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INTRODUCTION

The Naval Facilities Engineering Command seeks to expsad the tech-
nology base upon which future shore facilities are founded. An important
ares in which a new design approach is being developed is in the manage-
ment and understanding of those characteristics of earthquake and explo-
sively generated foundation motions that damage or destroy Naval equipment.
This report is a part of the design method development. Specifically,
it documents and offers a new method of shock and response spectrum
computation. The new method is more accurate than any known to be in
use, it runs on a computer with less computer time than other procedures
with similar sophistication, and the theory is more easily derivable and
understood. The shock spectrum is the concept used in the new design
method for quantifying the destructive capacity of explosively and
earthquake generated violent equipment foundation motionms.

The report begins with an overview of the shock and response spec-
trum concept, and then describes the computations that are required to
transform time histories into shock spectra. It then discusses current
computation methods and compares them to the new computation method.

The new method of computing the "during' values of the spectrum is

presented here for the first time; the theoretical detail is given

separately in Appendix A. The procedure for the computation of the

residual spectrum values has been presented previously in an interim

report (Ref 1) but is repeated here for completeness. A FORTRAN 1V

listing of the programs is given in Appendix B, as it is now being used -

on a time-sharing computer. NTIS GRALI -——iaft——
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BACKGROUND

The term "shock spectrum'" has been in use for about 40 years, and
so one might reasonably asgsume the technology to be complete. Respected
firms now sell preprogramed minicomputers that calculate and plot a
shock spectrum at the touch of a button. Thus, it is felt that some
explanation for yet another report on the subject must be offered.

A precise definition of the term "shock spectrum" has not yet been
accepted. The term 'is used by DOD and its contractors, while the earth-
quake community synonomously use the term "response spectrum." The term
is used mostly to describe a short-duration violent motion, but it also
is used to describe a force transient. For the case where it is used to
describe a motion, it is invariably "defined” to be the peak response of
single-degree~of-freedom systems to that motion plotted versus the
natural frequency of the single-degree-of-freedom system. Within that
definition there are at least 108* different plots, even all with the
same damping, which one could call the shock spectrum of that motion.
This state breeds confusion, and prevents one from acquiring experience
in the appearance of severe shock spectra.

Thus, a precise definition is required for use in any design proce-
dure, and one was given along with reasons for it in the preliminary
design method (Ref 2). Specifically, the shock spectrum is taken to be
a plot of the peak relative displacement of 2 single-degree-of-freedom
system exposed to the motion being analyzed, as a function of undamped
natural frequency, and plotted on four-coordinate paper. The shock
spectrum, therefore, is treated as a precise technical property of a

transient motion. A prdperty is defined by how it is measured and,

particularly in the case of shock spectra, by how it is actually computed.

This report in that sense defines the shock spectrum.

*Plot it log, linear, or semi-log, or four-coordinate; plot absolute or
relative; plot peak acceleration, velocity, or displacement; give plus
and minus values, or the overall value; plot the during, residual, or
the total peak. Four-coordinate is the same as log but the paper has
more lines.
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Although defined and specified for purposes of this work, interest
and additional study of the shock spectrum will continue. Analysis of
dynamic data in terms of its effect on single-degree-of-freedom systems
is a basically fundamental approach that has not yet been fully exploited.
The references for this work are current; work on explaining the calcu-
lation and improving accuracy continues. Appendix A of this report is a
new development. The comments at the end of Appendix A indicate that
even this effort can be continued. However, the current state of shock
spectrum understanding is adequate for a useful design method. This is
explained in the preliminary design manual, Reference 2. For those who
have to compute their own spectra, or use preprogramed machines and
desire an appreciation for the computations, this report should help.

The shock spectrum is the key to an upgraded design method for
installation of shock-resistant equipment. Pursuance of the concept can
make facilities much safer for Navy personnel. For example, a common
problem from earthquakes is falling fluorescent light fixtures. Attention
to the shock spectrum can cause one to use a fixture, not necessarily
more expensive, that is not sensitive to motions with earthquake fre-
quencies. Indeed all appurtenances to the structure and all installed
equipment have estimatable natural frequencies. The shock spectrum
gives the maximum values of oscillatory motion to expect from equipment
with various natural frequencies. Dynamic design is considerably sim-
plified when one can predict the peak acceleration and displacement.

Thus, the mere understanding of, and attention to, the information in
the predicted shock spectrum permits an evaluation of installed equipment,

especially as regards the equipment breaking free and injuring personnel.

DESCRIPTION OF THE SHOCK AND RESPONSE SPECTRUM

The explosively generated mechanical shock motion or the earthquake-
generated motion of equipment foundations is often recorded as a signal

from an accelerometer on magnetic tape. These records are converted or
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digitized into a list of closely spaced numerical values of the acceler-
ation with known equal time intervals separating the values. In this
form the information is not readily useful for design. The shock spectrum
transforms this motion time listing into a set of the peak responses the
motion iz able to cause in a set of simple mass-spring-dashpot vibratory
systems. Thus, the shock spectrum describes the shock motion in terms
of its capacity to excite simple vibratory systems. This transformation
of the data is now routinely accomplished on digital computers; several
programs are available in the literature (Ref 3-7).

However, the algebra required to derive Lhe calculsting equations
is lengthy and seldom published. For example, Lane's algorithm (Ref 8),
which was published in 1964, is extremely efficient, requires unbelievably
few calculations, and is toutuod as being accurate. It was adopted by
virtually all of the aerospace industry and is still in use. It was
derived by using 2 Transform Theory (Ref 9) which few understood. 1In
1973, Cronin (Ref 4) published a method of deriving Lane's result by
manipulating a Duhamel's integral. Cronin's work showed the severity of
the approximation required to obtain the Lane result, which raised
doubts about the accuracy of the method. O'Hara (Ref 10), Nigam and
Jennings (Ref 3), and Vernon (Ref 5) all published two-equation forms
for calculatng equations. Their assumptions were clearly laid out and
satisfactory, but computing with those equations was comparatively time
consuming. A comparison of Cronin's work with these two-eguation calcu-
lating schemes made possible the development of a new single-calculating
equation. This new theory is presented here for the first time. The
new method is more simply derived and should contribute to a wider
understanding of the calculations, and thereby make them more believable

and useful.

COMPUTATIONS

To understand the computing to be accomplished, the stage must be
set. The machine will be given a list of perhaps 1,000 acceleration

values in sequence; they ar: equally spaced values separated by a known

time interval sampled frow the acceleration versus time graph of the
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motion to be analygzed. The resulting spectrum to be calculated will be

a plot versus frequency of the peak responses of simple vibratory systems
of a given damping ratio when exposed to that input motion. Figure 1
contains two computed shock spectra, one for zero damping and one for 5%
damping. It is plotted on four-coordinate paper, as discussed in
Reference 2. As can be read from the figure, this is the shock spectrum
of a foundation motion that would cause an undamped 10-Hertz oscillator
to attain a peak deflection of 3 inches, or a 100-Hertz oscillator to
attain a peak deflection of 0.26 inch and a peak acceleration of about
250g. Each curve on Figure 1 consists of 180 equally spaced points
connected by straight lines; on that sized paper this makes a very

smooth plot. Now the computation can be visualized; one must numerically

calculate the response, one at a time, of 180 different natural frequency

vibratory systems and pick out and save the peak value for each frequency.

A new set of 180 values is computed for each damping ratio. The computer

does it quickly and inexpensively; even the plotting is done by machine.

SINGLE-DEGREE-OF-FREEDOM SYSTEM RESPONSE TO A FOUNDATION MOTION

The single-degree-of-freedom vibratory system to be conceptually
used for this data analysis is shown in Figure 2. The absolute position
of the foundation is y, and the absolute position of the mass, m, is
given by x. The spring stretch, or relative displacement of the mass

with respect to the foundation, is z, or
z = x -y (1)
Dots are used to indicate differentiation with respect to time; thus, a

free body diagram of the mass with the reversed inertia force is as

shown in Figure 3. Summing the forces yields

o

mX + c(x-y) + k(x-y) = 0 (2)

TN
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Writing Equation 2 in terms of the relative displacement, 2z, defined in

Equation 1 yields

¥ + cz + kz = ~my 3)

By dividing by m, and using the traditional defipitions and symbols in

Reference 11 given below

w = + k/m (4a)
. = 2 mw (4b)
L = c/c, (4c)

one obtains

P + 28wz + wrz = - ¥ (5)

Equation 5 gives the dyuamics of the simple system in terms of its more
interpretable characteristics, i.e., its undamped natural frequeacy, w,
and its damping ratio, {. It non-sizes the equation; all single-degree-
of-freedom systems with the same natural frequency and damping ratio
must respond identically to the same tramnsient acceleration. All shocks
or earthquakes are transient motions, which can be described in terms of
their transient accelerations. Thus, their effect on single-degree-of-
freedom systems is an excellent way of organizing or classifying their
capability to damage equipment.

The right hand side of Equation 5, the ¥, or input to the equation,
will be a list of values. Solutions for Equation 5 will be developed
that generate a list of 2's that result from the input. The theory will
also give us equations for X, Z, and z once the list of z's has beea
found.

Several approaches exist for deducing the solution of Equation 5
for a transient input, which is what is needed here. A good form, the

Duhamel integral form, is developed in most vibration texts; Thomson
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(Ref 11) develops it for foundation excited motions, and O'Hara (Ref 10)
gives it explicitly with initial conditions but without derivation as

follows:

3, eou
z = z° e-th (cos wd t ¢+ g sin md t) =2 wd sin wd t
t
- i—fﬁi(t) e~ult-1) iy wy(t-1) dr (6)
d
o

.

where z , 2
o

initial values of z and 2

(-]

i

w damped natural frequency, nw

d
n = Vi-¢?
T = a dummy time variable of integration

One should not be intimidated by the complicated appearance of
Equaticn 6. No one uses it in this form except to derive simpler rela-
tions. Equation 6 gives the homogeneous solution of Equation 5 in its
first two terms; the motion described by these terms is caused by the
initial velocity, éo’ and displacement, z, existing at time equal to
zero. The third term, the integral, is a formula for finding the par-
ticular solution f(or the part of the motion) being caused by the excita-
tion, ¥, occurring during the time interval in which Equation 6 is being
applied. The contribution to shock spectrum computing technology that
has been made by this research is the way in which Equation 6 was used.
In the next few paragraphs, two very popular computing equations are
reviewed. All of the results presented below are derived and further

discussed in Appendix A.
DISPLACEMENT SINGLE RECURSIVE EQUATION, TRAPEZOIDAL RULE INTEGRAL
APPROXIMATION

The simplest of the calculating solutions will be discussed first,

and will serve to illustrate the use of all the calculating solutions.
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It was first presented by Lane (Ref 8) and is in current use by most of
the aerospace community (Ref 4,12,13). The result is given below

i 15 Zi-2 Y %6 251 Y Yy Vi M

where the constants are given by

alS - e-2§wb (7a)

a, = 2 s C R w b (7b)
- h e.th sin wd h

Y, = my (7¢)

and where h is the time interval between samples of §. This is derived
in Appendix A as Equation A-1lla.

The use of Equation 7 can be envisioned as follows. Consider that
for a given damping value, one wants to conpute the peak z for some
frequency w, - The constants alS’ u16, and Y, ere first calculated.

Then ﬁl is substituted into Equation 7 with 2, and z, equaling zero.

This yields a value for z,. Next Vz and 2z, are used to compute z, with
z, again taken equal to zero. The value z, is calculated from Equation 7
by using §3, 23, and 2,5 and, thus, the process of calculating the z's
from the ¥'s continues. At each step of the computation, each newly
computed value of z is tested to see if it should replace what up until
that time has been the most positive and negative values. The absolute
largest of the two is the maximum. When the processing of the list of
¥'s has been completed and the maximum z found, one has fcund the maximum
"during" values of z for that frequency. This process is repeated for
each frequency at which a shock spectrum value is desired.

One can refer to Equation 7 as s displacement recursive equation
for use with equally spaced digitized values of acceleration. The list
of displacements computed therefrom completely defines the resulting

motion. In Appendix A it is shown that if the velocity at any time is

desired, it can be computed from these displacement values as follows

T T Y Sy g AR TR
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where the constants are given by

a9, = ~(hw e'tmh)/(sin fyuh) 13

a = w(n/ten nuh - {)
12

Y, = - h/2

o

If the relative acceleration, ii, is of interest, it is obtained by

using the values z, and ﬁi, along with the computed value of éi in
Equation S, which gives

M B>

e

s A
i = 28w z, -uw oz, -, (7e)

If the absolute acceleration is desired, one notes from Equation 1 that

L g ) e

ii = I +§, (7£)

T e

aud, thus, from Equation 7e one finds

- . .2
X, = 2% w z, - w oz (7g)

R £

Equations 7, the aerospace industry equations, are a complete set,
References 4 and 13 give Fortran program lists for their use. As men-
tioned in Appendix A, the apparent crudeness of the approximate integrs-
tion meth .d was not made clear until Reference 4 was published in 1973.

Nothing has been written criticizing these equations, including Reference 4,
except that they are completely ignored by the respected earthquake
analysis community (Ref 3 and 7). Reed (Ref 13) compares several com-

puting approaches and finds these equations inaccuraste for coarse sampling

rates, but otherwise acceptable. The computational spproach sdvocated




P B S M As e e == e d e it e S et aee e N . .
= : h TR

[oae TR TEUR AR yuen

here resulted from trying to reconcile this computing approach with that
of References 3, 7, and 10. A suitably eimple theory was found for
transforming the conventiona) equations (Ref 3 and 10) into a single
displacement recursive equation so that simplicity of a single equation
could be retained along with the accuracy of the more conventional
integration approximations.

DISPLACEMENT AND VELOCITY PAIR OF RECURSIVE EQUATIONS, ACCELERATION
APPROXIMATED AS A STRAIGHT LINE IN INTEGRAL

The more conventionsl equations referred to above were first pre-
sented by O'Hara (Ref 10) in 1962 and then independently again by Nigam
and Jennings (Ref 3) in 1968. They approximste the scceleration by a
straight line between the sample points and then integrate the integral
of Equation 6. This yields s pair of equations for processing the data.
They are derived in Appendix A as Equations A-18c and A-184 and are as

follows
TR TR TIPS PR ALY A (8a)
Zg S @z vzt 0y, Vit ay (8b)

The constants, which are a complicated expression, but of the sume
varisbles as in Equation 7, are given in Appendix A as Equations A-4c,
A-4d, A-4f, A-4g, A-184, A-18j, A~18k, A-181. In this computing method,
twvo outputs, both z and i, aust be computed for each step, and then used
in the next. Since both z and z are being constantly computed, it is a
simple matter to use Equation 7g to compute the accelerstion of the
mass, ¥, ot each point if desired. This is the procedure currently in
use for most of the U.S. earthquake data (Ref 7), and hence is a highly
respected approach. Note thst for esch step, or for each point of input
dasts, eight multiplications and six additions sre required. What was
found during the course of this work was that the sbove pair could be
exactly reduced to a single equation; this results in each step only
requiring five multiplications and four additions.
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DISPLACEMENT SINGLE RECURSIVE EQUATION, ACCELERATION APPROXIMATED AS A
STRAIGHT LINE IN INTEGRAL

In Appendix A it is shown that with some shifting of the indices,

one can combine Equations 8a and 8b into the single equation given below E
z R TR I TS B TR ATV I TR AT By TR (92)

The constants again are complicated, but easily computed and are given

in Appendix A as Equations A-10e, A-10f, A-19b, A-19c, and A-19d. Note
that the constants applied to the z's are the same as those of Equation 7,
Lane's result (Ref 8). No matter how sophisticated an approximate

integration is, these same two constants appear. It does seem more 1

reasonable that three input values are required for each step, including

the value, ii, for the time at which the output, z5 is being computed. _
As was the case previously, the data or list of 91'3 is marched r

through Equstion 9a, which yields a z; for each ﬁi. I1f the velocity st

_ any point is desired, it can be computed as shown in Appendix A,

|- Equation A~20s, from the z's as follows

VA v R

st~

e T g WL Te Tty e

Zg = 02 vzt Vgt e Yy (9b)

The constants are given in Appendix A as Equations A-10s, A-10c, A-20b,

and A-20c. If the absolute acceleration of the mass, X , is desired, z

i’ i

is computed and used with zy ip Equation 7g.

— i [ e r T

RESIDUAL SPECTRUM CALCULATION

As has been discussed, the spectrum computation consists of exciting
the theoreticsl model of Figure 1, which is described by the differential
Equation S, by mesns of s calculation algorithm (such as Equations 7, 8,
or 9) with the excitation given as a sequence of equally spaced values.
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After the excitation is over, the oscillator continues to ring, and the
low frequency oscillators attain their greatest values after the excita-
tion has passed. In the previously discussed algorithms, the calculation
of these "residual values" is accomplished by continuing the algorithm
with zero excitation values for one period of the oscillator. However,
this is not the only way of doing it, or necessarily the best way.

Often one computes spectral values for oscillators with periods far
longer than the excitation duration, and, in this case, the residual
integration region is necessarily longer than the original pulse.
Another approach is to compute the final velocity and displacement, z
and z, at the end of the excitation, and then calculate the positive

maximum and negative minimum from the free vibration solution. This is
the procedure used in the new shock spectrum computing method and, thus,
will be derived here with some of the detail given in Appendix C.

The solution for a damped oscillator undergoing free (or decaying)
vibrations can be taken from the first two terms of Equation 6 (since §

is then zero), or

- “fwt( .. ¢ .
z = z e cos wy t + T sin w, t

sin w, t (10)

By rearranging, this can be put in a form more convenient for manipulating

as follows:

-

z = e-th (A ain wy t + B cos Wy t) (11) 1
z z 3
= -—o— —9- 3
where A = A + “ﬁ (11a) ;
3
B = z, (11b)

Ly,

It can be shown by substitution that a convenient form for the derivative

of Equation 11 or z is

b

S o
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where s8in b =
cos 6§ = n
n = Vi-¢?
wy = nw

2 = W e-Cwm {A cos(wd t +68) -8B sin(wd t + 8)]

(12)

(12a)
(12b)

(12¢)
(124)

Since Equation 11 is a damped vibration or at the most with { = 0, a

constant vibration, both the most positive and the most negative value

must occur in the first cycle or at t = 0.

and 2 . must be
X min

.

pursued in the first cycle. If not, when t = 0, these occur when 2z

equals zero or when

A coa(wd t+§8) = B sin(md t +6)

If
g = wyt+ 6

one seeks f such that
Acos B = Bsin$

or

tan B = A/B

(13)

(14)

(15)

(15a)

and also seeks two values ﬂl and Bz such that the results (wdt)l and

(wdt)2 are between zero and 2n. Clearly, ﬁl and 52 are consecutive

angles at which the velocity goes to zero; thus (since the tangent goes

through zero every n radians),
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B, = B +n (16)

Now one must go through an amount of detail to assure the finding of the
very first time after time equals zero that z equals zero. Nine cases

must be considered as indicated:

A>0 A=0 A<O
B>0 I 11 III
B=20 v v VI
B<O VII VII1 IX

0 TGTRRCE N T Y T m

This is done carefully in Appendix C. The results are given below as
the set of "if'" statements used in programming the computation.

1. If toth A and B are zero, no residual response results.

2. If not, and A = 0, then ﬁl = 0. (17a)
3. If not, and B = 0, then B, = 5. (17b)
4. 1f not, and A and B Lave the same sign,

Bl = Tan ! (A/B) (17¢)
S. If mot,

B, = n - Tan ' (-A/B) (174)

Now with this value of ﬂl, one final test is required. 1f, and only if
B =& < 0 (17e)

one must add & to ﬁl, or

By = (Bt ™ (17£)
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Now with the acceptable value of Bl, (wdt)l can be obtained with Equation 14

as follows

(u)dt)1 = ﬁl -6 (17g)

The second value of (mdt) is obtained from

(u)dt)2 = (wdt.)1 +n (17n)

These values of (wdt)1 and (wdt)2 are substituted successively imo

Equation 11, which will yield values for 2z and Zin These values

are compared with z, to make sure it is uo:a:reater than 2 ax °F less
than Zin® and, thus, the residual spectrum values are computed. Sub-
routine RESID listed at the end of Program SPCTRM in Appendix B uses
this procedure to compute the resicual spectrum values.

Some additional explanation of the need for the residual spectrum
computation procedure is given here, since the previously mentioned
programs do not go to this trouble. To get the residual response, one
must first use a numerical method (such as Equations 7, 8, or 9) to find
the displacement and velocity (zo and io) at the end of the "during"
portion of the response. The other computations continue the numerical
procedure to find the residual maximum values. This procedure uses a
theoretically exact method to compute the values; it is faster, more

accurate, but a little clumsier to program.

THE COMPUTER PROGRAMS

Appendix B gives the Fortran listings for the two computer programs
used in the preparation of shock and response spectra by this new method.
The first, SPCTRM, computes the shock spectrum and lists as output the
values of the maximum and minimum displacement and pseudovelocity for
each frequency considered. The second, PLTVLF, is the program used to
plot the maximum, positive or negative shock spectrum on the four-
coordinate paper. Note that the precise frequencies used for calculation

15
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are selected by the program so that they will be equally spaced when
plotted logarithmically,

of program SPCTRM.

Appendix D documents the logic for this section
Otherwise the steps and symbols of the program

coincide with the report body and appendices, and should be completely

readable. The programs are in current use on a CDC time-sharing terminal;

the plotting is done on an interconnected Hewlett Packard Model 7202A

Graphic Platten. The format statements show the form of the input data.

The programs interrogate the user and, thus, supply the needed documen-
tation.

P R

COMMENTS

The Accuracy of the Algorithms

Equation 9a is more accurate than any others thus far published.
Because these recursive calculating equations use previously computed

L ot O IR BN

results for each succeeding step, they propagate any errors introduced.
Thus, if fewer multiplications and additions are required for each step,

PPy W~ rnw, Y

1 there is less opportunity for error accumulation due to roundoff and
] subtraction of nearly equal values.

e e v Q]

Of the algorithms reviewed, Equation 7, the "trapezoidal" approach,

has the fewest multiplications and additions. However, it assumes each

factor of the integral is constant during the integration. If one

.!
graphs the value of the factors over the integration interval and then '

compares an estimate of the integral of their product with that assumed ?
{ by the algorithm, the crudeness of the approximation becomes apparent.
F Thus, the '"trapezoidal' rule approach was discarded because of thesge

initial assumptions. .

Conversely, if one graphs the values of the factors similarly with
= the straight line integration approach, one can infer a convergence to

the "true" value as the steps become smaller. Such an examination even

leads one to asssume the straight line approach is exact; such a comment
was even made in Reference 3.

That. is why most of the algorithms use
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the straight line approach. Of these the new single recursive equation
developed here has by far the fewest multiplications and additions and,
thus, is the most accurate.

A rigorous study of the accuracy of the approaches has not been
undertaken, and would certainly be welcomed. However, perfunctory
accuracy statements that pretend to bound the error by referring to
higher derivatives of the input are not applicable to digitized data.

Nor is there any way in which one can construe the data to be composed

of low order polynomials. As is discussed further in Appendix A, one

does not want to sample any coarser than about 10 points per cycle of

the highest frequency present. At this high a sampling rate, the straight-
line-between-the-points assumption makes an accurate appearing plot of

the data, which leaves one to believe the integration has been adequately
approximated.

Allowable Frequency Ranges

This new program, as well as all other shock spectrum computer
programs, has limitations on the frequencies for which it can compute
accurate shock spectrum values. The allowable frequencies are dependent
upon the sampling rate of the data used as iaput and upon the oumber of
digits the particular computer uses in performing its arithmetic opera-
tions. The high frequency limit for the programs discussed in this
report is one tenth of the sampling rate. This assures a 5% accuracy
and is discussed by most authors (Ref 3).

That a low frequency limit exists has not been published up to now.
The constants that apply to the input data in Equations 7, 8, and 9a
contain sines and cosines with arguments that become very small at low
frequencies and lead to the subtraction of nearly equal numbers (e.g.,
equal to the 12th or 13th digit in a 14-digit number). At very low
frequencies this can lead to the computer generating ridiculous values
off by a factor of ten or more. Time did not permit a thorough investi-
gation of this effect, but an empirical testing of the constants did
indicate that for the computer used, which calculates to 14-digit accuracy
in single precision, accuracy could be maintained for frequencies as low
as one eight-thousandth of the sampling rate.

17

[P R Y

T I L‘memd




These frequency limitations are more completely discussed in
Appendix A. In symbols, the range of allowable frequencies for the
programs can be expressed as

f
1
f

Thus, for data that have been sampled at 10,000 points per second, one

10 3 s 8000 (18)

could compute shock spectrum values for frequencies as high as 1,000 Hertz
and as low as 1.25 Hertz. The current program does not impose this
restriction; it is the responsibility of the user.

SUMMARY

The body of the report has presented a background in shock spectrum
calculation methods applicable to digital computation that has not been
available. In general terms in the text and in detail in Appendix A,
the two most popular methods and a new method are described, defined,
and completely derived. This new method decreases the numbers of addi-
tions and multiplications required by 40% and, thereby, increases accuracy
while decreasing cost. The main purpose of the report is to document
this new method and make it available. Appendix B gives computer program
lists for this new method.

There are still unresolved questions and certainly room for improve-
ment; these matters are discussed. In particular, a new potential
source of inaccuracy was discovered in trying to extend to earthquake
frequencies data that had been sampled for explosion frequencies. The
only way one can compute spectra for the very low earthquake frequencies
is to have the data digitized at an appropriate sampling rate.

The author believes that a greater understanding of the shock
spectrum is valuable for evaluating equipment installation in dynamic

environments. Mere plotting of the shock spectrum on four-coordinate

paper gives a vastly improved appreciation of the damaging capacity of a
given environment. Required rattlespace stands out and, to the extent

e e e e i i e 2 e b =
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that one can approximate the gross natural frequency of the equipment on
its support, the peak breakaway forces can be estimated. A considerable
increase in safety and facility hardness from the effects of explosion
and earthquake is available inexpensively from increased understanding
and use of the shock spectrum.

Finally, this study of the shock spectrum analysis of sampled
acceleration time histories not only reduced and clarified the required
calculations, it also provoked several ideas for even further reducing
the program size. It must be assumed that soon small calculators will
be doing the analysis. Inexpensive digitizers and plotters will follow,
and all will have access to many new tools for intelligent use of the
data that now is only plotted.
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Appendix A

DERIVATION OF RECURSIVE EQUATIONS

DERIVATION APPROACH AND NEW SYMBOLS

As has been discussed in the text, one seeks a solution of Equation §,

f+2Lluwz+ wz = -§ (5)

applicable to a 1ist of closely and equally spaced values of the input
foundation acceleration, §¥. Hence, three such solutions of Equation 5
will be developed that apply from one excitation point to the next.
They will be recursive calculsting equations, through which the input
data are successively psssed, theredby yielding a 1list of output values,
z. The text equstions snd definitions 1 through 6 will be used. The
approach of this Appendix is to give s general beginning leading to two
known results and the nev result.

The Duhsmel integral solution, Equation 6, is the point of departure.
The derivative of this solution with respect to time is needed, and this
must be done carefully since t is a limit of, and occurs within, the

integrsl. Pipes (Ref 14) explains this carefully, and following his
instruction one obtains

L

zZ W
z=~°ecm

z
fwt
sinw, t +-ﬁg e ¢ (-{ sin wy t

t
+ 0 cos w, t) - %f?(t) .-Cw(t-t)[.{ sin wd(t-t)
0

+n cos w,(t-1)] dt (A-1)
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Consider applying Equations 6 and A-1 from one value of ¥ to the next;
i.e., from ?o to ?l. As cen be read, the equations presume z, and io
are knowvn. Equation 6 would give z and Equation A-1 would give z,.

To clarify what follows, some new symbols must be defined. The
time interval between the equally spaced values will be h. Equations 6
and A-1 sre to be applied when t equals h. Therefore, define

¢y = e'cm sin wd h (A'Za)
E e-;m cos uid h (A~2b)
h
o1 E fﬁ(t) e.tw(h't) sin wy(h-1) dt (A-2¢)
0
h
01 B ‘/rﬁ(t) e tu(b-T) oy wy(b-1) dt (A-24)
0

Using these new symbols, Equations 6 and A-1 become

{ ) . 1 i
z, = (X + n v)z, + T e Zo 7\"{3801 (A-3a2)
. - -w - . . - -
z, = —niz°+ ( %¢+X)z°+%sm Co1 (A-3b)

Note that as these equations are applied to the input list of y's,
b, w, §, Wy» n, X, snd ¢ are constants. If subscripted a's avce to
represent constants, Equations A-3 become

2, = @z ta,z ta, Sbl (A=43)
2, = 0,2 +ag z, +og 5'01 + a, 001 (A-4b)
where @, E X+ % ¥ (A-4c)
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o, = .ﬁ'”_w. (A-4d)
a, = Tﬁ}r (A-tbe)
o, = -L”W“L (A-4£)
a; = --c-ﬁi+ X (A-4g)
0 = %- (A-4h)
a, = -1 (A-4i)

Consider the integrals S and C. The way in which they are evaluated
constitutes the differences between the various results.

TRAPEZOIDAL APPROXIMATION

The crudest method in popular use is the trapezoidal rule (Ref 4),
which states that the integrand is taken to be constant over the interval
and equal to the average of the values of the integrand at the beginning
and end of the interval.

From Equation A-2c,

h

301 = fy(t) e-{w(h-t) sin w (h-1) dv (A-2c)
]

The average of the end point values is

>
n

1 f. ~{wh _.
1 7 (yo e sin wdh + 0)

or

A = ¥4, (A-58)
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Using this as the integrand in A-2c yields

_ Y ho. )
So1 = *T‘Vo (A-5b)

for the value of S01 by the trapezoidal rule. To get the value of

A m— PR AT o S i T

COI’ consider

h
COl = f?(t) e.cw(h-t) cos wd(h-t) dr (A-24)
0

LT R T

The average of the ead point values is

“ian MIN A

1 (. _-fuwh .
A, = 5 (yo et cos wy h + yl) (A-5¢) ‘
Using this as the integrand in A-2d yields
. h . o -
Cyy = T(Xyo¢y1) (A-54)

The point to note here is that in this case, and in the other cases
to be considered, the integrals, So1 and Cbl' are composed of constants
and input data values; no z's or output values. This can be seen more
clearly as follows.

By substituting these values of Sbl and C

01° Equations A-5b and
A-5d into Equations A-4a and A-4b, one obtains

2 = 92z, 002,407, (A-62)
and
Z) % 0,z v 05z, tag Tty ¥, (A-6b)

where these new a's are defined to be
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aé S ¢ h/2 (A-6¢)
] = _li -

a = 3 (“6 Y+ a7) (A-64d)

u; = ay h/2 (A-6e)

Thus, it is seen that, upon evaluation of S01 and Cbl’ which become
products of constants and the input §'s, Equations A-4a and A-4b become
Equations A-6a and A-6b. These form a pair that are used together to
generate a list of both z's and i's, from the y's. Assuming the a's
have been computed and the full list of the §'s is on hand, one would
start the calculating at §°, taking z, and éo equal to zero, and proceed
to z,. Knowing z; and zg, the pair of equations will yield Zi41 and

-

z and so on.

b With this in mind it is now possible to go back and combine the two
equations (A-4a and A-4b) into a single equation for z; alone, thereby
elimirating the need to keep computing both z and z. This development
does 1ot require Z Transform Theory (Ref 8 and 9) and is more straight-

forward than the approach of Cronin (Ref 4).

DEVELOPMENT OF A SINGLE RECURSIVE EQUATION

One begins by solving Equation A-4a for éo and defining new a's.
This yields

2, = 0g 2z, t+agz +a, S5, (A-78)
9
where ag = -7'-2- (A-7b)
a, = L (A-7¢)
9 ° a
2
)
alO ] 'q (A-74d)
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Equation A-7a is next substituted iato A-4b, which then becomes

2, = @,z tag(agz +agz, +a,,S,)

1

+ag Sy, +a, Coy (A-8a)
By defining new a's, this can be written as

2) = Ay % vy, Ey tayy Sy ta, Cp (A-8b)
where @, = a, +a; 0g (A-8¢)
a, = a ag (A-84)
a3 = 05 %9t 9 (A-8e)
G, 9 (A-8€)

This is s very interesting result. It ststes that the velocity at point
1 is exactly given by z, and zl, and the values of the two integrals.
Note that it does not require z,-

The next step is to realize that Equation A-6a also applies between
points 1 and 2 equally as well as between points 0 and 1, and, thue, the

following cap be written

z, +d, 2, +a Slz (A-9a)

S B B TS B

z; 1

The value of él from Equation A-8b is substituted into this form, which
yields

2 = 0y zp ey, z ta,z, ta, 8, +a, G (A-9b)

+a, 312
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E And finally by defining more a's, this becomes
.’ Zp = W52, t@e 2t Oy Sop t ¥ Sy * %9 Oy (A-9c) il
E % where @ = O dp, (A-9d) %'
E : % T N T % (A-9e) |
i Ty = 93 %3 (A-9£) 7
; g = a, (A-9g)
Tg = 9%y, (A-9h) ]

Equation A-9c is the new result. Note that it is quite different

R e T

from Equstion A-4a in that it requires no input velocity; thus,

e

Equation A-4b does not have to be computed along with it. It reduces

-

-y

the number of computations and, thus, the accumulation of error. It is
; therefore more accurate and economical. If the velocity is desired, it
E can be calculated with Equation A-8b. As it stands it is exact. Approx-

T SR I

imation will be introduced when the integrals are evaluated and by
round-off error accumulated in the calculations.

Before using Equation A-9c with various approximations for the
values of the integrals, S01 and 001’ many of the o values will be
required and so the most important ones are listed below.

-tuwh

- _nw _-2{wh _Qwe . .
ay = - ':'Wr (A-10a)
p=w gt = ?:nﬂm -4 (A-10b)

=>
"

. X _ 1 .
My T ° Tan uy & (A-10¢)
i Uy = 71 (A-104)
a15 _e-ztwh (A-10e)
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0, = 2X (A-10£)
o, = ;ﬁ%; (A-10g) i
0, = {%%T (A-10h) '
0, = %%%} (A-10i)

TRAPEZOIDAL RULE RECURSIVE EQUATIONS

The calculating equations that result from approximating the integrals i
by the trapezoidal rule are obtained by substituting Equations A-5b and
A-Sd into Equation A-9c¢c. This yields

g 2, * N 2 T Y Y (A-11a)

=(h W)/ (n w) (A-11b)

bt
—
in

This is the result given in References 4 and 8. Lane (Ref 8) derived it ]
in 1964 by Z Transform Theory, which did not make clear the approximation
used in evaluating the integral. Cronin (Ref 4) in 1973 was the first ¥
to derive this regult by conventional means; his work showed that it

could be derived with the trapezoidal rule. It is indeed simple: from

ERTEEE T el T T R e e s e

only one input value, and not even the value of the input corresponding

to the time at which the output is being computed, and two previous

output values, the equation yields a new output value.

The velocity equation is given by substituting Equations A-5b and
A-5d into Equation A-8b. This yields

JREEDRE ST Y. N VIR T

Z) T Ay, tan v, (A-11c)

PERTUTR. S Y Y- N

- h/2 (A-114)
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This equation is used to compute a velocity if required; e.g., the final '
velocity is required as input to the residual response calculation.

Reiterating, Equation A-1la is used to compute a list of 2's from the

list of §'s; i.e., if ?1 is the first non-zero point, Equation A-1la

s Y e T L b

yields z, as the first non-zero output value. Next §2 and z, are used

2
to compute z,3 next §3, z,, and z, are used to compute z,, etc.

Equation A-1la written for the general (n+l) point is

[P S—

n+l = u15 Zp-1 + a16 %, * N ¥y (A-11e)

which is a more common way of writing a recursive equation.

STRAIGHT LINE ACCELERATION APPROXIMATION IN INTEGRAL

U | 4

é There are several other approaches one could take in evaluating the
: integrals S and C. Cronin (Ref 4) suggested considering the values of i
the integrand at three consecutive points as defining a parabola and
then integrating the parabola so defined. Rather than approximate the
i whole integrand by an approximating function, O'Hara (Ref 10) in 1962,
and Nigam and Jennings (Ref 3) in 1968, both derived the pair of computing ]
equations that result from Equations A-4a and A-4b when the acceleration
input is approximated as a straight line between two adjacent values.
; They then integrated the product of the approximate acceleration function
and the remainder of the integrand. Vernon (Ref 5) in 1967 published an +
unusual pair, similar to Equations A-4a and A-4b, again with the straight :
f line acceleration approximation, except he chose to compute X and x as
f output values (as opposed to z and z). Rodeman (Ref 15) in 1974 used 2 .
{ Transform Theory more accurately than Lane (Ref 8), spproximating only
: the acceleration as a straight line, and deriving a single recursive
equation with acceleration, X, as the output, as opposed to z. Thus,

the straight line approximation has a host of advocates. Except for

% Croain (Ref 4), none found the single recursive equation without Z
} Transform Theory.
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Aa to the accuracy of the straight line approximation, Reference 3
calls the method "exact". O'Hara (Ref 10) gives formulas for spproxi-
: mating the acceleration by a parabola, which clearly has to be better
? than a straight line. The philosophy taken here is that, if the sequence
i of digits when plotted with straight lines connecting adjacent points is
a good visual approximation to the analog data, then the digitizing is
3 adequate for approximating the acceleration function with straight
lines.

To evaluate the integrals S01 and C01 with the acceleration taken
as a straight line between adjacent values, or ?0 and §1, let

§(t) = a+bt (A-12a)
] where
a = §, (A-12b)

¥, - io)/h (A-12¢)

-4
n

Equation A-12a is used in the definition of SOI’ Equation A-2c¢, to yield
] h
s S4 = f(. +b 1) 0B in e 4 (A-13a)
' 0

To integrate this expression, change the variable

u = hb-t (A-13b) ;
Thus,

du = - dt (A-13¢)
and

Tt = h-u (A-13d)

T = 0, u = h (A-13e)
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and when

n
o

T = h, u

By using Equations A-13c through f in A-13a one obtains

0
- - - O
SOI = J{ka +bh-bdu)e sin wy u du
h
which can be written as

h
SOI = (a+bh)fe-cw sinwdudu
0

h
-bfu e‘§W ainwdudu
0

(A-13f)

(A-14a)

(A-14b)

These are tabulated integrals,* and their evaluation is straightforward,

but lengthy. After considerable simplification, one obtains

(A-15a)

(A-15¢)

So1 = %0 Yo * 9 ¥

where
0, = =+ {g yenXx+t (262 - Dy+ 2t nx- 1)]} (A-15b)
ay =5 negpred® - ver28nx - 01

It should be noticed from Equations A-12b and A-12c that the same result

would dbe found if the integration were from 91 to iiz; thus, S

by

*See Reference 16, pp 99 and 10).
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S12 = Uy ¥y Yy Y, (A-15d)

Next, Equations A-12 are used in the definition of COI' Equation A-2d,
which becomes

h
001 = f(a +b 1) e-Cw(h-t) cos wd(h-t) dt (A-16a)
0

By using the same change of variable indicated in Equations A-13, one

obtains similarly

h
C01 = (a+bh) fe-cw" cos wy u du (A~16b)
0
h
-bfue'cmcoswdudu
0

which as before contains integrals that are tabulated in Burrington
(Ref 16). Again, after considerable simplification, the result can be

written as

Cor = 939 * 93 ¥, (A-17a)

vhere

p = fae-txr L ztae- @ - Dx- 0} @

Q
"

b = e dt-bztae- @t? - nex- 0l (A-17¢)
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; TWO-EQUATION COMPUTING PAIR FOR STRAIGHT LINE ACCELERATION

i To permit verification of the results, substitute Equations A-15a
and A-17a into Equations A-4a and A-4b to show that correct values of

the constants were derived. This yields ¥

i
i
| .
; l = e a0 .. - .
7 ‘ z, a, z, + a, 2, + °3(°20 Yo + oy, yl) (A-18a) ]
; and k.
| 1]
N 2) = @,z v a5zt (e, iy +oay, §,) (A-18b)
*aylayy Vo + a3 §y) 3
j Defining new constants, these can be written as .
T - . . . " - ;
. ST T L A TR i R4 (A-18c) :
. z, = a +a. z + i, + y (A-18d) E
H 1 - % % T % 2, T3 Yot O3 Yy i
g : where a29 E a3 % (A-18e) :
if a3o = 03 o, (A-181) %
E U3) = g % * ¥y Uy (A-18g) :
[
3 = - Y
a32 = a o, + a, 023 (A-18h) ?

Using the previously obtained values of the indicated a's, these are

found to be
r
ay = ;3_1:[(2(2-1+§wh)-x-+(zc+wh)x-2§] (A-181)
a0, = —‘—[(1- 2tH ¥ 2x-1) -wh] (A-183)
I I n !
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a0, = _‘rh [1 - (L +wh) %- x] (A-18k)
w

032 = + (.;T‘I’ + X - 1) (A-181)
w h

These are the equations used in Reference 3, and the constants
agree, except for two typographical misprints, which are corrected in
the Fortran program listing. One might at first think these expressions
adequate if both the relative velocity and displacement are desired.
However, such is not the case because the recursive process would then
involve more calculations and, thus, a greater accumulation of error.

The equations are only given here for completeness.

NEW SINGLE RECURSIVE EQUATION FOR A STRAIGHT LINE ACCELERATION
APPROXIMATION

Now the results of evaluating the integrals SOI' 812, and Cbl’ with
the acceleration taken as a straight line between the digitized values,
are obtained by merely substituting Equations A-15 and A-17 into

Equation A-9c. The result can be arranged as follows

23 T 055 %, t 0y 21 YUy, Yot Upg ¥ YU ¥y (A-19a)

vhere the new constants are found to be

2 = _3-‘— [2 t x- e 2bub(y {+wh) + (1-2 tz)%’-] (A-19b)

a =
w h

Oy = 32h [w hX-(1-2 (2) % -1 - e-Zth)] (A-19¢)
w

a0 = _3_1;[(1 -2tYH .;l;.+ 2001 -X) -w h] (A-19d)
w
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and the first two constanis are repeated here for convenience

- o-2tu

a (A-10h)

15

#

6 2X (A-101)

It is hoped that the reader has observed that the indices 0, 1, and
2 on the z and § values do not restrict this result to the first three
points of the data list, i.e., they are perfectly general; in fact, to
better conform to other writings on recursive calculating equations,
Equation A-19s can be written for calculating the ith value as

2y T Mg 2y o YOz YO Tyt U Fiy t e ¥y (A-19)

Though it is s trivial observaticn, especially sfter going through the
algebra three times, the reader will note on his first time through that

WP oex? = o-2lub

(A-19£)
is a group that recurs.

The velocity equation for calculating velocities from the computed
displacements is similarly obtsined by substituting Equations A-15 and
A-17 into A-8b which again, after simpl{fication, can be wriiten sas

TR LU PR TR AR 2L TS A (A=208)
vhere
[ -2fwh

. 1 |2LnX _ne -2 t2 -

0, = — 7 5 2¢+wh) -2+ 1] (A~20Db)
w hi

.11 -2uh PPN S ]

a9 = K 2{ne +(wh-2¢) m (4 1] (A-20c)
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and from the previous results

-2{wh

«a

1
n - "yhwe (A-10a)

ay, w(ﬂWX_ - C) (A-10¢)

e g

LY

Equations A-19e and A-20a are the new result. Equation A-19e is
the equation that marches through the data yielding relative displace-
aents, zi's, from only previously computed zi's and excitation values.

TY Ay
i st s e i

Note also that each step requires only five multiplications and four
additions. It is theoretically identical to using both Equations A-18¢c
and A-18d, but avoids relative velocity as an intermediate result. -

LY 3 TR

Equation A-20s is the velocjity calculation; it exactly calculates the

velocity at any desired point from computed displacements and input
values.

Incidentally, it is more straightforward to deduce Equations A-18¢
and A-18d directly from the original differential Equation 5 by sta.ting
with the straight line acceleration approximaticn in the right-hand side

TN PR

and obtaining the needed particular solution by undetermined coefficients.
This is the technique of Reference 3. Then Equations A-18c and A-18d

g S —”_—m:—xv__

v

] are transformed to Equation A-19e by going through the steps of
E

E Equations A-7 to A-9 for this specific case rather than for the general
case.

FURTHER COMMENTS ON ACCURACY AND REMAINING PROBLEMS

Some comments were made in the report body on accuracy, and they
are applicable here. Additionally, one might say that if both the
relative displacement and the relative velocity are desired, one might
just as well use the two-equation approach of References 3 and 10. That
would be less accurate because the propagation of the solution through
the data would require eight as opposed to five multiplications per step
and six as opposed to four additions per step. Accuracy would suffer.
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One can certainly envision parabolic or cubic approximation of the
acceleration input during the integration, and cne would certainly
expect this to be an improved approximation. It would permit one to
sample more coarsely, perhaps at only five points per cycle of highest
frequency present. But in a sense this becomes defeating and introduces
complications. In the method presented here, the results are oanly
evaluated at each point. As long as the points occur at least 10 points
per cycle, the maximum error can only be 5%. Making the sampling coarser
would then require an additional procedure of evaluating the result in
between points. This is suggested in Reference 10 and implemented in
Reference 5. At this point it appears to be a substantial effort to
implement and test; the value of the outcome is at best uncertain.

Finally, what is most disappointing and complicating is the fact
that all of the constants in all of the methods have ingsidious low
frequency problems. An examination of all the «'s reveals that crucial
ones in all of the methods approach indeterminate forms for very small
values of wh. Thus, one canpnot without extreme caution evaluate for

frequencies outside the range

10 s fs/f s 8,000 (A-21)

This range was determined empirically for a computer that carries about
14 significant figures. Double precision improves the situation, but

not considerably. Undoubtedly this is being resolved by those producing
speciaslized shock spectrum computing machinery; however, their algorithms
are invariably proprietary and, thus, not subject to technicsl review.
What will have to be done is a careful series expansion of the a's, and
then the programs will have to shift to the expanded a's when frequencies
are low enough to permit their use. Until such time as this can be

dcne, the sbove limits must be imposed. It is also presumed that since
none of the authors point this out, they are unaware of the problem. It
is insidious because there is no way you can realize it is happening.

All of a sudden spurious peaks and valleys occur in the spectrum with no
continuity from one frequency to the next, and one finds that the computer
is generating incorrect values for the a's.
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LIST

80/09/23. 19,03.28,
PROGRAM  SPCTRM

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570

PROGRAM SPCTRM(INPUT,OUTPUT, TAPE!,TAPE10)
DIMENSION Y(2050),Z(2050),0UT(5,500)
PRINT,*INPUT ACCELS IN G’S«

i T,

it e b
Ml idart

1
PRINT, *NO.OF SAMPLES OF INPUT DATA ()« 3
READ, NI 3
PRINT, *APPROX LOA FREQ, (ii2), (F)* i
READ,FLOW :
PRINT,*APPROX HIGH FREQ, (F)%
READ,FHIGH
PRINT,*SAMPLING RATE (SAMPLES/SEC.) (F)x H
READ,S ]
PRINT,*FREQS PER DECADE, (ABT 25), (F)w ;
READ,FPD ;
PRINT,#SCALING FACTOR (G,S/DATA UNIT) (F)»
READ,SF
PRINT,*ZER0O OFFSET (DATA UNITS) (F)w
READ, 20
FLOWLOGSALOG1O(FLOW)

C2sFLOAT (INT(FLOANLOG)=1)
AJLOWsFPD* (FLOWLOG=C2)
JSTART=INT(AJLOW)
IF(AJLON,NE.FLOAT(JSTART)) JSTART=JSTART+1| :
FSTART=10. #% (FLOAT (JSTART) /FPD+C2)
JSTOP= INT(FPD* (ALOGIO(FHIGH)=C2))
FSTOP= 10, #*(FLOAT(JSTOP)/FPD+C2)
NFREQS=JSTOP-JSTART+!

PRINT, *LONEST AND HIGHEST FREQUENCIES AREw,FSTART,FSTOP
PRINT, #NO. OF FREQS IS+ ,NFREQS
TPI=6.28318531

READ(1,69)(Y(D),I=1,NI1)

69 FORMAT(5X,4(1X,15))
GSF=SF*386 ;088

DO 33 Isi,NI

Y(I)=GSE# ((FLOAT(Y(1)))=20)
33 CONTINUE

PRINT,#DAMPING RATIO? (F)%
READ, 2ETA

He1./S
ETA®SQRT (1, ~ZETA*ZETA)
Gim2.#ZETA

G2m1.=GI*ZETA

DO 111 J=JSTART, JSTOP

F=10. #* (FLOAT(J) /FPD+C2)
WOM=TP [ *F

G3mR() MeH

G4mEXP(=~ZETA*G3)

Al52~GA*G4

G5=ETA*G3

PRTOR— A

et

4o e R
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00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
Q0850
00860
00870
00880
00890
00900
00910
00%20
00930
00940
00950
00960
00970
00980
009090
01000
ol010
01020
01030
01040
01050

G6=G4/ETA*SIN(GS)

CHI=G4%COS (G5 )

GT=CH1/G6

GB==~A15/G6

Al6a2 ,%CHI

Al lm=WOMN;E

Al 25 WOM* (GT=ZETA)

GomG3*NOM

G10=G1+G3

G 1a02%G6

Gli2uGoO®NOM

A24s (GI*CHI+ALS*GI0+G11)/G12

A2582, /G124 (G3%CHI~G11~ZETA*(1,4A15))
A26= (G114G1#(1,~CHI)=G3)/G12

A27= (GI#G7=G8#G10+G2) /G9

A28= (G14GB+(G3-G1 ) #(G1~ZETA)~1.)/G9
ZIMIN=O.
ZIMAX =0,
ZC))=A26%Y (1)
Z(2)=A16%Z(1)
DOI3 [a3,NI
201 RAISHZ(1=2)+A1 6*Z([=1)+A24%Y ([=2)+A25%Y (I=1) +A26%Y (1)
IF(Z(1).GT.ZIMAX)Z I MAX=Z (1)

IFCZCT) LT ZIMIN) ZI MIN®Z (D)

13 CONTINUE

208Z(N1).

ZDOsAT I%*Z (N1 =1)+A12%2(N1)+A2TAY (NI =) +A28*Y (N1)

CALL RESID(WOM,ZETA,ETA,Z0,2D0,ZRMAX,ZRMIN)

IMINSAMINI (ZIMIN,ZRMIN)

ZMAX=AMAX ) (Z 1 MAX , ZRMAX)

SVMINSWOMKZYIN

SVMAX=N() MaZ MA X

OUT(1,J)=ZYIN

OUT(2,J)mZMAX

OUT(3,J)=SVMIN

OUT(4,J)®SVMAX

OUT(5,J)=F

111 CONTINUE

DO 410 IsJSTART, JSTOP

410 WRITE(10,425)0UT(5, 1), (OUT(KK, 1) ,KKs1,4)

PRINT,/* PLEASE NOTEw/

PRINT,*ON THE OUTPUT FILE THE DATA COLUMNS READ AS#
PRINT, *FREQUENCY (HZ), ZMINCIN), ZMAX, SVMINCIPS), SVMAX#
PRINT, #TYPE “SAVE,TAPEIO=____ "«

PRINT, *TYPE"RETURN, TAPE10"%

425 FORMAT(F12.5,4E15.6)

END FILE 10

STOP

+A25%Y (1) +A26%Y (2)

01060 END

01070

N
SUBROUTINE RESID(WOM,ZETA,ETA,20,ZD0,ZRMAX,ZRMIN)

01080C THIS SUBROUTINE COMPUTES RESIDUAL RESPONSE

01090
01100
01110

B=2Z0
DELT=ASIN(ZETA)
A= (ZO*ZETA+ZDO/WOM) /ETA
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01120
01130
01140
01150
01160
ot170

01180
01190

01200
Q1210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350

PI=3.141592654

IF(A.EQ.0..AND.B.EQ.0.)GDO TO 24

IF(A.EQ.0.) GO TO 26

IF(B.EQ.0.) GO T0 28

IF(A.AND.B.GT.O. 0()ROACAND'BOLTOOI) 0() T() 30
BETAIsPI=ATAN(=A/B)

GO TO 80

30 BETAI=ATAN(A/B)

GO TO 80

28 BETAI=P]/2.

GO ToO 80

24 ZRMIN=Q,

ZRMAX=O.

GO TO 100

26 BETAI=Q.

80 IF(BETA),LT.DELT)BETAI=BETAI+P]

WOT )=BETAI -DELT

WDT2=WDT 1 +P]
ZIsEXP(=ZETA®NWDTIZ/ETA)*(A*SIN(WDT! ) ¢B*COS(WDT! ))
Z28EXP (=ZETA*®WDT2/ETA) *(A*#SIN(WDT2) +B*COS(WDT2))
ZRMAX=AMAX1(Z1,22)

ZRMINSAMINI(Z1,22)

100 RETURN

END
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80/09/23. 19.06.03.
PROGRAM  PLTVELF

00100

00110
00120
00130
00140
00150
00160

00170
00180

00190

00200 READ,N

00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310

00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460

00470
00480

00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610

PROGRAM PLTVELF(INPUT,OUTPUT, TAPE1,TAPE10)

DIMENSION FREQ(250),VEL(250), IFREO(ZSO) IVEL(250), VELN(250)
PRINT.*TYPE#FTV&FOR A FT PLOT OR TYPE #ssa FOR A SS PLOT*
READ73,FT [
73 FORMAT(A3) .

IF(FT.EQ.3HFTV)GOT074

PRINT,*TYPE#+1#FOR POS.SPECT.OR#=1#FOR NEG.SPECT.OR#+O#FOR (.ASS*
READ 99, IPLOT

90 FORMAT(12)

74 PRINT,*NO.OF AMPLITUDES T0O BE PLOTTED®

[P PIUE ve  ¥ S

PRINT,*TYPE#PLTL#FOR A LINE PLOT OR#PLTP# FOR A PT.PLOT#
READ 71,PLOT

71 FORMAT(AS)

IF (FT.EQ. 3HFTV)GOT075

IF(IPLOT)4,5,6

75 READ(},20) (FREQ(J),VEL(J),Jul ,N)

20 FORMAT(2E15.6)

Go To 7

4 READ(1, 1B) (FREQ(J) ,VEL(J),J=1,N)

18 FORMATA(F12.5, 30X,E15,6)

GO TO 7

17 FORMAT(F12.5,45X,E15.6)

6 READ(1,17) CFREQUJI},VEL J), =1 ,N)

7 K=0

IF(FREQ(1) .LT.1.) K22500

IF(K.EQ.0)PRINT, #THE ORIGIN IS AT A FREQUENCY OF | (HZ)*
IF (K .NE. O)PRINT.*THE ORIGIN IS AT A FREQUENCY OF 0.1 HZ.#
DO 88 Ist

IFREQ(I)-iNT(ALOGlO(FREO(I))*9909 74.)

IFREQ(1)= IFREQ( 1) 4K

VEL (1)=ABS (VEL(I))

88 IVEL(I1)=INT((ALOGIO(VEL(I))+1.)%9999,/5.)

PRINT, *ALL THE VALUES ARE INw

ggagg,*ser UP PLOTTER T0 PLOT® TURN ON PUNCH3 HIT CRw
PRINT,#HERE IS SOME LEADER%

PRINT71,PLOT

DO 30 I=I N

30 PRINT 40, IFREQCI), IVEL(D)

40 FORMAT(215)

PRINT, *PLTT#

PRINT, #SHUT OFF PLOTTER$ TURN OFF PUNCHw

60 TO 10

19 FORMAT(F12.5,30X,2E15.6)

5 READ(1,19) (FREQ(J) ,VELN(J) ,VEL(J),Js1,N)

K=0

IF(FREQ(1).LT.}.) K=2500

IF(K.EQ.0)PRINT, *#THE ORIGIN IS AT A FREQ.OF 1,0 (HZ)#
IF(K.E?.ZSOO)PRINT.*THE ORIGIN IS AT A FREQ.OF 0.1 (HZ2)#
DO 21 Isi N

IFREQ(1)= INT(ALOGI O(FREQ (1)) #9999, /4.)

L R A it s e
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00620 1FREQ(I)=sIFREQ(])+K

00630 VELN(I)=ABS(VELN(IM)

00640 VEL(I)=sABS(VEL(I))

00650 VEL(I)=AMAXI(VELNCI),VEL(I))

00660 21 IVEL(I1)=INT(CALOGIO(VEL(I1))+1.)%9999,/5.) ‘
00670 PRINT,»ALL THE VALUES ARE IN% 1
00680 PRINT,*SET UP PLOTTER T« PLOT$ TURN ON PUNCHs HIT CRe
00690 PAUSE )

00700 PRINT,*HERE IS SOME LEADER+*

00710 PRINT71,PLOT

00720 DO 31 [={,N

00730 31 PRINT 40, IFREQ(I),IVEL(I])

00740 PRINT,#PLTT#

00750 PRINT,#SHUT OFF PLOTTERs TURN OFF PUNCHw

00760 10 STOP

00770 END
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DETAILS OF THE RESIDUAL SPECTRUM CALCULATION

The table given in the main text is repeated below to

examination of the nine cases

Appendix C

organize the

A>0 A=0 A<O
B>0 I 1I 111
B=0 Iv v VI
B<O V1l VIII IX

Because many values of § will satisfy Equation 15a, one imagines the
signs of A and B in Equation 15 to deduce the proper value of B for ﬂl.

Case I, A>0,B>0

Consider a sketch of A cos B and B sin B as shown in Figure C-1.

Bsin g

Acosg

As can be seen, Bl is an acute angle, with tangent defined dy Equation 15a,

Figure C-1,

and using principal angle notation
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B, = Ten' (a/B) (c-1)

Recall that (wdt) must be greater than zero; thus, from Equation 14, the

following check is made

B, -6 2 0 (C-2)

If Condition C-2 is not fulfilled, the value of Bl must be increased by
n. The value of 62 is given by Equation 16 in all cases.

Case I1, A=0,B>0

Consider Figure C-2.
Bsing

Acosf

yd

Figure C-2.

In every case

ﬂl = 0 (C-3)

However, in every case with damping, this value of Bl will not satisfy
Condition C-2; thus,

Bl = n’ if c = 0 (c-[.)

Again 82 will be given by Equation 16.
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Case 111, A<O, B>0

Consider the sketch of Figure C-3.

Figure C-3.
Clearly Bl is between n/2 and K, but note that if the negative of A cos

B is drawn dotted, an angle Bi can be defined as

B; = Tan"' (-A/B) (c-5)
The angle Bl is then given by (n - ﬂi) or

B, = m- Tan"! (-A/B) (c-6)

Condition C-2 would again be used to see if Bl should be increased by n,
and Equation 16 would give ﬂz.

Case IV, A> 0, B=0

Consider the sketch of Figure C-4.
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Clearly Bl = n/2. Condition C-2 would be checked, and Equation 16 used
for 32.

Case V, A=0, B=0

Going back to the definition of A and B in Equations 11a and 11b,
one sees that both z, and io are zero. Hence, no residual response
regsults, and both z . and z are zero.

min max

Cagse VI, A<0,B=0

Consider the sketch of Figure C-5.

Acosf

T T
’1 \/

Figure C-5.
Clearly Bl = n/2. Condition C-2 would be checked, and Equation 16 used

-
_‘\
h Y
Y
;

Sriie s ST S ERk st

for BZ.

Cagse VII, B <O, A >0

Consider the sketch of Figure C-6. -

AkB

Figure C-6.
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i % In this case Bl lies between n/2 and n. If the negative of B is used,
; the acute angle B' can be obtained and subtracted from nm as indicated
below.
b B' = Tau'! (A/-B) (C-7a)
i 2: al = n-f (C-7b)
t
E Case VIII, A=0, B <O
.
4 Consider this situation drawn in Figure C-7.
4 A&B
3 B1sin g
3 \/A?/i\“wﬂ
h Acos i
!
Figure C-7.
As in Case II,
;4
ﬂl = 0 (C-8a) i
but again in every case with damping, this value of Bl will not satisfy
Condition C-2; thus,

Bl = n, if c = 0 (C'Sb)

[ S - 9

As in all, cases 52 is given by Equation 16.
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Case IX, A <0, B<O

Consider the sketch drawn in Figure C-8.

Acosf Bsing

1

Figure C-8.
This use is the inverse of Case I, and Bl will always be acute and given
simply by

B, = Tan ' (A/B) (C-9)

If Condition C-2 is not fulfilled, the value of Bl from Equation C-9
must be increased by n; the value of 82 is obtained from Equation 16.

That completes the examination of the nine possible cages identified
in Table 1. By going through them, one can organize the results as
follows.

Case V: A=B=0,
no residual response occurs

Cases I, IX;: A >0, B >0; or A<O, B <O,
B, = Tan"! (A/B)

Cases IXII, VII: A< 0, B>0; or B<O, A>0,
B, = m - Tan'! (-A/B)

Cases II, VIII: A=0,B>0; or A=0, B<O,

B, = 0
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Cases IV, VI: A>0,B=0; orA<O,B=0,

Now this summary can be organized into a more concise set of rules for
”1 determination as follows:

1. If both A and B are zero, no residual response results.

2. I1f npot, and A =0, Bl = 0.

3. If not, and B = 0, Bl = n/2.

4. 1If not, and A and B have the same sign,
B, = Tan'! (A/B)

5. If not,

1

B, = m-Tan  (-A/B)

Now given a value of Bl’ one applies Condition C-2, or if
Bl -6 < 0

By = (Bpgat ™

which yields acceptable values of Bl from which (wdt)1 can be obtained
with Equation 14 as follows

(wdt)l = Bl -6 (C-10)

The second value of (wdt) is obtained from Equation 16 and is

(mdt)2 = (wdt.)1 +n
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FREQUENCY GENERATION FOR EQUALLY SPACED VALUES
WHEN PLOTTED ON LOGARITHMIC PAPER

T — e —
e ————— e

For s number of reasons it is edvantageous to plot shock spectra on

S t-ymieiatd

four-coordinate paper, which is a logarithmic paper, as discussed in
Reference 2. To do this requires the frequencies to be selected in the
following manner. For equally spaced values of frequency on logarithmic
paper one wants the logarithm of the frequency to have equally spaced
values. One can obcerve that, if J is the computer "do-loop" index,
that increments by unity for each step, the logs will be equally spaced
if

log,oF = CJ+¢C, (D-1)

Corresponding to this, the frequency will be given by

(CIJ + cz)
F = 10. (p-2)
The user will select a lowest frequency of interest, Flow’ a highest
frequency of interest, Fhigh' and the oumber of frequencies per decade
at which he wants shock spectrum values calculated, de. The remainder
of this argument is more simply written in FORTRAN because integer logic
is necessary. Thus, Equations D-1 and D-2 become

ALOGI0(F) = CI*J + C2 (D-3)
F = 10.%%(C1*J + C2) (D-4)
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Each time the log of the frequency increases by unity, the frequency
will have increased by a factor of 10, or gone through a decade; thus,
Cl is the recipi~cal of de, and Equations D-3 and D-4 may be written

ALOG10(F) = J/FPD + C2 (D-5)
F = 10.%(J/FPD + C2) (D-6)

Nov, rather than start and stop at the precise low and high frequencies
selected by the user, one will start at FSTART and stop at FSTOP, defined
to-—be-the frequencies computed by Equation D-6 from the values of J
given as JSTART and JSTOP. Using functional notation this can be iadi-
cated by saying

—— e — ..
———

FSTOP = F(JSTOP) (D-7)
FSTART = F(JSTART) (D-8)

The variables JSTOP and JSTART are defined such that

F(JSTART - 1) .LT. FLOW .LE. F(JSTART) (D-9)

and

F(JSTOP} .LE. FHIGH .LT. F(JSTOP + 1) (D-10)

This is convenient because the user will in general select an FPD, an

FLOW, and an FHIGH that are not mutually consistent. In this way, if

R L 1]

the user selects integer values of FPD, it is convenient to arrange C2
3 so that frequency values divisible by 10 are always included in the list
! selected.

In Equation D-5, C2 is an integer used so that J does not have to

assume zero or negative values. Whenever the starting frequency is less
than upnity, the log of F will be negative. If C2 is one less than the
characteristic of the log of FSTART, J will always have to be greater
than zero. Thus, define:

o,
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C2 = INT(ALOG10(FLOW)) -~ 1 (p-11)

To formulate a procedure to find JSTART, proceed as follows.
Substitute Equation D-6 into Condition D-9; take the log of all three
terms, which yields

(JSTART - 1)/FFD + C2 .LT. JLOW/FPD + C2 .LE.
(JSTART/FPD + C2) (D~12a)

Subtract C2 from esch group, and then multiply through by the positive
number FPD which will yield

JSTART -~ 1 .LT. JLOW .LE. JSTART (D~-12b)

where JSTART is an integer and JLOW is floating point and formed from
Equation D-5 with F equal to FLOW or

JLOW = FPD*(ALOG10(FLOW) - C2) (D-13)

In general, JLOW will not have integral value; for the case where JLOW

is not integral

JSTART = INT(JLOW) + 1 (D-14)
but when JLOW does have integral value

JSTART = INT(JLOW) (D-15)
This can be programed as follows

FLOWLOG = ALOG10(FLOW)
C2 = FLOAT(INT(FLOWLOG) - 1)
AJLOW = FPD*(FLOWLOG - C2)
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JSTART = INT(AJLOW)
IF(AJLOW .NE. FLOAT(JSTART)) JSTART = JSTART + 1
FSTART = 10.%*(FLOAT(JSTART)/FFD + C2)

A fev values are hand-computed to document that this does deliver

Condition D-9. The results are shown in Table D-1.
To derive formulas for JSTOP and FSTOP, substitute Equation D-6 in

Condition D-10 and take the log of all three terms, which yields
JSTOP/FPD + C2 .LE. JRIGH/FPD + C2 .LT. (JSTOP + 1)/FFD + C2
Subtracting €2 from each term, and then multiplying each by the positive

number FPD, yields

JSTOP .LE. JHIGH .LT. JSTOP + 1 (D-16)

vwhere JSTOP is an integer, and JHIGH is found from Equation D-5 with F
equal to FHIGH, or

JHIGK = FPD*(ALOG10(FHIGH) - C2) (D-17)

In genersl, JHIGH will pot be integral, but even when it is, Condition
D-16 will be satisfied if we take

JSTOP = INT(JKIGH) (D-18)

Therefore, to get JSTOP and FETOP, one adds the following steps to the
progras given sfter Equation D-15

JSTOP = INT(FPD*(ALOG10(FHIGH) - C2))
FSTOP = 10.%*(FLOAT(JSTOP)/FPD + C2) (D-19)
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Code 400, Ouakland. CA; Codc 400, Pcarl Harbor, HI; Code 400, San Diego. CA, Code 420, Great Lakes,
IL; Code 420, Oakland. CA: Codc 42B (R. Pascua). Pearl Harbor HI. Code SOSA (H. Wheeler); Code &0,
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Great Lakes. IL: Code 601, Oakland, CA: Code 610, San Diego Ca; Code 700. Great Lakes, IL; Code 700,
i San Dicgo. CA: LTIG J.L. McClaine, Yokosuka, Japan; Utilities Officer, Guam; XO (Code 20) Oakland,
{ CA
: SPCC PWO (Code 120) Mechanicsburg PA 13
NAF PWO (Code 30) El Centro, CA | 3
U.S. MERCHANT MARINE ACADEMY Kings Point, NY (Reprint Custodian) -
USCG (Smith). Washington, DC; G-EOE-4/61 (T. Dowd)., Washington DC '
USEUCOM (ECJ4/L-LO), Wright, Swutigart, GE !

R

: USNA Ch. Mech. Engr. Dept Annapolis MD; PWD Engt. Div. (C. Bradford) Annapolis MD | 4
$ CALIFORNIA STATE UNIVERSITY LONG BEACH, CA (CHELAPATI) ' 2
{ CORNELL UNIVERSITY ({thaca NY (Serials Dept, Engr Lib.)
: DAMES & MOORE LIBRARY LOS ANGELES, CA

- ILLINOIS STATE GEO. SURVEY Urbana IL

LEHIGH UNIVERSITY Bethlehem PA (Fritz Engr. Lab No. 13, Beedle): Bethichem PA {Linderman Lib.
No.30, Flecksteiner)

MICHIGAN TECHNOLO S5CAL UNIVERSITY Houghton, Ml (Haas)

MIT Cambridge MA: Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.): Cambridge MA (Whitman)

NEW MEXICO SOLAR ENERGY INST. Dr. Zwibel Las Cruces NM ]

NY CITY COMMUNITY COLLEGE BROOKLYN. NY (LIBRARY) 3

PURDUE UNIVERSITY Lafayette, IN (CE Engr. Lib)

CONNECTICUT Hartford CT (Dept of Plen. & Energy Policy)

SEATTLE U Prof Schwacgler Seattle WA

SOUTHWEST RSCH INST R. DeHart, San Antonio TX

STANFORD UNIVERSITY Engr Lib. Stanford CA

STATE UNIV. OF NEW YOPRK Buffalo, NY

TEXAS A&M UNIVERSITY W.B. Ledbetter College Station. TX

UNIVERSITY OF CALIFORNIA BERKELEY. CA (CE DEPT, GERWICK); Berkeley CA (E. Pearson):
DAVIS, CA (CE DEPT. TAYLOR). LIVERMORE. CA (LAWRENCE LIVERMORE LAB, TOKARZ) F

UNIVERSITY OF DELAWARE Newark, DE {Dept of Civil Engineering. Chesson) 3

UNIVERSITY OF HAWAII Honolulu Hi (Dr. Szilard) '

UNIVERSITY OF ILLINOIS Metz Ref Rm, Urbana IL; URBANA, IL (LIBRARY); URBANA, IL £
(NEWMARK): Urbana IL (CE Dept, W. Gamble) 18

UNIVERSITY OF MASSACHUSETTS (Heroncmus), Amherst MA CE Dept i

UNIVERSITY OF MICHIGAN Ann Arbor Ml (Richart) !

UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)
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UNIVERSITY OF NOTRE DAME Katona. Notre Dame, IN E
UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Arkansas TX ;
UNIVERSITY OF TEXAS AT AUSTIN AUSTIN. TX (THOMPSON). Austin, TX (Breen) %

UNIVERSITY OF WASHINGTON Dept of Civil Engr (Dr. Mattock), Seattle WA; SEATTLE. WA
: (MERCHANT)
! UNIVERSITY OF WISCONSIN Milwaukee Wl (Cir of Great Lakes Studies)
AMMAN & WHITNEY CONSULT ENGRS N Dobbs New York, NY
ARVID GRANT OLYMPIA, WA
ASSOC AMER RR Bureau of Explosive, Chicago. IL
ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)
§ AUSTRALI!A Dept of Const. Canberra; Dept of Hsng & Const, Sydney
BECHTEL CORP. SAN FRANCISCO. CA (PHELPS)
BROWN & CALDWELL E M Saundcrs Walnut Creek, CA
CANADA Mem Univ Newfoundiand (Chari), St Johns; Trans-Mnt Oil Pipe Lone Corp. Vancouver., BC Canada
COLUMBIA GULF TRANSMISSION CO. HOUSTON. TX (ENG. LIB)
HERCULES INC. D Richardson, Magna. UT
DURLACH. O'NEAL. JENKINS & ASSOC. Columbia SC 7
FORD. BACON & DAVIS, INC. New York (Library)
FRANCE Dr. Dutertre, Boulogne
GLIDDEN COQO. STRONGSYVILLE. OH (RSCH LIB)
HUGHES AIRCRAFT Culver City CA (Tech. Doc. Cir) ¢
ITALY M. Caiioni. Milan
KAMAN SCIENCES CORP T Cook Colorado Springs. CO
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LOCKHEED MISSILES & SPACE CO. INC. Sunnyvale, CA (K.L. Krug)

MCDONNEL AIRCRAFT CO. Dept 501 (R.H. Fayman), St Louis MO; Navy Tech Rep $t Louis, MO; R
Carson, St. Louis, MO

NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech. Lib.) .

NORWAY DET NORSKE VERITAS (Library), Oslo; DET NORSKE VERITAS (Roren) uslo; 1. Foss, Oslo;
J. Creed, Ski; Norwegian Tcch Univ (Brandtzaeg), Trondheim

PORTLAND CEMENT ASSOC. Skokie IL (Rsch & Dev Lab, Lib.)

RAND CORP. Santa Monica CA (A. Laupa)

RAYMOND INTERNATIONAL INC. E Colle Soil Tech Dept. Pennsauken, NJ

SANDIA LABORATORIES Libraty Div., Livermore CA; Scabed Progress Div 4536 (D. Talbert) Albuquerque
NM

SCHUPACK ASSOC SO. NORWALK, CT (SCHUPACK)

SHELL OIL CO, HOUSTON, TX (MARSHALL)

SWEDEN Cement & Concrete Research Inst., Stockholm; GeoTech Inst

SWITZERLAND T Schneider. Zurich

THE NETHERLANDS Director Tech Rsch Prins Maurits Lab, Rijswijk

TRW SYSTEMS REDONDO BEACH, CA (DAl)

UNITED KINGDOM Atomic Encrgy Auth (F R Farmer) London: Cement & Concrete Assoc Wexham Springs,

Slough Bucks; D. Lee, London; D. New, G. Maunsell & Partners, London; R. Browne, Southall,
Middlesex; Taylor, Woodrow Constr (014P), Southall, Middlesex

WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Occanic Div Lib, Bryan); Library, Pittsburgh PA

WESTINTRUCORP Egerton, Oxnard, CA

WISS, JANNEY, ELSTNER, & ASSOC Nerthbrook, IL (D.W. Pfeifer)

WOODWARD-CLYDE CONSULTANTS (A. Harrigan) San Francisco

BRAHTZ La Jolla, CA

BROWN, ROBERT University, AL

BRYANT ROSE Johnson Div. UOP, Glendora CA

BULLOCK La Canada

F. HEUZE Alamo, CA

CAPT MURPHY Sunpyvale, CA

R.F. BESIER Oid Saybrook CT

T.W. MERMEL Washington DC
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