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ABSTRACT

In the context of multiple linear regression, when a

subset of k-out-of-p predictor variables is to be selected

for the purpose of predicting the response at some known

point in the predictor variables' space, the width of the

resulting prediction interval gives an indication of the

precision with which the response is predicted and, thus, it

may provide a suitable selection criterion.

A review of commonly used selection criteria is given,

with special emphasis on those which deal with the problem

of prediction. The Mahalanobis distance is one of the quan-

tities affecting the width of the prediction interval, and

it is studied in some detail. The effects of adding a new

variable to a model are investigated and a monotonicity

theorem is derived.

The influence of an observation on the width of the

prediction interval, as measured by the effected change when

that observation is set aside, is also investigated and an

equivalence between observation deletions and variable aug-

mentation is shown..'

The relationships found in these investigations indi-

cate the applicability of certain computing techniques.

Computing algorithms are presented.
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A management science application of the statistical

procedures developed in this study is explored in the area

of parametric cost estimation.
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CHAPTER I

INTRODUCTION

Multiple regression analysis is, probably, the most

widely used and abused of all statistical tools (5). Many

authors attest to the importance and wide applicability of

this technique (5), (9), (28), etc. The advent of high-

speed digital computers and the development of efficient

software packages have made it accessible to users from all

fields of researzh. Associated with the enhanced availabil-

ity and ease of use provided by these technological develop-

ments is a tendency to apply regression techniques routinely

and mechanically, without due consideration to the underly-

ing theory or the empirical "rules of thumb" consistent with

that theory and with common sense.

The main step in any regression analysis is the devel-

opment of an equation relating one variable, commonly refer-

red to as the response variable, to another set of varia-

bles, called explanatory or predictor variables. For some

highly structured applications in the physical sciences, the

exact form of the appropriate regression function may be

known to the experimenter. In other cases, theory may spec-

ify a functional form to be tested. These cases, however,

are the exception rather than the rule. More often, the

analyst is uncertain about which variables are important
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carriers of information, as well as about the form of the

relation. In those cases, the analyst must let the data

speak for itself in suggesting candidate model specifica-

tions. This process is referred to as "data mining" by

Leamer (22), and is more formally known as empirical model

building. Usually, at an early stage, a large number of

potential predictor variables must be considered, some of

which may be transformations of other variables. The task

of the analyst is to bring to the surface the "nuggets of

truth" which are hidden in a set of observations on the var-

iables by means of a thorough and appropriate investiga-

tion. There are many reasons why one must be parsimonious

in his use of variables. Some of them may be totally irrel-

evanteto the problem, while others may be "conditionally

irrelevant" in the sense that, in the presence of other var-

iables they possess little or no explanatory value. It is

tempting to use "all the information" of the "full" model

but this often causes problems associated with what is

referred to as "overfitting". Models with many variables

result in large prediction variances (35) ar well as statis-

tical and computational instability in the presence of mul-

ticollinearity among the retained variables (3). Also

important is the fact that a model with many variables may

be difficult to interpret and/or maintain. Thus, the need

arises for techniques which will screen the variables and

select a subset of them deemed appropriate for the intended

use of the model.
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Various techniques, commonly referred to as "variable

selection criteria", have been suggested for this purpose,

such as minimizing the mean square error (MSE) or, equiva-

lently, maximizing the adjusted coefficient of determina-

tion, R2, maximizing F, minimizing Mallow's Ck statistic

etc. In Chapter 11, the need for variable selection and

some of the criteria in use are discussed. All of these

commonly used techniques are based on the data only through

the sum of square errors (SSE). As a result, for any given

number of variables, they all select the same subset,

namely, the one which minimizes SSE. This, in itself, is a

rather desirable property, especially when the object of the

analysis is the explanation of relations among the histori-

cal data. However, as Lindley (23) emphasizes, the techni-

que used to develop a regression equation ought to be rela-

ted to the intended use. When the object of the analysis is

the development of an equation which will be used in order

to predict the response at a known point in the space of the

predictor variables, ignoring this additional information is

contrary to Lindley's recommendation and to common sense.

The issue of how to use such information needs, therefore,

to be investigated. The Mean Square Error of Prediction

(MSEP) criterion, which is discussed in the next chapter,

represents an attempt towards utilizing the information car-

ried by the point under prediction. Its approach, however,

does not seem to be fully satisfactory for several reasons
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which will be discussed in subsequent chapters. Therefore,

there remains a void in the literature in this respect,

which this dissertation attempts to fill.

More specifically, the problem can be described as fol-

lows: A future observation on the response variable, Y,

must be predicted, using the relational information provided

by a set of n historical observations on Y and a set of p

predictor variables X,X 2 ,...,X p potentially related to it,

as well as the values x of the predictor variables associ-

ated with that future observation. The relative location of

x with respect to the historical data yields additional

information which, if ignored, may lead to models not well

suited to predict at that location.

The width of the risulting prediction interval at x is

a numeraire which seems like a reasonable basis for choosing

among alternative models. The Mahalanobis distance, intro-

duced by P. C. Mahalanobis (24) as a measure of divergence

between groups of multivariate data, affects the width of

the prediction interval and may provide a measure of analog

between x and the historical data. In Chapter III, the the-

oretical aspects of the problem are investigated. An inter-

esting result which leads both to an easy geometric inter-

pretration and to existing computing techniques is derived

in the form of a monotonicity theorem. This theorem is also

used in order to explain certain observations made during

the simulations which were conducted and the analyses which

were performed on real data sets.
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The computational aspect of the problem as it relates

to the proposed selection technique is investigated in

Chapter IV. This is an important consideration because the

need for variable selection becomes more pronounced as the

number of potential predictor variables increases. An

existing, efficient algorithm is modified for the purposes

of this criterion, by utilizing the results of the theorem

in Chapter III. Using the same theorem, stepwise FORWARD

selection and BACKWARD elimination algorithms are

developed.

The leverage of individual observations on the various

quantities of interest should be an integral part of any

analysis and has recently received deserved attention in the

literature (7), (8), (13), (18), (36). Observations which

seem discrepant or damaging in some sense appropriate to the

analysis are allotted special attention and are investigated

further. In the context of this investigation, an obser-

vation calls for such attention if its deletion from the

least squares calculations results in a significant change

in the width of the prediction interval. Chapter V deals

with this issue. Some results are derived, some observations

are made and computational formulae are given.

In Chapter VI, an application from the field of manaqe-

ment science, referred to as parametric cost estimation, is

investigated. A real data set is analyzed and the perfor-

mance of this criterion is compared to that of others. The
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results of a limited simulation study are also briefly dis-

cussed.

Finally, in Chapter VII, some concluding remarks are

made, suggestions for the use of the new criterion are given

and questions relevant to the problem at hand which were not

investigated in this study are raised.

A word of warning is appropriate here, which applies to

every statistical analysis of data and, in particular, to

every variable selection technique. As was mentioned above,

regression is one of the most widely used statistical tech-

niques because of its wide applicability, ease of use and

elegance. It is also one of the most widely abused techni-

ques. Two of the reasons for such abuse are:

(a) The proliferation of efficient statistical packages

with a variety of regression options.

(b) The lack of awareness on the part of the practitioner

about the dangers of such misuse.

It may be that the practitioner has not been warned by the

statistician emphatically or frequently enough. However, it

remains of paramount importance that the practitioner be

aware of the following:

There is no substitute for a well thought out, well executed

and complete analysis. There are many sides to an analysis

and data sets behave in their own peculiar ways. Standard,

mechanical approaches often fail to reveal these peculiari-

ties and, even if they do, appropriate remedial action
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requires more than superficial familiarity with the model

and its relation to the real world process. For example,

there is no variable selection technique which is automati-

cally applicable to all situations. Even for a given data

set, there is rarely a "best" criterion or a "best" model

that is known to the analyst. For a good analysis, poten-

tial variables and candidate model specifications should be

decided after "eyeballing" the data, and with input from the

experts in the field of application. Part of the data

should be set aside for validation purposes, whenever such a

luxury can be afforded. Models should be kept for further

scrutiny that have good "automatic" properties such as large

R 2 , small Ck, small prediction intervals etc. If probabil-

istic statements are to be made, which is almost always the

case, the residuals should be analyzed for indications of

model inadequacy and of violations of the assumptions on the

errors. Finally, the model (or models) passing all tests

should be subjected to the criticisms of the experts in the

field. In the process described above, only the computa-

tions may be done in an automatic way. The analyst's judge-

ment and knowledge put to good use is what constitutes the

difference between data analysis and the simple processing

of data.



CHAPTER II

ON THE SELECTION OF VARIABLES

The Need for Variable Selection

In most practical situations, finding an equation which

will describe a set of data collected in a manner referred

to by Box (5) as an "unplanned experiment" is a difficult

task. The problem which is investigated in this disserta-

tion can be described as follows:

There are available n observations (fundamental meas-

urements) on one response variable, V, denoted by V.,

i=l,2,...,n and n associated observations on m basic, or

fundamental, variables ZlZ 2 ,...,Zm , denoted by

ZilZi2,...,Zim, i-l,2,...,n. There is one more measure-

ment zl,z2,...,zm on the basic variables. An equation of

the form

Yi = 0 + 81Xil + ... + + Ci (2.1)

is assumed relating Yi a f(Vi) and Xij = gj(Zil,...,Zim),

j-l,2,...,p, i-l,2,...,n. Henceforth, the variables Xj,

j-l,2,...,p will be referred to as explanatory, or predictor

variables. This equation is assumed to be linear in the

parameters p  and it need not be linear in the

original variables ZV1Z 2 ,...,Zm as gj, j-l,2,...,p may be

any functions of those variables. For example, XlZ2,
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X2mZ1Z3, X3-logZ 4 etc., will produce an equation which is

not linear in the basic variables ZiIZ 2 ,...,Zm. In matrix

terms, the model can be described by ] = L + e, where Y is

the nxl vector of responses, I is the nx(p+l) matrix of the

values of the explanatory variables whose first column con-

sists of l's and which is assumed to be of full column rank,

and 3 is the p+l dimensional vector of the unknown parame-

ters. The object of most statistical analyses is to esti-

mate the parameters6 = 0p]1 by means of

!= [b0,bl,...,bp1 '. The estimate b is usually obtained by

the method of least squares, i.e. b0 ,bI,...lbp  are such

that

Yi a b0 + b1 Xil +...+ bpXip + ei (2.2)

with

n 2 n
ei - man{ E [Yi-bo-b 1Xi- ...,-bpXip]2 }. (2.3)ib inlpi

In this investigation, the case where the resulting equation

will be used to predict the response y associated with the

point x - [xl,...,px1  where xj-gj(zl,...,zm), j-l,2,...,p

is considered. In these cases, the main consideration is

the accurate prediction of y rather than the estimation of

8. For curve fitting purposes, the n-dimensional vectors

2IX2,..., are assumed independent in the algebraic

sense. In order to make statistical inferences about the

standard errors of the estimates, the precision of the pre-
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dicted values etc., the errors ei axe, in addition, assumed

to be jointly distributed as N(O,a 2I), i.e. normal, with

mean vector zero and covariance matrix a 2I. This covariance

structure implies that the errors have equal variances

(homoscedastic) and are uncorrelated.

The initial choice of what aspects of the sample units

ought to be measured may be straightforward, as is the case

in well understood situations where physical laws and thec-

ries apply or are being tested. In less structured situa-

tions, such as behavioral research, exploratory studies

often start by measuring most everything and then let the

data "speak for itself" in identifying the important varia-

bles and forms of relations. Whatever process is used in

assembling the set of p candidate predictors, XIX2,...X p

it is hoped that the list is extensive enough to include all

of those which have influence on the response variable Y.

To be so inclusive, the list often contains useless varia-

bles and/or variables whose informational value is superflu-

ous in the presence of other explanatory variables. As part

of the more general problem of analyzing a given set of

data, subsets of variables must be selected, which seem to

explain the data adequately. Selecting the essential varia-

bles is a source of trouble with unplanned data. One major

reason for this is that the problem does not yield to a uni-

versal definition. What is precisely meant by saying that a

model is sought which "adequately represents the data"?



Which facet of the data should the analyst ask the chosen

model to represent best? The answer to such questions must

depend on the intended use of the model as discussed by

Lindley (23). The idea of a model which is "best" for pre-

diction, or a model which is "best" for estimation, for

instance, is elusive. Indeed, several answers to such ques-

tions might be appropriate as the problem is not one but

several, intricately interwoven. It is a generally accepted

maxim among statisticians, however, that parsimony in mcdel

building is desirable. There are several theoretical and

practical reasons for this view as follows:

1. Models with too many variables usually result in

large prediction variances due to the fact that many para-

meters have to be estimated. Walls and Weeks (35) have

shown that the variance of prediction increases with the

number of variables in the regression equation. For this

reason, the analyst would like to detect and exclude those

variables which are either irrelevant to the problem or an-

necessary in the presence of others which are to be retained.

2. With a large number of variables, statistical in-

stability of the resulting equation is more likely to occur.

Statistical instability is the phenomenon in which a small

perturbation in the values of some of the variables results

in a large change in the coefficients of the fitted equation.

This is one of the visible effects of multicollinearity,

namely the phenomenon of strong association among the



12

retained variables. Mathematically, this phenomenon occurs

when the matrix V is nearly degenerate. The phenomenon of

multiuollinearity can appear because the data come from a

subspace of the true sample space, one that can almost be

described in fewer dimensions. This may happen either by

chance, or by necessity, or by the inclusion of extraneous

variables which are strongly associated with the relevant

predictors (21), (27). In such cases, the estimates of the

regression coefficients have large variances resulting in

instability of the hyperplane defined by the regression

equation. This is easy to visualize in the case of two

highly correlated explanatory variables. If the data are

nearly collinear (one-dimensional subspace), the regression

plane is "resting on a knife's edge". Any perturbation in

the data can make it tilt heavily. Again, it might be

desirable to use a subset of variables so as to alleviate

the problem, especially if the variables which are causing

the multicollinearity are extraneous anyway.

3. Another undesirable effect of multicollinearity is

computational instability, resulting in potentially large

roundoff errors (3).

4. Finally, from the purely practical point of view, a

model with many variables may be difficult to interpret,

difficult or costly to maintain, or both. Interpretation of

relations between individual predictor variables or groups

of them and the response variable is often desirable, and
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collection of data on certain variables is often difficult,

unreliable or costly.

The reasons mentioned above should suffice in explain-

ing why the problem of variable selection is real and,

often, of great practical importance. In the next section,

some commonly applied selection techniques are discussed.

Review of Selection Criteria

For this section and the ones that follow, some new

notation will be needed. The i-th response is estimated by

b i 0 + b1 Xil + ... + bp Xi il,2,...,n. (2.4)

The i-th residual is defined by ei = i-Yi and the sum of

squared errors (residual sum of squares) is defined by

SSE = i . (2.5)
i-l

In variable selection the possibility of setting some

of the p coefficients equal to zero is considered. This

amounts to selecting a subset of k, say, out of the p varia-

bles. The mean of the n observations on the response varia-

ble is denoted by 7, the total sum of squares of deviations

from that mean is defined by

n -
SSTO - (-Y) (2.6)

iul

and the regression sum of squares by

SSR - SSTO - SSE (2.7)

II
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A selection criterion is a rule according to which a

certain model out of the 2p possible models is labeled

"best". It should be noted that "best" is defined only in

the sense of the particular criterion employed, and it does

not necessarily imply that that model is best in terms of

its intended use or in terms of how well the relation

defined by it carries over to the population. The position

taken in this dissertation concerning variable selection and

model building is more general, namely, that "selection"

rules ought to be used in order to screen the 2P models down

to a more manageable number, say half a dozen or so, which,

subsequently, would be carefully scrutinized for adequacy

and reasonableness. There are several criteria currently

used for this purpose. The most common ones, as well as

some which are related to the problem of prediction are dis-

cussed next.

1. The R2 Criterion

The coefficient of determination is defined by

R2 . 1 - SSE/SSTO. (2.8)

It is clear that R is the proportion of variability in Y

which is explained by the variables in the model under con-

sideration. It seems desirable that, other things being

equal, R2 should be as large as possible. However, since

SSE can not increase as variables are introduced into the

model, R2 will always achieve its maximum when all p
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variables are used. If R2 is to be used as a selection

criterion, some subjective rule must be employed that will

determine when the largest increase possible in attained

by the introduction of a new variable does not compensate

for the loss in degrees of freedom due to estimating an

additional parameter. A graph of R2 versus model size is

usually helpful in devising what is called an "elbow rule".

2. The Adjusted R2 Criterion
(Mean Square Error)

To overcome the subjectivity involved in using R 2 , an

adjustment for degrees of freedom can be made by defining

the adjusted coefficient of determination, Ra by

R2 - 1 - [SSE/(n-k-1)]/[SSTO/(n-1)] (2.9)a

where k is the number of predictor variables in the postu-

lated model. This statistic usually achieves a maximum with

a model containing fewer than p variables. The equation

2 R2 2-
R 2 R - k(l-R 2/ n-k-l) (2. 10)a

shows the relationship between the statistics R
2 and R2.

a
This criterion is equivalent to selecting the model with

smallest mean square error, defined by MSE - SSE/(n-k-l),

since the denominator in R2 does not change with the varia-a
bles selected. A preference for choosing models with large
R2 is based on the fact that the "true" model minimizes the

a
expected MSE (32). This criterion is most often referred to
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as the "minimum Mean Square Error" criterion, and this name

will be used in what follows.

3. The Maximum F Criterion

Sometimes it is deemed desirable to maximize the ratio

F = [(SSTO-SSE)/k]/[SSE/(n-k-l)]. (2.11)

The numerator in the expression above is referred to as the

regression mean square. This criterion is used less fre-

quently than the others, and it is very parsimonious. That

is to say, it tends to select models with very few varia-

bles.

4. Mallow's Ck Criterion

Mallows (25), introduced the statistic

Ck = SSE/a2 + (2k-n) (2.12)

where a2 is an estimate of a2. Ck is an estimate of the

standardized total squared error of predicting at the points

in the data base (19). A model with small bias is expected

to yield a Ck statistic about equal to the number of varia-

bles, k, associated with it as can easily be shown. In this

investigation, the model with smallest Ck will be referred

to as the "minimum Ck" model and will be used for comparison

purposes. Usually, the MSE of the model containing all var-

iables under consideration is used for a 2, although this

forces Cp to be equal to p. Easily interpretable plots of
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Ck versus k can be drawn and it is suggested that models

with small C k be considered. The C k statistic and its prop-

erties have been discussed by Daniel and Wood (9), Goaan

and Toman (15), Hocking (19), Mallows (25), (26) and oth-

ers.

All of the criteria discussed above share two proper-

ties.

(a) They are all simple functions of SSE and, thus, for any

fixed number of variables, they all select the same model,

namely the one which minimizes SSE.

(b) If the final model is to be used in order to predict

the response y at a known point x in the space of the pre-

dictor variables, they all ignore its location and its char-

acteristics with respect to the historical data. As

Wallenius (34) pointed out, "...the first of these proper-

ties is reasonable but myopic when the object is predic-

tion. The second one seems contrary to all reason."

Of the four criteria, Mallow's Ck technique is more

directly related to the problem of prediction in view of the

fact that it utilizes the total square error of prediction.

5. The Prediction Sum of Squares

Criterion

David M. Allen (2) suggested the following selection

procedure:

LetY(i), i-l,2,...,n denote the i-th predicted response,

when a given model is used, and with the i-th observation

___._ __ __ _ __ _ __ __ _ __ __ _ __ _ __ __ ___ _



18

removed from the data base, so that the coefficients are

derived from the least squares calculations based only on

the remaining n-l observations. For each model, compute the

prediction sum of squares (PRESS) statistic, given by
n ^ (i) 2

PRESS = [ (Y i-Y ). (2.13)
i=l ~

Consider models with small PRESS. Notice that PRESS is an

indication of the predictive performance of a model over the

points in the data base. Intuitively, a model with small

PRESS should be expected to do better in predicting future

observations than a model with large PRESS. However, since

this technique fails to take into account the values of the

variables at the point under prediction, it is conceivable

that there can be points, both in the region of the histori-

cal data and outside, where the selected model may be inap-

propriate.

In terms of the computational aspect of the problem,

this method is much more demanding than the four previously

mentioned.

6. Mean Square Error of Prediction

The mean square error of prediction (MSEP) of the

response y at a given point x can be expressed as

E(y) 2 a + Var(y) + (bias) 2  i.e. (2.14)

E(y-Y^) 2 = a2 + x(jj)-1,.2 + [E(y)_E()]2. (2.15)
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Allen (1) proposed choosing subsets of variables which

minimize an estimate of the mean square error of predic-

tion. This is a difficult task to accomplish successfully,

mainly because of the fact that a good estimate of the bias

term assumes knowledge of E(y) or, at least, a very good

estimate of it. However, this is at the very heart of the

problem of prediction which the analysis attempts to solve.

An assumption about good knowledge of E(y) seems to create a

logical vicious circle in that the unknown answer to the

problem is somehow used in order to get to it. Allen's

approach to this is to assume that the full model contains

variables which were chosen carefully, so as to include all

relevant ones and exclude all unnecessary ones. As a result

cf this, the full model will be unbiased, while any submodel

will be biased to a measurable degree. The bias associated

with a given submodel is then estimated by the difference in

point predictions between the full model and the submodel,

an estimate of a2 based on the sum of squared errors of the

full model is used in the expression for E(y-y)2 and the

submodel is found preferable to the full model if and only

if the reduction in prediction variance is greater than the

square of the bias.

Even with the assumptions mentioned above, the method

of estimating the bias (a difference in expectations) by

means of a difference in two point predictions may result in

treating different submodels unfairly. The degree of this
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unfairness will depend on the difference between E(y) and

the point prediction obtained from the full model. It

should also be observed that the MSE's of the postulated

submodels are not taken into consideration. As a result,

the selected model may provide a very poor fit to the data.

As will be discussed in Chapters III and VI, this seems to

be frequently the case in practice. With regard to the com-

putational aspect, Allen proposed a sequential procedure

which provides no guarantee that an absolute minimum will be

obtained, either overall or for a fixed subset size k. It

seems that, for such a guarantee, a complete search of all

2P-1 regressions might be necessary. However, the algorithm

which will be developed in Chapter IV may be modified so as

to apply to the MSEP criterion .

In the next chapter, a somewhat different approach is

taken to the problem described above. The position taken in

this dissertation with respect to bias is the following:

When the true population model is known, the bias at x asso-

ciated with other models can be obtained. In empirical

work, however, where the true model is not only unknown but

its notion is not even easily or well defined, that bias can

not be objectively measured. Indirect methods may be

employed that can, hopefully, give indications of its magni-

tude. It is believed, however, that using such estimates

directly in the screening of variables is risky at best and

rather inapropriate. Thus, no explicit attempt is made to
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estimate bias during the selection. Implicitly, bias is

hoped to be reflected in the size of MSE which will be used

2as an estimate of a

i



CHAPTER III

ON THE WIDTH OF THE PREDICTION INTERVAL

Mahalanobis Distance as a

Measure of Analog

The Mahalanobis distance, introduced by P. C.

Mahalanobis (24) as a measure of the distance between two

multivariate populations, is a fundamental notion in mul-

tivariate statistics. In this section, the Mahalanobis

distance is discussed in relation to the problems of

prediction and variable selection. The insight gained

through this investigation will be used to explain certain

observations which were made during the course of this

study and to derive computational algorithms for implemen-

tation of the methodology developed.

Suppose there are n historical observations on p

potential predictor variables, Xil,Xi2,...,Xip,

i=l,2,...,n. Let Y denote the nxl vector consisting of

the observed values of the response variable, associated

with these n observations, and let Xj denote the nxl

vector of observed values on variable X., i.e.,

Scl['Y2' Y"n1 and X - [X-IX ... ,X Let X
2-F j 2jj nj

denote the nxp matrix whose columns are X., J ,

and let X j - Xij be the sample mean of variable A..

The point 9 (91,3 2 1 ... ,P I is defined as the centroid

of the data. Finally, let
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S - {sij}, i,j-l,...,p

denote the sample covariance matrix of variables X ... ,Xp
n

(i.e., si n--- [Xk"R i] [X

Denoting the values of the point under prediction by lower

case letters, the response y at the point x muast be pre-

dicted by exploiting the predictive relationship between Y

and the characteristics X 1 ,... ,X p, and the degree of

analogy between x and X. In general geometric terms,

"degree of analogy" refers to the position of x relative

to X in p-dimensional space. If x is far removed from the

historical data, extrapolation is necessary with all the

attendant risks. This point will be discussed in more

detail in the next section. The issue of how to detect

such extrapolation is considered first.

The standard Euclidean distance may fail to reveal

the degree of extrapolation, due to the intercorrelations

among the variables. Points at a small Euclidean distance

from the centroid X of the data may be very non-analogous

in that their coordinates do not conform with the cor-

relation structure observed in the historical data. This

point can be illustrated in two dimensions. In Figure 1

below, the point x is at a rather small Euclidean distance

from the centroid R. Nevertheless, it is well outside the

bulk of the data, because its coordinates do not conform

with the negative correlation observed.

i
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Observe also that the extrapolation in the two-dimen-

sional scatter would not have been revealed by simple mar-

ginal comparisons. Each coordinate of x is well inside the

range of the data along the corresponding dimension. Of

course, in two or three dimensions, scatter diagrams can be

plotted, which will reveal this phenomenon. in higher

dimensions, a different method becomes necessary.

The Mahalanobis distance defined by

D= ( - Z-l (}l-U2 ' (3.1)

is a measure of the distance between two multivariate popu-

lations with row vector means yl and P2 and common positive

definite covariance matrix E. The degree of analogy (dis-

tance) between x and the data I can be described by means of

the sample counterpart of the above measure, namely

M - (x-R) S 1 (x--),. (3.2)

The measure M will be referred to as the Mahalanobis dis-

tance between x and X. Observe that, except for a multipli-

cative constant, this is Hotelling's T2 statistic used to

test the hypothesis that x and the historical data come from

the same multinormal population, assuming equal covariances.

In the univariate case, M is (a multiple of) a squared

t-ratio. In the multivariate case as well, M can be viewed

as the square of a t-ratio. It is the squared t-ratio of

that linear combination of the variables which produces

rI
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the largest t-ratio. Each univariate t-ratio corresponds

to one such linear combination. However, as mentioned

earlier, marginal, univariate comparisons may fail to re-

veal the degree of extrapolation. All univariate t-ratios

may be small, although the multivariate Mahalanobis dis-

tance may be arbitrarily large. For instance, with only

two variables, M can be expressed as

M -r(M 1/2 + M
SMl-2r(|MIM 2) M2

2
M 1 - '2 2 (3.3)

1-r

where M1 and M2 are the corresponding univariate measures,

and r is the sample correlation coefficient between the two

variables. It is clear that, even if both M and M2 are

small, M can still be large. For example, if M1 = M 2

then M - 2i/(l+r), which can become arbitrarily large with

r i

A few things might be of interest to note about the

Mahalanobis distance. Points equidistant from the centroid

R form ellipsoids with center at X whose axes coincide with

the principal components axes of the data. It is a distance

measure, that is, it is non-negative, symmetric, and satis-

fies the triangular inequality. If S = I, the Mahalanobis

distance becomes the natural Euclidean distance in p-space.

For an arbitrary positive definite S, the Mahalanobis dis-

tance is equivalent to the Euclidean distance in the

"Mahalanobis space" S1 /2x', where S1 /2 is the symmetric

square root of S.
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With respect to this investigation, the behavior of

the Mahalanobis distance as variables enter or leave the

regression equation is of interest. The monotonicity theo-

rem which follows allows the expression of the change in

the Mahalanobis distance as a new variable is introduced,

in terms of easily recognizable regression statistics and

provides insight which will aid in subsequent analysis.

Theorem 3.1: Let Mk denote the Mahalanobis distance

between xk - [Xl...,xkl and Xk [ Xl'...Xk Let S11

denote the covariance matrix of variables X l...Xk. Let

Mk+1 denote the Mahalanobis distance between
[_Xk+J. kI~ ] and XkRl Xk+il and let AM -tMk.IMk.

Partition the covariance matrix of Xl,...',XkXk+1 as

L2 2

Then,

2xkl"i k+1 I

AM ( 1- 2 (3.4)S22 (l-r 2

where

'k I " X k+1+S 21 Sll(_Y-k--Kk)

and r is the multiple correlation coefficient between

variables Xk+ 1 and Xl,... ,k.

I
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Proof: From a well known matrix identity (16),

j-sSS s s-1  1- 2i 1 - 1
1 12 22 21 22-S 21S 1 12
S-I-i

and

[-- --1 ,= 1 --1 s [S-1s-i2 2 S2 1 ( 1 1 - 1 2 2 21 S 1 1S 1 2 2 2 -S 21 11 12 •

Therefore,

AM , (x kk ESll-S 1 2 S2 2 s 2 1 ] (k_ _

, -% -1 , s t -s s -,

(xkl-Xk+lS12 (22211 1 2- (xl-k+)1s s1 1  -1

"(!1-ik ) (S-S122S21- ll2 (kl+Xk1) +

[s-s -i -i - (
2 (xk+l-Xk+l) 22-21SllS12] S21S~l k _1(S 2 2xJ1l2 ( 3 X3 )S 1

(3.5)

Notice that the correlation coefficient, r, can be written

a.

-2111 212/22 wt 0 2 1 1
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Therefore, relation (3.5) above becomes

-j (E-k ESll-Sl 2 S2 2S 2 l' (x-"k-- )'

2 -1 -
2(xk ~X~)ESZ2 (1-r )] S-lIck

(3.6)

Using the fact (see (30)) that

-1 A1IA I WA

[A+UVI] -A 1 U (3.7)

with

U - -S 1 2 S- 2  V W S1  and A S

it follows that

S- s -

Thus, relation (3.6) becomes

AM-(Ek--k) (SlAS12S21SA)E 22 ('-r )] 4 Ysk-X'Kk -

(1- 2 W-l S
2(xkc,-+lk) ES22(- ) S2 1 Sl(--E) +

x 2 [S (-2 ]-1

(xk--Xk)Sll(Ek-Xk)' + (xkclk)Sll(Ek --k)

-I 1

QED.
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Observe, first, that AM > 0. Thus, as variables are

introduced into the regression, the Mahalanobis distance

cannot decrease. The resulting increase is equal to the

standardized square error of predicting Xk+1 from the

regression of the newly introduced variable Xk+l on the

variables XlX 2 ,...,Xk which were already in the regression

equation. The standardization is done by dividing the

resulting squared error by the conditional variance of

variable Xk+1 (conditioned on variables XI,X2,..., ).

This standardization implies that the expected change in M

should not depend on the strength of the relationship

between Xk+l and XIX 2,... Xk. Obviously, AM = 0 if and

only if Xk+l is on the hyperplane defined by the regression

mentioned above. The Mahalanobis distance is a unitless

quantity whose size does not depend on the units of the

particular problem. For a given problem, 2 and I are, of

course, fixed. Over all x and X, however, drawn from a

k-variate normal population, the quantity:

n~ [1.L - -n+--- n-1+ x--X)S(k4

is distributed like Hotelling's two-sample T, and, so, it

has the distribution of

k(n-l) F
n-k k,n-k'

where F k,nk is an F variate with k and n-k degrees of

freedom. This distributional property of M implies that

its expected magnitude depends only on the number of



31

variables, k, and is independent of the specific variables

involved. Thus, the relative magnitude of the realized M

for a particular subset of variables can be assessed.

The result of this theorem will be used in what follows

and, in particular, in Chapter IV where the computational

aspect of the problem is investigated.

The Prediction Interval

As was mentioned earlier, all standard variable selec-

tion techniques share the property that, for any given num-

ber of variables in the regression equation, the optimal

set is the one which minimizes the sum of squared residuals

or, equivalently, maximizes R2. The point under prediction

may be rathsr non-analogous to the historical data (large M)

when we consider the set of variables identified as "opti-

mal" by the criterion used. In such cases, the model will

be required to extrapolate. The term "extrapolation" is

used here in the sense that the variance of prediction

a_2x( ) 1 9 [ + ] (3.10)

2
is large, relative to the inherent error variability a

Extrapolation should be avoided whenever possible for two

reasons:

1. The hyperplane defined by the regression equation

may fit the available data rather well, but this may be

true only in the region of the X-space in which data are

available. The true model for the full X-space may well
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be quite different in the vicinity of x thus producing

substantial bias.

2. Even if the variables used are the ones generating

the response values Y, the variance of prediction and, as

a consequence, the errors at points removed from the bulk

of the data may be large due to the variances associated

with the estimates b0,bl ,... ,bk. These variances may be

large, compared with a2 , especially in the presence of multi-

collinearity among the retained variables.

Ideally, variables which are extraneous to the problem

as well as variables whose presence does not contribute

significantly to the explanation of the variability in Y

should be detected. Dropping such variables from the

regression equation has the effect of reducing the variance

of prediction at x. This, of course, should not be done at

the expense of excluding variables whose inclusion would

greatly enhance the fit of the data as measured by the mean

square error. Often, there are several models which come

close to the "optimum" in terms of R2 and other measures of

model aptness based on residual analysis. In those cases,

by using a slightly sub-optimal set of predictor variables

(slight decrease in R2 ), it may be possible to substantially

improve the degree of analogy (decrease M) and thus reduce

prediction variance.

To illustrate this point, suppose that two single-

variable models are to be compared in terms of their

expected predictive performance at x - [10,0]. Suppose,
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moreover, that the following statistics are associated with

each model and the corresponding variables:

2
RI = 0.90, X - 10, S 4,

1

2
X 0.92, =i0, S 4.

x 2 X2

Suppose further that there are n = 10 observations on X! ,

X2 and Y, and that Sy = 4. If the corresponding mean square

errors, MSEi are used to estimate a 2, the prediction

variances

MSE.x.i(X'X.)' x1 , i = 1,2

are equal to 0.180 for the first model and 1.144 for the

second one. Notice that the corresponding Mahalanobis dis-

tances are M1 - 0 and M2 = 6.25. Even though the second

variable results in a slightly better fit for the data, the

point x = [10,01 is so non-analogous on this dimension

that it might be preferable to use variable X1 for

prediction.

The width of the 100(1-a)% prediction interval at x

is a numeraire which reflects the situation discussed above

and, thus, it may provide a reasonable basis for choosing

among competing models. For computational simplicity, a

monotone function of the width will be used, namely the

square of the half-width, viz.

W F n MSE n+ n- (3.11)
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where Fl nk_ is the c-th fractile of an F distri-

bution with 1 and n-k-i degrees of freedom. This measure,

W, combines fit (MSE) and degree of analogy (M), with a

factor F which penalizes for using too many variables

(increasing k) or excluding points from the data base

(decreasing n). In this form, the role of analogy as

measured by the Mahalanobis distance becomes evident.

Failure to consider this factor in selecting a set of pre-

dictor variables could have a marked effect on predictor

precision as measured by the width of the prediction inter-

val, and, as a consequence, on the accuracy of prediction

as measured by the prediction error.

As mentioned in the previous chapter, the position

taken in this dissertation is that bias is not an issue that

can be dealt with directly in unstructured situations with

whi-ch empirical model building is concerned, since the popu-

lation model (true model) is unknown. Nevertheless, it

might be of interest to note that the mean square error of

prediction of the elusive population model is

y-) 2 . a2 n+l2Y Ix n' n-l ] " (.2

Thus, if one were willing to assume that the postu-

lated empirical model is the same as the population model,

then the last two factors in W would be an estimate of the

mean square error of prediction. Notice that the factor

Fl-;l;n-k-1 is only a penalizing factor for lost error
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degrees of freedom. For any given set of n observations and

any number of variables, k, the set of predictor variables

which minimizes W, minimizes also this estimate of E(y-y)

General Observations About W

The quantity W has been defined as "the squared half-

width of a 100(1-a)% prediction interval at x". Its statis-

tical validity as a bona fide 100 (1-a)% prediction interval

is vitiated if the model is selected by minimizing W, just

as the distributional properties of R2 are no longer valid

when the data is used to build a model which minimizes MSE

(11). After the data have been looked into and, say, the

model with smallest W is selected, the confidence associated

with that interval will be less than 100(1-a)%. Therefore,

an interval centered at y with width 2W1'2 should not be

thought of as a 100(1-a)% prediction interval but only as

a relative indication of the predictive performance of the

various models. Although no concrete statements can be made,

it is hoped that the improvement in precision will be accom-

panied by an improvement in prediction accuracy. For this

reason, the quantity will be referred to as "W" instead of

"prediction interval" in what follows.

Another important point is that, even when the model is

specified in advance, the validity of the formula used for

the prediction interval rests on the usual assumptions on

the errors as they were stated in the introduction. If

the residuals associated with a particular model indicate
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gross violations of those assumptions on the part of the

errors, W becomes a meaningless statistic. Judging the

predictive performance of various models on the basis of

such a statistic would be quite speculative at best. There-

fore, when W is employed in order to select subsets of

variables, it is important that a check on the assumptions

be made. Appropriate transformations on the variables

should be made before judgement on the basis of W is

attempted. This observation is supported by the analyses

on data sets which will be discussed in Chapter VI.

Given that M cannot decrease as variables are added to

a model, W may decrease only if the mean square error

decreases by an amount sufficient to offset the increase in

M and F. Thus, augmenting a k-variable model to reduce W

will always reduce MSE, so that W-optimal models will tend

to contain fewer variables than MSE-optimal models. This,

in itself, is a rather desirable property in view of the

co uonly held opinion among statisticians that the minimum

MSE criterion frequently results in considerable overf it-

ting. Of course, this parsimony of the "minimum W" cri-

terion is not guaranteed. The selection may take different

paths for the two criteria. The opposite phenomenon was

observed in only two occasions in the data which were

analyzed.

For large n, W will be dominated by the factor MSE,

since M is divided by n-l. This agrees with our intuition

since, for a given M, the point x will be inside the
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k-dimensional scatter of the data if n is large more so than

if n is small. Thus, a hyperplane which explains the data

well should be expected to predict the new point well too.

Otherwise, for a given MSE and a given M, extrapolation as

it was defined earlier, is more extreme with a small n than

with a large one. The increased influence of M as n de-

creases, however, may have an adverse effect on the fit. A

variable may be excluded that is found desirable on other

considerations. It may be prudent in such cases to consider

a slightly W-suboptimal model by forcing the desirable vari-

able into the regression equation. Investigations confirm

that such an occurrence is possible. At the same time, it

was found that a careful analysis will reveal these anomalies.

An investigation into the variables which are excluded by

the minimum W criterion may provide insight into aspects

of the problem which, otherwise, would not have been gained.

The W criterion partitions the p-dimensional X-space

into well defined and clearly bounded regions in which dif-

ferent models are optimal. For purposes of illustration, a

simple two varible example was used in order to obtain

insight into the nature of the various regions. The result

is depicted in Figure 2. Six observations on two predictors

X1 and X2 and the response variable were used, marked by

"+". For each one of the four models containing the con-

stant term, W was expressed as a function of X1 and X2 .

The "equi-W" curves (level curves) were computed and drawn.

' .. . , i . . .- ,. ,I n rl lI - - ' L - dr , , - " ' -' .. .
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The model producing the smallest W in each of the regions

defined by the level curves was found.

Notice that, as x traverses any of the boundaries, the

model selected by W changes. As a result, point predictions

change in a discontinuous way as a boundary is crossed.

This is a somewhat disconcerting property of the criterion,

even though W changes continuously. As was emphasized

earlier, however, W is offered as a screening aid and not as

a method for determining one, and only one, model to be

labeled "best". Seen in this light, for certain points x,

the existence of more than one model with almost equal W's

should indicate the need for further investigation of their

properties.

The interpretation of the situation for points in the

regions where no variable is retained also merits attention.

A point x in such a region is very non-analogous to the

historical data (large M). Yet, if only the constant is

used, as is suggested by W, the point prediction will be

none other than the mean of the historical response values.

The analyst should view this occurrence as a suggestion that

and are sufficiently non-analogous so as to vitiate the

entire regression approach to prediction in the situation

at hand, at least if the regression is to be based on the

given body of data and the predictor variables under

consideration. Even though one can obtain a good fit be-

tween Y and 3 in the historical data, there is no strong

justification in expecting y to be analogous to Y if x and
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X were generated by different processes. Thus, a phenomenon

which seemed anomalous at first glance, acts as a valuable

warning for the analyst using the W criterion. In fairness

to more standard approaches to prediction it is acknowledged

that the careful analyst should become aware that something

is amiss upon observing the large prediction interval at x

based on his selected "best fitting" model.

As mentioned earlier, W combines fit with analogousness.

It is often desirable to know the relative sizes of these

two factors for a given model. A graphic display can yield

insight into data and enable the analyst to perceive pat-

terns in them which might be difficult to perceive from

numerical procedures and tabular displays. In the situ-

ation at hand, such a display of the magnitudes of M, MSE

and W could help the analyst choose from among several com-

peting models, according to his judgement of the relative

importance of each factor. For each subset size k such a

display can be constructed by first observing that MSE and

W are expressed in squared Y units. In order to get

unitless quantities, note that

-SE - S2 (I-R / (n-k-l) (3.13)

and, therefore,

W(n-kI-l) - 2) [M +n-1 (3.14)
l-a;)l,n-k-i Y
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Taking natural logarithms of both sides of (3.14) and

rearranging terms,
2 _1 = Z( -R )  52[ -1 n W(n-k-l) 2Zn[M +-1 n S2. .

Fl-a;l,n-k- Y

So, for fixed k, points representing models with equal W's

lie on a line with slope -1, on a graph of Zn[M + (n2-1)/n]

versus Ln(l-R 2). The intercept of such lines is determined

by W. For a given W, models with small MSE and large M will

be located high on the "equi-W" line, while models with

large MSE and small M will be located on its lower part.

For a clearer picture of the relative sizes of W across

model sizes, k, these lines may be labeled by W (or the

width of the prediction interval). Since Zn(I-R 2) < 0, it

might be preferable to set the origin at, say, (-5,0), so

as to have most of the points in the first quadrant. Two

examples were used, differing on the total number of vari-

ables involved. For the first example, the data on page 366

in Draper and Smith (10) were used. This data set involves

thirteen observations on four predictor variables. The

response variable measure the heat evolved during the

hardening of cement containing chemical substances which

are measured by the four predictors. The last row was

deleted from the data base and predicted. The resulting

plots for 1, 2 and 3-variable models are shown in Figures 3,

4 and 5 respectively, with the lines labeled by the width

of the prediction interval. Models which were not selected
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by any criterion are marked by a "+". For those which were

selected, the legends indicate the corresponding criteria.

(The models marked as FORWARD and BACKWARD will be discussed

in the next chapter).

As can be seen from these displays, some of the two-

variable models seem to be pointed out by several criteria.

The model with variables X and X results in better fit of

the data as its location in the graph indicates. However,

the point under prediction is rather non-analogous to the

data along these variables. Thus, the model with variables

X3 and X4, although it is associated with a larger MSE

(smaller R2) , results in a slightly smaller W. These two

models and, perhaps, the one with variables X1 and X4 and

the one with variables XI, X2 and X4 would be the ones

passing the first screening and scrutinized further.

For a second example, the data on page 352 in Draper

and Smith (10) were used. They consist of twenty-five

observations on nine predictor variables. The response

measures the pounds of steam used monthly in a glycerine

producing operation. The eighth row was set aside and

predicted. This row was selected since it has been dis-

cussed in (1). A preliminary investigation suggested that

variables X3 and X5 were not important carriers of infor-

mation in the sense that they were not involved with any of

the good models and they were the first ones to be elimi-

nated by a BACKWARD procedure based on minimum reduction
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in R2  To reduce computation requirements and clutter in

plots, they were not considered for further study. Figures

6-11 depict the situations. Because of the large number of

models, only two "equi-W" lines were drawn for each graph

for reference purposes across model sizes. They correspond

to the smallest and the median W's and they are labeled by

the width of the prediction interval.

This is a well behaved data set in that the models

suggested by most criteria have the largest R of their

respective sizes. Also, as the graphs indicate, the point

under prediction is rather analogous to the data along all

dimensions (variables). The scales on the axes are the same

on all graphs, making clear the general increase in the

Mahalanobis distance as the number of variables increases.

The model with variables X2 , X4 , X6 , X8 , X9 and Xl0, as

these are labeled in Draper and Smith, was selected by the

minimum W, the minimum MSE and the minimum Ck criteria.

Notice that the model suggested by the Mean Square Error of

Prediction criterion (variables X4 and X7 ) seems to be

2unacceptable on all other counts. It provides a R - 0.423,

which is very small compared with those of many other models.

As a result, the prediction interval associated with it is

very wide. This should underscore the fact that variable

selection criteria are not universally applicable and can

often lead to models which a careful analysis may find un-

acceptable. Therefore, they should be used with prudence

and be accompanied by a careful analysis of the models they
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suggest along more than one lines. Model building should

not be reduced to a mechanical selection of variables by

any criterion.

In this chapter, the W criterion was developed and

discussed. Its intuitive appeal in the specific problem of

prediction at a known point is based on the fact that it

has the potential of focusing attention to an aspect of the

problem which could have been ignored otherwise. As is the

case with every data analytic technique, the art of using

this criterion to advantage must be developed through

experience. In subsequent chapters, this methodology will

be applied to real data sets in an effort to understand its

properties. This should help in learning how to exploit

its strong points and avoid its w~iknesses.



CHAPTER IV

COMPUTATION

A Branch and Bound Algorithm

The need for the selection of a subset of variables

becomes more imperative as the number p of potential pre-

dictors becomes large. At the same time, since the compu-

ting time needed for a search of all 2P-1 possible regres-

sions increases exponentially in p, it is clear that, for

large p, a full search may be well beyond the budget con-

siderations of the analysis. An algorithm which will iden-

tify the good models without actually performing all 2P-1

regressions is, in such cases, highly desirable. Such

algorithms exist for criteria which are simple functions of

the sum of squared errors. The most efficient of these take

advantage of the fact that the sum of squared errors asso-

ciated with a model is a lower bound on the sums of squared

errors of its sumodels. In 1974, Furnival and Wilson (12)

suggested a branch-and-bound algorithm whose efficiency is

enhanced by the fact that the search is made by a simul-

taneous traversing of two trees, one for bounds and one for

regressions. A semi-SWEEP operator is employed for the

entering or removing of variables and the matrices needed

at each stage are available from previous SWEEP's. This

algorithm is the most efficient one known to date and

problems involving 30 variables are well within its reach.
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An attractive feature of this algorithm is that the "best"

m models for each subset size k can be output without great

loss of efficiency.

The technique proposed in the previous chapter is not

simply related to the sum of squared errors, since it in-

volves the coordinates of x. Thus, for a given model size

k, the model with smallest sum of squared errors may not

yield the smallest W. This implies that the bounds utilized

in Furnival's algorithm cannot be used for a similar search

for models with small W. Somewhat less sharp bounds can

nevertheless be obtained so that, with minor modifications,

Furnival's approach can be adapted to the case at hand.

A univariate one-sample t2 statistic is defined by

t2-- n(x-X)2 /2, where 1 is the mean of a sample of size n

on a variable X, x is an independent observation on the same

variable and s2 is the sample variance of X. This is the

exact univariate analog of Hotelling's one-sample T2 . Actu-

ally, T2 - n(x-R)S'(x-)' is the square of the univariate

t-ratio of that linear combination of the variables which

inflates the t-ratio the most. (For a clear explanation of

the derivation of T2 see (17)). A univariate t-ratio cor-

responds to one such linear combination and therefore T
2

must be greater than or equal to the largest squared uni-

variate t-ratio. All p univariate t-ratios can be computed

and saved. Thus, a lower bound on T2 associated with any

set of X's is obtained. Since the Mahalanobis distance

*1 4

. .. . . . . . . .. .. . .. I~ li ll lll Il I I I° -" . .. ..
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M = T2/n, a lower bound is also obtained on M. Recalling

(3.11),

W =F SSE n+l + Ml~-L; l,n-k-1 n-k-l n n-l |

if W. denotes the smallest W currently available for models

of size i at any stage of the search, then the submodels

derived from a model of size k need not be examined if the

sum of squared errors of that model is greater than:

n n(n- 1) (n i-l)W i
" 2 2'

(F1  nl (n 2_l+t )]

for all i = 1,...,k-l, where t2  is the i-th largest uni-

variate t 2 . Notice that this quantity needs to be calcu-

lated only when a model which improves W is encountered.

For sharper bounds, this quantity can be recomputed at

every stage using for t2i) the i-th largest univariate 
t2

among the variables in the model under consideration.

Empirical experience with this algorithm suggests that

it is approximately 5-10% less efficient when applied to W

than when it is applied to other criteria which are simple

functions of the sum of squared errors. As noted by

Furnival, time requirements are heavily data dependent.

This observation obviously applies to the W criterion as

well, in which case efficiency will also depend on the value

of x. The importance of this last dependency diminishes

for large n. In general, the efficiency of this algorithm

when applied to the W criterion should be such that problems
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of comparable size can be handled without much additional

investment in computing time.

A Stepwise Algorithm

It is often the case that a suboptimal stepwise search

is used in lieu of computing all regressions, especially in

an early screening of a very large number of variables.

Various stepwise procedures have been widely used for this

purpose, all of which are variations of FORWARD selection

and BACKWARD elLmination (see e.g. (10)). These techniques,

based on the SWEEP operator (29), were designed for criteria

which are simple functions of the residual sum of squares

and, hence, must be modified to deal with the W criterion.

The computational complications associated with the W cri-

terion can be overcome by exploiting the monotonicity pro-

perty of Theorem 3.1. The SWEEP operator must be briefly

considered first, in order to locate the quantities needed

for a FORWARD selection and a BACKWARD elimination algorithm

based on the minimum W criterion.

Given an originally symmetric positive definite matrix

A, the SWEEP operator applied to the k-th diagonal element

of A is defined as follows:

Step 1: Let D - akk.

Step 2: Divide row k by D.

Step 3: For every other row i # k, let B - aik.

Subtract B x row k from row i. Set aik - -B/D.

Step 4: Set ak - I/D.



If a SWEEP is performed on diagonal element i, variable X

is added to the current regression equation unless X is

already in the regression in which case X is removed.

Observe that the result of a SWEEP is an absolutely sym-

metric matrix, i.e., a matrix such that aij = aji if an

equal number of SWEEP's have been performed on elements i

and j, and a -a.. otherwise. Thus, only the upper tri-

angular part of A need be computed.

For the purposes of the W criterion, A must be set

initially to the corrected sums-of-squares-cross-products

matrix of the data, i.e.,

A=

where X in this section will denote the original matrix X

corrected for the means XI1 '".'Xp and Y will denote the

original vector Y corrected for the mean Y. In more familiar

statistical terms, the matrix A is the covariance matrix of

the data multiplied by (n-l). Variables are entered and

deleted by sweeping on the corresponding diagonal elements

of A. After each SWEEP, statistics on the regression of Y

on the variables which have been swept in and submodel

information are available. To illustrate, suppose

-1
A 2l--

il . .. .. .. . .. . ... . . ..... . . . . .. . . .. . . .j. ..
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where X contains some of the columns of the data matrix X.

Sweeping A on the diagonal elements of X'X yields:

-2.

-- 111 i1=1 =2Ml 12

where K T_ I- ikl -1l "2-1j

The rightmost column contains the regression coeffi-

cients and the sum of square errors of the regression of Y

on the variables contained in The part (XjXI)-

gives the coefficients of the regressions of each variable

in 1. on the variables in 41, and the diagonal elements of

1M32 give the sum of square errors of the same

regressions.

For a FORWARD selection algorithm, the reduction in SSE

and the increase in the Mahalanobis distance resulting from

the inclusion of a variable among those in X2 can easily be

computed. To illustrate, suppose that variables XI,... ,Xk

have already been swept into the regression. The quantities

needed for the computation of the new W, say Wi, resulting

from the inclusion of variable Xj, j - k+1,...,p, are:

k k
i - - 13 . 1 + i i i  (4.1)

S j(1-r 2) - ( ./(n-l) 14.2)

and

- - '- ~ --
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SSE.B- B? /Bjj (4.3)S B(p+1) (p+l) Jik+l)

where S.. (1-r2) denotes, as in Chapter III, the conditional

variance of X. on X.. ,Xk . Therefore, using the mono-

tonicity property of Theorem 3.1, the new W resulting from

the introduction of variable X into the regression equation

is

SSE .nl (X-X.-) 2

l-;l,n-k-1 n-k-2 n n-i B..

where M is the Mahalanobis distance associated with vari-

ables Xl,...,Xk. Thus, variable X. is the next variable

to sweep into the regression, if W. = min{W i , i = k+l,...,p}.

For a BACKWARD elimination algorithm, the variable to

be swept out is determined as follows:

If variable X., j = l,...,k is deleted, the error sum of

squares becomes

SSE = B + B 2 I / B  (4.5)

S(p+1)+1) j(p+l) j

For the new Mahalanobis distance, the coefficients of the

regression of X. on X, k = 1,...,k, k # j need to be

computed. These are given by

C -B. /B j i .. k, i # j. (4.6)

Thus,

k k
x -z - i + cix iV

iij i#j



61

Again using Theorem 3.1, W becomes

SSE n+l (X-X.) B

j l-a;ln-k n-k n ri-i (n-1)

where M is as noted above. Thus, variable X. is the next

variable to be swept out, if W. - min{Wi, i =

Given the monotonicity result of Chapter III, in FORWARD

selection the computed M is added to the current Mahalanobis

distance, while in BACKWARD elimination it is subtracted.

The current Mahalanobis distance must be saved at each stage.

The computing time requirements for such algorithms

pose no limitations on their applicability in problems of

sizes normally encountered in practice. At issue is the

degree to which the models selected for each subset size

differ from the ones found optimal by the criterion employed

when a full search is done. In order to gain some insight

into this, the two stepwise procedures were applied to the

data sets used in Chapter III. The models selected by the

FORWARD selection and the ones selected by the BACKWARD

elimination are shown in Figures 3-11. In the four variable

example, the algorithms identified the better models for

each subset size. The BACKWARD procedure identified the

best one-variable model, while the FORWARD procedure located

the best three variables. They both missed the overall

optimal model (X3 ,X4 ) , however, the two-variable model

selected by BACKWARD elimination had a W very close to the

optimal one.

I L 

op 
i a 

mode 

(X 3,, 

I4 
... 

' , ho 
e e , t e t o v r a lio 

e
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In the second example, depicted in Figures 6-11, the

two procedures selected the same model for all model sizes.

Observe that, in all cases, the models selected by these

sub-optimal procedures coincided with the minimum-W-optimal

ones. This, of course, is the most desirable situation.

The degree to which it will happen in practice depends on

the particular set of data. However, if these two examples

offer any indication, it seems that the stepwise procedures

can fruitfully be employed either in thinning down a large

number of variables to a subset on which a full search by

means of the branch-and-bound algorithm will be economically

feasible, or by themselves. The better models of each sub-

set size should be identified at least in the cases of well

behaved data sets.



CHAPTER V

ON THE INFLUENCE OF OBSERVATIONS ON W

Theory and Discussion

The influence of individual observations on the various

quantities of interest in a statistical analysis of data has

received considerable attention in the recent literature

(8), (13), (18), etc. It is argued that observations which

significantly affect (have high leverage on) such quantities

ought to be given careful scrutiny. The object is to detect

"outlying" points and to investigate them further, examining

whether the analysis can be enhanced by setting them aside.

Possible errors of transcription, for instance, might be

discovered. More realistically, in cases of designed ex-

periments, such knowledge may prove useful in suggesting

ways in which the design may be improved. Taking more

measurements in the space of the explanatory variables could

improve the analysis.

Identification of outliers does not necessarily imply,

or argue for, the rejection of such points. It is only

meant as a tool for the analysis of data and should be used

with caution. Nevertheless, the inclusion of faulty data

can adversely affect the analysis to a substantial degree.

This point has recently received attention in the liter-

ture.. Hoaglin and Welsch (18) studied the "hat" matrix

I
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SX (X' X) . They suggested an approach combining the

information carried by the hat matrix and the studentized

residuals in an effort to discover exceptional and/or dis-

crepant points.

Cook (7) proposed the distance

D i - (b-b __i))'X'X(b-bli )]/(kxMSE)

where b (i denotes the estimated coefficients obtained

without observation i, as a measure of the influence of the

i-th data point. He, too, related such influences to the

hat matrix, the studentized residuals and residual

variances.

Welsch and Peters (36) suggested methods for examining

more than two observations at a time and placed emphasis

on the computational aspects of these diagnostic measures.

Gentleman and Wilk (13) developed analysis of variance

methods to identify outlying subsets of K observations.

The investigations above are mainly concerned with the

influence of outliers on the parameter estimates rather than

prediction. In the context of this investigation, an obser-

vation (or group of observations) may be termed exceptional

if W changes significantly when that observation (or group

of observations) is set aside and the least squares calcu-

lations are performed on the reduced data set. The effected

change in W will be investigated by means of the ratio of

prediction variances. Some new notation will facilitate the

exposition of this chapter.
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Partition the matrix X as XI,XW}1 , where X, is nlx p

and 12 is n2xp with nl+n2 - n. The vector Y is partitioned

in like manner into components-Y 1 and Y2. Without loss of

generality, assume that the observations in (42 1Y2) are set

aside. Let s2 and s2 denote the mean square errors of the

full model and the submodel, respectively. A superscript

(1) will indicate that the quantity to which it is attached

has been computed from the regression using jl and Y1 only.

Let e1 and e2 be the n 1x and n2xl vectors of residuals cor-

responding to Y1 and Y2 respectively when the full data base

is used. In accord with the convention stated above, then

e(l) and e211 would be the vectors of residuals correspon-

ding to Y and Y2 resulting from fitting the model to X1 and

YI" A well known result (for example see Bingham (4)

yields

2ps _ ( 1XV1 1

where I denotes the n2xn2 identity matrix. Letting

2 [M, - . . (5.2)

i.e., the ratio of prediction variances at x and substi-

tuting (5.1) into (5.2), it is easy to show that

Y2 W nlP X QxR, (5.3)
n-p

where
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! rI -x2x _ -_2

(n 1 -P) s2

and

xx Ix
(1x1= -x

Using another identity from (4), namely

=22 ' [+)P 2 - (I-6 2 (X-X)2x']e2

(5.4)

Y 2 can also be written as

= 2 n-x Q (i)H (5.5)
n-P

where

(1) [ +2 )1+1 l 1

(n1-p)s 2

Relations (5.3) and (5.5) express the ratio of prediction

variances, y 2, in terms of quantities which yield to intui-

tive interpretations. These quantities are studied next, in

an effort to isolate the characteristics of observations

whose deletion results in a significant change in W.

It is clear that a reduction in W is obtained if, and

only if,

2>7 /-



67

2

Consider the three factors comprising y Clearly,

{ (nl-p ) /(n-p }< 1. The following theorem shows that the

last factor also has this property.

Theorem 5.1: 1.
+_x li ) x

Proof: It suffices to prove the result for the case

n 2 1. Since A'A - ll + 1142 and

: (, ) I .( il - - (ll+A2 il '

Since (AAi)' is positive definite, the second term in the

right hand side of (5.6) is also positive, completing the

proof.

The second factor in (5.5) is greater than one. This

is so because the matrix I+X2 (Xijl)-l4 is positive defi-

nite, being the sun of positive definite matrices and,

therefore, I+s2( )l] i. also positive definite.

Since only the last two factors in y2 depend on the compo-

nents of X2, they will expose the characteristics of obser-

vations which affect W. The factor

2 e + (AA))i
t2  2

is studied first.
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Observe that II+X 2 % 31 ) ' 1411 is a measure of the col-

lective distance of the points in _2 from the rest of the

data. This is meant in the following sense: Clearly, if

n2 = 1, then

I+X2 (X' X ! x =~ + M
1 - n n-

where M is the Mahalanobis distance of the point X2 from the

data base 1 When n2 > 1, a large I+X2 (XIXI)'I will

indicate that the points in X2 are either far from the

centroid of El, or that their covariance structure is dif-

ferent from that of XI , or both. Thus, for a reduction in

W, the determinant of I+X2 (X4Xl)-I4 - must be small. That

is to say, other things being equal in (5.5), points near

the centroid of X1 are more likely to cause W to decrease

when they are omitted. This should be intuitively appealing.

For the variances of the estimated coefficients to be small,

the data points must be widely dispersed in X-space.

Next, observe that the residuals e(1) must be large in-2

absolute value. In other words, the Y values of the obser-

vations to be set aside must be discrepant in the sense

that, when the model is built on the remaining n1 observa-

tions, -X12 ) are not fit well. Cook (8), Hoaglin and

Welsch (18) and others have linked the residual t with the

22influence of the set (12Y2) on the coefficient estimates.

Also, as should be obvious, S2 should be small. For diag-

nostic purposes, it will be more convenient to look at the
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factors comprising t 2 simultaneously. Notice that

S 2 1 1 is the usual estimate of the covariance

matrix of the residuals e() (which, incidentally, are the

t2
basis for Allen's PRESS criterion). Therefore, t 2 can be

viewed as a collective studentized residual corresponding to

the omitted set (X2 ,Y2 ). In fact, when n2 = 1, t2 reduces to

22 'e2

which is exactly what is called the studentized residual.

When the rows in I2 have been specified in advance, the

quantity

2 2(~('rv -n (1)

2s1

is distributed as F with n2 and nl-p degrees of freedom
22

since the numerator is distributed as a x (n2)/n2, inde-

pendently of the denominator which is distributed as

a2 2 (nl-p)/(nl-p). Thus, observations whose collective stu-

dentized residual is significantly large ought to be inves-

tigated further. It should be noted that t2 depends not

only on the individual residuals, but on their correlations

as well. Although in practice observations whose studen-

tized residuals are small rarely reduce W significantly when

they are combined with others, this is not always the case.

Cases have been observed where the pair which causes W to

decrease the most consists of observations which, if deleted
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individually, would cause W to increase. To such a "mask-
2

ing" effect the last factor in Y may contribute signifi-

cantly. One way to look at

l+x(X') "1x'
1+_x ql l ) -'I

is as a measure of the relative distances from x to X and X

respectively. As noted above, this factor cannot be

greater than one. For a maximum reduction in W, it should

be as close to one as possible. This would imply that the

deletion of X2 does not greatly increase the Mahalanobis

distance from x to the data base. This factor can also be

studied in terms of residual correlations. Notice that

2 l+x(4ix 1) x'-tl+x(x'j) -l x
1-n 2 1- _= ' (5.7)

Recall that the residuals y(1) and Y2-Y2 have a samp-

ling distribution which, under the usual assumptions on e,

is normal with mean vector 0 and covariance matrix

"2  I+!(A ll *l) "

L1 l jl, lX, 1+12 (lik)- 1 1

2
Simple algebra will show that n is the square of the multi-

ple correlation between y-y and Y2-Y*2 This observation

allows the following intuitively obvious statement: For a

reduction in W, the deleted observations (4 2 ,Y 2 ) should not
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contribute significantly in the explanation of the vari-

ability in y, beyond that which is provided by the retained

rows (X .

It may be of interest to note the similarity between

row deletion and variable selection. In the latter, the

(P)+(P)+...+(P), p < n submodels are investigated, in order

to find the minimal, in some sense, subset of variables

which adequately explains the data. In the former, the

model is kept fixed and the possible (n)+( )+...+(n ,

n2 << (n-p) data subsets are explored in order to find the

maximal set which is adquately explained by the model. The

postulated model form is held fixed, as the notion of

"outlier" is valid only relative to a prespecified model

form. The notation above indicates that n2 must be small

relative to n-p, in order to have a sufficient number of

error degrees of freedom left. Notice that, as n2 - n-p,

the sum of the squares of the residuals approaches zero,

thus creating a false sense of security. In practice, if

observations were to be deleted one at a time as long as

some measure of fit, or W, "improved", most of the time all

error degrees of freedom would be exhausted. This can be

seen as follows: Observe first that the hat matrix

H - m(' ) '1 is a projection matrix, i.e., HxH - H, and

as such, it has all its eigenvaluet equal to zero or one

((16), Thrm. 1.7.2, p. 39). The number of nonzero eigen-

values is equal to the rank of H. In the full rank case,
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rank(H) -rank (X) -p. Hence, trace(H) = p, i.e.,

n
I h.. p. Also, since the ratio of the mean square error
il

of the full model to that of the reduced one is equal to

[ (n-p-l) / (n-p) ] [l+t 2/(n-p-i) ], it follows that the mean

square error will decrease if and only if an observation

with t2 > 1 is deleted. Finally, let
2 = 2

2

Then t2 > I <=> t2 > i. These observations and the lema

which follows will help in proving Theorem 5.2 below.

Lo__a 5.1. Let zlZ2,... zn be any set of non-negative

numbers. Let z ili zi, and let alla 2 ,...,an be another"n

set of non-negative numbers such that i a - n. Theni-l1

there exists i such that zi/(aiT) > 1.

Proof: Suppose that zi/(ai ) < 1 for all i. Then,

n n n n
Zj < a jz for all i <-> X zi < a1 <in> z < a a.

i i i-l i-
n n n

<Mn Z z. < nz <-n> z < z1, which is obviously false.i i inl ii

Note: Either there exists an i such that z i/(aiz) > i ,

or zi/(ai) - 1 for all i.

Theorem 5.2. With probability one, there exists at

least one observation which, if deleted, will cause the

mean square error to decrease.



Proof: Equivalently, using the observations made above,

there exists at least one i for which

2 2
t2"2 i  > 1.

s (1-hi.)

Write

2
2 i e.

Notice that

nn(l-h) El n n 1h.
-

ii n-p n- i

n-- (n-p) = n.n-p

Now,

e2t 2  1i
n e2

(1- W~i n ! I
-Piil n

and the claim follows from Lema 5.1 by letting

Sn 2 and a n(l-hii)z. e., z - e. ai -
1 I  n Il n-pi1

With respect to W, this result implies the following:

Given that the factor I-n 2 is, for most observations, close

to one, especially when n is large relative to p, there will

Lif
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tend to exist at least one observation whose deletion from

that data base will make y2 > F 1-a;l,npI/F1;l,n-p, thus

causing W to decrease. In practice, this seems frequently

to be the case. Therefore, a decrease in W should not be

the objective in determining observations to be set aside.

These results suggest that a maximal n2 should be chosen in

advance, according to the analyst's a priori belief about

the maximum possible (or likely) number of outliers, and

such that n2 << (n-p). Then, subsets of n2 or fewer obser-

vations whose deletion greatly reduces W should be examined

in view of the discussion in the beginning of this chapter.

It should be reemphasized that the object of such analysis

is not the rejection or observations, but rather the

gaining of insight about the data under investigation.

Points whose presence in the data base has a significant

effect on the quantities of interest should be scrutinized.

If the validity of such observations is beyond question,

the reasons for such behavior should be investigated. This

should be done in an effort to gain a more penetrating in-

sight into the data under investigation which insight might

suggest otherwise overlooked remedial action such as the

need for collection cf more data in certain regions of the

explanatory variables' space, when that is possible.

Computation

For computational purposes it will be preferable to

2
express y in tems of the full model. For this purpose,
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t can be written as2

t 2  (n -P) t2/(n-p-n t 2) (5.8)

where

e' [I-X2 W 1)

= = - (5.9)

22

Observe that t2 and t2 are one-to-one monotone functions of

each other. Using their relation, t2 can be transformed to

an F statistic. Also, using the identity found in (27)

p. 29,

1-r 2 = +l+x(X, )-i , ] I {[l+x( '_)-ix'] +
(5.10)x )- ,4 2 I') -I ,1 x'}

An expression for y2 in terms of the full model is now

obtained if (5.8) and (5.10) are substituted into

t2y2 = n,- p ( + 2 ](1-n 2)  (5.11)

n-p nJ-P

This formula can be used as a building block for a compu-

tational procedure. However, one should be aware of the com-

putational instability which is inherent to the problem of

deleting a row (or block of rows) from a regression. See

Chambers (6) for a discussion on the subject. The

symmetric matrix
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X'X X'y X '

Y'Y Y' 0
A I 01

AL

can be set up.

After sweeping on the diagonal elements of X'X,

( ,(- X',X)-lXY (XX)- 1x,  (Xx xil_,i

Y'Y-Y'X'A)-Ix'Y _e -Y

5=v

where. e' denotes the 1xn vector of residuals. If n2 = 1, the

quantities needed for Y are available in B. If n2 > 1, the

matrix

-:12  X)X 2X x

C = -x a

L 0

must be fozmed, and the SWEEP operator must be applied to

the diagonal elements of I-X2 (B'X)-I4.

It may be of interest to note that the change in the

regression coefficients when rows (12'X2) are deleted is

given by

Ab -- b(1) 1 ('j)2 (5.12)
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after some algebra using partitioned matrices. The quanti-

ties needed for Ab are produced in the matrices above.

Row Deletion and Variable Augmentation-
An Equivalence

Suppose that, instead of deleting the last n2 rows from

4, an expanded X matrix is formed which will be denoted by

. is formed by appending to X n2 columns with zeros in

rows 1,2,...,nl, and an n2xn2 identity matrix for the last

n2 rows. i.e.,

Let also x = (x,O], where 0 is a lxn 2 vector of zeros.

Now,

X L X2 I "

A fundamental identity on the form of the inverse of a par-

titioned matrix (see for example (16), Theorem 8.2.5) yields
_F lx - 1  - 1<l~ l

Using this form of ( -

X I, • *)-lX'
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obtains. So, obviously,

l+x* (, 3*) x *' l+x(il) -x.

2 *2

Consider the relationship between s1 and s e ,e /(n1-p),

i.e., between the mean square errors for the model with the

last n2 rows deleted and the model with the new columns

appended to X respectively. Clearly,

_* -- x* x*' *" *

(X)-(X' )xi
2 1 =1 =1

L -l I+ M(XlX1 ) -

LI =i 2 =l=1 ~ -2 %61) 3ij

X 2 L X-2 L° 0

So,

e .e(1),(1) 2

9 - * '! (n1-p) _ /(nl-p) 2

The above relations suggest an algorithm for detecting out-

liers. If this approach is used, any determination about
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which rows are outlying must be based on the estimated co-

efficients corresponding to the dummy variables. A signi-

ficant coefficient indicates that the corresponding obser-

vation is not adequately explained by the rest of the data

and it needs its own parameter. This becomes clear if one

observes that

b=l2 2 11 =-1

Now the last n2 observations are fully explained by means

of the coefficients e(l). (Compare also the expression for-2
e found earlier). The significance of these coefficients

is, therefore, identical to the significance of the resi-

(1) 2duals a 2 . The test statistic t2/n2 is simply the usual

partial F for testing whether a set of regression coeffi-

cients is zero in the presence of other explanatory vari-

ables. The F distribution can be used only if the set

(42,Y2) has been specified in advance, and not after the

data have been inspected and, say, the maximum has been

chosen to be tested.

*1I



CHAPTER VI

APPLICATION

In this chapter, an application of this technique in

the field of management science is discussed. The perfor-

mance of the W criterion is compared with that of other com-

monly used selection criteria as well as with that of models

proposed in independent studies by other investigators. The

field of application, parametric cost estimation, is re-

ceiving considerable attention (31), (33), (34). Parametric

cost estimation is a widely used method of obtaining single

valued predictions of the cost of a new item, such as a

weapon system. It deals with predicting the cost (response"

variable) of a system by means of explanatory variables

(predictors) such as system characteristics or performance

requirements. This procedure is based on the premise that

the cost of a system is related in a quantifiable way to

the system's physical and performance characteristics. The

expression of this quantifiable relationship is in the form

of an estimating equation derived through statistical

regression analysis of historical cost data on systems

which are, more or less, analogous to the proposed system.

Recent experience in weapon system acquisition programs

has underscored the differences between cost estimates and

realized costs. This has given impetus to the search for

better cost estimating techniques.
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Consider the case of predicting the cost of a new

aircraft based on its planned physical and performance

characteristics, and the costs and characteristics of air-

craft built in the past. The role of analogy is obvious

in this situation. Which historical aircraft and which

variables should be used? The Mahalanobis distance seems

well suited to answer these questions. Any variable se-

lection technique which ignores the issue of analogy, and

which fails to give some consideration to dimensions (vari-

ables) along which there is a marked dissimilarity between

the proposed system and the historical data, may lead to

gross errors due to extrapolation. The W criterion has the

potential of bringing this issue to the attention of the

analyst, and should be used as part of a thorouqh investi-

gation. In what follows, optimal models under different

criteria are "automatically" computed and used in an effort

to compare on a fair (or equally unfair) basis the relative

performance of the W criterion. It should be underscored

that this is done partly because of considerations of

mathematical convenience and it may not, in all instances,

agree with good practice.

The data base is given in Table I. It consists of 23

observations on 12 physical and performance characteristics

of different single engine jet fighter aircraft built over

an interval spanning the years from 1947 to 1969. The

response variable, Y, is the flyaway unit cost (in 1972

$100,000) of the hundredth aircraft built for each type.
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The variables, denoted by X 11X21...,X1 2, are the values of

the following characteristics:

X1 = Wing Loading Ratio

X= Aspect Ratio

X3 = Full to Empty Weight Ratio

X = Thickness-to-Cord RatioX4

X5 - Lift to Drag Ratio

X6 - Total Avionics Input Power in kva

X7 - Maximum Speed in knots (Clean, Combat Weight)

X8 - Weight Empty in lbs

X9 - Rate of Climb in ft/min, (sea level, combat weight
and power)

XI0 - Combat Ceiling in feet

XI - Ferry Range in nautical miles

X2 1- Sea Level Static Thrust (max) in lbs.

(For detailed methodologies of data determination and term

definitions see (31)).

Each observation was set aside, the models found opti-

mal under six criteria were computed based on the remaining

22 observations and the deleted row was predicted. Various

statistics were also output such as M and MSE for each

model. The criteria compared were:

1. Minimum MSE

2. Minimum Ck

3. Maximum F

4. R employing a subjective "elbow rule"

5. MSEP

6. Minimum W (nominal 95% prediction interval).
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For the R2 criterion, the optimal model for each subset size

was output. The rule employed for the final selection was:

2Use the model with largest R2 whose size is such that the

next largest size does not increase R by more than one per-

cent. Of the six criteria, the maximum F was the most

parsimonious. It selected variable X in all cases and it

consistently outperformed the others in terms of the size

of the absolute error of prediction. The minimum W cri-

terion did, on the average, worse than the others. The

case of the F-11iA aircraft is worth mentioning, as it

clearly represents a situation which warrants special

attention. Its non-analogousness to the rest of the data

shows up clearly in every sort of residual analysis. His-

torically, each military flight component needed a new air-

craft. The Air Force needed a new interceptor, the Navy

wanted a carrier launched attack aircraft and the Marines

required an aircraft capable of ground support missions.

The then Secretary of Defense, Robert McNamara, decided to

have one aircraft built that would meet all requirements

thereby achieving tremendous savings. The tri-service

design resulted in the F-1lIA which, at the time, was the

most sophisticated, fastest, heaviest and costly single

engine jet ever built. Its design included a radical wing

which could swing forward or backward depending on desired

flight characteristics. (Incidentally, the F-1lIA experi-

enced all kinds of technical problems, was not well received

by the three services and is often referred to as
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"McNamara's Second Edsel".) Its cost was underestimated

dramatically by all models. Due to the fact that its weight

does not conform to its other characteristics (as conformity

is defined by the other aircraft), the Mahalanobis distance

associated with any model which included weight as a pre-

dictor was excessively large. For this reason, weight was

not included in the minimum W model, in spite of its general

importance (it showed up in every model that was encountered).

The error of prediction associated with this model was far

above that of every other model. However, when weight was

forced into the regression, the new minimum W model clearly

outperformed all others. There was only a 3% increase in W,

which was still much smaller than the W's of mddels selected

by other criteria. This point will be discussed again in

what follows.

All criteria performed poorly on the untransformed data

in comparison to models suggested by others (Columbia

Research Corporation (31), Clemson University graduate

student projects in Math 805 [unpublished]) after a com-

plete analysis. This suggested the need for further inves-

tigation of some of the models for signs of misspecification.

The residuals were analyzed for the models which were en-

countered most frequently. In all cases, there were clear

indications of gross violations of the assumptions on the

errors. The residuals exhibited clear patterns when

plotted against the X's and against the sorted fitted

values. Plots of Y versus individual X's showed lack of
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linearity which, although not necessary for the linearity

of the multi-variable model, tended to confirm information

in other plots. The scatter of Y versus X8 though was more

or less linear. These clear indications of model misspeci-

fication tend to explain the better performance of the most

parsimonious criterion and the poor showing of the minimum

W criterion. As mentioned earlier, the maximum F criterion

always selected variable X8 which is both a significant

variable and linearly related to Y. The poor performance

of the minimum W criterion is explained as follows:

This criterion is based on a statistic (prediction

interval width) the proper interpretation of which is based

on the usual assumptions on the errors. When those assump-

tions are grossly violated, the Mahalanobis distance may no

longer be a reliable measure of analog. This is the second

point to be considered when this criterion is employed.

Appropriate transformations on the variables must be per-

formed before the selection is made. Also, after the

selection, an analysis of the resulting residuals is neces-

sary in order to validate the assumptions for the selected

models. Only models which seem to satisfy those assumptions

should be compared by means of this criterion.

The problem of appropriate transformations is not a

simple one. Theory and common sense may suggest answers to

this question but in unstructured situations a thorough

investigation is usually called for. There are many pos-

sibilities and a thorough investigation is needed. As a
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step in making the problem feasible, all variables were

transformed to their natural logarithms. This transfor-

mation is often considered appropriate for cost data (33)

and, in fact, was employed in all the previously cited

competing models (31). The same preliminary plots and

residual analyses aluded to above indicated that models

selected after this transformation did not exhibit signs

of gross misspecification. The same selection procedure

was used. The minimum W criterion was based on the loga-

rithmic units. Point predictions and prediction errors in

the original units were also calculated and compared. This

was done by applying the exponential transformation to the

point predictions. The face that this approach is known to

produce biased estimates of the conditional mean (14) should

not affect the comparative value of the estimates. Trans-

formation of prediction intervals into the original units

is not easily defined so as to make comparisons meaningful.

This was not needed and was not attempted. Table II shows,

for each aircraft and each model, the errors of prediction

in both units. For each aircraft and for each model dif-

ferent from the minimum W model, the "gain" was also calcu-

lated, as defined by the difference of the absolute error

of that model from the absolute error of the minimum W

model. Gains are shown in Table III. (The entries of

Tables II and III have been rounded to two decimal places

because of space considerations.) A positive gain indicates

a better prediction by the minimum W model. A single zero1I
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indicates that the model selected coincided with the mini-

mum W model. The gains are shown for both original and

logarithmic units. An asterisk in Tables II and III in-

dicates that the aircraft under prediction was at a large

Mahalanobis distance along the variables selected by the

corresponding criterion. For each criterion, Table IV

shows the average absolute error and the average percent

absolute error in logarithmic units. The average percent

absolute error is the average absolute error as a percentage

of the observed response value. The average percent gain

is defined similarly and it is also shown, together with

the sum of gains, in Table IV for the five other criteria.

Table V shows the corresponding statistics in the original

units. From these two tables, it can be seen that the mini-

mum W criterion outperformed all others on all counts on the

average over the 23 observations. The minimum Ck criterion

did comparably well and, as can be observed from Table III,

it selected the same model as the minimum W criterion more

often than any other. In view of its relation to the problem

of prediction discussed in Chapter II, this should not be

surprising. Notice also that this criterion did better

than the minimum W criterion more often than not, although

the difference in some cases was very small. The F104-A

aircraft was predicted better by the minimum W model in the

original units. The performance of the R2 criterion was

also comparable to that of the minimum W criterion, however,

a definite statement cannot be made due to the fact that
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TABLE IV. Performance Statistics in Logarithmic Units

Min MSR Min Ck Max F R2  MSEP Min W

Average lerrl 0.385 0.262 0.456 0.266 0.356 0.253
Avrg. % lerrl 17.33 14.43 22.70 14.50 16.78 12.15
Total Gain 3.03 0.21 4.68 0.31 2.37
Avrg. % Gain 5.18 2.28 10.55 2.34 4.62

TABLE V. Performance Statistics in Original Units

Min MSR Min Ck Max F R2  MSEP Min W

Average lerrl 8.636 4.308 7.838 4.459 7.366 4.195
Avrg. % lerrl 42.13 33.55 54.33 33.84 39.66 25.15
Total Gain 102.15 2.59 83.78 6.06 72.92"
Avrg. % Gain 17.15 8.40 29.18 8.69 14.50

TABLE VI. Average Nominal 95% Prediction Interval Widths
and Frequency of Coverage in Logarithmic Units

Min MSR Min Ck Max F R MSEP Min W

Avrg. Width 1.385 1.250 1.778 1.287 2.288 1.223
Coverage 86.96 91.30 91.30 91.30 95.65 95.65
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the R2 model is not objectively defined. In fact, if a more

parsimonious rule had been employed, the performance of this

criterion would have deteriorated.

As was mentioned earlier, the minimum W statistic will

tend to underestimate the true 95% prediction interval.

The average interval was calculated for each criterion, as

well as the percentage of observations which were actually

covered by the corresponding prediction intervals. These

are shown in Table VI. It is a pleasant surprise that, in

spite of the observation above, the prediction intervals

associated with the minimum W models covered the observed

responses more often than the others. The occurrence of

this phenomenon in the problem at hand may not provide firm

ground on which a claim that it will happen in general can

be based. Nevertheless, it seems that the prediction inter-

vals associated with the minimum W models are well centered

about the expected value of y. This is a very desirable

property.

Referring to Table III, the observations which the

minimum W model failed to predict well were examined further.

This was done in an effort to identify conmon features

which might serve as a warning in a careful analysis. The

F9F-8 is the only case in which the W criterion was defi-

nitely outperformed by four of the other criteria. The

model selected consisted of variables X2,XsX 8 and X9 . This

model was never selected for any other observation by any

criterion. More importantly, variable X12 was conspicuously
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absent. This variable was present in all the models with

the smaller prediction errors for each observation, and it

would seem desirable to force it into the final predictive

equation. When this was done, i.e., when the model with

smallest W among those containing this variable was

selected, the resulting errors of prediction in logarithmic

and in original units were 0.056 and 0.259 respectively, a

definite improvement. The new model, although it repre-

sented a 30% increase in W, still had the smallest W of all

models selected by the other criteria.

In the case of the F-104A the situation is not as clear.

The minimum W criterion again failed to select variable X12.

However, its error in logarithmic units was not much greater

than the errors of the minimum Ck' maximum P and R cri-

teria which did better and, in fact, in original units the

error was smaller than that of the minimum Ck and R2 models.

A closer investigation revealed that the Mahalanobis dis-

tance of this observation from the variables in the minimum

MSE, minimum Ck and R2 models was very large. In contrast,

in the case of the F9F-8, the reduction in the Mahalanobis

distance attained by the omission of variable X12 was not

as dramatic. When this variable was forced into the mini-

mum W model for the F-104A, the logarithmic error was the

smallest observed, (-0.35) although the error in the origi-

nal units became slightly larger (-6.68).

The above observations suggest the need for a careful

examination of such cases. It is as important that
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extrapolation be avoided, as it is that important variables

be retained. The way in which these two considerations

should be balanced against each other is a matter of judg-

ment on the part of the analyst. The minimum W criterion

has the potential for calling attention to such issues.

The case of the F-80 aircraft is the one clearly

favoring this criterion. Considerable reduction in the

Mahalanobis distance was attained, without worsening the

fit, by the simple switching of certain variables while

retaining the important ones, namely X8 and X12 . (As in

the case of the untransformed data, variable X8 was con-

tained in all of the better models. It was always se-

lected by all criteria except MSEP.

The models selected by each criterion and the corre-

sponding observations are given in Tables VII through XII.

For each criterion, the models selected were ranked

according to their frequency of occurrence and their ranks

were used for labeling purposes. The models selected by

the MSEP criterion are all marked by "x". Observe that

twenty different models were selected by this criterion,

none of which was ever selected by any other criterion, due

to the fact that they were all associated with small R
2

values. In view of the fact (mentioned in Chapter II) that

this criterion ignores the MSE (and every other measure of

fit) of the postulated submodels, this should not be sur-

prising. Observe also the large average prediction

interval.
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TABLE VII. Minimum W Models and Aircraft Predicted

A/C Variables

X1 X2  X3 X4  X5  X6  X7  X8  X9 X1 0  X11  X12

F-S0 2 2 2 2 2

FH-l 2 2 2 2 2

F2H-1 3 3 3 3 3 3 3 3 3

F7U-1 1 1 1 1

F-84E 1 1 1 1

F3D-I 2 2 2 2 2

F-86H 2 2 2 2 2

F9F-8 4 4 4 4

F4D-1 1 1 1 1

F3H-1N 1 1 1 1

F-102A 1 1 1 1

F-100D 2 2 2 2 2

FJ-4 1 1 1 1

F-104A 5 5

F1IF-1 1 1 1 1

F-10SB 1 1 1 1

F-101C 1 1 1 1

F-!06B 1 1 1 1

F-4B 2 2 2 2 2

F-SA 2 2 2 2 2

F-4J 2 2 2 2 2

F-111A 1 1 1 1

F-SE 2 2 2 2 2
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TABLE VIII. Minimum MSE Models and Aircraft Predicted

A/C Variables

X1  X2  X3  X4  X5  X6  X7  X8  0 X91 1 X1 2

F-80 3 3 3 3 3

FE-i 1 1 1 1 1

F2H-1 6 6 6 6 6 6 6 6 6
F7U-1 1 1 1 1 1

F-84E 5 5 5 5 5 5 5 5 5

F3D-1 1 1 1 1 1

F-86H 2 2 2 2 2 2 2 2 2 2

F9F-8 1 1 1 1 1

F4D-1 1 1 1 1 1

F3H-lN 7 7 7 7 7 7 7 7 7

F-102A 8 8 8 8 8 8 8 8 8 8 8

F-100D 1 1 1 1 1

FJ-4 1 1 1 1 1

F-104A 2 2 2 2 2 2 2 2 2 2
F11F-1 1 1 1 1 3.

F-105B 2 2 2 2 2 2 2 2 2 2

F-101C 1 1 1 1 1

F-106B 2 2 2 2 2 2 2 2 2 2

F-4B 1 1 1 1 1
F-SA 2 2 2 2 2 2 2 2 2 2

F-4J 1 1 1 1 1

F-111A 4 4 4 4 4 4 4 4 4

F-BE 2 2 2 2 2 2 2 2 2 2
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TABLE IX. Minimm Ck Models and Aircraft Predicted

A/C Variables

X Ix 2  X 3  x 4  X5  X 6  X 7  X8 aX 9  XO 10 l 1X12

F-80 3 3 3 3

rH-1 1 1 1 1
F2H-1 4 4 4 4 4 4 4 4 4

-- F7U-1 1 1 1 1

F-84E 1 1 1 1

F3D-1 1 3 1 1

F-86H 1 3 1 .

?9F-8 . 1 1 1
F4D-I 1 1 1 1

F3H-1N 1 1 1 1

F-102A 2 2 2 2 2

F-100D 1 1 1 1

FJ-4 1 1 1 1

F-104A 1 1 1 1

F117-1 1 1 1 1
F-105B 1 1 1 1

F-101C 1 1 1 1

P-106B 1 3 1 1
F-4B 1 1 1 1

F-SA 2 2 2 2 2

F-4J 1 1 1 1
F-BlIA 1 1 1 1
F-SE 1 1 1 1
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TABLE X. Maximum F Models and Aircraft Predicted

A/C Variables

X1 X2  X3 X4 X 5 X6  X7  X8  X9 Xl1 X1 1  X1 2

F-80 2 2 2 2

F2H-I 3 3 3 3 3

F7U-1 1

F-84E 1
F3D-1 1

F-86H 1

F9F-8 1

F4D-I 1

F3H-IN 1

F- 102A 1

F-100D 1

FJ-4 1

F-104A 1

FllF-1 1

F-105B 1

F-101C 1

F-106B 1

F-4B 1

F-5A 3

F-4J 1

F-111A 1

F-SE 1



99

TABLE XI. R2 Models and Aircraft Predicted

A/C Variables

XI X2 X3 X4 X5 X6 X7  X8 X9 X1 0 X1 1  X12

F-80 3 3 3 3

FH-I 1 1 1 1

F2H-1 1 1 1 1

F7U-1 1 1 1 1

F-84E 1 1 1 1

F3D-1 1 1 1 1
F-86H 1 1 1 1

F9F-8 1 1 1 1

P4D-1 1 1 1 1

F3H-IN 1 1 1 1

F-102A 1 1 1 1

F-100D 1 1 1 1

FJ-4 1 1 1 1
F-104A 1 1 1 1

Fl1F-1 1 1 1 1
P-105B 1 1 1 1

F-101C 1 1 1 1

F-106B 1 1 1 1
F-4B 1 1 1 1

F-5A 2 2 2 2 2

F-4J 1 1 1 1

F-lIA 2 2 2 2 2

F-SE 1 1 1 1

.........
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TABLE X11. MSEP Models and Aircraft Predicted

A/C Variables

x1  x2  3  x4  X5  6  7 aS X9  1 0 X 1 1  X12

F-SO x xx

FE-i x x

F2H-l x x x x x x

F7U- 1 x x x

F-84E x

F3D-l

P-86H x x x

F9F-8 x x

F4D-l x

F3H-lN x

F-102A xx

F-100D xx

FJ- 4 x

F-104A x x

FllF-l

F-105B

F- 101 C

F-106B

F-4B x x x x

F-5A x

7...4 x

F-111A x x

F-SE x
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With respect to the minimum W models, it seems that

most early and later aircraft were predicted by one model,

while most of the ones in the middle of the time scale

were predicted by another. Three aircraft required their

own models. The F2H-l was not predicted well by any cri-

terion and it was the one observation whose deletion from

the data base reduced dramatically the widths of the pre-

diction intervals associated with the minimum W model for

all but one of the other observations. The studentized

residual (discussed in Chapter V) which was associated with

this aircraft was very large (4.2 on the average) for each

and every aircraft under prediction. The F9F-8 was selected

for deletion in the one remaining case. (In general, the

performance of the minimum W criterion improved when one

observation was deleted for each prediction. A detailed

exposition is not given since the deletion of observations

is not advocated in this dissertation.) The one observation

whose deletion reduced W the most in each case, and the

percent reduction in the width of the "prediction interval"

are shown in Table XIII. The new "prediction intervals"

contained the observed y's only 86.96% of the time.

Finally, it should be emphasized that the purpose of

this analysis being the gaining of insight into the rela-

tive performance of the minimum W criterion, certain aspects

of the problem (which a complete analysis should not fail

to consider) where not stressed. Data determination and

model form specification, for instance, received only

secondary attention.
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TABLE XIII. Observation Deleted and Maximum Reduction in
Width of the Prediction Interval for Each Aircraft

A/C Reduction
A/C Deleted (%)

F-80 F2H-1 33.23

FH-1 F2H-1 31.06

F2H-1 F-102A 26.01

F7U-1 F2H-1 25.20

F-84E F2H-1 25.17

F3D-1 F2H-1 33.22

F-86H F2H-1 16.39

F4D-1 F2H-1 25.48

F3H-1N F2H-1 25.59

F-102A F2H-1 25.51

F-100D F2H-1 31.31

FJ-4 F2H-1 29.53

F-104A F9F-8 7.37

Fl1F-1 F2H-I 26.08

F-105B F2H-1 28.79

F-101C F2H-1 25.20

F-106B F2H-1 25.49

F-5A F2H-1 39.37

F-4J F2H-1 32.78

F-lIA F2H-1 29.64

F-SE F2H-1 31.78
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Other data sets were also analyzed in less detail. A

limited simulation study was conducted, in which the cor-

relation matrix, the number of variables and the number of

observations were allowed to vary. Although a complete

investigation would be a large project and was not attempted,

the observations made during these studies seem to support

the ones made on the aircraft data. In the absence of

variables which appeared fundamental to the predictive

equation, the minimum W criterion consistently outperformed

the other criteria whenever it succeeded in reducing a

large Mahalanobis distance. This was more pronounced in

the cases where the correlation structure involved high

multicollinearity. In these last cases, large Mahalanobis

distances were frequently reduced significantly by the

exclusion of variables which caused the multicollinearity.

Although in no way conclusive, it may be of interest

to note that the minimum W models performed better (along

the same lines discussed above) than models suggested by

other investigators after careful analyses on the aircraft

data. This in no way means that mechanical selection of

variables is preferable to a careful investigation. The

minimum W criterion should be used as part of a complete

analysis. As is the case with virtually every data ana-

lytic technique, pedestrian application can result in

curious and misleading conclusions. There is no substitute

for a careful, reasoned analysis.

-



CHAPTER VII

DISCUSSION AND CONCLUSIONS

This investigation has been concerned with the problem

of predicting the response at a known point in the space of

the explanatory variables in the context of multiple linear

regression. This is the problem with which parametric cost

estimation is concerned and it is encountered frequently in

other applications. The view taken in this dissertation is

that the issue of analogy of the point under prediction to

the historical data should not, in such cases, be ignored.

The Mahalanobis distance has been studied as an appro-

priate measure of analog in higher dimensions. The width of

the prediction interval is a numeraire which combines this

measure of analog with the mean square error, which is a

standard measure of the fit provided by a given model.

Thus, the prediction interval offers itself as a tool with

which variables can be screened and models brought in the

foreground that are reasonable candidates for the purpose of

such analyses. The experience gained by applying this meth-

odology to real and simulated data sets suggests that the

careful analyst should benefit from its use by gaining

insight on an aspect of the problem which otherwise would

not have been brought into focus. As was mentioned earlier,

the careful analyst would certainly become skeptical about a
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model which, although otherwise reasonable, produced a very

large prediction interval at the point under consideration.

However, the W criterion has the advantage of providing a

clear and unconfused warning by taking the issue of analogy

into consideration during the screening process. The W cri-

terion, just as any other, should not be used in a pedes-

t:ian way as a method for pointing to "the one best model".

The notion of a model which is best for all purposes is not

defined in unstructured situations which comprise the bulk

of empirical model building. Even for a specific applica-

tion, a claim about the knowledge of such a model can not be

defended on uncontestable grounds. Therefore, selection

criteria ought to be viewed as screening aids and used as

such. This point, although generally accepted, is all too

frequently forgotten in practice.

There is a second point on which the W criterion may

prove to be a valuable aid. The exclusion of variables

which are known to be important from other considerations

ought to be taken as a warning about the peculiarity of the

point under prediction. Selection criteria may occasionally

point to models which the analyst finds unacceptable either

because of the variables which they contain (or exclude) or

because of the fact that the underlying model assumptions

seem to be violated. In such cases, the usual statistics

lose their validity and risks attendant with the use of a

suspect model are introduced. If no reasonable model can be
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found which passes model aptness considerations, the regres-

sion approach to the problem based on the given body of data

should be questioned.

In parametric cost estimation where the cost of an

object system must be predicted based on historical data on

"similar" systems built in the past, the notion of analogy

often presents itself conspicuously. It is conceivable that

the proposed system may reflect, in the values of the expla-

natory variables associated with it, technological develop-

ments and/or performance characteristics different from

those encountered in the historical data along certain

dimensions. A new weapon system, for instance, would proba-

bly not even be considered if such were not the case. A

model which fails to explain the historical data adequately

would be unreasonable to use for the prediction of the new

system. It seems equally unreasonable, however, to devote

all effort into fitting the historical data, disregarding

the relation of the proposed system to them. The N crite-

rion can (and should) be employed, together with other con-

siderations, so that both aspects of the problem will be

given deserved attention if the final model is not to be

grossly myopic.

Models which are found good by more than one criteria

are highly desirable. The W criterion can be employed to

suggest several models which can then be compared with those

suggsted by other criteria. This procedure will focus the
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attention of the analyst on a (hopefully) small number of

models which must be carefully scrutinized before a final

choice is made.

The distributional properties of W under selection pose

a highly complex problem which has not been investigated in

this dissertation. Another problem which has not been con-

sidered is the following: The statistic W is expressed in

the units of the response variable used in the selection

process. Often, various transformations on the response

variable are considered in the same problem. How is one to

compare the W's associated with models based on different

transformations on the response variable? This is a ques-

tion which can only be answered on a case by case basis. In

some cases it may be a simple mathematical problem, while in

others it may defy an objective definition.

Finally, although an extensive simulation study was not

conducted, such a study may be a worthwhile endeavor that

can provide useful insight into the questions raised in this

investigation.
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In this study Is explored in the area of paretric cost estimation.


