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A LINEAR PROGRAMMING MODEL FOR DESIGN OF
COMMUNICATIONS NETWORKS WITH
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L. iNJROI)I ON: A D)ESIGN W~NIIIESIS PROBLEM

In this paper %c treat telccimunications netwvorks where customner demands for ser~ice
Lire specified prihiulirticail Ih bt~cen pairs ofijunctions according to different hours of' the day.
-telephorne tratfic mna\ flb ii met a direct route which joins two distinct functions or mixer anl
alternate routc which is (felined] in prestrecified network routing hierarchy. Netxorks w hich per-
nit alternat, rouLt ing of' traflc are termed sli'imu/ bcause Switching Operatioins Lire required to
altrnatelv route a CZIII. 'I lie network routing hieramrch permits traffic which is blocked onl t
direct route to he sm, itched through other junctions. Ithe switching process tends to smooth out
the preak,, of* traffic lo)ads .% hich Orecur throrughout the netwrrk at different times of' the daLI\

(inrnsquetk less equipment ma\ be required to service the overall tratlic load on thie nexmork
than for at similar network without alternate rorut1ings.

An example of' a netwxork routing hierarch\ is given below inl Figure 1. It Consists of .june-
ti ins I through // and two different kinds of' links J1oini ng certain pairs of junctions. A IimA is
merck at dimensionless entity whose existence indicates that telephone calls. collectixely termed
tUiic. maei flow in eithter direction bet weeCn the two _junctiorns which it Joins, without involving
all\ onther junction than these two, A dashed line designates at io IitmA While at solid line
designates at tinul boA. It' there is at direct link between at call-origination junction and at
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call-d,.stinition Junction, then at telephone conneclion is lirst attempted on this link. the first
choice route. Should the tirst choice connection fail, then an attem11pt is made to alternately
route the call h\ \kit\ a f final links, and in this case the traflic is referred to as vrlr/Iow ir fi/.
Arrovs in Figure I indicate (Ile oxrllow routing scheme. In case no direct link exists between
a call origin and destination, then the call is also routed along the final links. Should a connec-
tion on linal routes fail. we sat\ that the call is "lost." and the caller must try to place the call
again.

A

!C

I II, I A nelork hicrdch, \,1,h dire t t - - - - a nd final 1

link, hcrc o cr1 lo t ni i klrect link omio .1 final link is indiuiitd b, ain rr(iL%

The basic problem attacked in this paper is one of design synthesis: solve for least-cost
equipment changes in a given network routing hierarchy which are sufficient to meet altered
point-to-point customer demands for service during different times of day to within a prescribed
blocking probability. The emphasis is on the provision of a telecommunications service by an
optimal use of available equipment. The model we develop includes a probabilistic specification
of customer demand by time of day and includes alternate routings, where each direct link has
a uniquely specified alternate route in the hierarchy. It is a nonlinear integer program P, which
takes as a basic "unit" of equipment the concept of a "trunk." The terminology tequires
elucidation.

In this paper a irunA shall merely refer toi a channel which is required in order for a tele-
phone call to transpire between two junctions in either direction. As such, it is a dimensionless
quantit.. The call carrying capacity ol a trunk depends on the probabilistic mechanism underly-
ing customer calling patterns. For example, (luring a fixed hour a trunk could carrN 60 one-
minute serially placed telephone calls. tnder this discipline the total carried load during the
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hour i, 3 )) call-seconds., dcnoIcd 3() ( S. I \Prcsscd nilller -'%;. c obsr\ that lhe proha-
bill[ , tf a call being blokcd IS let(). (il the Other hand should a dcn;ind Ir (A) illc-mlinut
call', iiCtur sitilllanCiUi sl\. thcn hIe lei'rCd liad i still 36 ( b( . but (111\ i), (( S is Jcttiall
carried I Ihe blocking pr ohabilit, is nm S9/0t0

..A coillection of trunks toining t,(o (.isti1,.t Junctions I nclefe clrred tii s i a iioA :viulli
It is ciii\ci.ll to \i,.\ a link as a Itrunk grotup. \cclurding to nict iork engleeric ng principls. it
has hc n cLstnar\ II as nlc that cusosi 1cr mlnitatcd calls arc g ncratcd b PoISSon pIIKCS,
and arc assi nCd s'equcntialh If I trunk L( lp I lhesC asStnUptlIIIs \ ICh id 111 i1iip Iprtlll pr(cr't\

Mlich is fulldalenlill to Our dc\elnpllC11t ot a good linear piorlinnllw appioilnlall I(n the

nnine~~ar inte2ger pr 4iralll P', 1 1cl . that tlhe_ cillicd (Id in Ihc iastI inilk is niini ilicll,
decreasing i\ith the nunbcr if trunks. scee Mcsscrli 1131 Ihe lletcC'ssr, ici tII)s l i 11inI Ife
linear prigramning coInsrUction is based arc proit.cd in lie r\ppCidi\

I he nonlinear And linear suippi) i)odels of this p1ipe CtIlpIAM ccrtailn ccepts of1 L111t CoIst
iith respect tI hoth Irutnking and skkitching ihc dcfinitiin ofl "cst" shall be hillted I Ih,
incremental ilestninent cost5 of proitiding a trunk (41 tile direct rotle hctisccii , 4 Itillltll'ts atld

the incremental incestment cost I o pro\iding i trunk alonig thc uniquel% spccilicd il1Ciiatc
roiute connecting these t\kn junctions. In addittion, \AC Shall include tiunit sitching in'1cstllclnt
costs per ((S as a crude approximatin for switching in\cstnicnts stcnming lin) s1 kitlching

calls from fine trunk gloup to anllthcl.

Finait1. we present linear programming solutions for two network hierarchies occurring in
the field, one of which has been designed using nonlinear steepest descent methods, see Eisen-
berg 151 and Eisner 161 This section also contains a user's guide for implementation of the
model

2. A.PPR(),AFI]IK 1( I)IERMINE' "RII NKIN(G AN) S\\IT(IIN(. RIQI IRFlI-IA S
T) IFET IDEMANI) FOR SER ICIE

(her ihc past 10t .ears it appears that there have been at least two basic ;appll chcs to tihe
design snthesis problem discussed in the pre,,ious section.

lie hibasic thrust of outr paper proiceeds according to whal we etrm the Pit ap/pou oht h to tile

design prohlem It incorporates specific probahilit(l distributions for each parcel of trallic, \hcre
,a parccl i, mercl that portion of traflic which follows specific routes in the iietkkork. I)iflfcrni

parcels experience dfilerent blocking probabilities, even on the er\ saC trunk group IOr
Ct2\nip.C+ a gi Cll trunk groulp lay acCoilllodlate custoImCr originated Irafic got)Crllcd b\ the
Po isson pribabilit\ distrihulion. and the group t11a also accotindate o\ rllom traffic \\hich Is
"pcakcd.' in tihe sense that the m11ean of the distribution is less than its variance. 1\' est igatioins
of tile hocking prohabhilities of indi\idual parcels hale been made by Wilkinson 1201. Kil/ 1121.
anld noire rcccn ti \ b\ I)eschamps 141.

The pioneering work representing a probabilistic approach which has had widespread use
throughout the telecommunications industry is the 1954 paper by Truitt 1191. The generally
accepted name of the method reflects the fact that economic considerations are also part of the
analysis. The method is termed the "ECCS-method," where the letter "E" stands f'or
".economic." the method was introduced by Truitt for the simplest of routing hierarchies con-
sisting of a triad of- junctions with one overflow possibilit.N, and one specific time of da, (single
hour). The solved-for variables are the specific sizes of all trunk groups.

I urthcr ioliortatit extensions iil" the II('S-lctilod iiccurred in three dircctitis I irst,
nore ICCUlIC refinemeints ()f the o+crflo& listributiins thiernscl~es w\ere Iad i'olloing the
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11 qtir~aierit raridoil Iliethodl ()I Wilkinson 1201 SCcOInd. IoIre CoIrpircated riCtl4ork h11Icrrhics
,.kcre initruoduced, see fuir examiple Rapp II1. 1 ihe third ad~ancoc in%. .cii IInCuirporaiin trAlic.
ui.erflow.s jinld cmnstraints oin blocking prohbhilities fu)r nimer thmin (ci time of dai, ili tic sa1111c
CiuSt r111iiiniii/atuuin riiodci. see Rapp jf~1 and iiscnhcrg IS[ It ippcars that it is, nccssur'. fIi
conrsidcr u)\crfl)% trallic firf 11iLltuplC t1inics ()I (IrN InI MiirCr If) dIctCrnIIIHc (runt. cruH11 sil
w'hichl mieet stated hlocking prohbhilit coistrainits. In aiddition, nct'.'.urkS hauscd ()n licui dat
ha'.e been repot)Ted in) Iiscnrie H S and i1lsner [( I .hICrC p0tcntulaI cOSt sa'.ings ml'. he riluhed
b\ incorporating miultiple tinics (Ii da\

I hie wu 1(1 dlou u,,pymmh to determnei Ic'.ci' (it tclcconiniunicatiins CCqurprICntI iplicared
iii thic j q5  papcr of Kalaba andi JUnciSa IlIl. Ili-'- approach is, haiscd on a lincar pruigraril-
riing moudcl (or a classical routing pro)hlcni Ilaini.rg )ruIC link Capacirics ani al, SuIcIhI i a li
scalec onc s'crCfl cmIuntrsts to thie first approachI tcmnhodicd in thc [((CS method) Ire
apparent,

I irst. the pacels of' traffic iii thc Kalaha-J uncosa miiodel are dieternministic. I rallic originat-
linlt Munctionr i and terniinatinig it junction I is a gi'. ell Constanit, (I . Second. demarnds are
spcfied for each " ear (or oitlier rele'.arit timii period), In Contrast to a specificaiuuri 1'r Multiple
hou1-rs" within a fi ~ed time period. ( u1,CInsetltl\ link capacities mlaY he specified IOur CIlSUirig

future peiods. but the linpaCt ofI rmultiple hus.\ periods '.& thinl a gi'.en period has riot heeri
iiitLIC led

Ill Spite uof' sc crc deterni inistic assumnp!tions, the pioneering linlear pri grarilnrg model ()f'
Junco10Sa anti Kalaba canl theoreticall\ accoriinodate all conceivable routing possibilities. (or their
trilfic- ariables are iridesed h\ an origi n-dest inat ion point pair arid also an intermediate s'.. tchl-
iris poit. o)%Cr all po)siC triads.

About 5 Years after the J uncosa-Kalaha paper, a series of' papers written by (ioniory and
INu or, communication network flows appeared in the SIAM Journal [81, [91, 1101. Their work
occurred river a 4-' * ear period and expanded significantly the suie of' the linear programming
net\wiurk niodels that could he treated computationally. They were able to coumbine f'eatures of
gerieralized linear prougraniming decomposition techniques with efficient Ford-[ufkerson
niethods for solving rnetwoirk subproblenis. (ionory arid Ifu alsio stressed the iniportance uf'
including communications deniands indexed by tie, such as tinie of' day, r They proceeded
under the reasonable assuniption that the tinie variable assumes only a finite number ouf values.
AlternativelY, one coiuld employ a continuous load curve with time-of'-day varying demand.

(Winiior% and flU illustrated their Coiiputational appr0iaCli 011 a I (-riide. 2h- arc nien'.mk
'.'.th dermarids fu)r t'.(u diflererit timeu periKidS, arid a gi'.eri Set of' unit eatiacitv tespalisir )costsS.

liased n i 1SCUSSIoris'. \%illL enineerICs in [ile field. pnriCipalbIN 1riii the [ring finecs ( mni-
)if (&AI & I . '.e a' Iid\ antll~ halt hutl appru4aCheCS ha'. hadl Significant im1pact Inl teC actuIal

design of teleciomini icatiins nt'.' irks. [tlie ciuripletel , deterriniistic approuach ( thle seciond
ippriacli hais been IMarticularl~ iipiurtanrt ill delinieating first Choice. Second eimice. etc. lter-
rnitle routes, berseeri pairs ofuit irHiCMs (of ihe used iii defining a network hierarchy . Onc riee net-
%koitik hieraurch\ is established. eciouoiri cs (;If scale arc t hen achievable accrordinrg ti Optimrial use
4f OLe undcrl ing prubabhiii. dustribuiuuns oif iurigiriaig arid alteriaielx\ routed custuunier traffic

\ ' ce it hractcrr/at o in i if a rictw irk hierarch,, '.cry usef'ul to our appro ach. is
rir Inue III he \ netsctiurI.
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3. (FI.XARA(TERI/.AiION OF A NETWORK IIIERAR(IIN

3.1. The lkirarclti Matrix

(Iien a network hierarch\ such Isigr 1, let LIS list tile Li netninS, termed polw i. as
plj. p ., p, Mhere Z/ is a positi\ e integer. 13.\ a al/bInc pau ,.we shall mecan in ordered pair of
distinct points (abh). "a "being referred to) as ma~', and "b"~ as dilmaol.

[in Sectiont I k e definied what is mecant b\ direct and final links, A n tw i distinct points
ma\ or mia\ not be joined hv a link, hut no twko points can be joined h hboth a direct and a final
link. I ich link nm carry trallic for each of' its tw&o calling pairs. since trallic may flow% in either
direction between the two,( points it joins. I-or anx calling pair (./it We aIssumeI that a call can
he routed a at u In iqueC sequenc oC f1 1ina IIitnks. whitIch we shiaIIell e1i 1( //11al /()1~~ 11//41 at/in
pall 1a (0

Let us list thle set (I'f finial links bh the positive integers. J - 1. 2 . We list the set
of' Calling pairs Aiso h ' positi'.e integers. 1. 2. A,,. "here A', it tel I ) is thie total
nutmber of' calling, pairs in thle netwoirk.

Ior purposes (of' algebraic representation we display fitial routing ats a miatrix wAhich has a
rip% foIir each calling pair i and a columin ciirrespondi ng to each f inal link. J. We termi t his
matrix the Ini'rarivn matix. denoted Ikr, J . and specify the entry in the i-th row and 1- tli colu mn
to be a nonnegative integer defined as folliiws:

Ithe integer-valued position of the .1-th final link in thle final routing of'

I 1nTr calling pair i. if' final ./ beloings to this sequence
0. otherwise.

()bser~ e that tile row itidices of the non,'ero entries in thie .I-th columin represent all thle callinig
pairs wAhich utili/e fitial J1 in the final routing of' Calls. We deniite the set of' these non/ero
indices I I,.

A' certain subset of the calling pairs nm also be served bM direct links, such as thle oines
drawn asiasie CI ies in I igure 1. These calling pairs are k nown as /4i.'/ toagcc calling pairs, aind
thie direct links as high uIsageC links,. The case where there are no high uIsage links ma\ be
treattedl withouLt loss of generalitx as iine with high uIsage links having 0) number of' trunks. [-ll

high usage link pro- ides at direct. first choice route cxclusi~ef for traflic between its etidpoints.
in both directio ns,, wile the remnai ning nonhligh usage calling patirs rely solely oin fi nal routinrg.
)%erfiow traffic from a high usage calli ng pair shall tiierefv fol low tile unique[\ specified final

routing for the pair.

I ach high usaige link is associated withI two high usaige callIintg pairs. each withl the satne
points. hut oppositel\ ordered, T1hus. if' there are A niunmber of' high usage links. there are 2.11
number of high usage calling pairs. atnd 2,11 is an ev en itnteger. ()bser\ e also that \',,. ats the
product of an iidd atnd an e\ en integer, is itself' an even integer, and sio for siinie integer
V. \, I 2 V

J his discussioin suggests relabellinig the Calfing pairs using thle integers - A.
2. 1 . 1,2 .2.......or i nstanice, I and - I represent pairs oil thie same twuo points, but withI

opposite ordering. mecaning the opposite direction For traflic. Let us further specify that the
integers At.......I. are reser\ved fur high usage pairs. Since existence (of, final



lin',is,1.1'iuriel And lo uuucdliug ~IMiii is Joinetl M~ both itdIict anld a final link. it folows that
\ \leo~er. IIs a iohigh sage Calling pmni if and onl.x it I/ -> It

( '11S111c I 11I111e I fo n lI th UtIposes of illustr,1ithoii I hereC iiC 8 iiMICs. so1 tIciL' aic X(8
1 1 6 calliung pai. I 1 u \1 111.1,/02 28 1 lI k er C 7 finlli links,, anid 8 high usag lin11k.

hcIIC 10 high isa'Ce pir1s, labelCled 8. . I . I . 2. 8. *1hle remaining calling
pairs. libelled 28. .9 2S arc ser\ icd oill h\ tinal routing. A portion of' the
hicratrch\ maitri\ is, gi\ ci inl Iable 1 1 he Ilull minsi has 56 rsss. and 7 columns.

III 1 P/olIi 'o /I(l' IH/'too Ii. om w f vl /igate

. 7 1 mna! L.ink afId Its Int eger Index
Calling Pair AB AC& Al -m,-(-CG CI I

.odIt', Integer - 4.- -

I ndeX l

G(. -B 3 2 0 t0 0 1 (0
i/) -2 3 2 tt t0 1 0 0
i/l1 2 0I 0) 1 0 0 0)
I!)I I C (0 2 ) t0 0

B1 2 1 0 01 ( 3 0) 0
BI01 2 0 01 0 3 0

Ij I 1 t 0 -l[ o- (1o 2 (1 o (_o-

B.\ libelling theC high ulsage- links h\ the integers I. .. ! I. \ke can has e link I correspond
to the highA u/g pars -a / We then relabel the final links, t, 1 ,il .± I 'f +- ,. mnd
rekihcl the lossS anld coliintn1s of thec hierarich' niatri\ inl the same ianner as \sc did the calling
pairs andt final links, respectis\l cI' I hIs. \ relers to the first row in the matrix, and (.11 + I)
the first LolUmn. hut this depar-tuire from (irthoido\ notation is compiensated for- b.\ added COnl-
senience. Ini practice it is, onl\ a MAIttM of deint111ig tsso label sectors.

Ti) summarize the listings, when \Ae write "link (or trunk group) L," "high usage link I",
and "final link J" it shall be understood that L E 11, . A., + Al. I E 11 ... Ilml, and J E
IM + I, Al + A) respectively. Similarly lfor "calling pair j1 and "high usage calling pair

i"jEI-A . -1I, 1.V.. ) and i E I-M -1. , 1, . A41 respectively.

.3.2. (lassifi ing Poni-to-Poini Offered Imaods

[ or each calling pair / there is at nonnegatise demand for tralfic denoted a termed on-
i.',nolora/fu I ratfc is usuaffs stated inl units, of' erlangs. or in hundred call-seconds per hour

('5 ~itas discussed in Section 1.

Let J1 be it fixed final link. I raflic parcels 0iYCIred tii J consist Of tMo t'.pes: oserfiossk traffic
from high usage caltling patirs, and finlal-routed traflic fronm non0higlt usage calling pairs. Thle
t\p itire di-stinguishedL bcaiuse iof their different probabilitN distributiims, ats Seen in the nestI
section
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Because of this distinction, it is uselul to separate I ./ into two subsets:
11' Ij E I1, 11 < )l, i.e.. the high usage calling pairs overflowing (nto final link J, and
II) 1i E II " II > A), i.e., those nonhigh usage calling pairs utilizing . in their final rout-
ing. (']cearly.,

II I 'U if)

and

If n II)= o.

Two simple eamples from Figure 2 below illustrate this classification, where in both
networks (a) and (b) final links are designated by 2 and 3. Network (b) has no high usage cal-
ling pairs, while in (a) the single high usage link is denoted by 1.

P3  P

2 
32 

3

(b)

Numbering Scheme for pairs in (a) and (b):

Ca"llit Lyr hnhev N'umber

-3
(~/.PI (-2(P ,' . ) -

(pi-.p
(p2./. ) 3

i,i m 2 I i triads

In Ia), 1l1' 1i1'= -1. 1 while 11 = -2, 2k and I1 1 3 3). In (b), I1 I = I1'= 0, while
II' = j-2. -I, I. 2) and i = [-3 1, i. 3).

4. THE FORM'ILATION OF A NONLINEAR SUPPLY MODEl.

4.1. Blocking Probabilities and 0)*ertlow Traffic

The call discipline is one of the factors in determining the relationship between the
oflered load to a trunk group and its carried load. Another key factor in determining carried
loads is the assumption that customer originated trallic is Poisson distributed with arrival rate
denoted by A. see Messerli 1131. Fortunately, there is strong evidence to suggest that the
number of calls occurring in a fixed, small time interval can be adequately modeled as a Pois-
son probability distribution. With these assumptions the distinction between a trunk group's
offered load and carried load can now be made precise.
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Assume that calls are assigned sequentially to a trunk group consisting of' trunks. Let A
denote the a ,erage customer arrival rate :,.-'cording to the Poisson distribution. The only
assumption required o'i customer calling time is that it has finite mean i. Otherwise, it may be
arbitrarily distrihut, d. Under these conditions tie probability that all of the it trunks in (tie
group are hus\ is giken b the classical Lrlang B-frmula

(2i Bt .a) I tan )/z(a'!),

fOr ii = .0. 1 it', a = A' ,liw its iem t l'd ic'ic crIangv [he histor of the original
F rlang form ula and its important general iations ma, he found in (inedenko-Ko\,alenko 171 and
Sski 181.

-\n erlang is thus a measure of the floA of trallic per unit time. In the traffic engineering
literature an erlang is one call-hour per hour, or equivalently 36 C(S per hour. The "hour" as
the unit of time is so standard, it is usually dropped, and one says an erlhng is 36 ((S. The
%,aluC "d' in the Erlang f'ornula is termed the mean of the offered load to the given trunk
group. -The expected o\,erflow traflic is then altO.a), With traffic flowing in both directions,
similar formulas appl\.

Suppose f~or some integer i. -M l .11. a traflic intensity a, from high usage calling
pair i is offered to high usage link I consisting of' .\/ number of trunks, where I = 111.
(t hrough the paper we shall always take / = 1i in that context.) According to (2) above, the
probahilit, that all \/ trunks are busy is B (.xa, + a , , recalling traffic intensity a , running in
the reverse direction shares the trunks on . Ilence, aB(.x1 .a, + a ) is the expected amount
of traffic overflowing to the first link, J, in the final route sequence of i. Final link J, however,
carries other parcels of traflic as well, as seen in Section 3.2: overflows f'rom the other high
usage calling pairs represented in II. and trallic f'romn the nonhigh usage pairs represented in
II ). We next lormaliie the idea of the quality of service of the network and introduce a useful
assumption on the marginal capacity of a trunk group.

4.2. Network Quality of !eriice and an Assumption on Marginal Capacities

The important benefits (if being able to compute changes in equipment stock to meet
changes in demand were recognied much earlier by Kalaba and Juncosa II11, Gomory and flu
[81. [91, [101 and others. [ortunatel. , incremental studies on the network hierarchy introduced
in Section 3 permit certain simplifying assumptions that make computations attractive. These
assumptions relate to the concept of the marginal capacity of' an additional trunk at a prescribed
blocking probabilit. The resulting supply model is an optimization which is much simpler than
would be possible when constructing a network ah itho. The assumptions and model are now
presented.

DEFINITION: Assume Q;, the traffic offered to a given link L at time t, has a fixed pro-
bability distribution, and let m (Q') denote its mean. Given that L consists of x number 4f
trunks, let A I (xt ,Q; ) denote the mean of the overflow distribution. The carried load is that
portion of the offered load which does not overflow. For the case that L is a final link J, the
quality qf servicepj of final link J is defined by pj = I - p , where

p./ = miax
,oQ;
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Since the overflow is less than the offered load, t)/ lies between 0 and I. [he mean of the
carried load is m (Q I -( , According to the network hierarchy, overflow from any
final link is lost. Let us illustrate how these definitions afre employed in calculating carried
loads on serially connected final links. in a simple example consisting of final links I . 2, and 3
as shown:

12 3

Assume that the only offered loads on 2 and 3 sten from carried loads on I and 2, rcspccti\,cl.
Assume that there is only one time of day i and one quality of service p. Thus.

In (Q1.)/

and Ir(Q, 1I )= m(Qj) - p.I/.Q) for J = 1,2. Hence, m(QI, 1 )= m(Q/)p. J = 1.2 and so
m (IQ) = In IQ I )p 2 .

A formal extension of this argument shows that for any final link .1 the mean of the
oxerflow from any high usage calling pair i E I I"' is at least

(3) (.U,' + a' )p,

providing II is nonempty and where f) = ma.,{p, IJ = A + I. VI + K}.

MlKinal ("(zput ir .S.Sumtn io)n

Let p be fixed. For each J we assume that there exist two positive constants y/ and h.
such that if' 7+ and 7 are two offered loads having probability distributions, and tin(T

+ ) > 0,

then

(4 a ) na x p (= I - p ) ,

I (Q/' + r-)

and ifO < m(-) b. then

A[1 1A - I -1 Q
(4b) max <',

where <-x> is lhe smallest integer greater than or equal to . termed the integer roundup of'-\.
and where Ii is the largest integer less than or equal to v termed the integer part of' v. -y is
termed the marinal capacity o/an additional truamA at qualiT o/ serv c p.

Inequality (4a) states that when < 11n (- +,j> number of trunks are added to linal link J.
then at least an additional anount of' traffic P + is carried. Inequality (4b) states that when
[17 (-)/-y number of' trunks are removed from the trunk group, then the decrease in carried
trallic is at most 1T-.

We assume throughout that each high usage group / consists of .\/ (integer) number of
trunks, and that each final group J1 consists of \/ number of trunks, establishing what we term
the '.\istg nt'work. It is further assumed that the existing network can supply all ser\ice
demanded a' for all pairs / and all times of' da t with the provision of a quality' of' ser\ ice p.
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4.3. .A Nonlinear Integer Programnig Formulation for the 'Netiork Hhierarchn% of Section 3

I[he first task is to dec lop anl expression f'or tire SUiM of thle traffic parcels of' Sectionl 3.2
oferedf toi a fi nal l in k J of' tire 'Nistin tiiiw iA

4. 3. /. Sam o/ Olt fi PaInieA 0/1h/(( 'ol /11i 1 Jl

Suminllg the nican oxertlins in (3) \ields a hixxer hi)und (~or the mean total iixerflo\&
traffic parcels offeered to trunk gro up .1. Let this suml he denoted h\ 1,;'(), i~e

for each final trunk group J, \Ahiere \%e define 0tj i7r,/ ()0. ( I his COnxention hll he

used throughout the paper.) I huS. a terml inl theC SU~niation stenrinlitig front calling pair / is
iUtiatlcall\ set to (I it finial link J does not belong to the final routing of' i. [ or thre case that
I[,/ Is Cnmpt% (5t atomaticall% reduces to /ero, at case, f'or examnple. whichi does nuot occur in
I IgUre 1 Ani upper hiound oin thre tottal overfhixx traffic to J is obhtai ned hv deleting the p-termi
ill expressioij (5t.

4.3 2. Soii Pal '(c/ ftr'ilo /ii11o1 .1 foIppi \oNiaii' t sage ( iulhosg Pl'ir

I or an.% A I 1 1 it fllowxs analiigiusv t(' (4 ) that the expected portion of ioriginating
riaflic parcel ta, offered tii trun k group .1 i a~' p pro\ ifeif that I I is ni inleniplt\ .5u mm ling

all these parcels i f* traffic ICelds a sum w~hich we denote /,/1 W:

1,

4.3 1 ( i ati l ml ai hi sum of / I// alh 0/1(I.( oil i I a I

IThe miaximni total expected (iftered load I. whichl final group J iif the existilnttxwrk
canl serx ice at blocking proilhmiit\ ' p 1 is the maximum., mxer all times, it da\ /. of' tilie sums
of hi ill t.Ipes iof e speced ioffered lo ad parcels.i Accrdingly,

Our modeling approach is basically an incremental one involving Wi modified offered
loads d; f'or all pairs , (ii) nmodifications of' the number of trunks .i, , 1, I ,. .At + A', and
(iii) a modification in the network service quality . Under these three kinds of' modifications,
we may detine quite analogously to (5t and (6) the expressions

(1 an f",

and anialiogous tii I7) Arite

[ lie difference i.1 I. is the ntemn (it the additional tfli ,l distribution on()i final link J1 and
SO' ouir aSSItnliptitn unl LJaaCties 1I)IpIeCs I hecreforc. if I,, t/, - 0, thenr h\ case ( 4j), onk

K, I I. ,>nunmher if trunks needf he added to fitial groupI) J,~ %here 'v , Is the miarginal
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capacit-\ Of an additional trunk at blocking probability I Let ) , denote the integer number
of trunks required in group ./ in order to ser\ ice initial demand /, at the new service quality j
I lence, we Obtain a feasihilit\ requirement on the modified . trunk group si/e it,

(9) i, /6 , ( / )/ ,)

where ", integer.

If Li, - L, < 0, then we invoke a stronger version of the marginal capacity assumption
regarding case (4b). We require that r Ii - /"ji, a quantity which depends on the ij and
certain i/ (high usage site) variables, lie within the 0 to bj range required in order for (4b) to
hold. In other words, when I/K /i,!/ yy, number of trunks are removed from Yj, the result-
ing number of trunks,

-i = ),- II ij - El/,.I

ma\ he oflfered the modified load at blocking probability (I -- j). It follows that the same feasi-
bil.ht re Liirement as (9) holds for this case too.

The system of inequalities (9), one inequality for each final group J, shall determine a set
of constraints for the nonlinear supply model, and we shall write these constraints in greater
detail when actually specifying the model. But, first we need to take account of the total
switched traffic in the network.

4.3.4. Accounting .or Total Switched Traffic

Let us work with the modified loads 5, modified number of trunks ij, and modified ser-
vice quality t.

Let ,, denote the total switched traffic throughout the network at time t. We shall now
show that

(I - 'k , ' a

J =i I /, '

(10 A' i,, (j, + d'

The amount of overflow traffic from high usage calling pair i destined for final J is
h,'B(,,'+ ±+' ,). However, before this particular parcel reaches J it must be consecutively
switched at the point of origin, and the (7r,j - 1) points along the alternate route. Therefore.
in this case the amount of switched traffic is:

(Il ) ' B , . ,' + a ' ,) tp 1I

The same analysis applies to traffic from calling pairs served only by final routing. The
traffic switched due to the originating load a,, A C I1) requiring final J for completion is

(12) A P
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e no\ UM ( I I ) o\ er all high usage pairs and then over all finals. Similarly. I 12) is

sullIn1ed o\er all remaining pairs and then over all linals. |inally, summing these two .meclds

4 .,. i. ( or .1 ttonuioo% and th \oolnear .Mllk'/

\nalogous to Lisenherg I5 and EIsner [01 we shall invoke simiplifying cost assumtlions
for trunks and switching. We shall employ unit marginal investment costs per trunk and slall
use the same cost for augmenting a trunk group as for diminishing a trunk group.* We shall
denote the marginal cost per trunk for trunk group /. by c, > 0, L = I ...... M + A'.

Changes in switching inestment costs shall he approximated by using a marginal switch-
ing inestment cost c per (CS of' switched traflic, as lor example in lisenberg [51.

In the absence of' real data and analogous to Eisenberg 151 we can merely set c1 = SI)00
for each trunk in group L.. final or high usage, and also set c = S62 (per CCS).

We are now ready to state the basic nonlinear programming supply model.

PROGRAM P: Assume an existing network (Section 3) has demands a, for all pairs
J = - N. .... - I ... .. ' integer group sizes vl for high usage and final groups:
L = I ... t+ A", and an overall network service probability 1) with marginal capacities "y;,
JI + 1 ....... 1 + K. Let modified positive demands be denoted by a,, and let J- denote a
modified service probability with marginal capacftt "j, J = M + I .... M + K. Assume that
c, is the cost per trunk on trunk group L, L = 1 ..... M + K, and that c denotes the switch-
ing cost per CCS. Let /.- be defined according to 7. Compute

V. A
(l3a) .I, = min C i, + C.S

/ I

from among nonnegative integers .-/ for L = I M. + A, and real ' which satisfy:

+B . . a, ,p j + ,a ) [, YI

V, AI <_7Ik

tor each final J and each t, where 1i is the required number of trunks in J for a j service pro-
bability, the B-function given in (2), and

(13c) I 1e 6B i,.& + a', 7 .

I t0

+ i,. {a 'I .

j-Afii7 4.1'A j

for each t.

'In pracice. ine ra'I' ik , k , * \I'III equilin ,ill. ,hu i ,,ere i ll, U luntil (he nornial grm h in 11',s,iel.ge ' lmi e
tiikes up [he current ,Iak
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)bser~ e that the systenm of' inequalities ( 1 3h) is merely (9) with l'ull detail of thie terms Iil
shii% ing the i, ats ariables. O n the other hand ( 13c) merely defines the maximium switached
traiffic ini the network according to ( 10).

It is, ok ii uS that Program 1) is consistent because the .i1 %ariahies may he taken airbi trarilh
targe as "ell as the .N kariable. 1) must have at finite m~inimum. Otherwise, some il necessarilk
become irhitrarilh large and since all cost coeflicients are positive, the oh~ective f'unction would
arbi trari h increase whiclh is a contradiction.

Program P is a nonlinear integer programming problem which can be welt approximated
f'or practical purposes by a continuous convex program. In fact, even more can be done. Pro-
gram P can be approximated by a finite linear program based on the special convexity property
aind] monotonicity property of the Erlang B-function, see Messerli [131. We focus now on how
the linear programming approximation is constructed.

5. A LINEAR PROGRXNIMINC APPROXIMATION TO THE NONLINEAR PRO-
GRAM P

5.. The (oniexit% Properties oif the Blocking Probabilities

In engineering practieC, the definition of' the "load on last trunk" with respect to at trunk
group of suie n ± I which is offered the load "a "is defined by

(14) 1)lon,a ) = Btn,a ) - Bn 0i + lu)

where the Erlang B-function is defined in (2), for n = 0, 1. with B (0,a( 1. Observe
that D~na) > 0 for each nonnegative integer n. Messerli [13] gives a proof that for any fixed
a > 0, D Ina) is strictly decreasing in the nonnegative integer variable n.

(15) /)), + 1la) < I)(n,a)

f'or 11 0,. .

[or "a" fixed define the polygonal Function B (,a) f'rom the non-negatike reals to the non-
negaiv e reals by

(16) h(..a D =-(na ).\ + i ± I )BI(, a) nB (n + Il. a

where n is the integer part, kx 1, of x. Note that h Ira ) B (rau ) for each nonnegative integer
r

The graph of' the polygonal f'unction hB(-a) reveals its convexity and monotonicity pro-
perties, which are basic for the construction of the linear program.

F~or each nonnegative integer n the left-hand sidle of ( 16) defines an atine fuLnction on the
nonnegati\xe reals. The f'ollowing cumulative-type expression for this afline function f'ollows
fromi (barnes-Cooper [M, pages 352-353.

[Ir a fixved liotneati(' lli'g'r n

(17) -(n~a )x + in -4- lB int til nBi + la) I + Z(, (V -,) r)

fior cverv real nionnegativ'( vx, where ct 0 and , 1) (r. a ) Jor r = 0. 1.
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As strongl\ suggested hy Figure 3, the f'ollowing proposition yields at uniquck\ determined
systemn of' supporting h\ perplanes For the epigraph A' of' the function hI (a .u Ihe proposition
and its three corollaries shall he proved in the Appendix.

B ,(( a ) a

(1,B(1,a)

B( i,a)-B(2 ;,j)I
(2,13(2,a))

2 n

11,14 1 3 The )Oh VU1IA ttiiictiuii d imlfcdt h\ [fi t r~ing
n I mhflfcgII nti'gcrs

PR( P( SI FION 1: Let A he the epigraph of' B?( .a , K = 1 (:,-v) E Wix >, 0 and
z ~Mt .atI Iet 1, be the set of' all (:xIin W~ which satisf'y the sernii-intinite system of'

linear inequalities

tor. ?, O Iandl, 1, I.I 2 .

J hen A = 1. and A is nonemrpty.

COROLLARY I Let .\ he nonnegative real. The t Btx~a )RIsatisfies each inequality of'
1l8) strictly except for (it. the inequality indvxed hit V- I i.e.. thle inequality

which it satisfies ats an equality, and (ii)I possibly the inequality indexed by 1-0 - I when
1 . The latter inequality is satisfied ats an equality if' and only if'.\ is a positive integer.

COROLLARY 2: Let [ be at positive integer and set AK n 1t:.-v10 1 1y~I. Let
L. he the set of' all (xtwhich satisfy
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z -"(€ -- , (.\ r). > 0

f'Or 11= 0. 1 1.. - I. l-hen V"= V,.

(()R( )I LARY 3: (.\ ( A is an extreme point of' K' if' and only it .\ is a nonncgati c
integer and B(x.a.

In view of' Figure 3. which reflects the basic integer convexity property (15). these results
are intuitixely clear. They are formally proved in the Appendix.

5.2. The KeN Approximation and the Linear Program

We now replace in Program P the B-function by the polygonal B-function. and the
integralit\ conditions on the -,/ variables are removed. Finally, upper bounding constraints
- < I / are imposed, where the 1/ are large positive integers.

The next step replaces each term j,'B(xta' + d' ) in (13b) and 13c) with the new vari-
able :,' and requires that

,B(x,4a + SQ,) < z,'.

The new approximation program so obtained, denoted P', is the following

PROGRAM P: Same assumptions set as in P. Let V/ be large positive integers for high
usage links. Compute

(19 a) V11,,= min Q / + C'

from among reals -i. and S which satisfy:

(191) X0,) .?,, where X/0) -

for each final J and each 1. and

(19c) S(t) < S, where S(r)=

I + A W e+ 1 = rA }1r)Z ~ I: I P ao"
J-44+1,- W Irs J-W+l V<!Kl<,, Ir U

for each t. and

( I 9d) a, B(.,\4' + a' ,)
for each high usage calling pair i and time t, and

(1 9 e) () < i r

for each high usage link I.

• , • -II5
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It is obvious now in view of Corollary 2 that P' is equivalent to the finite linear program
denoted LP'. obtained by replacing (19d) with the finite system of linear inequalities

120) a,' D6,.5' + 5' , -it + ,'%, + l)B(v,[,' + a' ,)

a,' I, B0, A4 , + cY,)

hor r= j I . -- I and each high usage pair i, and each It. I is equally obvious that
Program L' is consistent and has a finite minimum since the .i/ variables are bounded and all
ost coeflicients are positive. lence P itself has optimal solutions.

"c now use (orollary I of' Proposition I to discuss the cost effects due to using an
'plqImIl,1 solution of P as a solution to the integer program P. If high usage size -\* is not an

integer. then B ( <, >. < + ' ,), <.,; > ) is in the epigraph of B .. ,+ i, ) for each t,

\A hcre < s;> is the integer roundup. The roundup introduces an increase in the total cost
associated \ith high usage group I, (<.i> - .iC,, where 0 < <,7> - .i-*< I. An

ofsetting cost effect from final groups J and switching .S occurs because from the monotonicity
(it .) i , cach , does not increase.

Finalh, in order to insure quality of service f, noninleger final group sizes .i, should be
rounded up, thereb'\ increasing total costs. Numerical estimates of these various offsetting cost
effects due to round up of trunk group sizes determined by Program P have not been obtained.
It appears to us that such estimates must stem from numerical experiments on field data. (er-
tainl\, as strongl\ suggested by [igure 3 and Proposition I and its Corollaries, integer program-
ming pathologies from straightforward rounding processes do not occur.

Because of the linear inequality system (20), Program L' may be quite large and for
practical purposes it would he useful to obtain an equivalent smaller problem in place Mf LP'.
The nonotonicit of' the B-function, essentially Corollary I of' Proposition 1, suggests a useful
procedure.

5.3. Soin lg the linear Program I[P' Through Bounded Variable Reductions

Let LP'11 ) be the bounded variable version of LP' obtained by replacing le) with

for each high usage group, and in (21) restrict v, to: v = ... 3, I "here o and /3, are

nonnegative integers such that 131 - I - t, > 2. The following is proved in the Appendix.

R()P()SITI()N 2: U nder the above bounded variable assumptions:

(i) an\ optimal solution I . I, .. (:. 1 of lP'1,)1 is feasible for I.P', and

(ii) if for each high usage group /

(21) (, < . < o.

then this optimal solution is also optimal for Program [P. Moreover. there exist io/. /i and an
optimal solution of I.P' such that with respect to .,* Of that solution, (21) holds.
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6. ('OMPUTER i'RO(GRAM AND RESUITS

6.1. I nplenienlatioi of lhe Model

For all but the simplest network hierarchies, the large size of LP' of Section 5.2 warrants
the use of the bounded variable reduction program LP'Bo1 . Thus, according to Proposition 2 in
Section S.3, we ma* , in general, restrict i/ in (19e') to a range of 4 integers, that is,

-3 ,k = 3 for each high usage link I. This in turn restricts v, to a range of 3 integers in (20).
We shall also specify that there are a finite number, 7", of periods (hours) during the calling
da. For lP'), the variables and constraints which occur are accounted for in Table 2.

TABLE 2. The I ariahh/.s and (Constrait.s q/Program LPIll)

Name Number Total
High Usage -'i/ M
Final 59Variable Fial S K 2M x T+ K + M+ I
Switch SI
Overflow Z- 2m x T
(19b) K x T
(19c) T'

Constraint (20) 2. x 3 x T T x (K + 6M + 1) + 2M

(19e') 2M

For example. in Figure 1, A = 7. A = 8. and taking 7' = 3 we have a total of 64 variables and

184 constraints.

Let 46 < h denote the constraints system of LP'Bi), where : = [(Cii),, (.-'f)l. It is easy
to see that -1 is a sparse matrix: indeed, roughly 98/. of its entries are zeros. Thus it requires
some attention to enter each of these into its proper row and column. Figure 4 is a "blueprint"
for the matrix A.

Calculating the entries of A requires computation of the erlang B-formula, (2) at integer
values. However, the factorial terms involved quickly become too large for direct computation.
Given some positive offered load a and positive number of trunks n, the following recursion is
used:

B(n.a) • B(O,a) = .
n + aB(n - la)

The "load on the last trunk" D(na) which also appears in (20) merely requires computation of
B(n,a) and B(n + Ila).

We need data on both the existing network and the modified network. As a simplifying
assumption let us take p = ,, meaning the quality of service is to be maintained at the same
level. The necessary data then consist of a' and i, for each calling pair j and for each time t,
p. ")j and ' for each final J, and the sizes of the links on the existing network. x. for each
link L. Observe that since fi = p, Yj = xj for each final J, see Section 4.3.3. The hierarchy
matrix introduced in Section 3.1 contains all the necessary information about final routing.
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2xL Z z_2  zSr

M K , 2M 2M 2M K+M +) rM

6M+K+I t =2

6 M +K+1 t iT

I9 e9) 2 M

SUM:
T x(6M+K+i)+2M

94 High Usage Group

cJ Final Group
q : Switch
0 : Overflow

I(( ,( 1k 4. St[rumture of* constrainm ,-matrix
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V~ith rnitri I :irr.!nged ais In 1figure 4, the entries can he ni~inaged easil\ N(I'ih~ li th
hl' o f !he fir, If -' A' ' -ltIMIs rtepeats itself for ceach time period( A', -i' , \ % crf1oA4

001 his -' 11 cohinims fr cicli C!SeCLUIi\e time period, For t -- 1 the first 0 If 4 A I~
ro\,wsi~ I 1cmn he filled h\ lhe 611(0 ing piece of comiputer program (Refer to Figuic

zi

z 22

x 2  Ii

* I S

* I 5

*M it

XMI ZM,,-

XMII

X I I

I Iti

I - -.. 2

1, 1 ((lick t I qii\ a crreaprI)tning it) -~ I s.kht aoaihkc in pNait i ofLtrita 6i',k
/ Pta I iii~e i octIici dert terminedt h% pCi tiissihIc iaCeritiiV. a ic (ing to nvi, rk tier. 0
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Rows corresponding to (20):

FOR 1: = I STIP I UNTIL A )()
FOR J: = I STF.P I UNTIL 3 I)()

A16*(I - 1) + J,1:= -d,'D( , + J - I,6,' + a',),
A [6"(I- 1) + J + 3,11:= -6 'tD(oa + J - 1,'t + dl)

A [6*I - 1) + J, 2M + K + I + I]:=

A[6*(I - 1) + J + 3, 2M + K + 2 - /]:= -1

END,

Rows corresponding to (19b) and block A() of Figure 5:

FOR./= M + I STEP I UNTIL M + K DO A [5M + 1,11:= -'y/;
FOR /:= I STEP I UNTIL MDO
FOR J:= M + I STEP I UNTIL M + K DO
BEGIN

A [5M + J. 2M + K + 2 - I]:= IF r = 0 THEN 0

ELSE p

A(5M + J, 2M + K + I + /1:= IF7r= 0 THEN 0

ELSE p i

E- NI1)

lhe row corresponding to (19 c):

.16.1f + K + I. Al + K + l]:=-1

FOR I:= 1 STEP I UNTIL M )O
FOR .1:= . + I STEP I UNTIL Al + K DO
BEGIN

"I 16M + K + 1. 2M + K + 2- /1: IF 7r 0

THEN A 16M + K + 1,2M + K + 2 - 11

ELSE A(6M + K + 1.2M + K + 2- 11 +pn

A[6M + K + 1,2M + K + I + I]:-= IF r, = 0

THEN A 16M + K + I. 2M + K + I + l

ELSE A16M + K + 1.2M + K + I + /] +p1 ""11

END,

Computing the right-hand side of the constraint system is straightforward, although (19b)
involves E1. the maximum load offered to final group J during the calling day, and it is the sum
of many terms.
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6.2. Numerical Examples

[he model was implemented on two test examples, and the resulting hounded variahl
linear programs were solhed at the Carnegie-Mellon llniversity ('mptaLItillon Center on a
1)1.C-20 machine using single-precision arithrnetic.

0. 2. I. First L:Aample: .-I Nutlol-A Bawd oil l ('l/ol'liel Iield Data

We appl. Program P of' Section 4.3.5 to the network given in Iisenberg [SI and IlIsner
16,. which in turn is based on (fardena, California field data. The hierarchical structure of the
network is gien in I[igure 6 below.

In this network there is oni) one originating office labelled p., and 43 terminating offices,
labelled pi through Ji4U. This means that there is a deniand for traffic associated with each of'
the 43 calling pairs (p,, i = .... 43. All other ordered pairs of points are ignored.
Eery calling pair is also a high usage calling pair. The high usage links are labelled b the
integers I through 43, and the finals by 44 through 87. Finals 45 through 87 which connect
office P44, the tandem switch, with each terminating office, are referred to as tands comiliexg
groups. The overflow hierarchy is indicated in Figure 6.

Tandem Switch

44 .Tandem Completing

Final45 0

1-2

PO Iigh Usage

1l1(,[ Ri 6 ' network hierarchy based on Gardena. ('A data. -isenbcrg IS]

The hierarchy matrix, which has 43 rows (one for each calling pair) and 44 coluns (one
for each final), consists only of a single column of I's (for final 44) next to a square (43 x 43)
block with 2's along the diagonal, and 0's elsewhere. In fact, this hierarchy is so simple that
the matrix itself need not be stored, since several statements written in a computer code can
determine the entries of ( 19b) and (19c).

Bas lemand

We assume that the network is constructed ab initio, namely all the initial demands
between pairs of oflices are zero and all initial trunk sizes are zero. According to (7), then, it
follows that I/ = ) for J = 44. 87.

Ipiiri'meonaJ I)cmand

Positie incremental demands d,' in CCS for each calling pair i and t are given in columns
2 and 3 of l able 3 below As in 151 and 161, we take a marginal capacity of 30 CCS for all final
groups and neglect blocking probability on the final link 44. Similarly, unit costs are $1000 per
trunk and S02 switching cost per (CS incurred only at the tandem switch. With these
specifications Progrin P of Section 4.3.5 becomes the following one.
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I nd M =mm I 100 , I  62 S

subiect to

j, B,) < 30i 44 tor t = , 2

c i a, .i) 30if ,.4, for i ..... 43

for 1 = I. 2

ii, fl .1(If)" 7 B)_, ' < , tir / l . 2

"here the ., are all nonnegative integers.

rhe ,iboxe nonlinear integer program vas approximated by the linear program derived by

the method!, of Section 5 2. ,hich was then solved using suitable bounded variable reductions
based on Sektion 5 3 The hound,, (i the high usage group sizes were chosen by our prior
knowledge of' Eisenbergs HS] and Eisner's 161 solutions. An optimal linear programming solu-
tion so obtained is termed the incrccmcnted mirwot, Table 3 presents an incremented network
<1nd inclide , the overflow, from the high usage trunk groups to the final trunk group 44

[Il- I Lompare' th ,u.,es of 'he high usage trunk groups occurring in our incremented
nettwork with rho e conpuied in Visenberg 151 and those computed in ilsmier 161. inally.

Table gj e, ainie o\ eraill Lmirin OS a'!mOng the three solutions.

Ro m ,A ,, hihlc 3. 4. api-t -

In lables 3 and 4 each inear proTgramming-determined high usage group size A. except
#43. satisfies either Qa0, <x - \ < 10 or (b), .\ - Ix] < 10 (, and hence an integer is
reported. High usage group #43 is truncated to 3 decimal places as are all overflows, the final
group size, and tandem completing group sizes.

Eisenberg's multihour noninteger solution is not given in [51, and consequently the costs
in Jable 5 may he higher than for the noninteger solution.

EIsner's descent algorithm obtiins a solution with a lower total cost than an integerized

solution. rhe use of an approximation to the Erlang B-function (2) applicable to noninteger
high usage trunk group sizes may account for this difference.

6.2.2, The Se, ond Example: Figure I's Network Hierarchy

We solve Program IP' of Section 5.2 applied to the network hierarchy of Figure I of' Sec-
tion I with the following specification of input data.

B&M' Demand

Traffic demand is assigned to all 56 pairs of points of Figure I by daytime, evening, and
nighttime according to three basic kinds of pairs:
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TAB.E 3 -Specification of Incremented OfNred Load Demands flor
Example / and an Optimal Linear Progranming Solution

with all Overflows .from High Usage Groups

- °Offered loAds (Overflow Iligh Tanden-

I runk (C(S) S) sage (omplei
,(-roup t .. runks Trunks

Hour I Hour 2 Ilour I Ilour 2

1 - 60 140 3.746 41 978 4 1.399

2 119 9 16.271 0.000 5 0.542
3 82 20 10.2o0 0.045 4 0.342
4 30i 76 20.002 0.000 12 0.666

30 0 13.636 0.000 I 0.454
6 J 59 7 9.179 0.007 3 0.305
1 102 56 9.795 0.901 5 0.326

8 256 161 21.305 1.632 10 0.710

9 366 230 22.406 0.838 14 0.746
10) 469 310 20.256 0.598 18 0.675
II 115 115 14.595 14.595 5 0.486
12 144 34 16.871 0.013 6 0.562

13 206 335 3.691 44.757 11 1.491
14 310 650 0.270 89.490 19 2.983
1 284 319 13.718 24.987 12 0.832

16 93 152 7072 33.258 5 1.108
17 17 24 5.452 9.599 1 0.319
18 74 325 0.017 73351 9 2.445
19 102 158 4.424 23.041 6 0.768

20 137 322 1.414 71.323 9 2.377
2 222 247 10.744 18.096 10 0.601

22 252 390 3.621 43.919 13 1.463

23 445 194 21.335 0.006 17 0.711

24 176 86 19.991 0.697 7 0.666

25 83 29 10.640 0.227 4 0.354
26 98 21 17.146 0.056 4 0.571

27 158 74 13.236 0.291 7 0.441

28 124 36 18.491 0.110 5 0.616

29 54 25 7.253 0.700 3 0.241

30 38 1 8.102 0.000 2 0.270

31 31 17 5.149 1.196 2 0.171

32 140 46 15.286 0.077 6 0.509

33 96 30 16.195 0.262 4 0.539

34 122 62 17.587 1.410 5 0.586

35 163 57 14.962 0.057 7 0.498

36 163 72 14.962 0.247 7 0.498

37 296 238 17.134 4.745 12 0 571

38 33 28 5.933 4.071 2 0.197

39 240 3 15.806 0.000 10 0.526

40 136 7 13.783 0.000 6 0.459

41 54 4 7.253 0.00) 3 0.241

42 52 35 6.546 2.063 3 0.218

43-, 206 9 13.108 0.000 8.997 0.436
Totals

oI 6712 5154 508.643 508.643 306.997 30.921

Columns ... . .__
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IABLI 4. (omparl.ot o/ ()pO tim al /II4h L'age Irunk (roup SIcz
("ompued t) iu' .tIfutihour .kicltid. . D.uciut ' ethod,

upd lin(ear I'rog,,ra itlg lor lh Grd(ean Net, owrA

Iigh Lsage Group Sizes
Trunk f- -

(iroup [ From Multihour From )escent From line-tr
__ Method (51 Method 161 Programming

_- 4 4.42 4

2 3 5,25
3 4 3.78 4

4 6 1 1.97 12
0 1.47 1

6 1 2.81 3

7 4 4.64 5

8 8 10.32 10

9 12 14.10 14

10 18 17.57 18

11 5.37 5

12 7 6.20 6

13 10 10.81 I1

14 16 18.58 19

12 12.14 12

16 5 5.43 5

17 I 1.08 1

18 6 8.92 9

19 5.74 6

20 8 9.36 9

21 10 9.78 10
22 12 12.58 13

23 17 16.73 17

24 8 7.41 7

25 4 3.83 4

26 5 4.43 4

27 7 6.75 7

28 6 5.44 5

29 3 2.64 3

30 2 1.86 2

31 2 1.60 2

32 6 6.06 6

33 5 4.35 4

34 6 5.40 5

35 7 6.92 7

36 7 6.93 7

37 12 1 1.84 12

38 2 1.77 2

39 10 9.70 10
41 6 5.90 6
41 3 2.59 3

42 3 2.61 3
43 9 8.48 8 997

-oas - 287 305.5 , 306.997
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1 IABLF 5. ( oiparson. o/ Total Numhr oIrun.. SitI hing
("O.\. and Thal (osts tor I/ic Alulfihor. I('st n,.

and l incar Irogrammi,,g ,ohtions ol t1w Gark'nut , 'torA

Network Multihour Descent Linerar
Characteristics [51 161 Programming

# High Usage Trunks 287 305.56 306.997
# Final Trunks 39 NA* 16.955
# Tandem Compl. NA NA 30.921
Switching Cost $44,640 NA S31,537
Total Cost $405,315 $385,500 S386,410

*NA = not aailahle

iI) each of the pairs (-.( ) and ((.A) receive 500 (('S during daytime and 0 during the
other two periods.

(2 each pair which includes exactly one of the pairs -.1 or ( receives 100 ('CS during day-
time and 0 during the other two periods, and

(31 each pair which excludes both points .4 and C receives 75 (CS during daytime, 200
('CS during evening, and 100 CCS during nighttime.

These choices were imagined upon viewing points .4 and C as "commercial" points and
'-iewing al other points as "residential." They represent particular choices of the inputs 5,,
/ = I ..... S, of Program LP'. Analogous to the first example we assume that the cost per
trunk is S1000. that the switching cost is $62 per CCS, the quality of service is 0.99, and that
the marginal capacity of a trunk in a final group is 30 CCS. However, we did not neglect block-
ing on the final links. Using these inputs and the hierarchy of Figure 1. an optimal solution to
LP' wis obtained termed the hase network.

I( re ncttd DemC/nd

Assume that an increase in demand of 20% occurs uniformly among all of the 56 calling
pairs. With all other inputs to LP' remaining unchanged an optimal solution was obtained.
termed (as before) the incremented nwtwork.

Moreover, Program LP' was solved under three additional restrictions on the time t.
namely, all high usage links be sized according to: (a) daytime loads, (b) evening loads, and
(c) nighttime loads, respectively. These restricted solutions result from the requirement that
the network be "engineered" according to a fixed single hour, respectively. This is in contrast
to the multihour solutions of the base and incremented networks, and provides a test of reason-
ableness of the multihour solutions.

For purposes of computer usage, the size of LP' was reduced by the bounded variable res-
trictions of Proposition 2 of Section 5.3. For example, setting the 1// bounds in (19e at 25 for
each high usage group yields a 64 variable linear program with 1240 constraints. This program
was solved by solving a finite sequence of much smaller bounded variable programs (64 vari-
ables, 184 constraints). The results are given in Table 6 below.



K 'l Kil I \\ K !) II I \NI)(,(, P I \k

I.\BI 1. 0. ( ommia'l Rt,. uh. fo!/Iour Sol;ohm o .P/r( Iraf I'Ill,

5, ti/i .'I *. B' a i Il/O h ll('flhd findrA v al
S kfit 'A , Sgi/ Il I g)(' ri',s. I (iv /I)'llialld ito .( li'nlci'd

I ' ru/Il l,in . >1N/000' ( I',O/]1oA . S' Si11 t( / ," ( m,'A ( .

.10 l Q9 (t/ia i f4t Si cri i(C

Ito il ink, .Ild B,isc IncIretiicict L- Single I lour I )signs
, tC1iCr IiLdes Nct% ork Netl w k I io ItI ime I Clll g NiL hlti itC

9 29 83o1 35 005 07.925 43703 414
A( I0 .8749 104 643 104 "14 I 111 299 111.400
AD II 5276() 63467 6 9.622 63.339 (' 084
Bid 12 14.224 17 041 39.273 21 93t, 31.838
(I 13 41 04 )  48.)00) 59Q514 47.871 55.343

1 14 401)49 48 0)0 59.514 47.8-71 ,5 343
(I1. 1 52.824 63.416 _ 68 " . 63 416 6' 141

II1,h I ,age Links and integer Index
U "...t , i I l r-- .. II t '

11( 7 17 20i 0 2i

L 4 12 1)

M . I ) 21 !2

I' 0 18 21 I 10 21 1',
1( I 21 1 21 1?
lIt 8 18 21 11) 21 12

otital'v 1kut
T rhcd 84921 02 10173.11 13764.04 1013847 .491.15
llrllic

(('S) I= -- -.......--- .

[otal
Cost I 5'4 $1143.3 $1402.3 S 154.0 S1290 0

()hsere rha! he multihour (incremented network) solution has a total cost which is less
than each of the single hour design total costs, although the single evening hour solution is
only 94"'.. larger than the multihour solution Apparently, the opportunity of engineering final
groups ,B and AC at another time, namely da,,time, permits a slight sa% ing in total cost

7. (()N(1.I SIONS

In iis paper it is reconmended that linear programming be used to sol. e for changes in
trunk 1roup and switching equipment requirements necessary to provide for altered demands
Ito !,.leL,rnmruications services and altered demands for service qualities. ()hraining solutions
, :Ils tJSiL prihicin i, a major goal of our supply model which seeks to ninimi/e total incre-

mental im estments in both trunking and switching subject to these constraints.

I lie linear programming Model dist ingtIsIhcs high usage trunk groups from linal trunk
grItps at.cording ti the role each play,, i the net\,irk hierarchy. The important subset of high
u-,agc group ',,ariahles mnay he soled For hs linear programming, and. in general. tile costslt due
i stIratghtiirward intetrer rounding of thCse groips tend to he olffseting and integer roiind-iill
pnri icd tires cisil maintain i verall network ttualv of ser\ice

)



Cautioln must he cwercisell. however, Ii the selectioln 0f [lie i/cs (if Ilt il iti trunk 9rlupJJS
heue(SC( ofC thScu of the mat 1girial capacity assumlption in the linear prioeimig moidel I n
practice. the aCtUal .JS Oe ot1th final group ariables can he determuine hs nielIokis \010 di''Il
not depend oin the miarginal capacmt asuolption. principally WdIkilloous Iq'i[t Rdw
Method 121. 1?it I~w h 1ismethod is needed because (of the Sariousll peakednes eteli 1' I '
in the prhahilt\ ofsriuiin I iltrnite l mutd tratbe., See alsoi I )eseliImps 141

Ih11 tsIinS1 of whether theC linear program P' proivides ii ujuiti ,oh, ' o i 1 kIWiiiee1Lai
!lUmbers (It high ulsaLe trunk group SI/es is still anl open one. A ilclotvu~ (lJi55 of flinliiiejt1

ntegier pro'grants which are solvable: as, linear programs is treated Ii Ml\ 1141. w ierc S ariis
a'I I IlduILirit\ JsSUmpt[)IO1S are 111I Ixd These assumptions doi not apply in general to ' lie class ol
riet%%ork prohlenis treated in this paper Thle results Of' our linear p~rogramillL uge pert ient mi

1%osimple net works ili lie field mnas sti niullate research onl this quest on.

We shall leaw the linear programming duality developments h ii a later Tpaper. it appears
that sensitit' t and pilst(Iptirnality anaksses \,ill be indeed useful f'or network dlesign sr nt liesis
I oliinatk . h.\ P~ropositionl I and its; corollaries it appears that a mu1LCh snlialler list (11 aCttxe dudI

ar ables \,ill he required than the total nu mnher of constraints in priigram Ln~P'

I it ure \%o rk Shi u Id also i ncorpiorate mo(re than one alternate route in the networK hierar-
clix cx en thlough for manyv networks in the field the first and second dhice riilIteS are p~real-
nent ans;;1 n rk- Lcixeti In thie literature uce Minluded wkithiti !%cit.rr l~ in~

nil (clls of this paper. Iaiescale netwvork iipiiiil/aiiins made 'IliL ho ,.Pc I.elmk
ij-rk ik h wi -iS tr ' !-1 I nlittice ml tc ti-m . it'itloll ,I the Sitils~ llli,J, 1' %k 1 dsj!

eI, ccoi on.;! it i,inmodf imod~el Cor telecomnrninica ctons ;Cr'. ice,.

\N , i iin obserxation ,h;irod h\ IAJlxsard '\si rl l iSlplen\ niL
C\i : ssekI ,i persim RIcI rr.eSpolndence. that there is, an intet esting equt alentc between tele-
phonev eitneemL in d rplenishnietit inventory systemns, see 110i and II1-1 Perhiaps the design
(itlmr eunlesll teleCOtittitinications network hierarchies ti hawe appilicatioin to the dlesigni (it
more ciiiiple\ replenishiient inksentory systemns.

"c ire gratlL I for helpful coimnments f rom a referee on earler S ersions Of t his
manuscript \kc ilmi I ish to thank D r. I Iker Ilayhars. Schiool of I 'rhan and IPohlh A\ttmrs.
( arnei- Nhlon I ni~ ersits for obtaining an alternate Charaeteri/atiiin Iol the network hierairchyx
inwil ig on~v graph theoretic termis. The research Of' the authirs \ksas ;partially sulfirI0ul~ 1)1
the Natinal SciecTet [oiindaition (frants NSf- EN(1176-0) I191 andf F.\( i2254XX. In addition-
() (I PoIAkwas s;upported h.\ Research (Gratit !)AA 29-77-( ;-1024. V S. Nrmx' Research
Offlice Fhe papier is at rex sumn of' earlier report, ()I'IDecemher, 11)-7 andL Februars . 1'479 and
has beneftifi greatly I rliil earilier discussionis wkith mnemibers iif' the 'serxikc. Rtes. and ( I sts

IDepartment I f thie I~Liig I ines (iitnpanN of' 1IT&T A*ny erriirs t i lisicltpretatimlis Ii the
pauper. h wkex er. rentat n thle sole responsi hilit. 01i the :tuthlt rs
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Appendix

PROOFS OF PROPOSITION I, THREE COROLLARIES
OF PROPOSITION I. AND PROPOSITION 2

PR()P()SITI()N I I et A be defined as.

A IsA I( FR 0 and: > h

Let 1. he the set olfall i) in 1w which satisfy the serni-inlinite system of linear inequalities

(I) I Z ,- )(. -- r) andx >0

tiur o i ).

I hen A, L. and A is nonei11pt..

PR()()I 'onenmptin.,- o)I Ais most easily seen h, observing that (l,0) ( A since
H (0,0a = B(a) - I

Let (:.\ be in arbitrar point in A. Assume throughout that i = [I. the integer part of'
A ppluIng I 1t0) CI Section i vi'es

- ,a)\ (, + li)B(,.a) - h1B(, + l,a),

and hence frotm I l 'tc h,,C

2) 2 1 :: )C. . - P) . ).

Ihus. sa ",tisfies the parlicular inCqualit, of (1) indexed by the nonnegative integer 0.

Consider now any integer n.n >- h + I and write

(A.) - I + A , - c, I)(. - r)

where A,"= 1 ( ), - ., Ix- - r). Now for any integer r. ,h + I < r < it, it follows that

x - r < 0 because h x. < + I < r. In addition, c, - c, > 0 for each nonnegative
integer r, and therefore A I < 0 for each integer n, n >, h + 1. Hence,

(3) z - I > / (.x,a) - I > it (x,a) - I + A,"= .(G,,- C,, j) (x - r),

r-0

for each integer n, n >- h + 1.

(2) and (3) together show that (z,.x) satisfies all those inequalities of (I) indexed by
pi. o > n. We now check that (Z.% ) also satisfies those inequalities indexed by nonnegative
integers ,. n < i - 1.

If t = 0. there is nothing to check for there are no such i. For in >, I, let ?I satisfy
i n i n - I and write

h (.v, a)- I= £ ', , )\ -r + !

CCi

)
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where -- X C ( t r). F:or each integer t. /1 4 ( r u< ij. it fhollows that

I >_ 0 and , > 0 as belre. Ilence, A. ' 0, and hence.

(4) - (.\.(I)- I ( , I) - r)
, 0]

for each integer n, 0 n _< - I The latter finite system of inequalities (10) together with
(2) alld (3) show that ( a) satisfies () inplh ing K 9 L and in particular 1. is nonenpty.

lhe other inclu sion 1. C A is trivial because any (:..v) in L satisfies inl particular

['sing (10) and (17) again sho)ws: B B(X,a I. i.e.. ( ) K.

COROLLARY 1. Lei x be nonnegative real. Then (B(k,a), X) satisfies each inequality
of ( I ) strictly except for (i), the inequality indexed by [x, which it satisfies as an equality, and
(ii) possibly the inequality indexed by Iii - I when Li > 1. The inequality [ ]- I is
satisfied as an equality if and only if .i is a positive integer.

VR()()I: Let : = B (\.u ). Application of (3) shows that (F,. ) satisfies each inequality
indexed bs o%. n > 11 + 1. strictly, where h = Ix]. By (16) and (17) of Section 5.1. it f'ollows
that I:.. ) satisfies the inequality determined by n as an equality.

It onl, remains to prove that the inequalities indexed by nonnegati\,e integers
n, t < h - 2 are satisfied strictly. There is nothing to check if h 1. For h >, 2, let n be
an\ integer 0 <n < h - 2. Then

A!(5c,a) I (c, - c, i) (x - r) + [A + (c,- i)( -n l
rI0

where .-I = . (c,-c, 1) (x - r). Since n < x < n + I, it follows that (c, - c, )(x - T)

> 0 and 4 > 0. 1lence,

B~~)- 1 > '(c,- c, I) (.\*- r)

for each integer n, 0 n n < h - 2.

The last assertion follows from ,xamining

B x.a 1 ) i - ) + (c, - 1 (--)

where h = [ I > I, for the inequality indexed by i - I is satisfied as an equality if and only if
. - 0t = OI.

It will be useful later to include upper bounds on the x-variables in the set K. The follow-
ing corollary states that in this case one only needs a finite number of the inequalities of (1).

(OROLI.ARY 2. Let I be a positive integer and set K' = K n {(:,.-) 0 1 x < 1. Let
.' be the set of all (z,.-) which satisfy
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UNDER ADDITIVE DAMAGE
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ABSIR A( T

A s %stcrm deteriorates. duc toi shocks receis ed ait rindi im times, each shock
causing a ra ndom nt m i damage wih ich accunulatcs i uer tii c a'nd mat.1
result in a si stemi failure Replacement 1,1 a ladi ed st stem is mnanda ti r% wthi c
an operahle ione mia.%l he replaced In addittion, the shock process causing
ss stemn deternioration in a he con trolled h% co n tin uuius pres cli e mnite naniCe
expenditures The jiint probhlem iii optimal maintena ne and ucpl1a c men nt
anal ' Ned and it is shiiwn that. under reasiunable conditions. uuptinual ntainte-
nance rate is decreasing in the cuImulatise dlamage lce cIand that he~ und .u Lceo
tamn critical lesel (he sesteni shoiuld he replaced. Mleaningful hotunds ame esta-
huished oin the iipt imal poulicies and an dilust ra is exam pie is pri isided

1. INTRODUCTION

In this section. we first introduce the reliability problem treated in this paper, p)ros ide I
background in terms of the relevant literature, and summarize our assumptions and results.

A. Problem Statement

Consider a system that receives shocks at randonm points in time, each shock causing a
random amount of damage which accumulates over time, As the cumulative damage leoel
increases, the rate at which the system generates revenue declines and the probabilt of its
failure increases. Replacement of a failed system is considered mandatory, while an operable
one may also be replaced. a forced replacement being costlier than a voluntary one. In AdditIon1
tot replacement, the damage process can also be influenced by preventive maintenance expendi-
tures, higher expenditure rates buffer the system more effectively, and hence decrease probhtbil-
istically the frequency of' occurrence of' shocks as well as their severity. Our problem is to
determine an (optimal policN that specifies at sequence of' replacement and maintenance expendi-
ture schedules so as to maximize the expected discounted net profit generated by the sYsteni
ov~er an infinite planning horizon.
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R. Background Literature

The e 5tenisixe literature onl control ol' stochastically deteriorating systemis has heen sur-
%et d b% MicCall 1101 and Pierskalla and \oelker 1 H Of11 particular relevane hcre is the work

by Ta lor I 1, Feldman 16,71 and Abdel-1 farneced and Shinii I Il on optimal replacement of* a
sistern that is subject to shocks and hilure, based on thc theory of' optimal stopping in Marko%
pro cesses O n the other hand, Ihompson 1101 and Kamnien and Schwkart/ [X1 emnplo optimal
control theory to characteri/e the timle pattern of' optimal maintenance expenditures that retard
the s~stemn falilure rate. In the fbrmier class of' models the only decisions available are whethe~hr
to replace the sistem or not, while in the latter class the state of' thle systemn at an% tlime is
described ats being either %%orking or Failed. Our nmodel incorporates the essential features of
both oft these two classes in that it allows f'or varyring degrees of' prevecntive maintenance ( ii
addition to the replacenient action) as, well as a more detailed description of' systemi deteriora-
tion (in addition to its description as \Norkitig or faliled). Our analysis is based] on the miethodol-
og~ ot st ochTiast ic dv niiic programming, ats in lDerman 151. Ross [131 and others. Somec prelim-
inar,\ work along these lines mlay be fbund in ('hikte 131 and Chikte and Ko/in 141.

C. Oseri iei% of A~sunipfioii and Result%

[In Section 2, \Nc define tlie state of the st stern iti termis of' its cuniulatime damnage Ic'.el.
'.Ahich inceases randonil\ duLe to occurrence of shiocks and is influ~enced b\ continuous rminte-

anITl e expenditure and Instarntaneo us replacement actions. The probabilistic rate at '.%hich dam-
age C nuie is assunied to be decreasing tn thle maintenance expenditure rate I AssUmption

PTI, port receis trg a shtk Ohe s\lsern) rnaN iail instantaneousl\ with a probabtl it'. that is,
Assumed ti be increasing in thle resulting dama) ge le'. el but at a dliminishing rate ( Assumption

P If the s'. steni does faill. it must be replaced instantaneously 'k\an' titloe at a fixed
1,(0s t. shIlk:. eCt if it1111 doe not M fai L, it maYi still be replaced ,otlunitard\~ at a lower cost ( Assumip-
1iil In I i \ ii )peiting si sicn iii cItil rotsl\ generates, re'. enue at a rate wkhich decreases. but

,t ., dliminisiig rite,.1 islh uaie danage le'.el builds LIp (Assumption LAIt). I tinal]l .
,A ilNs r iridta c .i tnil Itin ( Assumpt ion R)'' hich ensures, a profitable sisterin operation (as

III Seckiwn I Ace first slio\,% that tile maximuri itifinite horioin expected disciounted net
fit41 11(m '5stemi ('peritit(in decreiv-s at a diminishing rate as thle cumliMe dlamage le,,el

nkkteases I I hcerm Ii )We then show6 that it is oiptimlal tor repilace tile s'.stemn 'ioluntaril. ats
srPIl is Itis umL ti eIIIA1 dariage Ic'. el exceedIs a critical threshold (I Theoremn 2) As to the
u)ptiri prve'i.isc riiiraric pole'.. %kc. shiik that tile riilrenarice expenlditure rate should
be rc(dLIcd is fie ;,Untlat.I 1e daniage lesel builds upl to the critical \alue ( Iheioremi 3) [-irall'.
\A e den'. (iii I he rent i s)rnreaiirgflI bounds tin the optimal polic~ '. In particular, \&se shim.'
11li1 postpinemerit (if lur)1itar% replacemnirt cannot be oiptirmal if' thle extra profit from s~steri

unerttiinil tile nest1 shock Cannot JUtust i the extra cost due to a possible failure and replace-
merit it that shot.k We also shoii' that tile optimlal maintenance expenditure rate is as.'
sirkii'.\ less than tlie rate it \Olith thle svsteni currently generaites rceteiue.

siii .4 pr.sIdes in c\.iriple th1.t illustsrates tile rmodel arnd the resutlts arid Sectrion5
0n11OuT-ks thle Ippr s'.ith sorte remarks oni the iv pe of Inforniatiorn required For irirplemnirrta-

it fhits setfin. "c. first estabhlishi the notation ands define tile basic ctinllitneris of' our-
iii dcl. then %%c. present thle assumptiton, made anid finally ikc describe the irserall moitdel
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A. Nflfatioll and hidliioiis

I et a nlolngatj~ e I :id'' inar!ible I denotC thle cUMuLatIMI daJin0Ce 10,Cl 01 tile sx steM
ill operation at 110w 1z I , it is the Sum) total of thle daml~agesl suflered (fLCoe Shocks [reeel Od
h% the systemn h\tiHme t.

I1he damage process atl'et ing i,1s controlled hr nre;Lns of ai continuous pie\ 'I1t\C

maintenance expendlture rale in li 0.11 %%where (thle hudigot It -f - M'aintenice i, ; I tiet
at protecting the s~ ' ,teill) from thle unldesirable en'mironmnti sio as to retard the ritci m Mil It
shocks are received and to dampen theC Magnitudes of' damnages inllicted b' , I ll I e I
X tO) >I 01e the probabilistic rate it sMhh shock, occur it' thle niairitenanoe rate1 ist I iIt Us. II
the maintenance rate is a :cinasta1it Mt 11tt ugh tittle, the time interval betweeni SUetesSIx e1\iek
is e~ponentiall\ distrihuted w&ith thle mean I 'A Oh l. Let a nonnegative randoni \ariable ) d1cii te
the Magnitude of damnage caused hr 'a shock and] let (;( It bl e thle cumlulatix e dist rItion
ft'ion01 of1 ), paraimcrt/ed hr the 111,inlek2nMnce rate o.l 'hus. Al ito Il I- ( , ( it I i1s he pro1-
hahilistic Faite at w4hich shot ks caustttgv dirtiage in es~cess of' occur if' the mlaintehiatice e\titi-
lure ate Is lit

If 1, is thle damal~ge leCIC Just prior to time iand if' the system reciet .I sh kk at

tinte t, causing an tdL'itional Ldamage of" magnitude t' (so that X, = -. x tl 0,tilkti the ''Jtent
mlar fail instantaneousl% wNith a piohahilitr denoted hr /p(:), depending on the nLxA CUmuWloe
dlamage les el -. "bile with probhblitr \ 1 pI -- ): I it endures the shock and cont111inue to operale

If' the sr stem f-ails at timle i, it must he replaced immediately by a new i c at the I irced
replacement cost ( ,~ >0 F\ en if' thle systemn survives the shock, it mlar still he relaced
nstantaneousfr at a i do mar\ repLacemrent cost (> 0. In either case. the relAiemen I ((ci -

siomi at timle i w&ill he denoted as I1. I,. w bile d, 0 corresponds to the nonreplat erie it deci-
sion.

If F li= ? 0. let 00 fI I dnote the instantaneous rate at wAhich the s steni generaites
revenue froni its operat ion Suppi)se that f'uture revenues and costs are discounted c tt wini
(iusl\ at rate (t > 0,. so that ic '' is the present value of' (onc dollar carred I tiii1e Urilts tII

ni iw

Br a I replatetitecnt indl niattitence) 1)1C tiii ki 1e 1C,1ar a p~an (h,.0 1 i1 oiItoitsitf tile
systeml staite\ denoted as i6 Wi. I I 1. Ij indf 6.,II 0- -- 1I). W. I lere . the replacetnww
rule hj specifies i eplitenent of tie " steni in state \Imwhich is mandatoorr if ie , Istrnp
do" n) if 6: \) I . "whilek 61 1 \I -~ () spet Ifies the1 nrepl jlaCCtentl dcision01. simti lar It i ic,
s\rstern Is in state . ttte tiilnteiiuie' i t h spcCiis a maintenance e sPC nh1tfit 1rcrae
Il0. Wll In light (di the res1ults hx Stic 1141 antd 111ska 1121 onl contriilledi jump11 pioxe-SL,1 1
reaisonabhle io sttpwlr: thit ) t cx tscs 01te Tetlatentl 'Ind miainteniance tfetistitsI oiik
timies. depiidtitp on Ili: state of tie st stem lher,

Iinallr , Let I , Ix'tt the net espeCtt'dl fiscoUnrtf ret,1rn front enilix hling 1k iK,

ioer an infinite plaitiinev hori/on. stairting with a srstemi In stale II ' 0 et I ' Ii

b I e the msliuni is ssible return o)btainable A Aiii * is sit to he (itint,, t
) f'or all \ II In order to characterie tile iiptinial refturn fiiictton I and the -p. i, i

Poilicr \A . e need i nrat K:ertaini assunmptins (in the mo del parmilrieters

H. A%%timpfiotis

kegorirftii tip dAie: ttIxx'riess i 'I -k '\xili\e v 1iiiiitei'tiiiitC c\ficttftl Iic M ,11it iITI
-10ick process. we% is 11,i 11iat hi JVn1ber, estitltoe its Mo p text Ille 5 I!,o ti1ti 1d I 's ,



I6 I I II I \ IM s I ) tlII It I(K ItI

rcsoLlt In 10"'ce fnhaihiIhI'uIc ralt! h toIl I I I , Gv m f al 8ich additional damages in excess ol'
AM0' gi\01 ci.il ti iOccUr (I II,is' t ital()ou,if) th~le stichaistic floflotoficity assumflption, ats,
for c~anlplc iii 1)evinar hij I As to) tile sy stemn failure process, it is reasonable to suppose that
thle m\~crna), tall onk' at shock time', did that the prohahility p (:1 of' its failure increases in
tie~ Sltint! crn IrIltIkC L1,1tagc Ic'.l ci ht in I'. at a decreasinrg rate. We state these probabil is-

(I) For arl fi xcd I >_), A On ) 11I - (1 in miI is continuous and nonincreasing in
Iml 1!-M. lin particular, taking I = II. A IOn) is continuous and nonincreasing in

M' [0-lIl

(it) The failure probability p (:1 is nondecreasing and concave in the cumulative dam-
aige level ' >_ )

Wit11 respect to thle econoniics of' the ' vstern operation, we assume that an operating sys-
tcni in state It; generate,, revenue at1 rate I lAx) which is nonincreasing and convex in the
,:UIImfl, t atiiage e'ei This reflects a degradation in) the system performance ats the damage
atccumu11.lates hut at a dilitiish ing margitial rate. On the replacement cost side, we assume that
tile c~ost ( ,ol' replacing a failed system is higher than the cost Ci of' a voluntary replacement of
.I orkiiig -'.sler (possibly due to the salvage value differential), thereby providing an incentive

toi replace the systeni before failure. Also, to make this system opleration and replacement a
".4 unh\bilel utidertakitng. it is, essential that the cost C( of' a voluntary replacement be compen-
,,ted tor by the present value P MI/nt of, the itini homion rev~enue that a system maintained
in mntt cotiditioti wotuld generate. We sunimarie these economic conditions as

IN'%umpionf I.

(I) The revenue rate i (.v ) is nonnegative, bounded. nonincreasing and convex in the
datiage level x _ 0I atnd r (Olin > C1.

(ii) The repki~ernent costs C, and C. satisfy C, > C, > 0.

-1 lie aho'. e assuniptiotis. P and h, will be used to characterize properties of the optimal
'.alue f'unction I and the niaintenance and replacement rules (in Theorems 1,2 and 3), while to
show that t is positive (in Theorem 4) and to provide bounds on optimal policies (in Theorem

t) we impose the Following simple and easily verifiable condition on the problem parameters.
which ensures that thie ov'erall operation of' the system is a profitable one.

.-Issompoion R. -There exists an rpr E IO.MI such that mn I lim r (x ) and

I, 1 () * / ila + A (In1

It says that the net expected discounted profit generated by at new system that is main-
tamned at it small enough expenditure rate tit* until thle next shock makes up for the cost of' a
failure replacement that might be necessary. Gienerally speaking, if the revenues generated by
operating the system are "high" enough in relation to the replacement costs, if' the shock
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process is sutlicientl. "slow" and "mild" and if the failure probability is "small" enough, then it is
possihle to make the system operation a profitable one. Assumption R constitutes one particular
set of such conditions.

C. The Model DInarnics

Under a policy 8 = (6,.a6), the cumulative damage process {,:, > 0) evolves as a non-
terminating pure jump process as follows. If the state of the system in operation at time I is
V1 = x and if the replacement rule specifies 6 1(.0 = I then the system is renewed instantane-
ousl., yielding X,, = 0 at a voluntary replacement cost (1, while 81(x) 0 leaves the system
state unchanged until the next shock. Given X,, = .v >, 0, the maintenance policy specifies a
continuous maintenance expenditure rate 82(.\) E 10. t]. Then the sojourn time .S in state v is
exponentially distributed with parameter A(62f.v)). During this interval, the system generates
revenue at rate r(x) and is maintained at an expenditure rate 62(x) and thus yields

if .'.. Ir - m Idu}A Gn) c A('"'1d S

=[r (.0 6x)l[ + (xfl

as the expected discounted profit until the next shock. Similarly, the net return from the next

shock onwards will be discounted by the expected discount factor

A (, ( I K,(2) e '(8Six)) e ds = A(62(x))/[ + X (8(x))].

The next shock causes damage of magnitude v according to the distribution G(dylmn), so
that the postshock state is X, . , = x + v. At that instant the system fails with probability
p l + y I, in which case it must be replaced (i.e., 81(x +y) = 1) at cost C 2, so that

., -. = 0. If the system does not fail, which happens with probability [I - p(x + y)], and if
81(x + J) = I, the system is replaced at cost (' and X(, ,,+ = 0, while if i1(x + y) = 0 then
the system continues to operate in state X(,,,, = x + V. In any case, 8 2(XI,_, 1) is the expen-
diture rate at which the system is maintained until the following shock, and the process repeats.

Our objective is to investigate an optimal decision rule 6 * = (b ',8) which specifies the
replacement and maintenance decisions 8 *(x) and 8 ) as functions of the cumulative damage
level x at each shock instant, so as to yield the maximum expected discounted net return

I ,(x I = [(x) for each x >, 0. In the next section, we analyze this problem in the stochastic
dynamic programming framework.

3. OPTIMAL RETURN, REPLACEMENT AND MAINTENANCE

In subsection A below, we first provide the dynamic programming functional equation
satisfied by the optimal return function W(x, which is then shown to possess, under Assump-
tions P and F, certain "nice" properties. In subsection B, we make use of these properties of V
to characterize the structure of optimal rules 8 " and 8,', while in subsection C, Assumption R is
employed to derive interesting bounds on S j" and 6;.

A. The Optimal Return Function

In order to analyze the optimal return V(x), we first define V,,(x) as the maximum
expected discounted profit over an intinite time horizon, starting with a system in state x and
given that exactly n more shocks will eventually occur. This is analogous to the approach in
Lippman [81 and enables us to interpret n as the time index, yielding the Bellman dynamic pro-
gramming recursion in a discrete time format as follows.
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I or all n 1, 2 . and 0,

'w here

(4) t i\ - %lax I .

and (tih operator 1,,, is defined b

+ [ (0, I (v'[1 -) On6GdvM/(a +( +(M

and

(6) Ix) = MaxIr (0)/or - (1. r (i)/ n.

These equations may be interpreted as follows. If the system in state x facing n more shocks is
replaced oluniarily, the net optimal return would be V,, (0) - C', since n more shocks still
remain. On the other hand, maintaining it at rate m yields [r (x) - m]/[ox+X (m )] as the
expected discounted profit until the next shock, according to (I). If the next shock is of mag-
nitude v (determined according to G(di in)). the optimal return from then on is V, I (x +_y)
,ro.ided the system sur,,vcs the shock (i.e., with probability [I - p(x + y)]) and
1. 0 - (:.C otherwise, di,.ounted by the expected discount factor X (m)/l + X (m)], as in
2 iinall% , .ith no more threat of future shocks (i.e., n = 0), maintenance expenditures are

annecessary and we may or may not replace the sYstem, which will be operated from then
onwards without further deterioration.

[EMMA I Under Assumptions P and E, for each n = 0. 1.2.the functions V,,(x)
and U, (.%) are bounded, nonincreasing and convex in x > 0.

PROOF: Boundedness follows from

(7) r (0)/o >1 1,(k) > - 1 + [o A I(Mf]}/a.

since (0() is the highest rate of return obtainable, while, in the worst case, infinitely many
shocks occur and each requires a filure replacement in spite of employing the maximum possi-
ble maintenance rate. To prove monotonicity and convexity of V,, by induction on n, note
from (6) and Assumption E i) that 1,, has these properties. Suppose that V, is nonincreas-
ing and convex. From (3) and Assumption E (ii) we have V,, I (X + y) >1 V,- 1 (0) - C 2.
Ising this. together with the induction hypothesis and Assumption P, it can be checked that,
for each j, the integrand in (5) is nonincreasing and convex in x. This, together with Assump-
tion F (i yields monotonicity and convexity of T, , I, for each m. Since these properties are
preserved under the maximization operation, we have U,, and hence V, nonincreasing and con-
vex

Q.E.D.

Irom the definition of V,, it is easy to see that V, < V,, for all n = 1, 2. i.e., per-
mittng more shocks can not improve the total return obtainable. Thus, the sequence of func-
tions i,,. n = 0. 1. 2. is bounded as in (7) and nonincreasing, so that V = lim V, exists

and is the maximum net expected discounted return over an infinite horizon, given that an
unlimited number of shocks will eventually occur. By standard contraction mapping arguments,
I is the unique solution to the following functional equation, which is similar to (3) and (4).

(X) Vt11 = Max{ (0) - C1. U(x. x 0

%,here
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(9) U(x) = Max T r(x

and TM is the operator defined in (5).

Since the properties of U, and V,, is Lemma I are preserved upon taking limits as ntoo
we have the following.

THEOREM I: Under Assumptions P and E. the optimal value functions U(x) and '(x)
are bounded, nonincreasing and convex in x > 0.

B. Optimal Replacement and Maintenance Policy

From (8), it is clear that the optimal replacement rule 8," specifies the replacement deci-
sion j* (x) = I in state x if and only if V(x) [ /(0) - C1. Similarly, the optimal mainte-
nance rule , specifies in state x, the smallest expenditure rate ,(x) which attains the max-
imum of T,, V(x) in (9) over in E 1OM] our continuity and compactness assumptions assure
the existence of this maximizer.

We first show that, in our model, the optimal replacement rule hl* has the well known
control limit form (as in the models of Derman [5], Ross [13], Taylor [15], Feldman [6,7] and
others).

THEOREM 2: Under Assumptions P and E, there exists an x* E [0,oo] such that , 1" (x)
= I if and only if x >, x*.

PROOF: By monotonicity of U and definition of 8 *, we may define

(10) x*= inf [x > 0: V(0) - C1 >, U(x)}.

Q.E.D.

Next, we show that the optimal preventive maintenance expenditure rate is nonincreasing
in the damage level of the system. This may be viewed as a stochastic analog of the result of
Kamien and Schwartz [81 and Thompson [14], wherein the optimal maintenance rate is shown
to he decreasing in the chronological age of the system. Indeed, it is reasonable to expect a
reduction in continuous maintenance as instantaneous replacement becomes more imminent.

THEOREM 3: Under Assumptions P and E, the optimal n-aintenance rate 6"(x) is
nonincreasing in xE [0.x*), where x" is given by (10).

PROOF: If x < x*, then from (8) and Theorem I we have V(x) = U(x), which can be
seen to be equivalent to

(11) V(x) = Max [r(x) - m - J'(x,m)]

where

(12) f(xm) = ,J {[[/(x) -. V(x+y)]

+ [V(x+y) - V(O) + ('21 p(x+y)] X(m)G(dVm).

Take x1 < x 2 < x*, so that we need to show that 6: (xi) > 82* (x,). We first show that
LfOx 2.m) - f(xi,m)] is nondecreasing in mE [0,M). Now

(13) U (x 2,m) - .f(xl,m)1 = f g(xj,x 2,y)A (n) G(dvlt)



4S ) (HI1K I ANI) SI) I)[SIIM(KII

where

(14) 1(1 ,x,,.) Ii(x,) - V(x,+y)I - I1'(x I ) -  l'(.-]+y)
+ [ (.-+y)- 1(0) + ('"I It(V2 + .)

- I(X.I +y) - 1"(0) + ('21 P(XI + )
I V (.v,) - V(.v I)I+ I 1'(.v\I+y.r)- l( +y [I - p(x+yv)l

+ [V(.\'+Y ) - V(0) + ('"I {p(x+.r) - p(Xl+y)l.

By monotonicity and convexity of V (Theorem 1) and monotonicity of p (Assumption P (i)),
the second term in the above expression is nonincreasing in y. Also monotonicity of V, con-
cavity of p and the inequality (x) - (0) + C2> V(x) - V(O) + C', > 0 (since C2 > CI
and V satisties (8)) imply that the third term is nonincreasing in J. Thus, g(x,x 2,y) is nonin-
creasing in y. This, coupled with Assumption Ni) now implies that [/(x 2,m) - f(x 1 ,m)J is
nondecreasing in mE [0,M]. Since 87(x) attains the maximum on the right hand side of (11),
the above implies that 8, (x1 ) > h(x,), whenever x2 > x1 , because otherwise we would have

Ir(-v,) - l"(x 2) -. f(x,,8,(x2))] - Ir (.\ ) - 2 (x 2) - f(x ,8-2) )
< r(.\) - 6, (.v) - .f(.\,(S2"(x j)) - Ir(xl) - 8,2(-\ ) - f/(x ,8 (S (X]))

i.e.

Ir (., ) - 8'(-. ) - ./(.v2,. 8,(x )) I + [r (.\-I ) - a;(. I) f(xl,8;(xi)) ]
" lr(.v,) - a .\)- .(\,;.,) + [r(.\ ) -a"x .~ a"x )l

contradicting optimality of S -(.) when in state .

Q.E.D.

Thus, by Theorems 2 and 3, the higher the state of deterioration of the system the less
should be the maintenance effort to prevent further deterioration and, as soon as the deteriora-
tion level exceeds a critical value, the system should be replaced by a new one.

C. Bounds on Optimal Policy and Return

So far, with Assumptions P and E, there is no guarantee that even the optimal policy will
result in a profitable system operation over the longrun. This is precisely the purpose of
Assumption R, as the following Theorem 4, shows and this fact will also be needed to establish
bounds on Y* and 8 (_) in Theorem 5 below.

THEOREM 4: With Assumptions P, E and R, the optimal return Vx) is positive for all
. 0.

PROOF: Consider a policy A = ( 1,F2), where 1(x) = I and 2 (.) = in* for all x > 0,
where m* is as in Assumption R thus 8 replaces the system at every shock and always specifies
the constant maintenance rate m*. The total expected discounted return, starting in state V and
following this policy 8, is, therefore

V() Ir(.)-mn*I/[a + A(m)l + A(tn*) Ir(0)-t*I/*1a +X(m*)Il

- G(n*)lK(x) + A(n*) K(O)/aI/[a + A(,m*)1,

where

AK (k + ((C-( ) p(x+v)G(dVl mn*)
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is the expected replacement cost upon receiving a shock. Since C, > K (x) >, K (0). we have

i'8(x) > Ir(.x)-m*lll, + X(m )] + X(m )/nIr(0)-tm*J/l + A(in)]-C1 > (0

by Assumption R. Since V(x) >, I'A(.x-) for all x, the proof is completed.

Our final objective is to derive bounds on the optimal policy 8 .

THEOREM 5: Under Assumptions P, E and R, we have

(15) x < b.

where b = iuf B,

B = {x >, 0, Max I[r(x)-mi/X(m) - (('2 - (')df  p(x + w)G(dtln) } < 0)
mE b0.tl

and

(16) 8 2"(x) < r(x). xE[O,x*).

PROOF: To prove (15), in view of (8), it suffices to show that V(x) > Uix) whenever

x E B. Supposex E Band Vx) = U(x). Now

Uix) Max I rx)-m + {Vix)[l-pix +y)

+ [V(O) - C2]p(x +y)}X(m)G(dylm)}/[a + A(m)]

< V(x) Max {A(m)/[a + X(m)I}

+ Max (rx) - m + f [-V.)
mE 10.MI

+ V(O) - ('2]p(x +Y) (m)G(dyIm)}/[a + X(m)I

< V(x) Max {A(m)/[a + X(m)]}
mE (0,M)

+ Max {r(x) - rn - (('2 - C)p(x + y)A(m)G(dvIm))/[a + x(m)Im IO,A4I

V x) Max X()/[a + X(m)]
m E lojMI

< V(x),

yielding a contradiction. In the above argument, the first inequality follows from V(x + y)
< Vx) (Theorem 1), the third one from V(x) > V(O) - Ci, the fourth one from the fact
that xEB and the last one from V(x) > 0 (Theorem 4). To prove (16) by contradiction, sup-
pose that 2" x) > rx) for some xE [0,x*). Then

V(x) = U(x)

= {r(x) - 2(x) + f {V(x + v)11 - p(x + Y)]

+ IV(0)- ('2]P(X + y))A(ix))G(dvyS(x))}/[a + A(82*(x))

.( A ((x))/Ia + A(82 (x))] { V(x + v)ll-p(x + y)]

+ I V(O)- ( 2 p(x + .v)JG(dV1A2(x))
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< A (8,*(x)l/ (a+ X (81'(x))]( V(x)

+ * IlV(0) - C,- V(x)lp(x +.v)G(dyIS (x)))

< r'(x)A (t >(x))/[,a + A (8,k(x))I

< V(x),

again yielding a contradiction. Here the first two equalities follow from the definitions of x*
and 8,*. respectively. The first inequality follows from the hypothesis that 82(x) >, r(x), the
second inequality from monotonicity of V, the third one from x < x° and the last one follows
by positivity of V.

Q.E.D.

The bound in (15) may be interpreted in terms of a "one-stage-look-ahead stopping pol-
icy, as, for example, in Ross 113, p. 183]. Suppose we postpone the voluntary replacement of
an operating system until the next shock in the hope of "squeezing" additional revenue out of
it. However, such a postponement would involve the fisk of a higher forced replacement cost
due to possible failure the next shock might cause. The first part of Theorem 5 in essence jux-
taposes these two conflicting factors in specifying an optimal replacement strategy. It asserts
that if the net expected revenue until the next shock, Ir(x) - mi/A (m), cannot at the least

overcome the expected extra cost (2 - C) o p(x + y)G(dyIm) due to possible failure
replacement at the next shock, for any choice of maintenance rate m, then it is best to replace
the system right away instead of waiting. The second part of the theorem says that "living
beyond one's means" cannot be the best maintenance strategy, even in a favorable environ-
ment, i.e., that the optimal maintenance rate is always strictly less than the rate at which the
machine generates revenues, as given in ( 16).

4. AN EXAMPLE

In this section, we illustrate the model and results by providing explicit solutions for a
specific example. Consider a system which fails when the cumulative damage first exceeds a
prespecified threshold d (see, e.g., Buckland [2], Section 1-10), so that the failure probability
function p(-) is given by

(17) p 0 if0 < z < dp (z) 11 if z >, d

which is trivially nondecreasing and concave on [0,d) as per (the footnote of) Assumption
P(ii). Suppose that the shock rate A (m) A h > 0, independent of the maintenance rate
m E [0,M], and that each shock causes either zero damage (so that the system survives) with
probability mIM or damage of magnitude d (resulting in a system failure) with probability
I - m/M, i.e., the distribution of damage caused by a shock is

(18) G(yIm) miM if0 y < d

I~m 1 if Y d

Then, X (m) [I - G(ylm)l is (linearly) decreasing in m, as required in Assumption P(i). We
may take the economic parameters r, (' and C2 to be arbitrary ones satisfying Assumption E,
although for expositional simplicity we take the reward function r(x) to be strictly decreasing
and convex in x (e.g., r(x) = ke-' with k > 0) and, to rule out trivial solutions, we suppose
that

i i i• - I
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(19) It(0) - r(d)I/(a +X ) > C1 .

The optimality equations (8) and (9) now become

(20) V(x) = Max {V(O) - C.U(x)l

where

(21) (at + X) U(x) = Max {r(x) - m +X [V(x)m/M + (V(0) - C) (I - m/M)]}.

The optimal solutions V, h " and 8 2 depend upon relative magnitudes of certain problem param-
eters, as given in the following three disjoint and exhaustive cases. In each case, it can be
verified in a straightforward manner that the given solutions satisfy (20) and (21).

CASE (i): C2 - C, > MIX.

In this case, the optimal return is the convex nonincreasing function given by

(22) I[[x) - M]/a if x '< x
VWx= I -(0) - M]/a-C1 if x > x"

where the critical replacement level x* satisfies

(23) r(x*) = r(0) - a C1.

In light of (19) and the strict monotonicity of r, we have x* < d and that x is unique. As for
the maintenance rule, we have 8;(x) = M for all xEIO,x*), specifying the maximum mainte-
nance rate until replacement, since in this case the replacement cost differential is higher than
the maximum maintenance cost until failure.

CASE (i): C2 - C1 < MIX < C2.

In this case the solution turns out to be

(24) [rx - Ml/a, 0 < x .

V(x) = [r(x) +X [(,(0) - M)Ia - C21/(a +X), 3C < x < x

Ir(0)- MI/a - cX X > X*

where x satisfies

(25) r(x) = '(0) - a C1 - M + X (C2 - Cd)

and Tc satisfies

(26) r(T) = r(0) - a[C 2 - MIX].

Again, 8 1" specifies replacement whenever x > x. The optimal maintenance policy 8 2 is of the
"bang-bang' type and is specified in terms of the switchpoint i (which is less than x" since
(C 2 - C) < MIX) as follows:

(27) 2 M if 0 X < 'i
(x)=0 if x < X

Fro (26), note that Ji is increasing in C2.

CASE (iii) ( - (-1 < C2 < MIX.

In this final case, we get
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128) 1(x./(k + X) + A Ir(O)/(V + - ., x < X.
,(O)/V - CI - X (',/a X < x

where the control limit v satisties

(29) 1.\*) = r(O) - ((t + X) C

and identically zero maintenance rate (i.e., 827 x) 0 for all x E [O.x*)) is optimal.

In all three cases, from (23), (25) and (29), we observe that the optimal control limit x*
is decreasing in C, (or (C, - Cl)) and increasing in C1. Similarly, the switch-point 3 at which
the optimal maintenance rate switches from M to 0 is increasing in ('2 (or (C, - C1)) and
decreasing in C,. Thus, the higher the replacement cost differential (C, - C,), the greater
should be the intensity of preventive maintenance and replacement effort. For a concrete
example. consider d = I, r(x) = I - x and C, > 0 fixed. Then Figure I displays the
parametric behavior of the optimal critical value x* (shown by the solid line) and the optimal
switch point . (shown by the broken line) as the forced replacement cost C, is varied.

Finally, notice that under optimal policy, in cases (i) and (ii) at most one replacement
ever takes place, while in case (iii) the system is replaced at every shock. In short, our analysis
has delineated conditions under which it will be optimal to actually utilize the maintenance
capability available for buffering the system completely from shocks.

(CL+X) C1

1

'A= (C2 ---,

failure-- ..induced_ - .- 2 C2cI  MI C1I + M/

S. CONCLUDING REMARKS

In this paper, we have integrated the problems of determining optimal preventive mainte-

nance and replacement schedules for a system that is subject to stochastic deterioration and
failure induced by a shock process. Under reasonable assumptions, we have proved that the
maximum obtainable return and the optimal policies have appealing features and we have illus-
trated these by means of an example. We conclude the paper by discussing some implementa-
tional aspects of the model.
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In practice, the state of" the system v may he observed in terms of sonic convenient surro-
gate measure of system efficiency, accuracy or wear such as the production (or revenue) rate,
fraction defective produced, energy consumption rate, etc. Accounting and financial informa-
tion may be used to estimate the discount rate and replacement costs (' and (', which depend
upon such economic factors as wage levels, prices and opportunity costs of lost production dur-
ing replacement delays. Statislical estimation of the parameters X and G of the shock process
and the failure probability p would require observations on the system performance together
with simulation experiments. The numerical computation of optimal policy itself would require
discretiialion of the performance space and maintenance rates m, so that standard algorithms
such as the policy improvement routine (see. e.g., Ross 1131) can be employed. (iven the
simple structure of the optimal policy, its implementation may be based on a control chart type
procedure by establishing control limits *......... v- on the system deterioration level x, so
that, if x >_ v" the system should be replaced- otherwise if x,° I < x < x,°, it should be main-
tained at an expenditure rate n,, greater deterioration corresponding to smaller expenditures.
The selection of control limits may also be based on simulation studies.

A('K NOWLEDG MENTS

We wish to thank the referee for suggesting several organizational improvements in the
paper. S. I). 1)eshmukh's research was supported by a Kellogg Research Chair and the Ji.L
Kellogg (enter for Advanced Study in Managerial Economics and Decision Sciences.

REFERENCES

I) Abdel-Itameed, M.S. and I.N. Shimi, "Optimal Replacement of Damaged Devices." Jour-
nal of Applied Probability, 15, 153-161 (1978).

121 Buckland, W.R., Statistical Assessment ol Li (haracteristics, (Charles Griffin and Co. Ltd,
London, 1964).

131 ('hikte, S.D., .Varkoavin Decision Vodols fur Optimal Dyinamic Resource Allocation Problems,
unpublished Ph.D. dissertation, Polytechnic Institute of New York, Brooklyn, New
York (1977).

[41 Chikte, S.D. and F. Kozin, "Optimal Preventive Maintenance and Replacement Strategies
Under Markovian Deteriorations," Proceedings ?flthe 8th .Annual Modeling and Simulation
('otfirence, University of Pittsburgh, Pittsburgh, Pennsylvania 359-363 (1977).

151 I)erman, C., "On Optimal Replacement Rules when Changes of State are Markovian,"
Vathematical Optimiation Techniques, Chapter 9, R. Bellman, editor (University of Cali-
fornia Press, Berkeley and Los Angeles, California, 1963).

161 Feldman, R.M., "Optimal Replacement with Semi-Markov Shock Models," Journal of
Applied Probability, /3, 108-117 (1976).

[71 Feldman, R.M. "Optimal Replacement with Semi-Markov Shock Models Using Discounted
Costs," Mathematics of Operations Research, 2, 78-90 (1977).

[81 Kamien, M.I. and N.L. Schwartz, "Optimal Maintenance and Sale Age for a Machine Sub-
ject to Failure," Management Science, / 7, B495-B504 (1971).

[91 Lippman, S.A., "Optimal Pricing to Retard Entry," Review of Economic Studies, 47, 723-
731 (1980).

[101 McCall, J.J., "Maintenance Policies for Stochastically Failing Equipment: A Survey,"
Management Science, II, 493-524 (1965).

11l1 Pierskalla, W.P. and J.A. Voelker, "A Survey of Maintenance Models: The Control and
Surveillance of Deteriorating Systems," Naval Research Logistics Quarterly, 23, 353-388
11976).

1121 Pliska, S.R., "Controlled Jump Processes," Stochastic Processes and Their Applications, 3,
259-282 (1975).



46 S.) ('IIKIL AND S.) I)|SIIMUKII

[131 Ross, S.M., .4pplu'd Piobahilitv Models with Optimization Applications, (H{olden-Day, San
Francisco, California, 1970).

[141 Stone. L.D., "Necessary and Sufficient Conditions for Optimal Control of Semi-Markov
Jump Processes," SIAM Journal on Control, 11, 187-201 (1973).

[ 5] Taylor, II.M., "Optimal Replacement Under Additive Damage and Other Failure Models,"
Naval Research Logistics Quarterly, 22, 1-18 (1975).

(16! Thompson, G.L., "Optimal Maintenance Policy and Sale Date of a Machine," Management
Science, 14, 543-550 (1968).



OPTIMAL MAINTENANCE MODELS FOR SYSTEMS
SUBJECT TO FAILURE-A REVIEW

Y.S. Sherif

I'parrt'ni of Induittrial and .Sy-stems Engineering
The 'nivcrsity of lIlabama in fhuntstilke

hunts vilh', 1 labama

M.L. Smith

/ )rp ilr n t o/ /ndoSPj(/ j . gin'eui.g
0%'\ !s l O~i olgic c l I ('Pul"lll

ABFRA(

I hi, pwer is i I-IIc-ol -Ihe-r r .'. e i the literliture related to optimal

nial int .nce model, of s.slms subject to lalure. t he emphasis is on ssork ap-
rvaring ,,nme the N"6 ,ur\e e. "A Surses of Maintenance Models: The (ontrol
and SUr.cillance of I)eteriorating Syr tems." h W.P. Picrskalla and J.A. Voelk-
er, published ilt I111 jS itlrnal

1. INTRODU('TION

Maintenance involves planned and unplanned actions carried out to retain a system in or
restore it to an acceptable condition. Optimal maintenance policies aim to minimize downtime
while providing for the most effective use of systems in order to secure the desired results at
the lowest possible costs. Proper maintenance techniques have been emphasized over the past
two decades due to increased complexity of systems, increased quality requirements and rising
costs of' material and labor. The two old concepts of maintenance: loving care (the reliability of
the equipment is directly proportional to the frequency of maintenance), and emergency
replacement (operate e4uipment until it is inoperable) may not be optimal. Both methods lead
to improper maintenance, excessive breakdowns, and high costs. Since the 1965 and 1967 sur-
,eys on maintenance by McCall and Barzilovich 13!5,341, a great deal of research has been
done in the field of optimal maintenance modeling, involving the aspects of optimal preventive
and preparedness maintenance policies. Tables 1-3 give the references in various classifications.
Some references appear more than once in Table I because these papers consider two or more
topics related to maintenance models. Also, some papers are not referred to in Table 2 because
the topics of these papers were not concerned with any specific model type.

2. OPTIMAL MAINTENANCE MODELS

The literature related to optimal maintenance models is classified as follows:

47
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Optimal Mlail.tenance M1odels

. )eterministic Models
2. Stochastic Models

A. Under Risk
B. Under Uncertainty
1. Simple System
2. Complex System
a. Preventive Maintenance (periodic, sequential)

or
h. Preparedness Maintenance (periodic, sequential,

opportunistic).

Optimi/ation techniques employed for obtaining optimal maintenance policies include the
following:

Linear programming
Nonlinear programming
l)ynamic programming
Pontryagin maximum principle
Mixed-integer programming
l)ecision theory
Search techniques
leuristic approaches

The characteristics of each optimal maintenance model considered in this survey will be
esplained briefly,

2.1 Deterministic Models

These models incorporate the following assumptions:

0 The outcome of every maintenance action is nonrandom.
" Maintenance action restores the system to its original state.
* The purchase price and salvage value of the system are taken as

given functions of its age.
" Aging (were and tear) increases the costs of operating the system.
" Aging failure is not necessarily operational failure.
* All failures are new, and can be observed instantaneously.
" By prolonging the operating life of the system through

maintenance, costs are incurred and benefits may increase.

The optimal maintenance policy for deterministic models is periodic and the times
between successive maintenance actions must be equal.

2.2 Stochastic Models Under Risk

Risk is a time-dependent property that is measured by probability. For stochastically fail-
ing equipment under risk, it is impossible to predict the exact time of failure; but the distribu-
tions of the time to failure of each component of the system are known.



2.2.1 Simiple S.,lstern Iretleilitiie Mainitenance Model (periodic, sequential)

I il' Miodel titli/CS the t( illii'~l iiitSSmtion11)111s:
* [hle s \slen time to failure is it random variable with ki~min

* ie s * sItni is either operating or iid
* 1 dilure1- is anl ahsiirbing state.
* Maii ntenance actio n regenerates tie svsten inirediate\ upon

complet io0n
0 1 he inter',als heiween SLICCCSSi\,e regeneration poits are

ndependent randoml \ariables.
* ihe nlilintenatiice cost is, I.eneralk h iigher fl Unodertakeni after

Ml opeoraitional 1*ai]lure thazn before.

Fihe optimial piihIic.\ for variis ilSsuniptiofls is ats fol)lowks:

* I-or SNSten \kitil nlinliid lifetime, the optimnal pre~etntixe
iintentance policy '\is the strictly periodic one-i.e..

Maintain s %Steml atilur h1,1-r atl an age/,
\%hichc\CI er(cclrs first.

* [:ior s~ stemns with constaint l'iilure ratte (e\poiintniaDll maintain
at failure.

* [iir s~ stems \%f ill increasing llire rate (W.eihbuill. gammna.
etc.. Ii r sioine parameter al ues). maitin ii i progressiv'~e schiedulhe.

0 1[or s~ ,stcmns wkith limited lif'etimei ( process with a relatively
short li feltime. i r equipment subject to rapid technological
change)i the best prec enti\e policy is the sequential one.
[1hi,, sequenCTtial picy recalculates the maintenance age
iafter each o~ crh.l It actuall attem~ptS to

riiimi/c thle e \pected cost iif' s.%stemn operat ionl oer thle
remaining life iif thc process.

2.2.2 Simple Si stern Preparedness M1ai ntenance Mo(del (periodic. sequential)

t his nmodel utili/es the follow-ing assumptiotis:

" The system ti me toi fatilure is at ratidomt \.riable \Xithl
know 6n distribution.

" The actual state o I lie s~ stem is k n ii wit Ih certat nt\
only atl the time of inspection (or maintenance.

" I aiure is an absorbing state.

2.2.3 Complex System Preventive Maintenance Model (periodic, sequential.
opportunistic)

This model is an extension it' 2.2.1 (or comnplexs systems. The optimal policy for '%arioius
assumptions is as follows:

* If the parts constituting the comnplex s> steni are interconnitected
in such ifa ay that they can he considered ats stochasticall\
and economically independent, then the optimal maintenance
policy f'or this complex sN stem reduces tot that of' the simple
systeni, i.e.. enlplo at periodic or sequential pre~enri~e
maintenance policy for each separate part.



" It indi% idual parts cintlct he Luolsidered as SICIIhastically and
eC0IlIniiICall% Independent, then d 1)0l1c0 called (he
oppo rtunist ic imc nance pol ic~ will he mo re effecti\ e. I 'oder
this puclic , thle 11aintenatlee cc a single uninspected part
depends on thle ,taic of cite or mc cre cc cotFInuc cuSl inspected
parts f le ocpportunisic nlmiicnlafce policy is adxanltgCOuS
w hen thle cost if' a jocint miaintentance action is less than the
sUlm ot thle Co st cit thle separate t n ena MnCCt n101S.

* It'dC11J N cope \~ stemn is cimlpccsed of a large collection of'
identicail Units of' equipment. then a hlck maintenance
phC\lc 111,1 he axantaLgeouIS. t'nder this poclicy. each unit
i,, replaced un filure, and all units are replaced at
perioidic inters .ls. /I* 2 T1. 3 ' .... without
regzard t10 mdiIdua Unit aIge. Scheduled and unscheduled
matitentance can he cocmhined. Consequently, this
pcclic ,\is, easier to implement, and results in lower administratix e
and maintenance costs.

2.2.4 Com~plex Systemi Preparedness Mlaintenanice Model
(periodic, sequential, opportunistic)

-1 hws model is an extension of' 2.2.2 tor complex sy stems. The optimal policy for various
atssl. m pt io ns Ii as Ic liowsi

" If' the complex systemn is under continuous surveillance,
then this mocdel reduces to the preventive maintenance
model descrihed under 2.2.3.

* If' the complex system is not inspected, then the only
maiintenmcnce policy tic secure the highest level of'
preparedness is replacement.

2.3 Stochastic Models Vnder Uncertainty

I or stucehastically Failing equipment under uncertainty, the exact time of failure and the
distributioun of' the time toi failure are not known.

2.3.! Preientive Maintenance Model for Simple and Complex Systems

-The optimal policy for various assumptions is oibtained as follows:

* When the systemn is new or Failure data are not known.
the minimax techniques are applied.

" When information about the system t failure rate.
etc.) is partially known. (hebvshex-r ype bounds are applied.

" When subjective belief's about the systemn failure are known,
Bayesian adaptive techniques are applied.

2.3.2 Simple (complex) System Preparedness Maintenance Model

'The techniques of' minimax strategies. (hebyshev-type bounds and Bayesian adaptive poli-
cies can be applied to this model as explained under item 2.3. 1.
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BOUNDS FOR STRENGTH-STRESS INTERFERENCE

VIA MATHEMATICAL PROGRAMMING*

Geiung-lo Kim
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ABSTRACT

Problenis of bounding Pr IX > )1, when the distribution of % is subject to
certain moment conditions and the distribution of ) is known to he of convex-
concave type. are treated in the framework of mathematical programming.

Juxtaposed are two programming methods: one is based on the notion of' weak
dualits and the other on the geometry of a certain noment space.

INTRODUCTION

Let X and its cumulative distribution function F(.) represent the strength variation of a
certain system, and let Y and its c.d.f. G(') represent the variation of the stress to which the

stem is subject. When Xand Yare statistically independent, the quantity R - Pr IX > )I =
G(t) dF(t) is commonly referred to as the reliability of the system. The problem of

estimating R has been addressed in the literature in a variety of different contexts. Among
such contributions are Birnbaum and McCarty's 121 nonparametric procedures for confidence
intervals, Govindarajulu's 17] improvement on Birnbaum and McCarty's work via asymptotic
normality of R, Church and Harris' [41 parametric procedures for UMVU estimation and
confidence intervals, Enis and Geisser's [61 Bayesian inferences on R, and Bhattacharyya and
Johnson's I1 generalization to multicomponent systems. In this study, we are interested,
rather, in bounding R with respect to F for fixed G, and in determining the corresponding
extremal distributions F*.

We note that this problem is a slight modification of the classical variational problem
underlying the Tchebycheff inequality, we need only replace G in the expression for R by a
fixed symmetric set characteristic function, and then maximize R subject to given values of the
first two moments of X. We note as well that both problems are special cases of what in Karlin
and Studden (91 (Ch. XII), are called "generalized Tchebycheff problems," which are treated
there, essentially, by the duality theory of linear programming.

The fact that problems of the Tchebycheff type can be solved effectively in the framework
of linear programming theory has also been documented, for example, in Isii [81, Whittle 1171,
and Pyne [131. In this paper, we treat the optimization of R through programming approaches,
which, though kindred in spirit to the above, do seem to be especially well tailored to our
problem, when the further assumption is made that G is "strictly unimodal, i.e., is strictly con-
vex to the left of some point, and strictly concave to the right.

*this research was partially supported by the Air Iorce Office of Scientitic Research. through (irant #75-3515 to
oi wa State 1'ni~ersits
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I hC lirI apprl,lh. CssCtiall% a linear specialization of the weak duality argunent of
I)asld and Kin H. icnommcnds itself 'or its simplicity, hut Fails when extrernal distributions
di ril C\ist I he s.i ai ,iroach, based on the geometry of a certain loment space, does
sUL'C .d III such Sitt ltoynS. hut is less direct We note in passing that Brook-s 131 hounding of
mont generating functions olers still a third programming alternative for the opitimization of
R In Sec. 2. Ac outlne the first method in conjunction with a certain pair of linear prograns
It'/./I). i and the Second ncthod i conjunction with a certain geonletricaliy nlotiated pro gram
I'll Sec 3. delcd to the first method, illustrates the consiruction of cxtrenial c.df.' . in the
context of twso simple examples. ec 4 illustrates the second method, using the examples of
.sec. .

2. LINEAR PROGRA IN( F(ORM[ I.ArIIONS

I)efin te lie t'dl shilg classes (1 ftUnctions:

I lhe class of' "generali/ed c.d.f.'s" / of the form l-'. where t > 0 and I-'a cd.f. on the
line.

-The class of discrete cd.l.'s I- oi the line with at most 11+1 jumps.

'The class of c.d.f. ''s (i oil the line that are strictly convex to the let of O, and strictly con-
cae to the right.

. The class of c.d.f.'s G on the line that are strictly concave on 10, oo] and identically 0 oth-

erwise.

S i = ,. Further, we assume that a 6 E # possesses probability density function
g (.).

For a given n-tuple It (i) l (I). /h,, (1)), where each t( (i) is a piecewise continu-
ous function on the line, let (H [h(lE)] denote the convex hull generated by It () when we
sary t over the line. [or it given point, h = (h 1. . . . . b,,) (1 [i (EI) 1. we formulate a linear
progranm

PI: maximizef G(M) dF()

(2.1a) subject to f dF(t) =

(2.1b) f hA () dl'(i) = hA. I < k < n

(2.2) and: E/ 5

where G is a lixed c.d.f, in (9

We note that the underlying space,'Fin (2.2), being free from normalization, is a convex cone.
Exploiting the cone structure of both (2.1) and (2.2) in conjunction with standard dual cone
theory (Luenberger 1101. (p. 157), and Sposito 115], (1. 261 )), we may write down a linear pro-
gram formally dual to ,/;

/)/: minimize A /3

(2.3) subject toA 17 (ift 6 (i). V I C EI:.

(2.4) andA = (Ai. A,. A,,) E Ei,+-.

where/- (Ih) andr 1) i ( 0hi)).
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Note first, by (2.1) and (2.3), that, if F is feasible for P; and .0 is feasible for DI, then

(2.5) f G) dPr() < f xA
0 

7"(,) ' dP(,) = X'JV.

[herefore, (as suggested in David and Kim 151, and Pukelsheim 1121), if" we find a feasible
solution pair (I", A ) that satisfies

(2.0) f [A )( / - Gt il"/ = O.

then 1 ,A *) is in tact an optimal pair for (1',.1),), and, certainly, I* satisfying (2.6) will need
to concentrate its mass on the "set of1 osculation"

12.7')7 , = Ir -, /)A I \ (- I - ;( = 0},

whose cardinality is bounded usually by n + 2, when the functions {G(t), 7(t01 are linearly
independent on the line. (See Karlin & Studden [91.) Sec. 3 contains detailed demonstrations
on how to construct an extremal c.d.f. F (which turns out to be supported at only n points in
one example, and (n- I) points in another example).

Now . with pecial reference to the second approach, consider the lollowing program I'.,
an essentially finite dimensional %ersion P1

P';: maximize f 6G,(1) Al-(t)

subject tof f (t) dl(t) = h. I < A n

and I C JF.

The fIact that P, and P; yield the same optimal value follows from the general considerations in
RoIosinski 1141 and Mulholland and Rogers 1111. The reduction of P to P; provides a useful
geometric version of our problem, in that the classy, of P; generates the convex hull C111"]
of the trace

Y = (-*........ _V, I, = hA t , t I < n, and

A,,. (). for sonie t C /I.

Ifence, we are led to the equivalent program

',: s)up -,.,

where C = (/1['I. and9. = Ix N1.v = hA, I < A i t, v,,, I E E.

See Van Slyke and Wets [161, and Pyne 1131 for similar constructions.

Since the set C in I,, is convex, the optimal value-x,'41 of P/ may be obtained by asso-
cialing this value with a suitable supporting hyperplane 1/ of ( at the boundary point
(h1 . ... \ ,.. Finding the equation for /,, is not easy, however, since C is known only
through I'. In Sec. 4 the problem of finding 1/h is attacked by considering I// as a certain limit
of all hyperplanes in /-,, I that cut or touch the set 1'.

3. II.LUSTRATION OF THE FIRST APPROACH

LXAAMPLI /. We wish to find the maximum reliability R* of a system whose strength
distribution [ is known to have mean 0 and variance h > 0, when the distribution of the stress
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to which the system is subject is given by a known continuous c.d.f. G in W. We compute R*
via constructing of an extremal c.d.f. F*. (Remark: There is no loss of generality in fixing the
common value of the mean of F and the mode of G at zero. If their common value is in fact,
say. a positive value M, then the corresponding F** is obtained by shifting F* obtained below to
right by AM.) Specializing the program pair (PID,) of Sec. 2 to this problem, we find the pro-
gram pair

P1: maximize J G(O ) dF(t)

subject tof dtl,) = 1

(3.1) f I dF(t) = 0

(3.2) f t2 dF(t) = b.

and F E F

minimize A) + A, h

(3.3) subject toA(+ AIt + A,12 > GI), Vt E El.

and A = (A. A1. A2) E E.

The osculating set T(A*) of Sec. 2 now is the set of r's where the parabola P(T) + +
77 + A,*r" lying above the "convex-concave" function G (r) touches G (r). At such 7, the

dcriatics P'(7) and G'(7) must coincide, and, since P'(r) is linear and G'(r) is either
"increasing-decreasing" if G E 6#, or "identically zero-decreasing" if G E , there can be at
most two such ,'s. We recall from Sec. 2 that the spectrum of F* must be contained in T(_ *).
[fence, in view of restriction (3.2), the spectrum of !* consists of exactly two points s and t
(with respective weights p and (I-p)), which, in addition, must be of opposite sign in view of
restriction (3.1), say, s < 0 < t.

Pooling all our findings and restrictions, we write down the following nonlinear relations
in the six unknowns l,. , ', A 11. A 1, and A ?:

(3.5) % p + tl-p) = 0

(3.6) %.p + t2 (l-p) = h

(37) All+ A*rI + A 7= r), 7 =

(3.8) A-+ 2A* 7 = g(T), =

I3.9) A* > 0.

Moreover, the optimality condition (2.6) adds the further requirement

(3.10) G(s) p + G 0) . (I-p) = A ( + X b.

Solving (3.5)-(3.10) for the six unknowns reduces to finding a positive t (and negative s
h/t) satisfying

(311) 1/21,t + t-,h/t)] it + h/ti = GO)- (1(-h/t).

I-or ( ' . relation (3.11 ) implies that t should be chosen such that the area under the den-
sits ,) between -- h/i and t equals the area of the tr:ipezoid formed by the four points

h/ t.0). (-h/i, g(-h/2)). ( 0g)')), ,0) }. For 6 , it turns out as well that we are to
equate the area under g(-) between 0 and t with the area of the triangle formed by points
1( N O~t), Ot.,0 0t), (t.0))}.
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L.. IlPI.* 2. Ilere we consider a slight modification of IExample I i.e., the restrictions
(3.1) and (3.2) are replaced respectively by

(3.12) f mI(I) = 1

13.13) f ,1 dl-( 1 =

Ihe osculating set I(A *) of' Sec. 2 now is the set of 7'S where the wedge i) -( A,;

A 7 + A 1 I IN ing above 6 (IT) touches G(r ). In view of' the strict concavity of (, r) for I >
I) and the specification of* 7(,) above, the set T(X ) is reduced to a certain nonnegatie sin-
gleton. which fact, in turn, implies that we should confine our search for an extremal I- to the
class of degenerate cdlf.'s. I lowever, since those / 's that satisfy (3.11) and (3.12) with h Ie
h, cannot he degenerate, the weak duality method requiring, as it does, the existence of an

extrcmal c.d.f. /*is not applicable in this case. ()nly in the trivial case hb h, > I, can wc fix
I * through i(A ), i.e., by weak dualit.

4. II..t STRATION OF TiE SECONI) APPROA('il

LA.\ .ILL a. (Ixarnple 2 of' Sec. 3) Speciali/ing of the formulation of' PH in Sec. 2 .ields

w here

= (//l'l. IF {.i = t, k,= 0,). and.\;= (B( ).

(4.1) some t E /:1

and

(4.2) \ 1 - = h , h, and E I1.

Since no triple of distinct points of I' can be colinear, an. such triple determines as hyper-

plane that cuts or touches 1. The iLea of our second approach is then to find a "best triple" that
ields the highest h perplane at h = (h.h,) among the collection II of' all "qualified" triples it.

In what follo ws. using the unrimodalit of Gi, we are able to reduce It to the collection I of
'qualified" pairs r of distinct points in I.

Jo see this in detail. we first introduce the notation I1(.) for the projection of the set S
into the plane \= 0, Notw, partition I into V and I", w-.here I is the leflt side of I.
ciorrcspitding to i < O, and I- is the right side of I corresponding ti I> 0. and deLine

It = v it satisfies the condition that h C ( ll Ii)l I.

[I - it { 't ( I, and any twi of' the three points of it in

I", with the remaining point in I }, and I = II - II '.

.,\[,,o, define hI it h = height at h (if the hyperplane determined by a triple it. (Note that l~,,

is eqtiialetit to find sup hI it h .)

l'sing essentiaIl. the con\cxih (f 6r I for t < 0, it can he demonstrated that

HI.MM.\ I. 1or anN triple w ( It , there is a triple it'( If' such thait /It(itb I
nI t h) I. Ilence. Sup h( tJ) I= sup h( itj) I. Next, we define the collection oIf pairs

u II u ' ii
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I= vlone point of v in I' and the other point in v
Is, V" and alIso( h,, (I II ')I

I o1rng the strict cmci\ i[% ( I G I for t ). %,%, find

LIAMIA 2 Sup h( .h) = suphl h).

I(' caluLiatC thie right hand side of the ahoc,. we ticed an cxplicit expression for hvb):
I ,irdni-itriiing h\ the (acut..e) ingle h t ,eetn II (( il I and II (I . and redefining h accord-
ingk'.. \,&c vritc

h (a;h = G(--A - or tan)a ./( +,or tana)

6(;r + 8 cota) or tan a/(8 +or tana).

i - 1 2(, b , 1 2th, 4- hi and , Ek ( G ri, r 21 .

\ furthI-r rCramn,_]tri/din h) p (6 + or tan ,t ). (aod redefining h accordingly , yields

(4 31 i (pj) p(; is ) + (I p) (, r/ (I p). p ( (0. 1).

ith the clprcsni m 4 )or h- the mnonotonicit\ o' (i allo\k, the conclusion that

\hwrco\er. ii b Z h. then thelre doe.'s not eist an .xtrenlal c.d.t, achieving tle optital alue
(, 1,r) i)f PIf -.wrre,0pcihng to the fact that I is not hounded. If h = h, > ). ho ,evr, there
Is 1n ,trcutal L. d . lgCnete at hI) achic.ing G (r .

L+ lIItI.I. 1, (I vatnple I of Sec. 3) In this ase,. (4.1 ) and (4.2) of" ,,,am ple a are
replace.d hb

(4.4) I v -" . and \,= ((t )i sorneic t F l .
14 ) j' 1 0. A . and., El A.

u I rig the ariah(gn, irgument. v repararnetri./e El I the nodification of' I per-
rincit to (4 4) ind (41), h () 10.t!.r] &here the angle 0 is betweenr the line extending

IM (//I\].) and tfie \I-axis

1or gisen / - (,h/ , r) letting p 112 tan I). Ae lind
/Ileh p b (I lp + 4 l 1- #( 1 i (p,) -p10 21r(p))

(4 o) 4 (, (p r1p (• 1r(p + p)/2r( .

Mherc , (p) (p. + h)1

I I Is cas, I heck thm (/01) is concake on 0 ()J and coriex on (0, Ioin view of' the lact
that (,I I .C I)ifferenitiating (4.0) with respect to pmnd setting it equal to 0( ields

(4') .,' + I(P) )+ .E:p i(p1 ) (/ ( p + rI(p)) -- p I

which is tol he sol ed for the pe in ( x* Itl Ihal niximmi/ed (4.6). We note that (4.7) d(oe,,
reduce IIto (3 If) with 1p 4 r1.
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BOUNDS AND ELIMINATION IN

GENERALIZED MARKOV DECISIONS

iary J. Koehler
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La/vete. Indiana

ABSTRA(

In discounted Markov decision processes bounds on the optimal value func-
ton can be computed and used to eliminate suboptimal actions. In this paper
we extend these procedures to the generalized Marko' decision process In so
doing %%e forfeit the contraction property and must base our analysis on other
procedures t)ualit. theor. and the Perron-Frobenius theorem are the main
tools

I. INTRODUCTION

In this paper a finite state and action, infinite horizon, generalized Markov decision pro-
cess consists of a finite set of s states denoted by .S; a finite set of actions .4, for each i E S. an
immediate reward c,' for each i E S and a E A, and a weighted "generalized probability" p, , for
each i. j E S and a E A,. Let A X A, denote the set of decisions. For , E A, c8 refers to

t=1

the s x I reward vector where c," " is the immediate reward for using action (i) in state iand
Pa is the s x s generalized probability matrix associated with using decision 8. A generalized
Markov decision process requires that

I. PA > O for each 8 E A

2. p(Ps) < I for at least one 8 E A

3. 1= v:v > Psv+ c8, 85  E A ;;- 0

where p(P) is the spectral radius of the square matrix P.

Lei X(.) and f ) be defined over R' where

,,(v)= Pv +

and

(v}= V-MaxY(v)
h, .1

where V-Max means vector maximization. Since each P, is isotone (i.e., x > j implies PS.V >
P,), Y. and fare accordingly isotone. Notice that f may not be a contraction mapping or
even an N-stage contraction mapping and thus may not possess a unique fixed point 121. Since
) -d 0, it is easy to show that fnas at least one fixed point 17,81. Let F = {v:v = ftv)} be

the set of fixed points off We wish to solve

-I his research %as performed when the author was affiliated with the School ol Industrial Ingiteering, Purdue t ni.er-
s m .,Acst I |lA ette. Indiana

PilLCbDiO PA~Z BLANK-NJOT FI1JALD



84 ( J Ki )III I R

v= l,'-Min v.
', I

This problem is well defined and is notivated in [7,81.

Such problems were studied in [71 as a generalization of [81 and encompass iraditional
discounted Markov decisions 161, the discounted processes investigated by Veinott 1171 and the
more general processes resulting from the duals to linear programs with (hidden) Leontief Sub-
stitution Systems and (hidden) essentially Leontief Substitution Systems. The latter two cases
include such applications as completely-ergodic nondiscounted Markov decision processes 191,
shortest path problems (with or without cycles), and the stopping model of Denardo and Roth-
blum [31.

It has long been known in the context of the traditional discounted Markov decision pro-
cess I10.12,13,151 and more recently in the discounted processes of Veinott [ 12] that bounds of
the fW(rm / < i, < u can be constructed and used to eliminate inferior actions from further
consideration as potential candidates of an optimal stationary policy [4,5,11,12,13,15].

In this paper we extend the development and usage of bounds on v* to the generalized
Markov decision setting. Since most results in the literature were developed using a contraction
argument and the generalized process does not usually possess this property, we must utilize a
slightly different set of machinery. We will rely heavily on duality theory and the Perron-
Frobenius theorem (see Varga [16] or Seneta 1141).

2. NOTATION AND PRELIMINARY RESULTS

Let v and v be two vectors. Write x > .j (respectively, x > .v) if v, > (respectively,
x, >I , for every i. Also writex v yif x > v butx v. Let L(.)= W z:z < x} and if T is a
set, let 1, ( T) = U L (x). If P is a square matrix, p(P) will denote the spectral radius of P. If

P > 0 and square then the Perron-Frobenius theorem gives us that Pv = p(P)x for some x >
0 and p (P) > 0. (I-P) 1 exists and is nonnegative ifp(P) < 1.

I-rom 11,181 we have that v is given by some A * E A where p(Ps.) < I and v*=
(/-6-^. -h*. In this paper we are interested in finding v* by successively iterating, That
is. 0 =f tv1 ) where v is an initial guess of v*. Let C = (v:v* = lim Y"'(v) be the set of all

starting points leading to v* under the successive application of' C ;,- 0 since v* E C. In
both the discounted Markov decision process and Veinott's discounted process C = R'. In
general, however, C ; R' [7,81. A useful result obtained by Koehler 17,8] is that L (C) C C
so, since v* E C, L. (v*) C C. The following short example gives a case where L (v*) C.
The problem is:

State Action PI" C"I

I 1 0 0 0
2 0 1 0

2 I 1 0 0

It is readily determined that v* = 0, 1) = F = {xe:A > 01 andY'v') = {x:.- < 01 where e is a
vector of ones. For any starting vector v° we get for n > 2

Max (0, v l)J (vM) = Max (0, v,')
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where hi= I and 1 2 if n is even and h = 2 and / = I if n is odd. Itence,JY"(0) converges
if and only it v" < 0, i.e.. v0 E L (v*).

From a practical point of view, it is easy to pick a point of L (v*). For example, let v" =

Md where M << 0 and d > 0. Thus, since L (v*) may be C(and picking points of L (v*) is
relatively easy, when we restrict attention to the case where v ) E L (v*) we do so without much
practical loss of generality. In the previous section we defined D = {v:v > Pav + c8, 8 E A) =

{v:v > J'X)}. We wish to express this set in one further way. Define the vector ." by

where ij E S and a E .A,. Let I" be a matrix having each /' as a row where a E A,, i E S.
Corresponding to V, let c be a vector of the c'-, values. Then we can write D as D = v:F'v >
c}. The matrix - is essentially Leontief [71 and since p(P) < I for some 8 E A, the set
{.:- > 0, v > 01 is nonempty [181.

3. ELIMINATION OF SIBOPTIMAL ACTIONS

Suppose one has bounds I and u such that I < v* < u. If action a E A, is part of an
optimal policy, then the inequality v, > EP, v, + c," must be tight at v*. Clearly then, if the
above inequality is never tight in the polytope B = {x:l < x < u) it cannot be tight at v* and
should be eliminated from further consideration. A typical test for checking this condition is if

(1) EP,' u, + c' < ,

then a is suboptimal (see 15,11,12,13,15) for such examples).

A tighter test results directly from duality theory. The inequality v, > YP, v, + c,' is not
tight in B if and only if

(2) i-," > 0 and (I - P,')(u, - 1,) < J,"

or

c"' < 0 and E .;(u,- 1,) > 7'
-,(i (2

where c," = " - '" 1,

Notice that the test in (I) can never eliminate an action when i," > 0 but that (2) allows
this condition. Anything eliminated by test (I) is removed by (2).

4. BOUNDS FOR THE GENERALIZED PROBLEM

We begin our development of bounds on r* by considering the restricted case where A =

{18 and p(P) < I. That is, we wish to determine bounds on v* = (/ - P8) 1 c'. Both Por-
teus [121 and, indirectly, Veinott [171 have investigated this case. Porteus first transforms the
process into an equivalent one where the new transition matrix 15 has all equal row sums
(whit , are necessarily less than 1.0). Once this has been accomplished, bounds such as
110,12,13,151 can be computed. Here we do not transform the data.

For the time being, let us suppress 8. Let d > 0 but otherwise arbitrary. Let a and b
satisfy
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(3) ad < V.. - v <hd.

We wish to deelop bounds of the form

(4) / = v' +a d < v* < y
'
.A +/3d= u

where A is a nonnegative integer. I lere v" =j(0), 
0 E C R' and n" = v

Since P is isotone, from (3) we have
(5) ~ apAd < M,0v,,. - P~Y; < hPd.

Multiply (5) by Pto get

aPA.1d <M pAv/I -pA.I,, < bPA ld

and add this to (5). We get

a(I + P)Ped < PA'v"I - Pv" < b(I + P)Pd.

Repeating this procedure and taking limits gives

(6) a(I - P) IPAd < P'v* - P~Y < b(I- P) Ipd.

PROPOSITION 1: Let v* = Pv* + c where P > 0 and p(P) < 1. Let v"', Pvf+ c

and d > 0. a and b are such that

ad < v" + I - v" < bd

and A > 0 and integral, then

ad + v" +A < v* < 3d + v'' +A

where

P3 _0 ifb =0
J3=>hY ifb>O

3 > by_ ifb < 0

and

a < 0 if a = 0

a < ay ifa > 0

a < a- ifa < 0

where

y = Max (Min) x'Pd

subject to

x'd- x'Pd= I

x'(I - P) > 0.

PROOF: We will prove the result for [3 and note that the proof for a follows in a similar
manner. Let y - b(I - P) Pd > v*- v" +A as given in (6). Then, by duality, v 1 [3d it
and only if x'(I - P) > 0 implies 3x'(I - P)d > bx'Pcd. Notice that x'(1 - P) > 0 implies
x > 0 since t/- P) r-> 0. Also, since p(P) < I, using the Perron-Frobenius theorem we
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get that x'(I- I')= 0I if and only if A 0 and x'(I - P) >, 0 whenever x >, 0 gives
-'(1/ - 1) > 0. There is such an x >, 0 (use x'= d'(I - P) 1). Hence, f3 must satisfy

= .(I - P)d

whenever x'(/ - P) > 0 with v > 0. Enumerating the cases where b = 0, b < 0 and b > 0
gives the results of the theorem. We need only show that the objective function of the linear
programs is bounded for all feasible points. Suppose this is not true. Then there is a ru"- z >, 0
such that:'d- :'Pd= Oor:'(/- P)d= O. Since d > 0and:'(1- P) > 0,'(- P)= 0.
This gives that z = 0, a contradiction.

Sonic useful cases follow.

COROLLARY 1: When A 0,

I I
I' -q "Y I r

and when A =I

q r

l-q l-r

%%here

q (r) = Max (Min) x'Pd

s.I.
.X"d =I

x'(I - P) > 0.

Note that q and r are both strictly less than 1.0.

COROLLARY 2: If d is an eigenvector of P with Pd Xd, then

I-A

Most of the bounds reported for discounted Markov decisions fall into one of the two
cases given above. Usually d is a vector of ones.

While determining or y is, in general, a nontrivial task, one can usually obtain useful
bounds on and y and use these. For example, the Perron-Frobenius eigenvector is a feasible
solution so

> >(P)
-> ll(p) > , 0.

Also, as is commonly known,
(Pd), (Pd),

Min ( < p(P) < Max

The dual problems also provide bounds although one must obtain tight enough upper bounds to
be meaningful.

We now return our attention to determining bounds for the generalized Markov decision
process. In the following we assume v° E L (v*) so that
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and

(7) I,"'' = Max (U,", v,' 1)

provides us with lower bound to v* at each iteration. An upper bound is not as easy to
derive.

In the unlikely event that S* is known, one can use the upper bound developed in Propo-
sition I since

Pl.(v "-1 - vI) < bP4.d

plus

PAA:'(v" - v") < bPh 'd

gives

MA .,vn , - Pi.v < b(I + P.)P,.d

or, in the limit,

Ph.v*- P8.v" < b(I - P8.) 1P8,d.

That is.

v* - . (v") < b(I - P,.)-P.d.

The resulting bound is

(8) v* < Y'(v") + Prd < v"+A + P d

where P is given in Proposition I and - and y correspond to Ph.. For k = 0 we get v* _ v" +
3d and for A = I we get v* < ,.(v") + 3d < v"' 1 + Pid.

We realize, of course, that if 5 * is known, one would ignore all other 8 E A and work
only with 5". A more reasonable case is if S* is unknown but _Yh is known. Since vo < v*,
v > v" for all n unless v" = v*. Hence, v" - v" < bd implies b > 0. Thus, knowledge of

,. is sufficient for determining an upper bound on v.

As an illustration of (8) and the elimination procedure of (2) consider the following
example:

Example I State Action P,'' c,"

1 0 2 2
2 0 1 3

2 1 2 0 -6
2 1 0 -3
3 0 0 -1

Note that no Ph has all its rows less than one. Here

v-
*= (213

p(Ph.) 0
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d- f ~ I for k 1 .
Let V= -IOe. Then

so

vi - Vo= 131.

Let b = 9andI3= 9. Then.

Using the elimination procedure of (2) we get

State Action c' Test Value

1 7 9
2 9 9

2 1 -19 -18 Eliminate
2 -9 -9
3 0 0

Suppose neither 8* nor jY. is known. Consider the following. Let A' _ A such that 8 * E
A', 8 E A' implies p(Ps) < I and if 8() = 8(i) for some 8 E A' for each i = I .... s then
6 E A'. A special case is A'= {*). After appropriate permutations we could write F =
(FI. F 2) where F, corresponds to A'. The matrix F, is totally Leontief and has several desir-
able features, one of which is that the set {x:Flx - 0, x > 0) is empty [18]. Let F, = B - Q
where each column of Q looks like e, - J]' where a = 8(i) for some 8 E A'. B then has unit
vector columns and each row has at least one + I.

In a manner analogous to the procedures leading to (6) and (8) we can determine condi-

tions on 3 such that

(9) bPbd < (I- P8)u

u < j3d

for all 8 E A' and thus obtain an upper bound to .. System (9) can be written as

bd <Fu k=0

u <(d

and

bQ'd < Fju k =

u < 3d.

The following result follows:

PROPOSITION 2.

Let d > 0 and b satisfy

v+1 -v,"< bd
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where %P E L (v) and v"  '(v). Let F, be constructed as given above. Then

v* < v"I'+ 3d

it'A = 0 and

/3 > h Max d'

S.t.

d'Ix= I

Ix > 0

N > 0
(r it' A I and

/3 > h Max d'Qx

S.t.

d'(Ix = I

FIx > 0

x > 0

PROOF: Let g bd if k = 0 and g bQ'd if k = 1. Then g = Flu, u < 3d has a solu-
tion if and only if x > 0, /Fnx > 0 implies /3d'Fnx > g'x. The rest follows as in Proposition I
except here we note that the constraint set is bounded since {x:Flx = 0, x > 0 is empty.

The dual linear programs provide upper bounds to the solutions of the problems in Proposition
2 and these in turn are upper bounds to _.. The bounds of Proposition 2 are used as

v* < v'1 + 3d.

The final case we consider is when no A' can be determined due, perhaps, to the necessity
of knowing that 8 * E A'. In such a case one is faced with the unpleasant task of determining a

8 for each 8 E A where p(Ph) < I and then using the largest such value in determining/3.
This would involve solving

(10) Max x'P~d

S.t.

x'd - x'Phd = I

x'(I - P) > 0

x > 0

for each 6 E A. Unbounded or infeasible problems can be ignored. While this procedure
would be a considerable task, if a decision problem is to be solved a large number of times with
only the c,' elements changing, then it may be of value to determine a bound for /3 in this
fashion.

As an example, the optimal solution values to (10) for each 8 E A of the problem in
Example I are:
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8 Value (k = 1)
(1,I) No Solution
(1,2) No Solution
(1,3) 2
(2,1) No Solution
(2,2) No Solution
(2,3) I

Thus, without knowledge of 8 * one would have to use 13 > 2b. Note also that A'= {(Ij. 1211
and the procedure of Proposition 2 would have led to )3 -> 2b also.

As a final note, it is not always possible to abstract a A' _ A containing all 8 E A having
p(Ph) < I with no8 E Y'having p(P8) >_ 1. For example,

State Action P,

1 0 0
2 0 1

2 1 1 0
2 0 0

we find that p (Ps) < I only for 8 E 111, 11), 12)1. This set does not qualify for a A' set since

F= has p(P,) = I Yet 8(1) and 8(2) are represented in the set. Hence, one may have to

use (10) instead of Proposition 2.
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I. INTRODU(TION

Consider the general integer linear programming problem:

(P) Min cx subject to Ax < b

where S = {x. > 0: G. -< h, x satisfies some discrete constraintsk. Here. ..I and 6 are in v it
and q x n matrices respectively, with all vectors having the appropriate dimension.

The surrogate relaxation of' the problem (P) associated with ant ., 0 is

(P\) Min C. subject to V0.4x-h) ( 0.

If we define the function

v, () =The value of an optimal solution to problem (') if one exists

and +00 if the problem is infeasible

93
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then clearly .-(P') provides a lower bound on v,(P1' for any v > 0. The best such bound is
achieved by the surrogatc dual.

Atax L, (I I" )
kD,) v ).

Only in rare integer programs would one expect such a dual problem to directly produce a
solution to (P). Thus, the importance of duals in integer programming centers on their ability
to produce bounds for a branch-and-bound procedure. By careful partitioning of the constraints
of a problem into those which are relaxed Ax < h, and those which are enforced .v E S, prob-
lems, (P'), can be created which are easier to solve than (P). Thus the bound t, (P') is easier
to obtain, and searches over v >( 0 will produce improved bounds. The successful application
of duality in a branch-and-bound scheme can be seen to depend on the quality of these bounds
and the ease of computing the bounds, since one must repeat the procedure over and over with
different candidate sets.

Recent research (see Karwan and Rardin 161) has produced a number of surrogate multi-
plier search pi ccdures. Empirical results 151 suggest surrogate duals may close a significant
fraction of the gap between the values of the lagrangian dual and the primal problems.

In this paper, the intent is to more fully develop the inner play between the surrogate dual
and the primal in a branch-and-bound procedure. When the two are considered conjunctively a
number of adantages are gained beyond the providing of a bound by the surrogate dual. A
number of general observations will first be made with respect to the surrogate dual. Then
specilic issues or parts of the general branch-and-bound procedure will be developed in their
relationship with the surrogate dual.

2. SURROGATE SUBPROBLEMS

Consider the surrogate relaxation of (P) for any v >, 0. Note that (P') is itself an integer
linear programming problem with a single main constraint v(.,Ix-b) < 0. Thus, it is a knap-
sack problem with a set of side constraints, .x E S. A number of solution techniques have
appeared in the literature for the case of S l 1.v: x > 0, .v bounded above). Basically these can
be divided into two categories, dynamic programming procedures and branch-and-bound or
implicit enumeration procedures. For a good review of the dynamic programming procedures,
see Garfinkel and Nemhauser 131. It will soon become evident that a branch-and-bound pro-
cedure will be more convenient in solving (P'), because the relation between the primal and
knapsack branch-and-bounds can be exploited. Moreover, Cabot [I, Kolesar [7i, Fayard and
Plateau 121, and Greenberg and Ilegerich (41, among others, have developed branch-and-bound
procedures which proved computationally more efficient than the dynamic programming
approaches. Finally, Karwan and Rardin [61 have shown that each surrogate relaxation need
not be solved optimally. Only a feasible solution with value less than or equal to the incumbent
solution value of the surrogate dual is necessary for terminating the solution of (P). By solv-
ing (P') via a branch-and-bound procedure such solutions are readily available, require no extra
computations, and lead to fewer iterations (choices of v) in solving (D). In a dynamic pro-
gramming procedure, however, a feasible solution is generally not available until optimality is
obtained so that (P') must be solved completely. For these reasons, and more to become
apparent upon seeing the inner play with (P), the remainder of this paper assumes surrogate
relaxation subproblems are best solved via a branch-and-bound procedure.
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Role of the Primal Incumbent in (PV( T))

In branch-and-bound procedure, the set of feasible solutions to (P) is partitioned into
independent subsets by an enumeration which places additional constraints on integer variables.
The unenumerated portion of (P) is represented by a list of cadidao' problms, each of which
is simply (P1) with certain additional constraints x- E T -ppcnded. To facilitate the discussion,
we define P( T) to be the same as (P1) except that _v is restricted to x C T' We also define
s, *(P) to be the value of the best currently known feasible solution to (P), i.e. the value of the
incumbent solution used to provide an upper bound on the optimal solution value.

Note that v( 1( F)) is being employed as a bound for some candidate problem P( T) in
the primal branch-and-bound procedure. I lowever t,(P'( T) is a valid bound in P( T) I for all
v >_ 0, not just the v which maximizes s, (P'( TH. Thus, (D ( T) need not be solved optimally
if'i (1 1 T)). for sonic v used on the way to solving (l ( T)). is sufficient to fathom P( T), i.e.,

IPV( T)) > v *(J).

Conversely, the value of the incumbent in the primal, v *(P), may be used as an upper
bound in solving any IP'). That is, if no completion of a candidate problem in IP') can pro-
duce a solution with value less than v *(P), that candidate problem in (P') may be fathomed.
If all candidate problens in the knapsack (P'( T)) fail to produce a solution with value less than
v.*(P), then it can be concluded that v (P' (TI) >, v'(P) so that the candidate problem P1( T)
may be fathomed in the primal.

3. CONDITIONAL BOUNDS AND BRANCHING VARIABILES

The rationale for the interaction between the two branch-and-bound procedures with
respect to conditional bounds and branching rules can perhaps best be understood xia a )-I
integer programming example. Later a procedure for the general case will be presented. Con-
sider Figure 1 which presents a branch-and-bound tree for the problem (P'I T)) where P( T) is
a given candidate problem from the primal tree. This tree may result from the application of
any branch-and-bound procedure for solving (P'( T)). The soiution is found at node 8 with
value t,. Since the full tree is shown and an optimal solution has been found,. .. 1-1.
must all be > a'

Now t number of important observations may be made. Ifa'r is ,cccpted as the optimal
solution value for (D (T)) and the candidate problem PIT) is not able to be fathomed (v <
v, *(P)) then a branching variable must be chosen and a conditional bound computed for each
of the two new nodes created in the primal tree. Note that if v1 is chosen as the branching
variable, then a valid bound on any solution to (P(Tf{.\:. v = 11)) is given by
' = Min(t', v'). Also, since v ' was the optimal value of (P'( T)), v > vs' . So even though
v' < *(P), it is possible that the bound v >_ v (P) so that no completion of'
P ( T _\-: .vI = I}) will ever need be considered. It follows that v, is a good candidate for a
branching variable in the primal tree. Note that a conditional bound for branching on .\, may
be taken as Min (a',>i ,a' ) for.%,= 0 and Min (,'. i, ,' v for ., = 1. One problem is that all
of the end nodes for which .\ is a free variable must be included (hence v') in calculating both
bounds, vl is the only variable for which no free end nodes may exist, and we will choose it as
the branching variable.

What is required to implement the branching procedure suggested above is the saving of
the minimum value or bound on the end nodes for each of the two sides of the tree defined h%
the first branching variable. An end node may be recognized as one from which a, fatllomii
occur, Thus, before fathoming it is necessary to determine which side of the tree one is 'I
check to see if the bound on that node is less than the saved bound for that side of thc it,.
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and it necessary, replace that saved bound. Then after solving (I"(T)) one will have (" (T))
as the bound on one side ( , " in Figure I), and a bound saved for branching on the nonoptimal
side of the tree (Min( 2,. t, 3) in Figure I).

0

x 1 = 0 xI 1

v 4v 1 = Bound on all completions
of (pV (Tn{x:Xl = 1))

x4 =0 x4 
= x2=

v5 5 v6  6 3 v3 i v2

x 2 = 0 /x 2 =

v 7  7 8 v8 = v (Pv (T ) )

S C J x:O < x < 1, x integer)

I1 Il R1 1 1 \,1in l d a~ 14.11r an Houllrnd 11,:.C Iml t/1,1 I

4. INTERACTION OF THE SURROGATE SEARCH MASTER PROBLEMS

The two surrogate dual algorithms which appear most promising as discussed in Karwan
and Rardin [61 both keep a list of the x's generated by each surrogate relaxation and solve a
master problem involving these x's to obtain a new surrogate multiplier v. These master prob-
lems, one for each candidate problem in a primal branch-and-bound procedure, may te seen to
interact in such a way as to save a great deal of time in solving (D%) at any proceeding node in
a primal tree.

Consider the primal branch-and-bound tree shown in Figure 2 for a 0-1 integer linear pro-
gramming problem. Assume that a master problem, or at least a list of the x' generated in
solving (D (,h )) at node 0, has been kept and it is now time to branch on x1. Scan the master
problem at node 0 and place all x', i= I, 2 .... k which satisfy x = 0 in a new master problem
for solving (D),( T)) at node I of the primal tree. All solutions x E S, v I= I such that
cx < v (D," W have been made infeasible by the optimal surrogate multiplier at node 0 If
one is to it 1 i',( as a bound after branching on x, then all of these x's must be
included in v master problem at node I. This is valid since the candidate problem at
node I is a mo onstrained version of (P), and all the x's put in the master problem satisfy
this extra constraint.
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[his procedure may be continued as follows. In sobMng (I),11) at node I, possibly more
\'s are generated When branching to node 2, all 's in the master problem at node I with \4
= m may be put in the master problem to begin solving the surrogate dual at node 2.

An% candidate problem may be chosen to be explored next in it branch-and-bound pro-
cedure and a number of strategies have been suggested. The "last-in first-out" or .1l"0 pit)-
cedure always chooses the most recently added member of the candidate list to explore. Refer-
ring to Figure 2, the nodes have been numbered in the order in which a lIO procedure might
explore them. Ilence, the order of branching is from node 0 to node I to node 2 and to node 3
at which time node 3 is fathomed, either because the incumbent solution to (P) was exceeded.
a feasible solution was obtained, or it was determined that -vl = 0, .\-4 = 0 and .x = I precluded
any feasible solution to (P). Thus "back-tracking" goes to node 4 which is also fathomed, lead-
ing back to node 5. In a LIFO procedure note that there are never more than two nodes at any
given level of the tree, a level being defined by the number of fixed ,,ariables or extra con-
straints on (P). For instance in Figure 2, the fathoming of nodes 2 and 5 must occur before
node 6 is chosen as the node from which to branch. In large integer programming problems,
where many V's from previous surrogate master problems are to be stored, storage can be a
main concern and it is minimized by using the LIFO branching procedure.

0 VO

V6  6

x3 = 0 x3 = 1

I 1, 2 I xamplc of It Primal It ranch-anl[II-uound I IcC

The master problem interactions can be shown to be very eflicient in terms of a LIF()
branching procedure for (Pl). Again consider Figure 2 and the following use of a "current
table" and a "save table." At node 0, the master problem consists of' the following v's, say for n

dimension of' v = 5,
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0 0 I I 1 1
1 0 1 0 1

0 1 1 I0 0

X I 1 0 I 0

Branching takes place to node I. Those x's which have x1  0 (x' and x ) are placed in the
'current table" for the "current" or next-to-be-explored candidate problem, The other x's (x?

and x4 ) are placed in the "save table" and it is noted that at Idvel I of the tree, the next open
slot in the save table is in row 3. Node I is now explored and some new x's are generated and
put in the current table which becomes

X1  0011 1

. 01 100

0 0 1 0 1

N' 0 1 0 1 1

No% it is time to branch to node 2, so those x's which have x4 = 0 remain in the current table.
i.e. and %'. and v" are placed in the save table and it is noted that the next open slot in
the save table at level 2 of the tree is 5.

The current table is now

0 011 0 0
0 I 0 0

and the save table is

x: 1 0 1 0 1 L = 1
V\ 11010

X~ t) 10 1I 0
X 00 11 1 L= 2

. 0 10 1 1

Assume that, in contrast to Figure 2, fathoming occurs at node 2, possibly after generating
some more x's. Now the current table can be cleared since it is no longer necessary to explore
any candidate problem with x 1 = 0 and x 4 = 0. In fact, these x's will never be generated or
needed again, since either x, or x 4 or both will always be fixed at I in any future candidate
problems. Now the LIFO branching procedure goes to node 5 with x, - 0 and x. = 1. But
some of these x's are stored in the save table from the last slot in the save table (5 - I = 4)
back to the next available slot stored after the previous level, level I, which is slot number 3.
These are put in the current table which is now

X' 00111

x 01011

and the save table is now

X 2  10101

x 4  1 010

Possibly more x's are generated at node 5 and placed in the current table. A fathoming then
occurs at node 5 and a "backtracking" takes place to node 6. The "other side" of level 2 has
been explored so the backtracking must be to level 1. The current table is again cleared and
the elements in the save table f'rom the last slot to the first slot for level I savings (slot 1) are
placed in the current table. The procedure continues, with only two lists being necessary to
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easily store, update, and use all of the k's generated by solving surrogate relaxations throughout
the primal branch-and-bound procedure. Note that no V's will be regenerated using this pro-

* cedure, an( again that once the current candidate problem is fathomed those x's may he taken
out ot storage

The following is a lormal outline for branching and Iathoming while employing the
current and save tables in a LIFO branching procedure for a general integer linear programnming
problem. Let

L =current level in primal branch-and-bound tree
7,, =two new candidate problems created at level L. 7',', is

candidate problem chosen to explore next

SAVBNI) (L =bound saved for candidate problem at level L which
is not being explored next

NXSV =next available slot of the save table
NXCR =next available slot of' the current table
NSV(L) =next available slot of the save table at level L

in the primal tree
(P) =incumbent solution value to (P)

Branching:
If SAVBND (L ) < i, *(P), place all x's from the current table
satisfying x E T( , into the save table, updating NXSV. In
any case, let NSV (L I = NXSV and remove all x's satisfving
V E T, , from the current table, closing up the current
table and updating NXCR. Determining if x E T2/, is done
simply by checking the single component of x upon which the
branching occurred.

Fathoming:
Clear the current table by setting NXCR = I. (If T,"2, has
already been explored, SAVBNI)(L) = +-.) If SAVBND(. ,(P)

replace NXSV by NSV(L- I ) and L by L-I until a candidate
problem is found to explore. Place rows NSV(L-l) to NSV(L -I
from the save table into the current table. Update NXCR.

After branching or fathoming more x's are generated while solving (D I T)) and placed in
the current table until it is time to branch or fathom again.

Although formally developed here for a LIFO branching procedure, the current and save
table concept can be used for any primal branching procedure (e.g.. least lower bound) by scan-
ning a single save table for x's which satisfy the constraints on the present candidate problem
As seen above, this scanning is done very efficiently in the LIFO procedure by simply keeping
an indicator (NSV(L )) for each level (L) of the primal tree. In any case, when a candidate
problem is fathomed, the appropriate x's may be taken out of storage and will never be needed
or regenerated again.

5. COMPUTATIONAL. ANAIYSIS

A set of randomly generated 0-1 integer programming test problems (see Karwan 1511) %k s
used to demonstrate the developments discussed in this paper. A LIFO branching procedure
was employed in the primal branch-and-bound tree and the LRMP procedure. (see Karan anm
Rardin [61) was the surrogate dual multiplier search procedure employed.



100) %1 11 KARWAN AND) R I R..Rt)IN

rable I presents the results ot' employing the above techniques on three problem sizes
% ith at low and a high density and five rcplications per cell, One of' the principal causes for
interest in surrogate duals is improvement in hounds. 'rhe percent of' the LP' to iP gap closed
by% the surrogate dual. i.e.,

appears substantial. The large range f'or a given cell is perhaps to be expected with such
unstructured randomly generated prohlems.

Sonme measure of the efficiency of' the interaction hetween the primal and the subproblem
branch-and-hound procedures is provided by the remaining columns of Table I. As expected,
the principal part of all time spent on candidate problems is consumed in knapsack subprob-
lems. Values in columin 8 range f'rom 71%/-82"%. Ilowever, the number of knapsack subprob-
ferns solved at an\ particlar node is quite small (column 6). The small numbers are a conse-
quence of' the save table-current table scheme developed in Section 4. Another indication of
he efficienc ' of- the save table approach is the relation between the mean time to solve the first

surrogate dual (column 4) and the mean time to solve all surrogate duals (column 7). For
larger problem si/es the a~erage surrogate dual-which begins with many v5 saved from previ-
ous, knapsacks -solves in i-1 (iA, of' the tinme f'or the first dual.

'IAB3L[ 1. Primnal Branch-and-Bound Emnpiricail Results
(livme Replica ions per cell/)

* I '''4, 17 S

,I, i' , 11, tI' d I si l 'd 1,11 U ' r NU 1 t\Ti ,i', k 0%~ t nic / Percent in
I' ,I' h, 1), 111r ,011 .1111 B11111I I I St-,i / I L' sol'.d \'dc (c' tKnapsack
S I I.C&? (-J I1Il P j )P rNo c IlN d )IjleN d

1'4 .1 2)0 2 67 M 11 723
Ix 1,11 (54 21

H ' 1 ' (I 31 122 71

Io - II I)')

1411 0,- 4X 3' (2X X2 I
Ii I '''I(21)o11

X 1I 1i , 44U 0 S 1 X)

I I'' 2 I 1 )
4' I I )2 "ON 2 4 5

111x1 I I 61
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EXTREME SOLUTIONS OF THE TWO
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ABSTRA( r

I lie paper prm,,ides a n." theoretical Iramev ork to identily extreme solu-

tions (i the 1Ao maichinc flis%-sho p problem Sirme remarkable propertics of

these solutions he been deselopcd As a result the problem of generating
1nininial solutions can be dector| osed into i number of s maller s abli rohlenls

I. INTRODUCTION

The well known two machine flow-shop problem can be formalized as follows. Find a
permutation P = Pl p .2 ..... p of numbers 1. 2. n that minimizes

()T(P)= max Ap, + XBPJ

where A,. B,, r = 1, 2. n are given positive numbers. According to the flow-shop termi-
nology T(P) is the completion time of n items processed in a sequence Pt, P.2 ..... p,, while
A, and B, are operation times of item r on machines A and B. Each item is to be processed
first on 4, then on B.

Let / = (I. 2 .... n) be the set of all items, and i and j two arbitrary items of I. Intro-
duce the following relation

(2) R (i/) ,'/ [min(A,.B,) < min(A,,B,)].

Notice that R (ij) or R (j,i) holds for every pair i,j E 1. We say that P = Pl. P,. p,, is an
R-sequence if

(3) i<j-> R(p,, p,), Vi. j E l.

As shown in Section 2 every R-sequence minimizes (1). The set of R-sequences is usu-
ally a small portion of the set of all minimal solutions.

This paper examines the properties of extreme (minimal, maximal) solutions of the flow-
shop problem. It provides necessary and sufficient minimality conditions (Section 3) simpler
than those of [41 along with sufficient maximality conditions (Section 6). It introduces a critical
item concept (Section 4) that leads to several remarkable properties of extreme solutions. As a
result the problem of generating minimal solutions can be decomposed into several smaller
several smaller subproblems (Section 5).

11)3

Pt~L~hJ~o 1c2BLAJMK..O FIllk&D.

) ol
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2. R-SEQ[UENCES

Let II he the set of all n-element permutations of' 1,2, .. n n. We will use symbols
P. Q. P. Q. P, to indicate those permutations. Let Q =r.ijr, and Q = (r.ii be two ele-
ments of II.

LEtMM\ I: (21 => IT(Q) < T(Q')1.V;iTjr, ,r/ji7T II.

PRO)F: Due to (I)

T(Q) maxi .4, + T(rr,. A, + T(ij) + B,. T(er) + , Br

,,,= mai , T(7r 4, + D0 + ,B,, f!r) +

Consider inequality

(4) T(.) < (ii)

which is equivalent to (2).* The theorem holds since (4) implies 1(Q) < T(Q .

Let P = P. p2 ... p,, be an R-sequence

THEOREM 1: Pminimizes (1).

PROOF: Consider an arbitrary sequence P E 11, P' ;; P. Then P'= rpjp,r for some
i < . According to (3) and Lemma 1, T(rp, p,,T) < T(P'). Hence, P'along with every per-
mutation other than P can be eliminated from II as nonoptimal. The well known Johnson's
Algorithm 121 of constructing sequence P = P.pP2 A, can be defined in the following
manner:

STEP I Find min(min .4min B, 1.

STEi' 2

(a) If the minimum is at 4,, < B, define J = (pt} where Pt is the element with
the smallest subscript among the elements of the set Irl A, - Aj.

(h) If the minimum is at B, < ., deflne J = p,, where p,, is the element with
the largest subscript among the elements of the set (rl B, = B, 1.

STEP 3. Replace I by --J and repeat Steps I and 2 until all elements of P are deter-
mined.

COROLLARY I: Johnson's Algorithm produces an R-sequence.

*Tlff).1,r). 10/,I. l(p) are defined by (1) (or SCeUences r. , 0. /1 Hence.
101) - max .1, - H, 4 H,.t, -+ A, + H,)

'1(1) = max(.1, + H, + B, .1 + .1, + H,)

to see i subtract 1, 4 B, . , H from both ,,ides of (4)
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PROOF: Let P= 1.2 ..... n. Assume that R (ij) does not hold for some i <j. Then
min(A,.B,) > min(A,.B,). Consequently, Johnson's Algorithm will place element j in front of'
element i contrary to our assumption, Q.E.D.

Introduce the following notations:

E,= A, - B,. I = Irlr E I, E, < 0.

' = )rlr E 1, E, > 0). I = Irir E 1, E, = 01.

Let P = p1, ..... p,, be an arbitrary R-sequence. Then the following obvious proper-
ties hold:

PROPERTY 1: The elements of I are arranged in a nondecreasing order of the A, and
precede the elements of ' that are arranged in a nonincreasing order of the B,.

PROPERTY 2: The elements of P can be placed in any order as long as they do not pre-
cede (follow) an item with a smaller A,(B,),

PROPERTY 3: Any subsequence of Pis an R-sequence.* Consider a sequence (r,T r C 1,
and an R-sequence 7', where 7r C I - o-.

PROPERTY 4: T(o-r) < T(o--), T(ro-) < T(7r'a-) for all possible permutations I of

the elements of 7r.

PROOF: According to (1)

T(o7r) = maxl A, + T(7r),T((T) + Y B,j ,

T(r) =maxI A, + T(ir'), T(a-) + Bj

Hence, T(n-) < T(T) To-rn) < T(rrr'), Q.E.D.

One can similarly prove T(iT(r) < T(n"o'). According to Property 4, to find a sequence
that minimizes (1), provided (- is fixed, arrange the items that follow (precede) (, in an R-
sequence.

This rule may not be valid if (r occupies a middle position. Consider the following exam-
ple (Figure 1):

A, B,

1 2 3
2 6 8
3 9 10
4 3 1

I his doe' n() nic n thdil t I subsquiln e 01 eiii Uplrnial wcquc oi ', nO il (see Rcmirk I Sc l )
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Assume that we are to find a sequence that minimizes (1) where (r = 3 occupies the second
place. Although 124 is the only R-sequence of I - (r= (1.2,4), 1324 is not the best sequence
since T(2314) = 29 < T(1324) 30.

3. NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS

Define W(ir) = T(r) - , B,. for r C 1. Then

(5) W(P)= T(P)- B,= max 'A,, + E,.t lI~u ' r I

Consequently, the minimization of (1) is equivalent to that of (5). As known W(P) is the idle
time of machine B while processing sequence P. Let (r and if be two sequences, iT C I - r.

PROPERTY 5: W(urn) >, W(r)

PROOF: According to (5)

W((rlr) =max W(fr).l E, + W(7r) 1,Q.E.D.

Observe that W(airf) >, W(ir) may not hold. Consider two sequences P a-yii" and
Q = or iyir, define the following conditions:

(6) A, < W(P)- i.E_

(7) A,- B, < W(P)- YE, - W(,).

For P = lr.fiT and Q = rijr formula (7) becomes

(7a) A, - B, < W(P)- E, - A,

We will show

PROPERTY 6:

E, < 0 =p 1(6) W [(Q) < W (P)l1),

E, > 0 -> 1[(6) and (7)] 4 [W(Q) < W(P)f.

PROOF: Due to (5)

W(P) = max 1W(oT),W(-Y) + YE,.A, + YE_ W(7r) +YE

W(Q) = max 1 W( )A, + E,,W(y) + YE, + E,,W(7r) + E,

If E, < 0 then W(Q) < W(P) whenever A, + YE, < W(P). On the other hand if

A, + TE, > W(P) then W(Q) > A, + ,E, > W(P). Q.E.D.
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One can similarly prove case E, > 0.

Assume that P is an optimal sequence, which means that P minimizes ( I ) and (5).

COROLLARY 2: Q is optimal i/and onY ilone of the following conditions hold:

1 (6) if E, < 0, or

2 (6), (7) if' E, > 0.

Consider the f'ollowing example (Figure 2):

A, B,

2 3 5

3 6 4

4 6 3

1I(,t RI 2

P = 1234 optimal and W(P) = Let er = d. i = 2. 3. Permutation 2134 is optimal due to
F,< 0, and (6) (3 < 5 - 0). while sequence 3124 is not optimal (6< 5-0).

Assume or = (I) -y = (2), 1 3. Both conditions (6) and (7) are met (6 < 5 - (-1),
6 - 4 < 5 - (-I) - 3) Consequently, 1324 is optimal. Observe that neither 2134 nor 1324 is

an R-sequence.

REMARK 1: Although 1324 is optimal its subsequence 132 is not, since T(132)
16 > T(123) = 14.

Usually the number of optimal solutions far exceeds the number of R-sequences. Con-

sider the following case:

E, > 0. Yi, max B, < min A,, B, ;e BV i ; j.

While there is only one R-sequence the number of all optimal solutions (where the last

element is an item with the smallest B,) is (n - )!.

4. CRITICAL ITEMS

Element u is a critical item of an optimal sequence P - cr uir if

W(P) =A, + E, or TP) - Ar + I Br]

Assume in this section E, _- 0, r E 1. Let P - (T rI,iujr 177 2 be an R-sequence, and u its criti-
cal item. Suppose we move u upward in front of (,i, or downward behind ,ji 1. Will the result-
ing sequence be optimal? The following theorems resolve this issue.

THEOREM 2: Q = r uar ,,(jr r is optimal if and only if

(8) E, > 0. B, = B,,. r E (riu.



PROOF:

=> I If ',, < 0, and F, < 0, r E (r r4 t[ence,

1(() I u A, + A, + I w)

contrary to the assumption, Q.F.1).

2. If E < 0 one can show as before that W(Q) > W(), Q.ELD.

Since , > 0 and E, > 0 then B, > B, (Property I).
3. If B > B, then

W(Q) > W(,r11r) > A, + , = 4 + E, + A,- , >

> .4 + ,E, + A, - B, = W(P),Q.E.1).

E > 0. E, > 0 and B = B, imply (8) due to Property I.

#: Condition (8) along with Property I imply that Q is an R-sequence. One can similarly
pro, e the following.

THEOREM 3: Q'= Q rjr2i/7Tn'u7r, is optimal if and only if

(9) L, < 0., .4, A,, r E ujir'1 .

Consider sequences Q and Q of Theorems 2 and 3.

PROPERTY 7: 1. If Q is optimal then i is its critical item,

2. f Q is optimal then ./is its critical item.

PROOF: The optimality of Q implies (8). Hence,

W(Q) >, W((r u(Y i) >- A, + F = A, + Y E,= W(P)= W(Q).Q.E.D.

The proof of the second part is symmetrical.

Due to (8) and (9)

K#(Q) > W(ruW(Q') > W((r7-,(irr7lu1).

Hence, u is no longer a critical item of Q or Q.

Suppose that we move element i of an R-sequence P = (r afr 2ulr 111T ahead of its critical
item u. The following theorem resolves the optimality issue of the resulting sequence.

rIIFOREM 4: Q = rI(Jr uI 17r is optimal if and only if

(10) E,, < 0. E, < 0, ( br? , A, = A,,.

PR()(t[
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=: If E. > 0, then (Property 5) W(Q) > Wa(ru) - A, + i, > A, + E,

W(P), which is in contradiction with the optimality of Q. Hence. :, < 0 This implies
E, < 0. r E (T ir?uTr I and A, > A,, (Property I).

'(Q) > W(,r 1 > A, + "E, > 4,, + E, = W(P).

Thus. W(Q) > W(P) if(r, ;e hor .4>A,,,Q.E.D.

D Iue to Property I (P is an R-sequence) condition (10) implies E, < 0. A, = A,,
r ( ur, i. Ilence. Q is an R-sequence, QE. I).

Optimal Presequences:

(i en an R-sequence P = (r E II, then Yr is also an R-sequence (Property 3). Consider
a permutation Q = (r7 E II.

We say that o- is an optimal presequence when Q = (r" is optimal. Q is uniquelv deter-
mined for each a- once P is given. Hence, to find all optimal sequences it is sufficien to gen-
erate all optimal s-element presequences tor each s < n-I, given an R-sequence P.

REMARK 2: According to Property 5 presequence ,ri may be optimal only if r is
optimal.

REMARK 3: Formulas (6) and (7) allow to determine the optimality of presequence rI
provided

I. ,r is already known to be an optimal presequence,
2. Pis a known R-sequence.

Let P = auf# be an R-sequence and u its critical item. Consider another sequence Q.

THEOREM 5: If Q is optimal then
1. The elements of au precede those of 13 whenever E, > 0, or
2. The elements of u)3 follow those of (t whenever E, < 0.

PROOF:

CASE E, > 0: Let Q = irT where (r is an optimal presequence. Assume that oau is a k-
element sequence (k < n - I). For each s < k consider sets of s-element optimal prese-
quences (r. According to Theorem 4 no element of 3 belongs to an optimal (- if s = I. Due to
the same Theorem and Remark 2 this is also true for = 2, 3. . k, QElD.

The proof of second case is symmetrical.

5. GENERATING OPTIMAL SEQUENCES

Consider an R-sequence P = (r iuj/r where the critical item u is the s-th element of P.
Theorems 2, 3 and Property 7 imply:

COROLLARY 3: If none of the conditions (8) and ( holds then u remains the s-th ele-
ment of everY optimal sequence.
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Element u is also a critical item of" ev'et- optimal sequence. To see it assume that
Q = av u/3 where or and 3 are permutations of elements of (r i and j#r, respectively. Then,

W(Q) >_ W(iu 4,, + AE,= .4,, + I, = W(P) = W(Q).Q.E.I).

5.1 Let P = otutto ... ,t o uo , be an R-sequence where none of (8) and (9) hold for criti-
cal items u,. I < t < q. We will show that the problem of generating optimal presequences
fr C I can be decomposed into q + I separate subproblems. Consider an optimal presequence
( - , Uli ... , lu,(r,, t < q where a, is a permutation of the elements of a, while
(r, C at,. for each 0 < s t. Then,

(11) W(P) = A, + E,- "E, I q.

Formulas (6) and (7) remain in their original form for t = 0 while for t > I they become

(6)1 .4, E_ B,,-

,r,(7') ,,- B, < B,,,- E, - W(y).

where r, C ,.3y, C a,. To illustrate the decomposition technique along with the generating
procedure consider the example of reference [3] (Figure 3).

A, B,

1 2 3

2 4 5

3 6 30

4 30 4
5 4 1

I01 RI 3

P = 12345 is an R-sequence, W(P) = 4 and u= 3, u 2 = 4. u3 = 5. Consequently,
orf = (1,2), a = a 2 = a 3 = 0. Since the assumptions of Corollary 4 are met for all u, (they
automatically hold for 112 and u, since a, = a_ = (h) every optimal solution Q = ...345. It
only remains to find optimal one element presequences of a0 since at is a two element set.
Due to L_, < 0, r E at, it is sufficient to check (6). Presequence 2 is optimal since (6) holds
for i = 2, a- = 0 (see Remark 3) in addition to the known optimal presequence 1. Conse-
quently. 12 and 21 are optimal arrangements of a0 . There are only two optimal sequences
12345 and 21345.*

5.2. Consider some critical item u of an R-sequence P where
1. (8) holds for some aT,i =0 . . . i i or
2. (9) holds for some jir = 1 . I . ..j,-

According to Theorems 2 and 3 we can generate R-sequences, say, P, by arranging the ele-
ments of r 2iu or ujir 2 of P in the following manner:
(12) ili, .... i, iu. t i ... i,i, ..... i~ij ... t, iui I

'the aulhors of 131 using a lexicographic search procedure examined (in this example) lower bounds for 9 prese-
quences with the number of elements ranging from 3 to 5 (in 7 presequences)
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(13) 41i I - .-/,.J i - . .J, u . L V i.I: .. -, I

In view of Property 7 the critical items are the last elements of the sequences of (12) and
the first elements of the sequences of (13)'.

To find the optimal permutations we apply the procedure of Section 5.1 to each PA assum-
ing that none of its critical items can be moved.

To illustrate this case consider the following example (Figure 4):

1 2 3 4 5 6 7

A, 3 4 8 5 6 3 2
B, 7 7 5 4 4 2 1

l(it R 1 4

P = 1234567 is an R-sequence, W(P) = 3. uI = 1, u 2 = 5.

The dashes indicate the critical items of P.

Since (8) and (9) hold for (r = (4) and .jfr = (2) four R-sequences are generated (see
(12) and (13)).

P,= 1234567. P2 = 2134567, P3= 1235467, P 4 = 2135467.

To generate optimal sequences out of P, observe that P1 = OqtaOtaU2a 2 where aX,= 6
a1 = (2.3,4) a 2 = (6, 7). According to (6') and (7) the list of optimal arrangements ofa 1 and
(r2 is 234, 243, 423. and 67, 76 respectively. Consequently, P, generates six sequences
1234567, 1243567. 1234567, 1423576, 1243576. 1423576.

To find the remaining optimal sequences we have to verify (6 ) and (7 ) for
a (1.3,4), (2,3,5) and (1.3.5) sincea,= (6.7) is the same for all four sequences P4. The
total number of optimal solutions is 24 while the number of R-sequences is 4.

5.3. Consider the case when E, = 0 for r E I' 6. Let P be an R-sequence. We can assume
(Property I) that P = (Yjy where

E, < 0. r E a. E, = 0. r E [3. F, > 0, r E y.
Let max A, = A. Consider sequence try.

THEOREM 6: W(P) = maxl W(ay),A, + EE,

PROOF: Let u be a critical item of P. Examine three cases:
1. i E y. Then P = a3yIuY,2 and

H'(P) = A,, + 7 Er = A,, + ZE, = W(ay).

2. u E r. The proof is similar to that of the previous case.
3. u E f. P = a3Iu ,2y, and

1(P)=A, + =-A, +E_
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Expression A,, + YE, is maximal for u v, Q.E.D.

Theorems 2, 3, and 4 remain valid even for f], = 0 as long as E, 0, for r E I - u.

We offer the following procedure of generating optimal sequences:

STEP I Delete set I" from I and find an R-sequence ay.

SIFP 2 Apply the generating procedure of Section 5.2 to sequence IT where

a -Y if A., + ,I:, < ' W-y).
1Tt

7T a v(yV, if A, + I , > W(Wy).

STEP 3: For each sequence 7" generate n-element optimal sequences by placing the
remaining items of/3 in the appropriate places using formula (6).

To illustrate the procedure expand the example of Figure 2 by adding two new elements 5
and \&here A.,= B,= K,. B,,= 5.

Si P I We already knew that a'y = 1234 is an R-sequence.

STLP 2: 7r = 12534 since AI + , W(y) = 5.

Observe that at,= (3), and elements 5, 3, 4 cannot be moved. Handling set a0 = (1,2)
we obtain two optimal sequences 12534 and 21534.

STEP 3: Condition (6) for i = 6. 14(P) = W(cky) = 5 becomes

(14) 5 < 5- V/..

Consider Figures 5 and 6 where the YE, are written on the margins of the tables (except

XL, = 0 for a" = (b

1 1 2 -1 2 3 5 -2
2 3 5 -3 I 1 2 -3

5 8 8 -3 5 8 8 -3
-1 3 6 4 -1

4 6 3 2 4 6 3 2

,I HI S Ii(,t RI 6

According to (14) presequence ,r6 is optimal if and only if YE, < 0. Hence, element 6

can be placed everywhere as long as it precedes element 4. Consequently, there are ten optimal
sequences.
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6. M1AXINA .L SOL TI(NS

I .t P he an R-1,.equLnc,, producd h\ Johnson's .Algorithim. It is cas\ to see that a
res.erSed sequence P p, p.. . p i\mni/es (1) Without loss of generality we can
,iassumIe p 1 . 2. i . and

I:, H , . / 1' 1 . : - I

I so" 1 I) f "

I I A)RIM I lenint orn I 1 4 1 is a critical iten of' P

PRO( ) leinQ

then.

1(1 ) xt K,

(AS1 I I t. Then B, B. and H..u < .l,.I imply B, < I,.. Consequently,
< K1.

CA.S 1 2: r + I i < it. Then.. I, < 1, 1 and -1, B, impf...A, B, 1. Ience,
K -< K 1. Combining both cases we have

A < k, < ... < K and K. K -... ',.

Ihus, 1tP) = max K:,, Q.El.D.

Let o he the critikal item of a resersed Johnson sequence V I, 2 . . It is easy to see that
any sequence ( - o a maximi/es ( I ) as long as (v is a permutation of' 1. 2. - I while /3
is i permutation f tl .... t.

(()R( )LIAR N 4' 1he minimun number of' maximal sequence,, is (it - I )(it, -t 1', where
u = t or t + I

Re.ersing t mninimal (non R) 'sequence does not ,tcc'.ssarihy produce a maximizing
sequen:e ( onsider the exarple on Figure 2. Mlthough 1324 is minimal the reversed permu-
tation 4231 does not maximi./,e ( II since 7(4231 = 21 < 1(4321 t = 23. Let P' 1.2 .. i
he a rcersed Johnson's sequence. Consider ai set of' it - - element permutations 7'T ot
numbersr I it It is obvious that 7 1.2..... I-I.i . tmaximiles WhfTf.

l)ue to I heorem 7

P K,,, u

where

-1I,.i B,.i ., >: B,. . i = ,'
(16) 

if
+1,+ , ?, H,. 1.,.2 B ,i it' 1 1+1
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lie re

itf - o.

I I 1 r ir It if - it,

III ()RFN 1 X Ifh, ) I. ft P

PRO( )I I hicI meC IV.1 cl5c

I X-t I It', i then i t, and L >0, lence, If( ') If )17 1 /,I>0

2 It' > ithen lI 1/') II f ,r Q.l.I).

t- 'I t our s[h cjses le toh he Lens ,ldcrcd.

1 u=,. -- I. 2 it <. \,- 'i-I, 3 ,,=t i 1, = ' 4 i=it l. =v.1 +2

It P ) II I,, t I (cIsc I. 1 -I (case 2). B - - (case I

.I , I , (csie 4 1

She nolilniegatistt 
, ol II P I I'Or I 'llos dirwkctI, from

I f16) hr cases I and 3
2. ( IS and (I ) for cases 2 and4 (.1,+ 1,, 1,< A..,- case 2).

Let (r he perIlutlO Of ilulhCr s r IJ where J is a proper subset of' /. Theorem 8
implies

PR(UPI R IN 8 aix lf'h(r I < .ilx 4 1'P).

Propcrt' 8 does not inlpl. 14'(r I 4''(). l[o see it consider tile following example

1, B,
1 9 5

24 6

I et IP 12.3 an (1 1.3 Sti)) IFIP= q < fV)r= 1 0

B I B 1 10( 4 A PH Ni

II Itagga. PC' . hfie I'ko Stage ProducionI Schedules A.lth All ( )pttntAls. lotI'. 'onur

int Opcra iooal R c'N'ati t h. ) I I 1 LIdStJ 11 Pu blIsINhI Itg o orpo ratlIont. Ne'.\A I )elh i . I nd Ia. 14S 1))

I1969)I

121 Jolinsmn. S I I I ptintal I A'.u indl I h rce Staige Productlonl SchelesLIC " tth Set -opI I 1111eS

I ncluded. Au a kll Rawi( It I-(Pueto QOnari-h . , I -oS I 1)i4)

131 RIndit.I S N N .ind N % Subrnb,ir n l. ''\I A unrnt 11I-1111 (1 l 1 )ptiinil lob Seqjuece:s,'*

ipsearch. 12. 13-1'9 1 19's)
141 Polts. ( N [ic Iv'.o Machine Illlrnnu (ttt Sitteduling Pi-oblemtt' NubittedlC~ lor puli-

lin



A THiEORETICAL. AND) COMPUTATIONA CU (OM'PARISON
OF 'EQUIVALENT' MXEI-INTE(1 ER FORMUJLATIONS*

P R \wc

%I1t'slH\ I

I I' 1', d .1 Il I.,- ; iI 1,it 1

1. FORNI I VIIONS: IQI M~ ILNT I *NI1) orri IAl1,

[his piper prwsides a theoretical andl~ computational comparision of altcrnati~c mii\cdi
integer progranhnm liirmulations for optitii/.tiion problemns inwkl'itg cert~imt 'opes oi

econon 'ii-ol'-scafle t LIVnCItoIIS. SuchI Il~fCtjoflS :trise in a broad range III applicaitions 11ot1 sLich

di erse areis as ecndor svlction and coommnicat ions fletWo rk design. \'noi sti n~dd pro b-
clem t'ormulation is, shommn to be supecrior in seseral respects to the trailitionail lorniulation of
problenis in this clatss

This first sectioni de~scibes a tiooI apoc o l'ruaigcr loptin i/at ion proh~

ems through thle use Wt "irii/ation Models' 14.6i, I he minimi/miion modiel coilcept I
then used as thle baisis f'or declining t aniix (it 'equioalent'' torniulations is knell its a lteins olf
defining an "optimlal' lormlaktioti. Sections, 2 and 3 establish thle optimalhIt of .i ,crv Ci inipact
formulation for I onCItons, belonging to a class of econIomy-oh-scale fluithotis. CMI oIpuaiotI 0t,1
resltNs f'or a communications rtetwork problem arc then giv en toI illustrate the Suleriori otI this
formulation as conmared to a 'standard" t-ornition oft the prohlcni

.Ihe eLI11nom1 -Ill-SCAe pitIchiet that We Will conIsider IS en1countered InI a broad IIet Io
1i'st hunctoltiS foi goods ranging Iroot doughnuts to teleconmmunicatiotns links, Roitelil Speak-
Ing, a I unction IS Said to base inI ecliiir k-il'-scale properti, 1 thle Cost t per' unit)i of Ai Coiltot-d

tr decreases if ce~rtin ''large'' quaiL1ties 0 lie commnodit ' are puLrchatsed A siniple esiiiple ofI
such a cost untio1n, but one mhiich serses to illustrate Some of thle prilpetties that1 Nc sh ito
tmnsider. IS I % epc-s-the-doIen'' funtiton detined as lollio\s let iI denllte the numinie (I

'OMiIR'0 Units ofI .i cIrninidit. kith thle colst per sin/ic unit beitig at /IIINIi 1 '15It . let
denlote the I nonnegause.c integecr) IUmhoberi ol C1 (L:'ntrlop) (If 121 purchase11,d. thle prIiC per
kll)/en being a POIMti e onstitt 12(1 (SIo hi it Is 11CA14't ito purchase 1S a d1Cen tHaiJ 1i IS to

5. I . StI 5 I ' 1,



I)Urk hd's 12 sinle ULw I. ind let CC I IgUte I lot it t.% 1111C A (Al) C Ienot the halwr-
h% -I II -d 0i1 C [I ILtI I I 1 o[ liati I) i csenCi thc FPIUIPPLUI I I)Iiprchasing (1IOUit/csX I IS. I or
sinll]CitI\ II this CeiIlltlIc. N 'Ind I il[ hec isslumied to tic ooilmitl ariahlcs, It I,, Cisil\ seenl

it A ( x I can he L0111piIl IC))ICSCI1t(d is

11IS ht is. subsltttig 11% o l wnsanl 1or \in the light inid side oI ( I I I \ ields anl optini/atioll

prohlem (in the \sarrhies I and 1 1 MoSC oplinl lue ,IJ I,, reciseI A I x I. O f course, the
picesxise-lincar tuniCtion A I \I can he i epiescnled it, manm other \xxix' s. hut. as \,\ill he seen, the
re~resenItillloll I II Iis nt"0 ouRl cO)ilIIIa hill ik( IS useful InI fortiMng optirni/alion piohiems

)n'.okInitg A

k(x)

12 24

I he RIP it I Ii I I, isn c\,anple oi a tiu'eI-mtci'gi mimmiouoati ,noil (MIN N), aConcept
that ".is descrihed in 14.,S,6 Iio deline this cocp.SIt)IpOse / 11 d [UnCtion (torn1 JR' into

and that the holloxxing equattion holds for all k helonging to a stibset N of' JR'
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1.2) ) I non

Subject iii Ii = .0t\.

t i ill integer ftot i ( /,

where / is suhset of 1I .. ,. h is an element of IR'", and (..., and .A are of dimensions
I x ii. ni n and ,n ) I respcctickl (We will aSSUInlle 1hJ [ie imi/alion plroblem (n tihe
rhs ol (I 2) has an optial solution if its feasihle set is n(lenpty, alnd that tile "optimal value"

is detined to be *o if the feasible set is elpty) I he e pressioni on the rhs of ( 1.2) is said to
be " MIAM lr I oi .S (for our purposes, it is co(ilveniet to assume that .S is (oltire.% although
for tle general theoretical dehelopmecnt of' MIMM's given in 141. this is not necessary). N s
noted in 141, the utili% ot MIMNIM' arises in part froi the fact that for any set .S C S the ftil-
lowing two( problenms are i't/i/',alcif:

1 3) n3n /(.\ I ± / ,-

and

11 4)n i I I.:

A i h - Ax.

V ? 0 and v, integer for i E.

The problems (I .3) and ( 1 .4) are 'quiialc',i in the sense that (1.3) has a feasible soluti(n if and
only if (1 4) has a feasible solution, and (.\ *. ) is an optimal solution of (1.3) i' and only if
there exists a i* such that (.:. . ) is an optimal solution ol (1.4). From a computational
point of ,.iew the transformation from (1.3) to (I .4) may allow the replacement of a picu'wise-
lnvar objecti\ e function term / k ) by a lin'ar objectie function term *v. Thus, if' an optimiza-
tion problem has only linear constraints and objective function terms f'or which MIMM's exist.
then this conversion procedure may be carried out term-hhi -t-ri until the original problem has
been transformed into a mixed integer program (MtP). Note, however, that although this MIP
will be equikalent to the original problem. equivalence mam be destroyed if' the integrality con-
straints on the newly added variables are deleted, a r'hi.xation which is usually the first step of
an algorithm for the solution of an MIP In particular, the relaxation of the integrality con-
straints of a MIMM will yield a parametrically defined family of problems (a Inm'ar pro.,rafuiinig
mirnizao, mocel I LPMNIM)) whose (ptimal value must be (see 14]) at convex function on all (if
Ei. Thus. this relaxation will mean that a noncons ex objective function term of tile original
formulation is replaced bN a con, ex approximation. In algebraic terms, defining

I1.5) min (

s.t, Ar = h - A\ i. )

it lollows that I* is t onoc\ un Il1 so that if ' (as defined in (I .2)1 is oioncovc.v on .S (in the
sense that there exist points %1, ., E .S and at A E (0, 1) such that .x = . 1 - I - ).V, and
I ( > A I I.\i + 0I A I \ . then I and .I n (not coincide oer all of' S (in particular, they
would not agree at I. [he diflerence /( \ / I(\) (w hich is aiwa\ s nonnegalve because 0t"
the relaxation of the constraints? will he termed the rc'('iuxion ?ror of the I.PMM Iat N

In the case ol the MIMM (I.I), for example. the opinal value lnclion (for \ ?> 01 lor
the LPMM obtained by relaxing the integrali constraints (if II. ) is -isilk seen to he the hn(ar

i)
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II 1t1, 11 Ill X 1? 1 hC IC III oo r lsi i c III [ his p1trtiil1,1 Ir C Ia S is ti lie ililerettee
Iietthe %atiic'. A I\ ild A *4 Ie (S,'Ir I \oIi 11it1 til' diflereCeL IN pointM leIsN

IN Alliice titoltiple IIUIjI 12 1 (1 . A4~ 4. hut , Air OIiiCl Iid here Onl

Ito n eriior, establ ishes tI fi IcLit I k AL I, 'k\ IfI he d ,IppT () nItIAttion-, uscd i ili thfirst ste.p oft the
Solutin ott tile respecltis \iP'. 11111s. If1 , / O. oltItiitl same. tuItITII ln of the etintIIuIoUs
rcl~iaitino at dic w \fIM\ fir !, antl It /* ll 11 (%I~tifth %IC \&rite a'.

/* 4 then the Il I \1 1 2) ilml it: he s -iriIere t he at Kheistis giS d Iklf ICI)C 10h repc Ithe

eI.tsvitii cti rr L1iterionl I, thle \11 \1 \1 fronm shicli 1- ss s deris ed Mits Cose, it it can he

Cs Ished,1C~ 1h1,1 the neiLItlit\ I /.holds for o1/1 rotiC functions / satish iiig I I

the-:1 the \11 \1\ \I HI Inn L rIIe 1/ silt tie (imaa trorti tile staindpoint oit error ni a relasatlitn

Nid ltir siraitegs and still hereti c hc Saidi ti hei it/ulamon-ftiitl on S. 4 AS stIll he seen.
I uLtiLIno 1,1\ h Moltite thin1 oic Ielt~itvitpt-Ilitlial M1INIM, so additional MIM.N1 critei .ilsii

il lheci insidere. ) Inl otritr t niot cilik h decoilne results of this t\ pe. it i,, ci ns enent to
intrOIuce Nornthe Additum1n,11tertnintilue ' I1I I,, is autiction mapping at conke\ set I lilt()

Ih foxI, . I tti !IIItt of h on 1 tsshich rm he thought of'geontteticall\ as, the Iiitvii
A ins c\ tulinloi pt /Ii o in I ). denoted lvilb . t is the function sattisfking the relatioins-

4 iii4' I i f'or ill I

1 81 1 4h. I I o rm s I I \ , I a d I ,, oi.xo '

~t 11 t ri, L: < 4 I /i . \ Io or all '. ( an 'I irsx tn

Ini pLices shere referecec to tie sariAie is not needed, wte Atill "rnite ( '(h, I) inl place (it'

*n . I / ) 1 MSItence atwt LiITII~uensN of '(1i. I4 e asil\ folltis t~rut the taciLt that tile point-
AIN s uprelIni (t' I familsjj ott ,iii'.Q c unIctions is cne.Defining onl T the set of' tunctit ns

(4/I, k:t I N Cocve onl Ig < t

*(I) 14 i SInIIII t tie sup11remumI1 itt (4i (It It might he tnted] that the domain T pla s it %crI
Significant rite iil determ in ing thre %:el c n eltipe. That is, thle saIlue of' the coflsc\ ensettipe
,it a particular point nat he different 1'or different chotices of' 7. 1ihis aispct of' thle ctitistcx
ens dupe: %tilt he taken up inI Sectioin 2

[heCo) tIpnd I du LI nctI onT it 1a I.PM, inl addition toi he iig convex, is alIsoi piece \Aise-
linear 4 P1 4. and it IS Ilsit otinetiteit t inltr(iIdice somec teritinillotg for piecestise-linear I'unc
tt.itts of sint~l siriahle. stiich i re our principal coincerni inl this paper.

"e "tIll si. Iii .4 rcal-saIliest tutictitin ht defitied tin a closed ititervatl lit at ,I C IR is a

piit i ~ti~tt /4414a lim ot tl lo. it j1 Iii/i /t o'i~ts It, < It ... < It if'1 /i fi ut/i oti cacti

suihintersal li , t i . I atid I/it, 1. t )it tI / (r, -It ) ve I/ h i 4t - h I, t i, i t fuor

I . . I (that is. tie Slope tit thle felt itto differs fromn the Slope toi tie right ofit41

I lie haiste resltI that still he uIsed to estabIish that certin(~ fotrmulatioti, y ield cttise\

ens elopes is thte su Ificiecc part of the fitlowki ng theorenm

I IllFORIA\JI I l LI he a liower SCniIICOtrITILtIOUS SI sL ) ftutretion0 nIapIti)lg itt it 1 1tilt



Let v* he t Conmex pieCe\4iSC-liT1lea Unciton onin, l I' t breakpoints
oland let .e( Is !5 g I I for X In, A , nccessas and suficienit condition for Cto

he the comle\ emielope of e on Iinjis that ,*(i In ",III I lot 1 (1. 11

Proof loi establish saffi u'ni, suppose that 1 ' ( 1.e!. I (I,,. 1, ). 'I lient for anx
IO.1.!there exists at least one pairt .o~ otl brc tipo(ints such that \ IrO VCoosing

A to Iol such that -A(,: + I A )k.In , \se hase\ (using the consexit oif 0I .i ( I',)
Ar(0  + I A) k I A E! A', ) + I A IL .5( AeI - (I A)

L!"")A I lius. s ., ~ for an\ 11 no.1 establishing that C

lo shome necessits Suppose that *et~ InI *In.) f, II) Since 1 ,' I is. Jilat] V iCon-
tinuous. there exists at 6,, 4' III.n,, such thal t'', < it' o,, '' in Ip IIl i ('~ X.)

and v*'I.\ ) -< v*(n,,I 4 2 -- vlni, (' 2

Now considfer the PI function .r, (see I Igure 2) \%.ith hreakpoints at ' kItn
.,in .... (,, and function \-aLues (on) -V 1,'I ,) 2. ((* " - (- ~, ) - G'1 o,, .6 I . ', I -

i<In (a,0 I , . . , p I. Note thalt lo,) > U< lo I ut th1A c (.X I -~ (.X I

Int, +6nIand that Q is at convex f-unction on Ia,,I linallr. the relations ( 1-

-~~~~~~~ gl an+~h,~ , ~n,±6, ~ 2 Q lo,,) (,v 2 iniplx '(
g ((k,,) - E,V 2  f'or .\ El 1(t , -+ 61. so that Ltx I L:r'I I for I III itI Fhus.

1I C (I:~I kna,,l0 and ,r((k,,) > Q* it,,. ContradFit CIin g the h pot hessI, that ,*' I I-
* f,(m .(l. A contradiction may he similarls ohtinned if' L! (it, I > v I,, I I or an interior

breakpoint (t,, the construction of' a suitable . is simiflar Isee I igure 3). excpt that the break-
poiints o~f , (where it coiincides with C)I are taken to be k,,.. ...... i. it I 0i

A ap.. where 0 < A, < min 1(k 0 ijk . is hosen soI that. defining
1(t ),h, - v * ((tI > 0. we haxe. for~ \ Ik 6 .(t 6 the ineqlitie s'1 ' V ( \ I (II

2 4-'*(') - g * 6,' In -4- ( 12. Because (if' the chainge in slope at break po ints. it nm he ecrified
that g FIn I -- fi )n , and thus at contraldiction mnax be obtained

Note thai for sufficienN . lo\&er semni-cononuit ()f v is Piw reqitedCL In Ows piper Ace ire
priniarilk concerned with the sullicienic part of this thecoremI. hut 1tshul he noted flat in 141
the lower serm-Coniinuii\ I optuial klue 11uilctioIS of NIININs %ksas QN[Lilsltei undei
ratiinaii. ISSUmptions oin the c:oeficients, of the MINI Ni

It might also) he noted that the argument used in the prof can he Lisd to shossA Itt
dJoes Pt hase a IT. COnxex enxelope it' o~ 1 +~(r L:et InIC 111' I .snc NhssoUld mean
i hatvi i i: l,)I I or rI: I <( gin( I for am Ill. unmlton g. In the oither hand. a ITl con1-
%ex enseclope nia exist if there ire iit points xof In0_.o 1 ssittt the propert * that

I= I his ,iIlovs the domain oif .. ' to haxe "gaps" on A.hich Cmrhe thought of as heing
Such gapls of ten oLCUr in) optimal %,alue functitns oft MINI Ni'

IFrom F-igure 1 - one Mighti COIJciure that A * is, the conse\ ensehope of' A onl R .,I his is
indeed true, and in Section 2 swe wsill use the approaich of I heoremn I to establish a more geil-
eral result from vs fich ithis I uillosss as at sieciail case

2. '1If F I NIIO *NI)II CASE

In (his section Ae %ill conlsider MINI Nis for a broad class oft cononiN-of -scile functions
that includes tile econonls -of-scale function A Ii of the pres is section SpecificAtt, sIc %dl
deselop retaxatioin-optinlal MINIS foi the class of ILfunctions xshtose elemen~tts ola h
replresentied as optiml '\,;lue Lfunctis oIf tile follossIng 1.pe)
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g(ao) - - - - - - - -

g0a

g~c 0 ) -

ai 0 0+6 0i



I I I

I g

I It
I I

I I
S I

I I

1_ a- 1i a+6a+

2 1) / (x 1*1111 Ik

.i O, v, integer for i C 1,

,here )= .( ..... , .(, O. 0 a = (a) . .. a,,) > 0.

alnd I is a subset of I ..... 1 .

I [i case in wshich there are i = 0 is not of economic interest, but is included for mathemalti-
cal completeness. - he sign restrictions (on and u do serve to guarantee the existence of an
optimal solution for all x. hut, as shown i1 .\ppendix A, could be replaced hy this hypot hesis.
In the nest section, \,here howds on the l are assumed. it will be seen that these sign restric-
thins has e greater significance I Note tha t he class of functions representable in the form

(2 I) includes lixed-chargc tuncliionsm i econim '.-of-scale functions allo ,ing several dhftrellf
,.ol, me discounts (as opp)sed to iil i ine i1 tihe case of A ( \ I ). (lihe computational results in

Section 5 deal vsith an example in vhtch n 3 i For notational convenience \,e vsill assum e
ihat the \.ariables has e been ordered s1i that1

(2 2) ( ,a r , ! ,q( , - I , . 1 ',. -

Iri)m a ciost , S lplint. this meins tha, i on ;as /wr II basis, the most "'(economical" purchase
quantit is al. the nest most econ(inucal is a, etc.. and the right-hand side x represents the
minimum aollunt to be purchascd
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( 0i1SICI the' OiIIIII)II0It I ClI\iloll( il tle MINl.\ In I2 I. v"hich ha, tile o piltla kaIluc

ll In,:tioti detindki h.
,

23.)J/'1\ Ill1101

Ihc tlol'lAing lemim111a States that t I,, linear oil R a. and pros ides the basis hor a proot ofl the

tclxa~tion-opiin1alit. ot the MIMM oin the RIIS oI (2 1)

I F %I \ I For s f I r, \

PROM(I Note that. i an x 0, the dual of (2 31 nias he written as

2 4) nlax

I s ei ong t t x a and .. . - I I a nd k , e o btain prinlal an dual I asI--

hlc Solutions %%lth C)l onliI I)h -L'LIii\C Iujction ,;iLie 1,A. I hiS IS thus the 01pLinlldl salue, / ( X

I lastog huinedc,. a clohsed lorni rcpreseniatoin of /[I Jl the telatiioohip hetseetr I/ and / is

aIsi a hliShcd.

1111 )RIM 2 the olloing relations hold heteen / and /:

( 2 i / I. '.,) = / l.sN )for..\ = K ai (k  (. I

PR( )It Since I I I (x I for x E Il, (2.5) may be established by showing that. for
a a -A 0. 1 . 2 .... )( 2.1) has a caw.sihle solution with objective function 5alue

/*(Al I A AU = K( Such a feasible solution is obtained by setting = A and =

, . 1, 0.

I( prose 12.6), it sutlices to show that for an\ v' E W. there exist .\I. E WR such
that, ( or some A E [0. 11, we have k'.1 + (0 - ) .\ = and A),lx = I/1

1 X1 1 +

(I A )/(. ). Since any / E *II.1,21 must satisfy l(x) ( /i 1 ) + l - A)

I hesc quantities are obtained by taking o A a A -, where A is an integer chosen such
that Aa. -. and A such that ( - A)Aua .\. Then +/ltx.\)+ (- A) 1 (.VI( 0 +

I r t, = r.x /I (.\I.

It is of some mathematical interest to note that the constraint at >- in (2.3) is satisfied
as an Cquality h, an optimal solution of (2.3). The ohseration may he used to establish that I7

is also tihe convex cnvelope on IR of, tlhe optimal value function in the corresponding cquality-

( oiltfralm d case

(2 T) I't ((I t v

S L1. (li'

v - (, 1 integer for c I.

I hI, result f lw , s Ilince X ) = Nr( fo = A - (A , Ia. I. Since I* may be writ-
ten in ithe form (2 3) with the constraint tr . x replaced hy (it .. it follos h\s the analog of
t heorem 2 lhat the modified MIMM IS relaxation-tiptimal in tih equ ality-constrained case (27

as, sell
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(in tL other hand. it is not alccaix pissihle to esthlish relaxation-optirnaliti it pitive
utuOPIi(/ Is Added to tihe R IS itle Loistrailnl %kith R IS \ iin ( I) (negati~c constants p se no

diflicult '. i,, e will shocc in sectioin 3) An Csamllpe illustrating the difliculties that mia arise
in this case is gl\el in \ppendix II I It kexer. it is pissible to extend the results of this s cL ino
to the case in which nonnegatic hodih ' itre imposed oin thle xariahles This case is taken up in
Section 3

I-inall\, in tihe case that tihe a ire all talioal/, I heoreni I is a special case of a result of
Ilair and Jeri slom 121. c ht considered i , iten of constraints and showed that tile cilll cx
Cl\Clope 01' the iptilal \,atie function of the Mi MIM (for x (- R")

s.t .-li . \ I. ? I. j integer for i . I,

cotinicides cith the optimal value (unction o1 the continuous relaxation if the MINIM. The
thrust of the next section can thus he viewed as in extension of this result to certain cases in
Mhich nitn-c'ro tis/anis ar1e allowed in the cotnstraintx, of" t2.8). (In general the Btair-Jeroshic
result does tiot extend Io the nonhologeneous ease, as may be ascertained From the examples
in Section B.)

3. BOUNDS ON

For most integer programming codes, it is necessary to have bounds on the integer vari-
ablc If the range (t the I variables in (2.3) is restricted by the imposition of bounds, then the

corresponding optimal value function on IR is piece%, ise-linear (where it is finite), but the
relaxation-optimaliti property of Section 2 mari nonetheless be extended to this case. We first
coitidcr the case of upper bounds, and then the case of upper and lower bounds. As in Section
2 kce assunle that ( ) and a > 0. (B' making some obvious extensions, the constraint
a > 0 ma% he removed. but as may be seen from an example in Appendix B. sign restrictions
ti n are needed in tile hounded case to guarantee relaxation-optimality.)

Specifically, instead of the MI in (2.1) we first consider

13 1t1 . = rin cV

s. 1. ay I x

v, integer, i E /

where c- 0, a > 0, the ordering assumption (2.2) is assumed to be satislied, and tile u, are
nonnegative constants with u, integer for i E 1. To prove relaxation-optimality we will show
that the convex envelope of .f on 1) =_Oiol, denoiud by c.f2,J)., is given by tile optimal
value (unction of the continuous relaxation:

(3.2) l (x) =_ min (-

0 < v < u.

(We are not concerned with _x > au since /Ih( ) /,(x)I = +o for such .\.I

. I - I



I Or 1101ta1to1al COIiDelMnce il stalinge a closed tornm expression Cor /t( ) we make 111e

where It is Understoo~d thai h, =0 and t/,, -

Ihle t'oltloming is the analog (It Lenmma 1

tA1.1 A 2 /'ts)i1 h - ,- U' or h < h, .

(.1 0 m I

PROM 1 ltie proof' is anllgous toI that of' Lefliia I. For anN (,lie dual ot 12 7) is

1l1( VA 1(

S.i. va - it, r I >, 0. 4

In addition, ta- r an ' % k I-). the optimal Solutions of' the primal and dual problems are ats t'oliows:

it'hf . _< A h, set i* - i , for i~ set i -- 0 for i > ./ +~ I. and choose j such that
q1 = .v set I. it . aU, , tar i 4 and w, 0) tor i > j.

Note from Lemma 2 that the breakpoints of'P are contained in the set Ilh,... . B\
appls ing Theorem I ,we c in obtain the following analog af' Theorem 2:

THEIOREM 3 1he Following relationships hald betwAeen /, and .1*:

(3.3) s (x) ifi h (j (~ )

PR( ) )1 The relaion (3.3) f'ollo\ws, from considering the feasible solution with t ti
h) Ir i / and v t t fo > r .1 he relation (3.4) then t'ollows directly from (3.3) and
ITheoem 1.

In a branch-antd- bound algorithmi in which the i, are used ats the branching satriables. the
formulation (3.11) hats the additional , er\ nice property (If' yielding at relaxation-optimal formula-
tioin tit cah nde,i inl the tree. since relavation-optimality is not affected by the imposition (If'

additional integer upper and lower bounds (In the j, in 13.1 ). This is because introduction (If'
nllnnegati\e hm0cr hbounds is equivalent to the addition of' a ncwitii(' constant to the RI IS of' the
cllnstraiint (1 > v Since a colnstraint (If' the torm it x v>v--y. where -y > 0 implies an
oIpti mat atue (If' 0 for .x E(. 0.,/ in both the colrrespondi ng Ml M N and its relaxation, it is easil%

shown that at translatioln oIf' \ariables leads to the following result (see Appendix C for details):

COROLLARY I: I-ar v. 0,( let

tinteger., ~I
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"~here 0 ~1 and / and u are integer lor I . then the NIM I, IisoIaO\111oll-opl/tle oun 111
intrnal Inlk Ohere o t 1(tul[

11n the nestI t\A) sections We AIII Comipare these results to a "standard" approach to tornmU-
lation (hat kiels relalation-optimat N INMMN's Ior quite general picces~ise-liocar functions

4. AN ALTERN ATE APPROACH

A standard and quite general approach to modelling continuous piecewise-lineair flofconf-

vex functions is to employ* the so-called "A formulation" of' separable programming with the
aidditional restrict ions that at most tx' 0 A, are allowed to he positive and that these must he

1consecutive ." We will see that, while this approach also \iclds relaxation-optimal models, it
can, in contrast to the approach of' Section 3. lead to computatonal difficulties in the ahsence ot'
special prokisions for handling the variables.

\SSuIme that f is at piece wise-linear function on [a, ar with breakpoints (k, < ol
< Itis possible to deal with ).s.c. ' Iiece~4ise-linear' funCtions b' a slightls different

formulation technique (see 141). hut, aside from the need for m 'ire complex notation, the
results are essentially' the same. I Consider the following MIMM for t

(41fx (. min f f(o IK,
A

t. U ' I.A )I . 1

A +

1. tand integer (i=O1- 0 I

and let 1I denote the optimal value function corresponding to the continuous relaxation ot' the
RIIS of' (4.1). Note that i'* C (Jf [in,o,l.

IllFOR FM 4: The Ml MM on the RI IS of' (4.11) is relaxation-optimal on 1In .o A

PROOF: Let v f a.% and let A be chosen so that . (x~ ) is obtained by setting A, _A

in the corresponding LPMM. so that P(x) GO'~, X, > *j ,Ih~l X. A,

~ (x.In I. since ( f'[a,1. this implies that J* I. I= (ii jI aA and the
conclusion follows.

While Theorem 4 implies that the standard MIMM wvill also he relaxation-optimal for a
ioou~Oi.s economy-of'-scale function in the class considered in Section 3, the MIMM (4.11) has
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cx er:.l computational dl-Id" ,Iin.cs (tIc )o hviou disad santage is its sheer siie. since the
iiumber oI constraints and ,,iiarhlc, in (4 I i, determined hy the number of breakpoints of /
xMhreas this i, not the case for tile it"latnis,, Of Section,, 2 and 3. A more subtle disadvan-
tage is the failure of the integer .irijhlc s 6 of (4 I ) to directly reflect physical quantities. In
particular, the A all ha\e w.-t koelficients OtI 0 and. moreoer. a 0 "bran.h" on a , hais no effect
on the allowiable range (i i xaluc , unless It has the largest i r smallest index of' any h not yet
ti \ed While these disid an ages mak h(_ alexia ted ia the use of "Special Ordered Set" (S)S)
.irategic, for branching (see II). sUch stri tgics arc olen not avjailable in MIP codes (see 131).
In particular. SOS strategics are not full\ implemented on the t nivac I:MPS-MIP code in use at
Inc Madison Academic (oni puting (enter. atid in the ncxt secti(o wc conipare results obtained
\kith I MPS and the fiirniulatiOn approaches of Section 3 and 4. (it should he noted that the
use Of a n S(IS Strat g, has the ad,.antage of imposing disjoint upper and lower bounds on the
rainge of the ariable \ in (4 1) when S()S branching is perlormed. Branching on the j, in (3. )I
impose, upper hounds on x, hut does nut directly impose lower bounds. Lower bounds on the
iange 0I \ nia be directl\ imposed by adding to (3.1 ) constraints off the f'orm

X B -, - (i:,

plus addutinal constraints of the form v y. By selecting tile coefficients a to reflect tnax-
Imum "'surpluses" so that for any X E [Eum.an. a v yielding an optimal solution to (31) t*r .% = x
xill satisfx x at. - . : for some feasible .7, relaxation optimality will be preser,.ed This lol-
i ii l. from tbe t' act that, h assumption, the optimal \alue funclion oif the MIMM remains

I I. M ile tle optimal value of the continuous relaxation, which cannot increase hc.ond
I !. [inatill (it spite o the added constraint) must alsio renain the samne. Sonic theoretical

and Cotmputational aspects of such lower bound constrainits as "ell as some oicr tmtodelling
refinements to deal with upper bounds on .x are currently under investigation.)

5.A ('A)MPI TATIONAI. ('OMPARISON

In this section xe consider a comparison oI solution times fuor different formulations of
the f'olloAing communications network problemns: determine the minimum cost network (see
lable II that Meet specified demands (see Table 2) between six distinct pairs of cities (A.B).
IA.C). ,I)l. (BC.). IBIM)). and lD)). where the communication traffic between the ele-
ments off a cit ti-pair may he routed via any acyclic path between the cities (there are 5 such
riiutes between each cit -pair).

SA BLII 1. (Co.xt.

Arc Single Channel 12 Channels 60 Channels

A-B 799.7 7028.77 17690.40
B-C 8-8 25 7992.07 21341.47

-1) 1401 7( 13232.38 42512.54

I)- N 654 t0 5697.63 13098.00
[)-B It4" 60l 9619.52 28022.08
( 1236h5§ I 1500.110 35860.53

I \B[ I 2 1,, .'tx iil (otlCommuncalions Detands

(it\-Vaur I)emand Set I Demand Set II
\- B 2 4

B-( I 10
( I) 46 64
1)-A S 5
1)-B 2 10
(-A 4 14
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Algebraically, this problem has the form:

In h,(X, I

s~t _ : = d; (k = 1 .. .. 6)-I

t =-, 4 (A = I ..... 6)

S 0.

v, here represen s the number of channels on the '' path between the A city-pair, d, is the
total number of channels needed by the k"' city-pair, ., is the set of pairs (.,k ) such that the
corresponding path uses arc i, v, is the total number of channels on arc t, and I (.0 , , the
minimum cost of leasing at least v, channels on arc i. (Note that the h, are econom,-of -scale
functions of the type considered in Sections 2 and 3 with n = 3. For computational conveni-
ence the ,ariables associated with single channels on arcs were assumed continuous. Because
of the tixed demands, hounds could be imposed on all variables. General integer variables were
decomposed into 0-I variables, since the FMPS-MIP code requires this.)

The computational results of Table 3 illustrate the dramatic difference in solution
hehasior and times between the formulation approaches of Sections 3 and 4. The MIP code
used was the i.nivac FMPS-MIP code (level 7R I) and the problems were run on the Madison
Academic Computing (:enter Univac I110. For demand set 1, the Section 3 formulation
requires only about 1/4 the computer time of' the Section 4 formulation. For demand set It.
the solution time for the Section 3 formulation is 15 seconds, whereas the FMPS system was
unable to solve the Section 4 formulation. Similar behavior was observed in runs using a
locally developed MIP code, IPMIXD, which successfully solved both I-S and If-S, but failed to
solve either I-L or Il-L because of storage overflows.

TAB. E 3. P'rohlem Si:es and Solution Tines

Problem Rows Columns 0-I Variables Solution Time (Sec.)
1-S" 12 54 18 4
I-L 1 76 122 40 15
II-S 12 60 24 15
II-L 116 2(2 80 t

1 1 It:l m ' : 111II .It ? I t I 1, s I III' N1hi!!(' ' I 
I 

q ll

t II t'S 1A1C[I11 I(LCkc I :T11111,n0i 1)l 4 It IL % 1II, 1IiSC ,I C "itliIiiCTI ,il err,r

A number of other versions of' the problems were run in which some of the cost funclion
terms were modelled via the Section 3 approach and the remainder via the Section 4 approach.
In all cases the results were worse then those obtained via the Section 3 approach.

6. CONCLUSION

For piecewise-linear functions belonging to a broad class of economy-of'-scale functions, a

compact mixed-integer programming formulation has been described. This formulation was
then shown to behave at least as well as any other mixed-integer formulation of the lunct on in
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.rmi , t th p pro\inlaiotn ,error resulting frorm the relaxatiin of inlegrality constraints. More-
U', 1. , Lolllp~iat1101il coiparison ( using d cofllfnl ilalCatiOns 

n
tVork problem as a test problem)

',ho'ia d lic s pcriioril , ()I the ci)1mpact loni ulation i)\cr a stanidard 11ixed-intcger lormulition

heL l.. ,ole pm hlenl

A(KNoA IEI)(,ME NT

J,t %I I leisher of' the Madison Academic ( oilputing ('enter assisted in the development
ot tilc let problenms and obtained the computational results of' Section 5.
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APPENDIX A

Jo justify the statement in Section 2 that the restrictions a > () atid ) t can he

replaced by assuming that (2.1) has an optimal soalution for v > 0, wc consider the remaining
cases (I) isuch that i, > 0 and a 0 1(2) i such that t < 0 and a > I, and (3) such that

< 0 and a, < 0.

(ASE I. For those i such that 0 and a, < 0, one ma, obtain an equivalent problem
by deleting the corresponding variables i from the problem, since, for any 0, 11. an optimal
solution may be obtained in which such v, = 0.

(ASE 2: If there are isuch that t < 0 and a, > 0, then clearly the objective function of
12.11 must he unbounded from below, so this case is ruled out by the existence of an optimal

solutioin

(ASE 3 If. for some i,. < 0 and a, < (0. then either all a < 0, in which case (2 It is

infeasible for . > 0, or there exists at least one / such thait a, > (. In the latter case let
r, - min 1Kdala, > 1 and r = max (,/a, t, < 0, a, < ll If r < r', then, assuming
that the variables arc order-d so that a l > 0 and tl/a I = r '. it may he seen from obvious
extensions of the prool of Lemma I and Theorem 2 that the desired result holds. On the
other hand. if r > r', then the objective function of 12 I ) is unbounded from below for all ..
This follows by letting r' = laI and r = (,,/a,. noting that 1/- c, < a I-a,,. and choosing a
rational H > 0 such that / -, < H < all -a,, from which it follows that a- + a,,H > 0 and
, + (,,H < ) Now choose an integer M > 0 such that MH is integer and note that the rela-

ti ons a. a, ', > t and ( l.tt + , •1MH < 0 imply unboundedness.
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APPENDIX B

Ilere we consider several examples to illustrate the difficulties that can arise when one
attempts to extend the results of Sections 2 and 3 by either (I) inserting a positive constant on
the R.IS of the constraint involking -. or (2) relaxing sign restrictions in the bounded case, or
(3) allowing more than one constraint involving x in the bounded case.

The following illustrates the difficulties that may, arise when a poii i uvmquni appears in
the RIIS of' a MIMM (see Figure 4).

A I(.x) m n 1  ItOj

st. + 12. > -+ 10

J , i. > 0. v integer.

In this case, the conxcx envelope o" k I-(x) on R is easily seen to have a value of 10 on (0,21,
so that it does not coincide at x = 0 with the optimal value function of the continuous relaxa-
tion of the MIMM as given by:

K(.) min. I Oy,

st. yi + 12y -> v + 10

Y i. Yr > 0.

1 0
since k*(O) = 10 . 10 < 10.

k1 (x)i

2 12 14

0

1 i, Hi 4 A, , I n 0,i .141
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Note also that the addition of bounds does not help, since delining

A.(\) min + IOyt

s.t. tl + 1 2v > x + 10

(1 < t 0 10

0 <

J integer

yields k(x = A() for x ( 10. 121, and k 1(x) coincides with its convex envelope on (0, 121,
%hereas the optimal value function of the continuous relaxation is again strictly less than k I(x)
at = 0.

Now consider the following example in which a RIIS constant is not present in the con-
straint involving .\, but there are negaitive coefficients:

kA0() = min -Y, + 10.12

st. -. + 12.v, >x

0 . 10

0 < .2 I

y, integer.

Making the change of variables y! = I0 - Y. we have

Ax) = 10 + minv, + l0v

s.t. y, + 12j, x + 10

0 .2 10

0 .V: I

., integer,

so that k (x) = -10 + k ,(. 0. It is easily seen that while k coincides with its convex envelope
on [0,121. it differs from the optimal value function of the corresponding continuous relaxation
at = 0,

In our last example, we consider the case of two constraints with poxitive coelficients and
rhs xv:

k 4() min v, + j',

s.t. 2.v + 4. > v

4v I + 3., >

0 V Y1, v, I

. integel
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In this case the optimal value function is fnite tor x ' 6, and is CaSily seen to hae the ',alue,

(I tor \ (

k4((x I forO < % -< 3

2 or 3 < .\ < 6

Thus, the convex envelope of AA on [0,61 is simply .x/3. On the other hand, for x = 5 the con-
tinuous relaxation of the above MIMM ftor A I is easily seen to have optimal value 3/2 for \ = 5

(choose v = 1. v I), and therefore it does not coincide with the convex envelope. %k hich

has value 5/3 at x =

APPENDIX C

We wish to establish relaxation-optimality in the case of both upper and lower bounds as
considered in Corollary 1. )efine

(C. I .I (x) - min m .1,

s.t. a.' x.

Y, integer, Ei I

and

(C.2) I1(x) min cv

st. uy >- x

where / 0 and /, and u, are integer for i E B. By making the substitutions v = + + /,

x = t + al, and iC = u 1, we have

S(-x c = c m + an cz

s.t. az >O, t. 0 < z < i, :, integer, i E

= c/ + 0il = cl + J2(x - at),

where

.,() - min :

s.t. a: > t. 0 -< z z, integer. iE I.

SimiLrk. /I + *.,(. - all where

-- rain (zz

st, a: > 1, 0) < z 0<



STOCHASTIC MODELS FOR SPREAD OF

MOTIVATING INFORMATION

Menachem Berg

Ltniversit t/ Ilai/la

llaIRa. Ial

ABSTRAC'T

In this %kork "e consider spread of information which nlioti csate, the hearer
to perform sonic specified action. rhe tlie to compleoon of an action is as-
sumed ti be a random %ariahlc and the main focus is in the number of com-
pleted actions by time i. I (. Some n odels. %hich reflect different degree of
centralization in the spread process, are anal,'ed and the distribution off 1 (),
as %ell as that of sone other stochastic processes of interest, are obtained. The
rele ance ti propagation of epidenics is pointed o ui

All models are solved b ernplo ing vAo interrelated concepts. nanteh, the
order statistics property of* stochastic processes and the hinontial closure proper-
(,, of collections of distributions. In this respect. the Aork also serves as an
illustration of' the applicatiin of these useful concepts

I. INTRODUCTION

In this work we shall consider several spread of information models. While the term
information is meant in a broad sense we are particularly referring to messages which motivate
the hearers to perform some specified action. This could be a marketing leaflet which stimu-
lates the reader to buy some commodity or a military call up order which requires the report of
its recepient at some predetermined place. The spreading itself could be carried out by a single
spreader (possibly a source), by means of a hierarchy of spreaders or by anyone who has heard
the ,formation. The models which will be discussed in this work corresponds to this varying
degree of centralization in the spread process.

All models start with a single initial spreader - having more than one would merely
require convoluting the results - and the spread rate is always of a homogeneous Poisson type.
The time to completion of the specified action is assumed to be a random variable, independent
from hearer to hearer, with a general cumulative distribution function II.). It should be noted
that an action need not involve physical efforts and may even be instantaneous so that //(.) is
indeed, the c.d.f, of the period of time elapsed between the receipt of the information and the
completion (f the action.

The quantity we are mainly interested in is the number of hearers who have completed
the action by time i or alternatively, the number of completed actions by time I. Besides com-
puting the distribution of this stochastic process we shall also obtain the distribution of associ-
ated stochastic processes of interest such as the number of hearers up to time t or the number

"l~ ., t ,,,luri ohw wI) .irl uriic , ( ) III lI, tI' ' ts ltl\crsl[ ,t lln, P1im s '.1 ( hitvlgo ( 11,1
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ot rcponslve spreaders or hearers up to time ; (when the possibtiity of detection" is taken into

,ILCOLIMt

It is instructie to note that the above models hear relevance to profpagatiolt o epidemics.
The %ocabular, should then be translated its follows: Inlormat ion- )isease. Spreader-Carrier,
flearer- InfectiouS. Source-Virus The specified action could he interpreted as any event of
interest such as rcco%,er or the less fortunate outcome.

lor literalure on spread of rumors see l)ietz 131 and Bartholomew 121. A comprehensive
treatise (in spread of epidemics can be tound in Bailey I ].

2. SOME PRELIMINARY RESULTS

Let us first present two concepts, which we shall use extensively in the sequel.

DEFINIIION I: A stochastic process with unit jumps, Y(,) is said to have the order
statistics (abbre%,iated: OS) property if conditioned on Y(t) = it, the unordered times of jumps
are distributed as a random sample of size n from a c.d.f. F,(.) which we shall call the kernal
cd. f.

NOTE.' In this work we shall consider only processes with continuously distributed "inter-
jump' intervals so that .( ) will always be a continuous function.

DE:JNITION 2: A collection of discrete nonnegative distributions, 9is said to be binomi-
ally closed (abbreviated: BC) if for every P E Y and any 0 -y < I there exists a P E Ysuch
that

N - P X , Binomial (In, y) - X P

or. restated, if N is distributed according to a member of 6jand the conditional distribution of X'
given .A = t. is Binomial with parameters (n, y), then the unconditional distribution of X is
also a member of",

Of particular interest are collections which are parametric families of distributions depend-
ing on some parameter 9 . In this case the above definition can be reworded as follows:

DEFINITION 2': A parametric family of distributions Y = JP,. 0 E 0) is said to be BC if
For every H E (-) and any 0 -y I there exists a 6 E (-) such that

A - I,: " ,, Binom ial (n, y ) - .X - P ,

whereo =INo. -y)

The function 4(0. y will be called the transformation function.

Examples of uniparametric BC families of distribution are:

I. The Poisson family of distributions

P., ' x 0, I, 2,.... 0 ( = 1, 1).

In this case the transformation function is

_ _ _ S
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2. The Binomial family of distributions

I,(x) = A*10'(l -f - , x 0. K , 0 E 0 = [0,11.

Here again

(2) 10. Y) y.

3. The Geometric family of distributions

P,(x) =(I -a)' , x=0. I, 2. 0 E H9= 10.11.

Here

(3) (oy) E1 +y(0 -)1

A useful tool for verifying whether a particular collection of distribution is BC is provided
by the following characterization theorem.

PROPOSITION 1: Let gbe a collection of nonnegative discrete distributions and let ,be

the corresponding collection of moment generating functions where the m.g.f. associated with a

distribution P is given by G(:) = £ z'P(x). Thengis BC if and only if ( is closed under a

linear transformation of its independent variable, i.e., for every P E Y and any 0 < y < I
there exists a P E Ysuch that

G(yz + I-y)= G(z)

where G(6) is the m.g.f. associated with P(5).

The proof of this Proposition is straightforward. When dealing with parametric families of
distributions we have the equivalent:

PROPOSITION ': A family of nonnegative discrete distribution ( =P,.O E ()} is BC if
and only if for every 0 E 0 and any 0 < y v< I there exists a W E 0 such that

(4) G,(yz + I - y) = G4(z)

where G, is the m.g.f. associated with P,.

Due to the one to one correspondence between distributions and m.g.fs, the transforma-
tion function O (0, Y) is the same function in both collections.

COROLLARY: If the collection .qis BC then the collection Y"', formed by taking the
x-th convolution of each member of ? is BC too. The assertion is valid not only for positive
integers x but for any positive real x for which there exists a corresponding collection 4", of
proper m.g.fs. In the parametric family context we state that if? -=P,. 0 E H) is BC then so
is Y)" = (P,"'.O E 0I where P," is the x-th convolution of P,, with itself. In this case the
transformation function H(0,y) remains invariant under the operation, i.e., it is independent of
X.
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The corollary follows immediately from Proposition I (or I') due to the multiplicative
property of m.g.fs.

The following proposition relates the two concepts of OS property of stochastic processes
and BC property of collections of distributions.

PROPOSITION 2: If a stochastic process NOt), with V(0) = 0, processes the OS pro-
perty, then the collection of distributions of N 0), 1 > 0:

i l,,,. >0

is BC.

PROOF: From the OS property of NO), we can conclude that P(N(s) = ,/N(t) n)

[I F/(s) (U - F,(s))' for all 0 < s < t and all integers 0 . n (where 0" 1).

Hence,

P(i(s)= J) in] F(s) (I - F," '(s)) P(N(t) = n), =0, 1. 2.

Multiplying both sides by :' and summing over j from 0 to - we obtain after some manipula-
tions

G%,,I(z) = G%,,(z F,(s) + I - F,(s))

where G,,,(z) = z" P(N(t) = n), is the m.g.f. of the distribution of N(t).
n-0)

!tence, for every I > 0 and for any 0 < y < I there exists an s(0 < s < t), such that

G%,I(z) = G%, I(z-y + I - y),

which is the solution of equation

(5) F,(s ) = y.

Such a unique solution does exist since F,(s) is continuously increasing from 0 to I in the
interval [0,t]. Proposition 2 now follows from Proposition 1.

We are now in a position to state the main theorem.

PROPOSITION 3: In an information spread process (of the type described in the Intro-
duction) let Y(t) be the number of hearers who initiated an action up to time t and let X(t) be
the number of completed actions by time t. Then, if the stochastic process Y(t) possesses the
OS property, the distribution of X(t) belongs, for all I >0 0, to the collection =
(P) .. ) 01.

PROOF: Assume that Y(t) = n. Then, since Y(t) possesses the OS property, the unor-
dered points of time at which the n hearers received the information are distributed as a ran-
dom sample of size n from a c.d.f. F,(u). Moreover, the probability that a hearer who got the
message at time u(u 0 t will complete the action by time t is H(t - u). Combining these
two facts we have

X(t) ,-= Binomial (n,p)

where
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f6) = 0 - u)dFl(u).

No". by Proposition 2, the collection 1t,. I > 01 is ti', and hence, by the very
definition of this property, the distribution ol' VO) belongs to '- Pas well.

3. HIERARCHICAL SPREADING

We begin with a simple model in which a single spreader circulates a piece of information
according to a Poisson process with parameter X i.e., the "interhearing' times are exponentially
distributed with parameter A. Upon receiving the information, 'ny hearer initiates an action
whose time to completion is distribu:ed according to a general c.d.f. i(.). I1 is assumed that an
action can be initiated only when the information (which could be a leaflet or a form) has been
received directly from the initial spreader.

By assumption, N (t ) is a Poisson process, viz.,

NOt) - Poisson (At).

It is well known that a Poisson process possesses the OS property with a kernal c.d.f.,

Flu) 1  0 <u I,

so that by Proposition 3 the distribution of Xt1 belongs, for any t > 0, to the collection =

{P\,,,, t ) 01. This collection, however, is identical with the Poisson family of distributions
and therefore, by (M),

(7) Xt - Poisson XS H(u)duj

since here

=Xt and, by (6), - = p = t

Thus,

(8) EIX(t)l = A H(u)du

and

(9) G%,(z) = exp IlI-z I 11(u

Let us now drop the assumption that all hearers do act and introduce a probability (k for a
hearer to be responsive and perform the action. The number off responsive hearers up to time t
Y(r), is again a Poisson process with parameter Au which enables us to repeat the above argu-

ments with A o instead of A. Therefore, by (7 .

X~t) - Poisson (Auftt (u idl.

A natural extension of the above single spreader model is achieved by designating some
of the hearers as spreaders. These spreaders, however, do not perform the action. Specifically,
we have an initial spreader who begins at iime 0 to circulate the information among, what we
shall call, second generation spreaders These spreaders pass on the information to hearers who
perform the action. All spreading is done according to a Poisson process with parameter A.
The total number of completed actions by time t, can be expressed as

' W . o
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where

S() is the number of second generation spreaders who have received the information by time
I,

,' 0() is the number of completed actions up to time t by hearers of the i-th second generation
spreader. By assumption,

S( - Poisson (At)

and hence, by the OS property of the Poisson process,

Ls I(10) (f :,,z (,,;k lt G ' ,,(:)dv e t( ln.

exp [-X +x'G,,,(z dy].

Substituting (9) into (10) yields.

tit G ,(z) = exp I-At + A e All 11'du I

with
dGt, t) l

(12) E[X,(t])] = X2o (t - u)H(u)du.

The total number of people who know the information by time I (including second gen-
eration spreaders) can be represented as

N),= (N,()+ It
t=1

where,

N,,,(t)is the number of hearers of the i-th second generation spreader, up to time t.

Noting that the m.g.f. of N,,(t) is obtainable from the m.g.f. of X,(,), by setting H(u) = I
(u ) 0), and since Gv, 1,,(:) = zG%.,,,(z), the m.g.f. of N,t) can be shown to be

(13) G\,,(z) exp -Xt + - - eAtl

with N 2 )t)

EIN 2 ()] At + (A)
2

2

If the possibility of "defection" is taken into account and we let I - 3 be the probability that a
second generation spreader does not spread and I - a be the probability that a hearer does not
perform the action, then, repeating the above arguments, we obtain

Gr,, (z)- exp IA1t + A f l

with
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2

,# f ' - t)H(u)du.

We now proceed to consider a general spreading hierarchy. Thus, in a structure of order
k, the process starts at time 0 with an initial spreader who circulates the information among the
second generation spreaders, who pass it on to third generation spreaders and so on until the
k-th generation spreaders spread the message through the rest of the population who perform
the action. All spreading is assumed to be according to a Poisson process with parameter A and
the time to completion of the action has a c.d.f. +(. Spreaders do not perform the action.

In order to obtain the distribution of X, (t (the index k denotes the order of the spread-
ing hierarchy), we first make the observation that a second generation spreader replicates, with
regard to his branch, the role of the initial spreader for a structure of order k - 1. Hence,
using once more the OS property of the Poisson process, we obtain the recursive equation

(14) G, ,,,,(:) = exp -At +A G%,,, (zJ k = 2, 3. 4,

where G%,,,(z) is given by (I I).

Taking the derivative of (14) with respect to z and setting = I, yields a set of recursive
equations for the expectations of X, t) (k = 2, 3 .. ). Solving these equations, while recal-
ling the initial value E(X,(t)) in (12), we flind

(15) E[Xjt)] = (k )! f( *v) H(Ydv, k = 2, 3.

(In fact, both (14) and (15) also hold for k = I which represents a single spreader model.)

For small t, a higher order of the spreading hierarchy would not necessarily increase the
expected number of completed actions-since spreaders do not perform the action-but for
larger t this will be the case. When t tends to - it can be shown, using an Abelian argument
on Laplace transforms, that

EX,, it)I - EIX, (0] -1 . for any finite k.

Similar arguments with respect to Nt, M-the total number of people who know the informa-
tion by time t (including spreaders), yield the recursive equation

(16) G\,. ,(z) = exp i-At + \z f G%, (,,(z)dv , k = 2, 3, ...

where G, ,(z) is given by (13). It can be shown from (16) and (13) that

(17) EINW()]=

which indicates, as one would have intuitively expected, that the higher the order of the spread-
ing hierarchy, the faster the spread of the information.

It is interesting to investigate the behavior of' XA, (t and N (t1 when k -,o. For X, (tI
we can get from (14) that

(18) G _,,,(z) = I => PI,A(t) = 01 = I,
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Nihich is not surprising since if everybody spreads there is no one to carry out the action. F-rom
116) we can obtain an integral equation for the m .g.f. of N 0 It, the solution of which is,

(19) C I)=A H :1~A)

"The m.g.f. in (19) corresponds to the distribution

P]NV .(t) ol = & 1(1 - A A)". it = 0. 1. 2,

i.e..

(20) N. ' ) ( eometric (v A,)

with

E[N..(t) = (,A I.

This result could have been obtained directly from (17).

An important generalization of the hierarchical spreading model arises when the spreading
rate of the initial spreader, which could be a source, is different from those of the subsequent
spreaders. Repeating the arguments in the above model, when the initial spreader circulates
the information according to a Poisson process with ratem, yields for NA It) and ,A It) (which

correspond to X4(t) and N (1, respectively, in the ordinary case)

(21) Q1 ,(11) = exp - t + f G (z)dd

(22) G .,(Z) = exp -,u.! +A:f G%,((zdv k = 2. 3.

Differentiating 121) and f22) with respect to : and selling - = 1, yields

_ W __ f(t_- Jr) I) d -- l.X, It)]/l.At) =u (A-, lI! "~ 'I "d =A

and
N ((0)'1

when A tends to W t) behaves as X. (t), (see Equation (18)). For ,(t) we have, recal-
ling (19).

,:)= - Uc ]l - :(1 - e A'] /) A

which corresponds to the distribution,

P(. ., (,)= ,,)= I A,kA + i - it *'( 0,,".PI.( l ( n' ±f IA( - eA~' n =0, I ..

That is.

(23) N.It Negative Binomial A f

4. FREE SPREAD OF INFORMATION

In this model we make no prior designation of spreaders and assume that every hearer
may pass on the information in addition to performing the action. At first glance, it may look
contradictory that a person can do both simultaneously, but one should bear in mind our intro-
ductory remark that an action need not involve physical efforts. In fact, an action could even
be instantaneous in which case /11-) is the c.d.f. of the time until the action is taken.
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As usual the process starts at time ) \ith an initial sprcader , ho circulates the informa-
lion according to a Poisson process with parameter A. Any hearer ol the information initiates
an action, whose time to completion is distributed according to a c.d.l. IW.), and, simultane-
ousl%, goes on spreading the information at the same rate (Poisson with parameter A). "Ihe
number of hearers up to time r N,). should have the same distribution as A ._( W in the prc i-
ous model, so that

(24) ,N() - Geometric (c A)

This result is also obtainable by the following argument. The time at which the n-th person
received the message T,,, can be expressed as the sum of the successive "interhearing" periods
of the first n hearers. It can now be observed that these periods correspond, in reverse order.
to the "interfailure" periods of a system which is composed of n units in parallel each having an
exponeniial lifetime distribution. 7, is therefore distributed as the lifetime of this svstem. i.e..

P( 7;, < t)= (I e v )", / > 0.

which, recalling the relation P( 7', < ) = P(NO,) > n ) .yields (24).

The process NO(, possesses the OS property 141 with a kernel c.d.f.

(25) K(u 0 < u 1 4

[fence, the distribution of X0 I belongs, for any t >r 0. to the collection 1P {p,,, t >, 01
which coincides with the Geometric family of distributions. Therefore, using (3). we have

(26) Vr) Geometric Ill + eA v' 0i )e f I

with

EIX(Ol1 = e , e "'l(u du

since here

and, by (6).

(27) y p I - c O ,e 'H(u)du.

Let us now generalize the model by making the response of the hearers to both spreading and
acting probabilistic. More precisely, we assume that every hearer is either interested or unin-
terested. with probabilities 13 and I - 13 respectively, where uninterested hearers neither spread
nor act while those interested do spread but still may not perform the action with probability I

Letting S) be the number of interested hearers up to time r, it can be verified that S(t)

is the same type of birth process as N 0), only with At3 instead of, . Thus,

(28) S0t) - Geometric (e AiiO.

Using the OS property of S(I) and the BC property of the Binomial family of distributions,
with transformation funciion fi I. y) = H'y, it can be verilied that

(29) X(/) , . . Binomial (n, f/),

where

=(I - , All/) I J /3e Al "H(u d.
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Applying Proposition 3 and using (3) with 0 = e ^'' and y = (ri we obtain

(30) A'W) - Geometric I1 + X (,All AI f ' All,/(u )du 1

with

E[X(t I ( J ,43e d f)du.

Like in the hierarchical spreading model we can now generalize this model by allowing the
rate of the initial spreader (which could be a source) to be different from those of the other
spreaders. Thus, if the initial spreader circulates the information according to a Poisson process
with parameter p,, the distribution of N(t) should be identical to that of N&., 0) in the hierarchi-
cal spreading model (Equation (23)), i.e.,

N(t) - Negative Binomial (I-. e All

It can be shown that the process N(0) possesses the OS property with the kernel probability dis-
tribution function in (25). Furthermore, the m.g.f. of a Negative Binomial distribution with
parameters (x.H) is the m.g.f. of a Geometric distribution with parameter H, taken to the power
x (x > 0). Hence, using the corollary of Proposition V,, we can conclude that the Negative
Binomial family of distributions with parameter 19 E [0, 1] is BC, for any x > 0 with 6 given by
(3). Therefore, by Proposition 3,

X() -Negative Binomial L. 11 + Ax, A"H(i)duJ

with

EIXi, 0 -" '  Xe A"I(u)du.

5. SPREAD BY A SOURCE

In this model, we have a source (some media) which, form time 0 on, transmits a piece
of information to a population of size N. Any member of the population may hear the infor-
mation in any interval (,u + At), independently of other members, with probability
AAt + MOt), at which moment he initiates an action whose time to completion has a c.d.f.
I/(. The distribution of the number of hearers up to time r. N(), is

NWt) - Binomial (N, I - e Al),

since the c.d.f. of the time until any one of them will hear the information is given by

L(u) = I - e A, u > 0.

Moreover, the stochastic process N(t) possesses the OS property with a kernel c.d.f.

I - e All

Applying now Proposition 3 and using (2) we obtain

Xt) - Binomial INe Af e'"l(u)duj

with

t;'[X(t) = Ne lf X e,"lt(u)du.
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since here = I - e A and, by (6),

(31) "Y = p = G", ) IA'"( )du.

Let us now relax the assumption that all the population is exposed 1., the source and
introduce a probability 13 that a member of the population will hear the information at all. We
further make the response of the hearers to the stimulus probabilistic and let (t be the probabil-
ity that a hearer does initiate an action.

Denote by / the number of people who are exposed to the source. Then,

/ -- Binomial (N./3).

(iven / = n the conditional distribution of NW, the number of hearers (out of the in
exposed) up to time t, is

N(t) I/-,,, - Binomial (n. I - e A9.

Using the OS property of N(t) we can show, (like in the previous model-see Equation (29)),
that

X(t) .,, / Binomial (n.ap), 0 < n < in < N

where p is given by 131).

Applying Proposition 3 and then unconditioning with respect to Z (which amounts to one
more use of the BC property of the Binomial family of distribution) we finally obtain

+ '(t) - Binomial [V. ,ae3 1, A .1. A e'"/(u)duj

with

/-',E () N eXI tAI e "' H i u d u.

6. MORE GENERAL SPREAD PROCESSES

Throughout this work we have assumed that the spread rate is of a homogeneous Poisson
type. In this section we shall employ our procedure to solve the nonhomogeneous case.

Specifically, assume that the spread rate of any active spreader at time I is a function of t:
A (t). Beginning with the single spreader model we have the well known result

N(t) W Poisson (A())

where

A) = f (u)du.

The nonhomogeneous Poisson process also possesses the OS property with a kernel c.d.f.

so that by following the arguments in the homogeneous case we can show that

. Wi) - Poisson if)Au l/(1 u)du)
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vith

and

(i% ,(: = exp I- -(I f )'X0 (M0 - u ]duj.

(ontin ug to a hierarchical spread structure of order 2 we have

S) + f A I dv J

,here I t. Iis the number of completed actions by time ygenerated by a single spreader who

operates in the time tnter\al [ i.t]. The mgf. of this r.v. is given by

Gik , (:) = exp [-(I - :) fA X(u) lt - u) du.

In a similar Aay Ae can obtain results for higher orders of spreading structures.

Proceeding to the free spread model, the solution of the Kolmogorov backward equations

for the probabilities P(tI, = i I it . 1, 2. yields

NOt I - Geometric (v (, ).

It can also be directly veritied that N(t) possesses the OS property with a kernel c.d.f.

1u) = 0 < 14 < 1.
C\ - I

Repeating the arguments in the homogeneous case we finally obtain here

,,t) - Geometric 11 + f('X(u)e'.H(t - u)dul

with
E1 1 I) = JA IIc"'tlt - ldu.

Turning to the last model, in which the information is spread by a source, we now assume

that each member of the population may hear the information in the interval (t.t + At) with

probability At) At + oAt). We then have

VO) - Binomial IN. I - e \01)

and moreover, the process N It) possesses the OS property with a kernel c.d.f.

Fl~u) 1 - e " 0 < 14 t.

Applying Proposition 3 yields here

Xt) Binomial IN,f A.(ule "(t - u)duJ

with

E[IXIt) = N f X(ul e'"11(1 - uI)dd.
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As a matter of tact, our procedure can he used in this model to ohini a complete general
solution.

Recalling our definition of 1. (.) as the cd.f of the time, sincc the heginning of' the
transmission of the information, until a le i1her of' tihe population hears it. wc la, e

( ) - Binomial (A.I.' 0I)).

It is not difficult to ohser ,e that h its ,erv nature, the process VWrt, poswscs tile ()S
proper% with a kernel c.d.f.

1.( = t ) () 0 .I 1 10. 0 -<i

I'sing our procedure, we tinally ohtain

XIt Binomial v, f t d/.(o))

%ith

/:IN it = \' , I t / ),l/,ol.

Note that in this case the distrihutioM l 0 It ) could ,i,,i , C 1. (1 hi1,i1cd (lo 1. %

defining a "success," fIor an lember 4 tiil populatiion, as the evemlr ol ha . lii Inn.Ipiil".C

the action hv time t
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MAXIMAL NASH SLBSETS FOR BIMATRIX (AMES

N I M%. Jansen

A lI al/lif U I piec /w/i( ' Ij t ol t'. I i / t /lthlf ,
\uNimw At, %cftlwrlatl

SBS-IR (I

I tih tl, llWt\lt, i~tsh I 'L tic \ieldec l tlee e e. I, tdiee thie dtc C1
'It CtulilhitlI ll p itmll l ii , himmoxiLrl geniv t thc finllte UnleIl 1 l I AN lkh NtIe IIii CI

hIl ,i ditiii the, ' \lICIICc e itln . iii tit iniil N ti ,ttl ,(d c i llmIIu %iicU'i Ill

ciFli 
, 

14j 'QUAIL' itihll,11l. c- Ill Ih pa.d\ e l o cit and dItii l ll w il(l~ lcIi.. ,iltliwi ire cr

dvllCkI'

I. I IRI)L ("l(ON

A o bU111\ LWoiC IS defined hy a pair ( 1.8) of real m.\n-matriccs..A stratcg, for player I

111) is an clement of .SS"). where .' i= i,' p F 1) p, = 11 Corresp(nding to the

strateg pair (p.q I ." x .%" the paotfs are p.Iq' and p41', respeectiCl\.

A pair (p. q ( .'' x S" is called an t'iltlihimin point of' the ,.\ti,-bimatrix ga me (IB) if
p fq max p 11' and plkq' = na, j'q'. 'he set of all equilibrium points of ( IH). ) hich is

pi. V" q- S

noempt b.\ t a theorem of , I. Nash 19,101, will he denoted b\ L ( I.B).

N()A I( RN: Ior a natural number in. let ,,, = 1I .... in IT-.lhe elements of the
basis (f unit \ctors of I' are denoted by C 1..... (,- For a finite set .S, .St is the number of
elements of S I he conc\x hull of a set . Q IR'" is denoted by con (.% ). If C C R' is a con-
\cx set. then v"c irite Cxt(( I, dim(( I and relint( C) for the set of' extreme points of (. the
dimension of (the allinc hull of) ( and the relative interior of( , respectii, cly.

let I 1,B) he an m.t-bimatrix game and let (p.:v) E S" x .S' It is scll-knovn (CF. 171.
theoreni 4) that 1p.q) C f .,11) ilf (p) C I(.,I q) and ( (q) CI (p ), where ((p) (the
(rr'CI of' p) := {i C LN,,, p, > (hi. ('(qI : Ij E IN,,j q. > 01, !1( l:q =
it C1 IN,,.: t, 1q' - max v, .q and II(p;lH,) := j E I,, ipBtc; = max I,'}j.

Ihe organi/ation of the paper is as ftlloss. In Section 2 wc sho%& that the set (of equili-
brium points of a biniatrix game is the union of' .onvex pil\.t~opcs. The equilibrium point set
can therefore be constructed if' \,e know tile extreme points of these conex pol" t\opes. These
so-called extreme equilibrium points are studied in the third section. As a h,-produci wc lind
that the set of equilibria is in fact a finite union. Finall). dimensiin relations are giken for tile
cinex pokl opcs mentioned before.

14I

PHL~hLO AILZ BLAMc.iNOT FILD



148 %1 .1%1 1\\,)I

2. IllE SIRI ('TI RE OF MAIMAL NASIl SUBSETS

)I- IINI II)NS Let (.1H) he a bimariix ganc and let .S C L (.4,B). We call ,wo equili-

brilm1 points (p,q ). (p(.q E .S S-intichang.wlh' it (p.q') ( S and (p',q ) ( S. We call two

equilibrium points ilC/ (h ngeah/i it' lich, are I: .I.1I-interchangeabi. We call .S a \ut/i mh wi
for the game I I.B) it f ,er, pair of ellilibriunm points in .S is .- interchangeable A Nash subset
.S; is called a mtoo\SIple \ 1, Nub/ct for tile ifinic (.4,B) if' there exists no Nash subset 1 C
. I. ) stch thai S is propcrl, conrtained in I

1 he term MnMMal Nah suhset was first introduced by (). A. Ileuer and C. B. Millham in
141 J I Nash. \AhO alreaid, omsidcrd such sets in 195 101, called them uih-soliion.
I hese authors sh cd thai nixiin1al Nash subset for an t.vil-himatrix game is a closed and

con~es subset ofl V," S lhc lll ing theorem implies that a maximal Nash subset is in

lact the ( artesian product of toi C1l\,eC\ pilytopes'

I III )RIL M I let (A.H)e be an t.xn-himatrix game and let S be a maximal Nash subset
loti ihe gane t.1,H) Suppose that fii.4 I relint.S). Then S = K( ) x L.(ji). where K(4)

,' S ',. tF.q ( /.1 I' and L (j; := .q 7 V I.qI E IIA,/)} are convex polyttopes.

PROMF let 7-,(.S) = p E S", there exists a q E S' with (p.q ( S 1 and rr (S) =
1q S . there exists a p ( S"' with (p,q) E S). Since it is clear that S rrI(S) x rr .SN ), the

theirem i, pro\ cd I Asc can show that 7r (S) -A (4) and r (S) = I.(I The inclusions
, C A (q ) and 7r I S, C L (o) are immediate. Suppose that p / K 14 and q E 7r '(.S ).

SiLc q relint 7- iS). I heorem 64 of 1II implies that there is a q' IT A S) and a A E (0,1)
-,uch thal q = htq + il h-5 :tq ( m q 7 M "rt C -'1)i i' 'tilo\s that b E Ktq). Also, h E

K (q'. ilenc. A(qI n k q') v b and Lemma 3.5 of 141 implies that K(4) = K(q) n

A(q') So p , A(q) and (p x , IS) C I1A.R). If I' i(, then conv(Or1,(S) U 1p)) x
77,i.S) I,, a Nash subset properly containing the maximal Nash subset S. This leads to a con-

tridiction So I? , 7T (S) and \,e have proved that A(q ) C ( r4,(.SC . In a similar manner, one

can show that Lip (y ) (.S) Finallk, it is well-kno, n that A'(4) and L ()) are convex
polytopes. I

Ihc following [emna can he proved in the same wav as Theorem I in 121.

LEMMA I LetI (.B) he a himatrix game If C is a convex subset of E(.4.Bl, then

everx, pair of equilibriun point,, in ( is inter,hangeable

It is well-known that a maximal Nash subset is a convex set not properly contained in any
other con,cx subset if' the set of equilibrium points Ihis property is characteristic for maxi-

mal Nash subsets as we will prove now%

TI II )RI M 2 Let (I..B) he a himatrix game and let ( be a convex subset of I(A.B)

not properlN contained in an. other cons cx subsetutI Io/ 4,H). Then (is a maximal Nash sub-

set for the game ( 4.H)

PROOF (a) First we prove that " = (p.q) ( l:(A.B) there exists an ( E (EtA.B)

with I( .q). (p.) )C (. is a convex set. If (p.q ). (p,i1 ) E C, then there exist (x0) E

1,4B) such that (x.q), (p ) E (and ( .,q), (pj*) E C. But then (Ax + (1-A)i- Aq +
(I -Atq), OAp + (I -A )i, Aty + (I -A)I) C, for all A E (0,1). In view of the foregoing

Lemma, we may conclude that (Ax + (I -A.k, Ay + (I-A )y) E. (.4,B) and (Ap + (I -A Ijn,
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Aq + (I -)q I)) .,).B), For all E (0,1) Consequently., A(p.q) + (I-A (p.4) ( '. tor
all A t (0.1). (b) Also, C"is a Nash subset. If (p~q), (pg ) E (", then there exist (x.,) (x,.I)
E L(A.B) as in (a). Note that (..), (.V ) E C. So Lemma I implies (with ( in the role of
C) that (\. ) F( 1 . B.t). Similarly, (pq) E L(.B). Since (p,q), (.\v) C 1:(,B) and (p,).
(.v,.q) E C, it I'ollows that (p.q) ( . Similarly, (Pq ) E e', and (p.q) and ()q) are
interchangeable (c) Because ( is convex and C C C, it lollows that ( = (-. So, in view of
(b) C is a Nash Subset It is ohiioLs that, it, addition, ('is a maximal Nash subset . i

(()Rot..ARN I (Cf. [21, Theorem I : If (.1.B) is ai hintatrix game, then k ( .,B) is con-
v ex if and only ir E:( -LB) is a Nash subset.

REMARK I. Let (.4B) he a bimatrix game and let (pq) ( 1l 4,B) Since 1 p.q )) is a
Nash subset for the game (..8). we can, applying Zorn's lemma, find a maximal Nash subset
cont,ining (pq). Consequentls, everiN equilibrium point of the game (,A.B) is contained in a
maximal Nash subset and 1 (. .B) is the union of such subsets.

3. EXTREME POINTS OF MAXIMAl. NASH SUBSETS

For a natrix game I.. S. Shapley and R. N. Sno [121 characterized all pairs if' extreme

optimal strategies of the players. We want to describe f'or the case of himatrix games, the
extreme points of the maximal Nash subsets. ()ur approach incorporates the \&ork of II. W.
Kuhn [5 and ). 1. Mangasarian 161.

I)t-I]NITION: An equilibrium point of a bimatrix game ( .1.) is called an .cmn'oic cqgili-
hrium poiml if it is an extreme point of sonie maximal Nash subset for the game ( 4.B).

In 161, OL. Mangasarian introduced, for an inxvi-bimatrix game (1.B), the convex
polyhedral sets P,1 := (p./3 E S'" x R-, pBc[ < 13 for all j E IN, } and QI := I{(q, a ) E S" x
IR. c,,,,q ' e for all iE IN,,, . These sets play also a role in the proof of the following

THEOREM 3: The set of equilibrium points of a bimatrix game is a (not necessarily dis-
junct J union of a finite number of maximal Nash subsets.

PRO()F: Let .S' be a maximal Nash subset for the game (...B) and suppose that (pq ) E
ext(S) and that (b1 ) C relint(S). Then, by Theorem I. we have p E ext(K( )) and q E
ext(1l ) -The reader can easily prove that this implies that (p.p84 ') E ext(P,,) and that
(q.j,4q) E ext( ,) (f. 151, Lemma 1). Hence, if (pq) is an extreme equilibrium point of
the game (A.B). then (p.pBq',q,p.q') E ext(/',) x ext(QI). Since ext(Pi1 ) and ext(Q,) are
finite sets, the number of' extreme equilibrium points of the game (..,8) is also finite. IHence,
the number of maximal Nash subsets is finite. I I

REMARK 2: In [61. 0. L. Mangasarian called an element (p.g, ./3) C S" x S" x IR x IR
an extreme equilibrium point (f' the ixn-bimatrix game ( I.B), if (i./3) C ext (P{), (G, ) E ext
(Q 1 ) and p(A 4 BI = (t + /3. It is eas. to show that a point (p.q.o.J3) is an extreme equili-
brium point in the sense of' 0. L. Mangasarian il and only if (p. ) is an extreme equilibrium
point in the sense of definition I and if 'urthermore t = pA(g' and 13 = pBI'. Therel'ore,
Theorem 3 implies the Lemma on page 779 of 161.
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RI i.\RK 3 the .xtcnsion of Iheorem 3 to the ease of tore than two players does not
neces,aril\ hold (On page 3 of 121, IL II. Chin. I Parthasarath% and I I ' Raghavan give an
Ceaniplc (i noncooperati \c 3-person game., \Ahwre all the pla~crs havc the set S as strategy
spa.e and MhiIe the set of equilibrium points is equal to the (conex) set (A, I -A ),
(A. I A . (A 1 A ) ) ( . " S X S ;,A (: (0,111. this set of equilibrium points is the union
ot in uunntOUble1 number of maximal Nash subsets.

Ior a prool of the lollowing theorem, see Lemma 2 of I W Kuhn IS].

II l(IX)RKI-i 4 Let ( I.BI he an menii-himatrix game. If (pq) is an extreme equilibrium
point of' the gane ( . H) and y is the number of elements of the carrier of q, then there exists

a y xy-subnatri\ & of 4 such that [renumber, if necessary, the rows and columns of A in such
a %a\ that & is in the upper feli corner of -1

(l i lit ( ' 11 x (Y * I )-matrix A := is nonsingular,

(2) (1 - (detit A i' I (l(ql and

IK is the coflactor of the element k.,

31 p-lq = dc/ K ), ( k ).

An nahiigous statement can be formulated with respect to the connection of the vector p and
the number pBq with a certain square submatrix of B.

R[MARK 4: Let (A.B) be a bimatrix game. Without loss of generality we may suppose
that .4 > It and B < 0. let S be a maximal Nash subset for the game (A.B). Suppose that
(p.q ) E relint(S) and that L (p) = Iq}. Note that the proof of Theorem 4 is based on the fact
that the rank of the matrix .-I ( ) = [a ,,,, .,,I , ,,, equals IC(q)I. Using the fact that A
> 0, Theorem 4 (3) implies that dim L (p) = I C(q)I - rank A(S). We shall see in Theorem

5 that a similar statement holds for sets L(p) with more than one element. If K(q) = {pI,
then dim Kiq) = I( (p)I - rank B(S), where B(S) := lb,],,( ,,.

4. A DIMENSION RELATION FOR MAXIMAL NASH SUBSETS

The purpose of this section is to extend the dimension relations as given by C. B. Millham
in 181. The relations derived below include, in contrast to the results in Millham's paper, those
for the zero-sum case (Cf. [I, 1311.

LEMMA 2: Let (A.B) be a bimatrix game and let S be a maximal Nash subset for (A.B).
Suppose that (p.q) E relint (S). Then, for all (p.q) E S, ('(p) C C(), ('(q) C ('(ql,
.,I(Aq) : M(.4,) and ./(p;B) D M(71,B).

PROOF: Suppose that p E K (co), p e op. Because b1 E relint K ( /), there exist a /E
K( ) and a A E (0, 1) such that X ,p + (I-X )f. This implies that ('(p) C ('(P). Now,
for j ( .1/(71:B),

71B' = j) Bv:= ApB(,' + (tI- X fiBtc ( A pB'+ (It-,\)iB '= p' Bq.

This is possible only if" pB(c' = pBI'. So j C ,f(pLB) and we have proved that M(j?.B) C
l(p.fB). The other assertions are proved in a similar way. I
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l)[FINITION: Let (AB) be a bimatrix game and let S be a maximal Nash subset for the
game .1,B). In view of Lemma 2, the matrices

A (S ) := [a,, 1, if, I ,, . , ,,,and B (S ) := [b,, , /, , ,./

do not depend on the choice ol the point (p,q ) E relint( ). We call A(S) and B(S) the S-
submatrices of' A and B. respectively.

TIIt OREM 5: Let (.4B) he an mxn-bimatrix game with A > ) and B < 0. Let S be a
maximal Nash subset for the game (A,B). It (p.q) ( relint(S),

then (II dim L(p) = K*(q)I - rank A(S)

and (2) dim K(q) = I((p)l - rank B(S).

I)ROOI: We only prove I). If L (p) has only one element, we are finished (Remark 4).
Suppose now that L (p) contains more than one element. There is no loss of generality in sup-
posing that ('(q) = { 1..... yl, where y = I('(q) . Let d i= y - rank A t.S). Choose a
basis ( ) . . .. -(d) of Ker A (S) := {x E R I A (S)x' = 0 in such a way that, for each k E
IN, 4 + .x(A ) > 0, where 4 = (q1 ..... q,), and pAq' - e, Aq' > e, Ax(k)' for each i V
.i (A -q), where x(k) :=(. -(k ),0 .... ) E W,. We normalize the vectors q + _V(k) in such
a way that the normalized result v(A ) is an element of S'. We leave it to the reader to show
that the vectors q, y (I) ...... (d) are linearly independent vectors in L (p). Hence, dim L (p)
>_ d. Suppose now that there exists a vector .r(d+l) E relint L(p) such that the vectors

.v(I )-q ...... (d+l)-q are linearly independent. Then, in view of' Lemma 2, ('vid + I))
= ('(q) and M(A j(d+l)) = M(A;q). So if I (k) := ((k) 1, ..... ,j(k),), for each k E
Nd.1, then .4 (S) V,'(k )IpAy(k Y - 41pAq'j = 0, for each k E IN,.. This is impossible since
dim Ker .4(S) = d. So dim L(p) = d. II

It is easy to prove that Theorem I in 181 is implied by Theorem 5.

For a matrix game A, the only maximal Nash subset is t'-- set S of all pairs of optimal
strategies for both players. In this case, the S-submatrix of A equals the essential submatrix of
4 (Cf. [31. page 44) and the dimension relation fo matrix games follows from Theorem 5.
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mm t.up ( / /I te Ill

\1111 I I \ u p P 1

Ip~ \.11iC tic111 1,i~i-i~ P .1i 1/ I' a I10()~cl/a paIJ taapp It'd-1 i.h %01101

41hiaat1\ Ti/p p p/a, . \ PPPIPPCP!\ 111aI Niiti1dpCTIO

I NT 0 1O) UI Oi(s

III I beautifuLl paper, I- I. Vilkasl giOe C i IiaCICI1itiiiii (1't ile % alUe-ftion1. deined oni
the class of' all finite niatri \ games 12 1, 11In Ill), 004. (6thi's resLult V, is CesCiCde it thle class oIi
,ll f inT Iit 11nd SCm/l I-infi ite11I nit Iri \ ganies.

The purpose of' this paper is, toi dedceII characteri/iig properties foir the %Alii-IlHiiCti0o l
the set of' all determined iS4P-iers(Pni ganles. I-lie organh/atiiin of' (lie paper is, as, flloiw, hle
uiecessar\ flotaition anid definitioins are gi\eni in sectioins Iand 2. in1 Sectioin 3. properties iior tile
s.alue-lunrction are presented, "hich are shownI inI section 4 toP he c~haracteristic of this function.

1. A f-i'rp-Soppit Iio-1)//sm/i ge'o, IS anI iprdered] tril < ti. )J >. in ms li \ arlId are
nonerniov sets (called the ptio' sItwgi. spaiis of pla~cr I irnd pla- er ILI respectisel\ )and
A: V x ) IR I,, a real-valIued funtion01 i/n 1the (ar Ftes1,i n 1)rii)du L f C an Md ) tCidld thle /ihu

(//fu fotpio of' plaN er I ).

2, Lei -- V, I, K > he at i\i'-Pcrso il,/n 2 gam For ea[ch I I } let us (lenirie thle

prohahili(\ meaISUre oni V I t ti nitmass I inI \ it h) - . to, I le c Pp' he thle sei rof ill Cc\e
ciirninatiOns ot elements of' x( V 1 likew ise let 1', he thre c//II\e\ 11ul 0i1 C .I

Then the tm l-perso/r gameII < 'p-A> \Attfi

L &(M, , =ff t A i\t I l dp i 1t )fiire cli (,) , '

is, called thle ( -emd cucmoI i\ipP/II// I/' CaIMI' < '. I./ K> I lie I//PPI WiIi/ SUP., 1111' p , L&~ ~i
oii the ganiie < /I 1 p1 .1L4 > is denioted h \ V A. )A I ad thne iuf/I// I (Iz/ni

nl' p SUP,, V ~.l is de~noted hot X, ), K Note that

(X, )LV.Ah sIi ),At

It' OXV . AX OX ) .A Ifor at game < VX. A. > . thIen weC sat o that the gariie is, a dlermined
g'au. In that case, the coirmmin ait]e is denoted h\ 0 V. ).A') and cal led the valtii of' (thle c-
mixed extension off) < V, ),A > . Itle f'armil -I /f/'t mined games is denoited h\ P).
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3 In this section we ,at to look t son dist in ,.ished properties of the 'value-funCtion
I) F . tor this. pLir',iOSC "C ii.'d sOilnC definition

)I[HNI I ()N I I lie tratllspost' of'i t, o-person game <' \. ).K > is the two-person game

). K > \%here

& (I, \ ) t for c ctI.t x V.

D)I-IINII( )N 2 Let < N. ).A > hea ivtwo-person game and let .S be a nncmntp subset of
A. Then w*e sa that S Is So.1i tict lot phla 'r I of /i' t'win < V. .,/% > it' for each x V X S
there emists a p P. P such that

1. ( a ' (. , t) for eacf 1 .

1)IFINI IION 3: Let < A. ).h > he a n(-person gatme and let The i nonenpts subset of'
W. We say that 1 iS No//h nit l r l pla r II m thi a'ne < X. ). " > if" 1 is sutlicient for pila.,er I in

the iame < ),.- K>.

TIIOREM 1

(P. I) ["Objectivity"I Let < A. A> he a two-person game and suppose that
X\= Ia). ) Ih. Then < X. ), > E 1) and v(,. .K )= A la.h).

(P.2) ["Monotonicity" I Let <X. '.> E D and <,'. ). L > E D and suppose that
L > A' (i.e. 1.(v,) A f(.v ror each (.x.,) E .\X V), Then
\.(X. ,L) > v(X. iA).

P.3) "Sym metry"l Let <.V,).K> ( 1) Then < ).X. --K > ( D and v).X -K) =

-v 1'. .A i

(1.4) l"Sutliciency"I Let < .V. V.K > he a two-person game, and (b ;, .-' C ' and let
A : Sx V - IR be the restriction of K to Sx V'. Suppose that S is sutlicient for
player I in the game < X. V.K >. Then <S. .K'> ( 1) if' < ,'),.K > E I) and

v(X.1A) = vS.).K'> if <S.V.AK > E 1).

PRO( . f P. I ) and (P.2) are obh ious. (1).3) f'ollows from the fact that

-14A (p) = " A (v p) for each (gi,) E PxP).

Nots let Us pro'.e (P.4)t First we note that P,, can he seen (in an obvious manner) as a. subset
f 1 P,. and thait L5 is the restriction of 1& to txl.

Take o, E P . Then there exist n E N. . .. ..... E V and P. .p .. P, E 10. 1 such

that t P, = I and or pc . Since S is sufficient for player I in the game <. . ).K > for

each i I..... tI. there exists an c, E P,, such that

L&(( ' v t, K fs .l or each v t I.

lf i t .,. then se can takei = .I let -k k I 1 Ch n P, and

i'( - I H E ( t l/,(o' (breach i t V
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But then,

( i I&I/.( .t . v ',, ( , v, ) for each it Pk and each iv ( )'.

-his., implies that

S,,Lp,, A,:' (ti. V, s I i t, s,) or each i i P

(it ) %. (S, ). A ) X+.. ).IK )

Irom () vc may, also conclude that

int , l, ('t. > tnt, . t, (a, 1,) 'tor each it Pl

.1nd then
(,m) " .S , + K v ( X\, K ")

Nov, (IP 4) follow,, lrom (ii) ind lilt}. Ii

4. he following theorem shows that the properties (P.1)-(P.4) charactcri/e the value-
function1 , • I) - 1-oo0oi.

TIlI I )Rl-M 2: let I I) . he i 'unction with the tfollowing four properties:

(Q. I.) It' X = I. Y = h and if' K is a real-valued function oi \x ). then

I (X'. ),K = K (G. ).

(Q.2 )[or each < X. YA > C D, < ', Y,1 > ( 1) with L > K fX, Y.1, fIX, ),K.

(Q.3) :or each <. Y. K> C D I ( Y,X,,-') = -/( X,Y. K).

(Q.41 or each < A', ',Y '> E 1) and <S. VA''> E 1). where S C . K' is the restriction

of A to Sx Y and where S is sufficient for player I in the gamre < X, ),K >. ,we
have I(. . V,'' = f'(.VY, K).

Then / (..,t vA.', Y,Kf) or each < X. AK> C 1).

PROO : First we note that (Q.3) and (Q.4) imply

(Q.5) For each <A.', rK'> E 1) and < .. TA'"> C 1. where ' C V, A'"is the restric-
tion of' K to \'x Tand where T is sufficient for player II in tile gamie < ', ).K >.

we have / (. ' ") = / (., ,A').

Now take an < .'. ,K > E 1) with v, ,A ) A C (- o. and take a real number s ,uch that
v( .'. ".' ) > f. We wait to prove that fl V. IA) i. For this purpose we introduce fie t- Il

lowit g live two-person ganies.

<I <A' U IaIl,..> where a q A' and where I.( \.v : A(\.t) for each I\.v
. '× Y and I. (. v) := flor each I ( V.

(2) <A' U Ia ., }'> where .IAf.t :( minitium IA (1, 1)./ for etch t
(X U Ia )x Y.
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(o XI I(I') i .) u !, !.\ ) - ( 1,1 .\ )

Ill tle gaIc - a.t I U ihl \> hle set a is suullicicni Ior pl. "er I bec ilo, 1()r each
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Q.9) OX u !( I!a.) U i ,\ ) = a hI. '.

It i, ca.i, to ,Cc that ) Is sulbicent or player II in t e gamc < I a ju 1. i U 1h!.% > I lence.
b% IP.3) and (P.4). < u 1 a . . t1> a I): and then h\ ( .5
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N{o%, L _ .l1and then b.% (Q.2) \&c hac

(Q. I) /( I. U Il ,),/. ) 7 /( I\ U i.I)..II

Combining (Q.O)-(Q. I1) \%c obtain / ( I. lA A . I ht. e h1, e prosed Lat I(.1M A f t
f'or each <X,.),K> ( Doit h %(t..K) ) ) i .- I and each i < %( K).A BuIt then

(Q.12) I(XK) > ),l,.t for each < V.)> ).

It tollows from (Q3). (Q.12) and (1)3) that

(Q.13) / (X. Y,K ) = -),.,) < A (I,'V. &)- (X. I ) )lr'each <IAK> El).

Properties (Q.2) 1and (QI3) irnpl. the coluJiol,1()lI tile OhCoreim
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MIAN POWER MODELING IN COST EFFECTIVENESS
STUDIES OF U:SAF PROGRAM TO REDUCE

THE INCIDENCE OF HEART DISEASE*

( liird (Petersen

htistLaiie. Iitdcana

Iitnin i I'lli .1 1.riscilir disease reduction program. soonif I(, he initial-
cd hi tlic I iiited Sltes %it I irce. has required in CdIaluittlon tit its espiccied
,,,I cllectiseces During hti Course of this eialuatiiif. It "JS nCeiesir% lI,

Linstidct nianpi icr ll,,s and (heir eXpeited chainges it response toi the disease
TCi ucilI Ii 0 r ,i.1ri1i I his Ipp r descrihes se era I nianpimc r fuides t Ihat ii cre
applicd I Simnipie :\pei tedcal ieU eq uilibhr ium model I .i ri S-Se~ titni nii del
that Coinsidered the length it ser ice of' personnel. and at Stalling model Used

I piinliie the iliocation ofi piranmedics to the niam A\ir Iiirce haises of artous
1i1CS itc rele, ,ince: of these moidels to the cost eflecti, eness e alation is
shiisn hut Ihe: dtMICLed cost eiiectiiencss results are noti presented

.\nalvses are being performed to evaluate thle cost effectiveness of' a U.S. Air Force health
program that is sootn to be initiated. The HIealth Evaluation and Risk Tabulation" (HEART)
protgramn will be directed tovird cardiomascular disease that strikes several hundred Air Force
perstnnel annually. and results in at considerable loss of' personnel through death and disability.

THIE HEART PROGRAM

In icr\ general terms, the 11IlART program wAill involve p)rocessing all niilitar\- personnel
in the Air F-orce to establish each indiiiidual's risk of' future heart disease, tlollowed by* treat-
ment of' those tktund to be at high risk. This will be done by measurement of' systolic blood
pre~ssure, seruni cholesterol, glucose intolerance, and determining heart abnormality (left ven-
tricular hypertrophy ) by- means of' an electrocardiogram. Also, it will be determined whether
the indiidual smokes cigarettes regularly,. These data and age are used with the risk
ctteficients developed through the Framingham Study 121 to calculate for the individual the
probability oif occurrence of' a cardiovascular incident within eight years. The coefficients are
based (on o~er 20 years of' f'ollowup on af large civilian population, and have succeeded in clus-
tering about 25 percent of' the heart incidents into the top decile of' risk. The possibility- of*
coefl icient modification and the inclusion of' other risk indicators is being anticipated in the
I'sNAY program.

The calculated risks will serve to identil'y thle most susceptible t'raction of the UiSAF for
treatment, and recalculation al'ter treilnient will serve, in somne measure, to show the

*Based (in part of the reseatchi perfoirnmed fo r (ihe t SA Xlschoo tof Aeri sice Mledictite h.% Purdlue t nt ~ersit under
C iract I ittil S_',( -1)t,24

1 S
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improvement that was obtained. Obviously, the ultimate benefit will become apparent only in
the long term when the actual incidence of heart disease can be observed. In addition to the
treatment of high risk personnel, all personnel will be reached through a general education pro-
gram to encourage improved dietary habits and cessation of smoking.

Various analyses are being directed toward therapy effectiveness, threshold selection poli-
cies, the effect of' measurement error, and operational procedures, as well as toward the evalua-
tion of cost effectiveness. Statistical and probability models and extensive computer simulation
are being used. This paper, however, will describe only the application of manpower planning
models to the determination of the cost effectiveness of the fiFART program. The population
numbers and dollar costs that will be used herein are altered and somewhat incomplete but
serve for illustrative purposes, the a,iual analysis used the complete and most recent informa-
tion on population, turnover of personnel, pay scales, and policies. The complete cost
effectiveness analysis will not be presented as it is only intended here to show the applicability
of several manpower planning models to that analysis.

THE COST REDUCTION PROBLEM

Only the costs to the U.S. government that will be affected by the HEART program need
be considered. The major present costs that will be changed are those associated with USAF
personnel departing from service and their subsequent replacement. It is necessary to identify
and associate costs with the various ways in which personnel leave the Air Force. These costs
are different for enlisted personnel and officers because of pay scales, and different for flyers
(pilot-, and navigators) and nonflyers because of the considerable cost of training a replacement
ler. An additional cost, estimated at $1,000,000 per year, is that due to loss of aircraft
because of heart attacks suffered by the pilots.

Ihe %arious tNpes of departure will now be described briefly. Voluntary and involuntary
separation (or simply separation) includes resignation, failure to reenlist, and reduction-in-force
tcrminations. ILxccpt in the case of flyers, these types of departure are considered to incur
negligible costs. Voluntary retirement (or simply retirement) occurs when an individual retires
%iih 1rmm 21) to 30 years of service. The departure cost is substantial, including payment of 50
to _' percent of' the individual's salary to the individual or his spouse for a period usually in
c\ccs,,s of 3) ears. Disability retirement, disability separation, and assignment to the temporary
disabilit. retirement list (TDRL) are forms of departure for reason of 30% or more disability,
and must he considered separately for cardiovascular (CV) disabilities and other (non-CV) disa-
hilities Bccause cardiovascular related separations and TDRL's practically always become per-
manent, they are lumped with CV disability-retirements in this analysis, The departure cost is
substantial, including hopitalization and continuing payments to the individual and to the
spouse u'~cr a period usually in excess of 30 years. Departure by death is self-explanatory and
its ost is analogous to that for disability retirements.

In determining the cost per retirement, disability retirement, or death, it seems reasonable
that the long series of benefits paid to the individual or spouse should be discounted. It is
perhaps not surprising that it was difficult to determine what rate to use, and that the agreed
upon approach was to use two rates, 5 and 10 percent, for separate analyses. The cost of CV
departures decreases by approximately 20/ when changing from 5/ to 10'! discounting.
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Table I summarizes the approximate costs for each type of departure:

TABLE I. Cost of Each i)epartire roin U.S. fir I'orc''
(Tlhousands oI Dollars)

Officers Enlisted
Personnel

Flyers Nontlycrs All Categories
Separation 280.0 0 0
Retirement 474.1 194.1 109.9
CV Disability-Retirement 531.9 251.0 153.7
CV )eath 431.7 151.3 85.3
Non-CV Disability-Retirement 449.8 155.8 72.0
Non-CV Death 353.6 81.1 32.4
All future obligations brought to present worth using a 5 percent discount rate.

Given the cost for each departure, and knowing the present average number of CV
disabilit% -retirement and CV death departures over the past several years, it is simple to calcu-
late the annual departure cost due to cardiovascular disease. The anticipated effectiveness of
therap.N in reducing CV incidence, through the HEART program, can then be assumed (we've
used 20 percent here). A naive approach to determining the cost reduction is to claim 20 per-
cent of the annual CV departure cost (from which the operating cost of the HEART program
would be subtracted to obtain the net annual savings). This approach, however, neglects the
effect of the reduction in CV departures upon the other types of departure. It neglects, for
example, the possibility that a person saved from CV death may be killed in another way, or
that he must ultimately leave in some manner, typically incurring a departure cost. Also
ignored is ihe beneficial effect of the HEART program in delaying the occurrence of heart
attacks in the individuals who will still suffer them.

To deal with the interaction between the various types of departure, two different models
were formulated. Both are based on the assumption of a steady state manpower system.

THE STEADY STATE SYSTEM

Although the U.S. Air Force will probability never be in a true steady state condition, it is
as reasonable to use such a condition for the analysis as to hypothesize any other unknown
future state. The strategy is to model a steady state force having the same size, distribution of
personnel, and departure rates as the present force, and then to hypothesize a 20 percent reduc-
tion in the cardiovascular departure rates and determine what the new steady state condition
would be. The difference in annual departure costs associated with the two systems would be
attributable to the 20 percent reduction in CV incidence. Proportional cost cha iges would
result from any other assumed reduction in CV incidence.

There are two primary requirements that must be satisfied in order to maintain steady
state. Obviously, the annual number of new entries must equal the annual number of depar-
tures for each class of personnel. In addition, for each class, the total length of service in years
of* all persons departing in one year, must equal the number of persons in the system (a conse-
quence of N man-years of service being accumulated each year by a force of size N).

In the present U.S. Air Force, the number of new entrants is less than the number of
departures for enlisted men. Also, the total length of service for enlisted men departing per
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year exceeds the number of this class of personnel, and confirms a shrinking force with a large
fraction of the population having many years of service. The steady state turnover rate indi-
cated by length of service of those departing (reciprocal of average length of service) is some-
what below the actual turnover rate being experienced. In contrast, the situation is reversed for
enlisted women. Nevertheless, with certain assumptions as to future recruitment and incen-
tixes it seems reasonable to conceive of a model of the USAF at steady state.

EXPFCTEI) VAI.UE EQUILIBRIUM MODEL

I his model for adjusting the other departure rates as the CV departure rates decrease is
simple and requires little data. It ignores the length of service requirement for steady state,
simpl. assuming that it will be met.

The initial steady state flow, is illustrated for enlisted men in Figure I and requires that
%e know only the steady state total population count which will remain constant, the fractions
for the \arious tN pes of departure, and consequently the fraction remaining active each year.

r- olm, .r T-- -
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The CV departure rates are then considered as being reduced by 20 percent. It is
assumed that the manpower flow that would have departed due to CV disease is diverted to the
other types of departure, and to continuing service, in proportion to their respective rates. A
rationalization of this .ssumption is possible by viewing the departure fractions or rates as pro-
babilities. Individuals who win a reprieve from CV disease, and will have to be routed to other
types of departure or to continuing service, are distributed according to the appropriate proba-
bilities. At steady state, with reduced CV departure rates, we recalculate new rates for other
types of departure and extend them to numbers of departures as shown in Figure 2.

Flows are adjusted for the other classes of personnel in a similar manner. For pilots and
navigators, however, there is a large replacement training cost for the increased voluntary and
involuntary separations.

nAnr.a L
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I' i 2 Annual flow rates, enlisted men, after ILART program
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IAN d-t'HARA('I"ERISTI(' C'ROSS-SEC(TIONAI. MODEL,

This model Ill was chosen to impose the effect of length of service on the analysis. This
eflect is important because it is presumed that the effect of implementing the HEART program
will be not only to reduce the rate of CV departures but to postpone the time of departure of
the fraction who will still depart because of cardiovascular reasons. The data requirements are
reasonable, not requiring detailed tracking of cohorts, but primarily adding data regarding the
a\crage length of service at departure.

In this model we define a matrix, P, of one-step transition probabilities, where each state
is described by two characteristics, a status and a length of service. The model has more capa-
bilit than will be used, as it serves our need by defining only one status, namely "active,"
rather than various ranks, for example. The analysis will be performed separately for each class
of personnel and we will assume no flow of personnel between classes, such as from enlisted to
officer or vice versa.

(iiven the matrix P, completely defined by knowing the average length of service at time
of departure and the fraction of total departures for each type of departure, we note that the
limit P will be the steady state transition matrix. This matrix will have identical rows, I1,

where the / th element, 7r, is the proportion of the population in state .J at equilibrium. The
,ector II is determined by solving

I1 = lIP
X/'r,= I.

The strategy will be to find the steady state departures for our initial data, then to reduce
the CV departure probabilities by 20 percent and increase the length of service to CV departure
by an estimated two years, and again find the steady state condition. Considering the cost of
each type of departure, the annual savings in departure costs due to the effect of the HEART
program will then be calculated.

IX.,IIPLI: Use of the P matrix will be demonstrated with a very small example. Fol-
lowing this the enlisted personnel will be analyzed to show some of the adjustment that had to
be made in our assumptions, and to give results for comparison with those of the expected
value equilibrium model.

Suppose there is an organization with one class of personnel and three types of departure.
Each year from now on live persons will resign after two years of service, five will be disabled
after three years of service, and fifteen will retire after five years of service. Since the total
length of service of the departing personnel is 100 man-years, the size of the organization must
be 100 at steady state. All departing personnel are immediately replaced. We wish to find the
steady state distribution of personnel by length of service.

Each year 25 persons enter the system and each year's group behaves as follows:

Fraction Remaining
End of Year For the Next Year

1 1.0
2 0.8
3 0.6
4 0.6
5 0
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D)efining active duty states (A. ni), where n is the number of years of completed service,
the one-step transition matrix, P, is as shown below. The probabilities of changing in one year
from state A. i to state .4, i + I for i = 0, 1, 2, 3. 4 are obtained from the table of fraction
remaining, shown above. The probabilities of changing from state A, i to state A, 0 are proba-
bilities of leaving the system, in which event a new person enters the system with 0 years of
service.

To:
,,0 A,lI A, 2 A, 3 A, 4

A, 0 I.
A, 1 0.2 0.8

From: A, 2 0.25 0.75*
A, 3 I.
A, 4 1.

*Fraction going from A,2 to
A,3 = 0.6/0.8 =.75

Solving 11 lIP and Y_ 7r, = , we obtain 11 = (0.25, 0.25, 0.20. 0.15. 0.151.
All,

The interpretation of this solution is that for this organization, there will be 25 percent
new personnel. 25 percent who have completed one year of service, 20 percent who have com-
pleted two years, 15 percent who have completed three years, and 15 percent who have com-
pleted four years of service and who will retire at year end.

If the P matrix and its resulting equilibrium distribution [I are judged applicable, that is, if
the mechanisms underlying the departures are such that the numbers of departures of the
different types stay in the same relative proportions, then for any size organization the numbers
of departures at steady state can easily be derived.

To conclude this example, assume that the desired size of the organization is 120, and
that 11 [0.25, 0.25,.0.20, 0.15,.0.151 still applies as the distribution of length of service. From
7TO we know that 25'X of the organization (30 persons) will depart each year. These departures
are then prorated over the types of departure as

Resignations = 30 x 5/25 = 6

Disabilities = 30 x 5/25 = 6

Retirements = 30 x 15/25 = 18

Enlisted Personnel -Initial

The force size for enlisted personnel is 500,000. However, the presently observed
numbers of departures from the Air Force as shown in Table 2(a) are not consistent with a
steady state model with 500,000 population. In fact, they imply an equilibrium population of
545,450. One way to retain our observed departure information in a steady state model having
a population of 500,000 is to decrease the number of each type of departure to
500,000/545,000 of its observed value. This is based on the equilibrium requirement that:

In, s, = N
All,
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T.\BiIE 2. ('a/(f/anlio of /;listed ,S't'adv .Soe I) parture.s
Bit'/nr tI"i 'R T 1Poiru m

Average Length Observed
of Service. Number

-- -. (Years)- Departing

Separat1 n 4 50,000
Retirement 22 15,000
( l ),isabilit. -Retirement 20 I00
( l)eaths 19 50

Non-( \ I )iahilit' -Retirement 6 1,500
\on-( \ I )oatlh 7 500

67,150
Inpli.d stead. state population: 545,450)

( I f he annual number of departures for a force of 500.000 at steady
st',lte v ith proportional scaling, are:

Separation 45,833.71
Retirement 13,750.12
('V l)isabilitv-Retirement 91.67
CV )eath 45.83

Non-CV Disability-Retirement 1375.01
Non-CV Death 458.34

61,554,68

kI. , the innual number of departures for a Force of 500,000 at steady

stite. ith selective scaling, are:
Separation 47,000.
Retirement 13,480.
('V l)isability-Retirement 100.
(V l)eath 50.
Non-C'V Disability-Retirement 1,500.
Non-C'V Death 500.L 

62.630.

sAhercn is the number ol departures of the i th type, .s, is their average length of service, and
.\ is the total population. Because all ., remain the same, a change in A can be accommodated
b changing all ti, priiportionally as shown in Table 2(b). Proportional scaling, as just
described, seems ,alid in making small adjustments, but for large adjustments such as this the
reasonableness of the effect on each type of departure deserves examination.

Another way to construct the steady state model is to decrease the numbers of' departures
selcctiely. Ihe data on the number of disability-retirements and deaths, whether f'rom CV
disease or other causes, as observed in a present force of' 500,000 enlisted personnel should not
he treated cavalierl . r-he" should not be adjusted appreciably in the initial steady state model
because there is nii logical basis for reducing the incidence in contradiction to the medical
records. The lspes of departures that can logically be reduced to achieve a hypothesized steady
state Air Force, are separations and retirements, assuming that Air Force inducements and poli-
cies sere modified to eflect such reductions. A reas(nable assumption is that the annual
number of separations can be reduced about 6 percent (from 50,000 to 47,000). Leaving the
number of' departures f~or disability-retirement and death unaltered, we derive the required
annual number of retirements, _,, from

\IV
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47.001 4) 4 n, (22) li 14f)20) + 5(19) + l,5)t0(6) + 500(7) = 5)0.00 ohtaining
I3,480 retirements antluall Oc sllctd staI results are shown in Table 2(c). I hese results
will be used to represent the inmal departure distribution Off enlisted personnel, before installa-
tion of the I IFAR I program

Enlisted Personnel- After

It was shown. in the e\arlple presented earlier, that if gi'en an initial set ofi data compris-
ing the annual number of each t. pe of departure and tle a\erage age at departure. the steatd.,
state siue of' the population can he calculated. Also, an equilibrium distrihution. II. can be cal-
culated to describe the distribution h\ length f service (as well a, tile annual number of each
type of' departure).

If the initial set of' data is perturbed, a new population siic and n0 nuIm hers of each 1, pc
of departure can be calculated for steady state. The desired pop)ulation si/e can be restored h\
proportional or selective scaling.

The perturbation applied to the initial steady state data Ior enlisted personnel is the
assumed effect of the I WIART program, that is, a reduction of (V dcpartures h' 201 prcent and
an increase of two .ears in the average age of those departing because of ('V diseas_ I able
3(a) show's the steady state result for these assumptions, and an implied population of' 499.66)
The population %as restored to 500,000 by proportional scaling. Table 3(h) shows the result.

after scaling, and the change fron the "before HEART program result of l'able 2(c).

TABLE 3. ( ahulalion q/ Enlisted SW& .Sftat Dpartures
4ler ItL.4R T Program

Average Length Assumed
of Service Number

(a) (Years) )eparting
Separation 4 47,000.00
Retirement 22 13.480.00
CV I)isability -Retirement 22 81.0
CV Death 21 40.00
Non-('V l)isability-Retirenent 6 1,500.00
Non-C'V )eath 7 500.0)

62,600.00
(Implied steady state population: 499,660)
(b) The annual number if' and changes in departures for a force
of' 501).1)0( at steady state, after proportional scaling, are:

Change in 1:nlisted
Number Personnel Departing
Departing Due to I IlEART Program

Separation 47,031.96 + 31 96
Retirement 13,489.17 +9.17
('V Disability-Retirement 80.06 - 19.94
('V Death 40.03 -'9.97
Non-('V Disability-Retirement I,501.02 + 1,02
Non-('V )eath 510.35 + 0.35

62,642.59
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Using the departure changes shown in TFable 3(b) and the dleparture costs of Table 1, the
annual change in departure costs of enlisted personnel due to the HEART program is a
decrease of S2,822,656 per year. This model realistically yields a larger increase in retirements
than shown by the expected value equilibrium model (Figure 2). thereby accounting for most
of' the reduction in savings I vs. S3,820,638).

Annual reductions for other classes of' personnel, and for other assumptions of'
effectiveness of the FHEART program. are generated in a similar way.

ALLOCATIONS OF PARAMEDICS

One of the primary increased costs of the HEART program is that of additional personnel
needed to operate the program., A problem arises in the efficient allocation of' numbers of
paramedics to the various USAF bases while recognizing that the bases are of different sizes.

Knowing the number of" military personnel of each base, and assuming a risk threshold
that is consistently used at all bases and that will place an identical fraction of each base's popu-
lation under treatment, we can define the following:

X = the specified fraction of base population that is
to be treated in the therapy group.

P, the number of paramedics required at the ith base.
B, =the population of the i th base.

Knowing the details of the proposed treatment and screening tasks, and that there is one nurse
available part-time at each base, we determined x, the capacity, or maximum fraction of the
base population that can be treated, as a function of base size and number of paramedics allo-
cated. This involved careful analysis of the time required for each task as well as consideration
of allowances for rest breaks and vacations. The resulting capacity for the i th base is deter-
mined as:

[fours for Screening + flours for Therapy + Hours for Group Sessions=
Available flours of Nurse + Paramedics

.19803 (B1) + 7 .875 (B) (.0 + 1050 = 1800 + 1800(P)

or x max1800(P') - .19803(B) + 750, 0
or ma 7.875(B1) .

Nonnegativity must be enforced explicitly. Some of the effort of the nurse and paramedics
invokes screening of' all base personnel and it would be possible to obtain a negative value for

kt!he fraction that can be treated) if the screening effort exceeded the available manpower.

The objective is toi determine the minimal set of' P, such that v, >, X for all i. We will
first formulate a simple mathematical programming approach for determining P', and then use it
to lUstif an even simpler computerized allocation scheme.
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Mathematical Programming Model

All USAF bases may be grouped into 26 size ranges, and we will define N, as the number
of bases of' the i th size, i = 1., ... . 26. We wish to determine P, the number of paramed-
ics to assign to all bases of size i, for any value of X' that is chosen. The integer linear program
is:

26,

Min N P, Sub ject to twenty-six
- I

constraints, one for each base size, of the form

7.875(B-,) (X) + .19803(B,) - 750
1800

where the variables P, are nonnegative integers.

Each constraint is a function of only one variable, P,. since X is fixed and B, is known.
Solution of such a program to determine each P, and to minimize the total required number of
paramedics would be possible but very time consuming. As an alternate method, note that
each constraint may be satisfied by merely fixing P, as the smallest feasible nonnegative integer.
This will obviously minimize the objective function because minimizing each term of a sum
minimizes the sum.

An optimal assignment will not necessarily produce full utilization of all paramedics, but
there will be no assignment using fewer paramedics which will permit treatment of the stated
fraction (X) of the population.

Simple Allocation Algorithm

The allocation algorithm starts with a specified value of , and considers only the nurse
assigned to each base. The maximum possible therapy group size, .x,, with lull utilization of
this allocation is then calculated and updated For each base. If .v, >i' ' for all i, this allocation is
optimal for the stated X. Otherwise the base (or bases) with the smallest fraction of personnel
in therapy (-,) is then "given" one paramedic, and the calculations are updated. This procedure
is continued, assigning additional paramedics. until the desired therapy group fraction is
attained for all bases. In summary, the procedure initializes the P, vector at 0 and determines
X, which, because of a uniform threshold policy at all bases, will be the smallest fraction among
all bases. Then the P, vector is increased in the most eflicient manner until the specified value
of' Xis attained.

The procedure is easily continued to obtain solutions for an entire range of X values. A
typical set of solutions shows the total number of paramedics required to range from 254 for a 7
percent therapy group to 567 for a 19 percent group. For the 7 percent therapy group, the indi-
vidual base requirements range from 0 to 5 paramedics and for the 19 percent group, from 0 to
11. Overall utilization for the two cases is .75 and .88, respectisely.

TOTAL, COST EFFECTIVENESS

The total cost fl'ectiveness was expressed as a net annual savings ard was a function of
the risk threshold selected (which, in turn, governed how man% people would be treated) and
the assumptions made regarding the effectiveness of therapy.



Ig ('C P[I I RSIN

Net annual saxings = Departure cost reduction + lost
aircralt cost reduction + cost
reduction in CV nondepartures ° -
paramedic costs - operating, drug,

and test costs.

It has not been the intent of this paper to present the results of the cost eflectiveness
analysis but only to describe sexeral manpower planning models used in performing it. The
models permit estimation of changes of some of the complex cost elements. Computer experi-
mentation was then possible to aid in certain decisions such as determination of therapy group
size and treatment intensity 131.
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ABSTRACT

I his paper describes an empirical evaluation of several approximations to
Iladlc, and Whilin s approximate continuous review inventor) model , ith
backorders It is assumed that lead time demand is normally distributed and
,arlous exponential functions are used to approximate the upper tail of this dis-
tribution These approximations offer two important advantages in computing
reorder points and reorder quantities. One advantage is that normal tables are
no longer required to obtain solutions, and a second advantage is that solutions
ma_. he obtained directly rather than iteratively. These approximations are
caluated on two distinct ins entory systems. It is shown that an increase in
aerage annual cost of less that IA is expected as a result of using these ap-
proximations The only exception to this statement is with inventory systems
in Ahich a high shortage cost is specified and ordering costs are unusually lo%.

INTRODUCTION

This paper is concerned with ladley and Whitin's [4] approximate continuous review
inventory model in which a fixed quantity of an individual item is ordered each item the inven-
tory position (units on hand plus units on order minus backorders) reaches the reorder point.
After a lead time has elapsed, the entire order is received. It is assumed that reorder quantities
and reorder points are established independently for each item and that the distribution of lead
time demand can be approximated by a normal distribution.

The optimal reorder point and reorder quantity for this model are determined by minimiz-
ing a cost function including the expected number of orders placed per unit time, the expected
number of backorders per unit time, and an approximation to the expected holding cost per
unit time. The solution which minimizes this approximate cost function is found by an itera-
tive algorithm that converges quite rapidly.

To find the optimal solution, it is necessary to calculate the expected number of backord-
ers per period for a given policy. If lead time demand is assumed to be normally distributed,
then this requires the evaluation of the standardized normal loss integral. Several authors
[5,7,81 have developed exponential functions to approximate the expected number of backord-
ers per period. This not only alleviates the iterative solution but saves the table look-up
required to evaluate the normal loss integral. This paper evaluates these approximations.

169
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MODEL )ERIVATION

The following notation, from Iladley and Whitin [41 is used.

Q = order quantity (units)
r = reorder point (units)
A = demand rate (units/year)
-1 = ordering cost (S/order)

= cost of item (S/unit)
I = carrying cost (S/$ value of stock/year)
Ir = backordering cost (S/unit backordered)

= probability of a stockout occurring during
a lead time

3 = probability that any unit demanded cannot be
filled from stock

1(1) = probability density function of lead time demand
1 = mean lead time demand (units)
(T = standard deviation of lead time demand
Hr) = probability lead time demand exceeds the reorder

point (complementary cumulative distribution)
h (r) = expected number of backorders during a lead time when

the reorder point is r (units)

The expected anual cost (AC) of operating the inventory system is represented in the
equation below, assuming that shortages are backordered.
(1) 4( = C . +/C + r - +A A -- h (r).

Q -
The first term represents the expected ordering cost, the second term the expected carrying
cost, and the third term the expected number of backorders. It is the second term in this equa-
tion that is an approximation, since the average inventory level is estimated as though there are
no backorders. If the expected number of backorders is small, the approximation is very good
(see Gross and Ince [3]). The third term may also be considered an approximation since the
lead time demand is approximated by the normal distribution.

The values of Q and r that minimize the above annual cost function can be found by the
simultaneous solution of the two equations below.

(2) Q = 2 ,(A + r i(r).
IC

(3) H(r) = QI_.
ITA

An iterative solution is suggested by Hadley and Whitin [4] that will work as long as QC< .
r,\

This is fine, since as H(r) approaches I, the approximation to carrying cost becomes rather
poor and, thus, the model is not appropriate.

In practice, it is often difficult to estimate the backordering cost, 7r. To avoid this prob-
lem, one may instead specify a desired service level. One approach (a service policy) is to
specify a, the probability of a stockout occurring during a lead time. A second approach (fl ser-
vice policy) is to specify ,3, the probability that any unit demanded cannot be filled from stock.
Since ir is not specified, it can be eliminated from (2) and (3) above (see Nahmias [61), yield-
ing the following:
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,)n r) + Ii (r) 2A,
//0.) +II I + I

In addition, the it service policy requires

(5) 11(r) = t.

And, the/3 service policy requires

(6) /n(r) = 3.
Q

Values of Q and r may be found directly from Equations (4) and (5) for the a service policy
and values of Q and r may be found iteratively from Equations (4) and (6) for the P service

policy. See Nahmias 161 for an appropriate algorithm for finding optimal values of Q and r.

FURTHER APPROXIMATIONS

When applying the above model to an inventory system with many parts, it is typically
assumed as an approximation that the lead time demand follows a particular distributional form
for all parts. A very convenient approximation and the one assumed in this paper is the normal
distribution. That is, it is assumed :hath (h) is the probability density function of the normal
distribution with the mean u and standard deviation (r. Therefore, 11(r) and n(r) may be cal-
culated from the equations below, where Z() is the probability density function of the unit
normal.

(7) 11(r) J_ Z(0) di.

(8) i(r) f t -0 Z(t) df.

The integral in (7) is the complementary cumulative distribution of the unit normal and is
tabulated in any standard statistics book. The integral in (8) is referred to as the standardized
normal loss integral and is tabulated in Brown [2]. The tabulated integrals in (7) and (8) are
required to solve Equations (2) and (3), Equations (4) and (5), and Equations (4) and (6).

Two approximations have been suggested to avoid the table look-up required by (7) and
(8). One approximation, suggested by Schroeder 181 and Ilerron [5]. is to use an exponential
function, of the form ae hi, to approximate the integral in Equation (7). Using this approxima-
tion,

H(r) = ae and n(r) = T e

The exponential approximation not only avoids the table look-up required to calculate
H(r) and i (r) but also avoids the iterative solution procedures required to find optimal values
of Q and r. If the expression for n(r) is substituted into the annual cost Equation (1) and par-
tial derivatives are set equal to zero, the optimal value of Q is as follows regardless of whether
7r, a, or/3 is specified.

11 12 + 2A
(9) Q+ +A-

b /CIII
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The optimal value of r is presented in Equation (lOa), (lOb), and (1Oc) for 7T specified, a
specified, and/3 specified, respectively.

(lOa) r = u - L- In i .

(l0b) r = u - (T In (a/a).
h

(1Oc) r = u - - In

Note that the optimal values of Q and r do not require an iterative solution. These values
represent approximate solutions when h(t) is assumed to be the normal probability density
function. They are approximate, since the complementary cumulative distribution function of
the unit normal is approximated using an exponential function.

A second approximation, suggested by Herron [51 and Parker [7] is to use an exponential

function of the same form to approximate the integral in Equation (8). Using this approxima-

tion, fi(r) = (rae " and H(r) = abe

Likewise, this approximation avoids the table look-up required to find H(r) and hi(r) and
avoids the iterative solution procedure required to find optimal values of Q and r. The optimal
value of Q is the same as that specified in Equation (9) and the optimal value of r is presented
in Equations (I Ia), (I lb), and (I Ic) for 7r specified, a specified, and/3 specified respectively.

lla) r = - ln QIb'
b 7TrAa~b

(lIb) r =# - - In (alab).

Hilt) r = -L- In .

Thus, both approximations allow optimal values of Q and r to be calculated directly and
avoid the problems of looking-up data in the normal tables. The purpose of this paper is to
evaluate the accuracy of these approximations.

PARAMETER ESTIMATION

Figure I contains a plot of the log of the complementary cumulative unit normal distribu-
tion and the log of the standardized normal loss integral versus K, the number of standard
deviations above zero. For the exponential functions to be a good fit, these plots should be
straight lines. Obviously, there is a rather slow gradual curvature to both lines but a straight
line does not appear to be a bad approximation.

Table I contains the parameter estimates obtained by the various authors and the range of
K that was used to obtain these estimates. lerron used two straight lines to obtain a better fit
of the curvaturd.

This author developed his own parameter estimates for the standardized normal loss
integral by fitting a least square regression line to twenty-one points in the range 1.0 < K <
3.0. This was done in order to evaluate a method analogous to that used by Schroeder 181 for
the second type of approximation.
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1.0

.1

fI Z(t) dt

.01 f (t-K)Z(t)dt
K

.001

.0001

1.0 2.0 3.0

Number of standard deviations (K)

Fi(,t R- I. Semilogarithmic plot of the complementary cumulative distribution of the unit normal

and the standardized normal loss integral versus K standard deviations above zero.
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TABLE I. Paratmeter l-timates
Estimates Range of

Author [reference it
a b

A. Approximations to complementary cumulative distribution of unit normal

1. Schroeder 181 2.8800 2.4900 1.0 < K < 3.0
2. Hterron [51 .5500 .7530 0 < K < 1.5

3.6000 .3870 1.5 < K < 3.0

B. Approximation to standardized normal loss integral

1. Byrkett 1.5792 2.6879 1.0 < K < 3.0
2. lerron [51 .4400 .5760 0 < K K 1.5

2.4900 .3460 1.5 < K < 3.0
3. Parker [71 .4500 1.6949 0 < K < 1.4

The reader should notice that Parker [7] developed his approximation in the range 0 K< K
1.4. It is felt that for most inventory systems, including those evaluated in this paper, it is

preferable to use an approximation of the upper tail of the distribution, for example 1.0 < K <
3.0. For this reason, Parker's approximation will not be given further evaluation.

COMPARISON WITH TABLED VALUES

One approach to measuring the accuracy of the approximates outlined in the previous sec-
tion is to compare the values obtained using the approximations with the corresponding tabled
values. Table 2 displays these results. The approximations to the complementary cumulative
distribution were used to compute tabled values of the complementary cumulative distribution
at intervals of .05 in the range 1.0 < K < 3.0. Likewise, the approximations to the standard-
ized normal loss integral were used to compute tabled values of the standardized normal loss
integral. Three criteria are used to compare the approximations to the tabled values; the mean
absolute deviation, the mean squared deviation, and the mean percentage deviation.

TA BLE 2. (omparison q Approximations
to Tabled Vahes*

Absolute deviatior Squared deviation Percentage deviation

Mean Max. Mean Max. Mean Max.

A. Approximations to complementary cumulative distribution of unit normal

I. Schroeder 181 .0090 .0801 .000405 .006420 13 50
2. Herron [51 .0025 .0129 .000015 .000166 7 115

B Approximations to standaridized normal loss integral

I. Byrkett .0025 .0241 .000032 .000581 11 30
2. Herron 151 .0010 .0058 .000003 .000033 7 12

*Entries in table calculated by comparing approximate value with tabled value at intervals of .05
between A = V() and K = 3.0)
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Two observations may be made from this table. First, the approximations of the stand-
ardized normal loss integral are closer to the tabled values than those of the complementary
cumulative distribution of the unit normal according to all criteria. This indicates that the lower
curve in Figure I is closer to linear than the upper curve and that approximating this curve may
produce a smaller error. Second, Herron's two line approximation is preferable to Schroeder's
and Byrkett's one line approximation, according to all criteria.

Though these results tend to favor the estimates developed by Herron 151. they are by no

means conclusive with respect to their economic effects in controlling inventory.

COMPARISON OF OPERATING POLICIES

The major concern in using these approximations is how much influence they will have on
the cost of operating an inventory system. It is possible to simply use an iterative algorithm to
find optimal values of Q and r and to look-up values of 11(r) and i(r) from normal tables.
This, however, requires significantly more computer time than the one or two line approxima-
tions discussed above. For exanmple, the CPU time required to execute the iterative algorithms
and to look-up values of H(r) and Ti(r) from normal tables for all cases discussed below was
113.44 seconds. This compares with 2.57 seconds for the one line approximations and 4.42
seconds for the two line approximations. If you consider an inventory system with many
thousand items and frequent updating, the savings in computer time can be substantial.

With the exponential approximations, it is possible to calculate the optimal reorder points
and reorder quantities directly without any table look-ups. To determine how much this com-
putational advantage costs, the average annual cost of the solution of Equations (2) and (3),
Equations (4) and (5), and Equations (4) and (6) are compared with the annual cost of the
approximations given by Equations (9) and (I0a,b,c) and Equations (9) and (I la,b,c). Equa-
tion (1), using a table look-up, will be used to compare the resulting operating policies.

It is not valid to compare the approximations on a single item from the inventory, since
all approximations may do equally well on a given item. Rather, the approximations must be
compared on the entire inventory, or on at least a representative cross section of the entire
inventory. In this study, cross sections of two different inventories are used to compare the
approximations. One inventory, called the Maintenance Inventory, contains equipment and
parts for maintaining a large fleet of maintenance vehicles, including cars, trucks, graders, and
so forth. Forty items were selected from this inventory and estimates made of X. C, A,. and o'.
A second inventory, called the Warmdlot Inventory, contains spare parts for heating and air
conditioning equipment. Brown [I] contains X and C for sixteen items from this inventory.
Estimates were made of 1A and (T by assuming a three month lead time and using the derived
relationship in Brown 111, (Y .21ji 8 

C.2.

In addition to comparing the approximations on two different inventories, all three
methods of specifying shortages costs (Or, a, and (3) are considered. The shortage costs, order-
ing costs, and carrying costs are run at three levels each to determine the impact of these costs.
The costs used are as follows:

Ordering cost (A) - $1, $10, $100
Carrying cost (1) - .1, .2. .3
Shortage cost - Low, Medium, High

iT- $10, $100, $1000
- .15, .10, .05

(3 - .10, .01, .001.
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lable 3 summaries the results of using the single line approximation of Schroeder (81
and the two line approximation of lerron [51 to the complementary cumulative distribution of
the unit normal. The numbers reported in these tables are percentage increases in annual costs
for all sample parts in the Maintenance Inventory for the various cases. Similarly, Table 4
summarizes the results of using the single line approximation by Byrkelt and the two line
approximation by Ilerron 151 to the standardized normal loss integral. Again, these results are
for the Maintenance Inventory. Similar results are developed for the Warmdot Inventory
though these have not been included in order to conserve space.

T ABLE 3. Perc'ntage Incureuse in . nntual (osi.s ,sing .4pproximations
to the (omplementarY ('umulative Distribution of the Unit Normnal

(Waintenance Inventory)

Shortage Cost Specified
A I Approximations* 7r ( 1

10 100 1000 .15 ,10 .05 .10 .01 .001
1 1.0 4.6 .6 .3 .4 1.3 .4 .7
2 ** 1.4 3.6 2.0 3.4 .0 1.3 .4 .5

1** 1.1 3.5 .6 .3 .4 1.3 .4 .812 ** .9 2.9 2.3 2.8 .0 1.5 .4 .5

3 ** 1.6 3.1 .6 .3 .4 1.3 .4 .92 ** .5 2.6 2.4 4.1 .0 1.6 .4 .6

1 .4 2,5 .4 .1 .3 1.3 .0 .3.1 2 .6 1,9 .8 1.5 .0 .4 .1 2

1** .7 2.2 .5 .2 .4 1.2 .0 .410 .2 2 ** .4 1.6 1.0 1.8 .0 .5 .1 .2

1 ** 1.3 1.8 .4 .1 .3 1.1 .1 .72 ** .1 1.2 1.4 2.4 .0 .8 .0 .4

** .2 .6 .2 .0 .2 1.4 .0 .0
2 ** .1 .4 .2 .3 .0 .1 .1 .0

1** .7 .6 .3 .1 .2 1.6 .0 .1100 .2 2 ** .1 .3 .3 .4 .0 .2 .2 .0

1 1.7 .5 .3 .1 .3 1.5 .0 .2.3 2 ** .2 .3 .4 .7 .0 .2 .1 .1

*1 - Schroeder 181, 2 H- lerron 151
Indicates that the assumption QIC < I was violated for one or more items in the insentory.

IrA

It is difficult to draw conclusions from the raw data provided in Tables 3 and 4. Thus,
Table 5 is developed which summarizes the results in Tables 3 and 4 and the corresponding
results for the Warmdot Inventory by averaging these percentage increases across all tables by
group. A regression model was developed using the percentage increase in annual costs as the
dependent variable. The independent variables were all 0-1 variables used to represent the
seven groups listed in Table 5 and all of the two factor interactions. One by one the indepen-
dent variables used to represent the seven factors were removed from the model to test the
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statistical relationship of the given variable with the percentage increase in cost. An F test was
used with significance level set of 99%. This will insure that the family of seven tests has a
joint significance level of at least 93%. Based on these seven tests, the variables found to be
significant are the inventory system under study, the level of the ordering cost, and the level of
the shortage cost. The approximation approach and the method of approximation were nearly
significant but not at the confidence level specitied.

TABLE 4. Percentage Increase in Annual ('osts Using ApproXitnationS

to the Standardized Normal Loss Integral (Maintenance Inventoo)

Shortage Cost Specified

A I Approximation* 7a 13
10 100 1000 .15 .10 .05 .10 .01 .001

1** .4 2.9 .2 .5 .1 .7 .5 .2

2 ** .4 2.4 .8 .4 .2 .1 .4 .2

I ** .9 2.2 .8 .5 .1 1.7 .5 .31 .2 2 .2 1.2 .1 .4 .2 .1 .1 .2

** 1.8 1.7 .8 .5 .1 1.7 .5 .32 ** .2 .6 .1 .4 .2 .1 .1 .2

1 ** .2 1.2 .6 .2 .0 1.8 .0 .1
2 ** .3 .4 .1 .3 .1 .3 .1 .1

10 .2 1 ** .8 .8 .8 .4 .1 1.8 .1 .22 ** . .4 .2 .4 .1 .1 .1 .2

.3 1 ** 1.4 .7 .7 .2 .0 1.8 .1 .32 ** .1 .3 .2 .3 .3 .1 .2 .4

** .4 .2 .4 .1 .0 2.0 .1 .2.1 2 ** .1 .1 .1 .2 .1 .2 .0 .3

100 .2 I ** 1.2 .1 .4 .2 .0 2.1 .1 .02 ** .2 .1 .1 .3 .1 .3 .0 .0
.3 I ** 2.0 .1 .5 .2 .0 2.0 .1 .1

2 ** .4 .0 .1 .3 .1 .2 .0 .1

I- Brkett. 2 - Herron 151
Indicates that the assumption < I was violated for one or more items in the inventory.

inA

Several observations may be made from Table 5. First, the average percentage increase
over all groups studied is only .71%. This indicates that the approximations are quite effective.
However, maximum percentage increase of 12.9% indicates that under some conditions the
approximations are not so effective. Second, the approximations are much more effective for
service level type policies (a and ,G) than for shortage cost type policies (n). Third, the
approximations are more effective for inventory systems in which the ordering costs are rela-
tively high ($100) than for inventory systems with relatively low ordering cost $I and $10).
Fourth, the approximations are more effective for inventory systems in which the shortage
costs are relatively low than those with high shortage costs. Fifth, though the differences are
not great, it appears that the two line approximations to the standardized normal loss integral
produces the best results.

It was noted in the previous paragraph that the inventory system under study was found
to be a significant factor. Though the difference in mean percentage increase is not great, there
is significant interaction between the inventory system and the specification of shortage cost,
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the level ol ordering cost, and the level of shortage cost, The interaction between the inven-
tory system and the method of specitying shortage cost is illustrated in Table 6A. Notice that
the approximations are more effective tor the maintenance inventory system when ir is
specilied and %ice %crsa when a service level is specilied (t and /3).

TABLE 5. P'ercentage Increase in Annual
('osl5, bYt Groutp

Group Mean Standard Maximum
deviation

Over all groups .71 1.24 12.9

Approximation apqproach

tt(r) .82 1.51 10.7
fBr) .59 1.37 12.9

Inventory system*

Maintenance inventory .62 .80 4.6
Warmdot inventory .79 1.84 12.9

Specification of' shortage cost*

7- 1.55 2.30 12.9
.30 .57 4.1

(3 .41 .59 2.3

Approximation

Single line (I < K < 3) ,81 1.45 10.7
Two lines (0 K ' < 3) .60 1.43 12.9

Ordering cost*

1 1.26 2.11 12.9
10 .63 1.07 5.5
100 .24 .41 2.1

Carrying cost

.1 .66 1.23 7.1

.2 .69 1.35 8.4

.3 .77 1.71 12.9

Shorta e cost

Low .57 .65 2.4
Medium .50 .90 5.3
high ___ 1.03 2.14 12.9

Indicites this iharmlhle Is signiicanl using I -test wiih at = Of
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Other selected interactions are also illustrated in Table 6. Table 6B indicates that the
approximations are least effective for inventory systems with low ordering costs in which a
shortage cost is specified. Table 6C indicates that the approximations are also least effective for
inventory systems with a high specified shortage cost. Table 6D combines the results of Tables
and 6B and 6C and indicates that the approximations are least effective for approximations with
a combination of a low ordering cost and a high shortage cost.

TABLE 6. Percentage Increase in Annual Costs
.Ibr Selected Two Factor Interactions

A. Specification of shortage cost versus inventory system

Inventory Specifications of shortage cost
system
_ _ _ i /3

Maintenance 1.02 .48 .49

Warmdot 1.90 .11 .34

B. Specification of shortage cost versus ordering cost

Ordering Specification of shortage cost

cost

1 3.01 .51 .54

10 1.31 .27 .41

100 .33 .11 .28

C. Specification of shortage cost versus shortage cost

Shortage Specification of shortage cost

cost Ir a /3

Low .16 .41 .92

Medium .93 .42 .15

High 2.86 .07 .17

D. Ordering cost versus shortage cost

Shortage Ordering cost
cost I 10 100

Low .78 .56 .36

Medium .98 .34 .18

tligh 1.93 .98 .19
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I ladlex and Whitin'\ [41 approximate continuous review inventory model has received f're-
quent analysis in the literature (recentl, 3 and 61, though little has been reported ol actual use.
Perhips the re;isin for this apparent lack of use is the requirement that a probabilit distribu-
tion be specified for lead time demand, and the requirement that a backordering cost or service
lccl be specified. Moreover, even if' one is willing to specil'y the normal distribution for lead
imc demand and an appropriate backordering cost or service level, one still ma\ be hesitant

abou.t using the iterative solution algorithm that requires the use of normal tables. The purpose
(f this paper is to evaluate some approximations that relieve the latter two deterrents to using
this model.

his e%aluation produced the following results:

The exponential appr(iximations result in operating policies very near those of iterative
algorithms. The axerage increase in annual costs as a result of using these approximations
is .71",,,, depending on certain characteristics of the inventory system.

2 It is preferable to apiproximate the standardized normal loss integral with an exponential
function than to approximate the complementary cumulative distribution function.

3. The approximations are closer for a or /3 specified policies, than for 7" specified policies.

4 A single line approximation in the range A = 1.0 to K = 3.0 is nearly as effective as a
two line approximation.

5. -I he approximations are least effective for inventory systems with low ordering costs and
high specified shortage costs.
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A NOTE ON THE MIXTURE OF NEW WORSE
THAN USED IN EXPECTATION

Kishan 6. Mehrotrd
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I. INTRODUCTION

The class of distributions which are new worse than used in expectation (NWUE) was first
introduced by Marshall and Proschan [2]. These classes play an important role in the theory of
reliability and in particular arise quite naturally in considering replacement policies. A nonnega-
tive distribution Fwith survival function Fand expected value 1A is said to be NWUE if

A I) (I f (x) d for all t>O.

In this note we arc interested in the following question: Is the class of NWUE preserved under
arbitrary mixture? Barlow and Proschan Ill conjectured that NWUE is not preserved under
arbitrary mixtures. In section I of this note we present examples which verify this coniecture
and in Section 2 we give some other elementary properties of distribution of' this class.

2. NWUE IS NOT PRESERVED

The examples considered below are obtained in view of Lemmas I and 2 of the next sec-
tion. That is, we take two specific NWUE distributions F1 and F, with respective expectations
y and 112 such that /A _> Ax2 and F, crosses F, from above. Then, at a point t beyond the
point of intersection of F, and F[2 the defining equation of NWUE is not satisfied.

Consider the mixture

F(.) = (FI(x) + F'x)) for all x > 0
2

where

FI () = e for x >, 0

and

F,(x) v for (A - I)6 x < k8, A = 1,2.

I hu,. i is the exponential distribution function with expected value M = .8 and clearIN
VAI I ' ,x ) is a slight modification of distributions considered by Barlow and Proschan II]
in Scttion S 9 of Chapter 6. Since F,(.x) is easily seen to be a NWIJ, by (2.4) of Chapter 6 of
.rhl,A and Proschan II , it is clcarly NWLJ. The expected value of' the random variable with
l,trihuion flunction I., is

181



182 KG MIIIR(ITRA

and

f 1A.0tdv= (k, - ) e Ah+ (8 e I

I - e

where k is an integer such that (A - 1 )8 < < A-. For a given 8 set

L(8,0 = - (AI + A2(8))L (1 (1) + F 2 (0)

and

R f IF,() + f'2(X)} dx.
R(6.i) = 2-

Then, for 8 = .5. ,t.5) .77074. For i = .5-E, where E is positive and very small, for
instance. E = .001, L(.5, .5-E) =' .44836 and R (.5..5-E) - .44784. Clearly, L(.5, .5-E) >

R(.5..S-E). Thus, the mixture (I- "1(x) + ,(x) } is not NWUE. This inequality holds for
2

values of t slightly less than I and 2.

The above examples clearly show that NWLJE is not preserved under the mixture, as con-

jectured by Barlow and Proschan [1].

3. SOME ADDITIONAL PROPERTIES OF NWUE DISTRIBUTION

LEMMA I: Let F be the class of NWUE distributions with equal mean g. Then any
arbitrary mixture of F,, E F is NWUE.

PROOF: Let F = fr', dG (a) for arbitrary distribution function G.

Then.

= F.vIa f f1',, (x)dIG(c)dx- = f (f F,~ (x)dAJIdG(a)

= fJIG(a) =

where the second inequality holds by Fubini's Theorem. Next, for arbitrary t > 0,

f fix )dx, = f if kF, (x)dG(,,) I dx =f I f T xidGGu)

f 1 (I) G(a) = pF r).

Thus, Fis NWUE.

LEMMA 2: Let 1*1 and F2 be two NWUE distribution functions such that F1 crosses F,
once from below. Let A, > A_ where j,, is the mean associated with F, Then for any
p,O < p < L.F(x) = pF.(x) + qF 2(x) is NWIJE: q = I-p.
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PROOF:

if F(.0 -AF I = (p + q) f "lp, (.0 + q: 2(.,

- (p I + qA 2)(lF, (t)+ql())

= p2 if t (,,, - , (,)I + q21f i.(.,- 2-'(: 1 ))

+ pqIf .1-)+F,(Al )aIf,(1)- 1 (t)I.

To show that this expression is positive for all t, it is sufficient to show that the third term is
positive, because the first two terms are positive by assumption F, is NWIJ-,i 1. 2,.

Let to be the point where I, crosses f', trom below. Then for o > tiF, h) > I.,(t .
Thus,

fr{ " (X\) + F--,. ()}\ -I. 1VAI '2(1) -tA2 il W > (A z I - ,t 211(f,/) - i., (1)) >, .

For t < to.

fi{ (x) + F('), = l + 2F1 ()ll > (A l -A2) f 1  
1 - ax

= l -. 2) J -2 - I x -.

F2(X) IW Lx) F -A -)

But for t < to,, >. Therefore, the above integral is positive.
A 2 A.2  A.I

The following result provides a lower bound for the distribution function for any member
of NWUE class in terms of its expectation.

LEMMA 3: If Fis a NWUE and g is its expectation, then 1-it) >, t for all t>,0.

PROOF: IT f, F(x)dh = I- f0 F(x)d,< - tF(t) because F(.) > I
for all x<t. Thus, F(W t u or Fit) > t 0.

To show that the above bound is sharp we consider the following example. Let X be a
nonnegative random variable such that

P IX = 01 = a

P [o <K < a I = 0

and for X > a, the density is given by

lx) = (Ia-) ,A
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whereX =at-(I-)
2 )/(1- 2, and0<ty<l ischosen so that k-(k - ) 2 >0.

The expected value, p,, of the random variable X is given by

g, = (I - ) la +XI

and the distribution function Fis such that

(1-k) ffor 0 f< x < a
F, (x I (-a ) e ( % ") ' x for x > a,

Clearly, Fis NWUE. Moreover, for x = a

x a (l-a)= F(a).
x +JA, a + ,ta

implying that for any give ii >0, and for each a > 0, there exists a NWUE F. such that

, (a a +A
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ABSTRA('T

Set / and i, nap Ill , 11 into the real numbers. A s, stcrn is following ei-
ther 1I or / and earning the aSsociated reward f /I or f 12. respectively. II is
possihle at an l11ine to switch from /, to /, hb paing a switching cost h > 01

We determine a switching policy which naxinli/es the total reward Conditions

which guaran itee a planning hort/on are established

INTRODUCTION

In many endeavors one must choose one of two activities, each of which has a time-
varying reward. There is usually a cost associated with switching from one activity to the other.
Such is the case in fisheries, where a fisherman chooses each day to fit his boat for deep or
shallow fishing, and this paper stems from a model of such behavior. We model this situation
in the following way. Let fl and 12 map [0, T] into the real numbers. A system is following
either .f, or f2 and earning the associated reward fifl or ff1'2, respectively. It is possible at
any time to switch from I, to J, by paying a switching cost b > 0. For example, if the system
begins following ,/, switches at time 1t > 0 to .2, and then switches back to /l at time t, )> t1 ,
the total reward is

. I + f .12 + .11 - 2h.

The problem of optimal switching between two activities has been studied by Pekelman
[21, who required switching to occur in a continuous fashion with a bounded rate. In our case,
switching occurs instantaneously. Pekelman derived the nature of an optimal policy using
Lagrange multipliers, and showed the existence of planning and forecast horizons. Our prob-
lem is simpler, and our analysis relies on dynamic programming. We also characterize planning
horizons.

REDUCTION AND ASSUMPTIONS

A function .f is said to change sign at t iff takes both negative and positive values in any
neighborhood of t. We assume

(AI) The set of' points in [0. TI where 1 - .2 changes sign is nonempty and finite. Let
< < 11 < t < ... < 1,, < T be an enumeration of this set.

185
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(A2) There is no interval in [0.TI on which / - f2 is identically zero. A model which does
not satisfy this assumption can be reduced to one which does.

We note that the performance of any policy is dominated by the performance of a policy
which switches only on the set 0. i t, ...., ,J. If a policy mandates a switch at
s E G,. tA .), then the switch can be relocated from s to tA. tA, 1 or to coincide with some
other switch in 0A. A 1), so that the reward is not decreased. If two switches coincide, they
can both be eliminated with no loss of reward. It is clear then that the switch at s -A be
moved to tk. A , or eliminated altogether.

This observation restricts our attention to policies which switch only at 10,1 , j.
Since there are only finitely many such policies, an optimal policy exists. Let t = 0 and define

I A = 4,1 (.12 - .)

A policy which mandates following./2 on the intervals [1A, tA,., 0 < tLI < 1A, < ... < tk, <
1, earns reward

+ 0 ." - (b

where c is the number of switches incurred by the policy. We have thus reduced our problem
to the following sequential optimization model.

M: At each stage k, a system is in either state 0 or state 1. A policy r ( p, A.[. . ) is
a sequence such that each AA maps (0. 1) into (Hold, Switch) or simply {H,S}. If the k-th
state is A, then the k -th control is uA = /iA (A), the (k + )-st state is

x if 11A = H,(I) xIA-j) = I(A.uA) I I- 'CA if UA = S

and the reward associated with (x uA) is

0 if xA=0, uA= H,

(2) g(aA -b + (xA if xvA = 0, uA = S,
ag if NA = 1, uj, = t.
-b if XA = I. UA = .

We wish to find a policy 7r which maximizes

(3) J,(X = g(xu).

This is a finite stage, deterministic, dynamic programming model with two states and two
actions. The dynamic programming algorithm for this model is simple and computationally
feasible. This model has, however, a special feature which leads to a more efficient algorithm.
It is apparent that whenever 0 < aA < 2b (-2b < a4 < 0), there is nothing to be gained by
switching from 0 to I (I to 0) at stage k and back to 0(0) at stage k + I. To build on this
observation, we define a model more general than M.

DEFINITION: We say a dynamic programming model N is alternating if it has two states
0 and I. two actions // and S, system equation (I), one-stage reward (2) and objective func-
tional (3). We require that b > 0 and A,% = (at)," I ..... a,,) is an ordered set of real
numbers such that al, ,e 0. and the nonzero members of the set have alternating signs. A pol-
icy for an alternating model is a sequence r = (1,p-.I A.,,) such that MA maps (0. 1) into
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(H.S . We say 7r is feasibh, if a, = 0 implies A, (xA) = ti, regardless of the choic- of xt. We
say 7T is optimal if 7r maximizes J,,(x,,) over all feasible policies (independent of x0), and the
reward J, (.v,) corresponding to an optimal i" is called the talueUlunction.

The model A is an alternating model with every (kA different from zero. Given an alter-
nating model N. we can construct a related alternating model b (N) by the following procedure:

(P) Let m < n be the largest integer for which am. r 0. If a,, and a0 are the only nonzero
members of .4., set ,idhk) = it A = 0 ..... n. Otherwise, determine the index
k, I < A < i - 1. of the smallest nonzero I6A I. If more than one such Ia, I exists,
choose the smallest index. If a, I > 2b, set 0(a,) = aA, k = 0 . n. If la, I < 2b,
let ji max{pO p < A - .ap 0l,= minq I k <+ I q n,aq ;1 0),andset

(I) Gr A I t A e P, A ZA, A ~

il ( I Iol +a + aq
46 (aA,) = Gk (,,) A .

The model 4(b (A) is the model N with each oA replaced by 4)(aA. It is easily verified that
4(N) is alternating.

Either the models b(N) and N are the same, or else 4(N) is simpler than N is the sense
that .46,\ contains more zeroes than 4 .. For example. ifA, (-1. 3.0,0,-2. 5) and b = 1,
then .4 = (-1.6.,0,0.00).

LEMMA: Let N be an alternating model and let (b (N) be derived from N by procedure
(P). Then every optimal policy in 4) (N) is also optimal in N.

PROOF: Since every feasible policy in 4) (N) is feasible in N and leads to the same
reward in both models, it suffices to show that both models have the same value function. We
will show this by producing a policy which is optimal in N and feasible in 4 (N). There is noth-
ing to prove when 4) (N) = N, so we assume the contrary, i.e., I., I < 2b.

The dynamic programming algorithm for N takes the following form. For
k = 0, 1. n, ifa,, a 0,

(4) J,(0) = maxIJA+(0), -b +aA + JA,1()}

(5) JA(l) = maxlaA + JA +(I), -b + JA ,(O)),

while ifoa4 = 0,

(6) J, (0) = J4 {0),

(7) J,(I) - J , (I),

where J,,+l(0) = J,,+(I) = 0. Define " = ( .,) by

(8) (0) H if JA(0) > J,1(0),

S if J(0) > JA, 1(0),

(9) A, (I ifif AJ,,I) = aA + J,,.0IlI

I - if J ( I) > a, + J, + (I).

The policy ir is optimal for (N) If, p. 501. We show it is feasible for 4b (N), i.e., for any initial
state x0 ,
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(10) . -

(I 1) - , (x) H.

Observe first that (4)-(7) imply

(12) J (0) h + J,(I), A = 0,1 . n + 1,

(13) JI ( b + J,(0), A 0, .. n + I.

Recall that a, ; 0 and IaA I 2b. Since J, I J, and J,+I = J,, we can and do assume for
simplicity of notation that 1 = k- 1, 4 = A + 1. Thus, we have 6-1, > lajl, ak+,l />

We assume a, < 0. The other case is treated similarly. We have

A I > 0, k A+I > 0. From (12) we have

-h + JA12(0 ) < J11 2 (1) < a,,, +

so (5) and (9) imply

(14) J .1 ( 1)  A+I + JA 2I), A +I(l) = H.

Sincea, < 0, (13) implies

-h + a, + J111l) < -b + J,+,(l) < J'+j(0),

so from (4) and (8) we have

(15) J, (0) = JA.I (0). PA(0) = H.
Since I, 1 6 K,1, we have from (12),

-b + J, 2(0) K J,2(l) (X, + A+] + 2( 1 ) .

Since la, I 2b, we also have

-2b+ AI + JA,+2(I) I + (V ,-I + J11 2 ")

Together with (4) and (14), these inequalities yield

-b + J, +(O) < a, + a,+I + JA+2(l) = 'I + J+(l).

From (5) and (9) we now have

(16) J,(M = o, + Jk+jlM, ilk (1 ) = H.

Equations (15) and (16) imply (10). It remains to establish (1I).

SinceaA I >0. (5), (9) and (12) imply .A1 (1)= I.f J4 +2 (0) > -b+ a+1 + J1+2(i
then (4) and (8) imply

JA() JOA+ 2 (0), 94+1 O) = H,
and (11) follows. On the other hand, if J1,2(0) < -b + (x,+, + JA+2( 1 ), then

(17) J,+ (O) = -b + *,1 + J1+2 (1), pAI+l(O) = S.

and (iH) will hold if and only if x +I= I (independent of the choice of x 0 ). Since
I + cxA > 0, (15), (17), (14) and (16) imply
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J ) =A =A +Q(0) = -ha + 14 , + (I)

< -b + (tA I + + A +, + A +, 

=-h~+(O, +,+ +JA+l (I)
h + I + J((I ,

From (4) and (8) we see that

(18) J , (0)=-+ A - + JA,). (0) =S.

Since (t, > 0, (12) implies

-b +J() ( 0 J ) (k + J (I).

and (5) and (9) yield

(19) J, , (1) = ( + ), A M H(I) .

Equations (1), (18) and (19) imply v, = 1. Equations (I) and (16) imply vA I = I, as was to
be proved. Q.ED.

We state now a theorem which gives a simple construction of an optimal policy for an
alternating model N For which b (N) = N. We show also that any alternating model can be
reduced to this case.

THEOREM: Let N be alternating model for which O(N)= N. If' AN has only two
nonzero members a0 and ,,, then an optimal policy 7r T (AO,1 I ,,) for (N) is given
by

(20) /A(XA) = 1t , k 0, k ;;4 M

S isx,.= 0 ,, > b

(21) . orx. 1, ,,, < -b,

I H otherwise,

S ifxo = 0 -b + o + Jm(I) > J,,(0),
(22) to(Xo) or xo = I , -b + Jm(0) > ao + J,,,(I),

I// otherwise,

where

J,,(0) = maxj0. -b +ck,,

1, (I) = max{a,., -bi.

If' AN has more than two nonzero members, then the policy defined by

S if vA = 0 .(x > b,

(23) 1IA(xA) = orA = I . A < -hb,

I// otherwise,

is optimal for N. If O(N) N, then there exists some positive integer i such that
'(N) = '(N), and any optimal policy for 4'(N) is also optimal for N.
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PROOF: For the trivial case where .4% has only two nonzero members, the optimality of
the policy given by (20)-(22) follows directly from the dynamic programming algorithm (4)-
(9). Suppose now .4N has three or more nonzero members and m is the largest index with
a e 0. Since O(N) = N, A ;e 0 implies laA I > 2b for I <A i m- I. The optimality of
(23) follows from (4)-(9), (12) and (13). Finally, if M(N) N, then ..-l,,, contains fewer
nonzero elements than AN. After finitely many iterations of h, we must obtain 6(N) such that
(b'(,V) = 0)'(N). Q.E.D.

EXISTENCE OF PLANNING HORIZONS.

Suppose in an alternating model N we have aA > 2b for some k. Then, in the notation of
procedure (P), either (6 4 ) = A, 6(a ) = A + ak +a q> a. or (a,) = 0. The last
case occurs if k = , in which case < k, 0(a,) = aP+ a +aA > ak, and 0 ((p+i)
= ... = (h(aA) = 0. For any i, we will have either (ak) > aA > 2b, or else (h'a) > 2b,
where I < k and 4(aI+I) = ... = (a,) = 0. If 0' 1(N) = b'(N), then the optimal policy of
the Theorem guarantees that xA+I = 1. Thus, we can disregard a, for j )> k + I in determin-
ing an optimal policy for stages 0 through k. If ao < -2b, a similar argument holds, where
now we have xA I = 0.

In conclusion, if IaA > 2b, or for any i > I, I0'(aA)I > 2b, then we can solve the
smaller problem of optimal switching between any stage h < k and stage k independent of the
values of a,, where i does not satisfy hi A- / k, and the policy thereby obtained will be part
of an optimal policy for the full problem.
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NEWS AND MEMORANDA

THE 1980 LANCHESTER PRIZE

(all for Nominations

Each year since 1954 the Council of the Operations Research Society of America has
offered the Lanchester Prize for the best English-language published contribution in operations
research. The Prize for 1980 consists of S2000 and a commemorative medallion.

The screening of books and papers for the 1980 Prize will be carried out by a committee
appointed by the Council of the Society. To be eligible for consideration, the book or paper
must be nominated to the Committee. Nominations may be made by anyone; this notice con-
stitutes a call for nominations.

To be eligible for the Lanchester Prize, a book, a paper or a group of books or papers
must meet the following requirements:

(I) It must be on an operations research subject,

(2) It must carry a current award year publication date, or, if a group, or at least one
member of the group must carry a current award year publication date,

(3) It must be written in the English language, and

(4) It must have appeared in the open literature.

The books(s) or papers(s) may be a case history, a report of research representing new
results, or primarily expository.

For any nominated set (e.g., article and/or book) covering more than the most recent
year, it is expected that each element in the set represents work from one continuous effort.
such as a multi-year project or a continuously written, multi-volume book.

Judgments will be made by the Committee using the following criteria:

(I) The magnitude of the contribution to the advancement of the state of the art of
operations research,

(2) The originality of the ideas or methods,

(3) New vistas of application opened up,

(4) The degree to which unification or simplification of existing theory or method is
achieveri, and

(5) Expository clarity and excellence.
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Nominations should be sent to:

Linus F. Schrage
Graduate School of Business
University of Chicago
1101 East 58th Street
Chicago, Illinois 60637

Nominations may be in any form, but must include as a minimum the title(s) of the
paper(s) or book, author(s), place and date of publication, and six copies of the material. Sup-
porting statements bearing on the worthwhileness of the publication in terms of the five criteria
will be helpful, but are not required. Each nomination will be carefully screened by the Com-
mittee, nominations must be received by May 30, 1981, to allow time for adequate review.

Announcement of the results of the Committee and ORSA Council action, as well as
award of any prize(s) approved, will be made at the National Meeting of the Society, October
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