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This dissertation describes a system called ‘HEXVIS ,which

performs operations on scenes, All operations are carried

out in a hexagonal array of cellular automata-like objects

1 which corresponds to that scene. The system can perform (for

J instance) the following #asks: recognition of edges,

corners, and axes of symmetry, texture discrimination,

- l determination of areas, and generation of Voronoi
tessellations.

| First, the scene is embedded in the hexagonal array,
, } then, the cells pass messages describing the cells' contents
‘ to their neighbors which, in turn, pass them on. As these
g . messages pass through cells, they can interact with each
- other and with the contents of the cell in which they fird
k| ' themselves. The cells all perform the same operation or
; group of operations in parallel on their visiting messages.
As a consequence of these operations, the states of some
cells change in a way which indicates that they correspond to

“interesting® parts of the scene.

This process can be repeated recursively using the

altered states of the cells as new messages to be broadcast.
. ) . YRR

In addition a new algorithm ,is presented which shrinks
binary scenes in a hexagonal array. . It is proved that all
scenes with (at most) simply connected holes are transformed
into a set of 1isolated points, each corresponding to a
connected object in the original scene. This shrinking
algorithm is embedded in HEXVIS.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Systenm

This dissertation describes a system called HEXVIS which
perforas vision and image processing operations on a static
scene. All operations are carried out in parallel in =2
hexagonally tessellated array of cellular automata-like
objects which corresponds to <+that scene. Operations which
have been examined include (among others) the following:
2dge, corner, and symmetry axis finders, a binary shrinking
algorithm, area determiners, region growing algorithms, and

texture discriminators and recognizers.

The cells communicate by passing messages according to a
set of production rules. This process is user programmable
and can be repeated recursively using the altered states of

the cells as new messages to be broadcast.




1.2 The Basics

HEXVIS differs from a traditional cellular automata
system in two important ways. TFirst, the automata (cells)
are not finite state machines. This difference wmanifests
itself in two ways: 1) the amount of information which can
flow through a cell is unbounded and 2) the cells can execute
unrestricted programs which use that information as data.
The memory available to each cell has also Leen assumed to be
unbounded, although it is clsar that if the system were %o Dde
realized in hardware, memory would be limited. For most
purposes, each cell may be assumed to be a reasonably
powerful computer (i.e., powerful enough to execute LISP,

say) .

A second difference is one of convention. Most of the
literature on cellular automata concerns itself with arrays
Wwhich are rectangular. My system uses a hexagonally
tessellatzd cellular array. The reasons for this decision

#will be presented in Chapter 2.

As an aside, it turns out that a hexagonal array can be
thought of as a rectangular array with an odd neighborhood
definition (as shown in figure 1). In fact, I make use of

this relationship in simulating the hexagonal array.
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Pigure 1 Simulation of 2 Hexagonal Array
With a Rectangular Array
HEXVIS begins with a rectangular array of picture
elements. It processes this information and embeds it in the
hexagonal array. The "processing” referred to consists of
extracting local gradient and 1laplacian information (for
instance), forming appropriate list structures and inserting
them into the cells. The mechanics of this process will be

discussed in detail later on.

The hexagonal array 1is much more complex than the
original rectangular grey level array. Each of its elements
can contain an arbitrary LISP 1list structure. 1In general
this 1list structure has at least two constituents: 1) the
"state" of the cell (where "state" here has a meaning
slightly different from the one used in cellular automata
theory), and 2) +the messages resident in the cell.
Purthermore, +the cells are designed to accommodate user
defined additions. Such things as the cell's coordinates, a
record of previous states of the cell, and the original

information contained in the cell can all be useful to the

cell in its computation. These additions are easily made.




Each cell (with a few exceptions) forms a message
describing the cell which is to be broadcast to the other
cells in the array. The messages pass from cell to cell in a
synchronous way. That is, time in the system is quantized.
At each time period, each message in the array moves one step

into one or more of the neighbors of its host cell.

Bach message is again a LISP list whose first element is
a directional component called the "heading" which specifies
in which direction the message is travelling. Initially, of
course, the message is travelling in all directions, and this

is indicated by the message's heading.

A set of production rules is associated with +the
headings. These rules specify, for a given heading, where
(i.e., in which of the host cell's neighbors) and with what
new heading the attached message will appear at the next time

period.

For instance, a message at time zero (which has a
heading specifying all directions) will appear in all six
neighboring cells at time one. EBach of the six copies of the
original message will have a different heading indicating
that it is travelling outward from the cell which originated
it. The net effect of these productions is that a message
spreads outward from its originating cell like a ripple froa
a pebble thrown into a pond. A detailed description of

message passing and the production rules appears in chapter

2.

|.s -



The rest of the message contains the information from
the message's originating cell: data such as gradient
direction and magnitude, 1laplacian, and, in higher layers
(later in the processing of the picture), texture
information, shape description, etc. As these messages
travel around the cellular world, the information they carry
can interact in various ways with its environment. The
simplest +type of interaction is one in which messages
resident in each cell are compared in a pairwise manner. As
it turns out, this particular class of intsractions is quite
powerful. Its members can find edges and corners, fill in
incomplete lines, and infer axes of symmetry, among other

things.

At the other extreme of coaplexity are interactions
involving complex statistical analysis of messages integratad
over many time units. Textural discrimination is an example

of a task requiring this type of higher level processing.

1.3 Why?

What good is +this system? There are three reasons
HEXVIS 1is worthwhile. Firgst of all, it represents an
interesting information processing paradigm in its own right.
The evolution of a cellular automata-like system based on
state changes which are brought about by message propagation
and interaction is a significant departure from (and

extension to) the traditional cellular automata model. It is

ol ST G e S M i A S A I L IR AP B
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reminiscent in some ways of Hewitt's and Baker's "actor"
formalism [Hewitt, 1977] in that both systems have parallel
processes which communicate through passing of messages

(although HEXVIS is synchronous).

Secondly, the system is general enough to be an abstract
vehicle for parallel algorithms. It includes as a subset all
of cellular automata and could be used to model even

asynchronous processes.

Lastly, the system is potentially quite fast. Most
vision and image processing systems (including this one as i%
is now implemented) perform many trivial and not so trivial
operations on .vast amounts of data in a serial manner.
Obviously, if these operations were done in parallel, the
systems' speeds would be much improved. HEXVIS and 1its
algorithms are designed with this fact in mind. As more and
more sophisticated' parallel machines become available, 2
system like HEXVIS will become more attractive. TPFurthermore,
at the rate chip densities have been increasing, it is at
least conceivable that in the near future, the entire HEXVIS
system could be housed on one chip. Some applications that
spring to mind are: smart television cameras which could
(say) <follow a person around the stage, microscopes,
telescopes. and televisions with built-in real time image

enhancement, and mobile household devices.




1.4 Outline of the Dissertation

After introducing +the +topic in chapter 1, I will
describe the basic wmodel in chapter 2. Chapter 3 covers
related work while chapters 4 and 5 discuss specific
algorithms which have been implemented in HEXVIS. 1In chapter
6, I present a new algorithm (and its proof) which shrinks
hexagonal binéry scenes to a set of points. Chapter 7
contains some concluding remarks and suggestions for future
work. PFinally, an appendix discusses the history of cellular

automata.
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CHAPTER 2

THE BASIC MODEL

2.1 The Hexagonal Grid

The cells in HEXVIS are arranged in a hexagonal pattern
on the plane. Each cell can directly communicate only to its
six neighbors. Communication with cells further away is done
indirectly by propagating messages which start at each cell
at time zero (the system is synchronous) and spread outward
in a hexagonally shaped wavefront. The message propagation
is governed by certain rules which are described 1later in
this chapter. ©Each cell is a reasonably powerful computer
and can use the contents of the messages which pass through

it in 1its computation in order to discover 1interesting

information about the scene.
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2.1.1 WHY HEXAGONS?

There are only three regular tessellations of the plane:
triangular, square, and hexagonal. It is intzresting to note
that the hexagonal and triangular tessellations are duals in
the sense that if one draws a line from the center of a
hexagonal cell %o the center of each of its neighbors, a
triangular tessellation is obtained. The reverse happens if
one starts with a +triangular tessellation: one obtains a
hexagonal tessellation. The square tessellation is its own

dual.

A triangular scheme has no recognizable advantages over
the others. In fact, it seems to combine the worst features
of square and Thexagonal schemes, while offering the
advantages of neither. There are two undesirable features
which a triangular array has in common with the hexagonal
case. The first problem is that representing a triangular
(or hexagonal) array in the inherently square arrays of LTISP
(as in most computer languages) requires extra overhead to
keep track of the correspondence between the two. The other
problem that the representation of triangular and hexagonal
arrays share is that the computation to determine a cell's

neighbors depends on where in the array the cell resides.

Triangular and square arrays, on the other hand, share
the problem of having more than one sort of neighbor. 1In the

case of the square array, each cell has four edge neighbors

and four corner neighbors. The +triangular case is even

o i =
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worse: three edge neighbors, three of one type of corner

neighbors, and six of another type of corner neighbors.

The choice between a  hexagonal and a square
representation, however, is not quite so clear. There are
Several advantages to using a hexagonal array of cells rather
than a square one. First, the shape of the messages'
"wavefront" is a hexagon. In a square array the messages'
wavefront would propagate in a square (or diamond) shape.
(Rﬁsenfeld {1979] shows a propagation scheme for square
arrays wnose wavefront is in the shape of an octagon, but for
various reasons, this scheme can not be cast in a message
passing mold similar to my own.) Since a hexagon is closer
in shape %o 2 circle than a square is, the distance at a
particular time from a cell to any of the messages which i%
has generated does not vary as much as in a square
propagation scheme. (The ratio in a square of shortest to
longest distance is 1/(sqrt 2) or .707, whereas in a hexagon,
that ratio is (sqrt 3)/2 or .866 -- much closer to unity.)
In a hexagonal array, then, if +two messages which have
traveled for the same amount of time meet, they have traveled
approximately the same distance -- a useful fact for finding

axes of symmetry, centers of circles, etc.

Further advantages derive from the fact that six is the
maximum number of isotropic neighbors a cell can have in any
planar tessellation. This is important for two reasons.

First, it is desirable for a cell to have as many neighbors
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’i as possible in order to distribute +the information more
: evenly. Second, we would like 2ll of these neighbors to look
alike to the cell, hence the wish for isotropy. As an

‘i example of a cellular world without isotropy, consider a

square tessellation in which each cell is defined %o have

eight neighbors. The neighbors on the diagonal are different

than the neighbors on the four sides: they are farther away,

they share no bvorders, etc.

t R There 1s also a problem with ambiguity 1in the
connectivity of a square array which is not present in the
hexagonal array. The two traditional (and natural) choices
for neighborhoods in the square array are the four-cell and

the eight-cell neighborhood. In the former case, the

question of whether removing or adding a point will alter the

connectivity of the scene can not be assured without knowing
the state of the corner cell, as well. Figure 2 illustrates
this. If D, E, and B are in the "one" state, we can not know
whether removing E will disconnect B and D without knowing

the state of A.

ABC
DEPF
GHI

Figure 2 Connectivity in a Square Array

In the hexagonal +tessellation, +there is no such ;
ambiguity. All the neighbors of a cell share an edge with

that cell. Furthermore, two neighbors of a cell which share
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ad jacent edges of the cell also have an edge in common with

each other.

Another advantage of a hexagonal array is this: Since
vertices in a hexagonal array have only three edges, a region
of the plane can be encoded as a bit string. To illustrate,
imagine a bug crawling along one of the edges. When it comes
to a vertex, it can either turn to the right or to the left
(assuming it will not back up, of course). This information
can be encoded as a series of zeros and ones as the bug
crawls around the perimeter of the region. In 2 square
array, on the other hand, the bug has three choices at each
vertex {(right, left, and straight ahead), doubling the number

of bits per choice.

An intsresting aside is that a hexagonal array actually
closely approximates the pattern of rods and cones on the
human retina [Lindsay, 1972]. Thus, a low-level vision model
using hexagonal arrays might stand a better chance of

modeling human vision than one using a squate array.

Of course, there are some disadvantages to using

hexagonal arrays instead of square ones. As I pointed out
before, array simulation, addressing schemes, and neighboring
cell calculation are more difficult 2and %ime consumning
because of the inherently rectangular nature of computer
arrays (at least in LISP). Pictures need some preprocessing
in order to be loaded into hexagonal arrays because camera

hardware in general produces pictures in the form of a

e
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rectangular grid. These difficulties are not insurmountable

(as will be shown) and are more than outweighed by the

advantages.

2.1.2 Mappings Between Rectangular and Hexagonal Arrays

Since most television cameras are set up to output
pictures in a square array, how can we”transform this to a
hexagonal world? Also, since computer arrays are rectangular
in nature, what 1is an efficient way of storing these
hexagonal arrays in the computer? Two transformations are

involved here.

As shown in figure 3, to derive a rectangular.array from
2 hexagonal oné, every other row is moved to the right and
stored in a row in the rectangular array. The lines between
the cells in both parts of the figure represent neighbor
relationships. The only problem with this method is that the
coordinates of the neighborhood set of a cell depend upon in
which row the cell resides. (For instance, in row one a
cell's zeroeth neighbor is directly above it in the square
array while in row two, the corresponding neighbor is above
and to the right.) Consequently calculation 1is slowed

somewhat.

An alternate scheme is to only use every other element
of the array. However, I felt that the resultant increase in
speed would not make this waste of space worthwhile. Yet

another scheme would be %o move every row to the left as in

e e e~ >
NI
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figure 4. Then every naighborhood set would be computed
similarly, but pictures would be skewed -- that is, if we
wanted to store a picture in a rectangular array according to
this method, +the hexagonal array corresponding %o the
original scene would have to be a parallelogram slanted to

the left, hence, so would the original scene.

Ahuja [private communication] has suggested a variation
of this latter method which maps rectangular pictures to
rectangularly stored hexagonal arrays and still allows the
neighborhood relation to be the same for 2ll cells. 1In this
case the parallelogram which results from shifting every row
to the left is cut on the left side. The smaller piece is
then fitted onto the other side of the parallelogram to make
a rectangle. The neighborhood function must use modulo

functions in order to be correct for all cells.

. X . X L] X . X .

Figure 5 Mapping a Hexagonal Array to a Square Array

There are a number of possible methods of getting =2
hexagonal model from a picture stored in a square array. The
most reasonable methods all involve picking every fourth

picture cell as 1in figure 5. (The X's correspond to the
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sites in the rectangular array where the hexagonal cells will
be located.) The problem is, however, what to do with the
other three-gquarters of the picture. Can it contribute in
some way to the hexagonal wmodel? In fact, it can;g the
left-over cells can be used to derive gradient information.
Ffor example, suppose the picture cell in question and the
cells above and below it (remember, we are talking about the
rectangular array of grey levels from the camera) have a
brightness level of 0.5 on a scale of 0 to 1. Suppose also
that the cell %o the right and the two cells above and below
that one have a brightness 1level of O and that the three
corresponding cells on the left have a brightness level of 1.
This situation implies that there is a brightness gradient at
that cell pointing to the left. This information can be
encoded into the cell in the hexagonal world and broadcast in
messages from that cell. Note that +this +technique is =a

modification of the Sobel operator [Duda, 1973].

Another possible use of the left-over cells would be to
simply average their brightness levels with the brightness
level of the central cells. As with all averaging
techniques, this would have the effect of eliminating some
noise in the picture, but, at the same time it would degrade

the resolution.

Notice that there are two distinct ways of picking the

central cells from a rectangular array (see figure 6). I

chose the method shown in figure 6a. My reason for waking
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that seemingly arbitrary choice has to 4o with a peculiarity
of the vision system at the Coordinated Science Laboratory.
This system produces a rectangular array of picture cells
such that each cell represents an area which is approximnately

1.2 times as wide as it is high. When the central cells are

chosen as in figure 6a, the hexagons are much closer to being
regular than they would be if chosen as in figure 6b. (The
important dimensions are 'shown on the figure with the
vertical distance between rectangular cells normalized to 1.0

anl the horizontal Aistance to 1.2.)

| ;2'4_1///}.33 /\2'6‘\

X X D S
. — X . Cox .
X X X7 . 2.0 . . X .
' . . x X
| X . X X X X :

(a) (o)

Pigure 6 Two Ways of Choosing a Hexagonal Array from

3 Rectangular Array

2.2 Message Passing

i 2.2.1 Production Rules

I Messages carry information from one part of the cellular

l world to another. They sgspread outward from their originating

cells in all directions 1like a ripple from a pebble thrown
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into a pond. How is this done? How do the many copies of a
message know in which direction to travel and in which cell
or cells to appear at the next time unit? This is
accomplished by using a set of production rules which operate
on the heading of the message. The "heading" is a part of
each message copy. It determines in which direction a
message is traveling. By examining a heading in a message
copy and the set of production rules, HEXVIS can determine
into which cells the message is to be propagated next and
¥hat headings to give those copies in the cells in which they
appear. The workings of headings and production rules are

described in detail in section 2.3.3.

The rules are designed %o fulfill +three goals: (1)
given enough time, messages from a single originating cell
should be able to pass through all other cells in a unique
way; (2) the messages should form a number of distinct and
equal rays emanating from the originating cell; and (3) the
shape of the p{ppagating messages, i.e. the "wavefront",
should be as close to a circle as possible. The four rule
propagation techniques discussed in this section satisfy all

of these goals to varying degrees.

Pigure 7 shows graphically one of +the message
propagation schemes. This figure is an example of a type of
diagram common in this section. Since it may not be clear
intuitively exactly what these figures represent, I will

explain thenm.
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Notice the cell labelled "ORG" with six arrows emanating
from it. I will call this cell "C" (the cell is not called
"ORG" because that is the name of the heading of its message
at time zero) and be concerned for purposes of this
explanation only with the copies of +the message thaf
originate there (keeping in mind that potentially all of the
cells could have produced messages). Notice that these six
arrows point to the six adjacent cells. This indicates that
the original message will, at Time = 1, have appeared in
these six cells. Tach of these six messages will of course
have a different heading so that the production rules can
distinguish them. However, they are in all other respects

duplicates of the original message.

In general then, when a cell in the diagram has one or
more arrows pointing into other cells, it will transfer any

messages it contains which originated from cell C (it may

contain others) to the cells at the other end of the arrows
by the following time period. PFor example, from Figure 7 we
can infer that if at time period T there is a message with
heading B2 in a cell, then at time T + 1, both the cell to
the upper left and the cell to the upper right will have a
copy of that message with headings B3 and B4 respectively.
At time T + 2 then a cell which had a message with B3 in it

will produce that same message with the new heading "B2" in

its upper right neighbor. And so on.
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Not all of the rules are included in these diagrams.
However, they can be inferred by rotating the figure sixty
degrees clockwise and "adding 2" to the letter modulo L until
the sector of interest is available. So, for example, we can
see that H2 in figure 7 produces an H3 in its lower right
neighbor and an H4 in its lower left neighbor even though
this is not shown in the diagram. EFEach concentric hexagon
centered on cell C is formed from lines which run through all
the cells which have C's message at the same time period.

This is called the "wavefront" of the message.

Remember that in actual operation this process is going
on for many -- perhaps all -- of the cells in the array. It
is quite possible, for example, for one cell to have ten to
twenty resident messages which mnmust be parceled out in

various combinations to its neighbors.

Again referring to figure 7, there are two sets of lines
running more or less radially outward from C. The heavy
crooked lines delimit the sectors. They represent divisions
which define the twelve directions in which the message can
travel, i.e. all messages between two adjacent lines (again
recall we are talking only about the messages from cell C)
are said to be travelling in the same direction even though
at the cell-to-cell level they change direction frequently.

Notice that messages never change their direction, that is,

if a message copy produces another in an adjacent cell, the

new message keeps the direction of the o0ld message. The
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straight 1lines through the middle of each sector represent

2xactly that -- the center of the sector.

The labels in the cells (ORG, A2, B4) are the names of
headings. These are solely for human convenience; the
program uses bit strings to determine message routing; in

this way processing speed is greatly increased.

The design of the production rules underwent several
iterations. PFigure 7 shows a representation of the original

scheme proposed by Waltz [1978]. We will call this "method
1,

Method 1 has two very attractive advantages over the
present method of message propagation: First, the set of
production rules is simpler (a total of seventy-two rules
versus three hundred forty-two rules in the present system).
Using it would undoubtedly produce a significant increase in
the speed of the system. The second advantage is that the
angle subtended by each of the twelve sectors is exactly
equal. In the present system, adjacent sectors differ by a
small amount, causing slight variation in behavior depending

on direction being considered.

Now for the disadvantages: Notice that each segment is
situated so as to cover the area between ad jacent numbers of
an imaginary superimposed clock. Why is this a problem? The

answer gtems from the fact that many objects in the world

have important visual features which are oriented either

[ NS,
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vertically or horizontally. This is a fact which |is
characteristic not only of artifacts, bdbut 1also of many

natural objects and phenomena (e.g., trees and the horizon).

Notice that in method 1, the boundaries between some of
the segments are oriented in a horizontal direction and
otheré are oriented in a vertical direction. Because of
this, a direction which should be interpreted as pointing
directly up could be labeled as either 11:00 or as 12:00
depending on slight perturbations of the scene. A similar
problam exists for %the horizontal direction. TFurthermore,
this problem can not be easily removed; interpretation of
some directions will always be ambiguous due to the fact that
the directions are quantized. We can, howsver, choose
quantization regions which group directions we wish %o regard
as similar. One solution I considered was to rotate the
cellular world by fifteen degrees, but the consequent
problems of mapping a non-rotated square array into a rotated
hexagonal array are very messy unless the camera taking the
picture is also rotated by the same amount, thus making this

an unsatisfactory solution.

Method 2 is shown in figure 8. It is quite a bit more
comnlex than method 1. It does solve the main problem of

method 1, but it produces some new problems of its own.

The problem of rule proliferation was discussed somewhat

above. This method has a total of one hundred ninety-two

rules. The motivation for dropping +this method and
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redesigning the propagation rules again, however, is based on f

some more subtle effects.

Pirst of all, 1look at the 12:00 and 1:00 sectors.
Notice that close to cell C, the 12:00 sector is much thinner

than the other. At Time = 3 there is only one message copy

in the 12:00 sector but the 1:00 sector has three. This
disparity continues +throughout +the message's expansion,
although it becomes less significant; +there are never more
copies with evenly numbered directions than with odd. Table
1 summarizes this. This asyuametry is both unaesthetic and
somewhat hazardous -- "hazardous" because of the possibility
that some messages that should meet have a greater chance of

missing each other, since they cover a smaller arc than they

should.

Table 1 Numbers of Messages in Even and 044 Sectors

time no. of copies no. of copies .
in 12:00 sector in 1:00 sector
2 1 1
3 1 2
4 1 3
5 2 3
6 3 3

Another problem with method 2 is also related to
symmetry. All of the sectors have a slight shift in the

clockwise direction, so that there is a left-right asymmetry.

Figure 9 shows method 3, the current rule propagation

scheme. This method has a number of nice features lacking in

method 2. The only disadvantage it has relative to method 2
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is that it has a larger number of rules -- three hundred

forty-two to be exact.

It is desirable to have the number of messages in each
sector grow evenly. A message in method 2 has the same
number of copies for three time units and then grows by two
in only two time units, although this was not mentioned as a
problem (there are good propagation schemes that have this
property). It turns out that the property of even growth
(i.e., where the number of copies in first the odd sectors
then the even sectors is incremented) and the property of one
sector always having a smaller or equal number of copies than
the other always appear together. Another methoa I
discovered while writing this chapter is almost the same as
method 3, but combines this inequality "problem" with another
aspect of the differences between even and odd sectors to
come up with an even better set of rules. I will discuss
this method next. In method 3, I chose even growth. A% the
time it seemed to be the more useful and aesthetically

pleasing property.

Figure 10 shows method 4. As stated above, this method
combines two adverse effects of message propagation with the
effect that they cancel each other out. Recall that earlier
I mentioned that the even and odd numbered sectors are
different angular sizes. 044 numbered sectors are on the
whole smaller because the wavefront "turns a corner". The

difference is a matter of only a degree or so. If we use the
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technique of always 1letting the odd group of sectors have

greatsar or equal numbers of message copies at any time
period, the effect is to expand the width of the sector.
This effect in the long run (after several time periods)
tends to become insignificant, but in the short run, it is
strong enough to counteract the inequality problem. Compare
figure 9 and 10. The sectors in the latter look much more
equal. Method 4 incorporates this idea and, 2as an added
bonus, uses the same number of production rules as does

‘ mnethod 3.

2.2.2 Variations

Variations on the propagation rules can be introduced at
k a nigher level by the function which alters the state of the
i cell. This function (which will be discussed in more detail
’ later) is available.to all cells and is applied to the cells'
contents. It oéerates by returning as a value the cell as it
B appears at the following +time period, including the new
r megssages which are to0 be resident in the cell. Since the
' updating function is free to return any value as the new
cell, it has the power to introduce new messages or destroy
, 0ld ones at its discretion. In particular, the updating

i ' function can have the effect of introducing higher 1level

propagation rules. Some examples of higher level rules which

; ' are useful for image ©processing with HEXVIS are the

i l following: 1) propagate for a fixed distance, 2) propagate

1
i
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definition), 3) propagate along line segments or boundaries
(special case of 2), 4) propagate until similar region, 5)
propagate until meeting some other message, and 6) propagate

normal to edge.

2.2.3 Dodecagonal Propagation

There exists another family of propagation rules which I
have examined in some detail. Its members possess the
desirable quality of producing wavefronts whizch expand in the
forn of a dodecagon (a twelve-sided figure). However they
also have the wundesirable quality of causing messages +to

propagate into the same cell.

Recall one of the goals specified for the design of the
propagation rules is to have the wavefront of the messages
expand in a manner as close to a circle as possible. The
hexagonal propagation gives a fairly good approximation to a
circle (the ratio of the smallest distance to the largest
distance is .866, a circle being 1.0). In the discussion, I
compared this with a square -- the only other possibility
allowed in the type of propagation rules under consideration

(a triangular scheme propagates as an irregular hexagon) .

In general, of course, a2 polygon with more sides will be

closer to a circle. Specifically, the ratio for a dodecagon

is .966. This is very attractive for my purposes.
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Unfortunately, though, this method has a drawback. In
order to "flatten the corners" 80 to speak of the hexagonal
wavefront, it is necessary to hold back some of the message
E copies. This effect is produced (as shown in figure 11) by
' letting some rules propagate messages into the same cell

(called "message doubling"). Notice that this is a violation
of one of the other goals specified, i.e., that of having
messages reach each cell in a unique way. (If 2 message copy
produces a message copy at the next time unit in the same
cell, then there are two paths to that cell.) In addition, if
; a message 1is resident in a cell for two consecutive time
periods, we have to worry about how to count it in the cell's

! aperations: do we count it twice?

It seems probable from wmy investigation of these
propagation rule schemes that methods could be devised to
;‘ propagate in a wavefront which is arbitrarily close to a

circle. This I will save for future examination.

o 2.3 Data Structures

HEXVIS makes wuse of a number of internal data
structures. In this section, I will examine them and explain

their uses. 3
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i! < 2.3 Argayél

‘ First of all I will describe the cellular array itself.

r As I indicated before, the hexagonal array is simulated by a
rectangular LISP array. The array can have arbitrary X and Y
dimensions in order to accommodate any size picture, but it
has a third dimension which is always equal to two. Perhaps ]
a more useful way of looking at this is that there are two

¥ copies of the cellular array. The reason for this is so the
parallelism of the system can be maintained. If a cell were

| to change as a result of some operation, it would have

< inappropriate messages for its neighbors. Therefore, the ;
updated versions are entered in their correct positions in
the currently unused array while examining the cells in the
current array for their input. When all of the cells have
been visited, the arrays exchange roles and the process

continues.

Another array in the HEXVIS system is the picture array.

.- It serves as an input buffer for the raw picture data from

G e

the camera. In this implementation, its dimensions are a
constant 42 by 238 This size array can contain a picture
whose dimensions are 252 by 238 pixels, by storing six pixels

; in each array entry with six bits of grey level data per

pixel. i
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2.3.2 Cells

The cells themselves are the elements of the cellular
array. Their structure is that of a list with at least two
elements. The first element is called the "state". Its main
use is to indicate that something important has happened in
the cell as a reéﬁlt of the processing. For instance, if the
cell acquires evidence that it "lives" on an edge, the state
would be modified to reflect that fact. Its state might be
something like the foilowing: ((3 6) (2 9)), indicating that
there were three pairs of messages which matched in the six

o'clock direction and two in the nine o'clock direction.

The second element of the cell is a list of the messages

which are resident in the cell. This list of course changes -

at each time step as the 0ld messages leave and the new ones

enter the cell.

Other storage in the cell is optional. Such items as

the cells coordinates, the original data, and results from

previous layers of processing can be included.

2.3.3 Messages

Each message is also a 1list. The first element is an
atom called the "heading" which governs the path a message
takes in travelling through the cellular world. This process

is discussed in some detail later so I won't describe it

here, but I will describe the structure of the heading.
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Headings have two representations: one for human consumption
and one for LISP's innards. Pirst, for the humans: Recall
that the directions in HEXVIS are quantized into the twelve
clock directions. Saying that a2 message "has a direction"
(say 3) means that (unless the time is 0) it was produced by
a message which was to its left at the last time period and
that it will produce one (or possibly two) messages which
will be to its right at the next time period. The headings
are represented by a letter followed by 2 number, e.g.,
"C12". The letter in the headings representation corresponds
to the clock direction in which the message is traveling.
The number distinguishes the thirty or so headings having a

particular direction.

The machine representation corresponds closely to the
human one. To compute it, I first convert the letter to a
number: A to O, B to 1, and so on until L which is changed
to an f11. This number is multiplied by 32 (i.e. shifted
left 5 bits) and added to the number which follows the letter
in the human representation. For example, consider again the
heading "C12". The "C" is converted to a 2, multiplied by 32
and added to 12 +to yield 76, which 1is +the machine

representation.

One of the messages, "ORG", has no direction, so I
arbitrarily give it the machine representation 372, a number
which is larger than any of the other machine

representations.
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The reason there are +two representations 1is +that
compiled MACLISP code. is very fast at integer arithmetic,
rivaling FORTRAN. Using a numeric domain rather than a
symbolic one for the machine version of the headings lends a
great increase in speed to the simulation. Humans, on the
other hand, have trouble making sense of numbers like 76 or
372 in this context, so a more mnemonic representation is

called for.

The rest of the message varies greatly depending on what
sorts of tasks are being performed and what stage of the
processing (what 1layer) +the system finds itself. For
instance, if we want the gsystem to find edges, the rest of
the message contains gradient information which is derived
from the grey level array. 1f we are performing a shrinking
or thinning operation, we need only carry an indication of
whether the originating cell is part of the "figure", or part

of the "ground".

2.3.4 Production Rules

The production rules which govern message propagation
are stored as entries in an array, indexed by the heading of
the message (in computer representation, of course). Each
entry is divided into six five-bit fields, each of which
corresponds to a neighbor. The idea is this: if a cell C

sees a message M in neighbor N with heading H, it looks a%t

the H-th entry in the production array. Within 4this entry, C

B ———
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looks at the N-th five-bit field. If the field is zero, C
knows that this message will not be propagated to C at the
next time period. However, if the field is not =zero, C
constructs a heading with the same clock direption (see
above) but appends the number it found in the five-bit field.

This heading is combined with the rest of M (minus the old

heading) and saved on a list of new messages. C continues .

this process for all of its six neighbors, and for all of the
messages contained in them %o construct a complete list of

its new messages.

(a)

34 \///} O 0 4 3 0 0
Field: 5 4 3 2 1 0
(b)
FPigure 12 Propagation Rule Example

An example can serve to illustrate this process. Figure
12a shows a small part (three cells) of figure 7 (method 1)
with the cells labelled A, B, and C. We see that a (message

£ i Ak A i e
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w#with ) heading "B2" in cell C produces a (message with
heading) "B4" in cell E and a "B3" in cell D. Now if we look
in the production array under 34 (the machine representation
of "B2"), we find the entry shown in figure 12b. Notice the
3 and 4 in its second and third fields, respectively.
Consider first cell E's point of view. In examining its
neighbors' messages, E notices the one in C with the heading
B2. It then retrieves entry 34 in the production array and
looks in field number three (since C is E's third neighbor).
Pinding a non-zero entry in that field tells C that it will
get a message generated from the cell it is>examining. The
facts that the entry is equal to 4 and that the heading is of
type "B" imply that the new message will have heading "B4".
Similarly, cell D looks at the second field (again since C is
D's second neighbor), and discovers that it will get a copy

of the message with heading "B3".

2.4 Layering

"Layering”" is a process by which complex image
processing tasks can be built from comparatively simple ones.
In this process, each cell produces (or decides not to
produce) a new initial message based on what it finds in its
state. The function to perform this operation is the same
for all the cells at any given layer and is applied when the
message propagation for that layer is complete (as specified

by the updating function). The new layer will in general use

a new updating function since both the information carried by

v ®
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the messages and the goal of the message propagation may vary

from layer to layer.

As an example, consider the following two-layer process
for finding and recognizing squares in the scene. The first
layer of message propagation has in effect an updating
function which infers axes of symmetry. When the propagation
is complete, certain cells in the scene which lie on an axis
of symmetry contain that information in their states along
with an indication of the symmetry axis' orientation (see
figure 13) In +the second layer, the cells which are on
symmetry axes create new messages encoding that fact. Then
the upiating function is changed to one which finds midpoints
of line segments. A cell recognizes that it is the center of
a square when it contains two midpoints of equal length lines

oriented ninety degrees apart.

In principle, this process can be reversed using HEXVIS,
since the important information about messages and message
intersections is retained in each cell. The cells on the
midpoints could simply ©broadcast two messages in the
appropriate directions for an amount of time corresponding to
the line segment's length to reproduce the symmetry axes.
After this, the cells which contain symmetry axis points emit
messages again in the appropriate directions; these messages
are allowed to propagate for the correct amount of time to
reproduce the square. TFigure 14 shows this reverse process

in action. Note the fuzziness introduced by quantization of
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the directions.

Notice also that if we were to leave out the criterion
that the midpoints be from lines which are the same length,

we would generalize the process to recognize rectangles.

The preceding example illustrates another advantage of
layering: The information in a scene can be in some sense

"chunked". That is, the information that there is a square

in the scene, plus its size, location, and orientation, are
all compressed into one cell rather that distributed among
many. The ability to broadcast 2all this information in a
concise way from a single cell can prove to be quite

powerful.

2.5 The General Paradigm

The general HEXVIS paradigm is very simple. Each cell o

has a copy of (or access to) the updating function in effect
i at the current layer. This function is given the following
r? arguments: 1) a list of the new messages, the messages which
will be resident at the next time period; 2) a list of the
0ld messages, the ones resident now; 3) a copy of the cell
itself, and 4) and 5) X and Y, the coordinates of the cell in
the hexagonal grid. The updating function is executed with
the appropriate arguments at the beginning of the time period
and returns as its value the new cell, i.e. the cell at %time

T+1, which replaces the current cell in the array. VNotice

orre oy

that this process takes care of propagating the messages as

o
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well as updating the cell's stats.

As an exampis2 of an updating function, consider the
following (slightly schematic) one which finds evidence for

2dges:

(LAMBDA (NEWMESSAGES OLDMESSAGES CELL X Y)
(CONS (APPEND (COMPARE-EDGE NEWMESSAGES NEWMESSAGES)
(COMPARE-EDGE NEWMESSASES OLDMESSAGES)
(CAR CELL))

(CONS YEWMESSAGES (CDR CELL))))

COMPARE-ZDGE i3 a function which takes two 1lists of
messages and compares their elements in a pairwise manner,
taking one from each list, and kseping track of the number of
pairs (and +their direction) which form evidence for the
presence of an edge. It returns as a value 2 (possibly
empty) list of =sntries, sach of which specifies the direction

of the 2dge and the number of pairs which matched.

The updating function also contains conditions for the %

cessation of message propagation. ii
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CHAPTER 3

RELATED WORK

" My work can ve compar=sd with other work along a number

H

of dimensions. In particular, I will discuss work in the

following areas: 1) hexagonal tessellations, 2) parallel
technijues in image ovprocessing and computer vision, 3)

cellular automata, and 4) message passing.

r

In addition, Chapter 5 presents a new algorithm <or

shrinking binary scenes on 2a hexagonal grid. Some work
related to this topic is discussed there. PFor completeness,
I will indicate the references: [Jolay, 1969], [Rosenfeli,

1970], [Levialdi, '972], and [Rao, 1976].

3.1 Hexagonal Tessellations

Golay [1969] proposes a  model for parallsl

LTI

transformations of sets of points in a2 hexagonal grid. His

choice of the hexagonal tessellation is based mainly on 1its




lack of ambiguity when connectivity relations are studied !as

¥a3 explained in Chapter 2).

Folay 2lso points out that there is a greatsr angular
resolution available in a hexagonal array. The six nearest
neighbors are spaced equally sixty degrees apart while %the
next nearest neighbors are spaced equally +thirty degrees
apart. Neighbors further away are not spaced equally. In a
square array, the corresponding angles are ninety and

forty-five degrees.

3olay nad in mind =2 hardware realization of his system.
The pattern transformations he describes take place DYy

sensitizing (under opsrator control) +the machine to 2

particular set of neighborhoods (Golay calls them
"surrounds") . All~fpoints wnose neighborhoods match the
designated neighborhoods either change state or not depending

on their current state (again, under operator control).
ag

These pattern transformation are applied in parallel to
the scene. However, they are applied cyclically %o three

subfields which have the characteristic that no two elements

e A A—— 8 $t et

from any one subfield are neighbors. The three subfields are
shown in figure 15 labelled "A", "B" and "C". The reason
given for +this division into subfields is +that 2 race
condition exists such that the states of a cell's neighbors
might bve changing 2at the time the cell needed to examine
their contents. It is not «clear, +though, why in a |

synchronous machine presumably using J-K flipflops this would
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;2 be a problem.

e ABCABCABCABC
CABCABCABCATEB

i ABCABCABCABC
CABCABCABCASB
ABCABCABCABC
CABCABCABCAB

! Figure 15 Golay's Three Subfields

1 If looked at in a different way, however, the division
of the cells into three subclasses is an 2lsgant way to avoii
’* the use of dual arrays in simulating 2 parallsl pattern
] transformation on a serial computer. In the case of HEXVIS,
this would not be viable, since the state changes are much

more complex involving (among other things) the transfer of

(relatively) large amounts of information from cell %to cell

in the form of messages.

Preston ([1971] and [1972]) has developed a special o

purpose computer to realize Golay's system. The machine is

L called GLOPR (3olay logic processor) and interfaces with a
l minicomputer which in turn interfaces with other peripherals.

An interactive language called Glol (Golay logic language)

i was also written by Preston which allows +the user to i
manipulate the system in real time. Both papers show several
axamples bYoth of artificial scenes and of real scenes of f

blood cell nuclei and chromosomes. i

'l
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Deutsch [1972] reports on thinning algorithms devesloped
for the three regular tessellations of the plane:
triangular, square, and hexagonal. The purpose of the
thinning algorithms is to reduce thick lines to thin lines.
A typical application is to character recognition where the

thinning produces a skeleton of the character which can be

more easily dealt with than the original. Deutsch concludes
that a hexagonal array offers a better choice than the square
or triangular arrays in that the +thinning =algorithm *fakss

i auch 1ls2ss time to run in the nexagonal array than in either

S,

i the square (a factor of two) or the triangular (a factor of
almost four) arrays and is less sensitive to noise in the

‘ nexagonal array than in the others.

In another (earlier) paper [1970], Deutsch comments on

Golay's work. He makes clear <+he connectivity ambiguity

involved in using square arrays and mentions further that if

< the object uses four-cell connectivity tﬁen the bvackground

must use eight-cell connectivity and vice versa. Deutsch

points out that hexagonal arrays do not suffer from either of

these problems. He also presents a modification to Golay's

j . thinning algorithm. There are some objects for which Golay's

; - thinning procedure does not work. It instead causes them %o

-

disappear. 3olay proposed a solution which involved
considering the three subfields in random order rather than
cyclically. Deutsch proposed a counter-solution which keeps
the original cyclic order ©but destroys +the 1isotropic

characteristics of the system. In developing ay parallel

LAl
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shrinking algorithm (Chapter 5), I encountered a problem
quite similar to this one which probably has the same basis.
This basis has to do with a fundamental 4difference between
the hexagonal and square arrangements. I describe the

problem in detail in Chapter 5.

Horn [1973] uses a hexagonal tessellation in his work on
lightness. "Lightness" is a perceptual quality closely
related to reflectance. Humans, it seems, are able to factor
out variations in intensity which are caused by variations in
illumination to perceive the lightness of a surface. Horn
develops 2 model for this process. His reasons for using 2
hexagonal grid are that there is only one kind of neighbor
(as has been pointad out previously) rather than two (square)
or three {triangular) and that circular objects‘pack tightest
in a hexagonal pattern. This latter reason apparently refers
to the fact +that +the rods and cones in the eye have a
circular crogs section and are arranged in a roughly

hexagonal array [Lindsay and Norman, 1972].

Burt [1979] discusses hexagonal analogs to quadtrees. A
quadtree can bYe used as a compact way of describing 2 scene
#hich has large areas of +the same color (or whatever
characteristic one is concerned with). Consider, for the
moment 2 binary scene (one in which every point is either
black or white) on a square grid. Assume also that the shape
of the scene is square with an edge length which is a power

of two. The quadtree associated with that scene has a root

{ |
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node which corresponds to the entire scene. Each of the four
branches of a node corresponds to one quarter of the area of
the scene that its parent node corresponds to -- either the
upper right, upper left, lower right, or lower left square.
If the area of a scene corresponding to one of the branches
is all white or all black, the branch is labelled accordingly
and is a leaf of the quadtree. Otherwise, the bdbranch is
labelled "grey" and goes to a node which itself has four

branches as above.

Burt proposes a naumber of ways this idea night De
adapted to 2 hexagonally sampled scene. The most promising
way is a septree, i.s., one whose nodes have seven branches.
This method is interesting because the nodes at 2all levels
correspond to ar=as ia the scene which are roughly hexagonal
in shape (as all nodes in a quadtree correspond to areas

which are square).

Siromoney and Siromoney [1975] have discovered an
interesting application o¢f hexagonal arrays. They have
invented a grammar for generating isometric views of
rectangular parallelepipeds which uses figures drawn on a

hexagonal grid as primitives.

Waltz [1978], of course, was the inspiration for this
thesig. Many of his ideas are here. In particular, the
choice for the hexagonal grid and the idea of message passing
are his, as are some of the ideas for symmetry axis, corner,

and edge finding described in Chapter 4.




3.2 Parallel Technijues for Image Processing and Vision

Gordella, Duff, and Levialdi [1976] develop a detailead
parallel algorithm for thresholding 2an image. They define
three steps in the algorithm: 1) forming a histogram of the
grey levels 1in the scene, 2) detecting valleys in the
histogram to determine the threshold value, and 3) relabeling
elements in the scene as zero or one depending ‘on whether
they fall below or above the threshold value. The operations
involved are shown %o depend sither linearly on n, %the number

>

of rows {or columns) in the scene or on loggnz. Serial
implementation of the same task, on the other hand, executes
in time proportional %o n2. For a value of n equal to one
thousand, +the ratio of =2xecution times for the serial

implementation to the parallel one is about one hundred.

Rosenfeld and Xak [1976] have much to say about parallel
computation in image processing and vision. They present
methods of finding skeletons, of shrinking (both preserving
connectivity and not), and of <cluster detection. An
interesting pair of operations which they define for binary
scenes are these: "expanding" or "propagating", i.e., at
gach step, replacing every zero point which is next to a
border point of an object with a one, and "shrinking", i.e.,
at sach steo, replacing every border point of an object with
a zero. (Note +that this shrinking does not preserve the
connectivity of the scene.) It is shown how these operations

can be used for region filling, cluster detection, detecting
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2longated elements, and thinning.

3.3 Cellular Automata

Dyer ([1977] introduces a three dimensional cellular
automata-like model for image analysis consisting of a number
of square arrays. Bach array 1is one-half the linear
dimensions (one-quarter of the area) of the array below it
and forms a2 pyramid shape. Every cell in the pyramid has
(excluding itself) nine neighbors: the four edge neighvors
in its own array, the parent cell in the layer above, and its
four offspring in the layer below. Cells in the lowest layer
are associated with +the pixels and have no offspring
neighbors. (Notice the similarity to quadtrees.) The cells
operate in a synchronous manner, and each has associated with
it a local memory which can be examined by each of its

neighbors.

Besides the obvious fact that cellular pyramids and
HEXVIS are %voth derived from cellular automata, there is
another similarity between the two systems: both have a
layered structure. In HEXVIS the layering is not as explicit
in that cells in one layer do not communicate with those in
another directly. Instead, the higher layer consists of a
new updating function which is applied to the results of the
previous computations. On the other hand, cells in cellular
pyramids can communicate directly with cells in layers above

or below them so that information c¢an flow in both




directions.

Levitt and Xautz [1972] suggest a number of parallel
algorithms which use cellular arrays for the solution of
graph problems. They mention spanning tree, distance, and
path problems and discover <that in some cases relatively
unknown algorithms which are inefficient when applied
gerially produce surprisingly good results when adapted to be

parallel.

Their representation, however, 1is in <Y$erms of the
ad jacency aatrix of the graph. This is a matrix A with

members aij whose rows and columns correspond to the

vertices. If there is an edge from vertex i to vertex j,

then 2;; is esqual to one. Otherwise, 2,

Non-directed graphs have symmetric adjacency matrices. The

is equal to zero.

representation of 2 graph by its adjacency matrix would of
course be possible in HEXVIS, however, HEXVIS is organized in
a hexagonal array which (by design) lends itself more to the
solution of problems in a spatial domain. The solution of
problems represented in other ways using the HEXVIS message
passing paradigm is, I think, an intriguing area for further

study (see Chapter 7).

Banks [1971] describes geveral cellular automata
systems. The foremost of his contributions (in his own
judgement) is a two-state, four-neighbor rectangular system.

He has shown this system to be computationally complete,

i.e., it can perform any computation.
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Another significant contribution of Banks thesis iz a
four-neighbor universal constructor/computer with only four
states (reduced from the previous eight states of Codd
[(1968]). As far as I am aware, this result has not been

improved on.

Banks also discusses information transmission in
cellular automata systems. However, the techniques described
are more classical in the sense that the signal is carried by
a2 "wire" made up of s3pecial states. The signal also spans
sevaral cells and carries a minimal amount of indoraation,
W“hereas the mnessages in HEXVIS are completsly contained in
one cell (at any one time period) and carry an arbitrary

amount of information.

5.4 Message Passing

Parley [1979] discusses a message passing technique for
four-neighbor square cellular arrays called "gossiping". The
process of gossiping is described as follows: at discrete
units of time each cell can communicate with at nost one of
its neighbors. An act of communication (called a "call")
between cells A and B results in both cells containing, at
the end of the time period, the union of the information
contained in A with that contained in B. Gossip is complete
when every cell knows the contents of every other cell in the

array. Results are derived for wminimum gossip time and

ainimum number of calls required.

e v YR
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Notice +that this wmessage transmission technique 1is
similar to the one used in HEXVIS in the sense that the
amount of information transmitted in one +time wunit is
unbounded. However +the paths +the information +takes in
arriving at its many destination by gossiping is much less

regular (indeed, unspecified) than the paths in HEXVIS.

Hewitt's [1976] actors are structures which communicate
by passing messages. Bach actor has two {indivisible) parts:
2 script, which describes the action it +%akss when 3ent =2
message, and a set of acquaintance, which are the other
actors It kxnows about. An actor can send a message {which is
also an actor) to any of its acquaintances. This message
passing process is the basis of all computation in the model
and 1is called  "actor transmission"; the message is called
the "messenger" of the transmission; and the actor %o whon
the message is sent is called the "target" of the
transmission. An important feature of this model 1is that
2ach actor has its own context, i.e., there is no concept of
a global state of 2ll the actors. As an example of a common
function cast in the actor mold, consider the computation of
the factorial of three. A messenger (an actor) which knows
about the message "3" (another actor) and about the actor
"C", to whom the reply should be sent, is sent to the target
actor "factorial". The factorial actor causes another
messenger with the message "6" (also an actor) to be sent to

C. The internal workings and structure of the actors are

assumed to be unimportant; they are described only by their




input and output Dbehaviors. Hewitt shows that actor
transmission is a powerful =snough =model to support these
types of actions: <calling a procedure, obtaining an element
from a data structure, invoking a co-routine, updating a

data-gtructure, returning 2 value, synchronization of

communicating parallel processes.




CHAPTER 4

PAIRWISE MESSAGE MATCHING ALGORITHMS

This chapter is concerned with one of <+he siaplest
2lagsses of algorithms which can be 2mbedded in HIXVIS.
Members of this class compare all of the messages in a cell
in a pairwise manner each %ime unit. As it turns out these
algorithms are quite powerful. They are able %o discover
(for instance) edges, corners, and axes of symmetry from

local gradient information.

The general form of these algorithms can be described as
follows: gach time unit, each of the new messages 1is
compared to every other one. If the pair of messages satisfy
the particular relation in effect, a countsr in the cell's
state is incrementsd by one. Then a similar process is
repeated by comparing each new message to each 0ld one. If

this pair satisfies the relation, the counter is incremented

by one-half.




57

A couple of questions arise here. First of all why

| compare new messages to old messages at 2ll? As messages
propagate in the normal =manner, they move outward from <their

i origin at the rate of one cell per time unit. The problem is
this: 1if the two messages originats from cells which are an

aven number of staps away from each other, they will never be

in the same cell at the same time (see figure 16). The

solution is to (conceptually, at least) propagate 2 "ghost"

message behind the real znessage. This concept is realized as

‘ isscribed above -- Dby comparing messages which will be

& r2sident in the <cell during the next time period with

- nessages which were resident during the current time period

-- which amounts to the same thing.

t =0 > -
t =1 > “

t =2 > €

t =3 - >

t =4 ¢ -

cell 1 2 3 4 5 5

Figure 16 Messages Missing Each Other

The gsecond question to be answered is: why is +the
new-old match given only one-half the strength of a new-new
match? The reason for this is that if a pair of wmessages

- satisfies this new-o0ld type of relation in one czell, it will

-~ also satisfy it in an adjacent cell. Consider again figure
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15. At t = 3, each of the messages is in the same zell that
its opposite number was in during the previous time period.
Since both of these matches taken together really represent
only one matching message pair, they are each given only half

the normal weight.

Incidentally, it is also possible and often desirable to
modify the increment (either one or one-half) further by
causing it to be inversely proportional to the time unit or
the 3quare of +the time unit. T™is modification has the

fact of producing messages which decay according %o

istancs traveled.

The next sections illustrate three sample algorithms of

the type described above. They find edges, corners, and axss

0f symmetry. For sach of the algorithms described, I hnave
included an exampls of =zach one's output when applied to the

same rectangle.

4.1 Edge Finding

Figure 17a shows a rectangle embedded in the cellular
array. Each "O0" in the figure represents a cell which has a
message with significant local gradient information. Yotize
that two sides of the rectangle are missing some information.
This lack proves to be of little consequence in the processes
descrived here. These algorithms are relatively insensitive

to missing information.
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Figure 17 Edge Finding
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In order for a cell to consider itself an edge point, it
must accumulate evidence from the cells around it. The pairs
of messages which are considered evidence must have the
following characteristics: 1) they must be traveling in
opposite directions, 2) both of the local gradient directions
which are carried by the messages must be equal to each other
and perpendicular xto the direction of travel, and 3) the
magnitude of the 1local gradients mwmust exceed 2a certain
threshold. If +these 2zonditions are =met, +the appropriass
increment is added to the countsr corresponding $o that =sdge
direction in the statz of the cell. When enough pairs are
accunulated (again exceeding a threshold value), the cell is
labeled an edge point. Of course, a cell can be an =zdge

voint on two {or more) intersecting edges.

Pigure 17b shows the result of the edge finding process
for the rectangle in figure 17a. The second thresholiing
process has been suspended here so that we can see the number
of =2dg~ matches at =zach cell (miaus one). Notice %that the
cells which had no local gradients initially are now labelzd
as edge points. The spreading of the edges of the rectangle
is caused by the quantization of message direction. A cell
receiving a message can determine its origin only %to an arc
of about thirty degrees, so cells which are off the true edge
can s8till receive messages which appear to be traveling in
(in this case) horizontal or vertical directions. Of course,

these spurious matches will be fewer than matches on the true

edge, 30 thresholding can clean things up.
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4.2 Corner Finding

Pigure 18a shows the same sparse-edged rectangle as
before. This time, though, we are looking for right angled
corners (the extension to corners with angles other than
ninety degrees will be obvious). As in the case of edge
finding, the message pairs must satisfy certain criteria: 1)
the two messages amust be traveling in directions which are
perpendicular to each other (or at whatever is the angle of
the corners we are intsrested in finding), 25 the local
gradisnt direction carried by the messages aust e
perpendicular %o the messages' directions of travel and must
both bz pointed =ither inward or outward relative to the
angls formed by the directions of travel of the two messages,
and 3) the magnitude of +the gradients waust sexceed a

threshold.

The result of applying this process to figure 18a is
shown in figure 18b. The wide area covered by the "corner"
(which is due to the same effect that caused the edges to
spread out) at first glance looks 1like a real drawback.
However, the greatest number of matches occurs in the cells
which are precisely on the corners of the rectangle. (The
">" gign means "more than ten matches".) A second pass of

thresholding or, better yet, hill-climbing can quickly zero

in on the true corner.
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Figure 18 Corner Finding
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4.3 Axes of Symmetry

My final and perhaps most useful example from the
vairwise message matching class of algorithms is a process to

find axes of symmestry.

Blum [1967] has discussed a need to characterize figures
in a scene in some schematic way. His method, called the
"gymmetric axis transform", or more colloquially the "prairis
fire technique", can be visualized in the following way:
Inagine the object in the scene to be made of flammabls
prairie grass. Then imagine starting a fire along the
boundary of the object and allowing it to burn inward. The
set of points whére the fire meets itself and dies out foras
a representation of the object. An equivalent 2and more
formal description is to define the resulting skeleton as the
gset of centers of all circles which will fit inside +the
figure but are not contained wholly in any of the other

circles in the set.

As Waltz [1978) and others point out, the main problem
with the prairie fire technique is its high sensitivity to
small wvariations in +the original figure. For 1instance,
figure 19 shows two rectangles, one of which has a notch, and
their prairie fire skeletons. Notice that the notch has
caused a rather 1large variation in +the corresponding

skelaston.
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Figure 19 Prairie Fire Skelatons of Rectangle
and Notched Rectangle
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The technique proposed here lacks this provlem; siamilar
figurss map in%to similar skelstons. As in the other cases,

the symmetry axis finder operates with +the messages’

I O o
—— e B

direction of travel and the local gradient information which
is carried as part of the message. The criteria in this case
are as follows: 1) the messages nust be traveling in
opposite directions, 2) the gradient direction carried by the
nessages must be either parallel or anti-parallel to the
messages' direction of +travel, and 3) once again, the

gradisnt strength must exceed a3 predeteranined threshold.

Figure 20 shows the sparse-edged rectangle and the
result of applying the symmetry axis technique to it. Here,

the spreading of features is confined to the vertical axis of
g

syametry. The reason the horizontal symmetry 2xis escaped
this fate is that the wavefronts of the mnessages met in such
a way that their flat parts contacted. In forming the
vertical symmetry axis, however, the wavefronts met corner to

i corner, increasing the uncertainty of the messages' origin.
{

The algorithm as described above is tuned to symmetry
axes which are between parallel edges. However by modifying
Q; : the second rule, the technique c¢an easily discover symmetry

axes between edges oriented in other directions.
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Pigure 20 PFinding Axes of Symmetry




4.4 Discussion

Although these tachnigues are useful, there 1s a need

for more powerful ones. The next chapter describes several

examples of embedded HEXVIS algorithms to compute more

complex characteristics of scenes.




CHAPTER 5

HIGHER ORDER TECHNIQUES

In this chapter (as in Chapter 4), I discuss various
algorithms which can be embedded in HEXVIS. Thegalgorithms
discussed here; however, are in most cases more complex than
those that sxamine messages in a pairwise wmanner. Such
techniques as constructing histograms for esach cell based on
some feature of the messages which pass through it, creating
new messages neaded in specific directions, destroying
messages which satisfy certain criteria, region growing and
80 on, are considered. Some of these algorithms have been
programmed in HEXVIS, and some have not. For the ones which
have not been programmed, I describe the %techniques
necegsary. The techniques described here are by no means

exhaustive, but are meant to illustrate the wide range of

capabilities of the HEXVIS paradignm.




5.1 Voronoi Tessellation

3iven a dot scene (a scene consisting only of isolated
vertices), the Voronoi polygon associatzsd with a dot consists
of all the points in the scene which are closer to that dot
than to any other dot. The borders of the Voronoi polygons
collectively form a Voronoi tessellation. (This should not
be confused with the underlying regular hexagonal
tessellation in which HEXVIS is embedded.) Ahuja [1980]
points out +that the Voronol tessellation gives rise to 2
quite natural notion of neighbors of the dots in the scene,
namely, =2 dot v' 1is a neighbor of v if and only if their
Voronoi polygons share a border. de contrasts this with
several other notions of dot neighbors such as considering
all dots 1less thén a given distance R to be neighbors,

picking the X nearest neighbors, and minimal spanning trees.

HEXVIS can be programmed to find Voronoi tessellations
in at least two different ways. The first method propagates
messages only from those cells which contain the dots. The
idea is that when the messages collide, the cell in which the
collision takes place changes its state (indicating that the
cell is on the Voronoi tessellation), and the messages in the
cell are killed. Unfortunately, implementation of this idea
proved to be highly non-intuitive. The first implementation
had the problem that occasionally, the cells representing the
Voronoi tessellation were not connected, i.e., the Voronoi

tessellation contained gaps. This effect is due to the fact
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that HEXVIS uses a discrete array of cells rather %than 2
continuous medium. If messages are destroyed when they are
not alone in a cell, 2ll their descendents will be aborted as
well. If, for instance, a message would have produced two
offspring at the next time period, one of those offspring
might be needed to meet with a message coming from another
direction in order to form part of the Voronoi tessellation.
If the message is not there, a gap forms. The effect is
especially pronounced when two neighboring (by sharing a
vorder of their Voronoi polygons) dots are on the coanvex hull
of the set of dots. Their common border should extend to the
edge of the zellular array, but since no message copies which
originatad from these cells occupy any cell in common at
great distances {(they are traveling in roughly straight lines
away from +the midpoint of the two originating cells), no
border is formed. Another related problem is +that the
message which would have met the offspring of the message
which was killed, itself lives on. It can travel through the
gap and possibly meet with another message in a siailar

situation to form spurious Voronol tessellation points.

There is a partial solution to this problem. That is to
not immediately kill of the messages which meet, but rather
mark them and let them propagate for one more time unit, at
which time they are killed (truly "marked men"). This method

produces Voronoi tessellations with far fewer gaps than

before.

i
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The other way in which HEXVIS can be programmed %o find
the Voronoi tessellation of a set of dots is a sort of region
growing technique. Again the messages are propagatsd only
from the dots, which are given a unique identifier (e.g.,
*heir address in the cellular array). The messages produced
in the <cells carry with +them their originating cell's
identifier and leave it in the state of cells through which

they pass. If the cell already has an identifier in its

state, the new one is not left, bdbut the messages are not

ct

¥illed. If a cell has two messages at the same time unit and

1as not already fouad an identifier, it chooses the
identifier of the first message on its list, and, =again, the
messagas are not killed. This method seems %0 be a better
choice than the former method because gaps are not fgrmed.
However if the %borders of the regions rather +than <+he

polygons themselves are desired, another laysr must be added

to derive them from the regions. This is easily done.

Figures 21a and 22a show an arrangement of dots in which
both methods do a fairly good job of deriving the Voronoi
tessellations. Pigure 21b shows the Voronoi %essellation
derived by the first method (collision) described above. The
"M"'s in the figure are the points at which the wavefronts
collide. Pigure 22b shows the Voronoi tessellation for the
same arrangement of dots but derived by the second method
(region growing) described above. The numbers in both parts
of figure 22 establish the correspondence between dots and

voronoi polygons. I have circled each cell in figure 22b
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Figure 21 Voronoi Tessellation by Collision Method I
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Figure 22 Voronoi Tessellation by Region Growing Method
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which corresponds to one of the original dots and have drawn

lines vetween the voronoi polygons.

Pigures 23a and 24a show an arrangement of dots in which
the collision method does not do such a good job, bdbut the
region growing method does. Notice that in the lower right
corner of figure 23b that there should be three separate
regions. Instead, there is just a blob of cells.
Purthermore, the cells do not even connect with the rest of
the tesssllation. Pigurzs 24% shows +that the region growing

nethod can perfora much better.

5.2 Prairis Fire Techniqgues

3lum ([1967] and [1978]) describes a function of an
object in a scene called the symmetric axis transform. I
will repeat the description given 1in the last chapter:
Formally, the transform can be described as the set of the
centers of all the circles which are wholly contained in the
object but not wholly contained in any other circle of the
set. The transform has a more intuitive lescription. If the
object is imagined to be made of flammable prairie grass, and
surrounded by concrete, a fire started on the border of the
object will (if it burns at the same rate everywhere) burn
itself out on just those points which are elements of the
symmetric axis transform of the object. This (more

picturesque) description, of course, gives rise to the aore

colloquial "prairie fire" label.
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Pigure 23 Voronoi Tessellation by Collision Method
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(2) Original Points
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Figure 24 Voronoi Tessellation by Region Growing Method
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Implementation of +this technique in HEXVIS 1is quite
similar to the first =method for implementing the Voronoi
tessellation. Here, messages are propagated from each point
on the border of the object (obtained by a lower layer).
Messages are propagatad only toward the inside of the object
and are not allowed to produce a point (of the symmetric axis
transform) if they are carrying local gradients which point
in the same direction. This assures that messages from cells

on the border 4o not produce vpoints everywhere inside the

The arsa of an object in the hexagonal array is defined
as’ the number of cells which compose the object. In the case
of convex objects, an algorithm can be described which will
deteraine, at each cell in the object, the arza of the =sntire
object. Consider binary scenes. We assume for the purpose
of this discussion that 2 binary scene can be obtained from
another scene by the use of some sort of filtering or
thresholding technique. I will speak of "1-messages" and
"O-messages" to indicate that they originate respectively

from a cell which is part of an object and one which is not.

The method of determining the area of a convex figure is
for each cell to count the 1-messages as they pass through.

If the cell at some time period sees that 2ll the messages

coming from a particular direction carry zeros (implying that
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their originating cells are not parts of any object), then
the cell should stop counting 1-messages in that direction.
If it were to continue, the cell would run the risk of

counting 1-messages from another object in the scene.

This technique is not error-free. One problem with 1t
is that in some cases a cell could receive two 1-messages at
the same time from the same direction but from cells which
are part of separate objects. This could happen if (for
instance) Ydoth objects had =longated sections which werz
close together {but not touching). Then =2 cell in one of the
objects in the direction of the elongation would see no break
in the 1-messages. One way to avoid this problzm i3 %o
propagate messages only through areas which are siamilar to

their originating cells.

In the case of concave objects, the problem is more
difficult because some cells in the object will not be in the
"line of sight" of other cells in the object. These cells
might therefore experience breaks in the 1-messages from one
or more directions causing them to discontinue counting in
that direction even though subsequent 1-messages aay
originate from the same object. ZEven in this case, there is
a possibility that ﬁhe area can still be determined. That
is, if there is a cell (call it "C") in the object from: which
all other cells in the object can be "seen". C then will
determine the correct number for the area of the object. Of

course, the number it determines will be larger or equal to
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the numbers obtained by any of the other cells in the object.
This suggests a second 1layer to be applied in which the
numbers in each cell representing the (possibly incorrect)
area of the object are propagated as messages. If a2 message
passes fthrough a cell containing an area greater than the one
in the cell, the new area is substitutsd. In this way all
cells in the object will eventually contain the correct area
because the messageé originating in C which does have the
correct area eoventually reach 3ll the cells in the object
(for the same rsason that the messages from 2ll cells in <%he

object eventually reached C).

In the case of the class of non-convex ovjects without a2
cell C as described above, Adifferent %echnijues must Ybe
applied to determine the area. It may be though that in many
applications, one is guarantzed that the objects of intsrest

40 not fall into such a class.

5.4 Texture

There are many ways to represent ftextural information.
See, for example [Ahuja, 1979], [Rosenfeld, 1976], and
[Haralick, 1978]. The technique described here assumes a
model of texture which is characterized by the distribution

of gradient directions and magnitudes.

My first attempt at texture identification and
discrimination employed a histogram technique. Bach cell

contains its own twelve-element histogram which is stored in
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the cell's state. TFach message in this technique carries the
local gradient direction and magnitude present in 1its

originating cell. As 2 message passes through a cell, the

histogram entry corresponding to the gradient direction

carried by the message is 1incremented. (0f course,
thresholding techniques would %be wuseful here, tooc, to
, sensitize the cells to a particular magnitude.) The hope was

that, given similar enough propagation time, similar textures

would have similar histograms. As a %est of this %technique, -
i I filled <the cells in the array with random gradient -
‘ directions. These were formed into messages and propagated
' in the usual way as the cells built up histograms. The

nessages were allowed to propagate for six time units which

means that ninety-nine messages passed through =each cell

] (except the cells close to the edge, of course). Figure 25

shows several sxamples from the set of histograms generated.

ﬂ} These are +typical of +the histograms generated by this
technique. The features which one might sexpect to be similar

' in such histograms are the number, location, 2and values of
maxima and minima, total number of messages which contribute

(although in +this case, all cells generated messages),

average (again, in this case the same) and standard deviation

of the histogram entries, and so on. It is difficult to find

any features of the group in the figure which are similar.

If the messages were allowed to propagate for a longer time,

the histograms would give a more representative view of the

texture, but then there are the probleams of losing resolution

[

9 . O
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Figure 25 Histograms of Local Gradient Directions
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and arrors at texture boundaries. As in the case of area, i%

again might be possible to constrain the input 30 that some

feature does predominate.

There is another inherent 1limit +%to <this technijue,
however -- at least as compared to human ability. That is,
it can only discriminate textures that differ in <their
first-order statistics (of local gradient direction, in this

case). Julesz [1965] has pointed out that humans can

differentiats textures which hnave +*the same first-order

statistics but differ in their second-order statistics {i.e.,

how groups of texture elesments occur as opposed to how they

occur singly).

A promising alternative to the previous method of

3 texture analysis is to use generalized cooccurrence matrices

g T e e i D2 e 8 1. T s

((Dysr, 1979], [Davis, 1979]). The wuse of this tool

4 presupposes a different model of texture than assumed in the
y former technique. 1In this case a2 textured area is considered

| an arrangement of primitive texture elements. This model is
not always accurate, for example a rippled surface on a lake

i3 not easily describable in terms of primitive texture

L e

elements. In this case generalized cooccurrence matrices may
not be as useful a tool. A generalized cooccurrence matrix
(GCM) describes the texture of scene in terms of how often a -
feature is in the neighborhood of another feature. =
"Neighborhood" is a term whose definition can vary. As an

example, consider the feature, gradient direction, quantized a
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to (say) twelve levels (as in HEXVIS). Let the neighborhood
be defined as the cells at a distance d. Then the GCM &
consists of a twelve by twelve matrix in which an entry gij
is the .umber of times edge direction i occurs exactly d
cells from edge direction j. Notice that when 4 1is
approximately equal to the size of the texture element,
information about the texture elements can be inferred from
the GCM. Other features which have been considered 1in
addition to edge direction are grey lsvel and 1local =2dge

maxima.

The implementation of GCM's in HEXVIS is
straightforward. Information on the feature of interest is
propagated in such a way that the cells are able to receive
the information from each cell in the neighborhood. If for
instance the cell's neighborhood consists of the cells a
distance d away (as above), the cells ignore the messages
passing through them until time unit 4, when £the messages
from all the cells in the neighborhood of each cell C are
resident in C. At this point, C is in a position to make a
contribution to row i of the GCM, where i is the gradient
direction contained in C originally. A second layer is now
applied in which this contribution to GCM is propagated.
There are two choices for the second layer process depending
on what is desired. If our goal is segmentation based on
local texture, the cells propagate the messages for d time

units. Then each cell can build its own GCM, which

characterizes %the texture in its immediate neighborhood (of

P i o e T T T TR Tty WY A W PLTPS . 27T Yo o3 st - e w2 11
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radius 2d). On the other hand, the goal may be to generate 2
GCM for the =ntire scene, in which case, the messages are
propagated as far as possible, so that svery cell has access

to the information in every other cell. Then all the cells

)

can construct a GCM. This is of course somewhat wasteful, 1 2
E since each cell computes the same output. An alternative is ,
to not apply the second layer, but let a global processor I j

examine the cells' contesnts.

5.5 Septrees -

Septrees were discussed in Chapter 3 [Bur%, 1979]. To

implement them in HEXVIS this assumption must be made: The

hexagonal array can Ye reformatted so that there are a
smaller number of cells, but the important information can be
retained. The goal is that one out of every seven cells will
§ become the site for a new cell containing information Zfrom
itself and 1i%¥s six neighbors. The new cells' sites are
' R arranged as shown in figure 26. In the figure the first

layer cells are all the numbered sites; the second layer - 8

cells are all the sites with numbers 2 or greater; the third

layer cells are all the sites with number 3 or greater, and -

B LS TP N

so on. In the figure, 211 of the cells in each fourth layer

site are outlined. One of these is further subdivided to B
show how the third layer and second layer is arranged. The |
cells which are circled are the ones which form the sites for I

the new (larger) cells. Notice how every other layer is

rotated slightly to the right. l
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There are two ways this cell rearrangement 3zoulil DYe
performed. The first way is simple in a software sizulation
but not in a hardware realization. This method shifts the
desired information to one part of the array and only uses
the cells in that part. In this arrangement, each of the

cells used corresponds to a larger area than it did before.

A better way is to use higher level rules to influence
the behavior of aessage passing. I w#ill first describe how
this can be done in general. Then I snow that the full power
i3 not needed for +this particular application. However,
applications in which the array shrinks at =ach laysr can De

inagined.

A sort of virtual message passing scheme can be overlaid

on the cells in +the array. In +this scheme HEXVIS would
essentially be simulating itself. Consider first the cells
numbered 2 or more in figure 26. To make these cells appear
to be neighbors, we add to the messages a pseudo-heading.
After three time units, the messages are in the proper cells
as well as several other cells. All the cells which are rot
participating in the layer (all the cells numbered 1 in the
figure) destroy their resident messages. The other cells
determine which direction their resident messages are headed
by looking at +the messages' pseudo-headings. These cells
then change the real heading of each of their messages %o
propagate them in the proper direction to meet the correct

virtual neighbor. After three more time units, this process
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repeats itself. In this way HEXVI3S behaves as if it has
fawer cells, but can retain as xzuch information as necessary
from lower layers. For conveniznce, I will refsr %o this
process as '"compression". Of course, the disadvantage to
this scheme is that more time is required {a factor of at

least three) to propagate the messages.

In the case of generating septrees, as I mentioned, we
do not need the full power of this propagation scheme, since
the nessagss are only required to vropagats to the immediass
neighbors of their originating cells. TMme septrsze is
generatad by first causing a2 message %o b2 generatad with the
infornation "black" or "wnite" depending on whether the cell
is part of an objesct or not. These messages are propagatad
for one time unit. Then coampression occurs. The cells which
are part of the second 1laysr (they Xnow who &%they are) form
new messages. These messages can be one of thrée types: 1)
black, if the cell and 2ll six of its neighbors are bdblack, 2)
white, if the cell and all six of its neighbors are white, or
3) grey, if neither of these cases obtains. In the grey
case, the cell forms an ordered tree with seven branches (=2
septree) describing its own label and the labels of each of
its neighbors. This septree is included in the message which
it forms. There is one cell in the scene which has 2 number
higher than any other (5 in figure 26). As this process is
applied recursively, all the information convarges there, ani

this cell forms a message which i3 the septree for <he 2n<ire

3cene.

SO -
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CHAPTER 6

A PARALLEL SHRINKING ALGORITYM FOR
HEXAGONALLY TESSELLATED BINARY ARRAYS

Many parallel binary shrinking 2lgorithms have been
describved in *he litarature ([Golay, 1369], [Levialdi, 1972],
[Rao, 1976], [Rosenfeld, 1970]). T™e purpose of such
algorithms is to map a binary scene (that is, a2 scene whose
points are either ones or <zeros, ones bYelonging +to +the
objects and zeros to the background) into a set of points
such that sach connected part of the scene zorresponds to one
and only one point. ©No unconnected parts of the scene are
allowed to merge and no connected parts of the scene are
allowed +to Ybecome disconnected. The main use of these
algorithms {(aside from their purely mathematical interes:) is

Yo count objects in a scene, often in a biological setting

(e.g., chromosomes, blood cells, etc.).
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Rosenfeld proves several results about shrinking

algoritnms in general -- Dboth sequential and parallel.

However, in his discussion of parallel shrinking, he assumes

the objects are simply connected, i.e., they have no holes.

de also assumes that no zsro-points can change to ones.

Levialdi presents a parallel shrinking algorithm which
uses 2 two by two neighborhood and compresses objects toward
the upper-right corner. All objects are compressed to 2
point which is countad before it disappears. 3ince the voint

o h

o}

{L

s disappear, objects with otaer 3disconnected odbj2ctis
within them =nay also be shrunk to points. ILevialdi proves

Saat nis algorithm satisfiss thrze criteria: 1) connected

ovjects will not split, 2) disconnectad objects will not

nerge, and 3) all objects will shrink to isolated points.

Rao, Prasada, and Sarma developed 2 parallel shrinking
algorithm which uses 2 thrse by three neighborhood. OJne

fzature of +$his algorithm is its syametry. Barring

interference from nearby objects, each object shrinks %o a !
- point at its center. Although a proof is not presented, the !

authors claim their algorithm satisfies the three criteria

mentioned for Levialdi's algorithm for any scene. In fact,

it does not. Their =2lgorithm will not shrink objects whizh

contain other disconnected objects. The only ways this can

be done is to break the connectivity of the enclosing objecs,

let the single point disappear (as Levialdi does), or let the

enclosing object 3somehow shrink over the enclosed object.

i - C e ——————— o it | a b —a—t ¥ 4 B - - - B S
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Breaxing the connectivity of an object requires a global
knowledge of the object's structure. This information is no%
available locally, so this choice is out. ZLetting an object
sarink over another one can be done by moving tne inside
object to a parallel array when it becomes a point. This is
essentially the same thing as removing it altogether except

that positional information is retained.

Golay presents (again without proof) an operator for
sarinking patterns on a T'exagonal grid. dowever, +the

operator will not shrink objects with ho

t-4

es, inst=2a4
transforaing them to a set of connected loops one cell taick,
2acn loop corresponding %o a nols in the original object.
The operastor, 1like Rao, et. al's, sarinks objects in a
synmetrical manner. Golay has an interesting way of assuring
that the rulss do not interact in s3strange ways. He
partitions the nhexagonal array into three sets such that no
two points in any set are adjacent, then appliss %the operator
to the points in each set in turn. This technique also
allows him to perform parallel operations without using +%wo
arrays. Figure 27 shows the subfields which are labeled "A",
"B", and "C". (This figure repeats figure 15 in Chapter 3.)
ABCABCABCABGC
CABCABCABCASB
ABCABCABCAS3C
CABCABCABCASEB

ABCABCABCAZBC
CABCABCABCASB

Figure 27 Golay's Three Subfields

]
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A1l of the algorithms described above with the =2xzeption

[ 2ald

of Golay's operate on binary scenes which are 21bedd2d in 2
rectangular grid. The algoritam I describe (lik=z 3Jolay's)
operates on scenes in a hexagonal grid. As in Rao, Prasada,
and Sarama's algorithm, wmine shrinks objec%s symmetrically,
collapsing them to a point in the center. The algorithm
works on any scene except those in which an object |is
enclosed by another, although it would be trivially easy to
ad1 another parallel array {as descrived abovs) and =2

transiftion ruls tc move isolated voints to this array.

One aspect of my shrinking algorithm which sets it apart
from most of the techniques developed for the HEXVIS paradignm
is that this algorithm most closely resembles the classical
finite stats cellular automata model. Of course it can be
fand is) 1implemented as a program in HEXVI3, Dbut the
shrinking algorithm does not require HEXVIS's full message
passing power. On the other hand, the algorithm as expressed
is not quite a true cellular automata system 2ither. The
transition rules cycle <through a set of three sets rather
than remaining constant from cycle to cycle. This last is a
minor point, though, since we can expand the neighborhood,
and collapse three cycles into one to produce a finite state
cellular automata, albeit with astronomical sets of states
and transitions rules. In any case, my description of the
process will be in +the terms of cellular automata. The

reader should keep in mind the fact that this description can

223ily be embedded in the HEXVIS paradigm.




6.1 The Algorithm

Parallel shrinking is accomplished by applying a set of
transition rules to each point in the scene in parallel. If
the pattarn of the point and its neighborhood matches one of

the rules, the point is complemented.

Figure 28 shows some typical rules. The significance cf
the figure is that if a cell and its neighborhood matches the
arrang=ment of ones and zeros shown, fthe cell changes state.

20 10 11
211 1 01 1 01
01 11 11

Figure 28 3Jome Typical Transition Rules

Notice that zeros can be changed %o ones as well as vice
varsa. This fsature is included so that holes in objects can
ve filled allowing multiply connected objects to ve shrunk.
Note +that the only other way %o delste holes in aultiply
connected objects is to break the connectivity at some point.
This act, as I mentioned above, requires a global xnowledge
of the object's topological structure before it can Dbe

performed.

BEach cycle of ruls application is divided into three
subcycles. During each subcycle, a different subset of the
rules i3 applied. Why not apply all the rules at once?
Consider the two-cell object in figure 29. Each point in the
object nas the point of view (judging by its neighborhood)

that it is on the end of a 1line segment. Since a line
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segment 2nd i3 2 nighly convex part of a figure, there exist
rulses to change such points to zeros in order to contridute
to the shrinking of the object. 0f course, if both points
cnange to zeros, the object would disappear instead of
shrinking to a point. To prevent this situation <from
occurring there must be more than one subcycls so that the
two rules regponsible for +this shrinking are applied at
separate times. The reason I chose three subcycles rather
than two i3 due %o 2 combination of 2 peculiarity of %he
nexagonal grid and symmetry considerations (botn to e
iescribed later).
000
0110
Q 00
Figure 29 Two-Cell Object

5.1.1 Centers of Gravity, Convexity, and Concavity

A concept which I hnave found gquite useful whsan
discussing the shrinking algorithm is "center of gravity".
When we change a one %o a zero or a zero to a one, the center
of gravity of the ones in the cell and its neighborhood
gshifts in some direction. If we <consider only the
configurations whose connectivity is preserved by the change,

then the shift is restricted to the twelve clock directions

(or to no shift at all).

© v A —
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Pigure 30 Cases In Which Connectivity of the Cell's Neigh-
borhood Does Not Depend on the Cell's State

Figure 30 shows the six cases in which the connectivity
of the neighborhood of the cell C is not affected by the
cell's state. (Rotations of these cases are not shown but
the application of +this discussisn 4o thea should e
obvious.) If we consider chanzing C from 2 zero to a one
(the change from one to zero shifts the centar of gravity in
the opposite direction), the center of gravity shifts in the
five o'clock, six o'clock, seven o'clock, =ight o'clock, 2ani
nine o'clocx directions for the first five configurations
respectively. In the 1last configuration, the center of

gravity does not shift when the state of C changes.

Nith +this discussion in =mind, the rules can Ybe
classified by the direction in which they cause th2 center of
gravity to shift. 1If a rule causes the center of gravity %o
move in the four o'clock direction (for instance), it is also
said to cause the object to shrink from the ten o'clock

direction.

Two other concepts which will be important in 1later
arguments are those of "convex" and "concave" points. Again
referring to figure 30, if C is in the "one" state, then the

first, second, and +third neighborhoods are said to Dbe
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"convex" and C is said to ve a "convex point" and "on a
convexity". If C is in the "zero" state, then the third,
fourth, fifth, and sixth neighborhoods are "concave", and C
is s2id to be 2 "concave point"™ and "in a concavity". These

definitions apply in the obvious way %o the rotations of the

neighborhoods.

6.1.2 A Problen

One problem I discovered while writing the program t2
implement $the shrinking algorithm is inherent %o the
hexagonal griid. As in Rao, Prasada, and Saraa's algorithm, I
originally h7ad two subcycles, each of which shrunx from
opposite sets of directions. I chose ®%the rules Doy
considering every Dpossible pattern on the six cell
neighborhood {except for all zeros) for which the central
cell's state did not affect the connectivity. I picked the
rules from these patterns such that when applied, they would
change a 2zero in a concavity to a one and a ons in a
convexity to a zero. In running several test cases,
averything went well until I tried a large hollow hexagon.
To my chagrin the points just inside the six corners of the
hexagon oscillated between zero and one instead of continuing

inward and causing the hexagon to shrink.

The reason for this effect is subtle, and I will explain

this effect by comparing it to the corresponding situation in

the (2ight-neighbor) rectangular griad.




Pigure 31 Corners in Square and Hexagonal Arrays

Figure 31 shows a corner in both a square grid and in 2

nexagonal grid. Applying the rules as described above *to

figure 31 yields figure 32.

01030090 00012
0100090 001200
01103009 00112
00111 0010090
00000 200190

Figure 32 Corners After One Shrinking Step

in both casss, the change has apparently produced the
desired effect: the figures appear %to e on their way *to
becoming points. However consider what <$he change has
produced in +the hexagonal case. The concave inside corner
has become convex. In contrast, in the rectangular case, the
convex corner has become a straight diagonal line which is
neither convex nor concave. Since the rules as originally
implemented for the hexagonal array filled 2ll concavities
while eroding 2ll convexities, on the next cycle, a rule was

applied which changed the hexagonal scene back to what it was

originally.




97

At first, I thought I would have to be content with =2

3cneme like  Levialdi's which compressad the objects

! agyametrically. However, I discovered an algorithm whiza was
nade syametric by leaving out certain rules and breaking the
cycle ianto three rather than two subcyclaes. The transition

rules which caused the problem come in six pairs. Figure 33

shows one of them. The other five are obtained by rotation.

. figure 33 A Pair of Problam Rulss
*

The symmetric solution comes from using only one of each

‘ vair of rules. This is done by choosing only %ae rules fro

=1

the problem set which move the center of gravity in %She shree
o'clock, seven o'clock, 2and 2leven o'clock directions. 3o, g
! from <the above pair, {a) would be chosen and (p) 3iiscaried.
'1; These rulses shrink the object toward its center and do not

interfere with each other in the manner descrived above. The

complete set of transition rules is shown in figure 34. Each

subcycle contains only rules which move the center of gravity

in one of four directions (if they move it at 2ll). Subcycle
one moves the center of gravity in the two, three, four, and 1

five o'clock directions, subcycle two in the six, seven,

‘
{
i
k)
4
1

‘ 2igzht, and nine o'clock directions, and subcycle three in the

ten, eleven, twelve, and one o'clock directions. The rula i !
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20 00 0 1 00 01
291 010 O01tv1 Ot 1 011
00 01 Q00 01 01
11 11 10 11 10 11
120 101 100 100 100 101
11 10 11 10 10 11
subcycle 1 1
00 00 00 00 00
ot+t+o0 t10 010 110 110
10 00 11 10 11 3
3 11 19 11 1 11 1
E 101 001 101 001 001 1 01 ]
¥ 0 1 i 20 01 00 11
%: subecycle 2
| |
10 01 1 0 11 11
[ 010 0190 1102 010 110 .
20 00 00 00 00
01 10 01 00 00 11 . ]
19091 10t 001 10t 001 101 ‘
: 11 11 11 11 11 119
subcycle 3
3 Figure 34 The Transition Rules j
5
s
, 00 10 11
‘ 011 110 011
; 11 10 00
¥ 11 01 00
: 100 00 1 100
g 00 01 11 4
! Figure 35 Rules Which Were Left Qut

= =
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representations are arranged within sach subcyzle so that the
sroding rul2s {tae ones wnizh change on2s to zeros) are on
top and the hole-filling rulszs {the ones which change zeros
to ones) are on the bottom. Complementary rules are gzrouped
vertically. One of the rules {(shown last in the figure)
appears in each subcycle. Notice +that it has no dual
represented, for it%ts dual would eliminate single points.
This rule is the only one which does not alter the center of
gravity. Pigure 35 shows 3he rulss which were 12f% out.

Thess rulas are grouped in a manasr sinilar to figurs 34.
=] =2

e

There are two important fzatures %o notice ahout these

rulas. First, in any one subcycls, 20 Two rulss can maove a2

center of gzravity in opposite directions. Secondi, none of
the rules applied singly alters the connectivity of <the
scene. These fesatures will be important in the proof of <%he

algorithm.

5.2 Proof of the Algorithm

In this section I prove that when the rules shown in
figure 34 ars applied in a cyclic manner (i.e., subcycle one,
followed Dby subcycle +two, followed by subcycle three,
followed by subeyele one, etc.) and in parallel to a scene,

2ach object in the scene, with the exception of those objects

which completely surround other obj2cts, shrinks to a point.
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First, I will show that repeated application of the
:' rules in cyclic order will not destroy the scene's
connectivity. I consider the case of two disconnectad
oy objects merging, then the case of one object splitting into

two disconnected objects.

Theorem 1: two disconnected objects can never merge by
application of the rules shown in figure %4 in the cyeclic

I manner described above.

Proof: Notice first that no single ruls can disconnec?

a connected object or merge two disconnected objects.
However, since the rules are applied in a parallel manner, it
1ight be possihle +%nat two adjacent cells could change
sinultaneously in such a way that their connectivity

propertiss are altered.

I consider first the case of two disconnected objects
merging. We need not consider combinations of more than two
rules. Why 1is this? Suppose that the =merging oI any two
objects (X and Y, say) requires at least three cells (called
"A", "B", and "C") %o change from zeros %o ones to effect the
'} merging. Then one of these three cells (C, say) must be at
. least two c¢ells away from both X and Y, since if it were
ad jacent to one of them and also adjacent %o either A or B,

then A or B would not be required, giving =2 coniradiction.

Informally, we imagine a line of cells, (A, C, and 3B, in that

order), running from object X to object Y, all of which must

change from zeros to one to connect X and Y. In order for C
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to change from a zero to a one, it must have had cells in its

neighborhood which were ones, since no ruls allows for
spontaneous generation of ones from all zero neighborhoods.
If this is the case, ¢ is adjacent to y2t another object 2
(not 2qual to X or Y since neither X nor Y have any cells in
C's neighborhood) which will merge with both X and Y but is
only two cells away from each of them. Therefore objects X
and Z (also Y and Z) merge by cells A and C (B and C)
changing +to ones. This contradicts our original assuaption
that the merging of two objects requires at least tnree cells
to change from zeros to ones. This argument holds for any
number of rules greater than two. Therefore, if +the
application of two rules in parallel can not merge objects,

neither can the application of three or more.

For the parallel application of two rules to merge tTwo
objects, the two cells which change to ones must connect one
cell on one object %o one cell on the other object. The two
possibilities are shown 1in figure 34. These and their
reflections and rotations represent all the ways two objects

can be separated by two zero cells.

001
100 1t 001

Figure 35 The Two Ways Objects Can Be Two cells Apart
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For the first case, refer %o figure 37. There are three
¥ays for two rules to connect these objects: if v and =z
change to ones, if w and x change t%to ones, or if x and y
change to ones. Notice that changing w and x to ones is the
same as changing y and z %o ones modulo a one hundred eighty
degree rotation, so we need only consider one of these two

cases (w and x) giving a total of two subcases.

2 b

d wx 1

1y ze
fgn

O
=
"
™
1
4
i
©

= 0, initially

Figure 37 Case One

First, notice that all rulss which change zeros to ones
fi11l concavities. Therefore, if w is to change from 2 zero
t0 2 one, it must be the case that a and 4 are ones as well
(recall that y is assumed to ve a zaro) in order for.there to
be a concavity which w could fill. PFor x %o change from a
zero to a one, ¢ must be a one, and either b or z must be a
one. But z is assumed to be a zero, and if b is a one, we
have a contradiction, since +the objects would then be

initially connected.

abec x =y =0, initially
1 xy 1
def

Figure 38 Case Two
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Figure 33 shows the second subcase. Here, x and y
(initially zero) must bvoth change to ones to connect the
objecta. PFor x %o change %o 2 one, there must be a concavity
for it %o fill, so one of these nust be true: 1) a and b are

ones, 2) a and d are ones, or 3) 4 and e are ones.

Case 1): If both a and b are ones, then since ¢ must be
a zero (if ¢ is a one, the objects are already connected),
y's change alone would cause the objects to become connected.
This can not Thappen Ybecause no one rule can alter

connectivity.

Case 2): If a and 4 are ones, then for y +to changs
state, it too must be in a concavity. The only way this can
happen without the two objects being connected beforehand is
for ¢ and £ to be ones and b and e zeros. 3But then, the
centers of gravity must move in opposite directions, which is

impossible in any one subcycl=.
Case 3): The argument parallels case 1) above.

Therefore, two disconnectsd objects can not merge.
Notice that the arguments made here apply also to my original
set of rules, i.e., the union of those in figure 34 and those
in figure 35 -- aven if only two subcycles are used (as long
a8 no two rules in one subcycle move the center of gravity in
opposite directions). That is, 2ven though objects may not
always shrink with the rules in that set, no two objects will

ever merge and (as is shown in the next theorem) no connected

St AN AR B h M eV A igas B )
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object will ever disconnect.

Theorem 2: cne object can never be split into two
disconnected objects by application of the rules shown in

figure 34 in the cyclic manner described above.

Proof: This result is in a fundamental way identical to
the previous one, since splitting an object into two by
appiying rules which change ones to zeros is the exact dual
of merging two objects into one by applying rules which
change zeros t0 ones. The duality depends on the fact thatg
the rulss, with one exception, form pairs with these
properties: 1) one of the pair can be changed to the other
by replacing 2all occurrences of ones with zeros and 2all
occurrences of zeros with ones, 2) one of the pair changes
zeros to ones while the other changes ones to zeros, and 3)
both rules in the pair shift the center of gravity in the
same direction. The exception mentioned above is the one
rule which is applied during 21l the subecycles. This ruls
changes zeros which are completely surrounded by ones to
ones. Notice that the dual of this rule if included would
cause isolated one-points to disappear (2 change that would

not alter the the connectivity properties of the scene).

One might ask why, if the two sets of rules and the %two
states (zero and one) are 4duals, any shrinking occurs at all

-- Way don't the areas of zero state cells shrink? In facst

this does occur and is +the reason holes in objects get

filled. However the symmetry is broken at the =dge of the

[

v
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¥ .. scene, i.e., the neighborhood of a 2211 on an edge

i effectively contains zsros in the positions where there ars

no cells. If the situation were such that these cells were
i assumed to be ones, and if the rule whizh fills isolated .

zaro-points were-replaced by its dual, the behavior of the

system would be reversed -- all disconnect=d zero areas would

shrink to isolated zeros with a "background" of cells in the

one state. In other words, objects in the scene would be

represented by zeros rather than ones.

Therefore, any result which depends on these rules is
3 simultaneously sstablished for its dual if the proof of the
theorsm does not taks into accoun®t the fact that the "virtual

2dges" are zeros or the rule which fills isolated zeros. In

particular the argument that an object will not be split into
two does not depend on these asymmetric aspects so the dual

result holds that two objects will not merge to form a single

object. .

I will now show that simply connected oojects shrink to
points by defining "“frontier lines" which always enclose the

(shrinking) object and which themselves move toward the

center of the object.

Definition: For any object A in the scene, the 1lines
orisnted vertically, at sixty degrees +to the 1left of
vertical, and at sixty degrses to the right of vertical and

pogitioned such that they pass through 2t least one border

point of A and through no interior points and such that they

P G s e et !
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are to the l2ft, to the upper right, and to the lower right,

respectively are called first, second, and third frontier

lines (respectively) of A. Collectively, these 1lines are
called the frontier of A. PFigure 39 shows an example of a

frontier.

first frontier line

0 OTSC;// 00000002

9
| 00000 0\9 00 00
00011 11 100000 9////§\\\——third frontier line
2001t 11 1 11
{ D001 11 1 14
5 0000111111700
‘ 000011 1.0
: D00000D0°0000O0CC

: ooo&o/oooooooo

O
@]

0 ///,‘second frontizsr line

Figure 39 PFrontier Lines

hae ay

In many of the following lemmas I will consider the
first frontier line only. I% should be understood that this
is done without loss of generality and applies equally well

to the second and third frontier lines.

Lemma 1: Prontier 1lines do not move away from the

object. T

f O o1 00 00 00 01 00 01
3 co0o1 001t 2001 000 001t O0QCO 00O 000D
| 01 00 01 o1 00 00 00 01

Figure 40 Possible Neighborhoods of a Zero-Point Next to
the First Frontier Line of an Object
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Proof: Without loss of generality we consider the first
frontier line only. Figure 40 shows the possible
neighborhoods of a zero-point which is next to the first

frontier line of an object. Since there are no rules %o

change any of these zeros to ones, they will remain zeros.

Notice that this is one case where the removal of the rules
in figure 35 has an effect. In particular, the first
neighborhood shown above was 2 rule in the previous version

(the version which did no% work).

Corollary: There are 7o "gliders" as in Conway's game
of life [Conway, 1970]. That is, objects in the scene 4o not
undergo any translation bdbut remain always within definite
predefined boundaries. I would conjecture that this
corolliary impliess the cellular space in which the shrinking
algorithm is embedded is not computationally complete, i.e.,

a computar (or a Turing Machine) can not be embedded in it.

Definition: One-points with neighborhoods shown in

figure 41 when they appear respectively on first, second, 2nd

third frontier lines are callsd 1-, 2-, and 3-stragglers.
o1 00 00 01 00 01
010 010 110 co1to 110 110
00 01 00 01 01 00
Pigure 41 N-Stragglers Pigure 42 N-Connectors

Definition: One-points with neighborhoecds shown in

figure 42 when they appear respectively on first, second, and

third frontier lines are called 1-, 2-, and 3-connectors.




U

i

T

) e NPT iregins - * - il

108

Any one-point whose deletion would cause an object to split

in two is called simply 2 connector.

Lemma 2: With the exception of N-stragglers and
N-connectors, all points on frontier line N change to zeros

during subeycles V.

01 01 00 00 00 01 01
o111 011 011 O01t2 011 010 010
01 00 01 o1 00 00 01

Figure 43 Possible Neighborhoods of a One-Point on
the Pirst Frontier Line of an Object

Proof: Figure 43 shows %the possible neighborhoods for
one-points on frontisr line 1. In all but the last two cases
(a2 1-straggler and a2 1-connector), a2 rule which is applied
during subeycls 1 changes ones to zeros {see figure 34).
Therefore, we are left with one of two situations: 1) if the
frontier line N has no N-stragglers or N-connectors, 1t moves
inward when the rules in subcycle ¥ are applied or 2) if the
frontier line ¥ has one or more N-stragglers or N-connectors,
then after subcycle N the only one-points on froantier line XN

are N-stragglers or N-connectors.

Lemma 3: After subcycle N, if the only one-points
frontier line N contains are N-stragglers, these one-points

will change %o zeros during the next three subcycles, and the

dth frontier line will move in.




.. pE———T oty et

129
l-straggler
\ 2{2 2 ~_._Prontier
20 ? ? line 1
01 ol1 2 2
0 01 o™ 0 °
0 1 QI0 2 2
. 00 2 °

I
Figure 44 The Only Convex ™ TFigure 45 A 1-3traggler
Point Allowed on
Frontier Line 1
Proof: PFirst notice that since frontier lines do not
move outward, no zero~point on frontisr line 1 can be in a
convaxity except as shown in figure 44. There is no rulse,
nowever, which will change this to a one-point. Thersfore,

no nawWw one-poiats can appear on 2 frontier line.

At subcycls two 1if the zero-point to the right of the
i-straggler (shown in figure 45) does not change to a one,
then the 1-straggler will change to a zero at subcycle 4hree.
So suppose that zero-point does change %o a one. In +%his
cage, the zero-point to the 1-straggler's lower right can not
change to 2 one because it would have had to do so during
gubcycle +two. So we enter subcycle one again with the

gituation shown in figure 46, and the ex-1-straggler changses

to a zero.

Figure 46 An Ex-1-3Straggler
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Theorem 3: All simply connect2d objects =2aventually
{
1 shrink to points.
1;
i Proof: Combining the above results, w2 see that for

objects without connectors, the frontier must move inwari,
taking the object witn it. Hé&ever, for objects with
connectors or objects which develop connectors, we consider
the two parts of the object (which the connector connects)

. separately. We may have to divide the object in this way f

U

everal times (e.g., in the case of spirals), but eventually fi
#2 will arrive at a2 part of the object which is connectz2d4 %o
the rest by a connector but has no connectors itself. Since
this sub-object 1is connected to the rest of the oobject vy

only one point, there must be [on the "other side" of <the

sub-object) at least one line analogous to the frontier lines

i Wwhich serves the same purpose on a local 1level for *this
sub-object. That is, this pseudo-frontier line will always
aove toward the inside of the sub-objecs. At =ach cycle, f

there is the possibility that the active pseudo-frontier line
may change, but eventually the sub-object will shrink toward
the connector. If the object (the whole object) has more
than one connector or the sub-object develops another

connector, the process is repeatad.

Theorem 4: All holes (i.e., simply connected areas of

zero-points) in an object shrink to isolated zero-points and

disappear.
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“roof: Appealing as before %o the duality of the rulas
and of ones and z=2ros, we can see that 211 holes shrinx %o
isolat2d zero-points just as 21l simply connscted objacts
shrink to 1isolated one-points. The additional ruls !see
figure 17) whizh 1s applied during 2all subcyzles changes

these isolatsd zero-points to ones.

Pigure 47 Transition Ruls Which Chan
Is0lated Zero-Points $o On

~
=2

Theorsm 5: All objects (except %those whizh completely
surround other Jdisconnected objects) shrink to single

isolat=d points.

Proof: 3ince no two disconnected objects can b2 merged
nor can any connected object be split in two by any numder of {
applications of %the rulss, the connectivity of the scene 1is
preserved. Since, for =each objsct, any holes in it are
filled and its frontier lines move inward, the object must
sarink to a poiat. These facts imply that svery object in a

scene will shrink to a point.

5.3 EZxamples

Jdn the following pages are shown 2xamples of the ;

operation of <the shrinking algorithm. Figure 48 sgshows a

301id nexagon shrinking. Figure 49 shows the shrinking of a
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hollow version of the same hexagon. YNotice that the hollow
hexagon takes only one cycle longer to shrink. It is ay
conjecture that %this is always the case, that is, that the
nollow version of an object will take at wnost one cycle
longer to shrink than its solid countsrpart. 7Pigure 50 shows
a gpiral which is the same shape and size as the previous two
hexagons. The shrinking of +this object takes ons and
one-third cycles longer than the nollow hexagon.
Tnfortunately, I do not have any general resul%s %o rsport on
2 non-trivial upper dbound for the number of cyclas required
to shrink objects. My guess would be that a tightly coiled
spiral (as figure 50 respresents’ would be among the set of
objects with the 1longest sarinking times. T™is 1is an

intsresting aresa for further study.

The final 2xample in this section is showm in figure 51.
The objects represented are two interlocking spirals. Note

that they shrink to two separate points.

Y
L

%
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Figure 48 Shrinking of a Solid Hexagen
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Figure 48 (continued) Shrinking of a Solid Hexagon
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Figure 49 (continued) Shrinking of a Hollow Hexagon
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CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary

for

In this dissertation, I have presented 2 paradignm
parallel processing of computer generated images. In
addition, I have presented several =zxamples of algorithms
Which could be embedded in the paradigm. The system operates
as follows: A rectangular array of pixels (from a television
camera, say) is embedded in a hexagonal array of processors
(cells). Each cell then foras its information into 2 message

and broadcasts the message outward to the rest of the cells
in the array. The paths taken by the messages are governed
by a set of production rules such that the message's
"wavefront" expands in the shape of a hexagon centered on the
originating cell. The system is synchronous, so the messages
move in discrete steps and all at the same time. Eventually,

if the messages are allowed %o propagate for a long enough

time, each message passes through every cell in the array. A
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further property of the message propagation is 4that at the
point when there are twelve copies of each message (i.=.,
after two time units), each message is saidi to have one of
twelve "clock directions" (since the directions correspond to
those of the numerals on a clock face). These clock
directions are inherited by the messages' offspring so that

when a message enters a cell, the cell can tell from which

direction the message came.

Since the messages carry information from their cells of
origin, tne cells they pass through can combine information
from many parts of the scene and make in%teresting deductions
about the scene. TFor example, with very sianple algorithms in
which the c¢ells examine resident messages in pairs, the
system can find edges, corners, and axes of symmetry. The
cells are not 1limited to being passive observers of the
message which pass through them. They (the cells) can be
programmed to generate new messages and destroy o0ld messages

if conditions (under program control) warrant it.

With more complicated algorithms, the system can derive
such things as texture information and object areas from the
scene. Various +transformations of +the scene are also
possible. Some examples of these are fast fourier
transforms, Voronoi tessellations, prairie fire skeletons,

and septrees.
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The system is recursive in the sense that information
derived in the cells can Ye re-formed into messages 2nd
broadcast in parallel from the cells. This process is called

"layering".

Another 1important part of +this dissertation 1is the
parallel shrinking algorithm for hexagonal arrays presented
in Chapter 5. The algorithm transforms any binary scene
(with one class of exceptions) into a set of isolated points,
cach of which corresponds to 2 connected object in the
original scene. The class of exceptions referred to above
contains those scenes in which one object <completely
surrounds another. This algorithm shrinks objects with any
number of holzs and is proven never to merge two unconnected
objects nor disconnect any connected object. A proof is also
presented that 23ll objects (with the exception noted above)
shrink to isolated boints. By removing and remembering the

locations of 1isolated points as they occur, completely

surrounded objects could also be dealt with.

7.2 Suggestions for PFuture Work

There are several directions in which my work could be

extended.

One problem with HEXVIS is its method of
programmability. At times, the results of directing the
system's behavior are somewhat counter-intuitive. An example

of this is the programming of Voronoi Tessellations by the
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collision method (see Chapter 5). I 4id not expect the gaps
in the 1lines of the tessellation. It seems that an

investigation into a special purpose high lavel language ‘or

HEXVIS could be guite fruitful.

An extension to the HEXVIS paradigm which might greatly
increase its power is to remove the stipulation that the
cells operate synchronously. It is not clear how this change
would be accomplished. Possibly allowing messages to
propagate at different rates would be a part of it. Allowing
cells to in some sense "waks up" when a particular condition

occurs might also be required.

Other propagation schemes are certainly possible (e.g.,
the dodecagonal scheme of Chapter 2). I have mentioned that
a wavefront which is close to 2 circle is desirable. Another
possibility is to increase the resolution of the system by
increasing the number of directions available. The logical
extreme of this idea is for a cell which receives a message
to be able to pinpoint the message's origin exactly. In many
situations, this is a highly desirable goal. (This can be
accomplished with HEXVIS as it is now implemented. The cell
simply appends its coordinates to the messages it

generates.)

Of course, the development of parallel algorithms to fit
into the message passing paradigm of HEXVIS 1is quite

jmportant. The question which arises here is: How much of

the work of a computer vision system could HEXVIS be
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reasonably expected to assume? It i3 not obvious how high
lavel processes (such as knowledge representation  or
recognizing real world objects in a scene) could fit into the
JEXVIS mold. It 1is conceivable that HEXVIS could be a
venicle for an ACTOR type system [Hewitt, 1976] which is
designed for high level processes. At the other end of the
spectrum, it seems clear that HEXVIS is quite useful for
lower level processes such as have been illustrated in this
dissertation. In this capacity, HEXVIS could certainly fora

a part of 2 overall computer vision system.

Along a2 more theoretical vein, the shrinking algorithm
pressnt2d in Chapter 5 generates some very exciting
possibilities. First of all, the question of how many cycles
an object requires to shrink %0 a point is open. An upper
limit can be placed on this +time for some objects, i.e.,
those without connectors and which do not develop connectors
during the course of their shrinking. That limit is 2N¥/3,
where N is the length of one side of the equilateral triangle
forning the object's frontier. However, I would conjecture
that this limit can be lowered to N/3+1. Other questions can
be posed, for instance: What class of objects do develop
connectors? Can the location of the final isolated point be
predicted wmore precisely than simply inside the object's
frontier? 1Is the cellular space represented computationally
complete? (Probably not, since no information can leave the

frontier of an object. Perhaps the frontier should have been

called the "event horizon".) TPor a given frontier, what does

L]
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the object whicnh takes the most time to shrink look like
{conjecture: a spiral)? In fact, the field of parallel
processing of hexagonal binary arrays in general (of which

shrinking i3 only one part) is quite fascinating.

Finally, the question of implementation of dEXVIS in
hardware poses some interesting problems, the main one being
how simple a machine is required to perform the functions of
one of +the cells in the array. Some issues of global
communicatioson have not been extensively considered here. I%
is clzar that some tasks are better handled by a system which
has a processor distinguished by being global to the others
(e.g., loading the initial updating function into HEXVIS).
This processor would not necessarily be governed by the
message passing process in its communications with the other

cells.
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‘ APPENDIX

& A SHORT HISTORY OF CELLULAR AUTOMATA

John von Neumann 2stablished the study of cellular
automata in the early forties during his investigation into
self-reproducing machines [Burks, 1970]. In order *to
investigate this subject he needed a rigorously defined
descripbtion of both the primitive building units and their
snvironment and how they would interact. Von Neumann's firss
idea was to imagine a sea with an infinite number of paris
floating randomly on the surfacas. The basic parts he had in
mind are the following: "and", "or", and "not" switches, a
one time unit delay element, 2 manipulating element, a
cutting element, a fusing element, a rigid element, and 2
h sensing element. An automaton composed of these elements is
called 2 "kinematic automaton". A kinematic automaton floats

on the surface of the sea, acquiring parts as it needs then

 rras SR aeNiion-a b by

to construct whatever its program directs it to.
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A Turing wmachine can be simulated with 2 Xxinematie
automaton wusing the switches and delays as the logical
2lsments. For the tape, a chain of rigii =2lements can be

formed with extra rigid elaments at some of

t

he intersection

®

points {see figure 52).

Figurs 52 A Xinematic Chain
An intersection with an extra rigid element represants a "1"
while on2 without an sextra rigid elsment rspresents a "O".
Thus, the chain in figure 52 represents the binary nuasber
211101011, The kinematic automaton, <through use of 1i%s

sensing, manipulating, fusing, 2and cutting 2lemznis can rsa

[o%

’

alter, and sxtend the tape taking new rigid rods from the sea
as needed. Since a machine M can be described totally by
lists of its parts and how they are connected, a description
of M, D(M), can be stored in binary form on a %tape. Imagine
now 2 kinematic automaton M . which will construct a machine

from a taped description, then copy its own tape and attach

it Yo the new automaton. If Msr is given a tape with its own
description, it will reproduce 1itself —complete with a

self-describing tape.
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The problem with the %kinematic model is that it is not
rigorous enough. The bulk of the material which describes
the xinematic automata gystem (and hence requires
formalization) is concerned with the motion of the automaton
through the sea, the mechanisms of sensor-manipulator

coordination, etc. -- not really the most salient aspects of

self-reproduction.

The idea of cellular automata was suggested to von
Neumann by S. M. Jlam [Burks, 1970]. It lends itself fairly
easily to rigorous formalization while retaining Z£2a%ures
important to the 1logic (although not necessarily +the

physiology) of self-reproduction.

In describing a cellular automata system, it is first
necessary %o describe the "cellular space". Intuitively, the
cellular space is an array of finite state machines called
"cells" (to be described shortly). Formally, it consists of
a (usually infinite) set of cells and a neighborhood relation
on that set. The neighborhood relation gives, for each cell
C, a set of cells which are C's neighbors. Notice that this

relation could vary from cell to cell although usually, it is

quite regular.

The cells themselves are described by giving a finite
list of states for each cell, a distinguished state (called

the "quiescent" or "blank" atate), and a rule which gives the

state of the cell at time T + 1 as a function of the states

of its neighbors and itself at time T. The quiascent state
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has the property that if a cell C and its neighbors are all
in the quisscent state at time T, then C will remain in the

quiescent state at tine T + 1.

A particular cellular automaton, then, is described by
giving a finite list of cells along with each cell's initial

state. The other cells in the system are assumed to be in :

the quisscent state.

In von Yeumann's <cellular automata system there are
‘ twenty-nine 3tates. J2 was able to show that a cellular
| - automaton whizh was cOmputationally equivalsnt to a Turing
machine coull be embedded in his system. Thus, the cellular

space is "compu®ation universal". PFurtheramore, von Neumann

showed that the same automaton could reproduce any automaton
described by a tape, copy its own tape, and attach the tape
to the new automaton. Thus, the cellular space 1is
{ "construction universal". In particular, the automaton is

able to reproduce itself.
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