

INFLUENCE OF WING DAM NOTCHING ON AQUATIC MACROINVERTEBRATES IN POOL 13, UPPER MISSISSIPPI RIVER: THE PRENOTCHING STUDY

Ъy

Thomas J. Hall

Wisconsin Cooperative Fishery Research Unit

11 222

LEVELT

A Thesis

submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

College of Natural Resources

UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin

May 1980

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

2

81

いいたちのたちでものでしていたとうとう

AD A 0 96633

ş,

CORRECTIONS/ERRORS - HALL THESES

Page

ومعاهدة أمضاط ومختففات العنوان وطاريرة تعاأن فتنوعوه تألي وكوست معادات فتكرد فالتريين أوالي والمراجع والمرور ويردين

1

3 At the end of the first paragraph add: "Their locations were marked with floats." Gross out: "with a grapple hook on" in the first centence of the next paragraph and put "between" in.

THE STA

ş

•

- 30 Forty-<u>nine</u> percent...
- 40 station 2<u>5</u>-6-7...
- 66 station 26-6-7...
- 160 , bicmass $(g)/m^2$ Gligadhaeta

INFLUENCE OF WING DAM NOTCHING ON AQUATIC MACROINVERTEBRATES IN POOL 13, UPPER MISSISSIPPI RIVER: THE PRENOTCHING STUDY. Martenie Marine, by D 1/20 65 | D 1/20 65 | Thomas J. /Hall/

Wisconsin Cooperative Fishery Research Unit

A Thesis

submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

College of Natural Resources

UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin

May 1980

41 2

APPROVED BY THE GRADUATE COMMITTEE OF:

111. Pul

Dr. Daniel W. Coble, Committee Chairman Professor of Fisheries

Henry E. Booke

Dr. Henry E. Booke Professor of Fisheries

John n seaten

Dr. John R. Heaton Professor of Fisheries

Edward m Ster

Dr. Edward M. Stern Assistant Professor of Biology

A. Burn Mal

ABSTRACT

Benthic and colonizing macroinvertebrates and physicochemical characteristics were studied at six wing dams and an adjacent side channel) in Pool 13 of the Upper Mississippi River in June, August, September through October 1978, and June 1979 in the prenotching phase of a project to determine the effects of wing dam notching on aquatic macroinvertebrates. Three wing dams were notched in May through June 1979. Water temperature and dissolved oxygen concentration were uniform with depth in each sampling period but varied among periods. Current velocity varied with sampling period because staff gauge, i.e. discharge, varied with time. Current velocity decreased with depth. The substrate was mainly medium sand because bottom current velocities ranged from 22 to 43 cm/s during 1978.

Fifty-six taxa of macroinvertebrates were collected with a Ponar grab sampler in 1978. Oligochaeta, the most abundant class, comprised 51% of benthic invertebrate density. <u>Hexagenia bilineata</u> (Say), <u>Hexagenia limbata</u> (Serville), and early instars of <u>Hexagenia</u> spp. made up 64% of the benthic biomass. Hydropsychid caddisflies dominated the macroinvertebrate aufwuchs on basket and multiple-plate samplers, which were placed on wing dams. Basket samplers were colonized by significantly greater macroinvertebrate numbers, biomass, and number of taxa than multiple-plate samplers.

Total benthic invertebrate, origochaete, Hexagenia spp., and chironomid density, and biomass and number of benthic taxa each were positively, significantly related to percent silt-clay in the substrate. All of these macroinvertebrate categories were negatively, significantly related to percent sand in the substrate. Although gravel substrate was rare, the highest benthic invertebrate density, biomass, and number of taxa occurred in gravel. Wing dam 25, on the inside of a river bend in an area of reduced current, had significantly greater benthic density and biomass than for other wing dams because of greater silt-clay deposits there. Wing dam 28 had the lowest benthic density, biomass, and number of taxa and the greatest percentage of sand. Benthic density, biomass, and number of taxa were significantly greater at stations above wing dams than below because percentages of silt-clay were greater above than below.

Besides substrate, discharge and time of year in relation to invertebrate life cycles affected benthic invertebrate populations. Benthic invertebrates decreased in August 1978 and June 1979 partly because of peak discharges in the month before the decrease and partly because of insect emergence.

The wing dams were islands of rock in a sea of sand. Basket samplers collected 26.5 times more macroinvertebrate numbers and 14.3 times more biomass than the Ponar grab sampler in September 1978. These differences were related to habitat, i.e. basket samplers collected invertebrates from a lotic-erosional habitat, and the Ponar grab sampler sampled a lotic-depositional habitat.

1.1

ACKNOWLEDGEMENTS

The study was supported by funds and materials from the Great River Environmental Action Team II and the Wisconsin Cooperative Fishery Research Unit, University of Wisconsin, Stevens Point.

My thanks go to colleagues, Rod Pierce, Scott Corley, Dr. William LeGrande, and other members of the Wisconsin Cooperative Fishery Research Unit, who spent many hours in the field collecting data. I would also like to thank Tom Gengerke and John Pitlo of the Iowa Conservation Commission for their cooperation and assistance.

I am particularly grateful to my advisor, Dr. Daniel Coble, who gave supervision and advice on all phases of the project and critically evaluated the manuscript, and to Dr. Henry Booke for helping solve equipment problems and examining the manuscript. I am indebted to Dr. Edward Stern for confirming my bivalve mollusk identification and examining the manuscript, as well as to Dr. Jack Heaton and Dr. Stan Szczytko for examining the manuscript. I also express appreciation to Dr. Frederick Hilpert and Tom Zeisler for their help with statistical procedures and programming, and to Dr. James Bowles and Gene Tubbs for giving information on sediment analyses and equipment.

Finally, none of this would have been possible without the continual interest, support, and love by my wife, Janette. I dedicate my thesis to my late parents, Mr. and Mrs. Irving T. Hall, for their love and support throughout my education.

v

TABLE OF CONTENTS

	Page
TITLE PAGE	i
COMMITTEE SIGNATURE PAGE	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES (OR ILLUSTRATIONS)	x
LIST OF APPENDICES	xi
INTRODUCTION	1
STUDY AREA	3
METHODS AND MATERIALS	6
<u>Aquatic Macroinvertebrates</u>	6
Physicochemical Characteristics	11
Statistical Analyses	12
Hydrographic Relief Sediments	14
RESULTS AND DISCUSSION	15
Physicochemical Characteristics of Benthos Stations	15
Discharge	15
Current Velocity	15
Substrate	16
Dissolved Oxygen and Temperature	22
Benthos	23
Influence of Substrate on Benthos	23
Site Differences	24
Influence of Discharge and Season on Benthos	25
Taxonomic Composition	30

1

Page

La constantino

-

Macroinvertebrate Aufwuchs	39
Comparison of Stations	39
Comparison of Samplers	39
Taxonomic Composition	44
Macroinvertebrate Habitat	45
Hydrographic Relief Sediments	46
LITERATURE CITED	51
APPENDICES	62

A. States

1.4

Ţ

LIST OF TABLES

Proposed notches for wing dams Table 1. 25, 26, and 28, Pool 13, Upper Mississippi River (refer to 7 Figure 1 for locations) ------Table 2. Locations of artificial substrate transects (meters from Illinois bank), Pool 13, Upper Mississippi River (refer to Figure 1 for locations) ------9 Table 3. Bottom current velocity (cm/s) at benthos stations in the side channel, wing dams, and stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations) ------18 Table 4. Current velocity (cm/s) at 0.6 of the depth at benthos stations (refer to Figure 1 for locations) and staff gauge readings (m) at Lock and Dam 12, Pool 13, Upper Mississippi River, 1978 -----19 Table 5. Benthic invertebrate density and biomass (g) per m^2 and number of taxa collected with a $252-cm^2$ Ponar grab from the side channel, wing dams, and from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations) -----26 Table 6. Benthic invertebrate density and biomass (g) per m^2 and number of taxa collected with a 252-cm² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations) ------27 Table 7. List of macroinvertebrate taxa collected with a 252-cm² Ponar grab sampler and artificial substrates from Pool 13, Upper Mississippi River (X = present) ----- 31

viii

and the second sec

Page

Page

Table 8.	Total invertebrate density and biomass (g) per m ² and number of taxa for basket samplers and multiple-plate samplers from the wing dams, Pool 13, Upper Mississippi River, September 28, October 3, 12, 1978 (refer to Figure 1 for locations)	40
Table 9.	Bottom current velocity (cm/s)	

at hydrographic relief stations of the wing dams, Pool 13, Upper Mississippi River, 1978 ----- 49

*** **

Į

LIST OF FIGURES (OR ILLUSTRATIONS)

Page

Figure 1.	The study area showing the wing dams, side channel, past dredge disposal areas, Ponar sample sites, and artificial substrate sample sites	5
Figure 2.	Mean current velocity recorded at the surface, 0.6 of the depth, and the bottom at benthos sites for June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River	17
Figure 3.	Percent mean particle size (Phi units) from benthos stations in the side channel and wing dams, Pool 13, Upper Mississippi River, 1978	20
Figure 4.	Percent mean particle size (Phi units) from hydrographic relief stations at the wing dams, Pool 13, Upper Mississippi River, 1978	47

х

ł

I

LIST OF APPENDICES

Page

3

ŝ

Appendix A.	Subsample counts for large catches of invertebrates collected with a 252-cm ² Ponar grab, September 29, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	62
Appendix B.	Subsample counts for large catches of invertebrates collected with basket samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	63
Appendix C.	Subsample counts for large catches of invertebrates collected with multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	64
Appendix D.	Percentage error (D) ^a for mean total invertebrate numbers per m ² collected with a 252-cm ² Ponar grab, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975: section 8.222, Elliot 1977: section 8.22)	65
Appendix E.	Percentage error (D) ^a for mean total invertebrate numbers per m ² collected with basket samplers and multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975: section 8.222, Elliot 1977: section 8.22)	66
Appendix F-1.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, June 12, 17, 18, 20, 21, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	67

1

xi

Page

Appendix 1	F-2.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, August 2-4, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	69
Appendix 1	F-3.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, September 29-30, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	71
Appendix l	F-4.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, June 5-6, 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	73
Appendix (G.	Particle size fractions as percent total in 100-gram samples (Ingram 1971) collected with a Ponar grab, benthos sites, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	75
Appendix H	H-1.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), June 12, 17, 18, 20, 21, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 locations)	81
Appendix H	H-2.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), August 2-4, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	97
Appendix H	H-3.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), September 29-30, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	107

1

I

xii

i barre

A State

Page

4

Appendix H-4.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), June 5-6, 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	125
Appendix I.	Number and biomass per square meter of macroinvertebrates collected with a basket sampler, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	136
Appendix J.	Number and biomass per square meter of macroinvertebrates collected with a multiple-plate sampler, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	146
Appendix K.	Particle size fractions as percent total in 100-gram samples (Ingram 1971) collected with a Ponar grab, hydrographic relief sites, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	155
Appendix L.	Mean yearly discharge in thousands entering Pool 13 from Lock and Dam 12, 1970–1979, Upper Mississippi River	162
Appendix M.	Mean monthly discharge in thousands entering Pool 13 from Lock and Dam 12, January 1978 to December 1979, Pool 13, Upper Mississippi River	163
Appendix N.	Results of Mann-Whitney tests of bottom current velocities (cm/s) at benthos stations in the side channel and wing dams and Wilcoxon paired-sample test of velocities at stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations) a second	1.64
Appendix O.	Spearman's rank correlation coefficients for factors affecting benthic invertebrate density, biomass,	104
	and number of taxa, 1978	165

الإستوي.

Appendix P. Results of Mann-Whitney tests of benthic invertebrate density and biomass (g) per m^2 and number of taxa from the side channel and wing dams and Wilcoxon paired-sample tests of invertebrate density and biomass (g) per m^2 and number of taxa from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for 166 locations) -----_____ Appendix Q. Results of t-tests of square-root mean total invertebrate density per m^2 and Mann-Whitney tests of total invertebrate biomass (g) per m^2 and number of taxa collected with a 252-cm² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations) ----- 168

Page

INTRODUCTION

The U.S. Army Corps of Engineers submitted plans on June 30, 1977 to the Great River Environmental Action Team II (GREAT II) for repair of wing dams in Pools 13 and 19. The Fish and Wildlife Management Work Group of GREAT II proposed the construction of notches in some of the wing dams to help alleviate the detrimental effects of accreted sediments between wing dams. They proposed that a notch be constructed in wing dams 25, 26, and 28 (Figure 1). Wing dikes have been notched in the Missouri River to reduce accreted sediments between the dikes and in backwater areas (Kallemeyn and Novotny 1977, Reynolds 1978, Jennings 1979, Dieffenbach 1980).

The objectives of this study were to compare species composition, density, and biomass of aquatic macroinvertebrates and measure physicochemical characteristics at the wing dams and side channel before notching. This study was half of the prenotching phase of the investigation. In the other half, fish populations at the wing dams and in the side channel and physicochemical characteristics at hydrographic relief transect stations were investigated by Rod Pierce (1980), another student in the Wisconsin Cooperative Fishery Research Unit.

The post-notching study is scheduled to be completed in the fall of 1980 by Scott Corley of the Wisconsin Cooperative Fishery Research Unit.

Structures for directing current and reducing erosion in large rivers for the benefit of navigation have included revetments, pile dikes, and wing dikes. Revetments are

constructed to stabilize river banks from erosion. Wing dikes, which are often referred to as wing dams on the Upper Mississippi River and as wing dikes on the Missouri River, have been constructed to deflect current towards the center of the main channel to help reduce the need for recurrent dredging and to maintain a navigation channel.

Slack water areas often have developed behind wing dams, resulting in accretion of sediments between them and in adjacent backwaters because most wing dams were built in areas of natural deposition. Such sediment deposition results in loss of invertebrate and fishery habitat (Funk and Robinson 1974, Simons et al. 1975).

Although little is known of effects of wing dam notching on aquatic communities, it has been learned that wing dam height, location of notches in dams, discharge, and location of the dam in relation to the thalweg of a river affects the degree to which sediments are scoured (Simons et al. 1974, Reynolds 1978, Jennings 1979).

STUDY AREA

Pool 13 of the Upper Mississippi River extends from Bellevue, Iowa, 55 kilometers south to 2.4 kilometers north of Fulton, Illinois. The northern end of the pool is 2.6 kilometers wide and gradually widens to 4.8 kilometers. The pool is formed by Lock and Dam 13 at kilometer 841 (river mile 522.5), which was placed in operation by the U.S. Army Corps of Engineers on May 13, 1939. At Lock and Dam 13, the pool is maintained at an elevation of 178 meters above sea level (flat pool) creating a 2.7-meter pool for navigation. At flat pool, there are 11,778 hectares of water surface of which 2,945 hectares (25%) are classified as channel. Of the 814 kilometers of shoreline of the pool, 94% is federally owned (U.S. Army Corps of Engineers 1974).

The bedrock in the area of the pool consists of Galena dolomite and Maquoketa shale from the Ordovician age. Depth to bedrock ranges from 9 to 46 meters. There are no glacial deposits in the northern area of Pool 13, but glacial deposits in the southern area of the pool are of the Illinoian and Kansan stages. The floodplain soils are silt-clay deposited 1 to 6 meters deep overlying sand. Pool 13 drains an area of 221,445 square kilometers. Approximately 1,415,232 metric tons of sediment enters Pool 13 annually. The riverbed consists of sand with lesser amounts of silt-clay, gravel, and boulders (U.S. Army Corps of Engineers 1974).

The study area (Figure 1) included wing dams 25, 26, 28, 29, 30, and 31 between river kilometers 880.7 and 882.7 (river miles 547.4 and 548.6) and an unnamed side channel between river kilometers 880.9 and 881.9 (river miles 547.5 to 548.1). The Illinois bank was primarily open with scattered trees, whereas the islands, shorelines of the side channel, and the Iowa bank were more densely covered river bottom woodlands.

Study sites in the river channel were within an area approximately 38 meters upstream and downstream of the base of each wing dam. The study sites included main channel border (the zone between the 2.7-meter channel and the main river bank or islands) and side channel (all departures from the main channel in which there is current during normal river stages) (Rasmussen 1979).

River kilometers 878.5 to 883.0 (river miles 546.0 to 548.8) are classified by the U.S. Army Corps of Engineers (1974) as a recurrent dredging area. This area has been dredged 13 times since 1945 with 1,373,293 cubic meters of dredge spoil having been removed. Areas of past dredge spoil disposal are between the wing dams in the study area and on the Iowa bank (Figure 1). The Maquoketa River, which enters Pool 13 opposite the study area, introduces approximately 417,312 metric tons of sediments to Pool 13 annually (U.S. Army Corps of Engineers 1974).

Figure 1. The study area showing the wing dams, side channel, past dredge disposal areas, Ponar sample sites, and artificial substrate sample sites. The study area is eight miles south of Bellevue, Iowa (U.S. Army Corps of Engineers 1974).

METHODS AND MATERIALS

Aquatic Macroinvertebrates

Benthic invertebrates were collected with a 252-cm² Ponar grab sampler on June 12, 17, 18, 20, 21; August 2-4; September 29-30, 1978; and June 5-6, 1979. Three replicate samples were taken at four sites near each wing dam and at three sites in the adjacent side channel. Sites at wing dams 25, 26, and 28 were located as follows: one site was 8 m upstream of the dams' base at the center of the proposed notch (Figure 1, Table 1). When the proximal end of the wing dam (Illinois bank) was considered to be 0° and the distal end (channel) 180° , the remaining sites radiated downstream from the center of the proposed notch at 45° -8 m, 135° -23 m, and 90° -38 m from the base of the dam (Figure 1). Sites at wing dams 29, 30, and 31 were located 8 m upstream and downstream from the base of the dam at locations 61 and 152 m from the Illinois bank (Figure 1).

Distances for transects along each dam were measured with a Rangematic range finder. Accuracy of the range finder varied from 2.2% (1.4 m) at 64 m to 1.3% (1.4 m) at 110 m.

Three Ponar grab sites in the side channel were as follows: 15 m from the west bank at river mile 548.0, 15 m from the east bank at river mile 547.8, and 15 m from the west bank at river mile 547.6 (Figure 1).

Artificial substrates included four cylindrical metal

Wing dam	Center of notch from IL bank	Depth	Width
	······································		
25	84	1.5	46
26	99	1.5	46
28	61	1.5	91

Table 1. Proposed notches for wing dams 25, 26, and 28, Pool 13, Upper Mississippi River (refer to Figure 1 for locations).

eners.

ŧ

baskets with concrete spheres (Mason et al. 1967, Jacobi 1971) and four multiple-plate substrates (Hester and Dendy 1962). The artificial substrates were set August 17. 1978 at each wing dam and left for six to eight weeks to allow for optimum colonization of macroinvertebrates (Mason et al. 1973). Two basket samplers and two multiple-plate samplers were located on each of two transects (Figure 1, Table 2), with one basket and one multiple-plate sampler on the upstream and on the downstream side of the wing dam, both equidistant between the base and crown. Baskets were 28 x 18 cm, and spheres were 7.5 cm in diameter. The multiple-plate substrates were made from 2-mm tempered hardboard (masonite), with eight alternate layers of 7.5-cm squares and seven 2.5-cm squares attached to an 8-cm ring bolt. The artificial substrates were tied to a 4190 x 1-cm nylon rope that was anchored upstream from the dam by a 122 x 1.3-cm steel reinforcing rod driven into the bottom.

Artificial substrates were retrieved with a grapple hook on September 28, October 3, 12, 1978. Sixty-five percent (28) of the artificial substrates were recovered. A washtub was placed below each sampler before it was removed from the water to prevent the loss of organisms (Bull 1968, Hilsenhoff 1969, Mason et al. 1973). The substrates were dismantled in washtubs and scrubbed to remove invertebrates. Only those organisms on the spheres were used in the quantitative analysis.

	Transect		
Wing dam	Inside	Outside	
25	64	152	
26	79	183	
28	105	213	
29	61	213	
30	61	213	
31	61	213	

Table 2. Locations of artificial substrate transects (meters from Illinois bank), Pool 13, Upper Mississippi River (refer to Figure 1 for locations).

Ì

Organisms attached to the wire basket, debris, or vegetation were discarded.

All samples were sieved through a U.S. No. 35 (0.50 mm) screened wash-bucket and placed in plastic bags containing five percent formalin (Lind 1974). In the laboratory, invertebrates were sorted from debris, subsampled (Cummins 1975: section 8.23, Elliot 1977: section 8.3) (Appendix A, B, and C), identified, and counted. Identification was facilitated by use of taxonomic keys of Ross (1944), Eurks (1953), Fremling (1960a, 1960b), Gooch (1967), Parmalee (1967), Burch (1972, 1973), Lewis (1974), Hilsenhoff (1975), McCafferty (1975), Edmunds et al. (1976), Wiggins (1978a), Merritt and Cummins (1978), Pennak (1978), and Schuster et al. (1978). Oligochaetes were too fragmented in screening to be identified further than class; numbers were estimated by counting prostomiums.

Invertebrate biomass was calculated from organism length (Hynes and Coleman 1968) for all but Oligochaeta, Zygoptera, and Unionidae. Hynes and Coleman (1968) assumed invertebrates to be cylinders in which volume increased by the cube of the length and with a specific gravity of 1.05. Weights for invertebrates with lengths equal to five diameters were 3.298×10^{-5} g times the length cubed; Chironomidae and Ceratopogonidae with lengths equal to 7.5 diameters were 1.393×10^{-5} g times the length cubed; and Gastropoda and Sphaeriidae, which were considered spheres, were 4.398×10^{-3} g times the radius cubed.

Unionidae, with and without shell, and Zygoptera were soaked in water for 30 minutes, blotted dry, and weighed on a Mettler H54 balance to the nearest 0.001 g. Oligochaeta were soaked for 30 minutes in water, centrifuged at 650 rpm for three minutes (Howmiller 1972, Stanford 1973), and weighed to the nearest 0.001 g.

Physicochemical Characteristics

Water temperature, dissolved oxygen concentration, and current velocity were measured, and sediments were collected at each sampling site at the time of the benthic invertebrate samples. Water temperature and dissolved oxygen concentration were determined at each meter of the water column with a YSI Model 54 Oxygen Meter. The oxygen meter was air-calibrated and checked against a Hach kit at the beginning of each sampling day. Current velocity was recorded at the water surface; at 0.2, 0.6, and 0.8 X depth; and 10 cm from the bottom with a cable-suspended Price Current Meter (Hynes 1970).

One sediment sample was collected with a 252-cm² Ponar grab at each benthos sampling site. Sediments were analyzed for particle size by the procedure of Ingram (1971) and divided into 10 particle size fractions based on the modified Wentworth Scale (Wentworth 1922, Cummins 1962). No attempt was made to separate fine sediments into silt and clay.

Statistical Analyses

Large variation is usually encountered in sampling benthic populations, and small samples are often statistically inaccurate because distribution of macroinvertebrates is usually contagious (Mottley et al. 1938; Needham and Usinger 1958, cited by Resh 1979; Allen 1959; Taylor 1965; Egglishaw 1969; Sugimoto 1969; Cummins 1975; DeMarch 1976; Elliot 1977; Minshall and Minshall 1977; Taylor et al. 1978; Resh 1979; Downing 1979). Parametric statistical methods should be applied to invertebrate data only if the data are normally distributed, the variance of the sample is independent of the mean, and the components of variance are additive (Elliot 1977).

I fitted log-log regressions of variances on means for benthos samples to find out if the variances were independent of the means. If they were not, I used a transformation based on the slope of the regression line (Taylor's Power Law) on invertebrate replicate counts or biomass (Downing 1979). Transformations that removed correlation between variances and means often normalize frequency distributions and ensure that the components of variance are additive (Bartlett 1947; Anscombe 1948; Quenouille 1950; Tukey 1957, 1968; Bliss and Owen 1958; Taylor 1961; Healy and Taylor 1962; Box and Cox 1964; Southwood 1966; Snedecor and Cochran 1967; Thöni 1967; Zar 1974; Cummins 1975; Elliot 1977; Downing 1979).

Parametric statistics were used on the transformed

counts or biomass. The arithmetic means of the transformed data plus an adjustment factor were transformed back to the original scale giving derived means (Quenouille 1950, Elliot 1977). Quenouille (1950) stated that derived means are usually in good agreement with means obtained by direct averaging, and that differences in derived means and arithmetic means can be considered adjustments that eliminate effects of extreme observations.

Cummins (1975), Elliot (1977), Resh (1979), and Downing (1979) felt that a tolerable error for bottom samples was a percentage error of precision of 20% calculated as $(SE)(100)/\bar{X}=20\%$. I calculated the sample size required for a 20% error for mean total invertebrate counts and biomass collected with a Ponar grab and artificial substrates (Cummins 1975: section 8.222, Elliot 1977: section 8.22). Data were pooled during analysis to reduce the large variation associated with invertebrate sampling. The percentage error for mean total invertebrate counts was approximately 20% (Appendix D and E). Whenever my transformations did not remove the correlation between the variances and means, or whenever the percentage error was greater than 20%, I used nonparametric statistics (Conover 1971, Elliot 1977, Downing 1979).

Guidelines of Sutcliffe (1979) were used for measurements of quantitative data.

Appendices F, G, H, I, J, and K are copies of computer printouts.

Hydrographic Relief Sediments

One sediment sample was collected with a $252-cm^2$ Ponar grab from six sites at each wing dam. Sites at the wing dams were located 30 m upstream and downstream from the base of the dam at the following locations from the Illinois bank:

Wing dam 25 - 91, 152, and 213 m

Wing dam 26 - 107, 168, and 259 m

Wing dam 28 - 61, 122, and 244 m

Wing dams 29, 30, and 31 - 61, 137, and 213 m.

Sediments were analyzed for particle size by the procedure of Ingram (1971). No attempt was made to separate fine sediments into silt and clay.

Data on current velocity, depth, dissolved oxygen concentration, hydrographic relief, and temperature for the hydrographic relief transects, as opposed to the benthos sampling sites, are in Pierce (1980).

RESULTS AND DISCUSSION

Physicochemical Characteristics of Benthos Stations

Discharge

The mean yearly discharge for 1979 was the second highest discharge recorded in the past decade, whereas the discharge for 1978 was slightly below average (Appendix L). Monthly discharges in 1978 were erratic with three peaks occurring (Appendix M), similar to discharge found in the Mississippi River by Dorris and Copeland (1963). The maximum monthly discharge in 1978 occurred in July, and in 1979, in April and May (Appendix M). The maximum monthly discharge for July 1978 was atypical because the maximum normally occurs in spring (Dorris and Copeland 1963; Hynes 1970; Fremling et al. 1978, 1979). The mean monthly discharge for May 1979 was 131% greater than in May 1978 (Appendix M). These differences in discharge between years should be considered in any comparisons of the environment through time. Leopold (1962), Leopold et al. (1964), Hynes (1970), Maddock (1972), Beaumont (1975), and Simons et al. (1975) concluded that discharge was the most important factor influencing biological, and physicochemical factors of a stream.

Current Velocity

Current velocity varied with depth, sampling location, and sampling period. The range of current velocities from bottom to surface was 8 to 105 cm/s during the study (Appendix F-1 to F-4). Current velocities became

progressively smaller with increasing depth (Figure 2). Hubault (1927, cited by Hynes 1970) and Ambühl (1959, 1961, 1962; cited by Hynes 1970) reported this aspect of flow with reference to benthic animals.

Bottom current velocity increased downstream from wing dams 25 to 31 in 1978 (Table 3). Current velocities were significantly greater for downstream wing dams (29, 30, and 31) than upstream wing dams (25, 26, and 28) and the side channel in 1978 (Appendix N) because the upstream wing dams were located on the inside of a river bend.

There was no difference in bottom current velocity above and below the wing dams (Table 3). Wing dams 26 and 28 were partly emergent in 1978, but current velocities were not lower at emergent dams than at submergent wing dam 25 (Table 3).

Mean current velocity varied with sampling period because staff gauge readings, i.e. discharge, varied with time. As staff gauge readings decreased in 1978, mean current velocity decreased (Table 4).

Substrate

Bottom current velocity determined particle size in the study area. Median particle size (0.25-0.50 mm) for the side channel and wing dams was in the medium to coarse sand range (Figure 3, Appendix G). Einsele (1960, cited by Hynes 1970) stated that bottom velocities of 20 to 40 cm/s would produce sandy substrates. Mean bottom current velocities for the benthos sites varied from 22 to 43 cm/s

Table 3.	Bottom current velocity (cm/s) at benthos stations
	in the side channel, wing dams, and stations
	upstream and downstream of the wing dams, Pool 13,
	Upper Mississippi River, 1978 (refer to Figure 1
	for locations). Means and standard deviations
	for velocities upstream and downstream of the
	wing dams were calculated for stations located
	nearest to the Illinois bank. Station 30-6-7
	in August 1978 was eliminated because of an
	erroneous velocity value (Appendix F-2).

Site	Mean	SD	n
Side channel	25 ^a	10	9
Wing dam 25	22 ^a	9	12
Wing dam 26	22 ^a	11	12
Wing dam 28	28 ^a	9	12
Wing dam 29	40 ^b	12	12
Wing dam 30	39 ^b	10	11
Wing dam 31	43 ^b	5	12
Upstream	32	12	18
Downstream	29	12	18

1.00

4 H A.

a,b_{Significantly} different (Appendix N).

ł

18

1

.

1.00

Table 4. Current velocity (cm/s) at 0.6 of the depth at benthos stations (refer to Figure 1 for locations) and staff gauge readings (m) at Lock and Dam 12, Pool 13, Upper Mississippi River, 1978. Staff gauge readings were obtained from the U.S. Army Corps of Engineers, Lock and Dam 12, Bellevue, Iowa.

		Current velocity		Staff	gauge
Month	n	Mean	SD	Mean	SD
June 1978	27	54	12	2.81	0.33
August 1978	27	48	15	2.62	0.10
September 1978	27	38	14	2.24	0.10
June 1979	23	62	17	3.08	0.10

PARTICLE SIZE IN PHI UNITS

Figure 3. Percent mean particle size (Phi units) from benthos stations in the side channel and wing dams, Pool 13, Upper Mississippi River, 1978. Phi units, defined as the negative log to the base 2 of particle size diameter (mm), convert the geometric Wentworth classification in which each size category is twice the preceding one, into an arithmetic one with equal class intervals, i.e. 0.063 mm = 4; 0.125 mm = 3; 0.25 mm = 2; 0.50 mm = 1; 1.00 mm = 0; 2.00 mm = -1; 4.00 mm = -2; 8.00 mm = -3; and 16 mm = -4 phi units. Silt-clay, which was less than 0.063 mm, was considered to be 5 phi units. Mdg = median particle size (mm).

PARTICLE SIZE IN PHI UNITS

Figure 3. (continued)

SILT-

1

7 1 21

.

in the 1978 samples (Table 3).

There was only a small amount of fine sand in the study area in 1978 (Figure 3) because bottom current velocities were equal to or greater than 20 to 30 cm/s (Table 3), the velocities required to transport fine sands (Schmitz 1961, Hynes 1970). Percentages of gravel and sand increased from upstream to downstream and percentages of silt-clay were less downstream (wing dams 28 to 31) than upstream (wing dams 25 to 26) in the study area (Figure 3) because current velocities increased from upstream to downstream (Table 3). However, percentages of silt-clay were higher than for very fine sands (Figure 3). Hynes (1970) stated that the packing coefficient of sediments complicates current velocities of 30 to 50 cm/s would be required to transport sandy clay (Schmitz 1961, Hynes 1970).

Bottom current velocities and sediment composition for the side channel were similar to those for wing dams 25 and 26 in 1978 (Figure 3, Table 3).

Several investigators have found substrate composition to depend on current velocity (Butcher 1927, 1933; Nielson 1950; Schmitz 1961; Hynes 1970). Nielson (1950) and Leopold et al. (1964) stated that increasing current velocity picks up, or rolls sediment particles of increasing size along the bed, and that these are carried downstream.

Dissolved Oxygen and Temperature

There was little range in dissolved oxygen concentration

and temperature from bottom to the surface within a sampling period, but both varied greatly between sampling periods (Appendix F-1 to F-4). Hynes (1970) and Welcomme (1979) stated that because of turbulence, water in a river channel rarely stratifies. Mean dissolved oxygen concentrations varied from 4.7 to 8.6 mg/l and mean temperatures varied from 16.0 to 23.3 °C during the study (Appendix F-1 to F-4). Dissolved oxygen concentrations and temperatures were comparable to those reported by Dorris and Copeland (1963) and Schramm and Lewis (1974) for the Mississippi River.

Davis (1975) stated that insufficient evidence exists to formulate definite dissolved oxygen criteria for aquatic invertebrate communities, but a reasonable basis was to follow recommendations for fish populations. Doudoroff and Shumway (1967) and Bennett (1970) recommended a minimum dissolved oxygen level of 5 mg/l for good mixed warmwater fish populations. Dissolved oxygen concentrations probably were not limiting to benthic invertebrates during the study. However, dissolved oxygen levels were not measured just before dawn when levels might have been lower.

Benthos

Influence of Substrate on Benthos

Substrate composition was an important influence on benthic invertebrate density, biomass, and number of taxa in the study area. Total invertebrate, Oligochaeta, <u>Hexagenia</u> spp., and Chironomidae density and biomass were positively, significantly related to percent silt-clay in substrates in 1978 (Appendix 0). Total invertebrate taxa were also

positively, significantly related to percent silt-clay (Appendix 0). All of these macroinvertebrate categories were negatively, significantly related to percent sand in substrates (Appendix 0). Total invertebrate, Oligochaeta, and <u>Hexagenia</u> spp. were negatively, significantly related to bottom current velocity (Appendix 0). However, high proportions of gravel (over 30%) were found at two sites at wing dam 31 in September 1978 (31-5-7 and 31-5-8), and the greatest invertebrate density, biomass, and number of taxa in the entire study were found then (Appendix G and H-3).

Wene (1940) stated that the addition of silt to sand increased the food content (detritus) available to macroinvertebrates. Results of this investigation confirmed the conclusions of others that sand is a poor substrate for benthic invertebrates (Gersbacher 1937; Tarzwell 1937a; Denham 1938; Murray 1938; Pennak and Van Gerpen 1947; Sprules 1947; O'Connel and Campbell 1953; Cordone and Kelly 1961; Leonard 1962; Chutter 1969; Hynes 1970; Leudtke and Brusven 1976; Fremling et al. 1978, 1979; Schmal and Sanders 1978). If notching increases the percentage of sand in the substrate, it would adversely affect bottom-dwelling macroinvertebrates in the study area.

Site Differences

Benthic density, biomass, and number of taxa varied among sites according to the differences in substrate composition. Wing dam 25, on the inside of a river bend in an area of reduced current velocity, was an area of deposition (Table 3).

Benthic density and biomass were significantly greater for wing dam 25 than for other wing dams because of the greater silt-clay deposits there (Figure 3, Table 5, Appendix P). Also the number of taxa was greatest at wing dam 25 and significantly greater there than at wing dams 28, 29, 30, and 31 (Table 5, Appendix P). The average proportion of silt-clay in the side channel was similar to that of wing dam 25 (Figure 3), but there was more variation from site to site in the side channel. The second highest density and number of taxa occurred in the side channel (Table 5). Wing dam 28 had the lowest benthic density, biomass, and number of taxa and the greatest percentage of sand (Figure 3, Table 5). Swift current over soft substrates has been related to low numbers and taxa of benthic animals (Richardson 1921, Briggs 1948, Berner 1951, Milkulski 1961, Hynes 1970). Leudtke and Brusven (1976) believed that the combination of exposure to strong current and instability of sand grains was responsible for restricting recolonization by invertebrates.

Mean benthic density, biomass, and number of taxa was significantly greater at stations above the wing dams than below (Table 5, Appendix P). These differences were probably caused by differences in substrate. Percentages of silt-clay were 33% greater for stations above than below the wing dams (Appendix G).

Influence of Discharge and Season on Benthos

Discharge and time of year in relation to invertebrate life cycles affected benthic invertebrate density, biomass, and number of taxa in the study area. Benthic populations

Benthic invertebrate density and biomass (g) per m^2 and number of taxa collected with a 252-cm² Ponar grab from the side channel, wing dams, and from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Means and standard deviations for stations upstream and downstream of the wing bank. Table 5.

(

)ensity			Biomass			Таха	
Site	Mean	SD	ч	Mean	SD	۶	Mean	ß	۲
Side channel	942	1139	27	6.18	11.03	27	6.3	4.3	6
Wing dam 25	1767	1256	36	34.20	44.67	36	7.2	3.5	12
Wing dam 26	833	1080	36	12.46	40.02	36	4.6	2.8	12
Wing dam 28	212	331	36	0.61	1.47	36	2.8	1.7	12
Wing dam 29	670	1910	36	6.42	25.68	36	4.2	2.2	12
Wing dam 30	305	413	36	1.63	4.60	36	3.0	2.1	12
Wing dam 31	224	380	30	3.14	13.25	30	3.8	1.5	10
Upstream	877	953	51	21.13	49.52	51	5.3	3.7	17
Downstream	745	1877	51	9.33	23.08	51	3.9	2.5	17

26

Benthic invertebrate density and biomass (g) per m^2 and number of taxa collected with a 252-cm² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). Table 6.

فتكر عفيد بالمسرب والمرغلالة ومعمانات ومعالية فالمعالية والمسافحة والألايانات وتركاها فيكمنا الالتكاريك والمرائيكين

I

I

I ş

		De	nsity			Biomas	w		Таха
Таха	ц	Mean	SD	Derived mean ^a	ц	Mean	SD	ч	Mean SD
June 1978	81	903	1520	908	81	19.78	43.77	27	5.2 2.9
August 1978	81	476 ^b	921	480	81	1.23 ^b	07.4	27	2.8 ^b 1.7
September 1978	75	757	1010	761	75	7.35	15.60	25	5.6 3.5
June 1979	69	663	722	666	69	3.05	6.96	23	3.9 1.9
^a Derived means (which is then	are ari transfo	ithmeti ormed b	c mean ack to	s of trans the orig:	sformed inal sc	l counts ale (Que	plus an ad nouille 19	ljustmer 950, Ell	it factor.

^bAugust values were significantly lower than those in other months (Appendix Q).

decreased significantly from June to August 1978 (Table 6, Appendix Q). The peak annual discharge that occurred in July 1978 probably caused part of the decrease by: 1) reducing percentages of productive substrate (silt-clay), 2) dislodging invertebrates and moving them downstream, and 3) stimulating hyporheic or lateral movement of invertebrates to avoid being dislodged (Tarzwell 1937b; Allen 1951, 1959). Benthos stations in June 1978 had 18% silt-clay substrates, and in August, 7% (Appendix G).

Part of the decline in benthic populations from June to August 1978 was probably related to emergence of insects with bivoltine life cycles and the inefficiency of the sampling gear to collect the eggs and early instars of the invertebrates. Chironomidae should emerge in late July and in August (Fremling 1960b, Coffman 1978). However, Hexagenia sp., a univoltine insect, should have been abundant in August 1978 because the adults emerge every 6 to 11 days and lay eggs from mid-June to mid-August, with peak emergences and egg-laying occurring from late June to mid-July. The eggs hatch in 10 to 12 days, and several broods of nymphs should have molted several times by August (Fremling 1960a, 1964b, 1967, 1968; Thomforde and Fremling 1968; Edmunds et al. 1976). The virtual absence of Hexagenia nymphs in August 1978 (Appendix H-2) was probably caused by the high discharge in July 1978.

High discharge in April and May 1979 probably also decreased benthic populations from September 1978 to June 1979, although these differences were not significant

(Table 6, Appendix Q). Benthic biomass should have been much higher in June 1979 than September 1978; maximum biomass occurs in the spring in most streams (Hynes 1970). <u>Hexagenia</u> nymphs should have been abundant during the early June sampling, but they were virtually absent (Appendix H-4).

The decrease in benthic populations from September 1978 to June 1979 may have been caused by: 1) dislodgement of invertebrates, and 2) hyporheic or lateral movements. Adequate silt-clay substrate for <u>Hexagenia</u> colonization was present in spring. Silt-clay increased in the study area from 12% in September 1978 to 24% in June 1979 (Appendix G). Perhaps there had been insufficient time for recolonization of <u>Hexagenia</u> nymphs in the study area following the high discharge in April and May, and perhaps the silt-clay had only recently been deposited in the study area.

Oligochaetes, ceratopogonids, and chironomids have been found to be the first benthic colonizers following floods. In this study, oligochaetes and chironomids were numerically the dominant taxa in August 1978 and June 1979 after flooding, and ceratopogonids were also abundant in June 1979 (Appendix H-2 and H-4). Gersbacher (1937) found that chironomids and ceratopogonids were the first colonizers of Illinois streams denuded by floods, and that with deposition of silt-clay, <u>Hexagenia</u> sp. and <u>Sphaerium</u> sp. were the principal colonizers. Moffet (1936) reported that after complete removal of invertebrates in South Willow Creek, Utah, by flooding, chironomids dominated the invertebrate fauna during the recovery stages. In the River Endrick in Scotland, Maitland

(1964, cited by Hynes 1970) reported that winter flooding reduced the invertebrate fauna in sandy areas, and that substrate burrowers, such as chironomids and tubificids, managed to survive the winter. Hynes (1970) stated that invertebrates with short life cycles, such as chironomids, may dominate the fauna following high discharges.

Taxonomic Composition

With data from stations 31-5-7 and 31-5-8 in September 1978 eliminated, the classes Oligochaeta and Pelecypoda and the orders Ephemeroptera, Trichoptera, and Diptera were the dominant benthic invertebrates in the study area in 1978 (Table 7, Appendix H-1 to H-3). Those stations were eliminated because they had such atypically high chironomid and trichopteran densities and gravel (Appendix G and H-3) that their inclusion would indicate that chironomids and trichopterans dominated the benthos in the study area, whereas they did not. The remaining less common taxa of benthic invertebrates comprised less than 0.3% of total numbers and less than 6.7% of the total biomass. These groups included: Turbellaria, Nematoda, Hirudinea, Isopoda, Amphipoda, Hydracarina, Plecoptera, Odonata, Megaloptera, Lepidoptera, Coleoptera, and Gastropoda.

Oligochaeta, the most abundant class in 1978, comprised 50.8% of the benthic invertebrate density and 3.4% of the biomass (Appendix H-1 to H-3).

Ephemeroptera dominated benthic biomass in 1978, representing 21.2% of the density and 65.0% of the biomass (Appendix H-1 to H-3). The greatest ephemeropteran biomass

Table 7. List of macroinvertebrate and artificial substrates	taxa co] from Poc	Llected	with a Jpper M	252-cm ississi	^r Ponar gr ppi River	ab sampler (X = present).
	Ρc	mar gre	ıb samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Platyhelminthes						
Turbellaria			Х		Х	
Tricladida			Х		Х	Х
Nema toda			Х			
Annelida						
Oligochaeta	×	х	×	Х	Х	Х
Hirudinea						
Rhynchobdellida						
Glossiphoniidae			Х			
<u>Helobdella</u> sp.			x			
<u>Placobdella</u> sp.	x					Х
Arthropoda						
Crustacea						
Isopoda						
Asellidae						
Asellus sp.	Х				X	Х
Amphipoda						
Gammaridae						

۸.

Table 7. (continued)

....

È

ł

-

]

	Pon	ar gra	.b samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
<u>Gammarus</u> sp.						X
Talitridae						
<u>Hyallela azteca</u> (Saussure)	Х	Х	Х	х	Х	Х
Arachnoidea						
Hydracarina ^a	X					
Insecta						
Plecoptera						
Perlidae						
<u>Perlesta</u> placida (Hagen)	Х					
Ephemeroptera						
Baetidae			×		Х	
<u>Baetis</u> sp.		Х	Х		Х	Х
Baetiscidae						
Baetisca sp.				×		
Caenidae			X			Х
Brachycercus sp.	х	х	х			
<u>Caenis</u> sp.	Х		×		Х	Х
Ephemeridae						
<u>Hexagenia</u> spp.	Х	х	×	Х	х	X

32

- 70	
- 7	
	2
- 2	2
ċ	-
••	
- 4	2
× ۱	-
•	2
	Ϊ,
<u>ر</u>	-
~	
	•
~	
- C	•
Q	U
	4
· ^	5
	1
đ	í
	4
-	

	Pon	ar gra	b samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
<u>H</u> . <u>bilineata</u> (Say)	х	×	×	×		
<u>H</u> . <u>limbata</u> (Serville)	х			Х		
Heptageniidae						
Stenacron sp.					Х	
Stenonema sp.			х		X	х
Leptophlebiidae						
<u>Paraleptophlebia</u> sp.				х		
Polymitarcidae						
Ephoron album (Say)	х					
Odona ta						
Gomphidae						
Dromogomphus sp.			Х			
Gomphus sp.				Х	х	
Ophiogomphus sp.	X					
Libellulidae						
<u>Pantala</u> sp.					Х	
Coenagrionidae					Х	Х
Anomalagrion hastatum (Say)			Х			
<u>Argia</u> sp.					Х	

d.	Ţ
e	ł
2	1
	ł
1	ł
5	ł
õ	L
õ	ł
Ű	1
	1
	1
.*	ł
5	1
	ł
<u> </u>	L
7	1
7	
2	ł
C .4	•

 \sim

m. .

1

1

ł

I

I

I

1

	Pon	ar gra	b samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1 <i>9</i> 78
Ischnura sp.					x	
Hemiptera						
Pleidae						
Neoplea striola (Fieber)					Х	
Megaloptera						
Sialidae						
Sialis sp.		×			Х	
Trichoptera	Х	×				
Hydropsychidae (early instars)			×	×	Х	Х
Cheumatopsyche sp.	Х	×	х		Х	Х
Hydropsyche sp.			×		Х	Х
<u>H</u> . <u>orris</u> Ross			×		х	Х
<u>Potamyia</u> flava (Hagen)	Х	×	×	Х	Х	Х
Leptoceridae						
<u>Oecetis</u> sp.	Х		×	Х		
Polycentropodidae					x	
Neureclipsis sp.			X		Х	х
Lepidoptera						
Pyralidae						

34

Table 7. (continued)

1

) } ;

7

ł

and the second second

r.

l

	Pon	ar gra	b samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Acentropus sp.			×			
Coleoptera						
Elmidae						Х
<u>Dubiraphia</u> sp.				X		
Stenelmis sp.	X		×	X	Х	
Diptera						
Ceratopogonidae	Х	Х	×	×		
Chironomidae	Х	х	×	X	X	Х
Culicidae	Х		х	Х		
Chaoboridae						
Chaoborus sp.			×		Х	
Empididae			×			
Muscidae	х					
Stratiomyidae			Х			
Mollusca						
Gastropoda						
Basommatophora						
Lymnaeidae						
Lymnaea sp.	Х					

35

1

,

1

1

ŝ

- -

(continued)	
2.	
Table	

-----1

.

.

ł

i 1

	Pon	ar gra	b samp	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Physidae						
Physa sp.					Х	
Pelecypoda						
Heterodonta						
Corbiculidae						
Corbicula manilensis (Philippi)			х			
Sphaeriidae						
Pisidium sp.	Х	х	×			
Sphaerium sp.	Х	х	×	Х		
Schizodonta						
Unionidae			х		Х	Х
<u>Fusconaia flava</u> (Rafinesque)	Х					
Lasmigona compressa (Lea)	×	Х				
Leptodea fragilis (Rafinesque)	Х	×			Х	
<u>Obliquaria reflexa</u> Rafinesque	Х					
<u>Obovaria olivaria</u> (Rafinesque)	Х	Х				
Number of taxa	30	17	37	17	31	21
^a "Hydracarina" is not a specific taxono It is an aggregation of families in th	nic te e subo	rm, bu rder T	t a te rombid	rm of c ifórmes	onvenience	(Pennak 1978)

.

1

obtained was 122.47 g/m² for <u>Hexagenia</u> spp. in June 1978 (Appendix H-1). <u>Hexagenia</u> spp. comprised 86.6% of the ephemeropteran density and 98.7% of the biomass. Of the <u>Hexagenia</u> nymphs greater than 16 mm in length (Gooch 1967), 55.1% were <u>H</u>. <u>limbata</u> (Serville) and 44.9% were <u>H</u>. <u>bilineata</u> (Say). A caenid mayfly, <u>Brachycercus</u> sp., comprised 12.6% of the ephemeropteran density and 0.9% of the biomass. The remaining ephemeropterans consisted of <u>Baetis</u> sp., Baetidae (early instars), <u>Ephoron album</u> (Say), <u>Paraleptophlebia</u> sp., and <u>Stenonema</u> sp. These taxa represented 0.6% of the ephemeropteran density and 0.4% of the biomass in 1978.

Trichoptera comprised 7.6% of benthic invertebrate density and 0.9% of the biomass (Appendix H-1 to H-3). The largest trichopteran density found was 31,810/m² in September 1978, of which 18,438/m² were <u>Potamyia flava</u> (Hagen) (Appendix H-3). The most abundant trichopteran was <u>Potamyia</u> <u>flava</u>, which accounted for 31.5% of the trichopteran density and 36.6% of the biomass. <u>Cheumatopsyche</u> sp. made up 25.9% of the trichopteran density and 42.7% of the biomass. Other trichopterans included: Hydropsychidae (early instars), <u>Hydropsyche</u> sp., <u>H. orris</u> Ross, <u>Neureclipsis</u> sp., and <u>Oecetis</u> sp. Together, they represented 42.6% of the trichopteran density and 20.7% of the biomass in 1978.

Diptera comprised 17.9% of benthic invertebrate density and 4.1% of the biomass in 1978 (Appendix H-1 to H-3). Chironomidae was the most abundant dipteran family, comprising 89.9% of the dipteran density and 81.3% of biomass. Ceratopogonidae represented 6.6% of dipteran

density and 17.6% of the biomass. The remaining dipteran families, which included Culicidae, Empididae, and Stratiomyidae, comprised 3.5% of the density and 1.1% of the dipteran biomass in 1978.

The class Pelecypoda was represented by two families, Sphaeriidae and Unionidae. These bivalve mollusks comprised 2.2% of benthic invertebrate density and 19.9% of the biomass in 1978 (Appendix H-1 to H-3). Sphaerium sp. represented 73.3% of bivalve density and 17.8% of the biomass. Pisidium sp., another sphaeriid, represented 20.0% of the density and 1.0% of the bivalve biomass. The family Unionidae comprised 6.7% of bivalve density and 81.2% of the biomass in 1978. Species within the family included: Fusconaia flava (Rafinesque), Lasmigona compressa (Lea), Leptodea fragilis (Rafinesque), Obliquaria reflexa Rafinesque, and Obovaria olivaria (Rafinesque). Lasmigona compressa, which is a small stream species, has rarely been collected in the Upper Mississippi River (Van der Shalie and Van der Shalie 1950, Perry 1979).

The invertebrates found in this study were similar to those found by others in the Mississippi River (Wiebe 1927; Johnson 1929; Johnson and Munger 1930; Van der Shalie and Van der Shalie 1950; Dorris 1958; Fremling 1960a, 1960b, 1964a, 1964b, 1967, 1968, 1970, 1973; Hoopes 1960; Dorris and Copeland 1962; Christenson and Smith 1965; Carlander et al. 1967; Thomforde and Fremling 1967; Wenke 1967; Carlson 1968; Gale 1971, 1973, 1975, 1976, 1977; Merz 1974; Schramm et al. 1974; Rogers 1976; Coon et al. 1977; Fuller 1978;

ERT/Ecological Consultants, Inc. 1979; Fremling et al. 1979; Lewis 1979; Perry 1979).

Macroinvertebrate Aufwuchs

Organisms other than aquatic macrophytes that live attached to substrate have been referred to as aufwuchs (Ruttner 1963). I studied only the macroinvertebrate aufwuchs that colonized artificial substrates placed on wing dams.

Comparison of Stations

Macroinvertebrate aufwuchs populations were similar at various locations in the study area in September 1978. There was no significant difference in macroinvertebrate numbers, biomass, or number of taxa collected on artificial substrates at upstream versus downstream stations or stations near the Illinois bank versus stations near the main channel (Table 8). Invertebrate aufwuchs populations were not compared among wing dams because of insufficient sample size (Table 8).

Comparison of Samplers

Basket samplers were colonized by significantly greater macroinvertebrate numbers, biomass, and number of taxa than multiple-plate samplers (Table 8). Basket samplers had three times more individuals and 2.6 times more biomass than multiple-plate samplers (Table 8). Thirty-one taxa were collected from basket samplers and 21 from multiple-plate samplers (Table 7). Forty-seven percent of the taxa collected by both samplers were common to both (Table 7).

Density was slightly more variable from basket samplers than from multiple-plate samplers; the percentage error of

Total invertebrate density and biomass (g) per m^2 and number of taxa for basket samplers and multiple-plate samplers from the wing dams, Pool 13, Upper Mississippi River, September 28, October 3, 12 1978 (refer to Figure 1 for locations). Artificial substrates from station 29-6-7 were eliminated because they were embedded in mud (Appendix I and J). Table 8.

تقتر كالاجماد والألاب والمستح والمستح الأستين

فلأحمد فماس فتكرك فالمرد والتغاب ومريكا والمراجع

1

		Densit	/	Biom	ass	Таха	
Sampler	и	Mean	SD	Mean	SD	Mean	ß
Basket sampler							
Study area	13	20029 ^a	14103	104.96 ^b	68.04	11.7 ^c	3.8
Stations upstream of wing dams	Ś	18838	14189	99.02	75.17	12.6	5.1
Stations downstream of wing dams	8	20774	14976	108.67	68.31	11.1	2.9
Stations near IL bank	8	18023	12805	93.89	66.24	11.6	4.8
Stations near main channel	Ś	23240	16994	122.66	74.65	11.8	1.6
Wing dam 25	t,d	11425	4668	77.23	99.44	14.8	1.5
Wing dam 26	ς	20037	0486	130.80	62.44	13.3	3.2
Wing dam 28	ti	7867	ł	36.39	t	11.0	I
Wing dam 29	2	13808	13444	51.21	32.07	10.5	3.5
Wing dam 30	ო	39696	11516	174.77	87.68	7.0	3.0
Multiple-plate sampler							
Study area	13	6739 ^a	4485	39.83 ^b	26.37	10.6 ^c	2.7
Stations upstream of wing dams	Ŋ	7592	5249	43.80	30.51	12.0	2.7
Stations downstream of wing dams	ω	6206	4230	37.34	25.33	9.8	2.5
Stations near IL bank	8	6851	4717	39.52	28.08	11.0	3.3
Stations near main channel	Ś	6561	4620	40.33	26.56	10.0	1.6

40

١

i

1

Station States

大山 いいろうちょう アイト

Table 8. (continued)

1

		Densi	Ŋ	Biomé	155	Таха	
Sampler	ч	Mean	SD	Mean	SD	Mean	ßD
Wing dam 25	t,d	3578	2566	25.70	21.98	12.5	2.1
Wing dam 26	ŝ	12122	2822	75.95	14.20	8.3	0.6
Wing dam 28	Ч	10746	I	50.11	I	11.0	ι
Wing dam 29	2	1985	2129	13.95	16.00	11.5	6.4
Wing dam 30	ŝ	2042	2413	36.37	4.41	6.7	0.6
^a Basket sampler density was significan paired-sample test: T = 6, n = 13, p	tly <0.0	greater 1).	than mult	iple-plate	density	(Wilcoxo	Ę
^b Basket sampler biomass was significan ⁻	tly	greater	than mult	iple-plate	biomass	(Wilcoxc	g

T = 6, n = 13, p<0.01). paired-sample test:

^CBasket sampler taxa was significantly greater than multiple-plate taxa (Wilcoxon paired-sample test: T = 15, n = 13, p<0.05).

^dInvertebrate aufwuchs populations were not compared among wing dams because of insufficient sample size, e.g. Mann-Whitney tests would require a minimum of four samples for each wing dam (Zar 1974).

4

precision for density was 19.9% for basket samplers and 18.8% for multiple-plate samplers (Appendix E). The number of samplers required for a percentage error of precision of 20%, a tolerable error for invertebrate samples (Cummins 1975, Elliot 1977), was 12 for basket samplers and 11 for multiple-plate samplers (Appendix E).

Variability of biomass estimates was approximately equal in both samplers; the percentage error of precision for biomass was 18.3% for basket samplers and 18.7% for multiple-plate samplers (Table 8). Eleven basket samplers and 11 multiple-plate samplers would be required for a percentage error of precision of 20% for biomass estimates (Table 8).

The percentage error of precision for invertebrate taxa collected by basket samplers was 9.0%, and for multiple-plate samplers, 7.1% (Table 8). Only two basket samplers and two multiple-plate samplers would be required for a percentage error of precision of 20% for invertebrate taxa collected by each sampler (Table 8). Dickson et al. (1971) found that four baskets filled with limestone were required to estimate the true mean number of taxa with a percentage error of precision of 25%.

The high level of precision obtained for number of taxa did not allow statistical comparisons among wing dams, however. Even with an acceptable level of precision, I could not find a transformation for the data that would make the variance independent of the mean. Therefore, parametric statistics should not be used for analysis of

the data (Downing 1979). The number of samples was also insufficient for nonparametric statistical comparisons among wing dams (Zar 1974) (Table 8).

I recommend basket samplers over multiple-plate samplers on the basis of these data. The small loss in precision of basket samplers compared to multiple-plate samplers (1.1% for numbers and 1.9% for taxa) should be more than compensated by the greater numbers, biomass, and number of taxa collected by basket samplers. Basket samplers with cement spheres probably provide more stability, sheltered and variety of crevices, available living space, and areas of reduced current velocity than multiple-plate samplers.

Fullner (1971) preferred multiple-plate samplers to basket samplers because multiple-plate samplers are light, easily installed and serviced, and the materials and construction are simple. However, opponents of multiple-plate samplers have contended that the hardboard (masonite) used to construct them often warps or swells in water and nearly closes the space available for habitation (Mason et al. 1973). Proponents of basket samplers have favored their stability in large bodies of water and thought that the rough texture of the substrate used to fill the baskets provided more niches for colonization and that it more closely approximated natural substrate (Mason et al. 1973).

In this study, the cement spheres in the basket samplers were more like the substrate of the wing dams than the hardboard of the multiple-plate samplers. They

were somewhat smaller but similar in surface roughness to the rock of the wing dams; they represented a cobble substrate, whereas the wing dams were constructed of cobbles and boulders.

Taxonomic Composition

Hydropsychidae (Trichoptera) dominated the macroinvertebrate aufwuchs in both samplers. Hydropsychid caddisflies made up 91.1 and 87.7% of the total numbers and 86.4 and 91.3% of the total biomass in basket and multiple-plate samplers, respectively (Appendix I and J).

Potamyia flava was the most important colonizer of basket samplers, constituting 34.5% of the total numbers and 37.8% of the biomass (Appendix I). However, high density and biomass of Potamyia flava on wing dam 30 greatly increased these estimates. Cheumatopsyche sp. was the dominant colonizer on 63% of the basket samplers (Appendix I). Cheumatopsyche sp., Hydropsyche sp., Hydropsychidae (early instars), and Hydropsychidae pupae comprised 21.8, 17.6, 15.8, and 1.3%, respectively of the total numbers and 31.3, 13.2, 2.0, and 2.0%, respectively of total biomass collected by basket samplers (Appendix I). Cheumatopsyche sp. was the primary colonizer of multiple-plate samplers, constituting 35.1% of the numbers and 43.4% of the biomass, but Potamyia flava was the principal colonizer on wing dam 30 (Appendix J). Fremling (1960b) reported that Potamyia flava favored rocks in sandy, silt-free areas of the river bottom where current is strong. Wing dam 30

fulfilled these requirements, whereas the other wing dams had lower current velocity and higher percentages of silt-clay (Figure 3, Table 3). The remaining hydropsychid caddisflies colonizing multiple-plate samplers were <u>Potamyia flava, Hydropsyche</u> sp., Hydropsychidae (early instars), and Hydropsychidae pupae, each comprising 23.0, 20.8, 6.7, and 2.1%, respectively of total numbers and 26.8, 15.8, 1.0, and 4.3%, respectively of the biomass (Appendix J). Density and biomass of the remaining taxa on artificial substrates was minor (Appendix I and J). Dominance of artificial substrate sampling of large rivers (Mason et al. 1973).

Macroinvertebrate Habitat

Wing dams in the study area were islands of rocks in a sea of sand, which were colonized by epilithic organisms, especially Hydropsychidae. Habitats sampled by the Ponar grab and basket samplers were different. The Ponar grab sampled a lotic-depositional habitat composed mainly of sand containing a fauna of collector-gatherers that were adapted for burrowing, e.g. Oligochaeta, Ephemeridae, and Chironomidae, or sprawling, e.g. Caenidae (Moon 1939, Coffman 1978, Edmunds et al. 1978, Pennak 1978). Basket samplers represented a lotic-erosional habitat composed of rock (wing dams), with a fauna of collector-filterers that were adapted for clinging, e.g. Hydropsychidae (Moon 1939; Wiggins 1978a, 1978b).

In September 1978, the only month that artificial

substrates were present, the basket samplers collected 26.5 times more macr(invertebrate numbers and 14.3 times more biomass than the Ponar grab (Table 6 and 8). The Ponar grab collected 37 taxa, and the basket sampler collected 31 taxa (Table 7); however, 81 replicate grabs were taken in September and only 14 basket samplers were recovered then. Forty-two percent of the taxa collected in September 1978 were common to both (Table 7). Mikulski (1961) stated that rock or rubble added to sandy areas served as concentration points for colonization by lithophilic animals. Wene and Wickliff (1940) showed experimently that the addition of rubble to sandy areas increased invertebrate density by a factor of 3 and 5.

Hydrographic Relief Sediments

As at benthos sites, bottom current velocity determined particle size distribution at hydrographic relief sites (see Physicochemical Characteristics of Benthos Stations). Sediment curves at hydrographic relief sites (Figure 4) were similar to those at benthos sites (Figure 3). Median particle size (0.25 mm) for the hydrographic relief sites at the wing dams corresponded to medium sand (Figure 4). Einsele (1960, cited by Hynes 1970) stated that bottom current velocities of 20 to 40 cm/s would produce sandy substrates. Mean bottom current velocities for hydrographic relief sites varied from 23 to 42 cm/s in the 1978 samples (Table 9).

Bottom current velocity increased from inside to outside hydrographic relief transects, but the differences

PARTICLE SIZE IN PHI UNITS

Figure 4. Percent mean particle size (Phi units) from hydrographic relief stations at the wing dams, Pool 13, Upper Mississippi River, 1978. Phi units, defined as the negative log to the base 2 of particle size diameter (mm), convert the geometric Wentworth classification in which each size category is twice the preceding one, into an arithmetic one with equal class intervals, i.e. 0.063 mm = 4; 0.125 mm = 3; 0.25 mm = 2; 0.50 mm = 1; 1.00 mm = 0; 2.00 mm = -1; 4.00 mm = -2; 8.00 mm = -3; and 16 mm = -4 phi units. Silt-clay, which was less than 0.063 mm, was considered to be 5 phi units. Mdg = median particle size (mm).

1.1

Table 9.	Bottom current velocity (cm/s) at hydrographic relief stations of the wing dams, Pool 13, Upper Mississippi River, 1978. Means and standard deviations were calculated from the data of Pierce (1980).
	data of Pierce (1980).

Site	Mean	SD	n
Wing dam 25	30	15	18
Wing dam 26	26	21	18
Wing dam 28	23	11	18
Wing dam 29	39	11	18
Wing dam 30	42	10	18
Wing dam 31	42	6	18
Inside transect	31	12	36
Middle transect	32	14	36
Outside transect	38	18	36
Above wing dams	34	15	54
Below wing dams	34	15	54

were not significant (Table 9). There were greater silt-clay deposits at the middle hydrographic relief transects than other transects, but these differences were not significant; the inside transect had 19.9% silt-clay, the middle transect 26.5% silt-clay, and the outside transect 19.7% silt-clay (Appendix K).

There was no difference in bottom current velocity above and below the wing dams (Table 9). This result might be unexpected because some reduction in bottom current velocity downstream of the dam might be presumed. The reason that no difference was found may be that the sampling stations, on the ends of the transects (see METHODS AND MATERIALS), were 30 m from the wing dams. There was more silt-clay deposited above than below the wing dams, but the differences were not significant; upstream stations had 26.5% silt-clay, and downstream stations had 17.2% silt-clay (Appendix K).

LITERATURE CITED

Allen, K.R. 1951. The Horokiwi stream. A study of a trout population. New Zealand Mar. Dep. Fish. Bull. 10: 238 pp.

. 1959. The distribution of stream bottom fauna. Proc. New Zealand Ecol. Soc. 6: 5-8.

Ambühl, H. 1959. Die Bedeutung der Strömung als ökologischer Faktor. Schweiz. Z. Hydrol. 21: 133-264 (cited by Hynes 1970).

. 1961. Die Strömung als physiologischer und ökologischer Faktor. Experimentelle Untersuchungen an Bachtieren. Verh. int. Verein. theor. angew. Limnol. 14: 390-395 (cited by Hynes 1970).

. 1962. Die Besonderheiten der Wasserströmung in physikalischer, chemischer und biologischer Hinsicht. Schweiz. Z. Hydrol. 24: 367-382 (cited by Hynes 1970).

Anscombe, F.J. 1948. The transformation of Poisson, binomial, and negative binomial data. Biometrika 35: 246-254.

Bartlett, M.S. 1947. The use of transformations. Biometrics 3: 39-52.

Beaumont, P. 1975. Hydrology, p. 1-38. <u>In</u> B.A. Whitton (Ed.) River Ecology. Studies in Ecology, Vol. 2. Blackwell Scientific Publications, London. 727 pp.

Bennett, G.W. 1970. Management of lakes and ponds, 2nd ed. Van Nostrand Reinhold Company, New York. 375 pp.

Berner, L.M. 1951. Limnology of the lower Missouri River. Ecol. 32(1): 1-12.

Bliss, C.I. and A.R.G. Owen. 1958. Negative binomial distributions with a common k. Biometrika 45: 37-58.

Box, G.E.P. and D.R. Cox. 1964. An analysis of transformations. J. Royal Statist. Soc. B26: 211-243.

Briggs, J.C. 1948. The quantitative effects of a dam upon the bottom fauna of a small California stream. Trans. Amer. Fish. Soc. 78: 70-81.

Bull, C.J. 1968. A bottom fauna sampler for use in stony streams. Prog. Fish. Cult. 30(2): 119-120.

Burch, J.B. 1972. Freshwater sphaeriacean clams (Mollusca: Pelecypoda) of North America. Biota of Freshwater Ecosystems. Identification Manual 3: 1-31. Burch, J.B. 1973. Freshwater Unionacean clams (Mollusca: Pelecypoda) of North America. Biota of Freshwater Ecosystems. Identification Manual 11: 1-176.

- Burks, B.D. 1953. The mayflies or Ephemeroptera of Illinois. Ill. Natur. Hist. Surv. Bull. 26(1): 1-216.
- Butcher, R.W. 1927. A preliminary account of the vegetation of the River Itchen. J. Ecol. 15: 55.

. 1933. Studies on the ecology of rivers. I. On the distribution of macrophytic vegetation in the rivers of Britain. J. Ecol. 21: 58-91.

- Carlander, K.D., C.A. Carlson, V. Gooch, and T.L. Wenke. 1967. Populations of <u>Hexagenia</u> mayfly naiads in Pool 19, Mississippi River, 1959-1963. Ecol. 48: 873-878.
- Carlson, C.A. 1968. Summer bottom fauna of the Mississippi River, above Dam 19, Keokuk, Iowa. Ecol. 49: 162-169.
- Christenson, L.M. and L.L. Smith. 1965. Characteristics of fish populations in Upper Mississippi River backwater areas. U.S. Fish and Wildlife Service Circular 212. 53 pp.
- Chutter, F.M. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologica 34: 57-76.
- Coffman, W.P. 1978. Chironomidae, p. 345-376. <u>In</u> R.W. Merrit and K.W. Cummins (Eds.) An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque. 441 pp.
- Conover, W.J. 1971. Practical nonparametric statistics. John Wiley and Sons, New York. 462 pp.
- Coon, T.G., J.W. Eckblad, and P.M. Trygstad. 1977. Relative abundance and growth of mussels (Mollusca: Eulamellibranchia) in Pools 8, 9, and 10 of the Mississippi River. Freshw. Biol. 7(3): 279-286.
- Cordone, A.J. and D.W. Kelley. 1961. The influence of inorganic sediment on the aquatic life of streams. Calif. Fish Game 47: 189-228.
- Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Amer. Midl. Nat. 67: 477-504.

. 1975. Macroinvertebrates, p. 170-198. <u>In</u> B.A. Whitton (Ed.) River Ecology. Studies in Ecology, Vol. 2. Blackwell Scientific Publications, London. 727 pp. Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32(12): 2295-2332.

- De March, B.G.E. 1976. Spatial and temporal patterns in macrobenthic stream diversity. J. Fish. Res. Board Can. 33(6): 1261-1270.
- Denham, S.C. 1938. A limnological investigation of the West Fork and Common Branch of White River. Invest. Indiana Lakes Streams. I: 17-71.
- Dickson, K.L., J. Cairns, Jr., and J.C. Arnold. 1971. An evaluation of the use of a basket-type artificial substrate for sampling macroinvertebrate organisms. Trans. Amer. Fish. Soc. 100(3): 553-559.
- Dieffenbach, B. 1980. Mitigating the wide Missouri. Missouri Conservationist 41(1): 22-25.
- Dorris, T.C. 1958. Limnology of the middle Mississippi River and adjacent waters. Lakes on the leveed floodplain. Amer. Midl. Nat. 59: 82-110.

and B.J. Copeland. 1962. Limnology of the middle Mississippi River. III. Mayfly populations in relation to navigation water-level control. Limnol. Oceanogr. 7: 240-247.

. 1963. Idem IV. Physical and chemical limnology of river and chute. Limnol. Oceanogr. 8: 79-88.

- Doudoroff, P. and D.L. Shumway. 1967. Dissolved oxygen criteria for the protection of fish, p. 13-19. <u>In</u> E.L. Cooper (Ed.) A symposium on water quality criteria to protect aquatic life. American Fisheries Society Special Publication No. 4. 38 pp.
- Downing, J.A. 1979. Aggregation, transformation, and the design of benthos sampling programs. J. Fish. Res. Bcard Can. 36(12): 1454-1463.
- Ecblad, J.W., N.L. Peterson, K. Ostlie, and A. Temte. 1977. The morphometry, benthos, and sedimentation rates of a floodplain lake in Pool 9 of the Upper Mississippi River. Amer. Midl. Nat. 97(2): 433-443.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. University of Minnesota Press, Minneapolis. 330 pp.
- Egglishaw, H.J. 1969. The distribution of benthic invertebrates on substrate in fast-flowing streams. J. Anim. Ecol. 38: 19-33.

- Elliot, J.M. 1977. Some methods for the statistical analysis of samples of benthic invertebrates, 2nd ed. Freshw. Biol. Assoc. Sci. Publ. 25. 160 pp.
- Elstad, C.A. 1977. Macrobenthic survey of navigation Pool No. 8 of the Upper Mississippi River, with special reference to ecological relationships. M.S. thesis. Univ. of Wis., LaCrosse.
- ERT/Ecological Consultants, Inc. 1979. Evaluation of navigation on the biological components of the Upper Mississippi River aquatic ecosystem. Upper Mississippi River Basin Commission. Twin Cities, Minnesota. 37 pp.
- Fremling, C.R. 1960a. Biology of a large mayfly, <u>Hexagenia</u> <u>bilineata</u> (Say), of the Upper Mississippi River. Agr. and Home Ec. Exp. Sta., Iowa State Univ., Ames. Res. Bull. 482: 842-852.

______. 1960b. Biology and possible control of nuisance caddisflies of the Upper Mississippi River. Agr. and Home Ec. Exp. Sta. Iowa State Univ., Ames. Res. Bull. 483: 856-879.

. 1964a. Rhythmic <u>Hexagenia</u> mayfly emergences and the environmental factors which influence them. Verh. Internat. Verein. Limnol. 15: 912-916.

_____. 1964b. Mayfly distribution indicates water quality on the Upper Mississippi River. Science 146: 1164-1166.

. 1967. Methods for mass-rearing <u>Hexagenia</u> mayflies (Ephemeroptera: Ephemeridae). Trans. Amer. Fish. Soc. 96(4): 407-410.

. 1968. Documentation of a mass emergence of <u>Hexagenia</u> mayflies from the Upper Mississippi River. Trans. Amer. Fish. Soc. 97(3): 278-280.

. 1970. Mayfly distribution as a water quality index. Water Pollut. Control Res. Ser., 16030 DQH 11/70. 40 pp.

. 1973. Environmental synchronization of mass <u>Hexagenia bilineata</u> (Ephemeroptera) emergences from the Mississippi River. Verh. Internat. Verein. Limnol. 18(3): 1521-1526.

., D.R. McConville, D.N. Nielsen, and R.N. Vose. 1978. Phase I study of the Weaver-Belvidere area, Upper Mississippi River. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. Contract No. 14-16-0003-77-060.

- Fremling, C.R., D.R. McConville, D.N. Nielsen, R.N. Vose, and R.A. Faber. 1979. The feasibility and environmental effects of opening side channels in five areas of the Mississippi River (West Newton Chute, Fountain City Bay, San Gordy's Slough, Kruger Slough and Island 42), vol. I and II. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. Contract No. 14-16-0008-949.
- Fuller, S.L.H. 1978. Final report on freshwater mussels (Mollusca: Bivalvia: Unionidae) of the Upper Mississippi River: observations at selected sites within the 9-foot navigation channel. Academy of Natural Sciences of Philadelphia, Philadelphia.
- Fullner, R.W. 1971. A comparison of macroinvertebrates collected by basket and modified multiple-plate samplers. J. Wat. Pollut. Control Fed. 43: 494-499.
- Funk, J.L. and J.W. Robinson. 1974. Changes in the channel of the lower Missouri River and effects on Fish and Wildlife. Missouri Department of Conservation, Jefferson City. Aquatic series No. 11. 52 pp.
- Gale, W.F. 1971. An experiment to determine substrate preference of the fingernail clam, <u>Sphaerium</u> transversum (Say). Ecol. 52(2): 367-370.

. 1973. Predation and parasitism as factors affecting <u>Sphaerium transversum</u> (Say) populations in Pool 19, Mississippi River. Research in Population Ecology 14: 169-187.

. 1975. Bottom fauna of a segment of Pool 19, Mississippi River, near Fort Madison, Iowa, 1967-1968. Iowa State J. Res. 49(4): 353-372.

_____. 1976. Vertical distribution and burrowing behavior of the fingernail clam, <u>Sphaerium</u> <u>transversum</u>. Malacologia 15(2): 401-409.

. 1977. Growth of the fingernail clam, <u>Sphaerium</u> <u>transversum</u> (Say) in field and laboratory experiments. Nautilus 91(1): 8-12.

Gersbacher, W.E. 1937. Development of stream bottom communities in Illinois. Ecol. 18(3): 359-390.

Gooch, V.K. 1967. Identification of <u>Hexagenia</u> <u>bilineata</u> and <u>H. limbata</u> nymphs. Entomol. News 28(4): 101-103.

Healy, M.J.R. and L.R. Taylor. 1962. Tables for power-law transformations. Biometrika 49: 557-559.
- Hester, F.E. and J.S. Dendy. 1962. A multiple-plate sampler for aquatic macroinvertebrates. Trans. Amer. Fish. Soc. 91(4): 420-421.
- Hilsenhoff, W.L. 1969. An artificial substrate device for sampling stream invertebrates. Limnol. Oceanogr. 14: 465-471.
 - . 1975. Aquatic insects of Wisconsin: generic keys and notes on biology, ecology, and distribution. Wisconsin Dep. Nat. Resour., Madison, WI. Tech. Bull. No. 89. 54 pp.
- Hoopes, D.T. 1960. Utilization of mayflies and caddisflies by some Mississippi River fishes. Trans. Amer. Fish. Soc. 89(1): 32-34.
- Howmiller, R.P. 1972. Effects of preservatives on weights of some common macrobenthic invertebrates. Trans. Amer. Fish. Soc. 101(4): 743-746.
- Hubault, E. 1927. Contribution à l'étude des invertébrés torrenticoles. Bull. Biol. Fr. Belg. Suppl. 9. 390 pp. (cited by Hynes 1970).
- Hynes, H.B.N. and M.J. Coleman. 1968. A simple method of assessing the annual production of stream benthos. Limnol. Oceanogr. 13: 569-573.
- Hynes, H.B.N. 1970. The ecology of running waters. Univ. of Toronto Press, Toronto. 555 pp.
- Ingram, R.L. 1971. Sieve analysis, p. 49-67. <u>In</u> R.E. Carver (Ed.) Procedure in Sedimentary Petrology. Wiley-Interscience, New York. 653 pp.
- Jacobi, G.Z. 1971. A quantitative artificial substrate sampler for benthic macroinvertebrates. Trans. Amer. Fish. Soc. 100(1): 136-138.
- Jennings, D.K. 1979. An evaluation of aquatic habitat associated with notched dikes on the Missouri River, Missouri. M.S. thesis. Univ. of Missouri, Columbia. 262 pp.
- Johnson, M.S. 1929. Some observations on chironomid larvae and their usefulness as fish food. Trans. Amer. Fish. Soc. 59: 153-157.
 - and F. Munger. 1930. Observations on excessive abundance of the midge <u>Chironomus plumosus</u> at Lake Pepin. Ecol. 11(1): 110-126.
- Kallemeyn, L.W. and J.F. Novotny. 1977. Fish and fish food organisms in various habitats of the Missouri River in South Dakota, Nebraska, and Iowa. U.S. Fish and Wildlife Service. FWS/OBS-77/25. 100pp.

Leopold, L.B. 1962. Rivers. Am. Scient. 50: 511-537.

., M.G. Wolman, and J.P. Miller. 1964. Fluvial processes in Geomorphology. W.H. Freeman and Company, San Francisco. 522 pp.

- Leonard, J.W. 1962. Environmental requirements of Ephemeroptera, p. 110-117. <u>In</u> C.M. Tarzwell (Ed.) Third Seminar in Biological Problems in Water Pollution. U.S. Public Health Service, Publ. No. 999-WP-25. 424 pp.
- Leudtke, R.J. and M.A. Brusven. 1976. Effects of sand sedimentation on colonization of stream insects. J. Fish. Res. Board Can. 33(9): 1881-1886.
- Lewis, P.A. 1974. Taxonomy and ecology of <u>Stenonema</u> mayflies (Heptageniidae: Ephemeroptera). Environmental Monitoring Series, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-670/4-74-006. 81 pp.
- Lewis, R.B. 1979. Benthic macroinvertebrates collected with a Ponar grab sampler in the Mississippi River near Quad-Cities Station, May 1976-January 1977. Unpublished Tables. Hazleton Environmental Sciences, 1500 Frontage Road, Northbrook, Illinois.
- Lind, O.T. 1974. Handbook of common methods in limnology. C.V. Mosby Co., St. Louis. 154 pp.
- Maddock, T., Jr. 1972. Hydrologic behavior of stream channels. Trans. 37th North Amer. Wildl. and Nat. Res. Conf. 37: 366-374.
- Maitland, P.S. 1964. Quantitative studies on the invertebrate fauna of sandy and stoney substrates in the River Endrick, Scotland. Proc. R. Soc. Edinb. 33: 109-133 (cited by Hynes 1970).
- Mason, W.T., Jr., J.B. Anderson, and G.E. Morrison. 1967. A limestone-filled, artificial substrate sampler-float unit for collecting macroinvertebrates in large streams. Prog. Fish Cult. 29(2): 74.
 - ., C.I. Weber, P.A. Lewis, and E.C. Julian. 1973. Factors affecting the performance of basket and multiplate macroinvertebrate samplers. Freshwat. Biol. 3: 409-436.
- McCafferty, W.P. 1975. The burrowing mayflies (Ephemeroptera: Ephemeroidea) of the United States. Trans. Amer. Entomol. Soc. 101: 447-504.
- Merrit, R.W. and K.W. Cummins, eds. 1978. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque. 441 pp.

Merz, E.A. 1974. Importance of aquatic invertebrates as fish food in selected areas of the Upper Mississippi River. M.S. thesis. Univ. of Wis., LaCrosse. 50 pp.

- Mikulski, J.S. 1961. Ecological studies upon bottom communities in the River Wisla (Vistula). Verh. Internat. Verein. Limnol. 14: 372-375.
- Minshall, G.W. and J.N. Minshall. 1977. Microdistribution of benthic invertebrates in a Rocky Mountain (USA) stream. Hydrobiologia 55: 231-249.
- Moffett, J.W. 1936. A quantitative study of the bottom fauna in some Utah streams variously affected by erosion. Bull. Univ. Utah Biol. Ser. vol. III, No. 3 26(9): 1-32.
- Moon, H.P. 1939. Aspects of the ecology of aquatic insects. Trans. Soc. Br. Ent. 6: 39-49.
- Mottley, C.M. H.J. Rayner, and R.H. Rainwater. 1938. The determination of food grade of streams. Trans. Amer. Fish. Soc. 68: 336-343.
- Murray, M.J. 1938. An ecological study of the invertebrate fauna of some northern Indiana streams. Invest. Indiana Lakes Streams. I: 101-110.
- Needham, P.R. and R.L. Usinger. 1956. Variability in the macrofauna of a single riffle in Prosser Creek, California as indicated by the Surber sampler. Hilgardia 24: 383-409.
- Nielsen, A. 1950. The torrential invertebrate fauna. Oikos 2: 177-196.
- O'Connell, T.R. and R.S. Campbell. 1953. The benthos of the Black River and Clearwater Lake, Missouri. Univ. Missouri Stud. 26(2): 25-41.
- Parmalee, P.W. 1967. The fresh-water mussels of Illinois. Illinois State Museum, Popular Science Series VIII. 108 pp.
- Pennak, R.W. and E.D. Van Gerpen. 1947. Bottom fauna production and physical nature of the substrate in northern Colorado trout stream. Ecol. 28: 42-48.
- Pennak, R.W. 1978. Freshwater invertebrates of the United States, 2nd ed. John Wiley and Sons, New York. 803 pp.
- Perry, P.W. 1979. A survey of Upper Mississippi River mussels, p. 118-139. <u>In</u> J.L. Rasmussen (Ed.) A Compendium of Fishery Information on the Upper Mississippi River, 2nd ed. A contribution of the Upper Mississippi Conservation Committee. 373 pp.

- Pierce, R.B. 1980. Upper Mississippi River wing dam notching: the prenotching fish study. M.S. thesis. Univ. of Wis., Stevens Point. 267 pp.
- Quenouille, M.H. 1950. Introductory statistics. Butterworth-Springer, London.
- Rasmussen, J.L., ed. 1979. A compendium of fishery information on the Upper Mississippi River, 2nd ed. A Contribution of the Upper Mississippi River Conservation Committee. 373 pp.
- Resh, V.H. 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. J. Fish. Res. Board Can. 36(3): 290-311.
- Reynolds, J.B. 1977. Missouri River Notched Dike Study: annual composite report-1977. U.S. Fish and Wildlife Service, National Stream Alteration Team, Columbia, Missouri. 15 pp.
- Richardson, R.E. 1921. The small bottom and shore fauna of the middle and lower Illinois River and its connecting lakes, Chillicothe to Grafton; its evaluation; its sources of food supply; and its relation to the fishery. Ill. Nat. Hist. Surv. Bull. 13: 363-524.
- Rogers, G.E. 1976. Vertical burrowing and survival of sphaeriid clams under added substrates in Pool 19, Mississippi River. Iowa State J. Res. 51(1): 1-12.
- Ross, H.H. 1944. The caddisflies or Trichoptera of Illinois. Ill. Nat. Hist. Sur. Bull. 23: 326 pp.
- Ruttner, F. 1963. Fundamentals of limnology. Univ. Toronto Press, Toronto. 295 pp.
- Schmal, R.N. and D.F. Sanders. 1978. Effects of stream channelization on aquatic macroinvertebrates, Buena Vista Marsh, Portage County, Wisconsin. U.S. Fish and Wildlife Service. FWS/OBS-78/92. 80 pp.
- Sprules, W.M. 1947. An ecological investigation of stream insects in Algonquin Park, Ontario. Univ. Toronto Studies, Biol. Ser. 56: 1-81.
- Schmitz, W. 1961. Fliesswässerforschung-Hydrographie und Botanik. Verh. int. Verein. theor. angew. Limnol. 14: 541-586 (cited by Hynes 1970).
- Schramm, H.L., Jr. and W.M. Lewis. 1974. Study of importance of backwater chutes to a riverine fishery. U.S. Army Engineer Water Ways Experiment Station, Vicksburg, Mississippi. 145 pp.

- Schuster, G.A. and D.A. Etnier. 1978. A manual for the identification of the larvae of the caddisfly, genera <u>Hydropsyche</u> Pictet and <u>Symphitopsyche</u> Ulmer in eastern and central North America (Trichoptera: Hydropsychidae). Environmental Monitoring Services Report, U.S. Environmental Protection Agency, EPA-600/4-78-060. 129 pp.
- Simons, D.B., S.A. Schumm, and M.A. Stevens. 1974. Geomorphology of the middle Mississippi River. Contract Report Y-74-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. 110 pp.

. 1975. The river

environment-a reference document. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. 494 pp.

Snedecor, G.W. and W.G. Cochran. 1967. Statistical methods, 6th ed. Iowa State Univ. Press, Ames. 593 pp.

Southwood, T.R.E. 1966. Ecological methods with particular reference to the study of insect populations. Chapman and Hall, London. 391 pp.

Stanford, J.A. 1973. A centrifuge method for determining live weights of aquatic insect larvae, with a note on weight loss in preservative. Ecol. 54(2): 449-451.

Sugimoto, T. 1969. Preliminary studies on the estimation of the population density of an aquatic midge, <u>Tendipes</u> <u>dorsalis</u> Meigen (Tendipedidae: Diptera) in brooks. Japan J. Ecol. 19: 1-8.

Sutcliffe, D.W. 1979. Some notes to authors on the presentation of accurate and precise measurements in quantitative studies. Freshwat. Biol. 9: 397-402.

Tarzwell, C.M. 1937a. Experimental evidence on the values of stream improvement in Michigan. Trans. Amer. Fish. Soc. 66: 177-187.

. 1937b. Factors influencing fish food and fish production in southwestern streams. Trans. Amer. Fish. Soc. 67: 246-255.

Taylor, L.R. 1961. Aggregation, variance, and the mean. Nature 189: 732-735.

. 1965. A natural law for the spatial disposition of insects. Proc. XII International Congress Entomology: 396-397.

., I.P. Woiwod, and J. Perry. 1978. The density-dependence of spatial behaviour and the rarity of randomness. J. Anim. Ecol. 47: 383-406. Thomforde, L.L. and C.R. Fremling. 1968. Synchronous emergence of <u>Hexagenia</u> <u>bilineata</u> mayflies in the laboratory. Annals Entomol. Soc. Amer. 61(5): 1235-1239.

- Thoni, H. 1967. Transformations of variables used in the analysis of experimental and observational data. A review. Tech. Rep. No. 7, Statistical Laboratory, Iowa State Univ., Ames. 61 pp.
- Tukey, J.W. 1957. On the comparative anatomy of transformations. Ann. Math. Statist. 28: 602-632.

_____. 1968. The true purpose of transformation. Biometrics 24: 1041.

- U.S. Army Corps of Engineers. 1974. Final environmental impact statement, Pool 13 supplement. U.S. Army Corps of Engineers, Rock Island District, Illinois.
- Van der Shalie, H. and A. Van Der Shalie. 1950. The mussels of the Mississippi River. Amer. Midl. Nat. 44: 448-466.
- Welcomme, R.L. 1979. Fisheries ecology of floodplain rivers. Richard Clay (The Chaucer Press) Ltd., Bungay, Suffolk, Great Britain. 317 pp.

Wene, G. 1940. The soil as an ecological factor in the abundance of aquatic chironomid larvae. Ohio J. Sci. 40: 193-199.

_____. and E.L. Wickliff. 1940. Modification of a stream bottom and its effect on the insect fauna. Can. Entomol. 72: 131-135.

- Wenke, T.L. 1967. Caddisfly (Trichoptera) collections from the Mississippi River at Lock and Dam 19. Iowa State J. Sci. 42(1): 43-46.
- Wiebe, A.H. 1927. Biological survey of the Upper Mississippi River, with special reference to pollution. Bull. U.S. Bur. Fish. 43: 137-167.
- Wentworth, C.H. 1922. A scale of grade and class terms for clastic sediments. J. Geology 30: 377-392.
- Wiggins, G.B. 1978a. Larvae of the North American caddisfly genera (Trichoptera). Univ. Toronto Press, Toronto. 401 pp.

. 1978b. Trichoptera, p. 147-185. <u>In</u> R.W. Merrit and K.W. Cummins (Eds.) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque. 441 pp.

Zar, J.H. 1974. Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 620 pp. Subsample counts for large catches of invertebrates collected with a 252-cm⁴ Ponar grab, September 29, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). The counts were found to be random when tested for a poisson distribution (Cummins 1975: section 8.23, Elliot 1977: section 8.3). Appendix A.

Paners I

いたいないない

				Water v	olume (ml)	
Wing dam	Sample sitea	Urientation to wing dam ^b	Replicate	Total	Subsample	counts of no. of organisms
31	~	2	1	0001	200	38, 35, 19, 28, 28
31	2	2	2	10000	200	8, 21, 22, 12, 13
31	Ś	ω	, 1	000†	200	18, 21, 32, 18, 27
31	Ś	ω	8	000†	200	28, 16, 23, 30, 25
31	, S	8	2	0001	200	40, 26, 36, 24, 40
asamule	site 5 =	inside transect				

"Sample site 5 = inside transect."
"Orientation to wing dam 7 = upstream and 8 = downstream."

62

ŧ

				1	ppendix B.
section 8.3).	distribution (Cummins 1975: section 8.23, Elliot 1977:	The counts were found to be random when tested for a poisson	Upper Mississippi River (refer to Figure 1 for locations).	basket samplers, September 28, October 3, 12, 1978, Pool 13,	Subsample counts for large catches of invertebrates collected with

	2		Water v	olume (ml)	
wing dama	siteb	to wing dam ^c	Total	Subsample	organisms
25	м	7	10000	200	30, 27, 31, 23, 27
25	ر م	8	10000	200	25, 25, 23, 28, 28
25	6	7	10000	200	43,40,34,37,40
25	6	8	14000	100	24, 22, 18, 31, 17
26	Ś	7	12000	200	30, 22, 29, 23, 30
26	Ś	8	14000	100	38, 43, 29, 24, 40
26	6	7	4000	400	15, 14, 25, 16, 10, 15
26	6	8	14000	100	36, 35, 44, 45, 46
28	6	8	10000	200	22, 28, 39, 32, 23
29	Ś	7	14000	100	27, 34, 29, 28, 35
29	Ś	8	10000	200	25, 14, 23, 15, 19
30	Ś	7	14000	50	25, 34, 23, 28, 23
30	Ś	8	14000	100	39, 27, 34, 31, 38
30	6	00	16000	50	29, 22, 30, 27, 20
	c				

^aWing dam 25, 26, 28, 29, or 30. ^bSample site 5 = inside transect and 6 = outside transect. ^cOrientation to wing dam 7 = upstream and 8 = downstream.

Appendix C.

1

Subsample counts for large catches of invertebrates collected with multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). The counts were found to be random when tested for a poisson distribution (Cummins 1975: section 8.23, Elliot 1977: section 8.3). Water volume (ml)

ارا نے دیکھ		04:00000000			de se se station
dam ²	siteb	to wing dam ^c	Total	Subsample	organisms
25	2	2	000†	200	21, 27, 23, 16, 25
25	Ŋ	8	0001	00†	26, 20, 30, 21, 16
25	9	2	0001	300	33, 23, 31, 24, 32
25	9	8	0001	300	21, 19, 20, 15, 21
26	Ŋ	2	10000	200	25, 24, 27, 40, 23
26	Ś	8	10000	200	27, 21, 16, 19, 15
26	9	8	12000	200	26, 21, 24, 16, 17
28	9	8	10000	200	26, 24, 20, 16, 16
29	Ŋ	2	8000	007	24, 16, 20, 22, 12
30	Ŋ	2	8000	200	26, 23, 23, 28, 16
30	Ŋ	8	8000	200	26, 25, 16, 18, 20
30	9	ω	8000	200	17, 26, 17, 21, 16
awing dam bSample s cOrientat	1 25, 26, 28 11 25 = 108 11 20 to wing	, 29, or 30. ide transect and 6 dam 7 = upstream	5 = outside and 8 = dow	transect. nstream.	

64

1

				Appendix D.
Engineers were notching the dam. These four stations were also eliminated in Table 4 and 6 and Appendix Q.	densities and gravel (Appendix G and H-3). Those data were also eliminated in Table 5 and 6 and Appendix 0, P, and Q. Four stations at	Elliot 1977: section 8.22). Stations 31-5-7 and 31-5-8 in September 1978 were eliminated because of atypically high chironomid and trichopteran	assuming a negative binomial distribution (Cummins 1975; section 8.222,	Percentage error (D) ^a for mean total invertebrate numbers per m ²

ŧ

T.

- . 2 - .

.

ì

en en la constante Remaining de la constante

Date or location	מ	Mean	SD	k p	Da	No. of samples required for $D = 20\%$
June 1978	81	903	1520	0.34	19.0	71
August 1978	81	476	921	0.25	22.0	46
September 1978	75	757	1010	0.55	15.6	45
June 1979	69	663	722	0.83	13.2	30

 $^{a}_{b}$ D is the percentage error expressed as (SE)(100)/ \overline{X} . K from the negative binomial distribution was estimated from total invertebrates counts.

collected with basket samplers and multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975; section 8.222, Elliot 1977; section 8.22). Artificial substrates for station 29-6-7 were eliminated because they were embedded in mud (Appendix I and J). Those data were also eliminated from Table 8. counts per m² Percentage error (D)^a for mean total invertebrate Appendix E.

Sampler	с	Mean	SD	к ^р	Da	No. of samples required for D = 200
Basket	13	20029	14103	1.94	19.9	12
Multiple-plate	13	6239	4485	2.18	18.8	11
D is the percen	itage e	error express	ted as (SE)	(100)/7		

by is whe percentage error expressed as Naphinov/A. K from the negative binomial distribution was estimated from total invertebrates counts.

APPENDIX F-1. TEMPERATURE. DISSOLVCD OVVGEN, VELOCITY AVO DOPTH AT BENTHIC INVERTABRITE STUDY SITES JUNE 12. 17. 18. 20. 21. 1978. Bool 13. HPPED HISSISSIDDI RIVER (PORTER TO FIGURE 1 FOR LOCATIONS).

11.

APPERATUS., JIJSOLVED EXYGEN, VELOTIEX HAD DEPERATE EVELAUED. Femperatus., JIJSOLVED EXYGEN, VELOTIEX HAD DEPERATE EVVERTERATE FUDY SITES "JUME 12, 11, 18, 20, 21, 1973, PODL 13, JORE 4.ISSIISIPPI PIZER (REFE? TO FIGURE 1 FOR LECTIDYE).

.

-

1

1 ĩ * ÷,

5136 344 03 5136 5445454 1/	SARLE SILE 2	0415NTATTO4 / T3 #IN5 544 3/	TEMPERATURE	7612512427 7612 64074747	SUPFACE	VELECTT 4544 57	Y(#/5) MEAU 6 /	90110H 2/	06°TH (M)	UMRCC HABITAT Classification
мт. 451	•	n	21.9	5.0 (4.)-5.7	70 ° U	10 10 1	ü-57	0.35	2.5	CHAVYEL STRAES
53	\$	~	21.9 (21.'-21.3)	4.7 (4.7- 2.7)	9.55	9.57	9.54	0.33	č • \$	544V45L B54354
59	•	æ	21-9 121-1-22-01	4. ⁴ (4.7 - 5.7)	9.65	9.53	25.0	0.41	ù•ç	CHAVNEL BURDER
59	ھ	•	21 • 3 [21 • 3 • 21 • 5]	4.9 (4.9-5.1)	9. 93	0.71	0.73	0.65	5.0	CHANNEL SCOLER
62	r	Ð	21+2 {21+2+21+23	4.9 { 4.7- 5.0)	0.71	9.60	0.51	0.41	4.5	CHANNEL BORDER
30	Ϋ́	•	21.0 (21.^-21.)	5.2 (6.1- 5.5)	11.0	3.67	ų.,	0.43	Ľ.	CHANKEL BOPDER
8	~	40	21+1 (21+7+21+2)	6.2 (5.2 5.5)	0.32	0.67	0.66	0.36	5-4	LHANNEL RURDER
10	æ	~	21.0 121.1-21.51	6.2 (6.1- 6.4)	9.36	0.67	11.0	0.64	5•5	CHANVEL BJ975R
67	æ	ec	73.0 (20.4-21.2)	7.5 (7.5- 7.5)	0.36	29°ü	0.51	0.24	2.0	CHANNEL GGSJSR
11	~	2	21.0 521.0-21.33	7.5 1 7.5- 7.5)	n. 77	9-58	9.53	0.52	2-0	CHANNEL HORDER
51	~	£	2!.3 (2!.t=21.3)	8.6 (8.4- 8.7)	0.10	0.67	3.61	0.42	2.5	CHARVEL BORDER
31	se	•	21.7 (2121. 11	7.0 (6.2- 9.3)	9.71	0.52	c0*0	0.49	5 • †	СНАНЧЕЦ ЗЈРЈЕР
31	s	¢;	22+3 (22+)+22+1)	7.0	26.0	0.62	r.03	0.43	·.2	CHANNEL BORDER
1/ HIVE EAH 25. 2/ SAMPLE SITE 2/ SAMPLE SITE 2/ DAIE HEL VALUE 2/ SAMPLE VALUE 2/ SAMPLE VALUE		23- 79- 30- 31 23- 79- 30- 31 25- 7- 34- 24 26- 7- 84- 24 26- 7- 44 26- 7- 44 27- 44 27- 47 27- 47 27	10000000000000000000000000000000000000	10000000000000000000000000000000000000			5 25647578 5 25647578 5 25647578 5 25647578 7 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	141. 141. 141. 141. 141. 141. 141. 141.		

68

102EHJ]x F-2. TE		- 315SDLVED 14	10240 VELOCITY 10240 VELOCITY	and atol core	54 10 FIG 9541410 :	NVERTEBRA	TE STUGT	SITES .AUGUS	5T 2-6,	1978.
AING DAY DA	SAMPLE	DATENEXTION 10 AINS DAN 3/	12423A7U22 CC 347 CX	1122 - 11	SUPF 4CT	V-10211	19 AVEN			UMACC HABITAT CLASSIFICATINN
v			23.J (23.^+23.9)	7.1	0.35	0-31	6.33	0.24		2135 CHANNEL
19			23.7+23.0) [23.7+23.0]	7.9 (7.3-7.1)	0.45	0.35	3.36	0.25	2.4	5108 0114701
11			2**) (2**)	*•3 [7•3- 7•3]	Ċ. 50	0 - 40	¢2	J.43	•	SIDE CHANGE
25	1	7	22 • 5 • 5 2 5)	5.r (5.j=7)	ý. 30	0.57	0.37	0.22	2.1	「日本人名肖仁 ひのみいけみ
25	~	نون	27.5		1.42	°. 37	0.36	0.10	2.1	CHANNEL 3509ER
55	in	08	27.5 (22.5-23.0)	5+6 (5+5- 5+7)	65 °C	0.33	9.33	0.19	3.4	PECRC8 JENRAH
25	*	æ	22,5-21,5)	5.8 (5.5-5.9)	0.38	0. 15	0.13	0.23	3.0	CHANNEL BJODES
25	14	7	(0*52+0*23) 0*52	(4.31 5.4 5.4) . 4 7	3-23	5-2-5	0.24	61 	BGUCK JURA.HO
5÷	2	α.	(2-,-2-, 10) 5, 22	5-3 (6-7- 7-0)	ŋ. 53	9-15	C.90	0.13	3.5	CHANNEL SOSDER
26	.	3	(22-5-52) (22-5-22)	t 0.7- 5.0)	0.47	9.30	0.36	0.25	3.4	CHARNEL SCROER
26	•	6	(2:5-2-5)	5.3 (5.7- 5.3)	0.40	0.27	0.25	0.24	3.1	CHANNEL AGODER
28	1	~	(2:-2-C-:2) 0:52	5.1 (5.9- 5.3)	0.+3	0. 19	0.10	0.21	2.7	CHANNEL SORDER
5.A	N	æ	(0*52.0°52) (0*12	5.2 (5.3- 5.5)	3.60	25.0	0	0.24	2.5	CHANNEL HORDER
23		œ	21.0	6 5.0° 5.5)	7 • 6 3	0.39	0.39	0.32	2.3	CHANJEL BORDER

APPENDICES DATEAURY APPENDICES CONTAURD. Trafraturis Jistlur) dateaus strontean and death at aenthic taverente stour fites saugust 2-4, 1974. 2031 13, uppen miscissioni taveren to fijurt i fak locations.

.....

;

1

.....

a

**************************************	SAMPLE		77.NP 5.A7455				••••••••••••••••••••••••••••••••••••••			
SIDE CHANNEL 21	5115 2	28 HE SEIT A	A19 /5 C3	17 (1/2n) NJ.	CURFACE		N N N N N N N N N N	12 ×01105	1 (7)	
£	٠	Ð	1.2.3. (23.7-23.3)	(5.3- 5.3)	Mi 10 0	0 • 3 4	0.38	0.25	2.3	
67	~	~	(23,9-23,))	5.3 (6.9- 5.4)	J. 55	0.51	0.5Z	0.44	3.5	SCADE JENNEHO
59	÷	c	;*,) (23,3+23,3)	0.2 (5.7° 6.5)	3.08	3. 55	¢.60	0.35	3.3	32226 732347
29	æ	۲	11.0 (23.0-23.0)	6.2 (3.3- 6.5)	11.0	0.55	0.55	0.50	3.8	CHANNEL BORDE
29	æ	Ð	53.0 [23.0-23.3)	6.3 (5.7- 5.9)	n. 72	0•62	C.59	0.51	•••	5444VEL 99935
30	r	~	73+5 23+23+3)	6.7 (5.4-5.4)	9.7÷	0.73	0.67	24*0	3.6	CHANNEL BORDE
10	ĥ	ھ	23+0 (23+2-23+9)	5.3 (5.5- 6.4)	0. 30	0.56	C • F C	0.40	3.5	CHANCL BCRDE
30	æ	~	(5.55+5 <u>5</u>) (22+5-5 <u>5</u>)	5.2 E 5.7- 6.4)	0- 46	0.71	0.72	0.86	6 • 4	C404 JENNARD
30	•	ø	22+5 (22+5-22+5)	5.9 (5.2- 6.4)	9- 83	0.75	5.52	0.32	5.5	CHANNEL 30525
11	~	2	25+2 (2 ¹ ,)+23, 3)	6 5.0- 5.4)	9-79	0.51	C.61	0.44	3.0	CHANNEL BORDE
11	'n	•	23•3 (23•3•23•3)	6.] { 6.0- 4.5)	3-74	0.62	0.65	0.39	2.9	CHANNEL 33075
11		•	23+3 (3+23+0)	6.2 [5.5= 4.7)	1.04	1.11	0.35	0.33	3. 4	CHANNEL BORDE
11	ى	æ	(2+52) (2+52)	6+2 (4,0- 6.5)	95 °u	9.12	0.77	0.45	5°2	CHAVYEL SEFE
L' FING JAN 25. 2/ SAPLE SITE 2/ SAPLE SITE 2/ CALANTATION 2/ 444 443 AN 2/ 444 4510CTT 6/ 454 4510CTT 6/ 454 4510CTT 2/ 00TTOT 7510CTT	201 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	491 291 201 201 201 201 201 201 201 201 201 20	CITA + Fice 3 CITA + Fice 3 V26440 C / 1055 SHOL + 0 / 1055 SH	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10111111111111111111111111111111111111	2715-11 - 4 13 - 4 13 - 4 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13 -	5 CLG 1 C C A C C C C C C C C C C C C C C C C			

.....

ćr.

APPENDIX F-3. T	E 4ºERA TURZ,	0 11 1304 130 021050	GIN, VELDOITY Path VELDOITY	JJJ) cJAle lee 14 Higgs (NI	ES TO FIC	40.4 1 200 Vef 14d 3A4	LECATION	SITES "SEPTE 5).	EM424 2	9-3C, 1979,
TING SAN UR Side Channel L/	SAMPLE U SITE 2/ T	ALSHTAFIJN O HINS DAH <u>8</u> 7	IXO 75(1) Badty Senst	1957 (42773) USSULSSI	SURFACE	15 17 34 ACTUCIL	HCH/S) HFA4 5/	/3 HOLLOF		UFRCC HIBITAT CLASSIFICATION
15			13	7.5	5 - C	3 • 15	0.15	0.15		SIDE CHANNEL
10			1 · .] [1 · .] - [6 .])	7.3	9.37	0.32	0.34	9.30	1.5	SICE CHANISE
=			1>+3 (15-1+15-0)	7.6 [7.5-7.6]	0.32	0.00	0-00	0.24	0 • 4	SILE CHANNEL
25	u	,	13 (1)-15-1)	7.2 : 7.6- 7.53	0- 30	9.25	0.26	0.15	3.0	CHANYEL BORDER
25	rs	æ	1 • 3 (16•)-15• 0)	7.3 (7.3-7.6)	0.23	0.25	0+25	0.19	2.5	CHANNEL BORDER
25	~	3	1+.1 (15.0-15.1)	7.4	o. 30	0.24	0.24	0.15	2.5	CHANNEL BORDER
25	F	æ	15.3 (16.3-16.0)	7.4 (7.3-7.6)	7.26	3 • •	0.22	0.15	2.5	64442L 9973ER
24		~	15.0 (16.0-16.1)	7.3-7.49	3.25	0.19	0.20	0.10	2.4	CHANNEL BERDER
25	Fù	î.	15.1 (16.3-16.1)	7.4	~. 6 3	3.72	0.22	0.:0	3.0	EMANNEL BCRDER
25	.	œ	1+.0 (14.3-14.0)	7.6 7.4- 3.2)	0.35	0.15	0.25	0.12	2. A	CHANNEL BORDER
25	F	•	15.1 (16.3-16.1)	7.5 (7.3- 7.9)	3.48	3.26	0.24	0.08	3.0	CHANNEL BORDER
52	••	7	1++3 (16,3+16,3)	7.5 (7.3-7.7)	0. 32	0.37	62°u	0.22	1.9	CHANNEL BORDER
28	~	°.	1++5 (16+5+15+7)	7.6 (7.5-7.7)	n. 37	9.24	C.29	0.24	2. •	CHANNEL BORDER
28	L 4	68	14.3	7.6	0.37	0.39	0.34	0.24	2.0	CHANNEL BOPDER

APOETATURE. DISSOLUED DAVSENT VILDETA FOR CONTINUED. Tempfrature. Dissolued Davsent vildett and betat Inverterate study sites (september 29-30, 1973) Podl 13. upper mississipat rive apres to figure 1 for Lecations).

.........

Į

4

ĺ

CHANIEL STRIES ANTADE BOSKED PICHCE BIANNEL PROPER JUNEAD PECAGE JEVNAND CHANNEL BCPDER CHANNEL JCSDER CHANNEL BORDER CHANVEL BURDER CHANKEL BOFDCR PRANCE BOADER CHANNEL BORDER DEPTH UMECC HARITIT (M) CLASSIFICATION CHALVEL BURDER 5. T 3.5 3.8 3.0 <u>ک</u>،۶ ¥. 5.0 2.3 **د.**2 5 ÷., 3.5 4.3 12 POTTOS 0.28 0.26 0.22 0.25 0.39 0.39 0.45 0.45 0.43 0.35 0.39 14.0 0.37 VELECITY(*/5) *E41 5/ 4524 6/ C.37 0.31 0.43 0.51 0.53 0.54 9.45 0.59 0.59 0.59 C.37 0.57 0.52 7.35 7.55 5.32 9.39 9.43 0.53 3.50 0.50 C - C - O 0.55 0.45 7.61 9.52 ATHS DAM DE - SAMPLE OFICITATION TEH-CPATURI TISSTLVED Side Chambel J/ Sife 2/10 Aing dam 3/ (135/ Offic) (44/L14/ 509fac) 0.37 7.35 7.35 2.63 2.5 5.2 0° 36 1.53 î. 63 0.61 3.72 2.51 2.55 0.10 7.6- 7.5) 16.3 T.9 (16.3-15.3) (7.0-7.9) 7.7 (7.5- 7.7) 14.5 [16.5-15.5] [7.5- 7.9] 7.7 1.71 1.4 1.7-7.4) 11.2 7.9 (15.2=15.5) (7.3= 3.0) (7.3- 7.9) 7.3 (7.7-7.9) (7.3- 7.3) 1.7 - 7.3) 1.7 (7.6- 7.7) 7.9 (7.3-7.9) 7.9 . 15.6 (14.5-15.5) 15.2 (16.1-14.2) (16.2-15.5) 15.2 (15.2-15.5) 16.1 (1f.1-1f.1) 14.5 (15.5-15.5) (14.2-15.5) (14.7-15.5) (14.3-16.5) 14.6 [16.5-16.9] 15.3 16.2 14.2 16.5 ø ŝ 50 ŝ ŝ . 2 2 2 0 2 31 ï 12

1146 JAH OR 2146 DAH OR 2156 CHANNEL 17	STHATE ST	TJ WING DAW 37	15 /5(1) 3entystamsk	17671050 AGE	SUPFACE	A242 21	4544 6/	12 NO1108	01°1H	UMPEC HAGITAT CLASSIFICATION
Ŷ		6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.7 (12.5-10.0)	(6.6- 5.6)	9 6	9. 3°	7.62	5-5-5 5-5-5	5.7	SEUD CHANNEL
16			(1, 22-(' 42) 0 • 1 2	6.2 6.2	0 • • 5	0.37	01	0.35	2.8	SIDE CHANNEL
11			2).3 (20.7~21.0)	5+5 5+5	3 a 2 A	7.41	r.90	9.24	1.6	SIDE CHUNSE
25	*	7	[].5 [].5]	1 5.3° 5.6) 1 5.3° 5.6)	و، م ۲	9.45	0.47	0.29	3.7	CHANNEL BORDER
25	N	8	12.5	5.3 1 5.3 5.7)	0.46	0.43	J.+9	0.37	3.5	BECEDP JINNERS
25	tu	3	[].c.c.c.c. [].c.c.c.c.	5.2 (5.2 5.1)	3.49	0.46	0.47	0.35	3.2	CHANNEL JOPTER
25	۴	0	17.6	5.2 (6.2- 5.3)	c. 50	9.46	0.44	C.35	3.4	CHANNEL BORDER
2 ⁴ 8/	1	1	(0.0 - 0. 3) (0. 0	r 0.0- 0.33	0.90	Ū, Ū	c.00	0.00	0.0	CHANASE BORDER
5×3/	C)	IJ	(n. 1- 3.03	(0.3- 3.3)	0° • 30	a. ea	0.00	1.00	0.0	CHANNEL BORDER
26 ⁸ /	_ J a	3	(0.0- 0.0)	(9.0- 0.3)	3.00	3.03	0.04	9.00	0.0	CHANAEL BORDER
258.	•	æ	0-1- 0-03	0.0-0.0	0.00	0.00	0.00	0.00	0.0	CHANNEL BORDER
28	va	7	(5°42+1°63) 6°42	5.3 1 5.7- 5.1)	3.53	ę•25	0.14	0.37	3.0	CHANNEL BORDER
23	~	35	(6°62-,°62) (°62	6.7 (5.5- 5.9)	9.63	0 • • 3	0.54	0.76	3.0	CHANNEL BORDER
29	••	œ	1	5.7	0.68	C. 57	0.50	0.54	2.5	CHANNEL BORDER

I. M.M. JAN 25, 26, 27, 24, 29, 30, 31 (0.517) (2404/21.9 × 1957)(4, 10 × M12)(7.11 × 56.M57964W.
 Z. SAMPLE SITE 1 × 90.016+ 7.65M1 2 × 49 (6+ 7.66M1 3 × 90.076+ 33,10M1 4 × 135.066+ 72,86M1 3 × 041.4747104 10 ±145105 * 44054575
 A. M.L.MATION 10 ±146 (44 7 × 04574) 4405 A × 10.445144.
 A. M.L.MATION 10 ±146 (44 7 × 04574) 4405 A × 10.445144.
 A. M.M. SLOCITT + V. P. 200714*4 4405 A × 10.445144.
 A. M. SLOCITT + V. P. 200714*4 4405 A × 10.44514 400 × 10.45144.
 A. M. SLOCITT + V. P. 200714*4 4405 A × 10.44514 400 × 10.45144.
 A. M. SLOCITT + V. P. 200714*4 4405 A × 10.44514 400 × 10.45144.
 M. SAM NELOCITT + V. 200714*4 4405 A × 10.44514 400 × 10.45144.
 M. SAM NELOCITT + V. 200714*4 4405 A × 10.44514 400 × 10.45144.
 M. SAM NELOCITT + V. 200714*4 4405 A × 10.44514 400 × 10.45144.
 M. SAM NELOCITT + V. 200714*4 4405 A × 10.44514 400 × 10.4514 400 × 10.45144.
 M. SAM NELOCITT + V. 200714*4 4405 A × 10.4514 400 × 10.4514 400 × 10.45144.
 M. SAMPLE STRUCITT + V. 200714*4 400 × 10.4514 400 × 10.45144.
 M. SAMPLE STRUCITT + V. 2007174 10.5014 × 10.4514 400 × 10.4514450.
 M. SAMPLE

74

DEPTH UMACC HABITAT (M) CLAUSIFICATION

90TT04 Z/

VELTETTERVS) MEAN DV MEAN EV

InA Jeus

.....

LANTIQUES. Tempfratumes dissoluts dirgent fillditt and deatair intreferent studt sites flune 5-6, 1979. Poul 14. Upper fississip terves (fires to figure 1 for locators).

1249/241045 DIASTURES 1947/241041 DIASTURES

WING DAM 03 SAMPLE DIIGHTATICH Sije Cmaanel 1/ site 2/73 ming can 1/

FILLEL SPACE

5.5

• 7 • 0

7.50

3. . 1

3+34

5.9 (4.7- 7.7)

(C *52 + 52 - 23

¢

ŝ

2

\$

. Constant 1 41

23

6.2

CHANNEL JCRDER

\$

0.35

0.51

9.54

0.50

r. 5 (7.2- 7.5)

:0*0-50*01

F3CODE JENVAND

5.0

0.43

0.53

3.52

3.54

r.s- r.i)

20+2+0) [20-0+2+0]

CHANNEL BORDER

3. J

0.59

2.75

0.31

51.

1.7 - 7.7)

(0"-2-") (0"-2-")

CHANNEL BLATER

••5

0.26

0.50

9.54

0.50

7.7 (7.6-7.9)

(0.02-0.02)

CHANKEL BURNER

с.,

64.0

0.79

0.61

1.50

7." (7.5-7.5)

(0°-02-07)

ŝ

2

0

20

21

1

E

I

CHANVEL BORDER

5.0

0.50

0.95

0.51

3. 33

7.3 (7.7-7.4)

23.3 (29.6-20.0)

AZCADE JENNAND

5.0

0.52

0.30

0.63

9.69

20.0 7.9 (20.6-20.0) (7.7- 7.0)

Parvel Pavies

°••

0.57

C.75

0.75

0.76

1.2 1.31

(20°5-20°0)

CHANNEL BURDER

0°2

0.63

46.0

0.83

7.9F

7.1 + 7.0+ 7.2)

20-0-20-01

FUNNEL BORDER

3.0

94.0

46.0

0.49

0E .J

(6.9- 6.9) 6.9

(20.9-20.0) C° J.

CHANVEL BCODER

2.0

0.57

16.0

0.91

58°,

7.3 (7.2-7.5)

20.3 [2].7+29.9)

CHANNEL BCRDER

2.0

0.43

0-94

0.96

1.05

(20.7-20.3) (6.7-7.3)

والمحمد المحمد والمراجع فالمراجع المحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحم

-

一日本をあるのにはあるをかいた

1.4.4.1

	A 07	SA	- DC []	J4154FAF10%					5110	INTI CLE	I ZE (144)		.,	
	AA OP	SAT	11- 2/	DRIENTATION TO MING DAM 3/	2475	50425 5174-5111	• 0523	-125					2	2-9
\$ •					6-19-79	7 6. 7	5-1	9.6	5 .6	2.9	0-6	_ 1	C. 4	0.4
10					6-13-75	3. 3	9. 2	5.9	63.3	24.9	1.0	_		1.3 1.1
					6-19-73	¢ 0. 5	0.1	2.6	35.ь	15.5	2.2	0		.3 0.0
25			-	7	6-21-73	6 2, 3	2.2	د. در	13.9	16	0.9	0	*>	.7 0.0
23			N	3	6-21-78	5 5 • 1	1.0	2.5	29.8	16.1	0.5	0	***	.1 0.7
23			5	σ	6-21-78	25.7	0.5	2.4	33.5	23.1	1.9	~	.	. 5 3.0
25			•	9	5-2:-78	5 "E t	1.6	8.7	28.7	11.1	0.5	S		·? C- 9
~ 5			-	7	5-27-23	47.3	. 9	6. 5	75.2	15.9	2.9	-		3 0.0
26			N	•	5-2)-16	<u>1,</u> 6	0.*	5.7	49.4	30.5	6.4	N		. 9 0. 5
56			~	us	6-209	0. 3	5.2	7.7	63.5	22.2	3.3	-	ġ.	6 0.9
26			•	C	£ -02-6	21.7	0.4	13.7	55.3	5.J	c.5	0		• 3 0.0
29			ي.	7	6-23-3	15.0	0.3	5.2	51.9	15.9	3.2	~	å	.r 2.5
23			r:	æ	6-29-7 ð	6 °C	0.4	9.7	\$2 • 3	23.2	сл • Ф	0	-	.1 0.1
62			Ç.	3	5-25-78	۶. ۶	0.1	6.1	80.1	12.3	0.6	0	•	.0 0.0
2.9			•	3	5-20-78	÷.5	5. 1	6.7	92.1	9.7	0.2	0	-	.1 0.9
23			••	7	5-29-78	f 1	0.5	14.2	69.6	6 - 5	0.3	•		0.0
29				æ	5-29-78	6 " 0 •	9 - 4	6.9	34	9.2	0.7	L 1	•	.0 1.1
29			•	7	5-20-1 5	5.2	0.2	2.6	27.2	37.2	19.7	~		.9 0.8
29			94	u,	7=20=7 B	1.1	0.+	34.4	51.3	10.5	1.5	•	•	0.3
50			UR.	7	5=1×-75	1.5	0.2	5.2	• • •	25.5	11.3	•	i Gib	5-0 0-2

والمتعافية والمتحافظ والمتحافظ والمتحافظ والمحافظ والمتحافظ والمتحافظ والمتحافظ والمتحافظ والمحافظ والمحافظ والمحافي ووراعا

					1 L L I I I I I I I I I I I I I I I I I			ARTICLE	CHH) 32 13				
FI46 348 5136 5144	SEMPLE	CTENTATION 1 TO AINS DAY 27	JATE	CL4Y* 5:LT <.0525	.0625	.125		5.	1.0	2.5	4. J	121 9.0	16.3
59	i - 5	a)	6-19-78	1.4	0.3	2.5	34.6	50.2	5.1	1. s	1.5	0 • 0 0	0.0
6	¢	•	6-17-19	٥. •	0.4	19.2	63 . 3	14.0	1 .	9-0	C • J	0 ° 0	0°C
20	•0	e	6-17-75	3. 3	1.5	16.1	6.04	23.7	6.8	1.5	0-0	1.6	0.0
Ŀ	ş	~	6-17-14	9. 3	0.1	÷.3	34.2	29.5	A.6	0.0	13.3	0.0	0.0
11	ŝ	47	6-17-9	1.7.1	0.1	1.5	59.3	17.3	3.6	0.7	c • 0	0-0	0.0
11	ę	•	6-12-13	5 :	0.1	4 • 5	(*÷*	54.0	10.0	K • 4	0.1	0.2	9.0
11	ą.	¢	6-12-1	4.0	0.1	3.0	13.7	24.5	16.1	1.3	10.0	15.2	0.0
¢			4. 4 -14	13.8	1.6	15.1	7.7	1.6	3•0	0.1	0-0	0.0	0.7
19			84-7 - E	2.2	0.4	9.2	10.4	17.3	0.2	.0.0	0.0	6 • 0	0.0
11			6	1.7	9.4	5.1	47.0	35 . 2	9.5	2.1	0.0	Q.J	0.0
52	-1	•	fr. + 7 - + 4	23 #	0.5	4.6	\$0.0	50.5	1.1	2.3	0. 4	0 7 0	0°0
\$2	~	¢	8	3.2	0.9	12.6	69°5	2.45	0.1	0.0	0.0	0.0	0.0
25	м	æ	3+ 9=1B	6 • 1	1.0	6.4	15.a	53.5	6.6	2.1	1.7	3.1	0•0
\$2	4	÷	911-7 - 48	4.5	2*0	14.B	51.0	4 - C	0.5	0.3	0.5	0 • 0	3.0
26	, 4	•	÷\$ -6	2 1.4 9	3.4	19.9	35.9	11.9	2.7	1.4	0-0	0.0	0.0
2 6	2	£	8-3-7.8	0.2	0.5	12.3	33.4	25.6	4.3	16.1	2.0	2.7	0 ° C
56	ñ	¢	8-1-5 -5	2.6	0.2	13.3	73.9	13.1	0.2	0-0	0.0	0.0	0-0
26	J	¢	9- 3-% 9	1.5	0.5	54 - 8	\$5•÷	֥5	0.5	0.3	0.0	0.0	0.0
82	-1	•	8- 3-7 B	1.9	0• 3	12.3	70.3	4.5	0.5	0 • G	4.5	3.7	9.0
29	2	Ð	9= 3=B	7.1	5°*0	5.9	57.3	26.2	•••	2.6	3.2	0.0	0.0
62	-1	10	9- 3-78	3.7	0.2	8.9	7.97	12.9	0.7	0.1	0.0	0.9	0.0

the second second

1.414

ADDENCIX G.	CONTINU Sitple	SG. ARTICLE SI BENTATION 7 TO AING DAM 37 8 7	22 FRVT10 5 517:5 5 547:5 5 5-7 8	900L 13- 1-3 1-3 1-3 3-4	0-10-00-00-00-00-00-00-00-00-00-00-00-00	SISSIPPI	66.5	40123 (1) 40220 TC 4873CL2 9 10.1 10.1	516045 197 516045 1 110 110 110 110 110 110 110 110 110 1	1) COLLEC F03 LOC -2.0 3.0 2.1	5-3 0.5	
62	Сп. 1	J.	(• 3+78	هــ • نار	0. • •	14.9	54.9	17.4	.0	2.5	0-3	~
62	5	7	f= 3-78	1 7.2	0-3	5.6	52.5	20.5	2.0	0.4	c. 0	o
29	6	æ	6- 3-79	c. 7	0.1	¥• ??	64.7	22.9	2.1	0.3	0.1	3
SO	v	~	8- 3-78	1.5	0.3	5. • •	53.4	32.5	3.5	1.4	1.1	0
C1	۰.	G		2.6	3. 2	3.7	6 F 5	29.5	3.3	1.1	e. 3	0
30	σ	7	e= 3-7 8	1.0	0.2	9.1	59.2	24.3	4.0	2.3	0.0	0
30	5	ð	n- 3-7 ð	0.9	0.4	15.3	69.1	13.3	0.2	0.7	0.0	0
31	\Л	7	5 - 5 - F	1.3	9 - 3	3.7	59.2	34.3	2.1	0.4	0.0	o
51	5	a	H= 2-7 à	1 5. 1	1.4	7.4	27.9	13.5	2.9	2.3	0.7	18
31	Q.	7	5= 2-7 3	3.0	C • 3	2.9	34.?	49 - 5	7.5	1.2	0.1	0
51	7	ų	9- 2-78	0.3	0.0	2.5	40.9	41.7	11.3	3.1	J•2	0
Ŷ			9-30-78	41.5	2.0	15.2	31.7	9-5	ٕ2	0.0	0.0	0
10			ç•30•73	1.9	0.2	4.3	76.0	16.9	9.2	0-0	0.0	0
=			5-30-7 B	64.2	6.0	4.7	31.7	11.7	1.4	5*0	0.0	0
ۍ	14	7	9-30-75	15.4	1.1	10.6	36.9	15.4	•.0	3.1	1.9	J.
25	2	u	9-30-73	4 2. 1	1.4	••9	24.2	23.3	2.4	0.4	0.3	0
25		э	9-37-73	17.4	3.1	12.6	15.0	13.3	4.6	5.1	1.4	د د
25	•	œ	9-30-75	5.4.2	3.5	23.5	39.9	•	0.3	0.1	0.0	
26	~*	7	9-30-73	- 1.4	۲.۶	19.3	19.8	7.5	4.3	1.9	0.0	0

APPENDIX 6. CONTINUED. PARTICLE SIZE FALCTIONS AS PERCENT TOTAL IN 100 GRAM SAMPLES (INSPAM 1971) COLLECTED MITM A PONAP GRAG. Bent-DS Sites, Pool 13, UPPER MISSISSIPPI RIVER (REFER TO FIGURE 1 FOR LOCATIONS).

The second

								111111	(HA) 32 33				
IVG DAP OF IDE CHANNEL 1	518315 /	DECUTATION	JATE	544-5167 544-5167	.3525	.125			0.1	2.3	4535	0.0 10	15.0
		4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8											
4 P	2	Ť	9-30-13	1. 3	0.1	G • D		4-11	1 - 9	9 • 4	•••	6 • B	9 • 9
\$?	•	50	9-39-73	2°8	2 • 0	4 . 3	68 . 5	23.7	0.9	0-0	0•0	0.0	0.0
6 5	٠.	so.	÷2-L2-6	1.0	0.1	4.2	51.7	26.3	0.7	0.0	0.3	0-0	0.0
62	-	N.,	\$ 2-52-6	1.5	0.1	1.1	62.4	23.2	4.5	0°0	0-0	0*0	0.0
24	2	Ð	6-20-2 9	1.3	0.1	5.5	76.2	15.9	0.8	0.1	0-0	0.0	0•0
\$ 2	5	Ð	6 2 - 6 2 - 6	C. J	0.1	1.1	69°3	13.7	2.7	C.9	C * D	0.0	ů•0
53	4	ŋ	64-62-6	9 ° C	0.1	3.5	52.7	27.9	3.4	2.1	0.1	0.0	0.0
62	٢	*	\$ 4-62-6	5 *6 2	1.5	15.5	45.2	÷.	1.0	0.9	0.0	0.0	0.0
59	s	æ	9-20-73	8 "J	0.2	9.5	54.6	19.9	3.0	6 ° 0	0-0	0.0	0.0
29	ŝ	2	6-20-1 f	0.9	1.0	49.3	£ • 9 9	2.5	0.1	0-0	0-0	0.0	C • D
62	æ	æ	\$2-02-6	7.4	0.1	9 ° 2	61.6	17.5	2.0	2.0	0 • 0	0-0	0.0
30	s	*	£1-02-0	3.5	0.1	ר. יי	47.7	33.1	4.2	ó*0	0.0	0•0	0-0
30	5	۵	f 1=62-5	C. 7	0.1	12.5	72.7	13.2	0.5	2 • 0	C. 1	0•0	0.0
30	ئ	*	6-24-2	0.9	0.3	21.3	61.2	13.3	2.1	1.0	0•0	0.0	0•0
30	÷	Ð	8-20-2-6	5.5	3.2	4.02	52.5	13.5	1.5	0.5	1.2	3-0	0.0
31	~	7	f 1-62-6	•••	0.0	2.6	19.0	м. Эс.	16.3	15.9	7.7	.) ° б	0.0
31	'n	41	f 2-62-6	0.5	0.4	5.6	23.1	÷.5	3.5	9.7	15.2	24.0	13.3
31	÷	1-	F 2=+3=6	0.7	0.1	9.6	46.Ú	31.9	9-6	2.0	0.0	0.0	0 ° J
31	c	Đ	3-23-16	1.1	0.1	7.0	57.1	24.6	6.7	2.2	0.0	0°C	0-0
•			6- 5-19	9.6	0.6	10.5	52.5	3°2	3. 0	4.0	0.7	0.0	0.0
10			(1-5 -9	1.1	0.1	6•9	15.7	15.9	0.2	0.0	0.0	0.0	0.0

78

0.9	C. 0	0.4	1.5	7.1	33.0	50.3	5.9	3.2	1.6	5- <u>5</u> -19	•	6	30
··•	C-0	0.1	2.7	7.6	15.7	57.3	ð.5	د. د •	2 ° . 5	6- 5-79	~	3	C S
31.1	6.0	••2	5.3	a.e	22.8	13.4	1.3	0.2	1.9	5- 5-79	œ	ۍ	30
0.0	C • 9	0.9	2.5	12.0	39.0	19.9	2.1	0.2	5 2 4 6	6 S	7	U.	30
0.0	0.0	C• 0	0.2	1.,	14.4	54.5	27.7	0.6	1. 2	6 9	ىل	đ	6.
0.0	с. Э	0-0	0.1	0.1	0.1	1.7	••0	1.3	C. "≦ 6	5	7	σ	دی د
0.C	c-0	1.3	• • 7	7.1	15.8	51.4	10.7	0.2	9 . 3	5- 5-79	a.	J.	ć2
0.C	0 . 0	0.2	0. ₹	0.9	3.7	16.1	8.7	1.4	69.6	61-3 -9	1	s	29
0.0	0.4	0.3	1.	3.6	13.4	55.J	\$ • 4	0.1	1.0	b79	C 4	£	23
0.0	0.0	C • 3	0.4	4.4	14.5	3602	6.0	0.2	4 3. 1	619	8	~	23
0 . 0	C - 0	0.:	0.4	1.7	15-2	34.6	d.0	2 • 0	39.9	6- 5-79	0	i v	14 40
0-0	0.0	0.2	1.5	3.0	14.9	65.6	13.1	0.1	1.3	6- :-79	7	-	24
0.0	0.C	0.0	3. 9	0.0	0.0	¢.0	0.0	3.0	0- 0	6- 6-13	æ	*	ر <mark>به</mark> ک
0.0	0.Û	с. С	c. 1	0.0	0.0	0.0	0.9	0. 0	3. O	5- 2-79	ی ۲	3	2,4/
0.0	e• 3	0. 0	0.)	0.0	0 . 0	0.0	0 -0	0.0	C.0	6- 6-19	u.	ĩ	254/
	0.0	0.0	0.0	0.0	о • О	0.0	0.0	0.0	0.0	6- 6-79	7	1	254/
0.0	0 . 0	0. 2	0.9	5.2	30+3	5.0	9.9	0.1	51.5	6- 1-19	G 6	£	25
ə.:	0-0	0.2	1.3	9.1	38.4	13.2	۴.۶	0-1	27.9	6- 1-79	ð	3	25
0.0	0-0	0. 3	0.1	1.5	43.4	67.0	0.5	9.1	1.7	6. 0-10	æ	ŕv	25
J. J	c.0	0.0	0.2	2.6	5.6	16.6	5.5	1.5	67.8	5- f-79	7	1	25
0.0	c.0	2.9	2.9	ć.9	17.5	51.3	5.9	0.2	12.4	6- 5-79			11
		4-3-6-6-1	2. 0	212E (WY)	ARTICLE				0EAX+51ET	9475	ISHTATION AING DAN 37	SING 2/ 70-	-ING DAR OR Side Change In
R 69,89,	7 P () 2 P	CTED WIT	1) COLLEI For Loci	FIGURE 1	HALES (I	PIVIA (5155[P01	JPER #15	500L 13. L	51735.	PARTICLE ST	CENTINUED.	* P25:01 (G.

CONTINULU. "ARTICLE SIZE FEALTIONS AS PERCINE TOTAL IN 100 GAM CAMPLES (INUMAN 1971) COLLECTED WITH A POWAR GRAB Benthold: "Arthoe Siter, "Dude 13, upper mississiopi piver (refer to figure 1 for locations)." 4 P25 1.01 6 .

1 ł

.

1

									(629,000.00)		
CIJE CHANNEL 1' SITE 2/ TJ AING SAM	544 37 341E	ו0+25	. 7625	.125	.25		1.0	2.0	C • 4	0	16.0
31 5 7		.9 37.2	0.5	1.3	15.6	15.0	5 - 3	ۍ دی	2.5	4•5	14.3
5 1 5 6	9	1-2 E.	0.4	C•I	15.2	44.3	3.55	9°5	1.2	0•6	0.0
<u>5</u> 1 6 7		9 23.3	0.2	د• ه	34.4	15.5	6 . 2	5.0	1.9	3.6	0•0
ی د	5- 7-1	9 1.3	0.1	2.2	51.3	44.4	1.4.7	5.5	0. 4	0 ° C	0-0

ZY OPERATED TO BING DAM & B UPSTAGAM AND 5 E DEMASTRICAM.

50 € V (1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	10 5-15-73 OLISACHAETA	. FOTAL INVERTEADATCS	CHIRONOMIJAI PUPAE		CERA TOPOGIVIJIE	STENFLMTS SP.	CHE JUNITORCAL SP.	-	HAYCEDIAS SALES	9 5+17-79 OLIJICHISTA	FING DAM DR SAMPLE DRI.NTATION SIDT CMARNEL 1/ SITE 2/ TO ATNG DAM 3/ DAT" TARDN	NUMBER AND RIJMASS DER SSULTS, UDRENER MISSICTIPPE RIVER LATER TO FIGURE 1 FOR LUNA RETER OF MAGDITURETERRATES COLLECTED WITH A POWAR AND A DINE IS 17 13 TO A DINE 1 FOR LUNA RETER AND A DINE 1 FOR LUNA RETERRATES COLLECTED WITH A POWAR AND A DINE AND A
13 0 = 3.3	119 - 1 79 - 1 75.0	2196 18 0 - 34 100.0	0	236 23 0 - 4	1 S 0 =	13 0 - 6	13 0-7	13 0	4°5 40 - 18 6 I	1799 159 159 - 333 81.9	NONAES Norte Solution Norte Solution Norte Solution	G918 (THOES REPLICA
5.16 - 00.03 - 50.05 - 52	59 0.01 9.3 9.3	49 3-30 103-0 -	23 0-03 40 0-03 - v-5	21 1.14 36 0.00 - 24.9	C+2 - 00+0 60+0 53	23 00.04 - 03.0 23	۰.5 5 53 - 5.5 53 - 22 - 53	23 40 0.C7 2.0	0.03 - 16°0 - 50°0 - 24	2.02 13 0.15 44.3		TES),
1.01	9.35 2.12	5 • 2 • • • • •	9.09 9.09	1.22	0.15 0.29	0.39 0.16	0.39 0.39	0.16 0.23	0.97 1.93	1.77 3.69	(6) 50 E T3TAL	

81

+

A DENNES. Jumber and glumass fir sojare meter of vacpolvestigrates collected mith à povar game ethee prolicates). Jumber and to solve the solvestigrates collected mith à povar game front. And the solve the solvestign of the solvestignes.

ł .

.

:

į

.

I

WING DAM DR - SAMPLE SATENTATION Stde channel 1/ Site 2/ F3 Ming Can 3/	5340	r GX L 1	MUN457 MUN457 MEAN+ S AANGE PEPCENT GF	о 1 7 с тац	8102465 810445 86440 86440 8445 8445	(6) 53 53 51AL
1.	62-11-5		13 13 8+5	23		0 - 11
		LTHILE & SP.	13 0 - 8-3	23	0+0 00+0 00+0	00.00
		FOTAL INVITERRATES	159 0 - 100-9	79 238	0+004 - 000 - 10-10	1.17 2.06
Ξ	6-11-73	GLIG-SCHAITA	198 79 - 34-9	143	1.47 3.43 - 25.9	0.91 2.26
		* 0.0 VINIS (XUT	126 0 - 19.6	100 198	3.51 C.00 - 61.9	5 . 39 6 . 7 5
		-OTAMTZA FLAVA (44654)	13 0 - 2 • 3	5 M Z	0.01 - 0.01 - 0.2	20.02 20.04
		3KC1kuSCdül fo3ú	13 0 ~ 2 • 3	6 S N	100°0 70°0	0.07 0.12
		CME4 GVC41345	225 19 ~ 39.5	160	0.63 0.47 - 11.2	0.29
		• 65 Fister	13 0 - 2.3	5 0 ¥	5°0 - 00°C	0.00
		SULTERIANT T++CL	569 0 - 100. P	250	5.66 3.00 - 103.0	4.22 •.36
1	61-12-5	OL TO POWART A	592 516 - 24.3	635	1.95 32 - 1.4	1.53

+

SIDT CHANNEL	1/ Stre 2/	975-NT#FID94 T7 4146 044 T	37 D187 5-21-73	TAKON AKALLELA PZTECA (SAUSSURE) AKARARARINA Srachvetreus sp.	редсяная 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 13 ос. 14 ос. 14 ос. 14 ос.
				SSACHYEFREUS SP. Daenie Sp.	206 79 - 13 - 0 - 0.5
				H0X407NT4 5P+	101 - 122 - 101
				STENILMIS SP.	13 0 - 0.5
				L = 7 A TY POSONIDAE	2.2 - 0 53
				ärcthöhu⊿t+ 3	833 635 - 34- 9
				CJLICIDAE PUPAE	13 0- 0.4
				H1.50 20 10	13 0- 0-6
				iairala, w. shell	- 0 -

APPENDIEL CONTINUED. Number and biomass per source metric of vectorisating contected with a polar gaar (three rflica). Usig is is to for 21, 19, 20, 21, 1979. Poll 13, Laper Missippi rive (refer to figue 1 for Locations).

1

4

ł

65.23 37.22 39.55 - 107.97 95.0 67.97 36.40 0.95 - 109.72 105.0 RANGE PERCENT OF TOTAL 133.11 57.00 C.U9 - 201.93 109.0 0.11 0.09 0.00 - 0.16 0.2 0.30 0.60 9.32 0.60 1.03 0.39 0.57 0.85 2.50 3.22 0.03 -3.3 0.22 0.07 -0.5 1.35 0.91 -2.5 0.30 3.00 -0.23 0.23 -0.13 PEANS 50 RANCE PERCENT OF TCTAL 100 226 635 105 23 139 358 1011 2024 M 0 17 4 9 ¢ NUNSER 165 0 -23.9 25 2.3 * 3 3 * 3 6 - 4 0 - 7 13 20 -1 - 5 950 193 -73.9 238 119 -29.5 304 159 -37.7 2394 130.3 120.1 507 - 0 -T 4 X 3 N *********************** TOTAL INVERTERATES • as sfirdwcollhac HPACHYCERCUS SP. CERATGPOGINEDAS HEARTNEAL SP TACIMONDAIND 6-21-78 GLIGPCHAETA 6-21-75 GLIG 204674 PING DAM OR SAMPLE OPIGNINITON SIDE CHANNEL LY SITE 2/ TO MING DAM 2/ DAITS ~ ------~, 5 3 23

84

1

3.47

0.39 0.04 -3.2

236

119

ARACHYCERCUS "P.

" aS NUC Che 1

10.1

0.76

0,44 0,00 0,00 0,6

2 9 7 0

13 0 -

1.1

HING DAH DA Side Channel 1	SAMPLE :	19 - 146 944 3	37C /			101201101 101201101 101201101	TCTAL		5) 5) 1) 1)
25	3	ء م م برب م م م م م م م م م م م م م م م م	5=0:+78			4° 0 - 3 -	69 119	3-15 2-39 57-1	24.44
				(ECETIS S°.		13 0 - 1.1	23 40	2.03 - 03-15	0.25
				SVC1NCSCout Youd		13 0 -	6 2 3 8 0 3	5•0 • 00 • 20	3 • 23 3 • 23
				C HIR ONO MINAS		93 - C • • 7	43 159	0.21 - 00.0 1.7	9.40
				+	SHELF	26 0 = 2•?	46 79	1.77 0.00 - 14.6	5.32
				TOTAL INVERTERER	8	1177 2 - 100.0	1352 2738	12-14 9-00 - 130-0	20.00
25		G.	5-21-78	0 L 10 70 4 4 3 7 A		701 436 - 48.2	729 339	6+C +++ 4-2+C 4-2+C	0.0
				HYALLFLA AZTODA I	(SAUSSURE)	13 0- 0.9	6 0 2 3	0.03 0.03 0.03	0-0
				REACHYCERPUS SP.		40 0 - 2.7	69 119	0-02 - 0-02 - 0-1	9.32 9.32
				HOXA SONTA SP.		397 159 - 27.3	230 535	59-69 45-65 - 1 96-7	29 - 32 02 - 65
				.as s im laries		13	£0	0.00 - 0	0.21

ADAER AND BLUMASS FER SQUARE HITCE OF MARRONDIX H-1. CONTINUED. Number and blumass fer square Hitce of Marrondiyvertsferate collected with a polar GPAB (THPEE BFPLICATEC). UCM 12, 17, 19, 70, 21, 1973. PODL 13, NARER MISSISCIPPI RIVER RAFER TO FIGUET I FOR LCATIONS).

-

t

,

į

Ì

1

1

]

l

]

PESCENT OF TOTAL 72.35 25.34 3.00 - 104.24 190.7 59.92 51.97 1.45 - 107.49 52.2 0.40 56°0 C. C9 0.16 2**2 0.07 5. 10 10 - 10 0.05 0.05 0.31 0.73 1.35 0.45 0.00 -0.03 0.00 -0.0 1.11 D.55 -i.5 0.20 0.00 -C.2 0.12 3.09 -0+12 2+05 -C+1 - C) - C 3.2 NUBER MEAN. S) Range Percent of tetal 637 2063 83 193 110 524 337 2 3 7 0 7 121 204 23 23 9 ¢ 13 0 -2.4 13 13 . •••• 13.7 ••• 100.0 463 119 -14.9 1.5 1918 1349 -61.4 1.1 3.4 1455, -265 159 -- 23 40 -106 43 -۔ کو 1 0 9 TALLELA AZTECA (SAUSSURE) 1440% THURS / TOS RELEAVES TCTAL INVERTESRATES Jelinalist aude HAACHYCEACUS SP. 5-7.-73 CERATOP33341046 HEXAGENTA SP. INCINCATED CLIG TCHASTA C (CE TTS SP. CAEVIS SP. 5+20+75 i 1.10 į HIVE DAY OR SAMPLE ONLANDATION SIDE CHANNEL & SITE Z' TO HING DAY XX ÷ ~ \$ 2

0.5

1.3

NAMBES WAR	T	3+ 17= 0F 3+ 29+ ER 3+ 29+ ER 5- 29+ ER 5- 29+ ER	A PERVIX 4-1. CONTINUED. MACROSSYNESSESSESSESSESSESSESSESSESSESSESSESSESS	10000000000000000000000000000000000000	ICATES).	
26	-	5 - 2 5 - 7 8	STENILMIS SP. Ceratopognulons	5 5 5 0 - 5 7 - 5 7 - 5	119 119	o o
			5 x 1 R 74 0 4 1 3 4 1	394 79 -	556 556	•
			L174227 So.	13 0 -	\$ 0 5 3	
			FUSECHATA FLAVA (9AP123) W7 SHELL	0.4 - 0 5 -	0 4 6 7	• •
			FUSCOVAIA FLYVK (BAPMES) W/9 SHELL	13 0 - 0.4	4 N 0 U	.
	÷		TJTAL INVERTERMATES	3121 9 - 100.0	550 5550	0
25	3	6-23-73	3. 269CHAETA	145 40 - 73.3	100 238	0
			0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	26 0 - 13.3	5 L 9 L	0
			Singles of Sector	26 0 - 13.3	4 N 0 W	0
			TSTAL INVIATEAGATES	198 0 - 100. 7	159 357	S.

المع ال

14.1

87

U

A DEVIEWDER AND BICAASS PEA SQUAFE PETF: OF MAEDINVERDERATES COLLECTED HITH A PUNAS GAAB (THREE REPLIMATES). Jungeer and billing and the 12, 17, 19, 20, 21, 1974. Pool 13, UNDER MISSISSIEPIPIUS (AFTER TO FIGUEE 1 FOP LOIATIONS).

1

5135 244 98 5135 5444451 17	SAMPLE SITE 2	19454141104 19454 - 194 1940 - 1947 - 1947	3140	Y CY L		SS F TCTAL		(5) 50 50 101AL
36	'n	æ	6-2(-73	CLIGOCHAETA	212 119 - 72.7	100	0.15 0.09 - 12.3	0.11 0.28
				OVE INCOLUCE RADIO	13 0 - 4 • 5	2 A N D J	0.15 0.00 + 33+5	0 • 5 1 5 • 60
					66 9 - 22.7	115	5.95 - 00 - 6 : 9.20	0.11 0.20
				TOTAL INVESTERARTES	102.0 100.0	196 516	0.34 0.03 1 100.0	5 * C
56	•	đ	6=2f=7.8	CLTG.7CMAETA	1534 1190 - 73.0	435 2024	1.93 1.25 - 52.7	0 • 53 2 • 4 • 5
				ERACHYSERCUS SP.	489 79 - 23•5	355	0°20° 0°20° 51°2	0.52
				346140764113	53 40 - 2.5	50	0.93 0.12 - 26.7	1.49 2.70
				TUTAL IKVERTBARATES	2077 0 - 100.1	736 2775	3.65 0.00 - 103.0	0.40
8	1		5-23-78	DIJGC.44ETA	317 193 - 92•3	105 397	0.22 0.00 - 90.5	0.20 0.36
				- cs shranger	26 0 - 7.7	40	0.03 0.00 - 10.5	50°0
				A TALL NEVITE AND A STATES	344 0 100-0	139476	0.25 0.33 - 130.0	0* 55 0* 6

Ser.

ഹീപ

10.00

NUMAER AND 9134415 PER SQUART METTR OF MICATESCOLLECTED MITH A POWAR GAAD (THREE RFPLICATES), June 12, 10, 21, 10, 21, 1073, BODL 13, 4005 12, 17, 10, 10, 21, 1073, BODL 13, 4005 13, 4005 12, 12, 1005 12, 1005 1 FOF LOCATIONS).

Ì

ţ

1

i i

I

1111 044 04 1115 644MN:L 1	514PLE		3. TO	17 ×2×		s) 5) 16 TCTAL	1134655 (6) 113465 (6) 23465 (6) 24465 (1014)
2 G		Ŧ	5-20-73	LASA13044 COMPACISON (LEA) #/ 245LL	13 2 • •	5 3 6 0	3.72 6.44 3.03 - 11.15 219-5
				LASHIGONA COMPRESSA (LEA) -/O CHULL	13 0- 5.5	5 3 4 0	1+32 2+41 0+22 - 4+17 32.2
				TGTAL INVERTERES	238 0 - 100.0	1597	1+>9 2-26 0.07 - 4.29 173.0
62	Ś	~	6 N 41 U 4 5	¥.3eHju 8170	767 357 - 95+1	3£9 1071	0+77 2+29 0+44 - 0+95 C.S 0+95
				CEAM TOPDGOVINAE	13 0 -	5 3 4 0	0.69 0.16 0.00 - 0.25 0.2
				EVCINDCAIND	13 0 -	5 3	0.74 0.07 0.03 - 3.12 0.1
				G6L%QUARTA REFLTAA RAFIVESQUE W/ SHELL	13 0 -	23	44.04 76.29 0.00 - 132.13 132.5
				09F1,03M914 BEFLEX4 94F14589E M/O SMERF	13 0 1 • F	5 Z Z	32+31 55-97 3-30 - 95-94 97,3
				TOTAL INVERTERANCES	807 0 - 1 2 0 - 7	421	33.21 56.36 0.00 - 99.29 177.3
62	\$	£	6+10+73		3639 60 - 97 - 9	6105 F3101	5.75 5.22 0.20 - 9.09 11.1
				15E.LVS 52.	53 0 - 1.4	02 159	0.05 0.09 0.00 - 0.16 0.2

90
NING DAM OR SAMPLE SHILVTATION The channel 17 Site 37 to Ains Can 17	U "	TAKOK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5) 5)		F 1
9 S 42	5-~~~. 5-~~~. 7.4	471_LELK 12750% (SNUSSUPE)	130-7	63 23	0.00 + 0.00 0.00 + 0.00	5 4 I I
		AGELISTA ALACTOR (HAGGN)	13 0- 0.1	5 W	C.53 1+01 0_00 - 1+75 2+1	
		34 80 47 059735 5P.	1 • • • 0 0 0 1 1	215 676		
		AFKASINIA SO.	66 0 -	115 199	22.54 Jo.11 3.00 - 57.73 92.1	
		>TEVELW15 50.	66 0 - 1.7	199 115 115	0.00 · · · · · · · · · · · · · · · · · ·	0° 13
		1 A 1 9 040 4 1 V A 1	56 0 - 1.7	1 - C - C - C - C - C - C - C - C - C -	01015 0121 0101 - 0121 0101 - 0121	
) LIRGUCATOAT BURKE	۰۵ - ۲۰	119 19	2 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 •	~ ~
	•	LULT TAL TALLASTES	3915 0 ~ 1 130.9	6610 11547	27.41 67.26 0.03 - 31.98 137.3	ut gr
6 7	6 = · ·]= 7 8	31 I 3 00 4 4 5 T 4	5**2 * 0 * 6 4	19 19 19	0+00 0+00 0+00 0+00	N) - 4
		135_L45 37.	13	4 IZ	0.05 5.01 0.03 - 0.16 7.3	~~~
		HYALLELA AJTECA (SAUSSURE)	2 6 1 3	7 8 9 5	0-01 0-02 0-01 0-02	■ N

A PERINE H+1. CONTINUED.

W LAND

•

. .

ł ł

91

and the second secon

! 1

R P . I . 4 7 E.
33ch1)
eres ò
¥∧Ge
۳ ۲ ۲۰ ۲
1 NUTO -
10 - 21 2 - 21 3 - 21
1 - 1 - 1
201 21 21 21 21 21 21 21 21 21 21 21 21 21
2011 2011 2011
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 DF
1.1.2
354L9
е. Ц
и.
9134
CNV
N UMBUR

ł !

:3).

PJJ. 15: SPACE "AISSI'STRAT TATA CASE A TA TISUE 1 FOR LOCATIONS).

NING DAM CR 5105 CMANAGL	Stype 1. SIT: 21	3-124141164 T. HINS E.4 37	N3x71		NUNGER NUNGER NEAN, SU		SVECIE SVECIE	(<u>)</u>
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			P 2 F C.	CAT DE	TCTAL	1130614 1130614	101
42	5	•	6+13+7.3 [[[PALTFOC5.381+4+					
				ς Φ	ہ ۔ 8 ۔ 9	5 J	3.12 - 00.00 - 1	0.14 0.28
			しゃくれをじとし どれや ひ	195		: 39	0 - 5 C	0.30
			:		3 - 56.3	3:7	0.09 - 55.1	1 · · ·
			AUTAL TAVIATIONALYO	121 2 2	•	92 436	- 00*0 5 - 20	40 · E

T JATUT
4134H-JSI73 - 62+62-9
HYALLELA 32
SU DE ESTA DE E
346140434141
FOTAL IVV1275
6-9)-72 JL239CHA514
Cincipaline :

۱

		30			30			50		30	- I.V. CHARJA	UK.
		Ø			ው					·.*	TX STAFES	N0:6 .4 - M3EH
		œ			÷			(p		7	2011 2012 2012 2013 2013 2013 2014 2014 2014 2014 2014	354643 F36 264
		5-13-73			6-13-73			5-20-78		5-21-79		JC 00134
ATALLELA AZTERA (SAUSSUPE)	A3"LLUS 50.	2L 1600 41277	TOTAL JUVISTEAPNTES	O AIR "NOVI) AF	36190-4487A	TOTAL INVIDTE JEITES	כ בנות היא מצוויים.	OLIG OF HAET N	TOTAL INVERTEBRATE:	af Clackineta D	1146 \$. 17. 14. 70. 21. 1978. 1531 - 1621 - 21072 (62726 75 616862 600 L	REAGE & HILE CALONING SALEARAIRESAND CONF. Provenskoj stal kurkana v
26 0 -	13	291 - 3 275 - 3 32-9	357 1: 0 - 63 130-7	13 0 - 4 3.7	344 195 - 42	106 1:) - 27	93 10 9- 21 97-5	13 0 - 12•5	675 14 0 - 79 100.0	198 21 40 - 43 29•4	CCATTONS). Non- Heaks Ance Ance Percent of t	GRAB (THREE REPLIC)
26 29 0	0 2 2 3	23 17 Q	19 75 0	40 0	39 7 7 0	7 6 6 0	60 7 9 2	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	5 F J	36 0.		ktes),
		17 - 0 2.2	· 39 · 24		- 03 - N - 04 - N - 14 - 0 - 14 - 0	- 00 - 0 100 - 0	09.17 100.0	• 0 • 0 0 • 0 • 0 • 0	.00 - 0 100.0	- 00 - 0 - 22 - 4 - 0		
3. CT 3. 12	20.02 20.02). 33). 63	3-10		3 C - 1 - 3	. 52	30 52	. 03	. 32			

	REPLICATES		
	CTHREE		1 2 4 1
	NA? GAAB		CO LOTATIC
	PC		۱.
	H118 .	•	C L C I F
* GOAIIAO * H-H XIChIwe Y	HET'N OF MACROTHERICSONTES COLLECTED	JUNE 17. 17. 13. 20. 21. 1975	AT APPENDE APPENDE TOTALE TOTALE TOTALE
	19496		i Cue
	2.3		
	321-4455		
	A1.0		
	UNJER		

;

116 24 08 125 54445L	SAPALE V SITE ZV	03254FAF194 - 10 4240 244 84	3470	TARO.		53 F TLTAL		50 50 50 725
		Ţ	67 - 5 - 73	a sacarcanas su -	65 65 7.5	63 159	0-00-00-00-00-00-00-00-00-00-00-00-00-0	7.0
				• es ActOke ;	53 0- 6.0	61 119	0,07 + 0,07 + 3,4	0 0
				r-EJWETOPSYCHE SP.	13 0 - 5 1.5	n N N	0.15 0.03 - 1.1	2 • C
				ST CINDADUTT D	331 119 - 37-3	325 714	2.57 0.05 - 21.3	3 • 5 5 • 7
				SPABULION SP. W/ SHELL	93 40 - 20-4	13	0.31 0.15 - 59-2	9.2 15.1
				trvstgseitge	1366 0 - 100•0	607 1587	13.43 0.09 - 107.0	10°5
1	'n	•	6-11-73	101010 TBC/17	119 2 - 0 31-0	119 238	0°0 - 0°0 - 0°0	6 D • •
				日本 ハーチ ロン・ ハート リ	135 0 - 48.3	287 516	5.03 - 00,0 - 00,0	00
				Jerse Jerse Jerse Jerse	13 2 - 3.4	2 3 4 0	0.0 - 00.6 - 0	0 C
				PISTOLOW SP SHELL	13 0 3 - 6	5 Å 5 Å	2.0 0.03 - 0.03	0.0
				771253 /# "eS bfleitte0	40 10.5	69 119	3+5+ 0+00 - 13+7	11.5

9 6 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	8 9 9 1 8 9 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 4 8 9 8 9	t 0,	13. Junga	AISELLEDED AINER CONFERTO FLORES I FOR LOCATI	ICNS).		
SIDE CHANNEL 1	SANNE 1 SITE 21	CAPLNEATION TO AINS TAN	≦z ser≂	T = KO W	NUMBER HEAVS S	-014F	973455 FG
31	،ن	۲	6-1 -73	J9J44914 JLIVEFIA (94FINES0JE) +/ SHELL	13 0 ~ 3.4	23 23	231.33 603. 3.33 - 595. 924.5
				232Viela Olivaria (etrivisio) FVO SHill	13 0 ~ 3 ~ 4	2 S	2 .07 41. 5.33 - 72. 95.3
				"OFAL INVERTERENTES	384 9 - 190.0	450 913	23-05 35. 0-00 - 72. 1000
31	.	Ø	5+1++79	JL EGOCHAETA	50 50 4 3	69 119	0.00 0.00 0.00 0.00 0.00
				- c5 50.2230AF 378E	13 0 * 20. n	6 2 G	2.02 - 03 - 03 - 0. - 03 - 03 - 03 - 03 - 03 - 03 - 03 - 03
				OH 18 OVO 4 TO AD	13 0 - 20. ^	4 C 2 S	3.03 3.03 3.03 4.0 9.03 9.03 9.03 9.03 9.03 9.03 9.03 9.
				TOTAL INVERTEBRATES	65 0 ~ 100_0	46 119	0.03 - 0. 133.0
31	*	~	5-li-73	36,20,445,44	26 0 ~ 56.7	45	0.0 0.13 - 0.0
				5E347725741342	13 0 - 55. 7	6 13 61 03	0.19 0. 100-0
				LO,VT IAASHLSBELSES	40 2 - 102.7	790	3.13 3.22 - 0.1 130.9
31	-	ون	5- 7-79	OELD AG HRGTA	40 0 - 3 8. 3	4 Q 4 Q	0 • 0 • 0 • 0 • • 0

ň.

1.

ANDER AND MILMADS PER SQUAR VETTO OF ARCEDINGENET, CTULECTED MITH A POWAR GAAR (THREE REPLICATES). UJAC TO IZA IAA 201. 13. 10. 12. 13. 20. 21. 1923. DJAC TO IZA 1923.

I

I

MIVS DAM 03 - SAALE - 021UTAL SIDE CHANNEL 20 SITE 20 TO 41NG C			TAK9.,	₩₩₩₩ ₩₩₩₩ ₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	. TCTAL		50 50 5 737AE
-0 -0	ů	-17-75		13 0 - 11.1	23	0+00 0+03 1++	0-02
			4 r 3 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	13 0 - 11.1	2 3 4 0	0.01 0.30 0.90	0-02 0-04
			* as 87071aC1477871	13 2 - 11.1	23	2.23 - 30.0 6.4	0.15 0.28
			HYAIYO21FET;	26 0 - 22•2	√0 0- ⊲tiv	0.05 9.00 3.6	0.19 0.15
			LEPTOLIA FAGILIS (SAFINESOUS) M/ SHELL	13 0-	5 2 2 7 0	2+20 0+30 + 152+7	3. a5
			LEPINTEA FRAGILIS (SAFINESOUS) N/O SHELL	13 0 11-1	5 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-27 0-00 + 37.5	2.20 3.41
			IOTAL INVERTERATES	119 9 - 100.n	105	1 • • • 0 • 00 • 100 • 0	50.4 52.25

0 :== 1000;-110	
teller.le.	
-73 SUISCOMETA	11 • •
TCTLL INVESTGERIES	
-73 (1190)-1074	13
FOTAL INVERTERDATES	
UATRONOATO AR	
5 14.1 5 50.	
-75 362357748254	ž
	DE MAANEE 17 SITE 27 TU ATAT AM 17 DE
	-75 BESSENAAETA 4044487414 89. 4044487414 89. SHAUSS 59. DHTAUSS 59. TETAL SAVERTEADATES TETAL SAVERTEADATES TETAL SAVERTEADATES SUSSEMAETA SUSSEMAETA

I

Ī.

Ľ

.

A SOLUTIONED. Number And Bilmis, P.9 squast Feits of Macricultered Alth A poner Gaab (Thpee Replicates). Posus Plane 1974, 1974, 1974, Posus 158:1551001 Reviewer Alver (Feits to Figure I For Locations).

á.

2146 344 84 SAMPLE JAIJVIATION 2135 6444964 1/ Sité 2/ 73 -146 644 1/	576	T4 Y0 4	и и и и и и и и и и и и и и и и и и и	SD F TETAL		761- 701AL
11	fl	11245 /# "dl whicisje	132 9 - 13•1	1961 795	0.05 0.00 - 31.5	
		Statistics at Stell	93 49 - 1 9 - 1	61 159	0.57 0.15 - 19.1	0.36 0.79
		LEPITTEA FRAGILIS (PAFINISOUE) +/ SHELL	13 0 - 1. T	M 0 7	2.43 0.00 - 77.3	4.22
		الاعلاقيذة بالاقالاة فعلالتكومان الالاق وعرار	13 0 -	5 G 7	1.35 0.00 - 42.0	2.29
		1974 L XNVTPTG494755	1018 2 - 100.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3+15 C=00 = 100+0	26-4
2 5	82 - T - E		4 • 0 9 • 0 •	69 119	6*0 50*0 0*0	00.00
		して にょうべい よいよう	26 6 = 4 0 = 0	45	0.01 0.03 -	20°0
		TUTAL INVEATESPATLS	56 0 - 100-0	61 119	C. C1 0.50 - 100-9	20 ° 0
2 5 2 4	8/17 -E	0.16 m F T T M P T T M P T T M P T T T M P T T T M P T T T M P T T T M P T T T T	2576 754 -	2415	1.6? 0.15 - 34.6	1.31 2.46
		ころにつんしょう	1388 4.0 0+0 0+0	198 436	2.01 0.20 - 41.9	3-27 5-56
		Rene Stoleurus, a	13 3 -	23	0.00 - 2.5	30°0

98

-

•								. 52 ·		25 ž e	ALIC DAM DR STMPLE DRICH	34 ST4F016 1341 BIEHON
ч 1								ىلى 1 1		لل اللہ ا	AG DAN SA DATE	
5.0 00 00 00 00 00 00 00 00 00 00 00 00 0	TT AL TAVIDOTIAFATIS	SPARTIN SP. WY SHELL	Stefic Stildiue]mS	C 1 IR GX DELO MO	POTAMPIE FLEVE CHACOND	468892418	えなたて よていによいひらう やじ・	79 OLISOCHAETA	TGTAL THV RTERPATES	23 30HATOTUR SON AX SHFLL	A CA Y L	ES HIS-Juris of Just (TLAID South Figure 1 For August Jee 1959 Se hegedingshere (Steeding) with a boar Se hegeding her, continues
790 947 119 - 1965 93.7	254) 553 3 2853 100-0	26 26 26 26 26	159 - 436 6.9 - 436	195 - 219 43 - 435 7.3	159 ?41 J~ 436 6.1	26 - 79 26 - 79	26 46 0 - 79 1.0	1991 1331 557 - 753 1331	2059 2444) - 5793 100.0	212 115 79 - 278 7.1	NUMBER Nears So Mance Ance	2 GRAB (THREE REPLICATE) Locations).
0.20 - 1.59 93.6	3.22 1.42 3.22 7.82 100.0	0.15 0.02 0.12 - 0.16 4.5	0-30 - 0.44 0-30 - 0.44	0.06 - 3.32 12.0	0.15 0.21 0.33 - 0.60 5.0	1.37 1.26 0.33 - 3.21 33.5	6.10 6.10 5.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6	1.27 1.00 9.12 - 1.85 J.7.7	81 3.71 0.33 - 3.17 103.0	2-12 1-50 0-15 - 2-86 0-15 - 2-80	JIGHASS (C) HEANS PERCENT OF TOTA	5 7 *

q

ļ 1

-110 344 54 -120 544 54 -1205 5446-155 8.	12 -112 -			7 () * 4 *	A 1040	50 TCTAL		(5) 50 101AL
25	*	*	- 2 +		53 0	51 119	0 0 0 1 1 1	0 - 0 1 - 0
				TITLE INVERTIONALES	933 0 - 100-0	1006 1994	0+62 0+00 - 101+0	12°1
42	-	r	82-5 -x	r i Mar Constructor	896 317 - 94•4	496 1210	2.03 0.15 - 43.5	0.47 1.03
				14c1202.0140	26 2 - 9	M 0 () 3	0 0 2 2 4	0°05 0
				<pre>və4vialUv 3m* v/ SHill</pre>	26 0 - 2 - 5	10 D 1 F-	0 • 0 • 6 • • 0 • 6 • • 7 • 5	101 (0) e+ (). • •
				23144401441777 J4101	939 0- 193•0	547 1349	1. 36 0.03 + 100.0	1.52
45	N	~	3- 1-70	3LE5 3CHE27A	0 *0 ÷ 0 *	63 [1]3	3.5 - 6.5.6 - 0.5	00 • 0 0 • 0
				TOUS SOLUTION CARA	13 0 - 20-0	80 11 4	2°03 - 3°03 - 65°1	6.05 0.03
				いって おうからじんじた すみりつ	13	M 0 1 4	0+01 0+03 - 33+3	10.0 20.0
				TOTAL INVERTIGATION	55 0 - 100.0	83 159	2.74 0.03 - 123.3	0.04 0.04
26	-	۴	ŭ∠ =1 = 4	そんのまでもしのだりの	135 22.2	121 238	0-20 -20 -20	9.04 0.23

ing -

100

وتعققاه

., 💼

FINE CHANNEL 1 Side channel 1	SAMPLE C	DOTINTATION To mins dam in	D 4 F	T 4 ¥94	PERCENT OF TOTAL	4104455 (5) 4124455 84455 Percent of tot
25		ىرى	9= 3··76	STADHYDERTUS SP.	13 - 40 5 - 40 23	3-5 5-0-5 5-5 5-5
				C ARA ONDER VAD	357 619 0 - 1971 75° 1	0.02 - 2.0 91.1
				"STLL INVERTRESTATES	476 - 1021 100- 1071 120- 225	0-7* 1.1 0-03 - 2.0 100-3
28	*	5 .	9, 79	0_1000048078	159 137 79- 317 66.7	0-05 2-0 - 00-0 3-0 50-0
				434247CEACUS 10,	13 23 0 - 40 5-5	5 + 01 5 + 02 + 0 5 + 0 + 0 5 + 0 + 0
				CEPATOREAC	13 23 0 - 23 5.5	0.09 2.1 0.09 2.1 43.3
				C 1128 C 2 G 412 2 A 2 -	53 92 0- 159 22.2	0.02 2.02 2.32 0.1
				"JT4L INVERTERDATES	130-0 151 - C 173 - S	0.21 9.21 102.2 7.41
29	••	7	9- ;-75	DU IGNE HETA	70 69 0- 119 10.7	5.6 5.0 5.0 5.0 5.0
				9245740642A2 32.	26 - 40 29 - 53	9.02
				(+23++7+7+7+7+7+7+1++++++++++++++++++++++	672 176	0-0

ł

l ł

ļ l

]

ł

MUMBER AVD BLJMAGS PER FQUARD METTE OF MACODITVERDIX MHC. CONTINUED. Aumber avd bljmags per fquard metoditverdigarits callected mith a ponar gaab (three rplicates). Pijje 15, ypseq metodist 244, 1973. Pijje 15, ypseq metodi pivto (befer to figues 1 for locatiovs).

-146 344 94 9135 544NNSL 2/	54%PL5 5.1. 2	0.11.11411.34 7 To #140 044 37		Τακογ		6		5 (6) 50
23		4		POTA 4YIA SLAVE (HACTN)	13	23 23 40		7274L
				-7-Ix07J217;	26 26	23 40	- 00° C	0-04 0-04
				LOTAL IVVIORITESS	767 767 100.0	1923	1.00 1.00 1.00	1 • 53 2 • 93
ŝ	~ 1	*	5- 3-75	JLIS COMARTA	66 0 - 83.7	83 159	0.03 0.00 - 100.0	0.10 0.20
				しぼう 目的 ひょうだい アイド・シー	13 0 - 16.7	53	0°00 0°0°0 0°0	9 • CO 9 • CO
				PATAL INVERTAGATES	79 0 - 100.1	79 159	0.00 102.0	0.10
\$ N	~	Ŧ	64 -5 -6	:	0 0 0 0 0	00	0-0-0 0-0-0 0-0	00°00 0°00
\$ N	*	Ŧ	3- 3- 7 E	" dy lititsenteranse;	53 0 - 66.7	61 119	0.01 - 00.0	0.16 0.16
				いろんぼうひえい たいざい	13 2 - 16.7	1) 10 10	2.5 10.5 2.5	9-02 9-04
				altirum Compacesa flem) mu smelt	13 0 " 16.7	53	1.1C 0.77 - 275.7	1.00 1.29
				1,13412644 69495284 (FEA) #70 SHELL	13 7 15.7	د ۲ د ۲	0+21 0+21 + 73+5	5) 5 5) 5 5) 5 5) 5 5) 5 5) 5 5) 5 5) 5

1. 18 M. 18

102

SIDE CHAINEL 1	SINGLE / SITE Z/	12 AING 014 17	D • • •	1920	
23	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		هر ها هاری مالی	TCTAL INVEPTERANTES	79 105 0 - 198 100-7
2,	U1	·• ·	g - '+ 7 o	3. ID 01 441 78	49.2 162 - 10 291 - 261
				1 میں 1 میں دروال میں 1 میں	13 23 0 - 40
				0 +14×5 1+17 +11	13 23 0 - 40
				TOTAL INVERTARIATION	225 - 322 541 - 0 522
2 ¥		œ	61-2 -6	26447.025141946	26 23 0 - 40 19919
				TG"4L INVEPTEAP4TES	100.0 2 - 40 5 - 53
23	.	7	9- 3-18	36107044274	476 300 159 - 754 94.7
				4YALLFLA SZTEIN (SAUSSURE)	2.6 0 - 40 23
				01048T3207040 50.	13 23 0 - 40
				SEANAR TANK TANK	503 337

APELYICH CONTINUES. Number and bidands tear retty of accortytatioates collected atty a pone carb three appliedes. Aigist tak, 1973. Podd is, vorea aissister eiver refer to fight i for logations).

1

+146 044 64 5108 644465		2 15 410 1104		Так0.8		י דנדאו		(6) 50 51 10161
29	æ	Ð	9- 1-73	D. LO. M. LANTA	56 5 - 3 - 3	43 159	2 • C • O - C • O - C • O	0.14
				いまで見てひろしゅれてひ	13 0 - 16•7	10 a	0 0 0 0 0 0 0 0 0	0.00
				ZJIRCEJALINA JULA	79 0 - 100.1	105	0.01 - - 010.0	0.14 3.24
3,	ال م	~	9- 3-74	J. 19 J. HARTA	40 2 - 4 2 - 0	119	- 00 ° 0 0 00 ° 0	0.00
				2412-1-24C	53 40 - 57•1	23	0.00 0.00 100.0	9 ° 0 4 9 ° 0 4
				TOTAL INVERTIGEATOR	93 0 - 100-7	141 159	0+0)+ 100+0	40°0
30	ι κ	æ	52 - X - 6	39071514 PLIVARIA (FAFINESQUE) N/ SHELL	13 0 - 100.7	M () (4 4	2.6.23 2.03 - 7.12 - 9	50.43 37.69
				3574914 GLUVERTA CARFINESOUC) 477 S47LL	13 2 - 130.0	M D N a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.10
				Solation to the second s	13 0 - 100-0	5 3 4 0	0.010	7.10
30	Ð		÷2-5 -6	-as silit	13 0 - 100-0	5 C) 4	0.03 - 130.0	0.16 0.76
				TITLE TAVIOTESPATES	13 0 - 100.0	5 V V	0 - 00 - 0 - 00 - 0 - 00 - 0	0.16 0.25

	1 2 2 3 1 2 3 1 2 3 4 1 2 3 5 4 1 2 3 5 4 1 2 3 5 4 1 2 3 5 4 1 2 3 5 4 1 2 4 1 1 2 4 1 2 4 1 2 4 1 1 2 4 1 1 2 4 1 1 1 1	11 - 112 - 1	421-2 SF	TAKC: TAKC: The structure of the state of the structure of the state of the structure of th	3 (THPEE REPLI	CATES	* * * * * * * * * * * * * * * * * * *	5365
						TCTAL	PERCENT OF	TOTA
3.)	~ 1	20	57g	UCTALYSE FLAVE (HAUTY)	13 5 - 100-7	6 V3	0-00-1 -00-1 	0.02 • 02
				0781 INFORTERRETES	13 0 - 130-3	4 0 4 0	0.03 - 130.0	0 • 0 • 0
31		~	و رو ا	5 4 1 9 5 4 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	159 0 - 100.0	741 436	2.23 - 103.0	0. • • • • •
				торыц Пантатраратру	159 0 - 100.7	941 435	0+05 103+3	0•19
31	١٩	a)	و 7 د : او	1013 22 44 27 2	26 0 - 33-3	4 0 3	0,0,03 0,03 0,03	0 • 00 • 00
				97101707770° 59.	13 0- 16.7	6 12 6 5	0+03 - 05 - 1	0.16 0.03
				CHEUHSTODSYDHE SP.	13 5 - 16.7	4 0 2 3	0,0,03 2,00 = 2,3,5	0.C5
				1+1+0+0+1+1	26 0 - 33.3	5 G 17	0.00 - 14.3	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
				TOTAL INVERTORRATES	79 0 - 61	40 119	0-00- 100-0	2.24
3)	æ,	7	f. 6. e.	- 2 23 77 483 4 8	13 0 - 12. *	£03	0-07-00 0-10 0-10	9 - C 9 - C 9
				(+£y:#T@="¥C49" ¢P.	13 0 - 12. <	4 N N	0-0 - 00-0 90-0	00. 00

1

No.

A POENDIE - CONTINUED. Mumber And Biumass per square peter of mucheticatesattes callected mith a powar gaag (three replicates). Autorit 1974. Puil 13, upaer alselfripat alser atvic (gere to figuet 1 for locations).

ς...

1

•

55 55 1014L	2. C7 C. 12	9.14 9.24	12. 12. 0	3.07 0.12	N 3 0 0 1 0 0 0	9.06 0.12
		0.04 0.00 - 57		6-20 - 75-0	0 • 0 • 0 • 0 • 0 • 0 • 0	0.05 0.00 -
D TCTAL	23 40	83 159	61 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	105	5 N O 4	100 198
う い で し い に い い い し い し い し い し い し い し い し い	13 2- 12-5	66 0 - 62-5	106 2 - 130-1	73 0 - 35-7	13 2 - 14-3	33 0 - 100-1
TAX0%			с. Ш		3 H 1 F 1	Su
	т. 1 т. с. с. с. с. 1 т. с. с. с. с. с. с. 1 т. с.	いせいりょうりょう アーチ	JTAL IVVERTEAPAT	34614666814	14 .05 HULDTAG	rtal Invention
±.10) f2f	ũ	۲	3 - 5 - 7 3 - 6	U)	1-
	~			¥;		
54MPL 6 5112 2/	ۍ.			٥		
146 JAM 30 DE CHANNEL 17				31		

17 #FOU J4* 25* 26* 20* 30* 31 13* KIDE CHANGE 9 = UPSTEFAU: 10 = KIDDLEF 11 = UOW 45FREAU. 27 Sample SITE 1 # 90 DEG# 7*52## 2 # 95 DEU# 7*62#1 3 = 90 UFE# 3*4104# 4 # 135 DEG# 22*56## 3 # INVELSE TARISECT# 4 # 01781D1 THAN TOT. 2* ORIENTATION TO MING DAT 7 # UPSTEAM ANT 4 = DG#N5795AM.

-

..........

(TIS). (TISEE RTPLI 	(THREE REPLICATES). 	olitiki tikit situ tikit (tyli) 1.50 litikist	LIJYGAD KONT		CA ENCAGEDING CALL	A"GH4LASRIGV HJETATUH SAY	2-4463April 25-	HONNA GUIVEN (SP.	JULTSOC APETA	Tatolexy.		4 4	TVG DAM OF SAMPLE DELIVERTION DATE TAKON	bold old 1 January 2 and 1 and a leadual of a clark of the second and a clark of the second and	
	Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction Image: Construction	01	ية ج 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0-6	79 0 - 3-7	13 0-4	13 0-6	939 435 - 1 44.1	661 233 - 1 31.1	13 0	26 0 - 1.7	13 0 - 0.5	マ 10 10 20 20 20 20 20 20 20 20 20 2	(THEE REPLI	

107

١

.

÷

1

;

. Number An) blutass per squapy weist upp maisurverstreattes onlected with a povar stah (twree replicates). States 2-130 (1974) 2011 (131 (Johnson 2012) alvis (streat of the locations).

4

5

7

+116 044 07 - 5442L 0. 5105 сна-мбы 1/ 51°с 2/ 1'		7 07 8 1	2012 2012 2012 2012 2012 2012 2012 2012	S SJ CF TLTAL	2124505 214405 21440 21415 211	(5) S2 E T0TA
		- e S - S - L - C - C - L - C - C - C - C - C - C	13 13 0.5	5 S 5 S 5 S	0,01 0,00 0,00 0,1	20°°C
	19 X	.as suactive	13 0-	5 M	C. € 5 3. 20 0 4 2. 4	0.05 0.09
		• do Similai	13 0 - 0.5	5 3 7 1	0.00 0.00 0.00 0.00	0 • 16 0 • 28
	T.	11 × 11 × 12 × 12 × 12 × 12	106 40 - 5.7	61 159	0.23 J.12 -	9.21 6.52
	÷ 0	•dj Shauf ja	26 2- 1-2	0 7 E	50.0 • 00 • 1	2.03 2.15
	10	I'AL IVVIATESANTES	2129 2-5 100.7	1455 3770	20+51 0+01 - 1 100+0	21.72 45.83
10	12 Fla.1+6	「おいててしいない。	- ' ' ' ' ' C S	4 C 4 E	0 • 0 • 0 • 0	5.03 5.03 5.03
		×1	13 20-0 20-0	2 3	0+15 0+23 + 19	2-25
	F.)		5 - 0 - 2 5 - 2 5 - 2	4 F	0.01 0.07 - 3.3	90°0
	•3 ₩	TAL TAVIATISTATES	66 0 - 1 20 - 0	61 119	0.01 - 103.0	3 3 9 9 9 9
11	9-5-73-5L	K. 1147.11 .57	276 154 - 3522	2 42 6 2	0 • 1 0 0 • 1 0 0 • 2 • 6	0.14 0.12

1

ł 3

ł

		25 I I 2								11	THE DAM DE SAAPLE DEFENTATION IN DE SAAPLE DEFENTATION IN DE SAAPLE DEFENTATION IN DE	r 41 moue Liek Gesches bigestie ert biekne
tat wrotar up sp.	(* "M 21 # 2	"-79 GEIGFCMAETA	2014F IAAGatiquetics	ALTONIONE (AAAAATU) AY SHELL	(omafolda (d. K. Shull	PISTOINA SA. 4/ SAULL	CHIRCHDWIDAE	0 E R J N E E E E E E E E E E E E E E E E E E	047J4173277046 40.	1-75 HERRSTVIN SO.	TAKON	<pre>A DE ALCALTA EL PLATA ALCALTA EL PLANTA ALCALTA ALCALTALT</pre>
13 - 40	13 60 60	344 183 233 - 556 25•7	757 567 0 - 1389 130.0	13 - 40 53 - 51	66 53 0 - 159 8.6	13 23 0 - 60	79 105 0 - 193 10.3	13 23 1.7 40	13 23 0 - 40 1.7	304 369 0 - 714 39*7	NUX3572 P070071 07 7074L	49 GRAB (THPEE REPLICATES) ° Locations).
0.03 0.05	2.03 0.2 0.2 0.25	0.25 0.05 5.20 - 5.20 5.20 - 5.20	7.75 9.26 0.77 - 15.29 100.0	0.24 9.41 3.27 - 0.71 3.1	1.43 2.66 0.00 - 4.48 23.5	2+23 9+34 2+5 2+5	0.09 - 0.12 0.39 - 0.12	5.0 50°0 - C0°0 50°6 - E0°0	0.09 0.16 0.20 - 0.26 1.2	5.40 5. 70 5.40 5.70	BIGHASS (G) REAVS RANSE PIRCENT OF FOTAL	•

I

Ē

Ε

Γ

1

T

J

÷

4

PUMBER AND BILMASS PIR SQUARE MITTE OF MAIDSTATE CONTINUED. "Frieteringeringering conlects with a point way (Thfee Replicates). "Frietering of the Uiter scheme generation of the transmerse." Pode 15. Uiter atstering by the Generation (Stere to Figure 1 For Lotations).

44746. 1/ 2115 5/	18124141174 10 4149 544 17	- 1 - C	71804	1997年7日 1997 1997 1997 1997 1997 1997 1997 19	50 15 7074L	1000000000000000000000000000000000000	5 (6' 5) 52 52
-		62-52-6		423 159 - 31.7	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.30 - 30.6	5.10 15.49
			AUDMALASTED4 - LARTATUM S40	13 0 -	N 0 (- 4	3+ 24 2+ 03 - 4 0+ 5	0. 12 0. 12
			(EVISII ATEVIS) ZVLIMBASGOBCAH	40 3.0	69 119	0-33 0-00-0 2-00-0	0.05 0.05
			- 45 June 1005 KC 45 - 56 -	132 0 - 9+9	165 317	5 1 1 1 1 1 0 0 0	3.59 1.67
			°e\$ ∃hCASaułC⊁H	13 0 - 1•7	5 N 13 A 10	0.05 0.05 0.1	0.79 0.16
			FOTAMYIN FLAVE (MAGEV)	172 119 - 12.0	46 193	0.16 - 0 0.16 - 0 6 - 9	69*0 22*0
			" or sisting	13 - C 1.0	5 (V 1)	10°0°C	0.05 7.05
			SEATTERDUIDES	13 3 - 1.9	63 40	- 00*c	0.00
			化氟化和美国第二化和美国	119 79 - 5. a	69 198	0.71 3.39 - 2.5	0.17
				26 2.5	5 ° 4	0.00 - 0.00 - 1.5	3.0y 3.16
			STAFRTSARLARI JELJ	1336 3 - 100.7	4 5 6 1 7 15 0	3.05 0.00 + 1 170.0	5.55 14.44

) site

•	1204	2505 - 100-0	Pytrt TVV-stf:«	
•	4 0 4 0	26 0- 1.9	Sphiffin 50. W/ Swill	
٥.	£0	13 0-5	CHAD-SDEUS SP.	
•	51 199	132 73 - 5.1	C H FR CY D H T Y FR	
•	40	13 0-5	EL'SA TO POGO NIO AC	
J.	587 1071	397 15.2	POTAMVIE FLEVE (HEGIN)	
<u>ی</u>	83 159	66 0 = 2 • ₹	[4]]/##7]837542 50.	
J.	119 119	400 - 1.5	5 FUNDULA. 80.	
21.	219 1627	1402 1190 - 53.•	HEXAGENIN 39.	
.	195 195 195	5c3 79 - 19•3	0.1307HAB*A	
0	10 N	13 0	-73 T-10-LADE7A	-,1-6 f 2 52
	S) F TCTA	0 15 200 0 15 200 0 15 200 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	Y ĐÃ T T	NAR CHANNEL IN SILE IN LU HING CAN IN CALL Side Channel IN Sile In Collariantica Manage Channel In State

APPENDIA 4-3. CURITYUED. Number and bilmess pear guart aetha of Arcedereasatts (millited bith a powar gabe (threë rpelicates). Fibermand strates, "nau

1 124845 213	5449.E 517. 2		. 116	2 4 60 4	ATERUN AFATA A A A	5) F TGTAL	91944557 (6) #C44, 53 #1456 53 P1456 53 P546 53 P546511 0F 1074
25				6L16C1Ha@1a	423 357 -	63 516	0, 37 0, 31 0, 12 - 0, 71 0, 17
				• 05 · 17.50 × 17.50	2434 2192 - 90.7	242 2739 2739	53.40 36.92 23.17 - 94.40 93.4
				outewite flave fyagen.	53 0 - 1.9	92 159	0.03 0.05 0.02 - C.03 0.05
				JETTIS 59.	15 0 - C. L	5 A 6 C 7	50 * 0 50 * 0 50 * 0 50 * 0 50 * 0 50 * 0 50 * 0
				1461+01-01F3	40 2.5	0 6 3 6	5.13 C.17 3.30 - 3.32 3.2 - 3.32
				- 45 SUBU- (MF)	55 26	ς Ω Ω	0,01,0110 0,12 0,12
				S - + S	26 0.9	4 C 3	0.01 - 0.60 0.01 - 0.60
				SJIFFCILSTRATES	3016 7 - 130.7	721 3054	54+03 34-41 0+00 - 24-41 100+0
52	•	T	9= 2 1. 7 3	G.L 20674AE74	476 397 - 23.8	79 556	0.23 0.10 0.23 - 0.10 1.4
					13 0.1	50 N	0.05 0.04 0.05 0.15 0.2
				°es S∩CesCArO:es	13	40 11 4	0.01 0.02 0.00 - 0.02

•

112

.

4

1

					20 I × 02					25 • • · · · · · · · · · · · · · · · · ·	-ING DAM 00 - SIMPLE - SATENIAFISH Side change 1/ Sife 2/ 10 -Ing Dan 1/ 0011	Zccli fî]/Ce C sijîn [bif]sî kiç sînbûlê (ne yîfwî w
o sha nyogen ven	40 (4 00 MTA 30.	CHEV12 20.	HYJLLELA AZTECA (SAUSSUPE)	3265518434184325	8 - 31136744871	TCTAL ENVIRTESCATES	0 - 12 7 7 2 3 4 1 - 2 4 1	052470275747347	SULFALLE CLARE LEEDIN	5 HE (AGENIA SP.	Τικο.	A SECONDER A SECONDERVERA A S
93 23 79 - 119 4.4	1574 819 535 - 2143 75-3	0 - 40 0.6	13 23 0 - 40	13 23 0.6	357 - 206 239 - 295 17•1	1997 - 219 0 - 2222 190-0	53 61 2.6	13 23 0 - 40 3.7	13 23 0 - 40 0.7	1415 139 1270 - 148 70.9	9590ENT OF TOTAL	" GRAB (THREE REPLICATES
0.15 0.07 0.12 - 0.24 0.5	27.59 17.35 12.50 - 16.54 93.2	0+03 0+0 80+0 1+0 80+0	3.31 3.02 3.07 - 0.02 3.3	0.05 0.09 0.05 - 0.16 0.2	0.15 - 0.36 0.9 - 0.36	27.31 7.79 0.33 - 34.12 193.3	0.05 9.06 0.10 - 00.0 0.2 2.2	0-02 9-00 0-03 - 00-0 00 - 0	0.22 - 5:09 0.10 - 5:09	26-47 7.89 13.09 - 33.73 92.0	TVIDL SP LVECKED Sove CS - VTSA CS - VTSA	•

42824354 443 9104455 PER SQUARE PETER OF MERCOLINESSATES COLLECTED WITH A POVAR SAAR (THREE REPLICATES). 550tematrs 20-534 19734 2004 134 045634 41555551091 51429 (ATFER TO FIGURE 1 FF2 LOCATIONS).

	5849LE	NA FED OVIE OF S	514G	TAKGR		 53 f f(TAL		(6) 5) 7)74L
25 25		1 i 1 1 1 1 1 1 1 1 1 1 1 1 1	52-1-6 52-1-6	There is a second s	25 0 -	103	0.0 0.0 0.0 0.0 0 0 0	0 - 0 0 - 0 0 - 0
				TJTAL INVTOTENSATUS	2090 2 - 0 202 - 1	076 2738	70 00 200 200 200 200 200 200 200 200 200	17.18
ŝ	N	~	67-3-6	CLIG CCHAETA	106 79 - 72.1	23	0- 00 - 0 - 00 - 0 - 1 - 0	0.07 0.12
				res Shutacht cre-	13 0- 9-1	23	50 + 5 50 + 5 50 + 5 50 + 5	3.99 3.15
				THERE IN THE FOILISTS	13 0 - 9.1	53 F0	C•01 3•00 - 2•3	0.02 0.04
				The shares and several s	13 0 - 9+1	M (3 N (3	0.00 66 0.00 - 1.4	95 • 5 95 • 1
				TUTAL I4V^??TE354TES	145 0-0 100-0	46 198	3.57 0.01	0.45
2 b	m	c	84-0) +E	ACICALAZIT	26 0 - 12.5	4 C 4 C	0.10 0.00 - 32.1	9. 21 9. 35
				41141JU017U	26 0 - 12.5	5 C C C C C C C C C C C C C C C C C C C	- 00*?	0.00
				8.42.44.C.G.J.A. 5.3	26 0 - 12.5	564	0+03 - 03 - 0	C. 11 C. 70
					13 0- 6•2	24 10 10	0.05 0.03 - 14.3	î.€ 0.15

		28				2 0				۲. ح	- 145 JA	
		ł								ţ.	4 (2 SA42) 2252 [J SI42]	
		4				. 5				ىن	27 75 418 11 27 75 418 11 2 97111411	. ses tecto
		غار دود				¥4-61-€				5 4 = L % = 6		BBeef 15 Tite
1	es Srüesdar üner	15 ° 3 ° 1427 8	TUTAL INVIATEAS	torytorje to. e	n and in the Date	001000480-0	atital Intert	UVID+1042 CJUV2	,	140140414140		4.550
	·		ATE:	/ 34766			1 T E 2	אורנו או פאנור	/ זיירר		1 × 40.1	- (STFIR TO FIN 1973 1973 - (STFIR TO FIN
												150 1 6.34 COTA Lm 1 60.173 6416
13 J • •	۲. ۲. ۲. ۳. ۲.	159 79 - 201 n	53 0- 100-7	13 0 - 25+3	13 2 - 2 25• 2	26 5 - 5 0- 3	212 c - 136.7	2•9 - 0 £t	26 0 - 12-5	93 0 =	80.80 10.84 10.84 10.84 10.84 10.84 10.94	(THDE: REPL Ions).
4 N) 0 W	5 A.	105 273	110 110	10 A	5- N) Ci Vi	7 4 7 4 6	516 516	4 0 7 3	4 F 7 G	160 278	5 TCTA:	LICATES)
0.09 • 0.09 • 0.0	د •	0.03 - 23 	1.57 1.57 173.0	0,03 - 100,0	, , , , , , , , , , , , , , , , , , ,	0.02 - 0.02 - 0.02	0.001 2.00 7.00 7.00	0 • 25 - 00 • 0 - 0 • 0 - 0	0.23 · 14 32 · 14	0.00 0.00 3.6		Ŧ
9.16 0.78	0.0 • 0 • 0	0.16 (.99	2.73	2.73	3.00 • 00	0.00 0.00	0.51 0.95	0.16 0.25	0.21).36	0.02 0.02	5 (6) 52 52 52 52 52 52 52 52 52 52 52 52 52	

.

Tana .

Ī.

Ì

1

4.16

-

PLACENT OF TOTAL 0.00 0.00 0.19 0.C3 0.15 9-2-0 0-24 0°03 0.03 7.03 0.07 5.5° 0.03 0.04 0.04 4.33 0•00 € 5•00 € 0-00-0 0-00-0 0 0 0 0 0 0 0 0.001 100.0 - 0000 0°0° • 0°0° • 0°0° 0-05 0-03 -5*72 5*72 5*72 0*00 2.03 2.03 23.5 0°0° 0°00 ~ 2.53 0.03 1.4 1.4 23.5 5 NUPPER NUPPER MEAN - 50 AANTE PERCENT OF TOTAL 5 3 7 0 4 5 4 G 69 119 104 23 23 79 • • 4 6 7 9 241 436 23 40 1°2 2 -106.0 26 0 -13.5 13 0 -16•7 û•05 - 0 9 13 2 -16.7 13 2 - 1 16.7 79 0 - 0 0.05 159 -5.7 13 - 0 -6.7 13 -TLAS /4 (Icallha) _lvh_ltsh #76_lest CALIFICAE CEARLY ENETARD 14.03 CAUDERS RARTS REAR SLUG READLES 2318582181AA1 38231 SETARETERUNI LATEN CIFFTCP03141045 -------------------210120208140 2-1-+73 OLIGITAETA 10.40 +1-c_-6 •• ---2 ******** ŗ, ŗ. ŝ ŝ

٩

.....

- -----

נינטאררטרניידאין איז	es 30.62304.5445	47.Junetty 50.	27 5 5 9-77-76 ULISCTAETA	TUTAL INVTATEDAT	attiting of the	24 C 14 L 500 J 1 4 2 C	H. (A.C.NIA SP.	5.8.0 HYODO.U. 9P.	24 5 7 9-04-P8 JLIDNO48ETA	24 4 8 9-24-78 YJTL IYV-4754217	SIDE CANVEL LA SITU ZA TO RING DA LA ZA DETA Side Canvel La Situ Za To Ring Da La Za Deta	Pounde icelus1551m kBeef "61 Tfic kt *15+e2 besmultu. SilteSilejAni[F5Vm go sil≣m verte3 kBr 5 mkPle (nY bieMon silteSilejAni[F5Vm go sil≣m verte3 kBr 5 mkPle (nY bieMon
	• 13 23 0 2 - 40 0.0			ATES ASD 100.0 156 0 100.0 575 0.0	2.° 5.° 2.° 2.° 2.° 2.° 2.° 2.° 2.° 2.° 2.° 2		53 52 A 11.4 59 3.0	2.° 40 0.0	311 - 22 - 310 40 - 476 - 310 73.5	1 0.001 0.0 915 - 0 7 522 961 5318	TAKON Takon Sange Percent of total piace	. CONTINUED. "S COLLECTED FITH & PONAP GRAB (THPEE REPLICATES). "Byt". D (PTELD TO FIGURE 1 FOR LOCITIONS).
3.11 0.18 30 - 0.32	دن +	0.35 0.09 20 - 0.16 15.4	11.5 0.04 0.04 0.04 0.04	130°6 110°6 120°6	00 - 01 - 21 00 - 01 - 26 13-0 13-0	0.11 9.18 09 - 0.32 11.6	n.,7 9.55 03 - 1.67 33.5	5.03 0.05 5.03 5.05	3-17 7.16 3-17 0.32 1-3	2.53 4.25 170.0 170.0	CULASS CO PARSE PA	

ŧ

NUMBER AND BLIMA (FOLDATION) (TO ANTERIAL CONTRUCT). Number and blima (Foldation) (To Anterian Socialing Collecte) mith a odvar saae (Three Replicates). Foldations) (Foldations) (1974) Dice to Victor (Foldations) (Foldations).

ħ.,

1

ı ł

-

+1/3 244 07 21/5 244 07	54445 51445 517, 217	2011-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				 0 *018L		(5)) 107AL
¢č	-	ŕ	6 L - C _ + 6	La Clador de La Clad	317 119	310	0.04 T 3.12 3.15	0.07 0.16
				Syci:lewj		5 3 7 0	0*00 0*00 0	0.00
				IGTAL IVVERTES	476 0 - 190-7	286 794	で 、 、 、 、 、 、 、 、 、 、 、 、 、	3.29 9.67
\$2	ھ	۰.	62-82-6	-45 SP-4624-05 SP-	13 0-0 50.0	23	0.03 0.00 -	0+02 0+03
				POTANYIA FLAVA (HAGEN)	13 0 - 50-0	2 M	5*65 0*55 0*55	0.39 0.67
				"GTAL INVERTERATES	26 0 - 100-0	46	0.25 0.00 - 100.9	51-0 11-0
29	ھ	-3 ,	81 =n 2 = 6	MEXAGENTA SP.	13 0 - 10.0	5 9 7 9	0.15 0.00 - 55 - 3	0.44 0.44
				. as 34272961410413	10.0	5 G 4	0.03 0.03 - 9.5	9.05 0.03
				CERA TAPOGANIOAE	53 0 -0 40-0	61 119	0.15 - 00.0 - 54	0.19 0.36
				C HIN CARAGE IN	40 0 - 0 30-0	404	0°0 - 00°0 30°0	0.00 0.00
				CTRATTOWYIDAE (ACULT)	15 2- 10-0	5.04	0 - 0 - 0 - 0	0.00 0.00

1

118

A Raw Sector

		30 5							5. 25	2y 6	SIDE CHANNEL 1. SITE 2/
		ىد							7	CP	PODE Dotentatio: To Aing Day 37
		2+13 28							2-'73	€ 1 + e 2 = 6	13, Coefa
CACING RUN	CITA TRODUCIVEDAE	L 12U+170954CH1	77842 IVV-272324785	O F (R DADERYAN	JKC18-504024830	48J803824E 20.	THEUHETDESTCHE SP.	MYSRC=SYC-1942 (EASLY INSTAP)	01 X0 50 X 80 Y 8	FOTAL INVERTERRATES	HISSIGIAAT SIVE (SEEE TO FIGUEE 1 FCB L
516 0 - 1	13 0 -	13 -) * 2 • 4	7°4 0 - 1 100-7	536 516 • 1	53 6.7	13 0 - 1-7	13 0 - 1+7	13 0 - 1.7	13 0 -	132 - 1 105.0	DCATIONS). Nume PERCENT OF T PERCENT OF T PERCENT OF T
903 909	ah Aj Ci Ua	8- M., C3-G4	260 205	179 973	70	10 23	40 23	60 53	0 W \$	5 6 5 9	
0 • 0 • 0 • 0 • 0 • 0 • 0	0-00-03 13-3 3-3	0.00.0 4.4.7 7	0.00 - - 20.0 10(.0	0.13 - 43.5	0 • 0 • 2 • 4 • 4 • 4 • 6 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	5 * 7 - 6 0 * 0 1 0 * 0 * 0	3.00 100 7.1 1 1 1	0 • 0 • 0 • 0 • 0 • 0 • 0	0.03 0.0 0.0 0 0 0	0-32 100-0	
0.24	0.0 • • 0 9.0	0-25 0-25	0.13 .40	0.16	0•15 0•2€	0.02 • 02	0.59 0.15	0-00	0. 0. 0. 0.	0.22 02.22	14101

•

4

T

ł

	455 (6) 455 (6) 44 55 67 1014L	7 0.10 7 0.78 -0	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10°C2 - 0°C3 - 0°C4	- 0. - 0. - 0.		5 3.C6 - 0.12	3 0.05 - 0.08	5 0 25 - 0 44	00°00 00°00 00°0	- 0-44	00.00
•	2019 2010 2017 2017 2017 2017 2017 2017 2017	0 - 50 0 - 50 0 - 50	0.J) 0.	0°0°0 0°0°0	0°00 0°00 32	0.00 0.00 25	0.00 0.00 100	0°0 0°00 15	0.00 9.60 34	0°0 0°0	0.1 0.00 100	ປີ ເ
LICATES	s) 57	436 1509	5 C 4	5 N 4 O 4	504	83 159	61 198	M 0 N 4	N 0 N 0	5 0 7 7 0	40	185
9 (THREE REF FICNS).		542 0 100.7	15 0- 10-0	13 9 - 10-0	13 0 - 0 10-0	93 0 - 70-9	132 0 -	13 0 * 33, 3	13 0 + 33 + 3	13 0 - 33•3	40 9 - 100.0	251
2												
1967. Sct53 HITH R TO FIGUEE												
4-5. CPUTI RATTS CGLL D. 1973. IVER CREFL	V CX A T	1334155		- 0. 1	VA CHAGENI		0 1 1 1 0 0 1	• d.,	ຳ			
A PENERA ACTUNESTER PTENUESTER 29-3-3 252525252 25225252		TOTAL INVERT	JLI3-05442-14	C 45 J 44 T 0 ° 5 Y C	2014 47 24 FLA	34CI-MDHU SAE	"PTLL IVERT	CHENNATOPS TO	い リート シー レー レー レー レー レー レー レー レー レー レー レー レー レー	3Y(IHGNDE]+ j	Leind Julia	0.152244574
42154 OF 4 5 JosEA 4	. 11	9 - 23 - 29	₹1-62-6					82-53-6				91-06
1 254063 5. 1 3665	4110" 15 Cay 5/	_										
JHASS PE	NIF OL V	Ϋ́,	•					Ŷ				•-
IE CNN N.	SA HPLE	'n	Ĵ,					æ				'n
36 8 0 F	44 68 144861 17											
		0 E	30					33				31

٩

120

مونها ومعرفين

. Verster

STEVINTS SO.	utelia teuleüîlei	PUTRIMIN STRUCT	4604 1686 15 10	CHEynstopryjwr ep.	THE ATERED ZYCIFCASockacke	1431au 0161	STENCIER, SP.	FERIGTATE SP.	ERACHYCERCUS SP.	31 5 7 9-273 (AETIS Sa.	NOXYL STAFFE OFFICIAL STAFF OFFICIAL STAFF	. 83446) a.Alariaalisiisiik kaaan "1 10a 16441 - 61442 a.Whalasis Alino Salkabaakka JO asiik jayoos aad 194404 (94 kaamn.
53 53 55 53 55 55 55 55 55 55 55 55 55 5	5-5 5-5 012 512 512	19438 16203 3373 - 35712 48.8	26 - 22 26 - 20 26 - 20	1.7 1.2 4.2 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7	[KSTAR] 11970 6064 6150 - 14953 1 31.7	2061 - C 2061 - C 252	53 92 0-1 0-159 1	53 92 0-159 0-1	132 229 0 - 397 0-3	13 23 0 - 40 0-3	NUMERA PEAV, SD Meav, Sd Range	CUTES WITH & PSYLA GAA8 (THREE REPLICATES), » TS FICUFE 1 FOR LOCATIONS).
0.00 - 00.00 0.00 - 00.00	2-67 2.34 0.00 - 4.76 3.6	55+62 52+79 9+83 - 113-33 75+0	0-92 - 0-19 0-92 - 0-32 0-1	2+43 4+22 0-00 - 7-39 3+3	4.02 2.54 1.90 - 6.95 5.4	0.00 0.00 0.00 0.00 0.00	0.03 - 0.03 0.03 - 0.03	0.93 1.56 0.03 - 2.73 1.2	0.26 3.45 0.00 - 0.00	6.04 9.07 9.00 - 9.12 9.1	310455 (5) *644 5) Rient of Toti	

APENJIK H-3. CONTINUES. Numbir And Bijmans Pers Rayis de Alegoliungereartes conlicted mith a ponam gaar (three Replicates). September 1913. Poil 13. Jooga migstroipet bive (apped 13 figure 1 fig Losations).

and a star of the second second

LR SAMPLE J'I'HTATIJN Neel 1' Site 2/ Tj alns can 3/	5120	4 O A K	6 - 22 - 60 - 22 - 60 - 22 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60	50 50 0f TCTAL		<pre>< G) </pre>
	* & - e ? - e	にっているとうしょう ほうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう	556 3 -	115C	5 CO C	3.53 6.75
		CHIRCHONDON CHIRC	4312 475 - 11•4	4607 9126	2.5% 0.32 - 3.5	2.44
		Staur Structure	135 2- 0-5	200	2 • 0 • 0 0 • 0 • 0 • 0	504 C
		fullcijas sysac	53 0-1	92 159	0.11 0.05 -	0.13 0.32
		540101675	195 0.5	200	4 4 4 5 5 5 7 4 5 5 7 7 7 7 7 7 7 7 7 7	0.45 U.73
		TILES /# "es AMILIDIe	145 0-6	151	2.13 3.03 - 2.3	3.23 5.95
		ICTAL INVIGTEGARATES	37902 0 - 100.1	26488 62253	74-14 0-00 - 1 100-0	52 • 93 33 • 55
ĩ	9 4 - 52 - 6	CORLEAT ATSAID SECTEDASSORGEN	5714 0 - 25.0	5197 10153	2.01 0.30 - 5.0	1.95
		Tes Utoking to the	53 0 • 2	92 159	0,00 0,00 0,1	0.09 0.15
		* 6.5 PTURISCENTS	4295 0 - 13.6	2766 12698	1 + 4 4 - 50 - 6 7 + 7	1 • • • • • • • • • • • • • • • • • • •
		TTEATE SLAVE CHANTED	11769 9364 - 51.1	1680 12539	33.17 25.51 - 52.3	80 (c) 10

, **S**

122

Service Manager and State

... ·

E

U

U

÷

ADMAGR AND MIDMADS DER EQUARY METRINSKEMMET, GERTENJET. Vunder And Midmads DEr Equar Metrin Grimmetes Collectod with a power Gala (Twees Afelicates). Representation 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1

ļ

. . .

1

Carten Value		C 1 4 1 P 6		50TAL
FACUACIACIOCOCCATORIA DACIACIOCOCCATORIO CACIACIACIACIONIC	13 2 2 4 4	50 N 5	ວະດ 1.00 - 0 2.00 - 0	00 ° 00 0 ° 00
ひゃく コント ううしょう かってい ちょういい	: ۲ ۵ - ۲ ۲.۴	50	2.15 0.00 - 17.5	5 - 5 5 - 5 6 - 6
아프 아파도 아파도 가지 않아 주 것	238 - 7 159 - 31 42.0	<u>.</u>	0 - 5 5 0 - 6 7 : - 2	0.12
	201 71 40 - 71 52.4	6 3 A 1	0.04 1.01 1.11	0.14 J.24
nortexente lave later	556 37 2 99 130.0	56	0.78 0.00 - 100.0	0.10 78.C

124

AING DAM IR - SIMELE DATENTATION LIDE CHANNEL 17 MINE CAN 37	0 • 1 =	T + 10°4	50 149306 101494 101494 1014914	50 50 7 TCTAL		5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5
9	6 70	OLIGNE HRET N	106 9 - 11 - 4	1 % Q	0.00	
		BOTANYER FLAVA (MAGPY)	463 198 - 50.0	233 635	1,07 - - 40,1 - 50	5
		irefia IV(IFSASedafar	159 17-1	119 276	2+53 3+67 - 33+7	1.93
		JRCETIS ST.	••1 - C EI	4 0 2 3	2*1 - 30*0 	0.15 0.29
		SPËN'LMIS SP.	• • 2 • 0 • 2 • 2	50	5.03 - 03.0 - 53	17 + 17 + 17 - 17
		0 1 1 4 1 1 0 4 1 1 4 1	145 9 - 15-7	160 317	0.56 0.30 - 7.1	9.43 1.51
		ANSTISCA (P.	0 - 13	£03	0.03.44 5.5	0.76 1.31
		TOTAL INVESTEDDATES	926 9 - 1 JU. 7	495 1270	0.00 - 00.0 2814	£.97 11.00
10	5- 5-79	20130-0-442-4	79 40 - 27 - 3	119 119	0.09-11 •29-	0.15
		o Har ovorto Ag	712 119 - 72+7	128 357	0.04 15 57.9	0.12 0.23
		1.144 - 144 - 540 - 540 - 1	291 - C 100.7	160 476	0.00.0 0.00-0 0-0-05	0.11 r.32

AIVE DAY 03 SIDE CHANNEL 1/	SAMPLE 04124741204 Sett. 27 13 Ming 344 37	04	× 9× 1	80 10 10 10 10 10 10 10 10 10 10 10 10 10	SD F TCTAL	1000 1000 1000 1000 100 100 100 100 100	<pre>66 > 0 101A</pre>					
11	, , , , , , , , , , , , , , , , , , ,	9	0.6 16 of MASTA	569 40 - 56.7	581 1190	7. 1. M 1. O 0. C 1. C	0.50 0.99					
			HEXAGTNIA SP.	119 0 -	173	10-13 0-07 - 3 14-0	3 - 55					
			こまであったのという。	119 42 - 13. *	105	0+20 - 20 - 1 - 1	7.37 0.53					
			SPAKERIUM SP. W/ SWFLL	40 9 4 9 7 9	40	1.72 0.00 - 0.2	1.63 2.90					
			SACTISCA SP.	15 7 - 1.5	6 G 7	0.03 - 0.03 - 7.5	56°°C					
			1)TAL TAVTATEACAFES	960 0 - 130.0	578 1508	12.7d 0.00 - 1 167.0	5.63					
25	~	5- 1-79	4104×160170 -	185 40 - 20.9	219 436	0.24 0.00 - 16.0	0•52 0•52					
			24014564514523	79 0 - 9.7	63 119	6.37 0.00 - 21.4	0.34					
				529 23 <u>4 -</u> 54.7	470 1071	0.32 - 3.32 -	14-0					
			Stade Stevents	56 3 -	83 159	C.03 0.00 -	0 - 0 - 0					
				13 0 - 1.5	53	0.00 0.00 0.0	0 C					
	3							5		ې نو	FING DAM CR Cije Changel	×C
--	--------------------------------	-----------------------------------	--------------------------	-------------------------------	----------------------------------	-----------------------------------	--	--	------------------------------------	-----------------------------------	---	--
	ų							~>		-	SAMPLE L' SITE 2/	H9_R IND 3IJ
	ų							œ		7	D-ILLTATION To Ains Dan 3	ינים ארגיין ארגיין,
	7- 5-79							6- j=7;		6- 5-7S		5 42770 DF
5 4 19 19 19 19 19 19 19 19 19 19 19 19 19	SEIS STAAETA	TOTAL INVIGEDOATES	IBMATOIDA CON PX SHUEL	346Ac StCladkUdit?	0 - 1 4 0 Y 0 4 1 7 4 5	51 61 A C 56 4 7 3 3	atole attiroxiseder	0L[3][-44]]A	TCTAL EVV-PTE3H4T2S	21145 /4 "es nuis Yuás	TEXOV	<pre>d l d l d l d l d l d l d l d l d l d l</pre>
529 137	20 20 40 4°3 ≯8	926 737 0 - 1745 107, 1	13 23 0 - 40	611 - 0 69 07	727 - 1428 273 - 1428 78-5	53 46 0 - 79 5.7	53 51 0 - 119 5.7	6. 2 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ن 100.0 1852 - 1 1852 - 1852	13 23 0 - 40 1.5	NUT OF LOAD	TAP GRAB (THREE REPLICATES) CP Locations).
	00.00 - 00.00 00.00 - 00.00	2.27 1.62 3.03 - 3.61 173.0	0.03 - 0.15 0.15 - 50	0.07 0.11 0.07 0.20 2.9	0.24 1 1.13 60.24 2.42).37 0.32 0.00 - C.\$5 15.3	0.07 J.33 0.07 J.35 1.59 1.59	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	1.73 1.23 0.37 - 2.54	0.46 0.83 0.00 - 1.39 0.5-7	STORYSS (C) SVYS DEACENT OF TOTA DEACENT OF TOTA	· •

and and the

-į

1

And And

NUMAET AND BEDMASS PEP SQUARE METSS OF MADERTYSUED. Undee and bedreefering for and constructerere collected with a pover give fore replicates). Under a source and the under also fore a fore to figure 1 for locations).

on all and the

5 (5) 50 51 51 51 51 51 51 51 51 51 51 51 51 51	3-53 1-15	0 ° 0 0 ° 0	0.35 0.57	1.07	0 • 0 0 • 00	9 - 00 9 - 00	C. 34 9.60	1 • 6 1 3 • 53	0. CO 0. CO	00 ° 0 0 ° 0	0.00 0.00
242014 1442 1444 1444 1014 1444 1014 1444 1014 1444 1014 1444 1014 1444 1014 1444 1014 1444 1014 1444 1014 14444 14444 144444 144444 144444 1444444	0.54 0.03 - 193-3	0• 00 0• 00 + 0• 00	0.00 - 0 14 - 5	1.40 0.20 - 75.2	0 • 0 • 0 • 0 • 0 • 0 • 0	0, 0, 0 0, 0, 0 0, 0, 0	0+20 0-20 10+8 10+8	1+36 200 + 100 +	0.00 0.00 - 0	0* 00 + 0 0 * 0 0 * 0	0.0 - 0.0 - 0.0
ט דניאנ	483 1111	5 0 4 5 7	61 119	715 1667	5 3 7	23	53	778 1964	00	00	00
	556 160.1	13 0 -	53 0 -	1071 278 - 38.0	13 0 - 1.1	53 40 = 4+3	13 0 - 1.1	1217 0 - 100.7	0 6 0	0 0 0	- : 0
10X42	TOTAL TAVEOTEAATE	DLIGCTARTA	3+01%5566244833	W4 01 × 0 × 0 × 1 × 0	BYONE STRINGTURE	Baele Bactorn o	17245 /4 °63 #01634463	STAL TVVCPTGAGATES	₩ ₹ \$		117 117
91 TF	6 L = 7 6	5 7 9		·					64 - 5 - 6	e 4 - 5 - 5	61 - , - 6
12564541204 73 4143 244 27		Ŧ							~	a.	
SAMPLE SITL 2/	5	•								~1	~
SIDE CHAMEL L	25	2 Š							17 52	2541	2° 4/

Annual State State

28			28				23		. Y	25 <u>4</u> /	2017 2017 2017 2017 2017 2017 2017 2017	
•			ι.				2				UHBUR AND BLUM	
Q.			وی				Ċ9		~	6	AST PEP SQUIRE	
5- :-79			6- 3- 7 9				5- j-79		6- 5-7g	5+ 5+79	42164 06 13. 99963 017	
-LISUTHATTA	107AL INVERTORANTES	C HTR CHOHIDAI	OERA TOROGONT DAD	TOTAL INVIGTEGGATES	C + IRUA J + I J AE	2694 T7203782042	OL EG OF MAETA	TOTAL INVIGTERSATES	BACINGNUMICS	MC NE	A SDEMDIX H-4. CRUTINGED. Vacadinverteraties collected filth a Soma c Nint 2-4. 1970. Veisire (Defer ti Fighte i Fire Lu Mint 1970. Taxon	
13 0~ 5.9	0*CC1 - C 5.9	592 159 - 95.7	26 4+ 3	410 - c 100- c	278 159 - 67•7	93 79 - 22•5	• • • • • • • • • • • • • • • • • • •	119 0 - 100-9	119 0 - 100.7	0 0 1 0	LC LEDAde Jores Jores Jores Hors Hors Hors Hors Hors Hors Hors Hor	
4 N 0	479 1111	437 1032	4 S 7 Q	83 476	105 357	23 119	79	919 239	119 239	00	LICATES)	
0-0 - 00-0 - 00-0	0+0-1 - 00+0 - 00+0	₹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.11 3.03 - 16.7	0.0356 100.0 100.0	0-17 3-34 - 31-0	0.33 0.03 - 67.9	6°6 - 60°0 50°0	0.07 - 07 - 100.0	3+37 3+23 - 190+3	3.0 - 00 30.0	10020100 8420 8420 8420 8420 8420 8420 8420 84	
3.00 0.00	C.68 1.30	0.50 1.07	9.19 C.32	0.95	0•12 3•29	0.57 0.67	00 + 00 0 - 00	0.05 9.12	0.06 9.12	5 + C 2 + C 2 0 0	50 G	

ł

	Aro.		
	(14PE2		
	21123 6469		
	-		,
H-4. COUTINED.	33175 CTLLEGTCD	•	
¥ 1(1330 ¥	EJISJUVESTE	1.E 5-6, 1979	
		5	
	n		
	臣	•	•
	11.1		100
	ű		
	05 WHT 11		
	÷.		
	イエファ		

ł

1

i

i

(THPEE RFPLICATES).		
N) BLUNGS PER SAURT METTO DF MAGADIUVENTUGALING COLLECTIO FITH & PUMLA GARG	. JJJ ~E 3 +5 x I 375 x	(1997) and the state of a state of a state of the state o

×145 ран 04 51.6 саантсі 1.	SASPL5	JPTINTATTICK X TU AING DAY AV	40	1 4 60 M		SD F TCTAL		
53	4	£	ş - 1 - 7 ş	LECTRON DE LE CONTRON DE LE	212 214 - 119 -	160 160 397	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
				STREETERNISTER	725 0-0 1000	163 435	0-01 0-03 1004	000
62	io.	~	5 73	C.L.FG 32 4A 27 A	575 0 - 39.5	695 1389	1+26 3+30 + 3+7	1.3
					ۥS - C 07	4 0 7 9	12.421 0.01 1.95	12 · •
				•cS SNHato;	13 0 -	23	C+25 0+00 -	0 ° 8
				3×CIN-SOdul Yes"	13 - C 1.9	23	5 - C 5	0.1
				IVeña IVINAKUZIFS	13 0 -	5 9 • 0	- co*c 20*0	6 0 6 0
				こしたまなでにたないろう つづいた。	754 0 - 130.0	775 1548	0 1 1 1 1 1 1 1 1 1 1 1 1 1	17 - 3 13 - 61
29	Ś	۳.	€2- <u>-</u> 3	A T R M C M A R M C M A R M C M A R M C M A R M C M A R M C M A R M C M A R M C M A R M C M A R M C M A R M C M	13 9 - 5-3	50 (V 42	0 + 0 0 + 0 0 + 0	0 • 0
				2×G2AcSunut Yatu	66 0 - 26.1	61 119	0+1+ 0+0- 70+5	0.10
				いずくはまたフィオンティ	172 0 - 64• 6	521	0+1% 0+00 + 7**7	0.10

130

0.15 0.16 0.00 - 0.32 7.72

0.00 - 01.00 0.00 - 01.00	7 6 7 6	- 0 56	se to or lant a	5- 5-77 4	ح ن	5	62
21.19 3.22 0.03 - 23.17 100.3	1665 3949	2526 0 - 100. 1	TETAL INVERTERDATES	_			
2:0 2:0 42:0 50:0	60 53	13 0-7	ical stealt Sb.	_			
3.39 0.16 3.03 - 0.29 3.6	4 U 4 U	13 0 - 0 5 - 5	BIRYLGALZAIY 25.				
6.07 4.92 1.39 - 11.19 25.7	6 ș 6 9	79 40 - 5-1	Se-A[=]U4 3e. // S4"LL	ن.			
21°6 5°C 3ù*6 5°C	۲. سر د		34400 BECINENCE	a			
2+525 2+53 2+52 + 5 2+5 5+55			2 41 R 0 4 E 4 E 3 4 E	¢.			
2	алы. 13-а	.	3 June 2010 - 50.				
1 5 4 5 5 4 1 1 1 5 4 5 5 4 5 4 1 1 1 5 4 5 5 5 4 5 1 1 1 5 4 5 4 5 1 1 1 5 4 5 4 5 1 1 1 5 4 5 4 5 4 5 1 1 1 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5			45 x 4 62 42 4 50 .				
1				64 - 5 - 10	7	i n	54
13013 1910 - 010 1910 - 1910	326 326	• • € € 1 • • € • • €	TOTLL INFOTEGOTES	5- 5 - 79 1	œ	.	\$3
	SJ F TCTAL		TAKON	- 1 L C	LIVEAFICY HING CAM 37	SAMPLE 0"	TIU STAALS
·	LICATES	(THREE RED	A DOENDIX HHA, CONTINUED, I FOS LOCATU NG 5-5, 1979, NG 5-5, 1979, NG 5-5, 1979,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	100 k 100 k 110 k	BER JNG BIUMAS	ų v

ABOUNDIR AND BIOMAIS PER SQUART METTE OF MACHOLYTINGED. Numbir And Biomais PER Squart Mette of Macholytinesmattes chllected with a power Gale (Twree Replicates). Jule 5-44 1773. PJJL 134 Laoeta Missioni alver (Scree to Figure 1 For Locations).

1

a second s

+146 344 64 2135 CHANEL 17	SAMPLE Stale	0.412 (TAT 104 10 - 4146 - 049 - 27	12 *	TAKON	8 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	sJ F ⊤CTAL	BICHASS MULAN MULAN MULAN PERCENT DF	<pre>< 6)</pre> <pre>< 6)</pre> <pre>< 6)</pre>
æ.	æ	'n	5- 3-73	SEALTPOGNUIJAE	ن د ع 1	F 0 7	を・E 9 - ひょり	0.56
				5+1+0×0×0×0×0×0	79 40 - 30.0	69 159	0+0+ 0+00 + 13+0	0.07 0.12
				GHERTHCHINA CONTRACT	132 0 - 50- 5	115 193	0.01 J.02 - 25.1	0.12 0.12
				CLLTCTORE PUPL:	13 0- 5-0	M 0 3	0 * 0 * 0 0 * 0	0.00
				TOTAL INVERTERPARTS	255 0 - 100.0	179	0,30 0,00 - 100,0	0.23 0.55
30	5	r	62 - 5 - 9	1L16VCHAETA	13 0 - 2.1	11 O N 4	0*0 - 0 - 0	0 • 00 0 • 00
				0.0% TOP05741 JAC	93 60 - 14.0	61 159	9+21 0+3+ - 29+5	0.15 C.32
				2 W C 1 M D 7 D 4 D 1 D	515 273 - 83.0	412 122	0+5: 0+2+ + 7 + +	9.25 3.75
				TOTAL INVIGTOROPATES	622 0 - 130.0	794 794	0-71 0-07 - 173-0	0.39 1.03
30	5	eî.	62-1-53		265 0 - 45. 4	4 5 4 4 6 4 4 6	0.03 0.03 - 0.4	0°0 0°0
				Story terran	53 0-	61 1:9	0 + 4 0 0 + 4 0 0 0	0.19

ŧ

	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /		1					
5105 044401 1/	SANFLE : SITE Z' 1	TO REAGE AN EN	1 1 2 1 2	T X YE H	7577077 75770777 7577777777777777777777	D TCTAL	LO IN 30434 15.46 5.4434 5.4434 5.4434	
CS	ء م ا	ur I	6- ,- 79	2.47777904[***	45.5 43 - 245	4 5 5 5	0+0+33 50+33	5 • 5 • 5 • 5 •
				"DTAL INVESTERENTE:	1.0.0 - 0 2+5	971 1587	0.00.Au 100.4 100.0	1.01 1.3
5	σ	~*	6- ;-73	(ERA TOPOSONTOAE	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	6 7 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.10 3.23
				14 (14 0 × 0 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	238 3 - 7 3 - 7	51 (2) 18 (5) 16 (5)	0.2.26 0.20 - 71.4	0.40
				тэтт түүрөтрэртүүз	278 0-0 100-0	76 56	0,0,37 - 29 100,0	30 • • 70
3	5	v	£= ,+79	C THA TOPOSTNEDAD	5 x 6) 8 • 9	23 79	0+40 53+6	0.12 0.52
				0 - 11-1 - 240 - FTU - FT	5 6 F 5 - 1 - 1 7 - 1	905 1527	0 + 0 + 0 + + 5 + + + +	0.60 1.03
				TOTAL INVESTGAGNIES	595 0- 100-3	928 1567	0-001 - 00-0 - 4-0	0.70
31	וט	-	ود الم	Child DDIERUNA.	1 1 7 1 7 1 7	6 G A	0,00 0,00 0,00	0.00
				- VISLASAGATST (1414 INSTAD)	13 0- 8. 1	40	0.0 - 00 30.5	0.00 0.00
				Cricity, fighter and	25×7	69 119	9.30 9.50 -	C.53

VUMBER AND BLUMASS PER SYJARF METTH OF MERTHYDEN. Vumber and Blumass Per Syjarf metth of Mechtigrating collecto) mith a puna gaab (three replicates). Jung 5-6. 1979. Pagae 155[ctippt atvid (acfing to figure to figure to etture to etture).

÷.,

Ì

ł

1

1

-

the second

-

\$33 \$3	40.0	00-00	3.5k 2.95	0•00 0•00	0 - 2 4 0 - 2 4	0.10 C.2C	0 = 1 3 0 = 2 6	0.46 1.31	0.50 1.79	0°-00 0°-00	00
		0+ 70 0+ 00 + 0+ 0	0.33 0.20 -	00000000000000000000000000000000000000	0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0	5°00 - 00°0 - 20°0	0,04 0,00 - 5 - 70 -	1.01 0.4 ° - 79.2	1.77 0.03 - 133-0	0°00 - 00°0 - 00°0	0.22 0.00 - 34.0
c	1100	25	137 317	C 0 7	115	357	04	516 1706	735 2141 2141	11 4 11 4	5 Q 4
	6.00	13 2	159 2 - 130.1	40 43 - 2.4	56 0 - 4.4	172 9 - 11.4	40 2.5 2.5	1190 575 - 75.0	1508 0 - 100.7	13 0- 3.•?	26 6.5 6.5
10 M					(350230	LY INSTAR					
4		utalia u	0 LL # 4 6 LL		150 4 8 F	JAS ESAR	3461	8.1	teneares		Arch
		V [] X OhO B] H]	SIAL TAVES	0L (G 2C4227A	4×16.656 \$ 2	Irokse0attr	0.58A 15 P.16.3 V	CINDAD AIMD	ashi 14.Ct	141000 48 74	5054
3 L 2 S	6 - 1 3	-		6- 1-13						62-5-5	
. AT 104											
Daturi Daturi										-	
2 14 5 .	10			ŝ						ى	
1 - 1 1 - 1								,			
	7			15						11	

۰,

.

. .

134

1000

.

565 - C 182 552 252 C7 - D C7 - D	1/ +1+5 3A4 25, 26, 28, 29, 30, 31, 19, 19, 19, 19, 19, 19, 19, 19, 19, 1
0.8 - D	1010C
13 23 EL SAGUE 2ACT	
123 AZ 145 150 40 - 317 55.0	
12.0 6.1 - 0 6.9 - 0.9 2340.50	
22.0 5 5 1 2 8 2 1 2 1	• • • • • • • • • • • • • • • • • • •
NV:NF234AT25 40 - 160 0 - 555 100-7	
370 160 370 160 370 160	51 5 7 5 5 5 7 9 5 Alegy
NJWBFQ Taxon Pedecent of tetal	ALAO DAM DA SAMALE D'ALATATION Side Grannel In Site En eine dam ân ân date

NUMBER ANG BIDAASS PER SEURRE OF MAFROIVVERTERAIES COLLECTED WITH A BASKET SAMPLER, Poil 15. upper mississippi biver (refer to figure 1 fer locations). APPENDIX I.

- 140 040 - 1100 040 - 1100 0000	2 215 /1 2 215 2	09129747724 7 13 4143 844 37	315:	NGNT	4 WG 107 177	PERCENT OF TOTAL	6104ASS (G)	PERCEVT CF TOTAL
25	in a	2	81-63-6	Tusailan	57	0.7	0-17	х с
				TPIC-LADIJA	57	0.7	0.11	9.2
				+*ALLELA +775GA (S4U55U2E)	113	1.4	1:+0	9.2
				CARVIC SU.	113	1.4	90°0	1.0
				- SA GENTA SP.	27	۰.۳	9-62	1.2
				STERSTERA Se.	22	0.7	0.11	5.0
				202 1604 F351	22	0.7	0.06	9.1
				34CIN014075200	25	0.7	0.79	1.5
				4YJAGPSYCHIJAS CEARLY [HSTAR]	340	4.1	0.17	0.3
				CHEUMATJPS YAME SP.	5320	54.4	35.51	53.4
				"eS 3HJASqUbCAH	340	4.1	1.53	3.0
				POTAMYIA FLAVA (HAGIN)	906	11.9	0. ** *)	15.9
				TRAUP BACTADASYOPHIA	113	1.4	1.62	1.9
				-sistictics	396		5.43	5.6
				2¥CIACASIF)	226	2.7	0.11	2 • 0
				ortst sp.	25	0.7	0.05	0.1
				TUTAL INVERTESPATES	3264	100.0	53.37	100.0
25	ŕ	ولله	9-73-83	TRICHLADI)A	- 25	0.7	0-34	0.7
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113	1.4	3.60	0.0
				* 60 KH7/15 KY	275	2.4	6.74	13.1

••

-

.

į

	22.1	2400	47557857047745 ("AFLY 125749)		
1.	0.5	15	1.3.7. e (10.		
J.	2.5	283			
.	1.0	113	出来的 计计算条件		
0.0	J. 5	57	HTAR COLA - 727034 - (54350001)		
0 .	1.,	170		6 7	•
51.2	103.9	5037	TOTAL INVERTOPATES		
3.0	0.7	57	UNIDATIONE (JUVENILE) #/ SHELL		
0.0	2.3	526	o ship i zo statu ku		
1.	4 • 2	340	NEURICLIPSIS SP.		
3.0	2.1	170	POLYOTATEOPOIDSE (FARLY INSTAR)		
3.2	3.5	293	BYARA SYCIACIAS SYARA		
ц.	19.9	1528	PUTANYIA FLAVA (HAGEN)		
0.0	ت د	325	4434 JP54345 50.		
27.3	***	3566	CHUINSTORIVCHE "F.		
•	11.3	306	HYJRUPSYCHIDAE (EARLY INSTAR)		
0 •2	0.7	57	VETALEA STATOLA (FIEBER)		
	0.7	57	1514-127# "o.		
•	2.1	170	STURD MER SU.		
1.0	1.4	113	1-24-23 ETENTEODN SP.	ية بر	
(E) SYAOTA	PTRCENT Cf Total	NCX 55 6	0710 0710	CHANNEL 1/ STIL 2/ TO TING GAN 3/	

A POENZIX I. CONTINUED. Hummer and biotags por source of markdingeries. Pid. 13, upder missister river (ster to fould i for locations).

وفرقته والمتحدين

1

1

.

7

1

1

1

-146 34 62 5135 5444754 1	5142 1 517. 2		31 F C	N 0 X Y L	8 5 9 7 1 1 1 1 1 1 1	PT & CE & T CF TO T & L	815485S	PERCENT OF TOTAL
¢.	ŝ	•	61-5-6	ar Trific Terus.	4471	39.7	74.75	61.6
				. 5 2.7054C+C	340	3.0	2.43	4 - 5
				CONTRACTOR OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACTACTACTACTACTACTACTACTACTACTACTACTACTA	2207	19.5	90.21	21.4
				Llene IVCIMOLSSUECAH	15	0.5	0.6 [°]	1.1
				FOLYCEMTERPOIDA& CEARLY INSTAR	243	2.5	0.34	0 • 6
				°d\$ SISal⊐l2en34	283	2.5	1.25	2.2
				いてんせきのこし せいてい	453	0.4	0.74	1.3
				13141 JAV STREET	11253	130.3	56.43	109.0
ŝ	ŝ	Ð	62-62-6	TRIC MATIN	317	1.5	0.63	9.5
				ġkīTī¢ S⊃.	317	1.9	0. 63	5 • 0
				-EX4 GTVIA SP.	f. 3 4	3.5	23.69	23.7
				1010 - FURDER 1010	534	3.5	1.07	1.6
				STEV-LCMA SP.	634	3.5	0.79	7.0
				54C1+6125445405	158	0.0	3.63	د •5
				Cavishi Alafa) BaciroAsevecke	3011	15.7	1.54	1.3
				°¢≥ 3h0λueûtanf3h0	4913	21.2	50.56	41.5
				1010200000 - 00 - 00 - 00 - 00 - 00 - 00	1268	1.3	3.01	2.5
				CTANTA FLAVA THAGTU	5071	28.1	30.55	25.3
				utdßa Ztlfr2kSauttim	158	0.9	0.15	0.1
				しゃく まかいい たいまし	.स भाषा प्र	3.5	1.74	1.4

138

	0.7	68	CHIRCUNINA BARDA BARTHENDRICH				
0.48	3.5	340	C A TRO MOMENTE AN				
0.75	0.7	.ئ سرة	STEVELMIS SP.				
4.22	2.9	272	Julaulias se.				
0-41	2.9	272	POLYCEVTRDPODICAE (CARLY INSTAR)				
2.51	2.9	212	stans Evelopeet				
19.65	16.4	1562	DOTANTIA FLAVI (HIGEN)				
9.24	22.1	2136	-cs 3+345cücth				
31.92	30.7	2953	OKOUHATODYYCIO SP.				
0.34	9.3	993	HYJREPSYCHIJAZ (EAFLY INSTAR)				
0.41	0.7	68	15042000 000				
6.19	0.7	6.5	GCF34US So.				
0.14	1.4	136	6 70 / 0.20 X # 0.7 .				
5.52	1.4	136	CAEV15 59.				
0.49	0.7	5 Ô	1,517 17 50.				
0.14	1.4	136	HYALLULA AZTECA (SAUSSURE)				
3.4.	2.1	204	78 1910413372	-ŕ ¿ - ć	۲	5	2 5
20.52 1	100.0 1	18067	TOTAL TYV-STEJOATES				
23.26	0.1	11	LEPTOREA FRAGILIS (PAFINESQUE) MY SHELL				
0.00	1. °	317	Brond Stlindhubiki Fi	4) + 2, 3 + 4 + 7, 3 +	P	5	3
(6) (6) 7	ERCENT BI	YUHBER P	Гаюч		JAITNIYLICA La takina cy	5 1/ STT 2/	1100 041408

139

.

E

Ľ

]

NUMBER AND BED-ASS PER SQUARE AFTER OF AVERVOEX I. COVIENDES. NUMBER AND BED-ASS PER SQUARE AFTER OF AVERDEVCERFEART'S COLLECTED ATTH & BASKFT SAMPLEA. PODL 14. UPPER VISSIOSTOPER REVER OF STOCKED FOR TO FICURE 1 FOR LECATIONS).

فالمأوا والمحرور فالمراجع المستراف المراكا المتعادلات وأفاعه المركا المتقال المحاجب ماريت المركس والمراد المعا

i

1

Ī

7

-143 344 05 5135 CHAMMEL 1	SAMPLE	041.474710V 741.474710V 713.41N5 244 57	9476	NCX 4 T	10 M N	PFRCENT CF 50TAL	(9) (9)	PERCENT 3F 10TAL
26 Zó	ν'n		3-23-75	TOTAL ENVERTERRATES	6236	100.0	20.41	100.0
26	5	Ŧ	62-62-6	ACICHLADICT	158	0.7	0.16	0.1
				HYALLELA 127ECA (SAUSSUEE)	158	0.7	3.15	0.1
				BAETIS SP.	475	2.2	2+00	1.4
				STLUTISAN SP.	317	1.5	0.52	0.2
				HURPSYCALDAE (CASLY INSTAR)	3323	15.4	06°1	1.3
				A THOM THOM THE A THOM THOM THE A	1799	8 ° 3	52.14	34.4
				Les Proyeers	1132	û*££	29.32	19.4
				PC"AVELA FLAVA FHAGEN)	8593	30.1	+J.25	25.6
				LteNa Stittistist	111	:•5	3.65	* • 5
				POLYTSYTATASUIDAE (EARLY IVSTAR)	634	2.9	0.32	5-6
				AEURFOLIPFIS SP.	634	2.9	13.49	12.9
				lione littlocereillichte	158	0.7	1.74	:.2
				TJ"4L ZWW"PTEGFATES	51200	100.1	151.51	100.0
25	ę	~	3 2 - ⁶ c - 6	T422 4. AJ[]A	5 8	10.0	0.11	3.4
				A167 1046	11	1.7	0.64	1.2
					82	5.4	1.40	41.7
				(artelleter texation and the second second	:1	l. 7	0.01	0 . 3
				(JISTI ATST) ZVCIPCAScuptar	26	2**	0.01	9.3
				1 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 -	187	21.5	3.65	10.4

140

9.00							
	0.0	0	10.42 1	5-5-5-5	a	IJI	2-4/
2	0-0	o	NOKU	9-2:-73	•	IJ.	204/
162.13	100. n	20062	TOTAL INVERTEAFITES				•
0.63	1.6	475	C+1+02C0+1-22-				
13.47	3.9	1109	VEURFILIDSIS SP.				
2.22	1.1	317	HYTHONS SACING ACTIONS				
47.07	26.9	7766	PJTJ4YIA FLAVA (MAGEY)				
19.13	15.3	4437					
74.53	39.9	11569	CHERNELANDSCHEHE SP.				
0.63	6 . 5	2061	HVDROPSVCHIDAE (EAFLY INSTAR)				
0.16	0.5	158	STERCUERA SP.				
2.06	1.6	475	BADTIS SP.				
2.15	0.5	159	177LLUS 32.				
1.74	2.2	634	7710 HL 43174	€ 1 -f∶-t	æ	3 .	2;
3.36	100.0	679	TÖTAL INVERTEJPATES				
0.01	1.7	11	CHER TROUBLE				
0.13	1.7	11	MEUSISIS SP.				
0.62	2.462	861	POTIVITA FLAVA (HASEV)				
0 • • 0	18.3	1 25	- CS 2404201 KCA4	9-274	7	5	2 6
(5) SSNGTA	PERCENT UF TOTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TARGN	U A 1 7	DALLWFAFION To Ains Day S/	LV STE Z	A ENE DAM DR

I

1.5

HUMEER ANJ BIDAASS PIR SJUARE AFTER OF ARCRUTURE CONTINUED. Humeer and Bidaass Pir Sjuare After of Arcrutureptreater Collected With & Baset Sampler. Budit 13, Uarer Algsinsipper Bivir (Freib 17 Figure 1 For Locations).

÷...

1

•

!

and the second secon

I

I

I

J

EING DAM (9	SAMPLE 213215	0 - L'TTAFICS 1 TS + TNG CAN 3	2452	7 GY 1 L	8 8 7 7 7 7	PERCENT 55 73 TAL	5575018 1018	7374L
53	æ	Ţ	9-24-28	TALC-L'ADICA	113	1.4	0.11	0.3
				HYALLELA SZTEGA (SAUSSUPE)	226	2.9	0.11	0.3
				BAETIT so.	226	2.9	0.35	2.3
				15C44J4A \$P.	25	0.7	0.57	1.6
				(artsni Alarg) secifoasalachm	453	5+3	0.28	9 - 0
				Cuiuutterycui sp.	3679	÷6.3	13.11	£9 • £
				* S Stütseitechm	556	2.2	1.37	5.1
				C DUAR YEAR A CARCES	2094	26.6	9.79	55.9
				344Na 3 4C 1+34SataCAH	57	0.7	0-40	1.1
				*as siterist	283	3.6	4.19	11.5
					113	2.6	0.11	5.6
				TOTAL TAVERTREE	1981	0.001	35.39	100.0
29	5	•	9-29-78	T2104LA310A	158	0.7	0.43	9.6
				HYALLELA AZTESA (SAUSSURE)	158	0.7	3.16	0.2
				•as 511276	634	2.7	1.11	1.5
					158	0.7	C. 32	0.4
				STOROGENE SP.	312	1.6	0.25	0.1
				•ef SfrerU:	11	C • J	6.07	3.2
				PARTALLA CO.	æ	6-0	0.51	0.7
				(PATATASTAST CAPLY INSTAR)	5398	23.1	1.43	2.6

142

26.2	÷0.56	32.5	13629	ALA BASA BASA BUT				
7.1	15.49	9-1	3062	127272727272727272727272727272727272727				
0.5	1.00	7.5	3170	HYURDOURDHITHE (CARLY INSTAD)	10-12-24	7	5	CL
0.0	3.00	0.0	٥	アロイロ	3-53-83	٠	Ŧ	1462
0.0	0.00	0. 3	0	おした	5-53-53	7	5	14.2
109.0	23.53	190.9	4302	TCFAL INVIATIALATES				
5 - 9	0.79	2.5	113	39efr 39Ciccelelredanged				
2.2	0.42	2.5	113	Wiena Ircinciase bcan				
21.2	6.35	23.7	1019	POTANYIA FLAVA (MAGEN)				
53.9	3.?1	38.7	1641	エイひえつりびょひょう ふし・				
31.9	9.11	27.5	1189	CALCERTING YOUT IN P.				
0	0.11	13 • 9	113	HYUR SUSTENIES (CARLY INSTAR)				
11.3	3.23	1.3	57	SIAL15 57.				
1.4	0.49	1.3	15	TEXTOURING SP.	9-23-73	0	J	62
103.9	73.52	100-0	23314	FORME INFERERES				
5.4	0 • 5 °	3.4	792	C-41]-07US S9.				
5.4	7 0 5	4 1 1	1109	NGHALTLIAAIS SP.				
22 - 9	15.80	16.5	3904	SULFARME ELEVE (HEGEN)				
19.5	14.42	20.4	6754	173779570LA 50.				
37.5	27.73	25 . 9	2209	CAULANTONACHE AN.	9-23-73	7	J	62
PIRCENT SP TOTAL	(G) (S) (S)	PERCENT	NU NBE 9	Такол			514PL2 0	-ING DAN 07
			UN LUCALIUNCI.	27221.51177. A1012 (15114 15] +16011 1 -1	۲ ۲۵ ۲۷ و.	- ij_ 1		

CL.

1

•• ••••

-

- ----

•

. . .

. . .

•

.

•

-

ł

State of the second second second

143

. .. .

	180
	AMOL NS).
	113
	1 001 1 001
	4 C) 4 U
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	15.) 16.]
S N N	5.4
0.11	
	6 ; A
1 × 1	1 31
CNJO	1010
ñ T	1155
	1.1
	3. 0
	25
	5
	1155
	C) F
	144
	S-BHD

Ì

, |- 1

1

1

AH 03 Hanyil B	5 1 1 5 1 5 1 1 5 1		0 k r	7-07 × 11		PERCENT OF TOTAL	1014155 1014155 1014155	
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	10-12-73		21236	50.9	152.77	55.8
				TOTAL INVERTERATES	41959	100.7	232.01	100.0
	'n.	٣	13-12-13	STOREMA SP.	475	1.7	3.49	0.5
				HYJRAPSYCHIJAE (EAFLY INSTAR)	9716	32.0	20.7	6 •6
				CHELLETTOPTYCHE	1902	1.0	12.20	15.7
				•es 3FJASci.¿(AH	3952	14.5	3.67	11.5
				CNESSAR CLAVA CHAGEN	11411	41.9	45.17	53.3
				NEURICLIPATS 52.	159	0.5	1.11	1.4
				SYCINCIPE IND	634	2.3	2.22	2.9
				SULFERING STREET	27259	100.0	77.50	100.0
	. , Э	7	52- 3-73		o	с • 0	00°C	0-0
	'nĐ	Ð	10- 3-73	es silste	362	0.7	1.45	0.7
				きんの オテロアしましんの	362	0.7	0.35	2 ° û
					342	0.7	3.36	2.0
				COTEGNE ATERDY DECEMBERCESSA	10505	21.0	3°C5	5 • U
				* 85 BHDA54CLTA65TD	5736	1i.6	35.14	15.4
				*a0 17525648644	5434	10.0	21.01	4 • 6
				Charles Flave (Magen)	24632	5.4	127.51	\$ 5
				Jtone 3407-0444	1911	3.5	13.42	5.2
				いまたドチロストゥルエン	362	0.7	1.39	9.5

DAM DR SAMPLE DØTENTATION CHANNEL IN SITE ZN TU MING EAM 37 DETE	NU. Tanga	436H	PERCENT OF Total	BIDHASS (G)	
				8 8 8 8 8 8 8 8 8	
) 6 8 13-3-7-8 CHIPCVC	24afie 24ClmC	362	0.7	5.43	2.5
TOTALI	INVIRTERS FOS	68989	100.0	214.81	100.0
2NUK 84-63-6 1 5 5		a	0.0	0.00	5
2434 P4-F2=c 8 3. 24-74 12.		0	0.0	J _00	5
5 /		ы	0.0	0.00	9 9
		0	0.0	0-10	2

ar otternation to sing jat r m jog titte tilt the topological the restricted $\frac{4}{2}$ ho sample

e.

•

145

1

Į

0

Ī

I

E

П

٩

NUMARIX ANU AICHASS PER SQUARE FITO OF ALTAPITVERTOR-AFTS COLLECTED WITH A MULTPLE-PLATE SAMPLER. Pode 13, yourge vissingtore for the files in flower i for locations). .L XICP3441

Contractory of the second s

;

1

Tay .

.

ñ	** • * * * * • * * * * * * *	,	7 G ¥ 7 G		74104)	TJTAL
		67-1-2-6	ACICH, ADIO	£ 4	0.5	60 0	1.0
			411日47日には1月1日	ξ. J	9 - 6	0.00	0.0
			-05 47720000 7 0	£ 4	0• ڊَ	2.21	3.9
			C4E11: 50.	43	0 . 6	0 .04	0.1
			- eg VINISVII	128	1.7	2.51	6.3
			- CU - FAURE - CU	128	1.7	C I*C	0.5
			(STALEALDAIL (SALY INSTAC)	426	5.7	3.25	0.4
			. S THIRE ALL AND S .	4767	64.4	43.28	75.9
			* of LtoxSaleCAT	426	5.7	1.02	2 • 3
			PSTANYIA FLAVE (HAGEN)	1234	16.7	é.09	19.7
			*as SISelluston 3	43	0.5	3.47	0 ° G
			1410001564 00040	43	0.5	0.47	0.5
			HITCH FORDER D	43	0.5	30.04	0.1
			1074L 144734T645A4TES	7405	123.2	57.07	100.0
\$	ę	62-6-6	1411 - T = 21 - 24	שי. שי	3.5	0.23	2.0
			GLT	12	0.0	00-0	0-0
			AST. LUS 50.	21	••0	50°C	0.7
			* C.M. 0** but # T	21	• • •	0	3.7
			C 2 1745 (EARLY INSTAR)	21	°.0	9.52	0.2
			HEKCONALA SP.	106	4.5	1.51	12.5

146

				A A A A A A A A A A A A A A A A A A A				
10	1.77	26.6	511	LCS LLCASevertAM				
-	3-14	ð.,	170	HYUROPSYCHIDAE (EAPLY INSTAR)				
14	3.14	2.7	53	OTENNISHA SP.				
10.	0.94	e . 0	117	10×200202 000				
3	0.01	2.7	53	CAZYIS SP.				
S	0.05	1.6	32	5411+19 0P.				
S	3.05	1.6	21	HYALLELA AZTEDA (SAUSSURE)				
a	0.00	1.5	32	OLIG114874				
, u	0.34	6.0	117	3 TRICHLADIUA	9-23-83	4	¢	25
100.	11.93	100.0	23é2	TOTAL INVEPTEGRATES				
,	3.11	0.0	21	UNIONTONE (JUVENILE) WY SHELL				
1	0.15	6. 5	106	ロエロの ひょじょう				
	0.02	0.0	21	ELMITAE				
7	3.34	2.7	5*	NEUR'DLIDGIS SP.				
25	3.15	21.6	511	ODTANYIA FLAVA (HAGEN)				
ы	J•36	3.5	5 é	HYJ3C3SYCHE Se.				
3	4-6 J	29.7	202	CHENARDORYCHE FR.				
-	0.19	17.1	101	HADAUSAGHIGAG (UNARTAIAS				
F	5.1. C	5.1	192	3 (51) 4774 4 50.	f J - f ., - E	ور	J	Ş
10 T C T	6 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PFRCENT OF Total	1 201 R	Tixow	547	12 - 136 - 14 - 17 12 - 136 - 14 - 17	SAMPLE	HING DAM DR SIDE CHANNEL

Ţ

404423 AND D. 4455 PUP SQUARE METER DE MARCHARTERATES COLLECTED MITH A MULTIPLE-PLATE SAMPLEF. 2014/07476744455 Collected Mith A Multiple-Plate Samplef. 2014/13/13/130620 MISSIMOLOF ALVED ARVED TO FIGHEE I FOR LOCATIONSD.

-

-4

Ì

1

]

1

. -

MING 044 03	/ 2115 2/	0.11.11.11.04	0.TF	14 40 4	4 12 17 17 17 17 17 17 17 17 17 17 17 17 17	Р ГАСЕЧТ Сг ТСТАЧ	(5) (5) S 3 V 5 J A	PEFCENT 3f TCTAL
25	a.	*	62-52-6	Stand IST	170	ð . 6	1.52	13.9
				4708.05118-52°	53	2.7	9.04	٥.٢
				TOTAL IV/PRESPATCS	1936	100.0	4.14	100.0
25	÷	ß	£2-5c-t	1+22 HL 4029 A	32	1.2	00 °0	0 ° 0
				HYBLUTLA AZTICA (SAUSSURE)	117	۰. ۲	5.17	7.0
				* eş 5.724j	53	2.1	0.05	5.0
					32	3.3	2.47	11.7
				STEREMA SO.	32	1.7	0.03	0.1
				(2121212) ITALE (IAPLE INSTER)	252	0°6	3+23	6° J
				es stutetteriged	206	35.7	9 P - 6	40.1
				* e ? E T C A S e J e C A S	564	21.5	3.10	32.9
				POTANYIA FLAVA (MAGEN)	511	19.9	3.19	12.9
				Stelle Stelle Stellestelt	32	1.2	0.12	5°0
				TG74.6. 14473TC354TE5	2536	100.7	24.51	100.3
\$ 2	\$	•	6-22-6	2010-11-01-51	926	9 • 9	1.23	1.6
				CAZNIS SP.	196	0.7	0.11	0.1
					213	1.4	0.43	5 • •
				CCTARGEDUIDAE (EARLY INSTAR)	532	2°2	1.23	1.4
				(PITIT ATALY INTRACTOR	1064	7.1	:112	1.3
				*d5 2H0AsdClarf2P0	3937	20.2	34+05	33.6

Sec. 2

148

1

	0.13	6.9	63	MUMINIUAN CHARLY INGTARY				
	0.01	1.7	11	STURDNURA ST.				
73	2°5'	30.5	201	10x200-112 50.				
0	9.02	1.7	11	5 K 1 1 1 1 1 1 5 5 .				
	3.04	5.1	Z1	HYALLFLA AZTIDA (SHUSSURE)				
2	0.02	1.7	11	ASELLIIS SP.				
	0.15	5.1	32	5 TRICHLADIDA	82-62-6	7	J.	5 -
100	63.44	100.0	9363	TOTAL INVIGTERNATES				
	2 • 55	1.1	106	Ztene EtCIHCASolart				
,	29.79	28.4	2360	UCTARYIA FLAVA (PAGEN)				
13	3.30	23.9	2234	es BrokeueCAF				
30	13.51	34.1	3192	CHIYANTOSYIKI SP.				
	0.64	9-1	351	HYURNOUYDLIJAS (SARLY INSTAD)				
0	D •11	1.1	1 36	67月11年1月1日年年,19日)。 19月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日				
د	2.43	1.1	106	8 # C1 1 19 5 9 •				
	3.11	1.1	195	9 (34HF8) (35-3-5-	84-00-6	э	u	24
:00	54.31	130-0	15002	TOTAL INVESTORATION				
	2.55	3.7	106	HADASAUALT VILLA SAUACAH				
	13.41	7.1	1064	POTENYIE FLEVE (REGEN)				
(.a	305	ا ۲ در	7022	- as Brokseuucah E	2-2-5-28	•	S	26
	6) (6) SS4x016	70711 70711	N U H B D	А G A T J	-1:0	RELEVATION J.	1/ 5172 2/ 1: 1/ 5172 2/ 1:	HING DAH DA Side Channer
		SAMOLUD,	NYULTIPLE-PLITE № LECATIONS).	29 OF PROSPECTATION OF CONTRACTOR AND A CONTRACTOR OF CONTRACTOR AND A CONTRACTOR AND AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A	1425 4771 34 UPPER	174455 PER 31	STABES AND ST	

T

\$

NUMBER ANJ BIDAASS PER SQUIRE YETER OF ALCADIVERERATES COLLECTED WITH A MULTIPLE-PLATE SAMPLER. Podia 13, Upper Missicater Kiefer to Figure 1 for Locations).

1

.

ł

Ţ

and the second s

ł

1145 JAM 97 513E CHANNEL 1/	SAMPLE Suter	04158141108 7 19 4149 048 37	DATC			PERCENT GF TOTAL	(9) (9)	PE0581
26	ę	-	3-23-73	SYLI-CIEUTAS: D	11	1.7	5 * °C	5.1
					11	1.7	0.19	2.2
				(0 X 1 0 X 1 X 3 X 1 0) WY C 1 Y 0 X 0 C Y 0 X X	32	5.1	0.01	0.1
				-45 SHC410+10+0	53	3°2	3.36	4.4
				*** UT0204702H	53	8 . 5	0.17	2.1
				PETANYIA FLAVA (HATER)	53	8°5	0.19	2.2
				HYJROSYCHIJAE PUPAE	11	1.7	0.12	2 - 4
				ACUTICATES SP.	53	8.5	0.35	4.4
				SAFTWORDS FLAD	21	3.4	0.13	1.5
				ういます ディー・ディング なんまたい しんしょう しょうしん	628	r.001	ຕະ ເ ອາ	100.9
25	S	т	92-12-6	TICKINGEL	255	2.1	0.51	3 • 6
					128	1.1	14.17	17.8
				STREAM SO.	383	3.0	3.51	3 - 6
				(UVISAI ATEVE) SPOITOATECET	383	3.2	0.13	3+2
				· ex Brokseckester	6129	51.1	a.v. • • •	52.5
				HYDF CPSYCHE SP.	2937	24.5	15.63	20.9
				PSTA WYZA FLAVA (446FN)	1532	12.5	4 - 9 5	5.2
				NFC176204140	255	2.1	1.02	1 - 3
				TATAL INVERTERATES	12002	100.7	13.30	103.0
2-4/	•	~	9-2-6	1405	o	0.0	0.00	0.3

150

Ű.

.

-	1.11	3.7	128	HEXPONNE SP.				
•	3.:7	2.4	5.6	CARACT CO.				
2	3-60	4.9	170					
•	0.09	1.2	43	HYALLELA AZTECA (SAUSJURE)				
*	0.04	1.2	43	,521LUS 32.				
• •	2.34	1.?	5. 8	TRICHLACITA	3-53-23	Ŀ	J	÷ 2
1 10	50.11	100.7	10746	1014 [14400754248ES				
	1.29	•••	745	CHT: STOKIJAN				
	9 ه د ر	3.0	319	NEUSECLIPSIS SP.				
5 1	5.75	15.9	1702	PCT+ MYIA PLAVA (MASEN)				
•	1.1*	1.0	106	. c3 EFCASavidCAH				
7	37.45	4 J . 5	5214	CHELVATOPIYCHE DP.				
	1.05	ه.٩	1064	HAJOUDOLATINE (EVERTAN)				
	0.53	1.0	106	CORVERSIONINA				
	0.32	5 . 9	638	576×64844 49.				
	0.32		4 2 6	HYRLLFLA SZTECA (SAUSSURE)				
•	1.17	3.0	319	ASTLLUS SP.				
_	0.11	,	106	インロンエニキシロント	5-5-53	, t	6	21
-	2.00	2.0	o	2 J V 1	3-23-84	<i>.</i>	5	2 14/
	3.03	9 . 0	0		ヨーアューアの	c	J	2 + <u>4</u> /
	E C C C C C C C C C C C C C C C C C C C	PEACENT	1 1 1 1 2 3 3 3 3 3 3 3 3 1 1 1 2 3 3 3 3	T # KG Y	50 50 11 11	CREENTATION TO AING DAY 37	SANPLE 1/ SITE 2/	AING DAH OF Side Chainel J

A PENDER J. CONTINUED.

1

I

7

and the second s

Ī.

ľ

E

ſ

NUMBER AND BEDASS PER SUBAE VITO OF AFERVIA U. CONTINUED. NUMBER AND BEDASS PER SUBAE VITO OF AFERTARTIS COLLECTED WITH A MULITPLE-PLATE SAMPLEK. PODL 13% UPPER WINGEOSTREET FERER TO FIGURE 1 FOR LEGATIONS).

1

2

1

ļ

]

I

ļ

i I

Å

1140 0+4 04 5106 0+4 04	5440LE	171, NTATICH 171, NTATICH 1.1 - 1NG DAH <u>1</u> /	3475	TA 40 1	и 19 7 Л 7 7	PTRCENT CF TOTAL	8104855 (G)	P260547 OF T974L
23	5		62-2-6	*d5 **3kutis	âS	2.6	0.13	3 •6
				Controlled (Ethers) to the second second	43	1.2	12.0	á•C
				(51151, 1375) 15457, 18175)	43	1.2	0.00	Ĵ• 3
				tes JrCkseCltr.Cl-J	1575	45.1	14.51	57.4
				* a 3 Lit 7.5 Sate 7.4	115	14.5	2.25	9.9
				(N257H) (TTAT (TTAT)	393	11.0	7.11	12.3
				stend SVC1+3xSel+CA+	213	b.1	2.43	3.6
				Ê. M. DA E	43	1.2	0.00	9 • 3
				24018080 etc.	43	1.2	3.15	0.5
				Prone Interview	٤ ٦	1.2	0.01	0.0
				TOTAC LVVPDTCAPACT	3490	100.7	25.29	100.0
23	10	¥.	-2-62-6	11. v: 49124	1:	2°2	0.00	3-6
				145°F13 50°	11	2.2	0.07	9-9
				(erlon) Alurd) Urclroxga.uchr	92	17.4	2.05	C • 2
				* as 240xiaitt 1340	96	20.0	0.27	13.2
				HY22 TO540 50.	160	33.7	1.64	62.5
				POTENTIA FLAVA (HAGEN)	74	15.6	3+20	7.7
				UYONG IYEINCASecuCAH	43	e • 9	J . 4 4	16.7
				101×1 14414187848	479	100-0	2 • 5 2	100.5
2.2	÷		92-52-6	2041. 2041.	υ	ڻ• ن	0.03	0.0

152

•

Ţ

The second

Press.

-

t -1 t.t

•

.. -

-

•

NUMMER ANJ HIJAASS PER SQUARE MITER OF ARGEOINVERTUREAL OGVETVOED. Nummer and Hijaass Per Square yfter of Merturaters collected with A Multifle-Plate Sampler. Pjul 11. upper Missirtiddi River Kifer to Figure I for Locations).

÷,

l

•

•

۰.

ъ.

•

.

I

I

ŧ

-

i

1

I

4

13 5 1.3 0.17 0.2 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11<		54 2/ 5176 2/			14401	а 19 19 19 19 19 19 19 19 19 19 19 19 19	PFRCENT 0F 101AL	0104802	
Definition Definition <thdefinition< th=""> Definition Definit</thdefinition<>	C1	5		1-1-1-01 1-01		35	1.3	0 • 13	¥• ℃
131AL INVERTRANTES 6534 100.0 34.93 107.0 10 6 7 10^{-5} 30.5 0.0 0.0 0.0 0.0 10 6 1 10^{-5} 30.5 0.0 0.0 0.0 0.0 10 6 1 10^{-5} 0.15 0.05 0.02 <td< td=""><td></td><td></td><td></td><td></td><td>3 Y O I FUND X I Y O</td><td>85</td><td>1.1</td><td>0.03</td><td>0-0</td></td<>					3 Y O I FUND X I Y O	85	1.1	0.03	0-0
13 6 1 197 197 97 1 100					TOTAL INVEATERADIES	6554	100-0	34.49	100.0
13 13 13 13 13 13 33 0.34 0.33 0.34 0.3	Ci	ν ο	•	10- 3-73	3762	0	0*0	00°C	0°C
$3\sqrt{5}$ Tr S S. <td< td=""><td>5</td><td>œ</td><td>ſ</td><td>13- 5-78</td><td>JLIG TEHRETA</td><td>35</td><td>1.5</td><td>0.00</td><td>0.0</td></td<>	5	œ	ſ	13- 5-78	JLIG TEHRETA	35	1.5	0.00	0.0
4723709570412AE (EARLY INSTAR) 340 6.2 9.60 1.5 $C4EJU12277045$ Set 511 9.2 6.77 12.3 75740757545 Set 511 9.2 6.77 12.3 75740757545 Set 511 9.2 6.77 12.3 757407557545 Set 5714017 511 9.2 6.77 12.3 7774755757545745 9.7526 511 9.2 2.60 7.5 7774755754756574756 9.966 55.6 24.65 7.5 6.13 7777557574576574576 9.966 55.6 24.65 7.5 6.75 6.75 $777757577676757576767576 9.966 7.5 9.56 7.5 6.75 AFTIS SP.361.50.340-9$					AFTIS SP.	36	1.5	0.34	0-9
CHEJUNTDOCKAE Set 511 9.2 4.77 12.3 HTDRESTOLE Set 551 9.2 4.77 12.4 HTDRESTOLE Set 551 596 10.4 2.49 7.5 HTDRESTOLE Set 551 596 10.4 2.49 7.5 HTDRESTOLE Set 511 9.2 4.43 11.5 HTDRESTOLE Set 511 9.2 4.43 11.5 HTDRESTOLE Set 511 9.2 4.43 11.5 CLUTAE 511 9.2 5.4 5.4 5.4 State 511 9.2 6.1 11.5 5.4 5.4 5.4 State 512 51 9.2 5.4					AYDREPSYCHIDAE (EAPLY INSTAR)	340	6.2	0+60	1.5
H5325957C45 SP. $F574$ VIA FLAVA (H457a) 595 10.4 2.49 7.5 $F574$ VELA $FLAVA$ (H457a) 3064 55.4 24.35 64.3 $H737595751735$ PUPAF $H737595751735$ PUPAF 3064 55.4 2.49 7.5 $H737595751735$ PUPAF $H737595751735$ PUPAF 511 9.2 24.35 64.3 11.5 $H73779757575752$ $CUVTAF$ $CUVTAF$ $CUVTAF$ 514 953 10.2 0.59 11.5 1147 $CUVTAF$ $CUVTAF$ $CUVTAF$ $CUT7$ 0.59 11.5 1147 $CUVTAF$ $CUVTAF$ $CUT7$ 0.59 11.5 0.59 11.5 1147 $CUTTAF$ $CUT7$ 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.50 0.59 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50					* J 2 2 4 2 4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5	511	2 • 6	4.17	12.3
3014 wirk flavt (H465h) 3064 5.4 24.36 64.3 4707705771036 91045 5.4 24.36 64.3 4707705771036 91045 5.4 24.36 64.3 11.5 247765 91045 5.4 24.36 11.5 24777057705 2477705 2111 3.2 1.7 9.59 1.45 2477705 2477705 2111 355 1.7 9.59 1.7 0.50 1.5 314^{4} 5 7 92577 4011 100.0 0.00 0.00 0.00 0.00 0.00 314^{4} 5 7 927473 4012 0.000 0.00 0.0					HTGRCPSTCHE SP.	596	8 • 0 1	2.09	1.5
HYDECCSYCHIDAE CUPAE 511 9.2 4.45 11.5 ELMIDAE CLUIDAE CUPAE 6 1.5 0.60 1.55 ELMIDAE CLUIDAE CLUIDAE 0.5 1.5 0.50 1.55 S14 CUPAE CUPAE CUPAE 0.5 0.5 0.50 1.55 S14 CUPAE CUPAE CUPAE CUPAE 0.5 0.53 0.50 1.55 S14 CUPAE S11L INVERTSATES CUPAE 253 100.0 35.54 100.0 S14 S S S S53 100.0 0.0 <td< td=""><td></td><td></td><td></td><td></td><td>PGT44YIA FLAVA (HAGSN)</td><td>3064</td><td>55.4</td><td>24.35</td><td>64.3</td></td<>					PGT44YIA FLAVA (HAGSN)	3064	55.4	24.35	64.3
CLMFINE CLMFINE 85 1.5 9.69 1.5 CHERINE CHERINE 255 4.5 0.17 0.4 114 STHULENVERESSATES 255 4.5 0.17 0.4 114 Structure 101.0 31.54 100.0 0.4 114 Structure 101.0 31.54 100.0 0.4 114 Structure 101.0 0.50 0.0 0.0 114 Structure Structure 553 100.0 0.0 0.0 114 Structure Structure 10.0 0.0 0.0 0.0 0.0 114 Structure Structure Structure 1.5 9-54-73 103.2 0.0 <td< td=""><td></td><td></td><td></td><td></td><td>SYdfig SYCIFSASoleith</td><td>511</td><td>y.2</td><td>4 • 4 S</td><td>11.5</td></td<>					SYdfig SYCIFSASoleith	511	y.2	4 • 4 S	11.5
3_1^4 5 $3_2 \cdot 5$ 0.17 0.11					34.J.M.2	85	1.5	0.50	1.5
1314/ 5 7 9-23-73 104/2 55.34 100.0 33.54 100.0 314/ 5 7 9-23-73 104/2 6 0 <t< td=""><td></td><td></td><td></td><td></td><td>しゃ こうざい しょうしん</td><td>552</td><td>40 *</td><td>0.17</td><td>••0</td></t<>					しゃ こうざい しょうしん	552	40 *	0.17	••0
114/3 5 7 9-25-73 10N2 10N2 0.0 <					TJTLL LWV PTERSETS	5533	101.7	33.04	100.0
$\frac{31^{4}}{31^{4}}$ 5 3 9 9-73-73 4012 C 0.0 3.52 0.0 $\frac{31^{4}}{31^{4}}$ 6 1 9-73-73 4312 C 0.2 0.20 0.0 $\frac{31^{4}}{31^{4}}$ 6 3 9-73-73 4232 C 0.0 0.00 0.0	114/	ş	•	61-53-6	: 101	Ð	0.0	0.0	0.0
1 ⁴ / 6 1 3-24-75 MJV: 0.20 0.20 0.20 0.20 31 ⁴ / 6 3 9-24-73 MJV2 0.20 0.00 0.00	31 <u>4</u> /	۴	ņ	9-73-73		U	0.0	0.00	0.0
0.0 0.0 C O C O C O C O C O C O C O C O C O C	1, <u>4</u> /	ي		5-24-23	:	C	c • 0	0: 0	0 - C
	31 <u>4</u> /	ى	చు	82-62-6	TN2R	υ	C*0	0.03	0.0
	<pre>5/ UPLENTATIC 4/ Ho Sample</pre>	14 TO 1146			***Balls7*04				

154

ŧ

VING JAH DR	S1 1PL5	11111111111111111111111111111111111111		CLAY-SILT				+ 071 CLE	5175 (HH)		195		
SIDE CHANNEL	1/ 1/1: 2/	LI YING DAY 3/	2442	¢.0425	-05-27 -27	.125	- 25		1-0	N • 7	د د ا	ц. О	15.0
25	1	a-	P 4-51-2-5	5 ** 2	1.4	10.3	36.9	50-9	3.3	2.7	3.6	£ • 5	0.0
25	-	U i		5 8. 7	3.7	15.3	17.5	3.5	1.1	0 - 7	0.0	c.0	2.0
25	2	•		2 3. 3	1.9	72.9	35.0	9.1	1.1	0.1	e. ;	c. j	0.0
25	~,	J.	5-21-73	5 ° د	0.1	5.9	52.3	30.3	7.5	1.5	0. 3	0.0	y.0
25	.	•	21-78	2•2	• د	ę• i	52.1	31.5	5 • B	2.6	0.	Ċ- J	3.0
25	ų	IJ	6-21-78	12.9	3 •2	14.9	5 3 -5	J • S	0 . 9	0. •	; • t		
25		£	5-21-7 3	2°. 9	0.1	4.7	72.3	13.9	0.6	0.2	C.5	c.)	3.0
25		J	6+21-78	29-1	0.0	11.4	47.3	11.5	1.0	0 . J	0.0	ð. J	3.3
26	2		6-21-78	6 • • و	1.7	2.0	1.1	0.3	0.2	0.0	0.0	0-0	9.0
26	12	UR	6-21-73	52.2	2 • 4	7.7	13.9	15.4	(4) • •	0.1	0.3	د. د	
25	من	÷	6-21-78	5 3. 3	5.9	5.5	•••	24.3	\$.J	4 a 5	0 • 2	0.)	0.C
26	ب	v	+-21-73	31.0	0.6	2 • 3	10.0	5.5	0.6	0.0	0. j	J. J	0.0
28	1	•	1-21-75	13.5	9.1	5.1	55 • 3	13.3	0.7	0_ 1	0.3	0-0	0-0
29	1	5	6-21-79	1.0	0.1	4.6	50.2	25.0	4.0	2.9	0 • 1	1. ,	n.0
23	63	•	¥ 7-13-1	÷ 7. 6	0.5	3 - 1	₹6•3	15.5	0.6	0.1	0 . J	0.0	c. ,
23	2	5	6-21-79	\$ 7.9	1.3	8.5	25-0	2.7	0.4	0.,	0. 0	3. 3	0.9
24	3	•	121-7 3	12.9	1.2	4.6	3.0	12.7	0.5	0.1	0.0	C • 9	0.9
53	J.	J	5-21-70	• 7. 0	0 • 1	13.2	43.2	2.5	0.1	۰. ۲	0.0	0.0	3.0
29	1	5	5-27-73	57.1	1.7	13.7	24+5	r 3 • 10	0.5	0-0	0+0	· · ·	0.0
62	1	ا ل	f + 23-7 g	. 2. 7	0.3	•••	* * * *	7.9	0.7	ن • 0	0.0	0.9	0.0

APPENGIX N. CONTINULUE FATIFIE SYZE FRUTIDUS AS PERCUM TOTAL IN 100 GRAY CAMPLEC (IN PAM 1971) COLLECTED WITH A POYAR SPARY Hydrosephyle relief situs, pool 15, upper mississippi aiver.

۰.

l

I

Į

Ī

[

ľ

し、四日

1

		* * * * * * * * * * * *				;		4671 CL C	(WX) 3Z IS				
PING JAY DE SIJE CHANNEL 1	SAYOLE 1 STE 2/	TELENTATION TO FING DAM 31	2475	5 LAY - 51 LT ,)625		.125			0	2.9	4-954	¥5, 3.0	
	, , , , , , , , , , , , , , , , , , ,	* * * * * * * *	6-23-73	32.5	2.2	5.4	7	± ± − 1	0.4	6.0	0 · D		0.0
29	2	ň	6-23-33	6.4	0.1	8.4	55.5	6.05	1.9	0.4	0°0	C • D	0.0
29	n		6-23-78	1 3. 4	1.2	1.1	3.2	1.1	0.1	0 •0	0• 0	0.0	3.0
29	s	5	61-23-3	. 4	0.3	7.0	37.7	20.5	2.0	2.7	3. 3	6.01	6 ° é
30 4/	1		6-23-19	0.0	0.0	0.0	¢*0	0.0	0.0	0°0	C•)	0.0	0.0
57	1	ň	6-23-13	4 - F	9.2	1.0	10.5	39.2	26.5	11-0	1.1	6 °C	0.0
50	N	÷	6-23-73	3.1	0•3	8.1	50.4	22.3	5.4	1.1	0.2	0 • 0	0.0
30	2	ŝ	6-22-4	3.5	0.1	6•5	65.3	1.01	2+3	1.5	0.1	0 ° 0	5-6
37	~	÷	E-23-73	ຍກ ເ	2*0	5 • •	13.4	13.2	0.7	2.0	C • 0	0•0	0.0
30	s	ĸ	6-23-18	2.9	0.1	2•2	66.0	5°* 9	1.5	0.5	c •0	0.0	0°C
11	1	÷	6-23-78	3.0	C • 3	2.1	23.7	34.6	ن ه ۱	10.9	2.2	••5	12.0
31	-	ŵ	£-23-73	2 * 1 2	0.0	0-4	55.3	15.5	2.5	0.3	0° J	6-5	9.0
15	~	*	6-21-3	С•:	1.0	3.1	5*62	45.4	11.3	3°5	C. T	1.3	0 • C
51	e.	5	6-25-28	1*1	0.7	2.4	22.0	51.4	15.5	4.2	1.1	0°0	0-6
51	3	Ŧ	÷-23-78	2 • 2	1.2	6.9	50.7	26.9	1.8	0.3	0.0	0-0	0.0
31	£	s.	6-23-79	7 • 5	9.2	12.3	13.2	10.4	9 ° C	0.2	0.2	0.0	0.0
25	1		ž- 7-73	ي • •	J • 2	ð•6	1°°1	4 ÷ • 2	2.3	0•2	0.0	0.0	р • С
25	1	r	82-2 -3	т. е.	.† • C	16.0	0.61	24.1	2°2	0.2	0.0	0 * 0	0.0
25	C)	7	8- 7-73	•1 • T C	1.4	52.9	36.2	1.6	1.1	0.1	c•0	с• с	0.0
25	2	'n	8- 7-7B	1 3. 7	2.1	12.7	6-25	.4 • 7)	2.0	0.3	0°0	0.0	0.0
25	3	9	8-1-19	4 5	0.1	2.4	14.7	4.03	1.11	3.5	6 " 0	0.5	0.0

156

ŧ

* 711.40MM 7.	нсан С∋латиоо	DIRIPHIC PELIP	SITIS SITIS	1 11 12 12 1 1 12 12 12 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12	sin cacel TLL that	L IN 100		I) ijlek	43024 197	1) COLLEG	STED WITH	1 1 211	184 ES 1
	2 4 4 9 F 7 F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	101.0545134							5175 (24)				
5105 CH-845L 1/					- 3 - 2 5	.125	t - 11 5 - 12 5 - 12	л. Л		2. 3	4- 3 E&X		:5.0
65	5	در∖،	3= 7-78	• * • #	3 • 1	10.1	56.4	21.9	5.5	3.1	0. J	0.0	
25	••	×	y= 5,−79j	5 2 2	۲. ۲	19.1	17.5	¥.7	2.5	C- 7	¢.)	J•J	· · · ·
26	1	J	4- 5-70	1.3	o.:	10.1	6 0 .64	з. У	0.3	0.5	0.2	0-0	0.0
5 S	r.	•	i- 3-7d	د • ا	ي. د و	13.1	2.0	0.2	0.2	0-7	C. ?	ů.)	3. 0
13 7	2	Çi.	-1- 2-2 q	2.0	3.5	сі • ў	44.9	6.4.8	1.4	0.0	¢. 1	0.J	0.0
35	3	é	4• 5•73	۲ • 2	0.5	14.3	54 - 4	25.1	1.5	0. • •	3. J	0.0	3.0
<i>ې</i> د		ų:	4- 5-73	9 : • 5	1. 4	7.6	ó•?	₽•0	5 ° C	0 • 1	o.)	د. د	ð• ð
2.9	1		- 5-7 B	() *	°-1	5.2	70-8	19.5	1.5	0-1	C . J	0.0	ə.o
19 0	1	v.	n= 5-78	19.9	2.0	3.3	51.4	17-0	2.1	0.1	0.)	c.)	3. C
6 2	13	£	r= 5=73	1.1	0.2	7.2	70.5	:5-2	3.4	۱.۴	0 _)	3.0	3.0
29	د ۲	v.	5-73		9-1	4 • 0	, o . :	20-5	(4) • (2)	1.5	c. 0	с . Э	J.J
وہ ک <u>ر</u>	~	5	- 5-73	7.2	3.3	8.7	11.0	15.7	0 • 3	0 • 0	a. 9	с - с	3- 0
1. 5	, ,	J	h= 5-78	3.0	0.3	29.0	67.0	5-6	0-1	0 • 0	c •	s - o	0.0
2741	F1	F	ŋ= 5 -73	۲. ۵	0 .0	0.0	0.0	0.0	0.0	0-0	0 • J	:	0.0
6.2	1	.	6- 3-7d	15.1	J .1	5.4	72.9	0.1	2.8	9 . 4	C • 3	¥.,	3. 3
23	r u	•	6 - 5 - 7 d	35_0	1.1	5.ÿ	6.7	J.9	C.2	G. 7	c _ 0	J.U	0.0
62	r.	ŗ	·- 5-73	2.4	5.2	9.0	51.2	29 • 9	4.3	2.1	0.3	c. 1	0.0
29	3	8	5-7-7-3	5 2. 4). e	3.3	19.2	۹. 5	2.4	۶.۲	0•?	C • 0	C - 0
62	ţ,	ų	5-7-3	2.6	ن . ن	36.7	54.4	13.0	1.3	0.7	5-3	د • د د	5.3
CΣ	-	r	:- 5-7d	1.7	0.1	3.7	53.3	37-0	2.ľ	1. 🤉	0.1	0-9	0.0
30	4	U)	5= 5-73	3.6	c. 1	3.9	50.9	31.4	1.9	۰. ۲	0.0	C- 0	0.0

]

I

-

parent .

ية ف

I

I

Ţ

1

·PPEGUIN N. CONTINUEL. MATICLE SIZE FONTIOUS (S PERETATIONE NU DO GRAM CAMPLEN (INGRAM 1971) COLLECTED WITH A POTAR GRABM Mumbuschendentenie Relief Siting pool 13. urber Missiskippi bive.

l

1

]

]

R.

Ĩ

.

*1*6 344 (R	SLAPLE	Q-1141414N		rLA:- 51LT				: 1311::	SI 75 (MM)		5E31		
CICE CHANNEL IN	(115 °	E TA SATA	/ JATS	<<	.0625	125		ų	1.0	۲ ۰ ۵	C • 7	с, У	15.0
50	N		55-2-5	5 5. 3	۲ ۲	16.7	19.4	±`• ⊻	0 · B	0.1	C •0	с• з	0 • 0
5.0	•	Ň	82-5 -i	1.5	3 • 5	34.1	54 . j	5.7	0.5	0.5	6 •0	9-6	1.2
30	£		3- 5-73	0 •2	C.O	2 • 2	45.2	T • 7 5	4.7	•••	0.1	0.0	0.0
30	~	s	3- 5-75	• •	0.1	1.9	20.0	6.12	6.1	3. ₹	C• 3	6 -0	0.0
11	ľ	£	9- 4-78	1.1	3.1	10.1	40.7	2 ° C	3.7	2.9	2.0	0.0	6.9
11	٦	ŝ	3- 6-73	5-5	0.0	7.5	57.4	1.30	4.6	2.4	••	0.0	0.0
11	N		1 4-7 à	2.4	0 * S	2.7	47.2	36.5	5.1	1.0	0.1	0.0	0.0
15	ru	5	3- 4-7 B		1.0	5.9	54.3	C3.4	41 • •	۰.1	1°Ú	0°0	0.0
31	, -		P 1-1 -t	2.1	C • 2	5.1	46.0	34 . 1	н. В. н.	2.5	0.2	5°0	0.0
11	÷	10	5- 6-78	3*5	0.1	1.7	54.0	49.3	1.1	1.7	C. 2	0.0	0.0
25	-	4	4-30-73	24.6	1.4	10.2	30.9	29.4	3 . 3	2.7	3.4	2.9	9.0
25		ic.	9-3Ū-1 8	1.5	5 ° C	4.5	4 2 • 1	1.07	5 • E	5°0	c.)	010	0•0
25	fu	4	82-22-4	3	r • 1	21.5	30.3	3.1	2.0	0.1	C * 0	0.0	0.3
25	•••	÷	3=30-73	1 3. 7	2.1	12.7	6-39	8 - 4	0.2	0-0	C*2	£•0	0.0
25	-	4	4=33=76	J. 4	2.0	5.9	?5.1	59.2	6.4	2•2	2.5	0.0	0.0
25		'n	9-39-75	ć•;	3.1	19.1	1 · C 5	21.9	5.7	3.1	C. 3	0°0	0.0
26		.1	1-33-73	4 ° 4	2 • 2	5.51	0. • • •	• • 1 :	1.1	e • 0	0.0	0.0	0 •0
25	1	'n	62+22+4	ۍ. ۲	ຳ c	31.6	6.02	10.5	0. F	0.3	C * C	c•0	0.0
25	~;	.4	f 2-c 5-r.	1 ** 1	5.7	7.0	1.7	M) 4 C	0.2	0.1	د.،	0°0	0.0
25	Ċ,	10	P 2 - 2 - 1	1 1. 4	3.5	1.11	6.73		0.2	0.1	C•J	6 • 0	0°0
25	5	•	ê 2+6 8 +1,	5 t . t	0°5	34.6	1	6.5 • •	9.2	0.1	c. 3	C•2	ۍ. د

158

1

-

Sand and the set

ومتقد والانتقاد والمسارحة المواجع والمتقاد والمراجع المراجع والمراجع

159

1

T / / / /

.) COLLECTED WITH A POINT STAR.	6 t t k
t total IV 100 GBAK EAMBLEC (I4,9AM 1971 Eq 41551121891 qived.	6 3 5 1 C C 5 5 1 7 6 (38)
6200 +21 3000 -2112 22130 620 +21 3000 -2112 22130	
101104 - C-CAF	
10400 ** *104	ан (4 SAMP
1.04	1:6 0:1

I

I

					,			3-11-11-5	51 2E [3E]				
1100 0 44 04	Samp.		1) MT	CLAY-TLT C 0425	96290	.125			1.0	د · ۲	4.0		15.3
21	tu	; 1 ; ; ; ; ; ; ; ; ; ;	12-2 -Ci		e e	2.4	1.00		4.6	12.5	¢•5	1 di 1 di 1 di 1 di	- - - - -
3:	r u	ŝ	10- 3-11	ά . ΰ	0.1	֥\$	0 * 7 *	\$£ . 3	5.5	0.0	c • J	0.0	0.0
51	**	•	10- 3-75	1. 1	1.0	12.1	39.1	2.45	5°2I	4 . 4	0.1	0.0	0.0
15	79	ŝ	13+ 3-76	3 2 4. 3	N • 0	֥2	36.9	:1.5	6.7	6.1	1.2	6 * 0	0.3
25	1	э	51-3 -2	€°2°+3	ŗ•ŗ	2.9	15.0	15.3	9.9	2°5	0 0	: :	0.0
25	-	10	2-2 -2	0-1	0.1	7•3	2045	5 .	1.1	2•3	0.3	C•0	C * 0
52	Λ,	.*	51-9 -6	5.7	0.0	26.3	55.2	1.5	1°0	0°0	c * 0	0.0	0°0
25	~	ïr	51+7 -5	4-0	9 . i	9 ° S	77.4	. • v	2.0	3.7	0. t	0.0	0 • C
25	÷		52-3 -5	v. • •	3+2	2.4	45.4	56.1	13.5	5.6	1.7	0.0	c • c
، 5	÷	ŝ	51-5 -5	10.2	٦. ٦	12.3	57.3	j•Ç 1	1.2	1•C	C • J	د. ۱	C • 0
2×4.'			52-5 -1	0.0	0.0	0°C	0.0	0.0	0.0	0.0	c.0	0*0	0.0
25.4/	-	•	51-3	(.°.)	0°0	C.C	. .c	0°0	0°0	ũ°0	6. 0	ς•ς	C .C
25 41	¢۷		1 - 2 - 2	0.0	1.0	0.1	C.0	0.0	0.0	0°0	د• ی	0.2	ú°0
2541	Ċ,	ž	4- £-7	3.0	J. J	ē•'	0.0	C * C	0.0	6 .0	C • 5	C•3	0°0
26 <u>4</u> /			51-3 -4	0.0	0.0	c • 0	0.7	0°0	0.0	ں۔ 0	C * 0	c •0	0.0
2641	P ri	5	5-5-73	0.0	0.0	C.N	0.0	C • 0	0-0	0.0	C * D	0•0	J. C
2. 3	1	4	5 - -5 -6	10 10 10	5.0	15.8	62.1	1.1	1.5	1+2	1.2	2.4	р. • с
24	1	r	n- 5-79	6.5	2.1	- 1 -L	- - 	15.3	2.2	1.1	0. 3	C • S	0 ° C
62	tv	7	62-5 -4	23.5	1.0	10.3	1.04	h • 7 1	1.1	•••0	د • ی	C - C	0 • 0
29	2	• ن	5-5-19	1.0	1.6	3.0	52.4	3 * * č	5 - 5	C.7	C • D	0.0	0°C
23	5	- 1	t. f.T3	5 - -	7.3	11.2	1:°C	•	0.5	¢•3	r C	¢••9	07

Sec.

10 044 63	SANDES								5125 (44)		Х; х;	Ð -	
£ 3	U:	L	a- 5-79	47.7	, ,		33.1	د. 1	0 . 3	0.3	0. 7	c•3	c,
6.Z	1	•	9 2 - 2 - 2 9	5 • C)).¥	11.0	21.5	10.2	:.7	6 .)	а • •	13.9	:6
23	-	5	y= 7-79	۰.7	ر) ال	: 9 . 9	37.0	34+4	19.7	5 . ^	(-) • •	0•0	U.
ę 2		÷	3- 7-79	75.	, , ,	15.0	(n • 13	3.7	0.3	0 . I	a.)	0-3	
20	••	3	7° °-79	21.4	0 . 9	22.5	46.0	7.7	C•5	0.3	0.2	0 • 0	3
د ٢	L -2	÷	4- 1-19	1 1	1.5	к. Р	53.0	21.4	1.5	0.0	c. 3	0 • J	.,
c,	1	ىل	62-2 • ⁵		3 • 4	7.5	57+3	3.5	7.6	0."	0.1	с . у	2
30	F1	·	5.* 7*7 g	c. 0	9 • 0	0 .0	ر• ۲	0.0	0.J	0.J	0.0	3•0	J
30		J.	h= 7-79	c • 0	c. 0	0.0	0±0	o . o	9.0	0.0	ŋ. j	C - 3	J
30	2	٠	5- 7-79	1.4	0.1	7.5	ē0.4	25.4	3.5	1. ?	0.	c.J	ن
59	رب	v	8- 7-79	••	्) • •	4.5	57.7	30.:	5.5	1.1	5 - 7 7	2.0	
30	J.	*	ti= 2-28	÷.7	0.1	ф.	4° č t	د. ب	0.9	с . э	•••	^•• 0	0
30	~	JI	5 = 7 = 7 9	17.1	9. I	۰. بن	,Б. 4 • •	15.7	* • J	3.7	0.7		э
31	1	٠	h= 7-79	10.6	0 • 2	2.4	41.2	35.7	5.1	2.5	•••	·	0
31	11	JI	6-4-13	ر تا تا ال • تا	0.9	7.0	25.4	12.1	1.4	0.4	0.	0 • •	• •
31	دم ا	~	{- 7-79	4.3	3 .7	11.0	5 - 5 S	15.2	4.3	\$ • .0	6 .)	7.0	ç
31	2	J	もっ マーマラ	4. Z	a.2	3.5	22.3	13.7	49.3	6 - 3	C.)	3.3	c)
31	5	ŕ	t- 7-79	3. 8	0.2	* . *	£°55	, U .	5•2	1.6	1.4	0 • ¢	a
	1	Ś	6- 3-7V	32.0	3.0	7.5	4 J • j	15.ª	1.9	J.?	0. ÿ	0 • ·	۰.

	Upper Mississip from G.E. Johns Army Corps of E	pi River. Data we on, Chief of Hydra ngineers, Rock Isla	re obtained ulics, U.S. and, Illinois
Yea	ır	M ³ /s	Ft ³ /s
197	70	1.1	38.9
197	71	1.4	49.6
197	72	1.7	58.9
197	73	1.9	65.5
197	74	1.3	46.4
197	'5	1.4	50.1
197	76	0.9	33.2
197	7	0.8	27.3
197	78	1.3	46.7
197	79	1.7	61.6
Mea	in	1.4	47.8

Appendix L. Mean yearly discharge in thousands entering Pool 13 from Lock and Dam 12, 1970-1979,
Appendix M. Mean monthly discharge in thousands entering Pool 13 from Lock and Dam 12, January 1978 to December 1979, Pool 13, Upper Mississippi River. Data were obtained from G.E. Johnson, Chief of Hydraulics, U.S. Army Corps of Engineers, Rock Island, Illinois.

	1	978	1	979
	M ³ /s	Ft ³ /s	M ³ /s	Ft ³ /s
January	0.9	32.4	0.6	22.0
February	0.7	24.1	0.7	24.0
March	1.0	34.9	1.9	66.0
April	2.6	92.5	3.9	136.3
May	1.7	58.8	3.8	135.7
June	1.8	63.2	2.3	80.5
July	2.7	94.2	1.8	65.0
August	1.3	45.4	1.6	56.1
September	1.8	63.0	1.4	49.7
October	1.1	39.9	1.0	34.8
November	0.9	32.1	1.6	54.8
December	0.7	25.1	1.0	34.2

Appendix	Ν.	Results of Mann-Whitney tests of bottom current
		velocities (cm/s) at benthos stations in the
		side channel and wing dams and Wilcoxon
		paired-sample test of velocities at stations
		upstream and downstream of the wing dams,
		Pool 13, Upper Mississippi River, 1978
		(refer to Figure 1 for locations). Only
		stations located nearest to the Illinois
		bank were used for comparison of velocities
		upstream vs. downstream of the wing dams.
		Station 30-6-7 in August 1978 was eliminated
		because of an erroneous velocity value
		(Appendix F-2).

		Site				U	ⁿ 1, ⁿ 2	
Side	channel ^a	vs.	wing	dam	25	67.0	9, 12	_
	a	vs.	wing	dam	26	63.0	9,12	
		vs.	wing	dam	28 ^a	60.0	9,12	
		vs.	wing	dam	29 ^a	91.5**	9,12	
		vs.	wing	dam	30 ^a	85.0**	9, 11	
		vs.	wing	dam	31 ^a	103.0**	9,12	
Wing	dam 25 ^a	vs.	wing	dam	26	75.0	12, 12	
		vs.	wing	dam	28 ^a	105.5	12, 12	
		vs.	wing	dam	29 ^a	130.0**	12, 12	
		vs.	wing	dam	30 ^a	119.0**	12, 11	
		vs.	wing	dam	31 ^a	139.5**	12, 12	
Wing	dam 26	vs.	wing	dam	28 ^a	93.0	12, 12	
		vs.	wing	dam	29 ^a	122.5**	12, 12	
		vs.	wing	dam	30 ^a	115.0*	12, 11	
		vs.	wing	dam	31 ^a	137.5**	12, 12	
Wing	dam 28	vs.	wing	dam	29 ^a	112.5*	12, 12	
		vs.	wing	dam	30 ^a	105.5*	12, 11	
		vs.	wing	dam	31 ^a	133.0**	12, 12	
Wing	dam 29 ^a	vs.	wing	dam	30	73.0	12, 11	
		vs.	wing	dam	31 ^a	87.5	12, 12	
Wing	dam 30	vs.	wing	dam	31 ^a	94•5	11, 12	
Upstı	ream vs. I	owns	stream	n		49.0	$\frac{n}{18}$	
a _{Lare} *p∠0	ger U sta .05	tist	ic of	the	pair	(Zar 1974)		

******p∠0.01

Appendix 0.	Spearman's rank corre invertebrate density variables were: dens variables vere: % si bottom current veloci than 25 individuals/m	elation coeffi , biomass, and sity/m ² , bioma ilt-clay, % sa ity (cm/s). 0 ity in 1978 wer	cients for fac number of tay ss(g)m ² , and r nd, % gravel, nly invertebra e included in	tors affecting (a, 1978. Deper number of taxa. median particle tes with densit the analysis.	benthic ndent Independent size, and ties greater
	% silt-clay	% sand	% gravel	Median particle size	Velocity
Total Irvert	ebrates				
Density	0.557**	-0.485**	-0.085	-0.352**	-0.215
Biomass	0.578**	-0.538**	-0.018	-0.393**	-0.243*
Таха	0.613**	-0.551**	0.063	-0.284*	-0.292*
Ologochaeta					
Density	0.657**	-0.515**	-0.053	-0.283*	-0.227*
Biomass	0.625**	-0.480**	-0.164	-0.390**	-0.224*
<u>Hexagenia</u> sp	•				
Density	0.701**	-0.620**	-0.165	-0.528**	-0.362**
Biomass	0.706**	-0.625**	-0.173	-0.541**	-0.329**
Chironomidae					
Density	0.293**	-0.248*	-0.004	-0.074	-0.049
Biomass	0.502**	-0.441**	-0.002	-0.164	-0.144

*p∠0.05, 77 df

**p<0.01, 77 df

Sale and a second

165

Z

T

E

7

Ţ

I

I

Γ

ſ

-

Results of Mann-Whitney tests of benthic invertebrate density and biomass (g) per m^2 and number of taxa from the side channel and wing dams and Wilcoxon paired-sample tests of invertebrate density and biomass (g) per m^2 and number of taxa from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Only stations located nearest to the Illinois bank were used for comparisons of density, biomass, and number of taxa. Appendix P.

I

			Den	sity	Bio	mass	Ta	Ка	
	Site		đ	n ₁ , n ₂	q	u, n ₂	n	'1'	n2
Side channe	l vs.	wing dam 25	-2.92**	27, 36	-3.03**	27, 36	0.43	9, 1	L2 ^a
	vs.	wing dam 26	0.27	27, 36	1.02	27, 36	72.5	9 ^a ,	12
	٨S	wing dam 28	2.69**	27, 36	2.99**	27, 36	86.5*	9 ^а ,	12
	vs.	wing dam 29	1.46	27, 36	2.24*	27, 36	71.0	,0 ⁸	12
	. SV	wing dam 30	2.59**	27, 36	2.74**	27, 36	84.5*	₉ а,	12
	۰S۷	wing dam 31	2.95**	27, 30	2.75**	27, 30	63.5	д ^а ,	10
Wing dam 25	vs.	wing dam 26	3.53**	36, 36	3.74**	36, 36	103.5	12 ^a ,	12
	. SV	wing dam 28	5.92**	36, 36	5.55**	36, 36	124.0**	12 ^a ,	12
	• SV	wing dam 29	**66* †	36, 36	4.72**	36, 36	111.0*	12 ^a ,	12
	. sv	wing dam 30	5.61**	36, 36	5.30**	36, 36	121.0**	12 ^a ,	12
	vs.	wing dam 31	5.64**	36, 30	4.95**	36, 30	97.5*	12 ^a ,	10
Wing dam 26	vs.	wing dam 28	2.61**	36, 36	2.34*	36, 36	99.5	12 ^a ,	12
	۰SV	wing dam 29	1.16	36, 36	1.23	36, 36	73.0	12 ^a ,	12
	۰s۷	wing dam 30	2.42*	36, 36	2.07*	36, 36	105.5	12 ^a ,	12
	vs.	wing dam 31	2.95**	36, 30	2.11*	36, 30	65.5	12 ^a ,	10

		Der	nsity	Bic	mass	Та	ıxa
Sit	ē	¢	n ₁ , n ₂	đ	n ₁ , n ₂	U	n ₁ , n ₂
Wing dam 28 v	s. wing dam 29	-1.85	36, 36	-1.70	36, 36	0.66	12, 12 ^a
4	s. wing dam 30	-0.40	36, 36	-0.28	36,36	75.0	12 ^a , 12
4	s. wing dam 31	0.58	36,30	0.06	36, 30	79.0	12, 10 ^a
Wing dam 29 v	s. wing dam 30	1.23	36,36	1.47	36,36	97.5	12 ^a , 12
V	s. wing dam 31	1.92	36,30	1.54	36, 30	64.5	12 ^a , 10
Wing dam 30 v	's. wing dam 31	-2.00*	36, 30	0.21	36,30	80.5	12, 10 ^a
		Т	n	IJ	n	IJ	п
Upstream vs. d	ownstream	316**	51	377**	51	3 3 *	17

"Larger statistic of the pair (Zar 1974) pro.05

*∓p∠0.01 _

~

1

1. A. C.

167

E

Γ Ľ Ľ ľ ľ Π

[]

~_	
endix Q. Results of t-tests of square-root mean total invertebrate density per and Mann-Whitney tests of total invertebrate biomass (g) per m ² and number of taxa collected with a 252-cm ² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). Derived means (Quenouille 1950,	EITIOT 1977) IOT TRANSIORMED COUNTS AFE IN LADIE O.
Apr	

فخاله فالمعادية

Service and

1

いたま

, I

	Densi ¹	ty	Bio	nass	Таз	Ка
Months	tt.	đf	q	n1, n2	đ	z ^u , ¹ z
June 1978 vs. August 1978	3.52**	160	5.16**	81, 81	3.24**	27, 27
vs. September 1978	1.09	154	1.53	81, 75	-0.47	27, 25
vs. June 1979	0.76	148	1.41	81, 69	1.46	27, 23
August 1978 vs. September 1978	-2.33*	154	-3.71**	81, 75	-3.59**	27, 25
vs. June 1979	-3•09**	148	-4.61**	81, 69	-2.05*	27, 23
September 1978 vs. June 1979	0.43	142	0.31	75, 69	1.85	25, 23

1.10

*p<0.05 _ **p<0.01