ON THE SAMPLE REDUNDANCY AND A TEST FOR EXPONENTIALLY

JUL 80 M CHANDRA, T DE WET, N D SINGPURWALLA N00014-77-C-0263

UNCLASSIFIED SERIAL-T-424

END

4-17-80

OTIC
STUDENTS FACULTY STUDY RESEARCH DEVELOPMENT FUTURE CAREER CREATIVITY COMMUNITY LEADERSHIP TECHNOLOGY FRONTIERS DESIGN ENGINEERING APPLICATIONS GEORGE WASHINGTON UNIVERSITY
ON THE SAMPLE REDUNDANCY AND A TEST FOR EXPONENTIALLY

by

Mahesh Chandra
Tertius De Wet
Nozer D. Singpurwalla

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Contract N0014-77-C-0263
Project NR-042-372
Office of Naval Research

and

Contract NRC-84-78-239
Nuclear Regulatory Commission

This document has been approved for public sale and release; its distribution is unlimited.
In this paper we obtain the sampling properties of a scale-free estimator of redundancy, an information theoretic measure, which is used by economists and communications engineers. We then propose a new test of exponentiality based upon the sample redundancy. This test is unbiased against a large class of alternatives, and it performs at least as well as another recently proposed test with respect to power and asymptotic relative efficiency.
THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

Abstract
of
Serial T-424
18 July 1980

ON THE SAMPLE REDUNDANCY AND A TEST
FOR EXPONENTIALITY

by

Mahesh Chandra*
Tertius De Wet†
Nozer D. Singpurwalla§

In this paper we obtain the sampling properties of a scale-free estimator of "redundancy," an information theoretic measure, which is used by economists and communications engineers. We then propose a new test of exponentiality based upon the sample redundancy. This test is unbiased against a large class of alternatives, and it performs at least as well as another recently proposed test with respect to power and asymptotic relative efficiency.

*The University of Iowa, Iowa City, Iowa.
†Rhodes University, Republic of South Africa
§The George Washington University, Washington, D.C.

#Research supported in part by Contract N00014-77-C-0263, Project NR-042-372, Office of Naval Research, and Contract NRC-04-78-239, Nuclear Regulatory Commission, with the George Washington University.
1. Introduction and Summary

Economists have used the traditional information theory measures such as "entropy" and "redundancy" to measure the extent to which business is concentrated in the control of giant firms. Hart (1971) has compared these measures with the classical statistical measures of dispersion, and other measures of business concentration derived from the "Lorenz curve." More recently, the sample entropy has been used to develop a test of goodness of fit for normality (Vasicek, 1976). The redundancy has also been used as a measure for ordering any two distributions within the class of "star ordered"* distributions (Chandra and Singpurwalla, 1980). This ordering is useful for discussing the unbiasedness of certain goodness of fit tests; see, for example, Sections 3.1 and 3.2.

In this paper, we consider an estimator of the redundancy, and obtain its sampling properties. We show that the estimator is almost

*Let \(F_1 \) and \(F_2 \) be two continuous distributions on \([0, \infty)\); then \(F_1 \) is said to be star (anti-star) ordered with respect to \(F_2 \), if \(F_2^{-1} F_1(x)/x \) is nondecreasing (nonincreasing) in \(x \) for \(0 \leq x \leq F_1^{-1}(1) \).
sure consistent, and is asymptotically normal. We use these properties to propose a scale-free test for exponentiality based on the sample redundancy, and obtain the asymptotic relative efficiency of this test compared to tests based on the maximum likelihood estimates. Percentage points of the test statistic for finite samples are obtained via a Monte Carlo experiment. The power of this test against various alternatives is compared with a recently proposed test for exponentiality based on the Gini index (or equivalently, the total time on test statistic) using a Monte Carlo experiment.

Our conclusion is that a test for exponentiality based on the sample redundancy is unbiased in the sense of Lehman and Scheffé [cf. Ferguson (1967, p. 224)], and that it performs as well as a test for exponentiality based on the Gini index for the gamma, the Weibull, the uniform, and the Pareto alternatives. These distributions are either star or anti-star ordered with respect to the exponential distribution. The same conclusion also holds for the lognormal alternative, when the parameters of this distribution are so chosen that it is either star or anti-star ordered with respect to the exponential distribution. When the lognormal alternative fails to be either of the above, then neither the test based on the sample redundancy nor the test based on the Gini index should be used; this is because it is not possible to claim unbiasedness of these tests. However, should we decide to go ahead and use these tests, then we find that the test based on redundancy appears to have a slight advantage over that based on the Gini index, with respect to power: both the tests have low power. Finally, the asymptotic relative efficiency of the test based on redundancy for the gamma and the Weibull alternatives is also comparable to that based on the Gini index.

We have no compelling reason, other than ease of computation and the slight advantage of power, to recommend a test for exponentiality based on redundancy over other available tests. The main purpose of this paper, then, is to point out the possibility of using the sample redundancy as another means for testing for exponentiality, and to
describe the circumstances under which the tests based on the redundancy and the Gini index should not be used.

2. Redundancy and Its Estimation

For a nonnegative random variable \(X \) with a distribution function \(F \) and probability density function \(f \), the redundancy \(R_F \) is defined [see, for example, Thiel (1967, p. 96)] as

\[
R_F = E\left(\frac{X}{\mu} \log \frac{X}{\mu}\right),
\]

(2.1)

where \(\mu = E(X) \) is assumed to be finite.

Let \(X_1, \ldots, X_n \) be a random sample from \(F \), and let \(Y_i = X_i / \sum_{i=1}^{n} X_i, \ i=1,\ldots,n \). The sample entropy of \(Y_1, \ldots, Y_n \) is defined by Hart (1971) as

\[
H(Y) = - \sum_{i=1}^{n} Y_i \log Y_i.
\]

(2.2)

Note that \(H(Y) \) attains its maximum value \(\log n \) when \(Y_i = 1/n \), for \(i=1,\ldots,n \). Vasicek (1976) proposes a test for normality based on the sample entropy of \(f \).

The difference between the sample entropy \(H(Y) \) and its maximum value \(\log n \) is called the sample redundancy, \(R_n \). Thus,

\[
R_n = \log n - H(Y)
\]

\[
= \sum_{i=1}^{n} Y_i \log(nY_i), \quad \text{since} \quad \sum_{i=1}^{n} Y_i = 1.
\]

Some further simplifications lead us to write

\[
R_n = \frac{1}{n \bar{X}} \sum_{i=1}^{n} X_i \log X_i - \log \bar{X},
\]

(2.3)

where \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i / n \).
In Theorem 2.1 below, we shall show that \(\frac{R_n}{n} \overset{a.s.}{\to} R_F \), and that \(R_n \) is asymptotically normally distributed. Thus \(\frac{R_n}{n} \) is an almost sure consistent estimator of \(R_F \).

2.1 Sampling Properties of \(R_n \)

In what follows the following abbreviations will be used.

If \(\{X_n\} \) is a sequence of random variables, and if \(\{b_n\} \) is any other sequence, then the notation \(X_n = O_p(b_n) \) denotes the fact that \(\frac{X_n}{b_n} \to 0 \), where \(O_p \) denotes convergence in probability. The notation \(\overset{D}{\to} N(\mu, \sigma^2) \) denotes convergence in distribution to a normally distributed random variable with mean \(\mu \) and variance \(\sigma^2 \).

Let \(E(X \log X) = \alpha \), where \(\alpha \) is finite, and let \(E(X \log X)^2 < \infty \); also, let \(\sigma^2(F) = (1/\mu^2)E(X \log X - \frac{\alpha X}{\mu} - X + \mu)^2 \). Then as \(n \to \infty \),

Theorem 2.1: \(\sqrt{n}(R_n - R_F) \overset{D}{\to} N(0, \sigma^2(F)) \).

Proof: We shall first show that \(\frac{R_n}{n} \overset{a.s.}{\to} R_F \). Write \(S_n = \frac{1}{n} \sum_{i=1}^{n} X_i \log X_i \); then, using the strong law of large numbers, we can write

\[
\frac{R_n - \alpha}{\mu} + \log \mu = \frac{S_n}{\bar{X}} - \log \left(\frac{\bar{X}}{\mu} \right) - \frac{\alpha}{\mu}
\]

\[
= S_n \left(1 + \frac{\bar{X}_n - \mu}{\mu} \right)^{-1} - \log \left(1 + \frac{\bar{X}_n - \mu}{\mu} \right) - \frac{\alpha}{\mu}
\]

\[
= (S_n - \alpha + \alpha) \left(1 + \frac{\bar{X}_n - \mu}{\mu} + \ldots \right)^{-1} \left(\frac{\bar{X}_n - \mu}{\mu} + \ldots \right) - \frac{\alpha}{\mu}
\]

\[
= \left[(S_n - \alpha) + \alpha - \frac{\alpha}{\mu} (\bar{X}_n - \mu) \right] \mu^{-1} - \mu^{-1}(\bar{X}_n - \mu) - \frac{\alpha}{\mu} + O \left(\frac{1}{\sqrt{n}} \right)
\]

\[
- 4 -
\]
\[T-424 \]

\[I = \sum_{i=1}^{n} (X_i \log X_i - \frac{\alpha}{\mu} X_i X_i + \mu) + O\left(\frac{1}{n}\right), \]

where

\[Z_i = \mu^{-1} \left(X_i \log X_i - \frac{\alpha}{\mu} X_i - X_i + \mu \right). \]

The result follows since \(E S_n = \alpha \), and \(X_i \log X_i \) are independent and identically distributed. To prove the statement of the theorem, we note that the \(Z_i \)'s are independent and identically distributed with

\[EZ_1 = 0 , \]

and

\[EZ_1^2 = \sigma^2(F) , \]

and invoke the central limit theorem. //

3. A Test for Exponentiality Based on \(R_n \)

Since \(R_n \) is scale-free, we can use the result of Theorem 2.1 to obtain a test for exponentiality by taking the underlying distribution, say \(G \), to be a unit exponential; that is, \(G(x) = 1 - e^{-x} \). Using the fact that under \(G \), \(E(X \log X) = \Gamma^1(2) = .4227 \), and that \(E(X^2 \log X) = \Gamma^1(3) = 1.8455 \), we can show that \(\sigma^2(G) = E(X \log X - X \log X + X + 1)^2 = .2898664 \); \(\Gamma^1(*) \) is the digamma function. Thus, when \(G(x) = 1 - e^{-x} \),

\[\sqrt{n} (R_n - R_G) \rightarrow N(0,.2898664) , \]

and so the above result can be used to test for exponentiality when \(n \) is large, using standard procedures for testing hypotheses.

The exact distribution of \(R_n \) when the underlying distribution is \(G \) is not known. Consequently, the quantiles of \(R_n \), for \(1 < n < \)

- 5 -
are obtained through a Monte Carlo simulation involving 10,000 random samples each of size \(n \), generated from \(G \) using the subroutine GGAMR of the International Mathematical and Statistical Library program package. These quantiles are given in Table 3.1.

3.1 Power of the Test for Exponentiality Based on \(R_n \)

To study the power of a test for exponentiality based on \(R_n \) against several alternatives, and to compare the performance of this test versus other competing scale-free tests, we have to again resort to a Monte Carlo simulation. For convenience, we choose \(n=20 \) so that our test statistic becomes \(R_{20} \), and we take 1000 replications of the test.

The significance level is taken to be .05, and the alternatives considered are the Weibull, the uniform, the Pareto, the gamma, and the log-normal. Depending upon the nature of the alternative, either the one-sided or both the one-sided and the two-sided tests are studied. One-sided tests are used whenever the alternative \(F \) is star (anti-star) ordered with respect to the exponential distribution \(G \), because then, \(R_F \leq (\geq) R_G \) [Chandra and Singpurwalla (1980)]. Also, whenever \(R_F \leq (\geq) R_G \), the test based on \(R_n \) is unbiased against the alternative \(F \), in the sense of Lehman and Sheffé. The results of the power studies are summarized in column 2 of Table 3.2. In computing the entries in column 2, the quantiles of \(R_{20} \) given in Table 3.1 are used.

3.2 Comparison with Other Tests

Of the several goodness of fit tests for the exponential distribution which are available in the literature (Stephens, 1978), the one which appears to be the most recent and which enjoys the advantages of good power, good asymptotic relative efficiency, robustness to measurement error, etc., is the one based on the Gini statistic \(G_n \) (Gail and Gastwirth, 1978), where
Table 3.1

Quantiles of R_n for Different Values of n Based on a Monte Carlo Simulation of 10,000

<table>
<thead>
<tr>
<th>n</th>
<th>.01</th>
<th>.025</th>
<th>.05</th>
<th>.10</th>
<th>.90</th>
<th>.95</th>
<th>.975</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00008</td>
<td>0.00034</td>
<td>0.00122</td>
<td>0.00532</td>
<td>0.49259</td>
<td>0.56993</td>
<td>0.61734</td>
<td>0.65771</td>
</tr>
<tr>
<td>3</td>
<td>0.00510</td>
<td>0.01217</td>
<td>0.02333</td>
<td>0.04388</td>
<td>0.53274</td>
<td>0.64686</td>
<td>0.74274</td>
<td>0.84830</td>
</tr>
<tr>
<td>4</td>
<td>0.01661</td>
<td>0.03065</td>
<td>0.04909</td>
<td>0.08060</td>
<td>0.56292</td>
<td>0.66990</td>
<td>0.75945</td>
<td>0.87696</td>
</tr>
<tr>
<td>5</td>
<td>0.03371</td>
<td>0.05483</td>
<td>0.08048</td>
<td>0.11372</td>
<td>0.57271</td>
<td>0.67130</td>
<td>0.76196</td>
<td>0.89225</td>
</tr>
<tr>
<td>6</td>
<td>0.05410</td>
<td>0.07883</td>
<td>0.10211</td>
<td>0.13992</td>
<td>0.58268</td>
<td>0.66895</td>
<td>0.75844</td>
<td>0.87641</td>
</tr>
<tr>
<td>7</td>
<td>0.07200</td>
<td>0.09540</td>
<td>0.12582</td>
<td>0.16153</td>
<td>0.57780</td>
<td>0.66236</td>
<td>0.74588</td>
<td>0.84759</td>
</tr>
<tr>
<td>8</td>
<td>0.08550</td>
<td>0.11248</td>
<td>0.14028</td>
<td>0.17900</td>
<td>0.57520</td>
<td>0.65668</td>
<td>0.74278</td>
<td>0.84773</td>
</tr>
<tr>
<td>9</td>
<td>0.09827</td>
<td>0.12611</td>
<td>0.15547</td>
<td>0.19029</td>
<td>0.57614</td>
<td>0.65756</td>
<td>0.72720</td>
<td>0.81783</td>
</tr>
<tr>
<td>10</td>
<td>0.10916</td>
<td>0.13937</td>
<td>0.16604</td>
<td>0.20092</td>
<td>0.57528</td>
<td>0.65064</td>
<td>0.72119</td>
<td>0.80938</td>
</tr>
<tr>
<td>11</td>
<td>0.12018</td>
<td>0.14841</td>
<td>0.17718</td>
<td>0.21146</td>
<td>0.57565</td>
<td>0.64365</td>
<td>0.71143</td>
<td>0.79680</td>
</tr>
<tr>
<td>12</td>
<td>0.13270</td>
<td>0.15778</td>
<td>0.18560</td>
<td>0.21990</td>
<td>0.57195</td>
<td>0.64383</td>
<td>0.70117</td>
<td>0.77535</td>
</tr>
<tr>
<td>13</td>
<td>0.13840</td>
<td>0.16789</td>
<td>0.19327</td>
<td>0.22929</td>
<td>0.56658</td>
<td>0.63012</td>
<td>0.69450</td>
<td>0.77214</td>
</tr>
<tr>
<td>14</td>
<td>0.14785</td>
<td>0.17491</td>
<td>0.20265</td>
<td>0.23555</td>
<td>0.56673</td>
<td>0.62765</td>
<td>0.68843</td>
<td>0.76281</td>
</tr>
<tr>
<td>15</td>
<td>0.15536</td>
<td>0.18469</td>
<td>0.21056</td>
<td>0.24169</td>
<td>0.56434</td>
<td>0.62193</td>
<td>0.67875</td>
<td>0.74745</td>
</tr>
<tr>
<td>16</td>
<td>0.16473</td>
<td>0.19231</td>
<td>0.21795</td>
<td>0.24782</td>
<td>0.55598</td>
<td>0.61718</td>
<td>0.67803</td>
<td>0.74812</td>
</tr>
<tr>
<td>17</td>
<td>0.17099</td>
<td>0.20053</td>
<td>0.22379</td>
<td>0.25433</td>
<td>0.55571</td>
<td>0.61133</td>
<td>0.67102</td>
<td>0.73812</td>
</tr>
<tr>
<td>18</td>
<td>0.17428</td>
<td>0.20158</td>
<td>0.22646</td>
<td>0.25749</td>
<td>0.55432</td>
<td>0.61367</td>
<td>0.66503</td>
<td>0.72869</td>
</tr>
<tr>
<td>19</td>
<td>0.18195</td>
<td>0.20812</td>
<td>0.23287</td>
<td>0.26366</td>
<td>0.55047</td>
<td>0.60271</td>
<td>0.65522</td>
<td>0.72314</td>
</tr>
<tr>
<td>20</td>
<td>0.18472</td>
<td>0.21430</td>
<td>0.23677</td>
<td>0.26518</td>
<td>0.54724</td>
<td>0.60260</td>
<td>0.64891</td>
<td>0.71128</td>
</tr>
<tr>
<td>21</td>
<td>0.19266</td>
<td>0.21802</td>
<td>0.24016</td>
<td>0.26705</td>
<td>0.54522</td>
<td>0.59751</td>
<td>0.65082</td>
<td>0.70937</td>
</tr>
<tr>
<td>22</td>
<td>0.19732</td>
<td>0.22258</td>
<td>0.24414</td>
<td>0.27134</td>
<td>0.54427</td>
<td>0.59567</td>
<td>0.64036</td>
<td>0.70218</td>
</tr>
<tr>
<td>23</td>
<td>0.19763</td>
<td>0.22566</td>
<td>0.24930</td>
<td>0.27593</td>
<td>0.54367</td>
<td>0.59740</td>
<td>0.64373</td>
<td>0.69910</td>
</tr>
<tr>
<td>24</td>
<td>0.20245</td>
<td>0.22842</td>
<td>0.24851</td>
<td>0.27745</td>
<td>0.53971</td>
<td>0.59058</td>
<td>0.63261</td>
<td>0.69686</td>
</tr>
<tr>
<td>25</td>
<td>0.20830</td>
<td>0.23180</td>
<td>0.25467</td>
<td>0.28102</td>
<td>0.54133</td>
<td>0.58599</td>
<td>0.62697</td>
<td>0.68312</td>
</tr>
<tr>
<td>n</td>
<td>.01</td>
<td>.025</td>
<td>.05</td>
<td>.10</td>
<td>.90</td>
<td>.95</td>
<td>.975</td>
<td>.99</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>26</td>
<td>0.21163</td>
<td>0.23450</td>
<td>0.25855</td>
<td>0.28133</td>
<td>0.53562</td>
<td>0.58352</td>
<td>0.68123</td>
<td>0.69001</td>
</tr>
<tr>
<td>27</td>
<td>0.21510</td>
<td>0.23802</td>
<td>0.26113</td>
<td>0.28480</td>
<td>0.53911</td>
<td>0.58711</td>
<td>0.68536</td>
<td>0.69138</td>
</tr>
<tr>
<td>28</td>
<td>0.21873</td>
<td>0.24216</td>
<td>0.26418</td>
<td>0.28854</td>
<td>0.54460</td>
<td>0.59067</td>
<td>0.68961</td>
<td>0.69350</td>
</tr>
<tr>
<td>29</td>
<td>0.22237</td>
<td>0.24651</td>
<td>0.26634</td>
<td>0.29224</td>
<td>0.55017</td>
<td>0.59417</td>
<td>0.69400</td>
<td>0.69572</td>
</tr>
<tr>
<td>30</td>
<td>0.22648</td>
<td>0.24758</td>
<td>0.26804</td>
<td>0.29580</td>
<td>0.55564</td>
<td>0.59764</td>
<td>0.69850</td>
<td>0.69793</td>
</tr>
</tbody>
</table>
TABLE 3.2

POWER COMPARISONS FOR A TEST FOR EXPONENTIALLY BASED ON THE REDUNDANCY AND THE GINI STATISTIC (based on 1,000 samples of size n=20, using a significance level of α=0.05)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>R_{20} 1-Sided Test</th>
<th>R_{20} 2-Sided Test</th>
<th>G_{20} 1-Sided Test</th>
<th>G_{20} 2-Sided Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull shape = 0.8</td>
<td>0.346</td>
<td>†</td>
<td>0.336</td>
<td>†</td>
</tr>
<tr>
<td>Weibull shape = 1.5</td>
<td>0.643</td>
<td>†</td>
<td>0.643</td>
<td>†</td>
</tr>
<tr>
<td>Uniform on (0,2)</td>
<td>0.826</td>
<td>†</td>
<td>0.829</td>
<td>†</td>
</tr>
<tr>
<td>Pareto DF $1 - 1/4x^2$</td>
<td>0.830</td>
<td>†</td>
<td>0.835</td>
<td>†</td>
</tr>
<tr>
<td>Gamma shape 2.0</td>
<td>0.631</td>
<td>†</td>
<td>0.622</td>
<td>†</td>
</tr>
<tr>
<td>Lognormal* $\sigma=0.6, \mu=1$</td>
<td>0.873</td>
<td>†</td>
<td>0.873</td>
<td>†</td>
</tr>
<tr>
<td>Lognormal* $\sigma=1.0, \mu=1$</td>
<td>0.144</td>
<td>0.154</td>
<td>0.117</td>
<td>0.126</td>
</tr>
<tr>
<td>Lognormal* $\sigma=1.4, \mu=1$</td>
<td>0.629</td>
<td>†</td>
<td>0.620</td>
<td>†</td>
</tr>
</tbody>
</table>

* $f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2\sigma^2}\right), \ 0 < x < \infty$.

† A two-sided test is inappropriate for this case.

Thus it appears that it is appropriate for us to compare the test for exponentiability based on R_n with the one based on G_n with respect to both the power and the asymptotic relative efficiency. Another reason for choosing G_n as a basis for comparison is that Chandra and Singpurwalla (1980) have shown that a test for exponentiability based on G_n is identical to the one based on the "total time on test" of Barlow.
and Doksum (1972). Since this latter test is known to be asymptotically minimax against a large class of alternatives defined by the Kolmogorov distance, so is the test based on \(G_n \).

In column 3 of Table 3.2 we give the powers of the tests for exponentiality based on \(G_{20} \) against the several alternatives mentioned before. The entries in column 3 of Table 3.2 have been taken from Table 1 of Gail and Gastwirth (1978) for all the alternatives considered except the lognormal—this alternative was not considered by the above referenced authors. The powers of \(G_{20} \) against the lognormal alternatives were obtained by us with a Monte Carlo simulation of 1000 replications.

From a comparison of the entries in columns 2 and 3 of Table 3.2, we see that the two tests for exponentiality based on \(R_{20} \) or \(G_{20} \) perform equally well or poorly, depending on the alternative considered. For the lognormal alternative with \(\sigma = 1 \) and \(\mu = 1 \), the test based on \(R_{20} \) appears to have a slight edge over the one based on \(G_{20} \). Both these tests have low power.

A reason why the tests for exponentiality based on the sample redundancy and the Gini index have low power for the lognormal alternative with \(\mu = 1 \) and \(\sigma = 1 \), is that this distribution is neither star nor anti-star ordered with respect to the exponential, whereas the other alternatives are. Furthermore, Chandra and Singpurwalla (1980) also show that when a distribution \(F \) is star (anti-star) ordered with respect to the exponential distribution \(G \), then \(G_F \), the Gini index of \(F \), is less (greater) than \(G_G \), the Gini index of \(G \). Thus, it is not possible to claim unbiasedness of either \(R_{20} \) or \(G_{20} \) for the lognormal alternative in question, and our conclusion is that neither the test based on the Gini index nor the test based on the redundancy should be used under the circumstances described above.
\[R_F(\beta) = \psi(\beta) - \log \beta, \text{ where } \psi(x) = \frac{d \log f(x)}{dx}. \text{ Hence } R_F^{(1)} = \psi^{(1)}(2) - 1 = -0.3550668, \text{ and from (4.2) we get the A.R.E. as 0.674.} \]

For the Weibull alternatives \(F(x, \beta) = \frac{1}{\lambda} (x/\lambda)^{\beta - 1} \exp\left[-(x/\lambda)^{\beta}\right], \) the variance of \(\sqrt{n\beta} \) is \(V = 0.60793, \) again independent of \(\lambda, \) and

\[R_F(\beta) = \frac{1}{\beta} \psi\left(1 + \frac{1}{\beta}\right) - \log\left(1 + \frac{1}{\beta}\right). \text{ Hence } R_F^{(1)} = -\psi(2) - \psi^{(1)}(2) + \psi(2) = -0.6449332, \text{ and from (4.2) we get the A.R.E. as 0.872.} \]
REFERENCES

OFFICE OF NAVAL RESEARCH
STATISTICS AND PROBABILITY PROGRAM

BASIC DISTRIBUTION LIST
FOR
UNCLASSIFIED TECHNICAL REPORTS

JANUARY 1981

Copies

Statistics and Probability Program (Code 436)
Office of Naval Research
Arlington, VA 22217

Office of Naval Research
Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Office of Naval Research
New York Area Office
715 Broadway - 5th Floor
New York, New York 10003

Commanding Officer
Office of Naval Research Eastern/Central Regional Office
Attn: Director for Science
666 Summer Street
Boston, MA 02210

Commanding Officer
Office of Naval Research Western Regional Office
Attn: Dr. Richard Lau
1030 East Green Street
Pasadena, CA 91101

Commanding Officer
Office of Naval Research Branch Office
Attn: Director for Science
556 South Clark Street
Chicago, Illinois 60605

Office of Naval Research
Scientific Liaison Group
Attn: Scientific Director
American Library - Tokyo
APO San Francisco 96554

Applied Mathematics Laboratory
David Taylor Naval Ship Research and Development Center
Attn: Mr. C. H. Gleisner
Bethesda, Maryland 20084

Commandant of the Marine Corps
(Code AX)
Attn: Dr. A. L. Stahlke
Scientific Advisor
Washington, DC 20180

Director
National Security Agency
Attn: Mr. Stahly and Dr. Haar
(Rsl)
Fort Meade, MD 20755

Navy Library
National Space Technology Laboratory
Attn: Navy Librarian
Bay St. Louis, MS 39522

U. S. Army Research Office
P.O. Box 12211
Attn: Dr. J. Chandra
Research Triangle Park, NC 27706
OASD (IAD), Pentagon
Attn: Mr. Charles S. Smith
Washington, DC 20301 1

ATR Field Unit-USAREUR
Attn: Library
APO Orlando 09403 1

AO Field Unit-USAREUR
Attn: Library
APO New York 09403 1

Naval Underwater Systems Center
Attn: Dr. Derrill J. Bondelon
Newport, Rhode Island 02842 1

Library, Code 1424
Naval Postgraduate School
Monterey, CA 93940 1

Technical Information Division
Naval Research Laboratory
Washington, DC 20375 1

Drs. Barbara Ballar
Director, Statistical Standards
Washington, DC 20223 1

Dr. Gerhard Heiche
Naval Air Systems Command
Jefferson Plaza No. 1
Arlington, VA 20360 1

B. L. Clark
Naval Sea Systems Command
Crystal Mall #4, Rm. 129
Washington, DC 20036 1

Mr. Ted Tupper
Naval Sea Systems Command
Crystal Mall #4, Rm. 129
Washington, DC 20036 1