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On the Use of a Cumulative Distribution as a Utility

Function in Educational or Employment Selection

James J. Chen and Melvin R. Novick

The University of Iowa

Abstract

Formal decision theory can make important contributions to educational
or employment decision-making, provided one can quantify the utilities of
different possible outcomes such as test scores, grade-point averages or
other common outcome variables. Utility is usually a monotonic increasing
function of true ability or performance score. A cumulative probability
function is then very convenient for describing one's utilities. Moreover,
calculations of expected utility of a decision is greatly simplified when
the utility and the probability function have the same functional form,
e.g. both normal. A least-squares procedure for fitting a utility
function is described and applied to truncated normal and beta distribution
functions.




Introduction

Bayesian approaches to the problems of selection or certification
have been discussed by several authors. Gross and Su (1975), Petersen
(1976), and Huynh (1976, 1977) usc threshold utility or a constant loss
function to derive the cut-off scores in various models. Van der Linder
and Mellenbergh (1977) extend the utility (loss) function to a lincar
form. Novick and Lindley (1978) suggest using a parametric utility
function. They discuss several advantages of using a cumulative
distribution as a utility function and recommend using the cumulative
normal utility function. However, one restrictive property of the
cumulative normal utility is its symmetry about the mean. This can bo
avoided by using only a portion of a symmetric function, e.g. a

truncated normal function, or using a non-svmmetric function, e¢.g. a beta

function.
In this paper we consider using a truncated normal or a generalized
beta cumulative distribution function (cdf) as a utility functicn. We will
refer to them as a truncated normal utility (TNU) and a generalized heta
utility (GBU) respectively. Applications of the two utility functions will
be discussed specifically. A TNU and a GBU both have the advantage of beingg cumnli-

tive distribution functions and at the same time they provide increased Flexibility

in applications. For example, it can be symmetrical between risk-aversion and
risk-proneness or it can be risk-averse or risk-prone throughout its rangce.
Moreover, if the utility and the posterior distribution have the same functional
form, both normal or both beta, then the computations of the expected
utilicy become simple.

The major problem in utilizing utility theory is the assessment of the

utility function. Procedures for obtaining a utility function have becn




2
: given by Mosteller and Nogec (1951), Pratt, Raiffa and Schlaifer (1965),
k Schlaifer (1969), and Keeney and Raiffa (1976). One of the difficulties
; in utility assessment is resolving the incoherence of subjects. In
i resolving subject incoherence, one can require a subject to give more than
i‘.i the minimum number of judgments in fitting a utility function. TIn this
f?’ﬁ. paper we discuss a procedure for fitting a cumulative utility function based on

fixed state least-squares utility assessment as given by Novick and

Lindley (1979).
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A Truncated Normal Utility

Consider the problem of educational or personnel selection.

Let 6 denote the ability (or a measure of performance) of an applicant
and U(8) be the utility for selecting an applicant with ability 6. Assume ;

the range of g is [00,6“], then a truncated normal utility (TNU) function

is defined by 5

O-u_ O0p - 1
ooy = ¢ [——0 ] M—“———o “l 0 <0 <o (1)
@ (_%c;_ﬂ_ N_(.).{L%_'.'.]

where ¢ and 0 are respectively the mean and standard deviation and
¢ (¢) is the standardized normal distribution function. Hence, a TNU

uses only a portion of a normal cumulative function. The utilities at

the two end points are 0 and 1.

To investigate the behaviors of a person from the utility function,
Pratt (1964) develops the risk aversion function r(0) for a measure of risk

aversion of a utility function, where

2
_ - d%u(e) , _du(e)
r(®) ez ' —4de
If r(6) is positive at 6 = 8” then U(9) is risk-averse at 6 ;
if r(0) is negative at 6° then U(8) is risk-prone at 6 ; and if r(®)

is zero at 9  then U(8) is risk neutral at 6 . The risk aversicn

function for the TNU defined in (1) is

o ~ .
r(e) = —HH— 8, <8 2¢

[+]
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Thus, the sign of r(0) depends on the position of u. If 90< ¥, then
r(8) is positive for all 8 , U(0) is risk-averse through its range.
If0n>u,then r(8) is negative for all 0 , U(®) is risk-prone through
its range. If e°<u < On then r(0) is negative for © < p and positive
for 6 > y, U(0) is risk-prone for low 6 values and risk-averse for

high @ values. This property is true for most unimodal distribution

functions. Since the derivative of the risk aversion function in the
normal case is
£’ = o .

This implies that U(6) has strictly increasing risk aversion. This
characteristic is particularly useful in educational selection.
For 6°<u <9n , a TNU reflects a decision maker who is risk-taking for
low ability 0, and risk-avoid for high ability 0; and his willingness
to take the risk decreases as 0 increases. This seems reasonible and
common in educational selection.

Finally, for 8 < u <6, the limiting forms of the TNU become

very simple. If 020 then

u(e) = 1 for 6 >

o

for o < u .

This is a threshold utility with threshold point at 9=u. And if 7 ~ =

then

Io

-8y 6 <6<

On- 00

u(9) = n

The utility becomes a linear function with slope (en - 00)_1.

(This result also holds for u > On or M < 00 ). Thus, for 0 <o - =~

the function results in a smooth curve so that the lower portion

(8 <u) is convex and the upper portion (0 > u ) is concave with

the point of inflection at 0= yu.
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£ U(0) = j’U(U) dFQ ] % (2

where F(GI x) is the posterior distribution of 8 given observed score x. The

Bayes rule is to select a candidate with the highest expected utility.
Therefore, the computations of the expected utility become important
in the selection analysis.

As Lindley (1977) and Novick and lLindley (1978) indicate,

if one can match the function form of utility U(®) with the (posterior) di:-

tribution F(8 | x) then the computations of expected utility become simple.

In most applications F(8 | X) js or can be approximated by a normal distribution

Huynh (1979). Assume F(6 | x) is a normal distribution with mean u, and

2
variance O,» on [eo, en] then the expected utility of the TNU in (1) is

v
feal
[A
<@
I A
<D

n ¢Q41:_u
o (b - a) (b=~ a )

00
frtoes) |
- g Jo a , < 0 <90

= — o~ n
(b“a)(b-a) b -a
o o
- Pr (£-020) - »y 8 <0 <0
(b-a) (b ~a_) b - a ° o
Pr(g-e_<_0,e°_<_e_<_en)_ a (3)
(b - a)(bo- ao) b-a
6, - wu e _ 6 _wu
wherea-o(—?——), b-'l‘(—n——y-),a-'t 2 -9-),
o o (o] c
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£ ~N(u,0) and ef\.N(uo,oo). Since € and 6 are both normal, (£ -6 ,6 ) has

_ 4
bo = O(in___g) and § and 9 are two independent random variables such that

a bivariate normal distribution with mean ( p - By uo) and covariance

matrix

The expected utility can be obtained by computing the probahility

of the bivariate normal variable over the region £ - 6 < 0 and 8,20 < 8, -
Tables for bivariate normal probabilities are compiled by the (U.S.)

National Bureau of Standards (1959). If bo- aoyl, e.g.

60 Mg 400 <y + 400 < en ,» then the expected utility in (3) is

-8=0
E (o) = I;‘r(_gkb-a 2 - bfa
- c-a
b~ a

where

o uo- u A
c G2+ 0%,
o
and a, b, ¢ may be obtained from a univariate normal distribution

table. A computer algorithm for computing bivariate

normal probabilities is given by Divgi (1979).
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In the previous discussions 6 is considercd to be on the interval
(eo, en]. in some cases 6 may be defined beyond [60. en]. For example,
in latent trait models the range of 0 is (-*,«). In this case, we can
assign U(8) = 1 for 6> en and U(0) = 0 for 0 < eo. Then the expeccted

utility in (3) with F(0 lx) defined over (-» , =) becomes

Pr(g-eio,eoieie)—a .
(b - a)

E U(8) =

where £, 6, a , b and bo are as previously defined.

In the problem of setting cut-off (passing) scores, it is necessary
to require monotonic expected utility. More precisely, for a given
increasing utility function U(6) the expected utility should be a
monotonic function of X, the observed score. A sufficient condition for
monotonic expected utility is that the posterior distribution is
stochastically increasing in x, i.e. if x<x” implies F(8 [x) > F(o | x*)
for all 8 (Chuang, Chen and Novick, 1981). It is easy to show that if the
mean uo of the normal distribution F(8 | x) is an increasing function of x
and the variance do is independent of x then F(6 | x) is stochastically
increasing in x. So the expected utility in (3) or (3)” will increase

as x increases.




We now give an example of applying the TNU to the regression
model (Petersen and Novick 1976) y =a+8 (x - Xx) + e where e ~:-N(O, 02),
in the selection of applicants. The example is based on the data used
in Petersen's (1976) model for selection under restrictions. The
criterion variable Y is the first semester college grade-point average.

The ACT composite scere is used for the predictor variable X. The

applicants can be divided into disadvantaged and advantaged groups.

The range of Y is from 0 to 4 and the range of X is from 0 to 36.
Table 1 gives the sample size of N, mean x and ;, standard deviation

Sy and sy, correlation rxy and regression coefficient B for each group.

Table 1 near here

Assume indifference prior distributions of «, B ando for each group,
then the posterior predictive distribution for y given an applicant with

score xo is !

y - I3 +8(x, - 0]
N+l , (%o - 02k ~ W-2
s [N * _Ti

I(x - x)2

(4)

2 2
where s° = N sy (1 - riy)/(N - 2) is the mean square error of the

regression equation. If N is large then the t distribution in (4)

is approximated by a normal variable and

N

Mol (xp= %)
N L(x-%)2

v
-




Therefore, the posterior predictive distribution for y for a person
with score X, approximates to anormal distribution with mean
; + E (xo - x) and variance sz. For a positive value of 8. the
mean is an increasing function of X, and the variance is independent
of X,» SO the expected utility is increasing in X,

Suppose the utility for disadvantaged group has mean 1.5 and
variance 2 and the utility for advantaged group has mean 2 and

variance 1.5, the expected utilities computed from (3) of each group are
given in Table 2. It is easy to see that of two applicants from
different groups with the same test score, the applicant from the
disadvantaged group is preferred. For the given data set and utility

functions, Table 2 can be used for the selection of applicants.

Table 2 near here
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A Generalized Beta Utility

We now consider the use of a generalized beta cumulative distribution
as a utility function. Again, assume the range of 8is [eo,en]. A

generalized beta utility is defined as

b r{a + b) (x - eo)“'l(en- x)
u(g) = porvam d x 6 <8 <86_ (5
r(a)r(v) (6n - eo)

The standard beta distribution has 60 = (0 and en = 1. The risk aversion

function for a GBU is

b-1 a-1.
r(e) = Ten_—e) = (e - 0) o —

Taking the derivative to find where the GBU has constant, decreasing or

increasing risk-aversion, we have

b -1 a-1
r'@) = —mm—, + —m——
(9n - 9)2 (6 - 90)2 eo 0= en

With the choices of a and b, beta utility provides a wide variety
of utility functions. For example, for a<1l and b<1 the GBU is risk
averse when 6 is less than ea, and is risk prone when 6 is greater than
0., where 8_ = [(a - 1) 8, - (b - 1) BOJ/ (a+ b~ 2) is the antimode of
the generalized beta function. It has strictly decreasing risk aversion.
For a<1l and b = 1 the beta utility is risk averse through its range and
it has strictly decreasing risk aversion. For a<1l and b> 1l the beta
utility is risk averse through its range and it has decreasing risk aversion

when e<e and it has increasing risk-aversion when e>»eb where

-(b -1 Sb -1) -
O, = JG;—)‘T)' ) (1 + a- 1) ) . A decreasing risk-averse

ucility function is useful in economic applications.
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In the previous section, we discussed some properties of the TNU
function. A GBU with a>1 and b> 1 has similar characteristics. It is
increasing risk aversion. For a >1 and b >1 the beta utility is risk prone
when 0 > ea and is risk averse when 6 < ea, Ga is the mode of the
generalized beta function. For a >1 and b = 1 the beta utility is risk
prone through its range. For a = 1 and b >1 the beta utility is risk
averse through its range. The last two types represent the lower half
curve and the upper half curve of a normal utility respectively. Finally,

for a =1 and b = 1 the beta utility is equivalent to a TNU with g = w.

We summarize the above results in Table 3.

Table 3 near here

The expected utility of a GBU can be computed by simple numerical
integration. If a and b are integers, the beta utility in (5) becomes
a polynomial utility with degree a + b ~ 1. Then expected utility is the
linear combinations of the moments of the posterior distribution F(le).
The moments for many common probability distributions are tabulated and
could be used in the calculations of the expectation of a polynomial
utility.

1f F(8 | x) has a beta distribution then the expected utility becomes

one beta variable less than or equal to another beta variable. Assume §

and g are two independent beta random variables with distributions U(8)

and F(@ ,x) respectively. Then the expected utility of a GBU in (5) is

E U(e) = Pr (£ < 6)
8 - 60

Note that the beta variable 6 is also defined on [eo, en]. Let £ = o~ and
o

8-0 n
6’ = —3-:—% , then £° and 6° are usual beta random variables defined on [0,1] and
o

Pr(f < 8) = Pr (£ < 07).

— e —— orm - -




Hence

EU (6) = Pr (£°< 07). (6)

The probability on the right hand side does not depend on eo or en.

4 ’ A formula for computing this probability is given in Altham (1969) and

b Weisberg (1972).
We now provide an example of the use of the beta utility when the
: test scores follow a beta-binomial model. This model has been used
: extensively in the theory of criterion-referenced testing by Huynh and
; others. For a test of n items, given an applicant with ability 6 the
o probability that he answers x items correctly is a binomial distribution.
' 3 Assume a person's ability has a beta distribution with parameters p and q.
g Then the posterior distribution of 8 given x is a beta (p + x, q + n - x).
! If a, b, p, q are integers, Altham (1969) provided the following formula

for computing the probability in equation (6):
p+tx-1 (a+p+x-1) (b+q+n-x-1)
. s p+qt+tn-8-~-1
i E u(e)= a+b+p+q+n-2)
s = max {(p+ x - b,0} p+q+n-1

(. - Again, consider the selection on the restricted model. Suppose the
utility for the disadvantaged group has beta cumulative function with
parameters 2 and 4 and the utility for the advantaged group has beta cumulative

. function with parameters 2 and 2. Assume indifference prior (Novick and
Jackson 1974, p. 156) for each group, i.e. p = q = 0. For a test of 16 items
the expected utility of each group is given in Table 4. It is easy to see
that the expected utility is an increasing function of test score. In fact,
the expected utility preserves the shape of the ut{lity function. For example,

for the advantaged group the expected utility is symmetric at the score of 8.

Table 4 near here




Fitting a Utility Function

We have seen above that there are some advantages in using the
cumulative normal or beta distribution function as a utility function.
In this section we consider a least-squares procedure given in Novick and
Lindley (1979) to fit the parameters (rlrz) of a utility, where (11,1:2)

are (u,0) for a TNU and (a,b) for a GBI.

Consider (n+l) points with 60 < 91 < .--<9n and let U(Gi) =0

i=201 ..., n. For a given triplet (ei, ej, ek), a subject is

i’

asked to compare Oj for surc with a gamble on 6, and Ok where i< j<k
i .

Specifically, the subject is required to state a probability, p, K
1]

such that he is indifferent between 6, for sure and the

3

amble: cha -
8 nce p of 6, and 1 Pijk

1jk % of ei. Then

uj = pijk U+ (1 -pijk) Uy

or

Pk _ Yy " Uy

(i) If U(8) is a TNU function, then

Pijk dﬁ%‘)' 0(910- u) )
I e

—_— U FR RO e
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(i1) If U(e) is a GBU function, then

i) - ()
Pigk % % ® - :o'
- - 0 -
1 pijk v (Ok eo ) - v [— i o)
0 -6 6 -0
n (o] n [¢]

where U“(:) is a standard beta distribution function, i.e.

8
sy o TCath f a=1 .. . b-1 0 < 8°< 1.
U () T(a) T(b) x (1-x) dx, <072

Two values of Pijk are sufficient to determine T and Ty For checking
the coherence subject is required to assess more than two indifference
probabilities pijk' Making the same assumption as in Novick and
Lindley (1979) about the use of log-odds, a utility can be fitted by

minimizing the following sum of squares with respect to L) and Ty

u, - u 2
S V) SR, s
L sy °8 ¥ T U
1jk 1jk k™3
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An example of using the least-squares procedure to fit a TNU and a GBU
for a state university administrator on grade point average (GPA)
is given below. The range of GPA is from 0 to 4, 14 different gambles
arc formed from the 9points 0,0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. The
list of the gambles is shown in column 1 to 3 of Table 5. (There
are 84 possible gambles). For each gamble the assessed indifference
probabilities are given in column 4. The Gauss-Newton method was used
to minimize sum of squares. The algorithm is given in the appendix.
The parameters of the fitted normal and beta utility are (1.44, 0.84)
and (1.72, 2.99), respectively. The fitted utilities for the nine
points are given in column 5 and 6. Two utilities are reasonably
close to each other. The fitted beta has a mean of 1.46 and a mode of
1.06. The utilities rise very rapidly for GPA below 2 and very slowly
for GPA above 3. Perhaps, this is the state university regulation
that requires a continuing average of 1.0 to remain in college on
probation, an average of 2.0 to maintain regular status and an average
of 3.0 to take honor courses. Finally, for the comparison of the
goodness of fits, the utilities from nine points least-squares fit
are given in column 7. It also shows that the utilities at GPA = 0.5,
1, 1.5, 2 increase most rapidly, and the three fits are very close

for GPA above 1.5.

Table 5 near here
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0 -y
Note that equation (7) is independent of a = ¢( oo ) and

4 -

. b = 0(en° u) This procedure will fit the best normal curve over

the interval [90, en]. However, if u is far from the midpoint of 60

and en or/and o is large then the performance of the fitted procedure

. _j will decrease. We briefly examine this difficulty by using the Monte
\

Carlo methods for the model

PRI S

14 gambles are used for each fit, the (i, j, k) are generated uniformly

from the 84 gambles and the error v from independent N(O, %) popula-

tion. Table 4 gives the average of 25 fitted mean and standard deviations

for each combination of w=2, 2.5, 3, 4 and 0=0.5, 1, 1.5, 2. The standard

»
PPV PR ¥

error of the averages are also provided. They are indicated in

[ SN

parenthesis. We consider the biases (|fitted-true|) and standard {

errors of the fitted values as a measure of the performance of the |
procedure. Table 4 indicates that an increase of voru worsens the fit
as one would expect. Foru= 4 and o= 0.5, the utilities for 6<3

are so close together (close to 0) that the procedure does not

converge. This also suggests that 9i should be chosen so that the

utilities of U(Gi) increase significantly at each Gi'

Table 6 near here




,,_.
e fw

’r,-‘r"*'. ,—‘-.
/
V|

g -

b B e o e e e
it AMnaAl & o

e

Fitting a Utility in Two Groups

The problem of using probability distribution function as a
utility function arises when the utilities are specified for more
than one group. In the previous section, both utility bounds for
advantaged and disadvantaged groups are assumed to be 1 and 0. This
may not be true in some situations. For example, of two applicants
with the same GPA of 4, one may prefer the disadvantaged group
applicant. Therefore, it is important to check coherence between
groups on multiple groups assessment. We now give a procedure to
exploit coherence between groups. We will use GPA as an example to
describe the procedure.

Let GD(e) and ﬁA(e) be the utility function for disadvantaged
and advantaged groups respectively. Suppose selecting a disadvantaged
group applicant with GPA of 4 has the highest utility of 1 and select-
ing an advantaged group applicant with GPA of O has the lowest utility
of 0. Hence, ﬁD(a)-1 and ﬁA(O)-O. Consider the utility for disad-
vantaged groups, for a given GPA of 9i , the subject is asked to

compare the following two options:

For sure disadvantaged group applicant with GPA-Si

and
P disﬁdvantaged group applicant with GPA=4
1-p advantaged group applicant with GPA=0Q

Let Y be the probability for which the subject is indifferent between

the two options. Then

P .




ﬁn(°1) = -p) ﬁA(O) + Uy, (4)

Py (8)

for any 1. Assume UD(O) and UA(B) are two cumulative utility functions
elicited independently from the procedure described in the last section.

Because UD(e) and l-)D(o) are two utility functions for the same population,

we have
ED(e) = ap + 8y U, (8)
= (1 - BD) + BD UD(G) 9)

The last equation follows from l_JD(A) = Up(4) = 1. Substituting (8)

into (9) and simplifying gives
Q- pi) = By 1 - UD(ei)) ()

8. can be solved immediately from Pi and UD(ei). Note that for

D
coherence, BD should be less than or equal to 1 (or u(ei) should be

less than or equal to pi)' Equation (10) is a linear regression
equation without intercept.By assessing at different ai points,
the least squares procedure for estimating Bp co be used for checking

coherence. Similarily, the utility for advantaged group is
u,(8) = 8, U,(8) 0<8,<1

And BA can be estimated from the regression line
P =8, U (0,). (11)

where is the indifference probability between the two options:
Py
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For sure advantaged group applicant with GPA-Oi

i and ;
l s
E P disadvantaged group applicant with GPA=4 i
; 1-p advantaged group applicant with GPA=0O . b

i .

H

J - ~ H
- If BD and BA are the least squares solutions from equation (10) and (11) : i
Q\ then the assessed utility for the two groups are J
Up(e) = (1 - By + By Up(8) !
and .
UA(B) = BA UA(B) . ‘ i

Since the two bounds of ﬁD(e) and ﬁA(é) are not 0 and 1, they cannot be

considered as a cumulative distribution function; however, they

retain all the properties of a TNU described above, The expected

utilities can be computed directly from E(UD(O)) and E(UA(O))

" G < "
.
T N e P R gty G

respectively, i.c. b

E Up(8) = (1 - Bp) + By E Uy(0)

and

2} E uA(e) = 8, EU 9).

A

rﬂ
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Note we assume that the highest utility and the lowest utility
; are in two different groups, i.e. ﬁD(A) = 1 and ﬁA(O) = 1. Suppose
F
L . the two extreme utilities 0 and 1 occur in the same group. Without

loss of generality, it could alternatively be assumed that BA(A) =1

and ﬁA(O) = 0, then only the utility for the disadvantaged group has

e it el

1
:
R to be rescaled. Tollowing the same arguments described above we have
.
~
| py = ay+ By U 0<ay ,0<8 <1 (12)
=
1 % where Py is the indifference probability for the two options
-]
4 For sure disadvantaged group applicant with GPA= ei m
)
- and
1
4 P advantaged group applicant with GPA=4
f“% 1-p advantaged group applicant with GPA=0.
: a_. and BD in (12) can be estimated by fitting the linear regression line.

D

S UL, VRN

1f G and BD are two fitted values, then the utility for the two groups

o

are

— .

UD(O) = ap + BD UD(B)

- - and

UA(G) = UA(G).




TR T ey e b

oy T
/
R S

R %w“ B oW

sy gk oty a

21

Summary

The use of some simple utility or loss functions in educational
or employment evaluation has recently been studied by Petersen (1976)
Huynh (1976, 1977), Van der Linden and Mellenbergh (1977). Novick
and Lindley (1978) demonstrated that more realistic utility functions
can be easily used without increasing the complexity and may be
preferable in some applications.

This paper illustrates the use of a truncated normal or a
generalized beta cumulative distribution function as a utility function.
They are more flexible than threshold or linear functions. If a
person’'s utility function can be fitted to a distribution function
the analysis of utility is simple and easy. For example, its
derivative is the familiar density function. It provides the rate
of the increase of utility. However, one should not force a person's

utility function into this form if it does not fit.
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Table 1 Sample Data for the Use of
Truncated Normal Utility for
Educational Selection
: Group Ni x Sx Y Sy rxy 8
3
i Disadvantaged 305 13.47 4.787 1.68 1.088 .2772 .063 i
\‘i Advantaged 2182 19.03 5.276 2.07 1.015 .3732 .072
4
‘:" 3
H
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Table 2 The Expected Values of Two Truncated Normal Utilities

Disadvantaged Advantaged

b, = 1.5 v, = 2

o, = 2 o, = 1.5
2 0.298 0.197
4 0.324 0.222
6 0.353 0.250
8 0.382 0.280
10 0.413 0.312
12 0.444 0.347
14 0.476 0.383
16 0.509 0.421
18 0.542 0.460
20 0.575 0.499
22 0.607 0.538
24 0.639 0.577
26 0.670 0.615
28 0.700 0.651
30 0.729 0.686
32 0.756 0.718
34 0.782 0.749

36 0.806 0.776
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Table 3 Risk Aversion Properties of Beta Utility Functions
% r(8) r'(e)
a<l + if 0 < Oa
! <1 0 1f 6 = ea -
h :
3 ;' - if o > Ba
| |
k., <1 + - |
N -1
S
3 ‘,‘ a<l - if 8 < eb
9 b>1 + 0 if o = eb
3 .’.‘ if o > eb
J =1
® < - -
a2
B - 0 0
¥
; 5 + +
a>1 + if 8 < Ob
b <1 - 0 if 8 =9,
- if 6 > eb
a>1
b = - +
1 a>1 - if o < 08
: b>1 0 1f 6 = ea +
if > 6
J a
f
; -1)6 - (b- - . b1
? o = (a l)On (b-1) eo o - (en 60 a-l)
a (a+b-2) b ! !
(1+ /- b-l )
a-1
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Table 4 The Expected Values of Two Generalized Beta Utilities

Score

10
11
12
13
14
15

Disadvantaged
as= 2
b=y
0.053
0.140
0.249
0.366
0.483
0.594
0.693
0.779
0.848
0.902
0.942
0.969
0.986
0.995
0.999

Advantaged
a=2
bs=2
0.020
0.056
0.108
0.172
0.245
0.326
0.412
0.500
0.588
0.674
0.755
0.828
0.892
0.944
0.980
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E Table 5  Fitted Least Squares Utilities for a
) University Administrator
f <+
l Gamble Norwmal Beta 9 point
For sure 1-P P 1P Fit Fic fic

L
0.0 - - - 0 0 0
005 0.0 1.0 068 009 '12 '19
100 005 105 Oso .27 ‘33 . .za
1'5 1‘0 2-0 '45 .51 'ss "8
2.0 1.5 2-5 059 074 '7‘ .72
2.5 2.0 3.0 .66 .89 .88 .89
3.0 2.5 3.5 .78 .97 .96 .97
3.5 3.0 4.0 .80 .99 .99 .99
4.0 - - - 1.00 1.00 1-00
1.0 0.0 2.0 .38
1.5 0.5 2.5 .41
2.0 1.0 3.0 .63
2.5 1.5 3.5 .79
3.0 2.0 4.0 .92
1.5 0.0 3.0 .50

L 2.0 0.0 4.0 .72




29
Table 6  Simulated Studies for the |
Performance of normal utility fits for
Various u and o .,
¥ 2 2.5 3 4
g
2.00 (0.038) 2.51 (0.053) 2.97 (0.042) X
0.5 0.50 (0.015) 0.50 (0.017) 0.49 (0.009) x
1.97 (0.123) 2.48 (0.131) 2.85 (0.172) 3.54 (0.240)
1 0.99 (0.110) 1.01 (0.117) 0.95 (0.090) 0.88 (0.067)
2.02 (0.305) 2.44 (0.340) 2.77 (0.262) 3.24 (0.362)
1.5 1.59 (0.555) 1.46 (0.304) 1.35 (0.254) 1.18 (0.187) 1
1.88 (0.560) 2.40 (0.396) 2.84 (0.477) 3.28 (0.500)
2 1.93 (0.600) 2.11 (0.717) 2.02 (0.475) 1.62 (0.317) ?
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Least-squares procedure to fit a normal or a beta cdf utility

Appendix

Let pijk be the indifference probability for the triplet

(Oi.Oj.Ok) then
u(ej) - p1jk u(ek) + (l-pijk) u(ei) .

We will minimize the following sum of squares with respect to the

parameter 1 = (1, ) of U(8)

2
u(e,) - u(e,)
) Pijk 3 )
7 (log T=pyg Oy vy MY
Piax uce,) - u(ei)
Let log 1—-1; yijk and log (o ) - u(ej) 1jk Y

Consider the function Yy - f(1) the first-order Taylor series
(© is

expansion for the function about 1

y - f(r(o)) --52;; f(T(o)) (r,= T (0)) + 5= T, £(t (0)) (1, {0)) +R

where R 1is the remainder. The least-squares solution for the linear

model

-b, =2 f.. +b, =2

ThgcT P T et P2 e, faget R

Yijk

can be used to approximate the solution in (Al).

.- |
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If we write
P 3 ¢ ]
9 v, 13k, 3 1, "1jk —
(0) 1 2 y - f
) St ijk = “ijk
i ] |
i and vy - 5(0)_ 1
|
; .
| A
L 4. @

then the least-fquare estimate of b is
‘2(0)_ (x'(O)x(O))-l x.(0) (y - g(O))

T can be estimated by the interactive process from the above equation,

that is

L) !(n)+ ‘3(“)

- !(n)_._ (x”(My()y=1 y(n) (G - g(")).
We now give the derivate for two useful parametric utility functions:

(1) U(e) is a normal or truncated normal cdf with mean u and variance az,

1.e. U(O) = 023D,

e e

0)

a (e, - .i) ] (.k - Oj)

9 - 0,~ 2
1 1 -Igx
.i = .(———)’ ’1 = §( ) and ’(g) m e
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(2) U(e) is a beta cdf with parameters a and b, i.e.

r(a)r(b)

0
u(e) = IS—'—"—!)—] xa.l Q- x)b.1 dx . Then
o

3 Vi Vik
—fijk("b) - _u_l - —=Jk

3 a u

14 ik

w w
3 f (a’b) - u—ii = -J!

? b "1jk i1 Tk
(-] 0
I b-1 J a1, _.b-1
where u1j -{ x (1 - x) dx, vij -{ log x x ~(1-x) dx

i i

]
and w“ -j 3 log (1-x) x'-l (l-x)b-l dx.

o
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