the Air Force o establish each individual’s risk of future heart disease, followed by treat-
ment of those found to be at high risk. This will be done by measurement of systolic blood
prossure. serum cholesterol. glucose intolerance, and determining heart abnormality (left ven-
tricular hypertrophy) by means of an electrocardiogram. Also. it will be determined whether
the individual smokes cigarettes regularly. These data and age are used with the risk
coeflicients developed through the Framingham Study {2] to calculate for the individual the
probability of occurrence of a cardiovascular incident within eight years. The coefficients are
based on over 20 years of followup on a large civilian population, and have succeeded in clus-
tering about 25 percent of the heart incidents into the top decile of risk. The possibility of
coefficient modification and the inclusion of other risk indicators is being anticipated in the
USAF program.

The calculated risks will serve to identify the most susceptible fraction of the USAF for
treatment. and recalculation after treatment will serve, in some measure, to show the

*Based on part of the research performed for the USAE Schoot of Acrospace Mediane by Pardue Unsversids under
Contract 1336157700624
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e
improvement that was obtained. Obviously, the ultimate benefit will become apparent only in
the long term when the actual incidence of heart disease can be observed. In addition to the
treatment of high risk personnel, all personnel will be reached through a general education pro-
gram to encourage improved dietary habits and cessation of smoking.

Various analyses are being directed toward therapy effectiveness, threshold selection poli-
cies. the effect of measurement error, and operational procedures, as well as toward the evalua-
tion of cost effectiveness. Statistical and probability models and extensive computer simulation
are being used. This paper, however, will describe only the application of manpower planning
models to the determination of the cost effectiveness of the HEART program. The population
numbers and dollar costs that will be used herein are altered and somewhat incomplete but
serve for illustrative purposes; the aciual analysis used the complete and most recent informa-
tion on population, wurnover of personnel, pay scales, and policies. The complete cost
effectiveness analysis will not be presented as it is only intended here to show the applicability
of several manpower planning models to that analysis.

THE COST REDUCTION PROBLEM

Only the costs to the U.S. government that will be affected by the HEART program need
be considered. The major present costs that will be changed are those associated with USAF
personnel departing from service and their subsequent replacement. [t is necessary to identify
and associate costs with the various ways in which personnel leave the Air Force. These costs
are different for enlisted personnel and officers because of pay scales, and different for flyers
(pilots and navigators) and nonflyers because of the considerable cost of training a replacement
flver.  An additional cost, estimated at $1.000,000 per year, is that due to loss of aircraft
because of heart attacks suffered by the pilots.

The various types of departure will now be described briefly. Voluntary and involuntary
separation tor simply separation) includes resignation, failure to reenlist, and reduction-in-force
terminations.  Except in the case of flyers, these types of departure are considered to incur
neghgible costs. Voluntary retirement (or simply retirement) occurs when an individual retires
with from 20 10 30 years of service. The departure cost is substantial, including payment of 50
to 75 percent of the individual's salary to the individual or his spouse for a period usually in
exeess of 30 yvears. Disability retirement, disability separation, and assignment to the temporary
disability retirement list (TDRL) are forms of departure for reason of 30% or more disability.
and must be considered separately for cardiovascular (CV) disabilities and other (non-CV) disa-
bilities. Because cardiovascular related separations and TDRL's practically always become per-
manent, they are lumped with CV disability-retirements in this analysis. The departure cost is
substantial, including hopitalization and continuing payments to the individual and to the
spouse aver a period usually in excess of 30 years. Departure by death is self-explanatory and
its cost s analogous to that for disability retirements.

In determining the cost per retirement, disability retirement, or death, it seems reasonable
that the long series of benefits paid to the individual or spouse should be discounted. It is
perhaps not surprising that it was difficult to determine what rate to use, and that the agreed
upon approach was to use two rates, S and 10 percent, for separate analyses. The cost of CV
departures decreases by approximately 20% when changing from 5% to 10% discounting.
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Table | summarizes the approximate costs for each type of departure:

TABLE 1. Costr of Each Departure from U.S. Air Force
(Thousands of Dollars)

Officers Enlisted
Personnel
T Flyers Nonflycrs All Categories
Separation 280.0 0 0
Retirement 474.1 194.1 109.9
CV Disability-Retirement 531.9 251.0 153.7
CV Death 431.7 151.3 85.3
Non-CV Disability-Retirement 449 8 1558 72.0
Non-CV Death 353.6 81.1 324
All future obligations brought to present worth using a S percent discount rate.

Given the cost for each departure, and knowing the present average number of CV
disability-retirement and CV death departures over the past several years, it is simple to calcu-
late the annual departure cost due to cardiovascular disease. The anticipated effectiveness of
therapy in reducing CV incidence, through the HEART program, can then be assumed (we've
used 20 percent here). A naive approach to determining the cost reduction is to claim 20 per-
cent of the annual CV departure cost (from which the operating cost of the HEART program
would be subtracted to obtain the net annual savings). This approach, however, neglects the
effect of the reduction in CV departures upon the other types of departure. It neglects, for
example, the possibility that a person saved from CV death may be killed in another way. or
that he must ultimately leave in some manner, typically incurring a departure cost. Aiso
ignored is ithe beneficial effect of the HEART program in delaying the occurrence of heart
attacks in the individuals who will still suffer them.

To deal with the interaction between the various types of departure, iwo different models
were formulated. Both are based on the assumption of a steady state manpower system.

THE STEADY STATE SYSTEM

Although the U.S. Air Force will probability never be in a true steady state condition, it is
as reasonable to use such a condition for the analysis as to hypothesize any other unknown
future state. The strategy is 10 model a steady state force having the same size, distribution of
personnel. and departure rates as the present force, and then to hypothesize a 20 percent reduc-
tion in the cardiovascular departure rates and determine what the new steady state condition
would be. The difference in annual departure costs associated with the two systems would be
attributable to the 20 percent reduction in CV incidence. Proportional cost chaiges would
result from any other assumed reduction in CV incidence.

There are two primary requirements that must be satisfied in order to maintain steady
state.  Obviously, the annual number of new entries must e¢qual the annual number of depar-
tures tor each class of personnel. In addition, for cach class, the total length of service in years
of all persons departing in one year, must equal the number of persons in the system (a conse-
quence of N man-years of service being accumulated each vear by a force of size N).

In the present U.S. Air Force, the number of new entrants is less than the number of
departures for enlisted men. Also, the total length of service for enlisted men departing per
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vear exceeds the number of this class of personnel, and confirms a shrinking force with a large
fraction of the population having many years of service. The steady state turnover rate indi-
cated by length of service of those departing (reciprocal of average length of service) is some-
what below the actual turpover rate being experienced. In contrast, the situation is reversed for
enlisted women. Nevertheless, with certain assumptions as to future recruitment and incen-
tives it seems reasonable 1o conceive of a model of the USAF at steady state.

EXPECTED VALUE EQUILIBRIUM MODEL

This model for adjusting the other departure rates as the CV departure rates decrease is
simple and requires little data. It ignores the length of service requirement for steady state,
simply assuming that it will be met.

The inital steady state flow- is illustrated for enlisted men in Figure | and requires that
we know only the steady state total population count which will remain constant, the fractions
tor the various types of departure, and consequently the fraction remaining active each year.

Voluntary ard

- - eee——e-———{ Tnvoluntary
/ Separation

50,000

o '“'A/—ADisa—h?»lity-
Setirenm-nts

o

000 T =T
_— »4 TV Deaths

“0

COn, 00t

2ther Dis-
ability-
Retiremants

32,850

0. of departures - 67,150

Turrnver rate - 13,430 parzent

PiGere T Annual Tow rates, enbisted men. hetore HEART program




MANPOWER MODELING IN COST FEFFCTIVENESS STUDIES TO REDUCE HEART DISEASH 161

The CV departure rates are then considered as being reduced by 20 percent. It is
assumed that the manpower flow that would have departed due to CV disease is diverted to the
other types of departure, and to continuing service, in proportion to their respective rates. A
rationalization of this ssumption is possible by viewing the departure fractions or rales as pro-
babilities. Individuals who win a reprieve from CV disease, and will have to be routed to other
types of departure or 1o continuing service, are distributed according to the appropriate proba-
bilities. At steady state, with reduced CV departure rates, we recalculate new rates for other
types of departure and extend them to numbers of departures as shown in Figure 2.

Flows are adjusted for the other classes of personnel in a similar manner. For pilots and
navigators, however, there is a large replacement training cost for the increased voluntary and
involuntary separations.
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TWO-CHARACTERISTIC CROSS-SECTIONAL MODEL

This madel [1] was chosen to impose the effect of length of service on the analysis. This
effect is important because it is presumed that the effect of implementing the HEART program
will be not only 10 reduce the rate of CV departures but to postpone the time of departure of
the fraction who will still depart because of cardiovascular reasons. The data requirements are
reasonable. not requiring detailed tracking of cohorts, but primarily adding data regarding the
average length of service at departure.

In this model we define a matrix. P. of one-step transition probabilities, where each state
15 described by two characteristics, a status and a length of service. The mode! has more capa-
bility than will be used. as it serves our need by defining only one status, namely "active,”
rather than various ranks., for example. The analysis will be performed separately for each class
of personnel and we will assume no flow of personnel between classes, such as from enlisted to
officer or vice versa.

Given the matrix P. completely defined by knowing the average length of service at time
of departure and the fraction of total departures for each type of departure, we note that the
limit P” will be the steady state transition matrix. This matrix will have identical rows, 11,

where the 7 th element, m,. is the proportion of the population in state j at equilibrium. The
vector 1 is determined by solving

=1°r

Y. =1

All,

The strategy will be to find the steady state departures for our initial data, then to reduce
the CV departure probabilities by 20 percent and increase the length of service to CV departure
by an estimated two years, and again find the steady state condition. Considering the cost of
each type of departure. the annual savings in departure costs due to the effect of the HEART
program will then be calculated.

EXAMPLE: Use of the P matrix will be demonstrated with a very small example. Fol-
lowing this the enlisted personnel will be analyzed to show some of the adjustment that had to
be made in our assumptions, and to give results for comparison with those of the expected
value equilibrium model.

Suppose there is an organization with one class of personnel and three types of departure.
Each year from now on five persons will resign after two years of service, five will be disabled
after three years of service. and fifteen will retire after five years of service. Since the total
length of service of the departing personnel is 100 man-years, the size of the organization must
be 100 at steady state. All departing personnel are immediately replaced. We wish to find the
steady state distribution of personnel by length of service.

Each year 25 persons enter the system and each year’s group behaves as follows:

Fraction Remaining
kEnd of Year For the Next Year

1 1.0
2 0.8
3 0.6
4 0.6
5 0
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Defining active duty states (A4, »), where n is the number of years of completed service,
the one-step transition matrix, P, is as shown below. The probabilities of changing in one year
from state 4, i to state 4, i + 1 for i =0, 1, 2, 3, 4 are obtained from the table of fraction
remaining, shown above. The probabilities of changing from state A, /to state 4, 0 are proba-
bilities of leaving the system, in which event a new person enters the system with 0 years of
service.

4,0 4,1 A2 A3 4.4

5 0.75*

*Fraction going from A,2 to
A3=06/08= .75

Solving [ = [1Pand ¥, o, = I, we obtain I = (0.25,0.25,0.20,0.15,0.15].
All,

The interpretation of this solution is that for this organization, there will be 25 percent
new personnel, 25 percent who have completed one year of service, 20 percent who have com-
pleted two years, 15 percent who have completed three years, and 15 percent who have com-
pleted four years of service and who will retire at year end.

If the P matrix and its resulting equilibrium distribution I1 are judged applicable, that is, if
the mechanisms underlying the departures are such that the numbers of departures of the
different types stay in the same relative proportions, then for any size organization the numbers
of departures at steady state can easily be derived.

To conclude this example, assume that the desired size of the organization is 120, and
that 11 = [0.25,0.25,0.20,0.15,0.15] still applies as the distribution of length of service. From
7wy we know that 25% of the organization (30 persons) will depart each year. These departures
are then prorated over the types of departure as

Resignations = 30 x 5/25=6
Disabilities = 30 x 5/25=6
Retirements = 30 x 15/25= 18

Enlisted Personnel—I[nitial

The force size for enlisted personnel is 500,000. However, the presently observed
numbers of departures from the Air Force as shown in Table 2(a) are not consistent with a
steady state model with 500,000 population. In fact, they imply an equilibrium population of
545,450. One way (o retain our observed departure information in a steady state model having
a population of 500,000 is to decrease the number of each type of departure to
500,000/545.000 of its observed value. This is based on the equilibrium requirement that:

Y ns,=N

Al
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TABLE 2. Calculation of Enlisted Steady State Departures
Betire HEART Program

—— e e ———

| Average Length Observed
. of Service, Number

) (Years) Departing
~Separation 4 50,000
. Retirement 22 15.000
O\ Disabilits-Retirement 20 106G
OV Deaths 19 50
Non-CV Disability -Retirement 6 1.500
Non-CV Deaths 7 300
67.150

: tmphed steady state population: 545 450)

() The annual number of departures for a force of 500,000 at stecady
state. with proportional scaling, are:

Separation 45.833.71
Retirement 13.750.12
CV Disability-Retirement 91.67
CV Death 4583
Non-CV Disability-Retirement 1.375.01
Non-CV Death 458.34
61,554.68

(o) The annual number of departures for a force of 500,000 at steady
state. with selective scaling, are:

Separation 47.000.

Retirement 13.480.
‘ CV Disability-Retirement 100.
; CV Death 50.
3 Non-CV Disability-Retirement 1.500.
| Non-CV Death 500.
L 62.630.

where #os the number of departures of the 7 th type, s, is their average length of service, and
N s the total population. Because all s, remain the same, a change in NV can be accommodated
by changing all », proportionally as shown in Table 2(b). Proportional scaling, as just
described. seems valid in making small adjustments, but for large adjustments such as this the
reasonableness of the effect on cach type of departure deserves examination.

Another way to construct the steady state model is to decrease the numbers of departures
selectively. The dats on the number of disability-retirements and deaths, whether from CV
discase or other causes. as observed in a present force of 500,000 enlisted personnel should not
be treated cavalierly. They should not be adjusted appreciably in the initial steady state model
because there is no logical basis for reducing the incidence in contradiction to the medical
records. The ypes of departures that can logically be reduced 1o achieve a hypothesized steady
state Air Force, are separations and retirements, assuming that Air Foree inducements and poli-
vies were modified 1o effect such reductions. A reasonable assumption is that the annual
number of separations can be reduced about 6 percent (from 50,000 1o 47,000). Leaving the
number of departures for disability-retirement and death unaltered, we derive the required
annual number of retirements, #,. from

2 nos, = N

Al
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47.00004) + n, 22) + 10HI20) » S0019) + 1,50006) + S00(7) = 500,000  obtaining
13480 retirements annually P he steads state results are shown in Table 2(¢). These results
will be used o represent the umual departure distribution of enlisted personnel, betore installa-
tion of the HEART program

Fnlisted Personnel — After

It was shown, in the example presented carhier. that if given an mitial set of data compris-
ing the annual number of cach tvpe of departure and the average age at departure. the steady
state size of the population can be calculated.  Also, an equilibrium distribution. I1, can be cal-
culated to describe the distribution by length of service Gas well as the annual number of cach
type of departure).

If the initial set of data is perturbed, a4 new population size and new numbers of cach vpe
of departure can be calculated for steady state. The desired populiation size can be restored by
proportional or sclective scaling.

The perturbation applied to the imtial steady state data tor enlisted personne! is the
assumed effect of the HEART program, that is, a reduction of CV departures by 20 percent and
an increase of two years in the average age of those departing because of OV disease. Table
3(a) shows the steady state result for these assumptions, and an implicd population of 499 _660).
The population was restored to 500,000 by proportional scaling. Table 3(b) shows the result.
after scaling, and the change from the "before HEART program” result of Table 2(¢).

TABLE 3. Calculation ot Enlisted Steady State Deparnires
After HEART Program

Average Length  Assumed
of Service Number
(a) (Years) Departing |
Separation 4 47.000.00
Retirement 22 13.480.00
CV Disability-Retirement 22 80.00
CV Death 21 40.00
Non-CV Disabilitv-Retirement 6 1.500.00
Non-CV Death 7 500.00
| 62.600.00
 {Implied steady state population: 499,660)
f (b) The annual number of and changes in departures for a foree
. of 500,000 at steady state, after proportional scaling, are:
j Change in Enlisted
; Number Personnel Departing
f Departing Duc to HEART Program
" Separation 37.031.96 +319
i Retirement 13.489.17 +9.17
FOV Disability-Retirement 80.06 -19.94
CV Death 40.03 ~-9.97
Non-CV Disability-Retirement  1,501.02 +1.02
Non-CV Death 500.35 +0.35
L 62.642.59
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Using the departure changes shown in Table 3(b) and the departure costs of Table 1, the
annual change in departure costs of enlisted personnel due to the HEART program is a
decrease of $2.822,656 per vear. This model realistically yields a larger increase in retirements
than shown by the expected vatue cquilibrium model (Figure 2), thereby accounting for most
of the reduction in savings (vs. $3,.820.618).

Annual reductions for other classes of personnel, and for other assumptions of
effectiveness of the HEART program, are generated in a similar way.

ALLOCATIONS OF PARAMEDICS

One of the primary increased costs of the HEART program is that of additional personnel
needed to operate the program.® A problem arises in the efficient allocation of numbers of
paramedics to the various USAF bases while recognizing that the bases are of different sizes.

Knowing the number of military personnel of each base, and assuming a risk threshold
that is consistently used at all bases and that will place an identical fraction of each base’s popu-
lation under treatment, we can define the following:

X = the specified fraction of base population that is
to be treated in the therapy group.

P =

l

B

the number of paramedics required at the i th base.
the population of the j th base.

]

Knowing the details of the proposed treatment and screening tasks, and that there is one nurse
available part-time at each base, we determined x,, the capacity, or maximum fraction of the
base population that can be treated. as a function of base size and number of paramedics allo-
cated. This involved careful analysis of the time required for each task as well as consideration
of allowances tor rest breaks and vacations. The resulting capacity for the /i th base is deter-
mined as:

Hours for Screening + Hours for Therapy + Hours for Group Sessions =
Available Hours of Nurse + Paramedics

19803(B,) + 7.875(B))(x,) + 1050 = 1800 + 1800(P)

1800(P,) — .19803(B,) + 750
7.875(B)

or X = Max

Nonnegativity must be enforced explicitly. Some of the effort of the nurse and paramedics
involves screening of all base personnel and it would be possible to obtain a negative value for
v [the fraction that can be treated) if the screening effort exceeded the available manpower.

The objective is to determine the minimal set of P, such that x, 2 X for all i We will
first formulate a simple mathematical programming approach for determining P, and then use it
to qustity an even simpler computerized allocation scheme.
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Mathematical Programming Model

Al USAFE bases may be grouped into 26 size ranges. and we will define N, as the number
of bases of the ith size. i = 1.2, ..., 26. We wish (o determine P, the number of paramed-
ics to assign to all bases of size i, for any value of X that is chosen. The integer linear program
15

2o
Min Y NP subject to twenty-six

=1

constraints, one for each base size. of the form
7.875(8,) (X) + .19803(B,) — 750
1800

where the variables P, are nonnegative integers.

Each constraint is a function of only one variable, P, since X is fixed and B, is known.
Solution of such a program to determine each P, and to minimize the total required number of
paramedics would be possible but very time consuming. As an alternate method. note that
each constraint may be satisfied by merely fixing P, as the smallest feasible nonnegative integer.
This will obviously minimize the objective function because minimizing each term of a sum
minimizes the sum.

An optimal assignment will not necessarily produce full utilization of all paramedics, but
there will be no assignment using fewer paramedics which will permit treatment of the stated
fraction (X) of the population.

Simple Allocation Algorithm

The allocation algorithm starts with & specified value of X, and considers only the nurse
assigned 1o each base. The maximum possible therapy group size, x,, with full utilization of
this allocation is then calculated and updated for cach basc. If x, 2 X for all /, this allocation is
optimal for the stated X. Otherwise the base {or bases) with the smallest fraction of personnel
in therapy (v,) is then "given" one paramedic. and the calculations are updated. This procedure
is continued, assigning additional paramedics. until the desired therapy group fraction is
attained for all bases. In summary, the procedure initializes the P, vector at 0 and determines
X. which, because of a uniform threshold policy at all bases, will be the smallest fraction among
all bases. Then the P, vector is increased in the most efficient manner until the specified value
of Yis atiained.

The procedure is casily continued 10 obtain solutions tor an entire range of X values. A
typical set of solutions shows the total number of paramedics required to range from 284 for a 7
percent therapy group to 567 for a 19 percent group. For the 7 percent therapy group, the indi-
vidual base requirements range from 0 10 S paramedics and for the 19 percent group, from 0 10
11, Overall utilization for the two cases is .75 and 88, respectively.

TOTAL COST EFFECTIVENESS
The total cost effectiveness was expressed as i net annual savings and was a function of

the risk threshold selected (which. in turn, governed how many people would be treated) and
the assumptions made regarding the effectiveness of therapy.
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Net annual savings = Departure cost reduction + lost
arreraft cost reduction + cost
reduction in CV nondepartures’ —
paramedic costs — operating., drug,
and test costs.

It has not been the intent of this paper 1o present the results of the cost effectiveness
analysis but only to describe several manpower planning models used in performing it. The
models permit estimation of changes of some of the complex cost elements. Computer experi-
mentation was then possible to aid in certain decisions such as determination of therapy group
size and treatment intensity (3],
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ABSTRACT

T'his paper describes an empirical evaluation of several approximations to
Hadley and Whitin's approximate continuous review inventory model with
backorders. 1t is assumed that lead time demand is normally distributed and
vanous exponential functions are used to approximate the upper tail of this dis-
tribution. These approximations offer two important advantages in computing
reorder points and reorder quantities. One advantage is that normal tables are
na longer required to obtain solutions. and a second advantage is that solutions
may be obtained directly rather than iteratively. These approximations are
evaluated on two distinct inventory systems. It is shown that an increase in
average annual cost of less that 1% is expected as a result of using these ap-
proximations. The only exception to this statement is with inventory systems
in which a high shortage cost is specified and ordering costs are unusually fow.

INTRODUCTION

This paper is concerned with Hadley and Whitin's [4] approximate continuous review
inventory model in which a fixed quantity of an individual item is ordered each item the inven-
tory position (units on hand plus units on order minus backorders) reaches the reorder point.
After a lead time has elapsed, the entire order is received. It is assumed that reorder quantities
and reorder points are established independently for each item and that the distribution of lead
time demand can be approximated by a normal distribution.

The optimal reorder point and reorder quantity for this mode! are determined by minimiz-
ing a cost function including the expected number of orders placed per unit time, the expected
number of backorders per unit time, and an approximation to the expected holding cost per
unit time. The solution which minimizes this approximate cost function is found by an itera-
tive algorithm that converges quite rapidly.

To find the optimal solution, it is necessary to calculate the expected number of backord-
ers per period for a given policy. If lead time demand is assumed to be normally distributed,
then this requires the evaluation of the standardized normal loss integral. Several authors
(5.7.8]) have developed exponential functions to approximate the expected number of backord-
ers per period. This not only alleviates the iterative solution but saves the table look-up
required to evaluate the normal loss integral. This paper cvaluates these approximations.
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MODEL DFRIVATION

The following notation, from Hadley and Whitin [4] is used.

Q = order quantity (units)

r = reorder point (units)

A = demand rate (units/year)

14 = ordering cost ($/order)

C = cost of item ($/unit)

! = carrying cost ($/$ value of stock/year)

™ = backordering cost (3/unit backordered)

« = probability of a stockout occurring during
a lead time

B = probability that any unit demanded cannot be
filled from stock

h(e) = probability density function of lead time demand

m = mean lead time demand (units)

o = standard deviation of lead time demand

H(r) probability lead time demand exceeds the reorder
point (complementary cumulative distribution)

n(r) = expected number of backorders during a lead time when
the reorder point is r (units)

The expected anual cost (AC) of operating the inventory system is represented in the
equation below, assuming that shortages are backordered.

L.,

2 1

(1) a0 =42 e

0

The first term represents the expected ordering cost, the second term the expected carrying
cost, and the third term the expected number of backorders. It is the second term in this equa-
tion that is an approximation, since the average inventory level is estimated as though there are
no backorders. If the expected number of backorders is small, the approximation is very good
(see Gross and Ince [3]). The third term may also be considered an approximation since the
lead time demand is approximated by the normal distribution.

AT -
+ —— nlr).
o

The values of Q and r that minimize the above annual cost function can be found by the
simultaneous solution of the two equations below.

1/2
2A _
{2 .
(2) (0] [I(' A +7rn(r))]
(3) H(r = Q1€
A

An iterative solution is suggested by Hadley and Whitin [4) that will work as long as —?T!)‘g— < 1.

This is fine, since as H(r) approaches 1, the approximation to carrying cost becomes rather
poor and, thus, the model is not appropriate.

In practice, it is often difficult to estimate the backordering cost, @. To avoid this prob-
lem, one may instead specify a desired service level. One approach (a service policy) is to
specify a, the probability of a stockout occurring during a lead time. A second approach (8 ser-
vice policy) is to specify 8. the probability that any unit demanded cannot be filled from stock.
Since 7 is not specified. it can be eliminated from (2) and (3) above (see Nahmias [6]), yield-
ing the following:
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nir) nir) nA|
(4) = ——— —— - )
Hr) [[II(r) (']
In addition, the « service policy requires
(5) Hir) = «.

And. the B8 service policy requires
nir)
10
Values of Q and r may be found directly from Equations (4) and (5) for the « service policy

and values of Q and r may be found iteratively from Equations (4) and (6) for the 8 service
policy. See Nahmias [6] for an appropriate algorithm for finding optimal values of Q and r.

(6) = 4.

FURTHER APPROXIMATIONS

When applying the above model to an inventory system with many parts, it is typically
assumed as an approximation that the lead time demand follows a particular distributional form
for all parts. A very convenient approximation and the one assumed in this paper is the normal
distribution. That is. it is assumed that /1 (r) is the probability density function of the normal
distribution with the mean « and standard deviation o. Therefore, H{r) and n(r) may be cal-
culated from the equations below, where Z (1) is the probability density function of the unit
normal.

) Ho =" zw a

(8) 1(,)~(rf”[

The integral in (7) is the complementary cumulative distribution of the unit normal and is
tabulated in any standard statistics book. The integral in (8) is referred to as the standardized
normal loss integral and is tabulated in Brown [2]. The tabulated integrals in (7) and (8) are
required to solve Equations (2) and (3), Equations (4) and (5}, and Equations (4) and (6).

’Z(!) dr.

Two approximations have been suggested 10 avoid the table look-up required by (7) and
(8). One approximation. suggested by Schroeder [8] and Herron [5]. is to use an exponential
function, of the form ae ., to approximate the integral in Equation (7). Using this approxima-
tion,
. ul

The exponential approximation not only avoids the table look-up required to calculate
H(r) and n(r) but also avoids the iterative solution procedures required to find optimal values
of Q and r. If the expression for 7 (r) is substituted into the annual cost Equation (1) and par-
tial derivatives are set equal to zero, the optimal value of Q is as follows regardless of whether
w, a, or B is specified.

rou
l j

|
H(r)=ae ‘" 'and 71(r)=1h"~¢'

(9) Q=%+
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The optimal value of r is presented in Equation (10a), (10b), and (10¢) for m specified, «
specified, and B8 specitied, respectively.

(10a) r=u—-L1n —QI—(—]
b mAa

(10b) r=u- % In (a/a).

(10c¢) r=u—1ln QEQ
b aa

Note that the optimal values of Q and r do not require an iterative solution. These values
represent approximate solutions when A (r) is assumed to be the normal probability density
function. They are approximate, since the complementary cumulative distribution function of
the unit normal is approximated using an exponential function.

A second approximation. suggested by Herron [5] and Parker [7] is to use an exponential

function of the same form to approximate the integral in Equation (8). Using this approxima-
ir-p) _plrmp)
b b

tion, n{r) =cae 7 and H(r) = abe "

Likewise, this approximation avoids the table look-up required to find A (r) and n(r) and
avoids the iterative solution procedure required to find optimal values of Q and r. The optimal
value of Q is the same as that specified in Equation (9) and the optimal value of r is presented
in Equations (11a), (11b), and (11¢) for = specified, « specified, and B specified respectively.

(11a) I A B¢/ (G
4 TEw b]n TAab

(11b) r=,u.——%ln(a/ab).
(11¢) r=u- < 1n |28
b oa

Thus, both approximations allow optimal values of Q and r to be calculated directly and
avoid the problems of looking-up data in the normal tables. The purpose of this paper is to
evaluate the accuracy of these approximations.

PARAMETER ESTIMATION

Figure 1 contains a plot of the log of the complementary cumulative unit normal distribu-
tion and the log of the standardized normal loss integral versus K, the number of standard
deviations above zero. For the exponential functions to be a good fit, these plots should be
straight lines. Obviously, there is a rather slow gradual curvature to both lines but a straight
line does not appear to be a bad approximation.

Table | contains the parameter estimates obtained by the various authors and the range of
K that was used to obtain these estimates. Herron used two straight lines to obtain a better fit
of the curvaturd.

This author developed his own parameter estimates for the standardized normal loss
integral by fitting a least square regression line to twenty-one points in the range 1.0 € K <
3.0. This was done in order to evaluate a method analogous to that used by Schroeder [8] for
the second type of approximation.
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FiURE 1. Semilogarithmic plot of the complementary cumulative distribution of the unit normal

and the standardized normal loss integral versus K standard deviations above zero.
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TABLE 1. Parameter Estimates

Estimates

. R: f
Author {referencel drﬁe 0
a b
A. Approximations to compiementary cumulative distribution of unit normal
1. Schroeder (8] 2.8800 2.4900 10 K €30
2. Herron (5] 5500 7530 0<K<1S5
3.6000 3870 1I5< K <30
B. Approximation to standardized normai loss integral

1. Byrkett 1.5792 2.6879 10 K €30
2. Herron (5] 4400 .5760 0<K<L15
2.4900 3460 15€ K <30
3. Parker [7] 4500 1.6949 0<K<K14

The reader should notice that Parker [7] developed his approximation in the range 0 < K
< 1.4, h is felt that for most inventory systems, including those evaluated in this paper, it is
preferable 10 use an approximation of the upper tail of the distribution, for example 1.0 € K <
3.0. For this reason, Parker’s approximation will not be given further evaluation.

COMPARISON WITH TABLED VALUES

One approach to measuring the accuracy of the approximates outlined in the previous sec-
tion is to compare the values obtained using the approximations with the corresponding tabled
values. Table 2 displays these results. The approximations to the complementary cumulative
distribution were used to compulte tabled values of the complementary cumulative distribution
at intervals of .05 in the range 1.0 < K < 3.0. Likewise, the approximations to the standard-
ized normal loss integral were used to compute tabled values of the standardized normal loss
integral. Three criteria are used 10 compare the approximations (o the tabled values; the mean
absolute deviation, the mean squared deviation, and the mean percentage deviation.

TABLE 2. Comparison of Approximations
1o Tabled Values*

Absolute deviation Squared deviation | Percentage deviation
Mean Max. Mean Max. Mean Max.

A. Approximations to complementary cumulative distribution of unit normal

Author

1. Schroeder [8] | .0090  .0801 .000405 .006420 13 50
2. Herron [5] .0025 0129 | 000015 000166 7 115
B. Approximations to standaridized normal loss integral

1. Byrkett .0025 .0241 000032 .000581 11 30
2. Herron [5] .0010 0058 .000003  .000033 7 12

*Entries in table calculaled by comparing approximate value with tabled value at intervals of .08
between A = 1.0 and K = 1.0
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Two observations may be made from this table. First, the approximations of the stand-
ardized normal loss integral arc closer to the tabled values than those of the complementary
cumulative distribution of the unit normal according to all criteria. This indicates that the lower
curve in Figure | is closer to linear than the upper curve and that approximating this curve may
produce a smaller error. Second, Herron’s two line approximation is preferable to Schroeder’s
and Byrkett’s one line approximation, according to all criteria.

Though these results tend to favor the estimates developed by Herron (5], they are by no
means conclusive with respect to their economic effects in controlling inventory.

COMPARISON OF OPERATING POLICIES

The major concern in using these approximations is how much influence they will have on
the cost of operating an inventory system. It is possible to simply use an jterative algorithm to
find optimal values of Q and r and to look-up values of H{(r) and n(r) from normal tables.
This, however, requires significantly more computer time than the one or two line approxima-
tions discussed above. For example, the CPU time required to execute the iterative algorithms
and to look-up values of H(r) and n(r) from normal tables for all cases discussed below was
113.44 seconds. This compares with 2.57 seconds for the one line approximations and 4.42
seconds for the two line approximations. If you consider an inventory system with many
thousand items and frequent updating, the savings in computer time can be substantial.

With the exponential approximations, it is possible 10 calculate the optimal reorder points
and reorder quantities directly without any table look-ups. To determine how much this com-
putational advantage costs, the average annual cost of the solution of Equations (2} and (3),
Equations (4) and (5), and Equations (4) and (6) are compared with the annual cost of the
approximations given by Equations (9) and (10a,b,c) and Equations (9) and (1la,b.c). Equa-
tion (1), using a table look-up, will be used to compare the resulting operating policies.

It is not valid 1o compare the approximations on a single item from the inventory, since
all approximations may do equally well on a given item. Rather, the approximations must be
compared on the entire inventory, or on at least a representative cross section of the entire
inventory. In this study, cross sections of two different inventories are used to compare the
approximations. One inventory, called the Maintenance Inventory, contains equipment and
parts for maintaining a large fleet of maintenance vehicles, including cars, trucks, graders, and
so forth. Forty items were selected from this inventory and estimates made of A, C, u. and o.
A second inventory, called the Warmdot Inventory, contains spare parts for heating and air
conditioning equipment. Brown [1] contains A and C for sixteen items from this inventory.
Estimates were made of u and o by assuming a three month lead time and using the derived
relationship in Brown {11, o = 21u? C2.

In addition 10 comparing the approximations on two different inventories, all three
methods of specifying shortages costs (7, a, and 8) are considered. The shortage costs, order-
ing costs, and carrying costs are run at three levels each to determine the impact of these costs.
The costs used are as follows:

Ordering cost  (A) — $1. $10, $100
Carrying cost (1) — 1,.2. .3

Shortage cost — Low, Medium, High
T — $10, $100, $1000
a = .15..10, .05

8 — .10..01, .001.
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Table 3 summarizes the results of using the single line approximation of Schroeder [8]
and the two line approximation of Herron [5] to the compiementary cumulative distribution of
the unit normal. The numbers reported in these tables are percentage increases in annual costs
for all sample parts in the Maintenance Inventory for the various cases. Similarly, Table 4
summurizes the results of using the single line approximation by Byrkett and the two line
approximation by Herron [5] to the standardized normal loss integral. Again. these results are
for the Maintenance Inventory. Similar results are developed for the Warmdot Inventory
though these have not been included in order to conserve space.

TABLE 3. Percentage Increase in Annual Costs Using Approximations
10 the Complementary Cumulative Distribution of the Unit Normal
(Maintenance Inventory)

Shortage Cost Specified
A I | Approximations* " a B

10 { 100 | 1000 j .1S | .10 | .05 | .10 | .01 | .001

1 } * 110 4.6 .6 31 4113 4 7

' 2 114 36 120134 O {13} 4 S

1 ) 1 Lt 35 .6 3 4 13 4 8
’ 2 ** 9 29 1231287 01]15] 4 5

3 1 * 1 1.6 31 6 30 4113 4 9

' 2 ** 5 26 (24| 41 0116 4 6

—

1 1 ** 4 25 4 1 31131 0 3

’ 2 * 6 1.9 81151 0 4 . 2

101 2 1 ** 7 2.2 .S 20 4 1121 0 4
2 > A4 1.6 10| 18] .0 S 2

3 ] 113 1.8 4 .1 31 A J

’ 2 > 1 1.2 14 24| 0 8§ .0 4

I 1 o 2 6 2 0 2 114] 0 0

' 2 ** A 4 2 3 0 .1 1 0

1 x> 7 .6 3 . 2116/ 0 1

100 | .2 2 ** ] 3 3 4 0 2] 2 0
3 1 N W) S 3 A 3 1.5 .0 2

' 2 o .2 3 4 7 0 210 ]

*1 — Schroeder {8]. 2 — Herron [S]
** Indicates that the assumption A < 1 was violated for one or more items in the inventory.
m

It is difficuit to draw conclusions from the raw data provided in Tables 3 and 4. Thus,
Table 5 is developed which summarizes the results in Tables 3 and 4 and the corresponding
results for the Warmdot Inventory by averaging these percentage increases across all tables by
group. A regression model was developed using the percentage increase in annual costs as the
dependent variable. The independent variables were all 0-1 variables used to represent the
seven groups listed in Table 5 and all of the two factor interactions. One by one the indepen-
dent variables used to represent the seven factors were removed from the model to test the
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statistical relationship of the given variable with the percentage increase in cost. An [ test was
used with significance level set of 99%. This will insure that the family of seven tests has a
joint significance level of at least 93%. Based on these seven tests. the variables found to be
significant are the inventory system under study, the level of the ordering cost, and the level of
the shortage cost. The approximation approach and the method of approximation were nearly
significant but not at the confidence level specified.

TABLE 4. Percentage Increase in Annual Costs Using Approximations
10 the Standardized Normal Loss Integral (Maintenance Inventory)

Shortage Cost Specified
A 1 | Approximation* ™ o B

10 ] 100 ) 1000 | 15§ 10§ 05 .10 | 01 | 001

I 1 * 4 29 2 ) ] T 5 .2

’ 2 *x 4 24 8 4 2 B 4 2

| ) ] ** 9 22 8 .5 1 1.7 5 3

) 2 x> 2 1.2 iy 4 2 1 1 2

3 1 b 1.8 1.7 8 S 1 1.7 1 .5 3

- 2 b 2 .6 N 4 .2 B R 2

I 1 ** 2 1.2 .6 2 .0 18 .0 B!

2 »* 3 4 B 3 1 3 B

0!l 2 ] o .8 8 8 4 1 1.8 2
2 ** N 4 ) 4 1 B 2

3 ] ** 1.4 7 N 2 .0 1.8 ( .1 3

’ 2 ** N 3 2 3 3 . 2 4

1 | x 4 2 4 1 0 ]20] 1 2

) 2 > A N B .2 R 27 0 3

1 > 1.2 1 4 2 0 | 21 . 0

100 | . :
2 2 *x 2 .1 1 3 N .0 .0

3 ] > 2.0 N 5 2 0 1207 1 1

2 i 4 .0 B 3 B 21 .0 N

“1 — Byrkent. 2 — Herron [§)

IC . . . .
** Indicates that the assumption % < 1 was violated for one or more items in the inventory.
m

Several observations may be made from Table 5. First, the average percentage increase
over all groups studied is only .71%. This indicates that the approximations are quite effective.
However, maximum percentage increase of 12.9% indicates that under some conditions the
approximations are not so effective. Second, the approximations are much more effective for
service level type policies (« and B8) than for shortage cost type policies {(w). Third, the
approximations are more effective for inventory systems in which the ordering costs are rela-
tively high ($100) than for inventory systems with relatively low ordering cost $1 and $10).
Fourth, the approximations are more effective for inventory systems in which the shortage
costs are relatively low than those with high shortage costs. Fifth, though the differences are
not great, it appears that the two line approximations to the standardized normal loss integral
produces the best resuits.

It was noted in the previous paragraph that the inventory system under study was found
to be a significant factor. Though the difference in mean percentage increase is not great, there
is significant interaction between the inventory system and the specification of shortage cost.
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the level of ordering cost, and the level of shortage cost. The interaction between the inven-
tory system and the method of specifying shortage cost is illustrated in Table 6 A. Notice that
the approximations are more cffective for the maintenance inventory system when # s
specitied and vice versa when a service level is specified (« and 8).

TABLE S. Percentage Increase in Annual
Costs by Group

Standard

Group Mean o Maximum
deviation

Over all groups 1 1.24 12.9
Approximation approach

H{(r) 82 1.51 10.7

nir) .59 1.37 12.9
Inventory system*

Maintenance inventory .62 .80 4.6

Warmdot inventory .79 1.84 12.9
Specification of shortage cost*

m 1.55 2.30 12.9

o .30 57 4.1

B 4] .59 23
Approximation

Single fine (1 < K € 3 .81 1.45 10.7

Two lines (0 < A £ 3) .60 1.43 12.9
Ordering cost*

1 1.26 2.11 12.9

10 63 1.07 55

100 .24 41 2.1
Carrying cost

. .66 1.23 7.1

2 69 1.35 8.4

3 7 i.71 129
Shortage cost®

Low 57 65 24

Medium S0 .90 5.3

High 1.03 2.14 129

*Indicates ths variable 1s significant using F-test with a = 01
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Other selected interactions are also illustrated in Table 6. Table 6B indicates that the
approximations are least effective for inventory systems with low ordering costs in which a
shortage cost is specified. Table 6C indicates that the approximations are also least effective for
inventory systems with a high specified shortage cost. Table 6D combines the results of Tables
and 6B and 6C and indicates that the approximations are least effective for approximations with
a combination of a low ordering cost and a high shortage cost.

TABLE 6. Percentage Increase in Annual Costs
Jfor Selected Two Factor Interactions

A. Specification of shortage cost versus inventory system

Inventory
system

Specifications of shortage cost

™ a J¢]

Maintenance

Warmdot

1.02 48 49
1.90 11 .34

B. Specification of shortage cost versus ordering cost

‘ orggsr:ng Specification of shortage cost
m o ﬁ
1 3.01 S1 34
10 1.31 27 4l
100 33 11 28

C. Specification of shortage cost versus shortage cost

Shortage Specification of shortage cost
' cost - N 8
’ Low .16 41 .92
Medium 93 42 15

High 2.86 07 A7

D. Ordering cost versus shortage cost

Ordering cost

High

Shortage
cost I 10 100
Low 78 .56 .36

Medium 98 34 I8

193 98 19
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SUMMARY AND CONCLUSIONS

Hadley and Whitin's [4] approximate continuous review inventory model has received fre-
quent amalysis in the literature {recently, 3 and 6], though little has been reported of actual use.
Perhaps the reason for this apparent lack of use is the requirement that a probability distribu-
tion be specitied for lead time demand. and the requirement that a backordering cost or service
fevel be specified. Moreover, even if one s willing to specify the normal distribution for lead
nme demand and an appropriate backordering cost or service level, one still may be hesitant
about using the iterative solution algorithm that requires the use of normal tables. The purpose
of this paper is to evaluate some approximations that relieve the latter two delerrents 1o using
this model.

This evaluation produced the following results:
bo The exponential approximations result in operating policies very near those of ilerative

algorithms.  The average increase in annual costs as a result of using these approximations
is 71", depending on certain characteristics of the inventory system.

2 It is preferable to approximate the standardized normal loss integral with an exponential
functiion than to approximate the complementary cumulative distribution function.

3. The approximations are closer for a or 8 specified policies. than for = specified policies.

4 A single line approximation in the range A = 1.0 10 A = 3.0 is nearly as effective as a
two line approximation.

hY

The approximations are least effective for inventory systems with low ordering costs and
high specitied shortage costs.
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A NOTE ON THE MIXTURE OF NEW WORSE
THAN USED IN EXPECTATION

Kishan ;. Mchrotra

Svracuse University,
Svracuse, New York

1. INTRODUCTION

The class of distributions which are new worse than used in expectation (NWUE) was first
introduced by Marshall and Proschan [2]. These classes play an important role in the theory of
reliability and ir particular arise quite naturally in considering replacement policies. A nonnega-
tive distribution F with survival function F and expected value u is said to be NWUE if

w () <fl°° F(x)dc forall 120

In this note we are interested in the following question: [s the class of NWUE preserved under
arbitrary mixture? Barlow and Proschan [1] conjectured that NWUE is not preserved under
arbitrary mixtures. In section 1 of this note we present examples which verify this coniecture
and in Section 2 we give some other clementary properties of distribution of this class.

2. NWUE IS NOT PRESERVED

The examples considered below are obtained in view of Lemmas | and 2 of the next sec-
tion. That is, we take two specific NWUE distributions F and F, with respective expectations
w1 and u, such that w, > u, and F| crosses F, from above. Then, at a point 1 beyond the
point of intersection of F; and F, the defining equation of NWUE is not satisfied.

Consider the mixture

F(x) = % (Fi(x)+ Fylx))  foralla 20

where
Fix)=¢ """ qorx 20
and
Folx)=¢ ™ for(h—1)6 € x < k8, h=12 ... .
Thus. £, is the exponential distribution tunction with expected value w, = .8 and clearly

NWUE £ s a slight modification of distributions considered by Barlow and Proschan [1]
in Secnion S 9 of Chapter 6. Since F5>(x) is easily seen to be a NWU, by (2.4) of Chapter 6 of
Harlow and Proschan [1]. it is clearly NWUE. The expected value of the random variable with
fistirtbution function £ s
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h
a3 = 2
1—¢
and
R , (k+1)b
7 Fyorde = (s —1) e 2428 ——
! 1-¢

where & is an integer such that (& - 1}6 < 1 < k8. For a given 8 set
L(5.1) = % (i +m(5))% (F () + Fyte)
and
| lalPE= -
R =35 f, (Fi(x) + Fy(x) dx.

Then, for & = .5, u,(.5) = .77074. For 1 = .S5—e€, where e is positive and very small, for
instance. € = .001, L(.5, .5—¢) = .44836 and R (.5..5—¢€) = .44784. Clearly, L(.5, .5—¢) >

R (5, .5—¢€). Thus. the mixture {% Fiix) + F‘z(x)} is not NWUE. This inequality holds for

values of 7 slightly less than | and 2.

The above examples clearly show that NWUE is not preserved under the mixture, as con-
jectured by Barlow and Proschan [1].

3. SOME ADDITIONAL PROPERTIES OF NWUE DISTRIBUTION

LEMMA 1: Let F be the class of NWUE distributions with equal mean . Then any
arbitrary mixture of £, e Fis NWUE.

PROOF: Let F = ff',, dG () for arbitrary distribution function G.
Then.

w = [ Foa= [ [ F dGera = f 1f7 F, ()dx1dG )

(

= f[.L(/G((X) =pu

where the second inequality holds by Fubini's Theorem. Next, for arbitrary 1 2 0,
7 Foa= T 1f Fowd6@ Vax= [1f7 F (x)dx)dG o)

> [ wF. (1) dGla) = wF ().

Thus, Fis NWUE.

LEMMA 2: Let F, and F, be two NWUE distribution functions such that F, crosses F»
once from below. Let u, > u, where u, is the mean associated with £. Then for any
PO pSLF(x) = pFi(x)+ ¢gF)(x)is NWUE; ¢ = 1 —p.
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PROOF:
{f, Fds—uF())=(p+ q):f’ {pl-l(_j') + gl () dy
= (puy + qu) (pF () +gbF5x0))
=t Fod - Finol + q3[f, Folxddy = pabat)
+ pq[f( LF YO0 + Fyo b dy — o By () = o F (0]

To show that this expression is positive for all ¢ it is suflicient 10 show that the third term is
positive. because the first two terms are positive by assumption £ is NWUE/ = 1,2,.

Let 7, be the point where F| crosses £y from below. Then for 1 > 1,.F\(1) > F\{1).

Thus,
f,w!i‘,(xw Falo)d = Fol) =y U0 2 Gy — o) (R (0 = Fat) 20,
For 1 < 1.
o _ _ . | Fiix)  Fy(x)
L {FI(.\')*’fA:(.\')}([.\' = {[.L|I'.1(f) + #ZFI(,)} 2([.1.]—”,2) f [«—l—___ — ———}dx
! [ 2]
! i‘z(_\') Fl(.\')
' = (p.,—/.tz) - dx.
| Y1 wmo M1
X Fy(x) _ Fix) _ F(x) . . L
But for 1 < 1, = 2 . Theretore, the above integral is positive.

M2 M2 123!

The following result provides a lower bound for the distribution function for any member
of NWUE class in terms of its expectation.

LEMMA 3: If Fis a NWUE and u is its expectation, then F(r) = ; +’

for all r20.

- oo __ r_ - — —
; PROOF: uF(1) < f Flx)dx = p— f(. Flxddx< p — tF(1) because F(x) > T'()

for all x<r. Thus, F(N< —2— or F(1) 2——. 1 > 0.
[T mtt

To show that the above bound is sharp we consider the following example. Let Y be a
nonnegative random variable such that

PlX=0]=«
PIO<X<al=0

and for X > a, the densily is given by

f1x) = (=) ¢ @
A
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where A = gt — (1 ~a))/ (1 —a)?, and 0<a <1 is chosen so that «— (1 —-a)?l>0.

The expected value, i . of the random variable X is given by

p,=—a) la +r]

and the distribution function Fis such that

(l—a) for 0 £ x < a

E,(.K‘) = (l—ll) e (x -agd'A fOl'X 2 a,

Clearly, Fis NWUE. Moreover, for x = a

Y - 4~ (1-a)=F,a).
X +u, a +u,

implyving that for any give u >0, and for each a > 0, there exists a NWUE F, such that
F,ta) =

a+u
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A NOTE ON OPTIMAL SWITCHING
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ABSTRACT

Let /) and 7, map [0, 7] into the real numbers. A system s following er-
ther f; or /5 and carning the associated reward J 1y or [ 1y respectively. s
possible at any time 1o switch from /, 1o/, by paying a swilching cost b > 0
We determine a switching policy which maximizes the total reward - Conditions
which guarantee a planning horizon are established

INTRODUCTION

In many endeavors one must choose one of two activities, each of which has a time-
varying reward. There is usually a cost associated with switching from one activity to the other.
Such is the case in fisheries, where a fisherman chooses each day to fit his boat for deep or
shallow fishing, and this paper stems from a model of such behavior. We model this situation
in the following way. Let /| and f, map [0,T] intq the rea] numbers. A system is following
either f, or f, and earning the associated reward | fy or J f;, respectively. It is possible at
any time to switch from f, 1o f, by paying a switching cost & > 0. For example, if the system
begins following /). switches at time ¢, 2 0 to /5, and then switches back to f| at time 1; 2 1,
the total reward is

j:]” J +f,|'~]_3 + f,j 1= 26

The problem of optimal switching between two activities has been studied by Pekelman
[2]. who required switching to occur in a continuous fashion with a bounded rate. In our case,
switching occurs instantancously. Pekelman derived the nature of an optimal policy using
Lagrange multiplicrs, and showed the existence of planning and forecast horizons. Our prob-
lem is simpler. and our analysis relies on dynamic programming. We also characterize planning
horizons.

REDUCTION AND ASSUMPTIONS

A function /f'is said to change sign at 1 if / takes both negative and positive values in any
neighborhood of 1. We assume

(A1) The set of points in [0.7] where f; — /> changes sign is nonempty and finite. Let
O0< 1 << ... €1, < Tbean cnumeration of this set.
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(A2) There is no interval in [0.T] on which /; — f; is identically zero. A model which does
not satisfy this assumption can be reduced to one which does.

We note that the performance of any policy is dominated by the performance of a policy
which switches only on the set {0. 1.1 ..., ). If a policy mandates a switch at
s € (4. ), then the switch can be relocated from s to , f.,;, or to coincide with some
other switch in (4. 1, ,)), so that the reward is not decreased. If two switches coincide, they
can both be eliminated with no loss of reward. It is clear then that the switch at s «an be
moved to . # .. or eliminated altogether.

This observation restricts our attention to policies which switch only at {0,¢,, ..., 1,).
Since there are only finitely many such policies, an optimal policy exists. Let 1y = 0 and define

g = f/kpl U= 7).

A policy which mandates following f, on the intervals ["w 1,
{, earns reward

/~Il‘0< IA] < 1/\:< o< ’km <

m A .
Z (XA’ + 0 .,l - ('b.
=1

where ¢ is the number of switches incurred by the policy. We have thus reduced our problem
to the following sequential optimization model.

M: At each stage k, a system is in either state 0 or state 1. A policy # = (o iy, ... s py) i
a sequence such that each u, maps {0, 1} into {Hold, Switch} or simply {H,S}. If the k-th
state is x;, then the & -th control is u, = u, (x;), the (k + 1)-sr state is

X if = H,

(1 e =S u) = =x if w=35

and the reward associated with (x;,u;) is

0 it %=0 w=~H
—b if x=1 =S5
We wish to find a policy # which maximizes
(3) 1) =3 2.
k=0

This is a finite stage, deterministic, dynamic programming model with two states and two
actions. The dynamic programming algorithm for this model is simple and computationally
feasible. This model has, however, a special feature which leads to a more efficient algorithm.
It is apparent that whenever 0 < a; < 2b (=26 < a, < 0), there is nothing to be gained by
switching from 0 to 1 (1 to 0) at stage k and back to 0(1) at stage kK + 1. To build on this
observation, we define 4« model more general than M.

DEFINITION: We say a dynamic programming model N is alternating if it has (wo states
0 and [, two actions # and S, system equation (1), one-stage reward (2) and objective func-
tional (3). We require that b 2 0 and A4y = lag.,. ..., a,) is an ordered set of real
numbers such that a;, # 0. and the nonzero members of the set have alternating signs. A pol-
icy for an alternating model is a sequence m = {uy.;; . ... . i,) such that u, maps {0, 1} into
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{H.5). We say w is feasible if o, = 0 implies u, (x,) = H, regardless of the choic~ of x,,. We
say 7 is optimal if # maximizes J,(x,) over all feasible policies (independent of x,), and the
reward J, (x,) corresponding 1o an optimal 7 is called the value function.

The model M is an alternating model with every «, different from zero. Given an alter-
nating model N, we can construct a related alternating model ¢ () by the following procedure:

(P) Let m < n be the largest integer for which «,, # 0. If a,, and «a, are the only nonzero
members of Ay, set dlay) =a, k=0, .... n Otherwise, determine the index
k. 1 < k € m— 1. of the smallest nonzero la,|. If more than one such la,l| exists,
choose the smallest index. If |, | > 26, set dlay) =ay, k=0, ..., n If lo;| < 2,
letp = max{pl0 < p <h~ 1 a,=0L§=minlglk +1 < ¢ < na,# 0 and set

dlag) =, h Zp k 2k k#G
dla,)=a, +a ta,
11} (”k) = (uq' = (),
The model ¢ (V) is the model NV with cach o, replaced by & (a ). It is easily verified that

SN s alternating.

Either the models ¢ (N) and N are the same, or else ¢ (N) is simpler than VN is the sense
that 4,,\, contains more zeroes than 4y . For example. if Ay = (=1,3,0,0,—2,5) and b = 1,
then A, (v, = (=1.6.0,0.0,0).

LEMMA: Let N be an alternating model and let ¢ (N) be derived from N by procedure
(P). Then every optimal policy in & (N) is also optimal in N.

PROOF: Since every feasible policy in ¢ (N) is feasible in N and leads to the same
reward in both models, it suftices to show that both models have the same value function. We
will show this by producing a policy which is optimal in N and feasible in ¢ (N). There is noth-
ing to prove when ¢ (N} = N, so we assume the contrary, i.e., laAI < 2b.

The dynamic programming algorithm for N takes the following form. For
k=0 1,...,nifa, #0,

(4 J (0) = max{J, 1 (0), —=b +a; + J; (1)

(5) Jo(1) = max{a, + Ji (1), —=b + Ji, (0)),
while if a;, = 0,

(6) J 0} = J, 1 (0),

(7N Ji (1) = J o (1),

where J,,,(0) = J,,,(1) = 0. Definenm = (ug.pty . .... u,) by
N LA A M

(9) (I)-‘ fl |f j;\(l)=ak+JA+|(l).
My - S lr JA(1)>0A+Jk+|(l).

The policy 7 is optimal for (V) [1, p. 50]. We show it is feasible for ¢ (N), i.e., for any initial
state x,,
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(10) wy fy)=H.
(i m, (X)) =H.

Observe first that (4)-(7) imply
(12) J ) < b+ 4 (1), =01, ....0n+1,
(13 LML b+ 40), k=01, ..., n+1
Recall that a, # 0 and la;| < 2b. Since J,,, = J; and J,,, = J,, we can and do assume for
simplicity of notation that p =k — I, § = 4 + 1. Thus, we have la; | > la,l, la;, | >
la, .
We assume a, < 0. The other case is treated similarly. We have
a, >0, a,,, > 0. From (12) we have
b+ J 0 < J ) <o+ 00,
so (5) and (9) imply
(14) oo =a,  + D, p,,(1)=H
Since a, < 0, (13) implies
bt +J D)< =b+J (1)<, 0,
so from (4) and (8) we have
(15) JAO) = J 40, om0 = H
Since la; | < la,, . we have from (12),
b+ 4 0 K U D oy oy, F ()
Since la, | € 2b, we also have
=2bta,,, +J D) <, ta,, +J,,0).
Together with (4) and (14), these inequalities yield
b+ S 0 S a, tag,, +J,(D=a, +J (]
From (5) and (9) we now have
(16) S =a, +J (D, pui(1)=H
Equations (15) and (16) imply (10). It remains to establish (11).
Since a; ;> 0.(5), (9) and (12) imply p;, , (D=H. IfJ 002 ~b+ a,,, + J,,(1),
then (4) and (8) imply
Lo 0= 0, o, (0)=H
and (11) follows. On the other hand, if J,,,(0) < —=b + «,,, + J,,,(1), then
(7 SO =—b+a,,, +J,,(1), p,0)=S5,

and (I1) will hold if and only if x,,, =1 (independent of the choice of x¢). Since
a, | +a, >0, (15), (17), (14) and (16) imply
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JO) =4, (0 =—b+a,, +J 0
<=b+a, ta, ta,,, 0
=-b+a,  ta, + /.,
=—bh+a, +J )
From (4) and (8) we see that
(18) Jo () =~b+a, (+ 01, u, 0)=S5
Since ar, | > 0, (12) implies
b+ J ) < J D S,  + S (D),
and (5) and (9) vield
(19) Jo M =qa, [+ (1), pu, (1)=H
Equations (1), (18) and (19) imply x, = 1. Equations (1) and (16) imply x, , , = |, as was to
be proved. Q.E.D.

We state now a theorem which gives a simple construction of an optimal policy for an
alternating model N for which ¢ (N) = N. We show also that any alternating model can be
reduced to this case.

THEOREM: Let N be alternating model for which ¢(N) = N. If A, has only two

nonzero members « and «,,. then an optimal policy 7 = (ug. ). ... . u,,) for (N) is given
by
(20) welx))=H ., k=0, k=#m,

Sisx,=0,a,>0b
(21) “m(xm) = or X, = 1, &,y < —=b
H otherwise,
S ifX()= 0, -b +ay + Jm(l) > .I,,,(o).
(22) [A()(.X()) = or xog = 1 ., —b + Jm(O) > g + .l,,,(l).
H otherwise,
where
J,(0) = max{0. —b + «,,).
J, (1) = max{a,,. —b).
If Ay has more than two nonzero members, then the policy defined by
Sify, =0, a, > b
(23) ) = orx, =1,a, <-bh
H otherwise,

is optimal for N. If ¢(N) = N, then there exists some positive integer ¢ such that
&' 1 (N) = ¢'(N), and any optimal policy for ¢'(N) is also optimal for N.
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PROOF: For the trivial casc where 4y has only two nonzero members, the optimality of
the policy given by (20)-(22) follows directly from the dynamic programming algorithm (4)-
(9). Suppose now 4\ has three or more nonzero members and m is the largest index with
an, = 0. Since ¢(N) = N, ay #= 0 implies Ja,| > 2bfor 1 £ & < m — 1. The optimality of
(23) follows from (4)-(9), (12) and (13). Finally, if #(N) == N, then A,y, contains fewer
nonzero elements than 4,. After finitely many iterations of ¢, we must obtain ¢'(N) such that
&' HNY = ¢'(N). QE.D.

EXISTENCE OF PLANNING HORIZONS.

Suppose in an alternating model N we have «, > 2b for some k. Then, in the notation of
procedure (P), either dla) = a,., dlay) =a; +a, ta, 2 a4 ordla;)=0. The last
case occurs if k=g, in which case p < k dla,) =a,+a, +a; 2 a, and ¢ la;,)
=...=¢lay) = 0. For any i, we will have either ¢'la}) = ay > 2b, or else ¢'(a;) > 2b,
where | < kand ¢'(a;4)) = ...=¢'(a,) = 0. If ¢p'*'(N) = ¢'(N), then the optimal policy of
the Theorem guarantees that x,,, = I. Thus, we can disregard a, for j 2 & + | in determin-
ing an optimal policy for stages O through k. If a; < —2b, a similar argument holds, where
now we have x;,; = 0.

In conclusion, if la,| > 2b, or for any i 2 I, l¢'lay)| > 24, then we can solve the
smaller problem of optimal switching between any stage # < k and stage k independent of the
values of «,. where j does not satisfy # < j < k. and the policy thereby obtained will be part
of an optimal policy for the full problem.
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