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A CELLULAR AUTOMATA APPROACH TO
COMPUTER VISION AND IMAGE PROCESSING
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Department of Electrical Engineering
* IUniversity of Illinois at Urbana-Champaign, 1980

This dissertation describes a system called HEXVIStwhich
performs operations on scenes, All operations are carried
out in a hexagonal array of cellular automata-like objects
which corresponds to that scene. The system can perform (for
instance) the following tasks: recognition of edges,
corners, and axes of symmetry, texture discrimination,
determination of areas, and generation of Voronoi
tessellations.

First, the scene is embedded in the hexagonal array,
then, the cefis pass messages describing the cells' contents
to their neighbors which, in turn, pass them on. As these

* messages pass through cells, they can interact with each
other and with the contents of the cell in which they find

* themselves. The cells all perform the same operation or
group of operations in parallel on their visiting messages.
As a consequence of these operations, the states of some
cells change in a way which indicates that they correspond to
4interesting" parts of the scene.

This process can be repeated recursively using the
altered states of the cells as new messages to be broadcast.

In addition a new algorithm ,is presented which shrinks
binary scenes in a hexagonal array. ,_ It is proved that all
scenes with (at most) simply connected holes are transformed
into a set of isolated points, each corresponding to a
connected object in the original scene. This shrinking
algorithm is embedded in HEXVIS.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the System

This dissertation describes a system called EMXS which

performs vision and image processing operations on a static

scene. All operations are carried out in parallel in a

hexagonally tessellated array of cellular automata-like

objects which corresponds to that scene. Operations which

have been examined include (among others) the following:

edge, corner, and symmetry axis finders, a binary shrinking

algorithm, area determiners, region growing algorithms, and

texture discriminators and recognizers.

The cells communicate by passing messages according to a

set of production rules. This process is user programmable

and can be repeated recursively using the altered states of

the cells as new messages to be broadcast.
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1.2 The Basics2 

-
HEMVS differs from a traditional cellular automata

system in two important ways. First, the automata (cells)

are not finite state machines. This difference manifests

itself in two ways: 1i) the amount of information which car.

flow through a cell is unbounded and 2) the cells can execute

unrestricted programs which use that information as data.

The memory available to each cell has also b~een assumed to be

unbounded, although it is clear that if the system were to be

realized in hardware, memory would be limited. For most

purposes, each cell may be assumed to be a reasonably

powerful computer (i.e., powerful enough to execute LISP,

say).

A second'- dif ference is one of convention. Most of the

literature on cellular automata concerns itself with arrays

which are rectangular. My system uses a hexagonally

tessellated cellular array. The reasons for this decision

will be presented in Chapter 2.

As an aside, it turns out that a hexagonal array can be

thought of as a rectangular array with an odd neighborhood

definition (as shown in figure 1). In fact, I make use of

this relationship in simulating the hexagonal array.
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0-0-0-0-0-0 0-0-0-0-0-0

0-0-0-0-0-0 0-0-0-0-0-0

0-0-0-0-0-0 0-0-0-0-0-0

0-0-0-0-0-0 0-0 -0-0-0-0

Figure 1 Simulation of a Hexagonal Array

With a Rectangular Array

HEMCVS begins with a rectangular array of picture

elements. It processes this information and embeds it in the

hexagonal array. The "processing" referred to consists of

extracting local gradient and laplacian information (for

instance), forming appropriate list structures and inserting

them into the cells. The mechanics of this process will be

discussed in detail later on.

The hexagonal array is much more complex than the

original rectangular grey level array. Each of its elements

can contain an arbitrary LISP list structure. In general

this list structure has at least two constituents: 1 ) the

"state-" of the cell (where "state" here has a meaning

slightly different from the one used in cellular automata

theory), and 2) the messages resident in the cell.

Furthermore, the cells are designed to accommodate user

defined additions. Such things as the cell' s coordinates, a

record of previous states of the cell, and the original

information contained in the cell can all be useful to the

cell in its computation. These additions are easily made.
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Each cell (with a few exceptions) forms a message

describing the cell which is to be broadcast to the other

cells in the array. The messages pass from cell to cell in a

synchronous way. That is, time in the system is quantized.

At each time period, each message in the array moves one step

into one or more of the neighbors of its host cell.

Each message is again a LISP list whose first element is

a directional component called the "heading" which specifies

in which direction the message is travelling. Initially, of

course, the message is travelling in all directions, and this

is indicated by the message's heading.

A set of production rules is associated with the

headings. These rules specify, for a given heading, where

(i.e., in which of the host cell's neighbors) and with what

new heading the attached message will appear at the next time

period.

For instance, a message at time zero (which has a

heading specifying all directions) will appear in all six

neighboring cells at time one. Each of the six copies of the

original message will have a different heading indicating

that it is travelling outward from the cell which originated

it. The net effect of these productions is that a message

spreads outward from its originating cell like a ripple from

a pebble thrown into a pond. A detailed description of

message passing and the production rules appears in chapter

2.
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The rest of the message contains the information from

the message's originating cell: data such as gradient

direction and magnitude, laplacian, and, in higher layers

(later in the processing of the picture), texture

information, shape description, etc. As these messages

travel around the cellular world, the information they carry

can interact in various ways with its environment. The

simplest type of interaction is one in which messages

resident in each cell are compared in a pairwise manner. As

it turns out, this particular class of interactions is quite

- gpowerful. Its members can find edges and corners, fill in

incomplete lines, and infer axes of symmetry, among other

things.

At the other extreme of complexity are interactions

involving complex statistical analysis of messages integrated

over many time units. Textura.l discrimination is an example

of a task requiring this type of higher level processing.

1.3 Why?

What good is this system? There are three reasons

HIEVIS is worthwhile. First of all, it represents an

interesting information processing paradigm in its own right.

The evolution of a cellular automata-like system based on

state changes which are brought about by message propagation

and interaction is a significant departure from (and

extension to) the traditional cellular automata model. It is
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reminiscent in some ways of Hewitt's and Baker' s "actor"

formalism [Hewitt, 1977] in that both systems have parallel

processes which communicate through passing of messages

(although HEMVS is synchronous).

Secondly, the system is general enough to be an abstract

vehicle for parallel algorithms. It includes as a subset all

of cellular automata and could be used to model even

asynchronous processes.

Lastly, the system is potentially quite fast. Most

vision and image processing systems (including this one as it

is now implemented) perform many trivial and not so trivial

operations on vast amounts of data in a serial manner.

Obviously, if these operations were done in parallel, the

systems' speeds would be much improved. HEMVS and its

algorithms are designed with this fact in mind. As more and

more sophisticated parallel machines become available, a

system like HEMVS will become more attractive. Purthermore,

at the rate chip densities have been increasing, it is at

least conceivable that in the near future, the entire MEXVIS

system could be housed on one chip. Some applications that

spring to mind are: smart television cameras which could

(say) follow a person around the stage, microscopes,

telescopes and televisions with built-in real time image

enhancement, and mobile household devices.

L.
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1.4 Outline of the Dissertation

After introducing the topic in chapter 1, 1 will

describe the basic model in chapter 2. Chapter 3 covers

related work while chapters 4 and 5 discuss specific

algorithms which have been implemented in HEMVS. In chapter

6, I present a new algorithm (and its proof) which shrinks

hexagonal binary scenes to a set of points. Chapter 7

contains some concluding remarks and suggestions for future

work. Finally, an appendix discusses the history off cellular

automata.

mai



CHAPTER 2

THE BASIC MODEL

2.1 The Hexagonal Grid

The cells in HEIXVIS are arranged in a hexagonal pattern

on the plane. Each cell can directly communicate only to its

six neighbors. Communication with cells further away is done

indirectly by propagating messages which start at each cell

at time zero (the system is synchronous) and spread outward

in a hexagonally shaped wavefront. The message propagation

is governed by certain rules which are described later in

this chapter. Each cell is a reasonably powerful computer

and can use the contents of the messages which pass through

it in its computation in order to discover interesting

information about the scene.

IL
t'
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2.1.1 WdHY HEXAGONS?

There are only three regular tessellations of the plane:

triangular, square, and hexagonal. It is interesting to note

that the hexagonal and triangular tessellations are duals in

the sense that if one draws a line from the center of a

hexagonal cell to the center of each of its neighbors, a

triangular tessellation is obtained. The reverse happens if

one starts with a triangular tessellation: one obtains a

hexagonal tessellation. The square tessellation is its own

dual.

A triangular scheme has no recognizable advantages over

the others. In fact, it seems to combine the worst features

of square and hexagonal schemes, while offering the

advantages of neither. There are two undesirable features

which a triangular array has in common with the hexagonal

case. The first problem is that representing a triangular

(or hexagonal) array in the inherently square arrays of LISP

(as in most computer languages)' requires extra overhead to

keep track of the correspondence between the two. The other

problem that the representation of triangular and hexagonal

arrays share is that the computation to determine a cell'sa

neighbors depends on where in the array the cell resides.

Triangular and square arrays, on the other hand, share

I the problem of having more than one sort of neighbor. In the

case of the square array, each cell has four edge neighbors

*and four corner neighbors. The triangular case is even
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worse: three edge neighbors, three of one type of corner

neighbors, and six of another type of corner neighbors.

The choice between a hexagonal and a square

representation, however, is not quite so clear. There are

several advantages to using a hexagonal array of cells rather

than a square one. First, the shape of the messages'

"wavefront" is a hexagon. In a square array the messages'

wavefront would propagate in a square (or diamond) shape.

(Rosenfeld [19791 shows a propagation scheme for square

arrays whose wavefront is in the shape of an octagon, but for

various reasons, this scheme can not be cast in a message

passing mold similar to my own.) Since a hexagon is closer

in shape to a circle than a square is, the distance at a

particular time from a cell to any of the messages which it

has generated does not vary as much as in a square

propagation scheme. (The ratio in a square of shortest to

longest distance is 1/(sqrt 2) or .707, whereas in a hexagon,

that ratio is (sqrt 3)/2 or .866 -- much closer to unity.)

In a hexagonal array, then, if two messages which have

traveled for the same amount of time meet, they have traveled

approximately the same distance -- a useful fact for finding

axes of symmetry, centers of circles, etc.

Further advantages derive from the fact that six is the

maximum number of isotropic neighbors a cell can have in any

planar tessellation. This is important for two reasons.

First, it is desirable for a cell to have as many neighbors



as possible in order to distribute the information more

evenly. Second, we would like all of these neighbors to look

alike to the cell, hence the wish for isotropy. As an

example of a cellular world without isotropy, consider a

square tessellation in which each cell is defined to have

eight neighbors. The neighbors on the diagonal are different

than the neighbors on the four sides: they are farther away,

they share no borders, etc.

There is also a problem with ambiguity in the

connectivity of a square array which is not present in the

hexagonal array. The two traditional (an~d natural) choices

for neighborhoods in the square array are the four-cell and

Ithe eight-cell neighborhood. In the former case, the

question of whether removing or adding a point will alter the

connectivity of the scene Can not be assured without knowing

the state of the corner cell, as well. Figure 2 illustrates

this. If D, E, and B are in the "tone"~ state, we can not know

whether removing E will disconnect B and D without knowing

the state of A.

G H I

Figure 2 Connectivity in a Square Array

In the hexagonal tessellation, there is no such

ambiguity. All the neighbors of a cell share an edge with

that cell. Furthermore, two neighbors of a cell which share

1M
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adjacent edges of the cell also have an edge in common with

each other.

Another advantage of a hexagonal array is this: Since

vertices in a hexagonal array have only three edges, a region

of the plane can be encoded as a bit string. To illustrate,

imagine a bug crawling along one of the edges. When it comes

to a vertex, it can either turn to the right or to the left

(assuming it will not back up, of course). This information

can be encoded as a series of zeros and ones as the bug

4crawls around the perimeter of the region. In a square

array, on the other hand, the bug has three choices at each

vertex (right, left, and straight ahead), doubling the number

a of bits per choice.

An interesting aside is that a hexagonal array actually

closely approximates the pattern of rods and cones on the

human retina [Lindsay, 1972]. Thus, a low-level vision model

using hexagonal arrays might stand a better chance of

modeling human vision than one using a squal-e array.

Of course, there are some disadvantages to using

hexagonal arrays instead of square ones. As I pointed out

before, array simulation, addressing schemes, and neighboring

*1 cell calculation are more difficult and time consuming

because of the inherently rectangular nature of computer

arrays (at least in LISP). Pictures need some preprocessing

in order to be loaded into hexagonal arrays because camera

hardware in general produces pictures in the form of a
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rectangular grid. These difficulties are not insurmountable

(as will be shown) and are more than outweighed by the

advantages.

2.1.2 Mappings Between Rectangular and Hexagonal Arrays

Since most television cameras are set up to output

pictures in a square array, how can we transform this to a

hexagonal world? Also, since computer arrays are rectangular

in nature, what is an efficient way of" storing these

hexagonal arrays in the computer? Two transformnations are

involved here.

As shown in figure 3, to derive a rectangular array from

a hexagonal on6, every other row is moved to the right and

stored in a row in the rectangular array. The lines between

the cells in both parts of the figure represent neighbor

relationships. The only problem with this method is that the

coordinates of the neighborhood set of a cell depend upon in

which row the cell resides. (For instance, in row one a

cell's zeroeth neighbor is directly above it in the square

array while in row two, the corresponding neighbor is above

and to the right.) Consequently calculation is slowed

somewhat.

An alternate scheme is to only use every other element

of the array. However, I felt that the resultant increase in

speed would not make this waste of space worthwhile. Yet

another scheme would be to move every row to the left as in

IR
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-0-0-0-0-0 0-0-0-0-0-0

0 -0 -0 -0 -0 -0 0- 0 -0 -0 -- 0

0-0-0-0-0-0 0-0-0-0-0-0

0-0 -0 -0 -0 -0 0 -0 -0 -- 0 -0

0 -0 -0 -0 -0 -0 0- 0 -0 -0-0 -0

0-0 -0 -0 -0 -0 0 -0 -0 -0- -0

Figure 3 Hexagonal to Square Conversion

0D - 0 0 - 0 - 0 - 0I\0-0-0-0-0

0 0 0 - 0 - 0 - 0
01\!01\1010

0 -0 -0 -0 -0 -0
0\!-0-0\0-0

0 - 0 - 0 0 0 - 0
0/0/\-0/0/0

0 0 0 - 0 - 0 - 0-O
0-0-0-0-0-0

0 0 0 0 0 0

0 0 -0 -0 -0 -0 -0

0-0-0-0-0-0I

0 0-0 -000

0 0 -0 -0 -0 -0 -0

0-0-0-0-0-0

0 -0 -0 -0 -0 -0

0 0 -0 -0 -0 -0 -0
I 0-0-0-0-0-0

Figure 4 Hexagonal to Square Conversion

Wi
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figure 4. Then every neighborhood set would be computed

similarly, but pictures would be skewed -- that is, if we

wanted to store a picture in a rectangular array according to

this method, the hexagonal array corresponding to the

original scene would have to be a parallelogram slanted to

the left, hence, so would the original scene.

Ahuja (private communication] has suggested a variation

of this latter method which maps rectangular pictures to

rectangularly stored hexagonal arrays and still allows the

neighborhood relation to be the same for all cells. In this

case the parallelogram which results from shifting every row

to the left is cut on the left side. The smaller piece is

then fitted onto the other side of the parallelogram to make

a rectangle. The neighborhood function must use modulo

functions in order to be correct for all cells.

X x . X X

X . X . X . x . X

X . x . X . X

Figure 5 Mapping a Hexagonal Array to a Square Array

There are a number of possible methods of getting a

hexagonal model from a picture stored in a square array. The

most reasonable methods all involve picking every fourth

picture cell as in figure 5. (The X's correspond to the

-- *i,



sites in the rectangular array where the hexagonal cells will

be located. ) The problem is, however, what to do with the

other three-quarters of the picture. Can it contribute in

some way to the hexagonal model? In foact, it can; the

left-over cells can be used to derive gradient information.

For e~~ample, suppose the picture cell in question and the

cells above and below it (remember, we are talking about the

rectangular array of grey levels from the camera) have a

brightness level of 0. 5 on a scale of' 0 to 1. -Suppose also

that the cell to the right and the two cells above and below

that one have a brightness level of 0 and that the three

corresponding cells on the left have a brightness level of 1.

This situation implies that there is a brightness gradient at

that cell pointing to the left. This information can be

encoded into the cell in the hexagonal world and broadcast in

messages from that cell. Note that this technique is a

modification of the Sobel operator FDuda, 1973].

Another possible use of the left-over cells would be to

simply average their brightness levels with the brightness

level of-O the central cells. As with all averaging

techniques, this would have the effect of eliminating some

noise in the picture, but, at the same time it would degrade

the resolution.

Notice that there are two distinct ways of picking the

central cells from a rectangular array (see figure 6). 1

chose the method shown in figure 6a. My reason for making
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that seemingly arbitrary choice has to do with a peculiarity

of the vision system at the Coordinated Science Laboratory.

This system produces a rectangular array of picture cells

such that each cell represents an area which is approximately

1.2 times as wide as it is high. When the central cells are

chosen as in figure 6a, the hexagons are much closer to being

regular than they would be if chosen as in figure 6b. (The

important dimensions are shown on the figure with the

vertical distance between rectangular cells normalized to 1.0

and the horizontal distance to 1.2.)

2.33
X . X X

J- x .. X

X • . . 2.0 . X.•.•

. X X •

X . K • X K X . .

(a) (b)

Figure 6 Two Ways of Choosing a Hexagonal Array from
a Rectangular Array

2.2 Message Passing

2.2.1 Production Rules

Messages carry information from one part of the cellular

wo



into a pond. How is this done? How do the many copies of a

message know in which direction to travel and in which cell

or cells to appear at the next time unit? This is

accomplished by using a set of production rules which operate

on the heading of the message. The "heading" is a part of

each message copy. It determines in which direction a

message is traveling. By examining a heading in a message

copy and the set of production rules, HEMVS can determine

into which cells the message is to be propagated next and

what headings to give those copies in the cells in -which they

appear. The workings of headings and production rules are

described in detail in section 2.3.3.

The rules are designed to fulfill three goals: (1

given enough time, messages from a single originating cell

should be able to pass through all other cells in a unique

way; (2) the messages should form a number of distinct and

equal rays emanating from the originating cell; and (3) the

shape of the propagating messages, i.e. the "wavefront",

should be as close to a circle as possible. The four rule

propagation techniques discussed in this section satisfy all

of these goals to varying degrees.

Figure 7 shows graphically one of the message

propagation schemes. This figure is an example of a type of

diagram common in this section. Since it may not be clear

intuitively exactly what these figures represent, I will

explain them.
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Notice the cell labelled "ORG" with six arrows emanating

from it. I will call this cell "C" (the cell is not called

"ORG" because that is the name of the heading of its message

at time zero) and be concerned for purposes of this

explanation only with the copies of the message that

originate there (keeping in mind that potentially all of the

cells could have produced messages). Notice that these six

arrows point to the six adjacent cells. This indicates that

the original message will, at Time = 1, have appeared in

these six cells. Each of these six messages will of course

have a different heading so that the production rules can

distinguish them. However, they are in all other respects

duplicates of the original message.

In general then, when a cell in the diagram has one or

more arrows pointing into other cells, it will transfer any

messages it contains which originated from cell C (it may

contain others) to the cells at the other end of the arrows

by the following time period. For example, from Figure 7 we

can infer that if at time period T there is a message with

heading B2 in a cell, then at time T + 1, both the cell to

the upper left and the cell to the upper right will have a

copy of that message with headings B3 and B4 respectively.

At tme T + 2 then a cell which had a message with B3 in it

will produce that same message with the new heading "B2" in

its upper right neighbor. And so on.

T
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Not all of the rules are included in these diagrams.

However, they can be inferred by rotating the figure sixty

degrees clockwise and "adding 2" to the letter modulo L until

the sector of interest is available. So, for example, we can

see that H2 in figure 7 produces an H3 in its lower right

neighbor and an H4 in its lower left neighbor even though

this is not shown in the diagram. Each concentric hexagon

centered on cell C is formed from lines which run through all

the cells which have C's message at the same time period.

This is called the "wavefront" of the message.

Remember that in actual operation this process is going

on for many -- perhaps all -- of the cells in the array. It

is quite possible, for example, for one cell to have ten to

twenty resident messages which must be parceled out in

various combinations to its neighbors.

Again referring to figure 7, there are two sets of lines

running more or less radially outward from C. The heavy

4crooked lines delimit the sectors. They represent divisions

which define the twelve directions in which the message can

travel, i.e. all messages between two adjacent lines (again

recall we are talking only about the messages from cell C)

are said to be travelling in the same direction even though

at the cell-to-cell level they change direction frequently.

Notice that messages never change their direction, that is,

if a message copy produces another in an adjacent cell, the

new message keeps the direction of the old message. The
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straight lines through the middle of each sector represent

exactly that -- the center of the sector.

The labels in the cells (ORG, A2, B4) are the names of

headings. These are solely for human convenience; the

program uses bit strings to determine message routing; in

this way processing speed is greatly increased.

The design of the production rules underwent several

iterations. Figure 7 shows a representation of the original

scheme proposed by Waltz 11978]. We will call this "method

Mlethod 1 has two very attractive advantages over the

present method of message propagation: First, the set of

production rules is simpler (a total of seventy-two rules

versus three hundred forty-two rules in the present system) .

Using it would undoubtedly produce a significant increase in

the speed of the system. The second advantage is that the

angle subtended by each of the twelve sectors is exactly

equal. In the present system, adjacent sectors differ by a

small amount, causing slight variation in behavior depending

on direction being considered.

Now for the disadvantages: Notice that each segment is

situated so as to cover the area between adjacent numbers of

an imaginary superimposed clock. Why is this a problem? The

answer stems from the fact that many objects in the world

have important visual features which are oriented either
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vertically or horizontally. This is a fact which is

characteristic not only of artifacts, but also of many

natural objects and phenomena (e.g., trees and the horizon).

Notice that in method 1 , the boundaries between some of

the segments are oriented in a horizontal direction and

others are oriented in a vertical direction. Because of

this, a direction which should be interpreted as pointing

directly up could be labeled as either 11:00 or as 12:00

depending on slight perturbations of the scene. A similar

problam exists for the horizontal direction. Furthermore,

this problem can not be easily removed; interpretation of

some directions will always be ambiguous due to the fact that

the directions are quantized. We can, however, choose

quantization regions which group directions we wish to regard

as similar. One solution I considered was to rotate the

celular world by fifteen degrees, but the consequent

problems of mapping a non-rotated square array into a rotated

hexagonal array are very messy unless the camera taking the

picture is also rotated by the same amount, thus making this

an unsatisfactory solution.

Method 2 is shown in figure 8. It is quite a bit more

complex than method 1 . It does solve the main problem of

method 1 , but it produces some new problems of its own.

The problem of rule proliferation was discussed somewhat

above. This method has a total of one hundred ninety-two

rules. The motivation for dropping this method and
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Figure 8 Propagation Method 2 I
I
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redesigning the propagation rules again, however, is based on

some more subtle effects.

First of all, look at the 12:00 and 1 :00 sectors.

Notice that close to cell 0, the 12:00 sector is much thinner

than the other. At Time = 3 there is only one message copy

in the 12:00 sector but the 1:00 sector has three. This

disparity continues throughout the message's expansion,

although it becomes less significant; there are never more

copies with evenly numbered directions than with odd. Table

1 summarizes this. This asymmetry is both unaesthetic and

somewhat hazardous -- "hazardous" because of the possibility

that some messages that should meet have a greater chance of

missing each other, since they cover a smaller arc than they

should.

Table 1 Numbers of Messages in Even and Odd Sectors

time no. of copies no. of copies
in 12:00 sector in 1:00 sector

2 1 1
3 1 2
4 13
5 2 3
6 3 3

Another problem with method 2 is also related to

symmetry. All of the sectors have a slight shift in the

clockwise direction, so that there is a left-right asymmetry.

Figure 9 shows method 3, the current rule propagation

scheme. This method has a number of nice features lacking in

method 2. The only disadvantage it has relative to method 2
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is that it has a larger number of rules -- three hundred

forty-two to be exact.

It is desirable to have the number of messages in each

sector grow evenly. A message in method 2 has the same

number of copies for three time units and then grows by two

in only two time units, although this was not mentioned as a

problem (there are good propagation schemes that have this

property). It turns out that the property of even growth

(i.e., where the number of copies in first the odd sectors

then the even sectors is incremented) and the property of one

sector always having a smaller or equal number of copies than

the other always appear together. Another method I

discovered while writing this chapter is almost the same as

method 3, but combines this inequality "problem" with another

aspect of the differences between even and odd sectors to

come up with an even better set of rules. I will discuss

this method next. In method 3, 1 chose even growth. At the

time it seemed to be the more useful and aestheticallyV.; pleasing property.
Figure 10 shows method 4. As stated above, this method

combines two adverse effects of message propagation with the

effect that they cancel each other out. Recall that earlier

I mentioned that the even and odd numbered sectors are

different angular sizes. Odd numbered sectors are on the

whole smaller because the wavefront "turns a corner". The

difference is a matter of only a degree or so. If we use the
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technique of always letting the odd group of sectors have

greater or equal numbers of message copies at any time

period, the effect is to expand the width of the sector.

This effect in the long run (after several time periods)

tends to become insignificant, but in the short run, it is

strong enough to counteract the-inequality problem. Compare

figure 9 and 10. The sectors in the latter look much more

equal. Method 4 incorporates this idea and, as an added

bonus, uses the same number of production rules as does

method 3.

2.2.2 Variations

Variations on the propagation rules can be introduced at

a higher level by the function which alters the state of the

cell. This function (which will be discussed in more detail

later) is available~to all cells and is applied to the cells'

contents. It operates by returning as a value the cell as it

appears at the following time period, including the newpt messages which are to be resident in the cell. Since the
updating function is free to return any value as the new

cell, it has the power to introduce new messages or destroy

old ones at its discretion. In particular, the updating

function can have the effect of introducing higher level

propagation rules. Some examples of higher level rules which

are useful for image processing with HEXVIS are the

following: 1 ) propagate for a fixed distance, 2) propagate

through similar regions only ("similar" having a fluid

IL
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definition), 3) propagate along line segments or boundaries

(special case of 2), 4) propagate until similar region, 5)

propagate until meeting some other message, and 6) propagate

normal to edge.

2.2.3 Dodecagonal Propagation

There exists another family of propagation rules which I

have examined in some detail. Its members possess the

desirable quality of producing wavefronts which expand in the

form of a dodecagon (a twelve-sided figure). However they

also have the undesirable quality of causing messages to

propagate into the same cell.

Recall one of the goals specified for the design of the

propagation rules is to have the wavefront of the messages

expand in a manner as close to a circle as possible. The

hexagonal propagation gives a fairly good approximation to a
circle (the ratio of the smallest distance to the largest

distance is .866, a circle being 1.0). In the discussion, IVcompared this with a square -- the only other possibility

allowed in the type of propagation rules under consideration

(a triangular scheme propagates as an irregular hexagon).

In general, of course, a polygon with more sides will be

closer to a circle. Specifically, the ratio for a dodecagon

is .966. This is very attractive for my purposes.
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Unfortunately, though, this method has a drawback. In

order to "flatten the corners" so to speak of the hexagonal

'alavefront, it is necessary to hold back some of the message

copies. This ef fect is produced (as shown in f igure 11 ) by

letting some rules propagate messages into the same cell

(called "message doubling"). Notice that this is a violation

of one of the other goals specified, i.e., that of having

messages reach each cell in a unique way. (If a message copy

produces a message copy at the next time unit in the same

cell, then there are two paths to that cell.) In addition, if

a message is resident in a cell for two consecutive time

periods, we have to worry about how to count it in the cell's

operations: do we count it twice?

It seems probable from my investigation of these

propagation rule schemes that methods could be devised to

* propagate in a wavefront which is arbitrarily close to a

circle. This I will save for future examination.

2.3 Data Structures

HEMVS makes use of a number of internal data

structures. In this section, I will examine them and explain

their uses.
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Figure 11 Dodecagonal1 Propagation Scheme
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2.3.1 Arr'ays

4 First of all I will describe the cellular array itself.

As I indicated before, the hexagonal array is simulated by a

rectangular LISP array. The array can have arbitrary X and Y

dimensions in order to accommodate any size picture, but it

has a third dimension which is always equal to two. Perhaps

a more useful way of looking at this is that there are two

copies of the cellular array. The reason for this is so the

parallelism of the system can be maintained. If a cell were

to change as a result of some operation, it would have

inappropriate messages for its neighbors. Therefore, the

updated versions are entered in their correct positions inI the currently unused array while examining the cells in the

current array for their input. When all of the cells have

been visited, the arrays exchange roles and the process

continues.

Another array in the HEXV'IS system is the picture array.

.. It serves as an input buffer for the raw picture data from

the camera. In this implementation, its dimensions are a

constant 42 by 238 This size array can contain a picture

whose dimensions are 252 by 238 pixels, by storing six pixels

in each array entry with six bits of grey level data per

* L pixel.

ow--
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2.3. 2 Cells

The cells themselves are the elements of the cellular

array. Their structure is that of a list with at least two

elements. The first element is called the "state". Its main

use is to indicate that something important ha.s happened in

the cell as a result of the processing. For instance, if the

cell acquires evidence that it "~lives"? on an edge, the state

would be modified to reflect that fact. Its state might be

something like the following: ((3 6) (2 9)), indicating that

there were three pairs of messages which matched in the six

o'clock direction and two in the nine o'clock direction.

The second element of the cell is a list of the messages

which are resident in the cell. This list of course changes

at each time step as the old messages leave and the new ones

enter the cell.

Other storage in the cell is optional. Such items as

the cells coordinates, the original data, and results from

previous layers of processing can be included.

2. 3.3 Messages

Each message is also a list. The first element is an

atom called the "heading" which governs the path a message

takes in travelling through the cellular world. This process

is discussed in some detail later so I won't describe it

here, but I will describe the structure of the heading. [
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Headings have two representations: one for human consumption

and one for LISP's innards. First, for the humans: Recall

that the directions in IEXVIS are quantized into the twelve

clock directions. Saying that a message "has a direction"

(say 3) means that (unless the time is 0) it was produced by

a message which was to its left at the last time period and

that it will produce one (or possibly two) messages which

will be to its right at the next time period. The headings

are represented by a letter followed by a number, e.g.,

"C12". The letter in the headings representation corresponds

to the clock direction in which the message is traveling.

The number distinguishes the thirty or so headings having a

particular direction.

The machine representation corresponds closely to the

human one. To compute it, I first convert the letter to a

number: A to 0, B to 1, and so on until L which is changed

to an 11. This number is multiplied by 32 (i.e. shifted

left 5 bits) and added to the number which follows the letter

in the human representation. For example, consider again the

heading "C12". The "C" is converted to a 2, multiplied by 32

and added to 12 to yield 76, which is the machine

representation.

One of the messages, "ORG", has no direction, so I

arbitrarily give it the machine representation 372, a number
which is larger than any of the other machine

representations.

L
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The reason there are two representations is that

compiled MACLISP code. is very fast at integer arithmetic,

rivaling FORTRAN. Using a numeric domain rather than a

symbolic one for the machine version of the headings lends a

great increase in speed to the simulation. Humans, on the

other hand, have trouble making sense of numbers like 76 or

372 in this context, so a more mnemonic representation is

called for.

The rest of the message varies greatly depending on what

sorts of tasks are being performed and what stage of the

processing (what layer) the system finds itself. For

instance, if we want the system to find edges, the rest of

the message contains gradient information which is derived

from the grey level array. If we are performing a shrinking

or thinning operation, we need only carry an indication of

whether the originating cell is part of the "figure", or part

of the "ground".

2.3.4 Production Rules

The production rules which govern message propagation

are stored as entries in an array, indexed by the heading of

the message (in computer representation, of course). Each

entry is divided into six five-bit fields, each of which

corresponds to a neighbor. The idea is this: if a cell C

sees a message M in neighbor N with heading H, it looks at

the H-th entry in the production array. Within this entry, C

II
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looks at the N-th five-bit field. If the field is zero, C

knows that this message will not be propagated to C at the

next time period. However, if the field is not zero, C

constructs a heading with the same clock direction (see

above) but appends the number it found in the five-bit field.

This heading is combined with the rest of M (minus the old

heading) and saved on a list of new messages. C continues

this process for all of its six neighbors, and for all of the

messages contained in them to construct a complete list of

its new messages.

D E

B3 B4

B2

C

(a)

34 iii 0 0 4 3 0 0

Field: 5 4 3 2 1 0

(b)

Figure 12 Propagation Rule Example

An example can serve to illustrate this process. Figure

12a shows a small part (three cells) of figure 7 (method 1)

with the cells labelled A, B, and C. We see that a (message

I.
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with ) heading "B2" in cell C produces a (message with

heading) "B4" in cell E and a "B3" in cell D. Now if we look

in the production array under 34 (the machine representation

of "B2"), we find the entry shown in figure 12b. Notice the

3 and 4 in its second and third fields, respectively.

Consider first cell E's point of view. In examining its

neighbors' messages, E notices the one in C with the heading

B2. It then retrieves entry 34 in the production array and

looks in field number three (since C is E's third neighbor).

Finding a non-zero entry in that field tells.C that it will

get a message generated from the cell it is examining. The

facts that the entry is equal to 4 and that the heading is of

type "B" imply that the new message will have heading "B4".

Similarly, cell D looks at the second field (again since C is

D's second neighbor), and discovers that it will get a copy

of the message with heading "B3".

2.4 Layering

"Layering" is a process by which complex image

processing tasks can be built from comparatively simple ones.

In this process, each cell produces (or decides not to

produce) a new initial message based on what it finds in its

state. The function to perform this operation is the same

for all the cells at any given layer and is applied when the

message propagation for that layer is complete (as specified

by the updating function). The new layer will in general use

a new updating function since both the information carried by

7
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the messages and the goal of the message propagation may vary

from layer to layer.

As an example, consider the following two-layer process

for finding and recognizing squares in the scene. The first

* layer of message propagation has in effect an updating

function which infers axes of symmetry. When the propagation

is complete, certain cells in the scene which lie on an axis

of symmetry contain that information in their states along

with an indication of the symmetry axis' orientation (see

figure 13) In the second layer, the cells which are on

symmetry axes create new messages encoding that fact. Then

the updating function is changed to one which finds -midpoints

of line segments. A cell recognizes that it is the center of

a square when it contains two midpoints of equal length lines

oriented ninety degrees apart.

In principle, this process can be reversed using HEMVS,

since the important information about messages and message

intersections is retained in each cell. The cells on the

midpoints could simply broadcast two messages in the

I, appropriate directions for an amount of time corresponding to

I the line segment's length to reproduce the symmetry axes.
After this, the cells which contain symmetry axis points emit

I messages again in the appropriate directions; these messages

are allowed to propagate for the correct amount of time to

* -reproduce the square. Figure 14 shows this reverse process

3in action. Note the fuzziness introduced by quantization of

"-'~*'-..-
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Figure 13 Layering
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the directions.

Notice also that if we were to leave out the criterion

that the midpoints be from lines which are the same length,

we would generalize the process to recognize rectangles.

The preceding example illustrates another advantage of

layering: The information in a scene can be in some sense

"chunked". That is, the information that there is a square

in the scene, plus its size, location, and orientation, are

all compressed into one cell rather that distributed among

many. The ability to broadcast all this information in a

concise way from a single cell can prove to be quite

powerful.

2.5 The General Paradigm

The general HEMIS paradigm is very simple. Each cell

has a copy of (or access to) the updating function in effect

at the current layer. This function is given the following

arguments: 1) a list of the new messages, the messages which

will be resident at the next time period; 2) a list of the

old messages, the ones resident now; 3) a copy of the cell

itself, and 4) and 5) X and Y, the coordinates of the cell in

the hexagonal grid. The updating function is executed with

the appropriate arguments at the beginning of the time period

and returns as its value the new cell, i.e. the cell at time

T+1 , which replaces the current cell in the array. Notice

that this process takes care of propagating the messages as
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well as updating the cell's state.

As an example of an updating function, consiler the

following (slightly schematic) one which finds evidence for

edges:

(LAMBDA (N FdMESSAGES OLDMESSAGES CELL I Y)

(CONS (APPEND (COMPARE-EDGE N]PWMESSAGES NEWMESSAGES)

(COMPARE-EDGE NEWMESSAGES OLDMESSAGES)

(CAR CELL))

(COnS dyT.ESSAGES (CDR CELL))))

COMPARE-EDGE is a function which takes two lists of

messages and compares their elements in a pairwise manner,

taking one from each list, and keeping track of the number of

pairs (and their direction) which form evidence for the

presence of an edge. It returns as a value a (possibly

empty) list of entries, each of which specifies the direction

of the edge and the number of pairs which matched.

The updating function also contains conditions for the

cessation of message propagation.

I
I
!i__ _
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CHAPTER 3

RELATED WORK

.y work can be compared with other work along a number

of dimensions. In particular, I will discuss work in the

following areas: 1 ) hexagonal tessellations, 2) parallel

techniques in image processing and computer vision, 3)

cellular automata, and 4) message passing.

In addition, Chapter 6 presents a new algorithm for

shrinking binary scenes on a hexagonal grid. Some work

related to this topic is discussed there. For completeness,

I will indicate the references: [3olay, 1969], [Rosenfeli,

1970], [Levialdi, '972], and [Rao, 1976].

3.1 Hexagonal Tessellations

zolay [1969] proposes a model for parallel

transformations of sets of points in a hexagonal grid. His

choice of the hexagonal tessellation is based mainly on its

il
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lack of ambiguity when connectivity relations are studied 'as

-as explained in Chapter 2).

dolay also points out that there is a greater angular

resolution available in a hexagonal array. The six nearest

neighbors are spaced equally sixty degrees apart while the

next nearest neighbors are spaced equally thirty degrees

apart. Neighbors further away are not spaced equally. In a

square array, the corresponding angles are ninety and

forty-five degrees.

rolay had in mind a hardware realization of his system.

The pattern transformations he describes take place by

sensitizing (under operator control) the machine to a

particular set of neighborhoods (3lay calls them

"surrounds"). All, points whose neighborhoods match the

designated neighborhoods either change state or not depending

on their current state (again, under operator control).

These pattern transformation are applied in parallel to

the scene. However, they are applied cyclically to three

subfields which have the characteristic that no two elements

from any one subfield are neighbors. The three subfields are

shown in figure 15 labelled "A", "B" and "C". The reason

given for this division into subfields is that a race

condition exists such that the states of a cell's neighbors

might be changing at the time the cell needed to examine

their contents. It is not clear, though, why in a

synchronous machine presumably using J-K flipflops this would

id
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be a problem.

ABC ABC ABC ABC
C ABC ABC ABC AB
ABC ABC ABC ABC
C ABC ABC ABC AB
ABC ABC ABC ABC
C ABC ABCABCAB

Figure 15 Golay's Three Subfields

If looked at in a different way, however, the division

of the cells into three subclasses is an elegant way to avoid

the use of dual arrays in simulating a parallel pattern

transformation on a serial computer. In the case of HEXVIS,

this would not be viable, since the state changes are much

more complex involving (among other things) the transfer of

(relatively) large amounts of information from cell to cell

in the form of messages.

Preston ([19711 and [1972]) has developed a special

purpose computer to realize Golay's system. The machine is

called GLOPR (Tolay logic processor) and interfaces with a

minicomputer which in turn interfaces with other peripherals.

An interactive language called Glol (Golay logic language)

was also written by Preston which allows the user to

manipulate the system in real time. Both papers show several

examples both of artificial scenes and of real scenes of

blood cell nuclei and chromosomes.

Li
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Deutsch [1972] reports on thinning algorithms developed

for the three regular tessellations of the plane:

triangular, square, and hexagonal. The purpose of the

thinning algorithms is to reduce thick lines to thin lines.

A typical application is to character recognition where the

thinning produces a skeleton of the character which can be

more easily dealt with than the original. Deutsch concludes

that a hexagonal array offers a better choice than the square

or triangular arrays in that the thinning algorithm takes

much less time to run in the hexagonal array than in either
the square (a factor of two) or the triangular (a factor of

almost four) arrays and is less sensitive to noise in the

hexagonal array than in the others.

In another (earlier) paper r1970], Deutsch comments on

dolay's work. He makes clear the connectivity ambiguity

involved in using square arrays and mentions further that if

the object uses four-cell connectivity then the background

must use eight-cell connectivity and vice versa. Deutsch

points out that hexagonal arrays do not suffer from either of

these problems. He also presents a modification to Golay's

thinning algorithm. There are some objects for which Golay's

thinning procedure does not work. It instead causes them to

disappear. Golay proposed a solution which involved

considering the three subfields in random order rather than

cyclically. Deutsch proposed a counter-solution which keeps

the original cyclic order but* destroys the isotropic

characteristics of the system. In developing my parallel
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shrinking algorithm (Chapter 6), I encountered a problem

quite similar to this one which probably has the same basis.

This basis has to do with a fundamental difference between

the hexagonal and square arrangements. I describe the

problem in detail in Chapter 6.

Horn [1973] uses a hexagonal tessellation in his work on

lightness. "Lightness" is a perceptual quality closely

related to reflectance. Humans, it seems, are able to factor

out variations in irtensity which are caused by variations in

illumination to perceive the lightness of a surface. Horn

develops a model for this process. His reasons for using a

hexagonal grid are that there is only one kind of neighbor

(as has been pointed out previously) rather than two (square)

or three (triangular) and that circular objects pack tightest

in a hexagonal pattern. This latter reason apparently refers

to the fact that the rods and cones in the eye have a

circular cross section and are arranged in a roughly

hexagonal array [Lindsay and Norman, 1972].

Burt [1979] discusses hexagonal analogs to quadtrees. A

quadtree can be used as a compact way of describing a scene

which has large areas of the same color (or whatever

Characteristic one is concerned with). Consider, for the

moment a binary scene (one in which every point is either

black or white) on a square grid. Assume also that the shape

of the scene is square with an edge length which is a power

of two. The quadtree associated with that scene has a root a.I
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node which corresponds to the entire scene. Each of the four

branches of a node corresponds to one quarter of the area of

the scene that its parent node corresponds to -- either the

upper right, upper left, lower right, or lower left square.

If the area of a scene corresponding to one of the branches

is all white or all black, the branch is labelled accordingly

and is a leaf of the quadtree. Otherwise, the branch is

labelled "grey" and goes to a node which itself has four

branches as above.

Burt proposes a number of ways this idea might be

adapted to a hexagonally sampled scene. The most promising

way is a septree, i.e., one whose nodes have seven branches.

This method is interesting because the nodes at all levels

correspond to areas in the scene which are roughly hexagonal

in shape (as all nodes in a quadtree correspond to areas

which are square).

Siromoney and Siromoney [1975] have discovered an

interesting application of hexagonal arrays. They have

invented a grammar for generating isometric views of

rectangular parallelepipeds which uses figures drawn on a

hexagonal grid as primitives.

Waltz [1978], of course, was the inspiration for this

thesis. Many of his ideas are here. In particular, the

t choice for the hexagonal grid and the idea of message passing

are his, as are some of the ideas for symmetry axis, corner,

and edge finding described in Chapter 4.
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3.2 Parallel Techniques for Image Processing and Vision

Gordella, Duff, and Levialdi r1976] develop a detailed

parallel algorithm for threshold ing an image. They define

three steps in the algorithm: 1 ) forming a histogram of the

grey levels in the scene, 2) detecting valleys in the

histogram to determine the threshold value, and 3) relabeling

elements in the scene as zero or one depending on whether

they fall below or above the threshold value. The operations

involved are shown to denoend either linearly on n, the number

of rows (or columns) in the scene or on 109 n. Serial

implementation of the same task, on the other hand, executes

in time proportional to n2. For a value off n equal to one

thousand, the ratio of execution times for the serial

implementation to the parallel one is about one hundred.

Rosenfeld and K(ak F1976] have much to say about parallel

computation in image processing and vision. They present

methods of finding skeletons, of shrinking (both preserving

connectivity and not), and of cluster detection. An

interesting pair of operations which they define for binary

scenes are these: "expanding" or "propagating", i.e., at

each step, replacing every zero point which is next to a

border point of an object with a one, and "shrinking", i.e.,

at each step, replacing every border point of an object with

a zero. (Note that this shrinking does not preserve the

connectivity of the scene.) It is shown how these operations

can be used for region filling, cluster detection, detecting
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* elongated elements, and thinning.

3.3 Cellular Automata

Dyer [1977] introduces a tihree dimensional cellular

automata-like model for image analysis consisting of a number

of square arrays. Each array is one-half the linear

dimensions (one-quarter of the area) of the array below it

and forms a pyramid shape. 'Every cell in the pyramid has

(excluding itself) nine neighbors: the four edge neighbors

in its own array, the parent cell in the layer above, and its

four offspring in the layer below. Cells in the lowest layer

are associated with the pixels and have no offspring

neighbors. (Notice the similarity to quadtrees.) The cells

operate in a synchronous manner, and each has associated with

it a local memory which can be examined by each of its

neighbors.

Besides the obvious fact that cellular pyramids and

HEMVS are both derived from cellular automata, there is

another similarity between the two systems: both have a

layered structure. In HEMVS the layering is not as explicit

in that cells in one layer do not communicate with those in

another directly. Instead, the higher layer consists of a

new updating function which is applied to the results of the

previous computations. On the other hand, cells in cellular
pyramids can communicate directly with cells in layers above

3or below them so that information can flow in both
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directions.

Levitt and K(autz [1972] suggest a number of parallel

algorithms which use cellular arrays for the solution of

graph problems. They mention spanning tree, distance, and

path problems and discover that in some cases relatively

unknown algorithms which are inefficient wh en applied

serially produce surprisingly good results when adapted to be

parallel.

Their representation, however, is in terms of the

-adjacency matrix of the graph. This is a matrix A with

members a 1  whose rows and columns correspond to the

vertices. If there is an edge from vertex i to vertex j ,

then a..j is equal to one. Otherwise, a.. is equal to zero.

Non-directed graphs have symmetric adjacency matrices. The

representation of a graph by its adjacency matrix would of

course be possible in HEXVIS, however, HEXMS is organized in

a hexagonal array which (by design) lends itself more to the

solution of problems in a spatial domain. The solution of

problems represented in other ways using the HEIVIS message

passing paradigm is, I think, an intriguing area for further

study (see Chapter 7).

Banks r1 971]1 describes several cellular automata

systems. The foremost of his contributions ( in his own

judgement) is a two-state, four-neighbor rectangular system.

He has shown this system to be computationally complete,

i.e., it can perform any computation.
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Another significant contribution of Banks thesis is a

four-neighbor universal constructor/computer with only four

states (reduced from the previous eight states of Codd

[1963]). As far as I am aware, this result has not been

improved on.

Banks also discusses information transmission in

cellular automata systems. However, the techniques described

are more classical in the sense that the signal is carried by

a "wire" made up of special states. The signal also spans

several cells and carries a minimal amount of information,

whereas the messages in IEXIIIS are completely contained in

one cell (at any one time period) and carry an arbitrary

amount of information.

3.4 Message Passing

Farley [1979] discusses a message passing technique for

four-neighbor square cellular arrays called "gossiping". The

process of gossiping is described as follows: at discrete

units of time each cell can communicate with at most one of

its neighbors. An act of communication (called a "call")

between cells A and B results in both cells containing, at

the end of the time period, the union of the information

contained in A with that contained in B. Gossip is complete

when every cell knows the contents of every other cell in the

array. Results are derived for minimum gossip time and

minimum number of calls required.

'I
.., ' ' ' .. ' ' " ' . ... '- .? : :- ... ... .X 'L - -. ... ..
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Notice that this message transmission technique is

similar to the one used in HEXVIS in the sense that the

amount of information transmitted in one time unit is

unbounded. However the paths the information takes in

arriving at its many destination by gossiping is much less

regular (indeed, unspecified) than the paths in HEVIS.

Hewitt's [19761 actors are structures which communicate

by passing messages. Each actor has two (indivisible) parts:

a script, -which describes the action it takes -when sent a

message, and a set of acquaintance, which are the other

actors it knows about. An actor can send a message (whnich is

also an actor) to any of its acquaintances. This messageI passing process is the basis of all computation in the model

and is called "actor transmission"; the message is called

the "messenger" of the transmission; and the actor to whom

the message is sent is called the "target" of the

transmission. An important feature of this model is that

each actor has its own context, i.e., there is no concept of

a global state of all the actors. As an example of a common

function cast in the actor mold, consider the computation of

the factorial of three. A messenger (an actor) which knows

about the message "3" (another actor) and about the actor

"IC"I, to whom the reply should be sent, is sent to the target

actor "factorial". The factorial actor causes another

messenger with the message "16" (also an actor) to be sent to

C. The internal -workings and structure of the actors are

assumed to be unimportant; they are described only by their

I11
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input and output behaviors. Hewitt shows that actor

transmission is a powerful enough model to support these

types of actions: calling a procedure, obtaining an element

from a data structure, invoking a co-routine, updating a

data-structure, returning a value, synchronization of

communicating parallel processes.

I

1I
!I
*iI
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CHAPTER 4

PAIRWISE MESSAGE MATCHING ALGORITHMS

This chapter is concerned with one of the simplest

classes of algorithms which can be embedded in HEXIS$.

Members of this class compare all of the messages in a cell

in a pairwise manner each time unit. As it turns out these

algorithms are quite powerful. They are able to discover

(for instance) edges, corners, and axes of symmetry from

local gradient information.

The general form of these algorithms can be described as

follows: each time unit, each of the new messages is

compared to every other one. If the pair of messages satisfy

the particular relation in effect, a counter in the cell's

state is incremented by one. Then a similar process is
repeated by comparing each new message to each old one. If

this pair satisfies the relation, the counter is incremented

by one-half.

I'
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A couple of questions arise here. First of all -why

compare new messages to ol messages at all? As messages

propagate in the normal manner, they move outward from their

origin at the rate of one cell per time unit. The problem is

this: if the two -messages originate -from cells which are an

even number of steps away from each other, they will never be

in the same cell at the same time (see figure 16). The

solution is to (conceptually, at least) propagate a "ghost"

message behind the real message. This concept is realized as

described above -- by, comparing messages which will be

resident in the cell during the next time period with

messages which were resident during the current time period

-which amounts to the same thing.

t 4 4

cell 1 2 3 4 5 6

Figure 16 Messages Missing Each Other

The second question to be answered is: why is the

new-old match given only one-half the strength of a new-new

match? The reason for this is that if a pair of messages

satisfies this new-old type of relation in one cell, it will

-also satisfy it in an adjacent cell. Consider again figure

~~~~~ . . .. ................ - g~'



16S. At t =3, each of the messages is in the same cell that

* F its opposite number- was in during the previous time period.

Since both off these matches taken together really represent

* only one matching message pair, they are each given only half

the normal weight.

Incidentally, it is also possible and often desirable to

modify the increment (either one or one-half) further by

causing it to be inversely proportional to the time unit or

the square of the time unit. This modification has the

effect of producing messages which decay according to

distance traveled.

The next sections illustrate three sample algorithms of

the type described above. They find edges, Corners, and axes

of symmetry. For each of the algorithms described, I have

included an example of each one's output when applied to the

same rectangle.

4.1 Edge Finding

Figure 17a shows a rectangle embedded in the cellular

array. Each "10" in the figure represents a cell which has a

message with significant local gradient information. Notice

that two sides of the rectangle are missing some information.

This lack proves to be of little consequence in the processes

described here. These algorithms are relatively insensitive

to Missing information.
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b) Edges found

Figure 17 Edge Finding

I
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In order for a cell to consider itself an edge point, it

must accumulate evidence from the cells around it. The pairs

of messages which are considered evidence must have the

following characteristics: 1) they must be traveling in

opposite directions, 2) both of the local gradient directions

which are carried by the messages must be equal to each other

and perpendicular to the direction of travel, and 3) the

magnitude of the local gradients must exceed a certain

threshold. If these conditions are met, the appropriate

increment is added to the counter corresponding to that edge

direction in the state of the cell. When enough pairs are

accumulated (again exceeding a threshold value), the cell is

labeled an edge point. Of course, a cell can be an edge

point on two (or more) intersecting edges.

Figure 17b shows the result of the edge finding process

for the rectangle in figure 17a. The second thresholding

process has been suspended here so that we can see the number

of edga matches at each cell (minus one) Notice that the

cells which had no local gradients initially are now labeled

as edge points. The spreading of the edges of the rectangle

is caused by the quantization of message direction. A cell

receiving a message can determine its origin only to an arc

of about thirty degrees, so cells which are off the true edge

can still receive messages which appear to be traveling in

(in this case) horizontal or vertical directions. Of course,

these spurious matches will be fewer than matches on the true

edge, so thresholding can clean things up.

B



* 61

4.2 Corner Finding

Figure 18a shows the same sparse-edged rectangle as

before. This time, though, we are looking for right angled

corners (the extension to corners with angles other than

ninety degrees will be obvious). As in the case of edge

finding, the message pairs must satisfy certain criteria: 1)

the two messages must be traveling in directions which are

perpendicular to each other (or at whatever is the angle of

the corners -we are interested in finding) , 2) the local

gradient direction carried by the messages must be

perpendicular to the messages' directions of travel and must

both be pointed either inward or outward relative to the

angle formed by the directions of travel of the two messages,

,and 3) the magnitude of the gradients must exceed a

threshold.

The result of applying this process to figure 18a is

shown in figure 13b. The wide area covered by the "corner"

4 (which is due to the same effect that caused the edges to

spread out) at first glance looks like a real drawback.

However, the greatest number of matches occurs in the cells

which are precisely on the corners of the rectangle. (The

")"1 sign means "more than ten matches".) A second pass of

thresholding or, better yet, hill-climbing can qu.ickly zero

in on the true corner.

I AN
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4. 3 Axes of Symmetry

My final and perhaps most useful example from the

pairwise message matching class of algorithms is a process to

find axes of symmetry.

Blum [1967] has discussed a need to characterize figures

in a scene in some schematic way. His method, called the

"1symmetric axis transform", or more colloquially the "prairie

fire technique", can be visualized in the following way:

Imagine the object in the scene to be made of flammable

prairie grass. Then imagine starting a fLire along the

boundary of the o bject and allowing it to burn inward. The

set of points where the fire meets itself and dies out forms

a representation of the object. An equivalent and more

formal description is to define the resulting skeleton as the

set of centers of all circles which will fit inside the

figure but are not contained -wholly in any of the other

circles in the set.

As Waltz [1978] and others point out, the main problem

with the prairie fire technique is its high sensitivity to

small variations in the original figure. For instance,

figure 19 shows two rectangles, one of which has a notch, and

their prairie fire skeletons. lotice that the notch has

caused a rather large variation in the corresponding

skeleton.

C7,.
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F'igure 19 Prairie Fire Skeletons off Rectangle I
and Notched Rectangle
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The technique proposed here lacks this problem; similar

figures map into similar skeletons. As in the other cases,

the symmetry axis finder operates with the messages'

direction of travel and the local gradient information which

is carried as part of the message. The criteria in this case

are as -follows: 1) the messages must be traveling in

opposite directions, 2) the gradient direction carried by the

messages must be either parallel or anti-parallel to the

messages' direction of travel, and 3) once again, the

gradient strength must exceed a predetermined threshold.

Figure 20 shows the sparse-edged rectangle and the

result of applying the symmetry axis technique to it. Here,

the spreading of features is confined to the vertical axis of

symmetry. The reason the horizontal symmetry axis escaped

this fate is that the wavefronts of the messages met in such

a way that their flat parts contacted. In forming the

vertical symmetry axis, however, the wavefronts met corner to

corner, increasing the uncertainty of the messages' origin.

The algorithm as described above is tuned to symmetry

axes which are between parallel edges. However by modifying

the second rule, the technique can easily discover symmetry

axes between edges oriented in other directions.

p.4-
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4.4 Discussion

Although these techniques are useful, there is a need

for more powerful ones. The next chapter describes several

examples of embedded HEXIS algorithms to compute more

complex characteristics of scenes.

S -
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CHAPTER 5

HIGHER ORDER TECHNIQUES

In this chapter (as in Chapter 4), 1 iiscuss various

algorithms which can be embedded in HEXVIS. Theq algorithms

discussed here, however, are in most cases more complex than

those that examine messages in a pairwise manner. Such

techniques as constructing histograms for each cell based on

some feature of the messages which pass through it, creating

new messages headed in specific directions, destroying

messages which satisfy certain criteria, region growing and

so on, are considered. Some of these algorithms have been

programmed in HEXVIS, and some have not. For the ones which

have not been programmed, I describe the techniques

necessary. The techniques described here are by no means

exhaustive, but are meant to illustrate the wide range of

capabilities of the HEXVIS paradigm.

ii.
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5.1 Voronoi Tessellation

Given a dot scene (a scene consisting only of isolated

vertices), the Voronoi polygon associated with a dot consists

of all the points in the scene which are closer to that dot

than to any other dot. The borders of the Voronoi polygons

collectively form a Voronoi tessellation. (This should not

be confused with the underlying regular hexagonal

tessellation in which HEXVIS is embedded.) Ahuja r1980]

points out that the Voronoi tessellation gives rise to a

-quite natural notion of neighbors of the dots in the scene,

namely, a dot v' is a neighbor of v if and only if their

Voronoi polygons share a border. He contrasts this with

several other notions of dot neighbors such as considering

all dots less than a given distance R to be neighbors,

picking the K nearest neighbors, and minimal spanning trees.

HEIVIS can be programmed to find Voronoi tessellations

in at least two different ways. The first method propagates

messages only from those cells which contain the dots. The

idea is that when the messages collide, the cell in which the

collision takes place changes its state (indicating that the

cell is on the Voronoi tessellation), and the messages in the

cell are killed. Unfortunately, implementation of this idea

proved to be highly non-intuitive. The first implementation

had the problem that occasionally, the cells representing the

Voronoi tessellation were not connected, i.e., the Voronoi

tessellation contained gaps. This effect is due to the fact
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that HEXVIS uses a discrete array of cells rather than a

continuous medium. If messages are destroyed when they are

not alone in a cell, all their descendents will be aborted as

well. If, for instance, a message would have produced two

offspring at the next time period, one of those offspring

might be needed to meet with a message coming from another

direction in order to form part of the Voronoi tessellation.

If the message is not there, a gap forms. The effect is

especially pronounced when two neighboring (by sharing a

border of their Voronoi polygons) dots are on the convex hull

of the set of dots. Their common border should extend to the

edge of the cellular array, but since no message copies which

originated from these cells occupy any cell in common at

great distances (they are traveling in roughly straight lines

away from the midpoint of the two originating cells), no

border is formed. Another related problem is that the

message which would have met the offspring of the message

which was killed, itself lives on. It can travel through the

gap and possibly meet with another message in a similar

situation to form spurious Voronoi tessellation points.

There is a partial solution to this problem. That is to

not immediately kill of the messages which meet, but rather

mark them and let them propagate for one more time unit, at

which time they are killed (truly "marked men"). This method

produces Voronoi tessellations with far fewer gaps than

before.

I.
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The other way in which EXVIIS can be programmed to find

the Voronoi tessellation of a set of dots is a sort of region

growing technique. Again the messages are propagated only

from the dots, which are given a unique identifier (e.g.,

their address in the cellular array). The messages produced

in the cells carry with them their originating cell's

identifier and leave it in the state of cells through which

they pass. If the cell already has an identifier in its

state, the new one is not left, but the messages are not

killed. if a cell has two messages at the same time unit and

has not already found an identifier, it chooses the

identifier of the first message on its list, and, again, the

messages are not killed. This method seems to be a better

choice than the former method because gaps are not formed.

However if the borders of the regions rather than the

polygons themselves are desired, another layer must be added

to derive them from the regions. This is easily done.

Figures 21a and 22a show an arrangement of dots in which

both methods do a fairly good job of deriving the Voronoi

tessellations. Figure 21b shows the Voronoi tessellation

derived by the first method (collision) described above. The

"M"'s in the figure are the points at which the wavefronts

collide. Figure 22b shows the Voronoi tessellation for the

same arrangement of dots but derived by the second method

xregion growing) described above. The numbers in both parts

of figure 22 establish the correspondence between dots and

- voronoi polygons. I have circled each cell in figure 22b

.... .. ..kl " ' - ' '
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which corresponds to one of the original dots and have drawn

lines between the voronoi polygons.

Figures 23a and 24a show an arrangement of dots in which

the collision method does not do such a good job, but the

region growing method does. Notice that in the lower right

corner of figure 23b that there should be three separate

regions. Instead, there is just a blob of cells.

Furthermore, the cells do not even connect with the rest of

the tessellation. Figure 24b shows that the region growing

method can perform much better.

5.2 Prairie Fire Techniques

Blum ([1967] and [1978]) describes a function of an

object in a scene called the symmetric axis transform. I

will repeat the description given in the last chapter:

Formally, the transform can be described as the set of the

centers of all the circles which tre wholly contained in the

object but not wholly contained in any other circle of the

set. The transform has a more intuitive lescription. If the

object is imagined to be made of flammable prairie grass, and

surrounded by concrete, a fire started on the border of the

object will (if it burns at the same rate everywhere) burn

itself out on just those points which are elements of the

symmetric axis transform of the object. This (more

picturesque) description, of course, gives rise to the more

colloquial "prairie fire" label.
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Implementation of this technique in HEXVIS is quite

similar to the first method for implementing the Voronoi

tessellation. Here, messages are propagated from each point

on the border of the object (obtained by a lower layer).

Messages are propagated only toward the inside of the object

and are not allowed to produce a point (of the symmetric axis

transform) if they are carrying local gradients which point

in the same direction. This assures that messages from cells

on the border do not produce points everywhere inside the

obj act.

5.3 Area

The area of an object in the hexagonal array is defined

as the number of cells which compose the object. In the case

of 2onvex objects, an algorithm can be described which will

determine, at each cell in the object, the area of the entire

object. Consider binary scenes. We assume for the purpose

of this discussion that a binary scene can be obtained from

another scene by the use of some sort of filtering or

thresholding technique. I will speak of "1I-messages" and

"O-messages" to indicate that they originate respectively

from a cell which is part of an object and one which is not.

The method of determining the area of a convex figure is

for each cell to count the 1-messages as they pass through.

If the cell at some time period sees that all the messages

coming from a particular direction carry zeros (implying that

" ,~
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their originating cells are not parts of any object), then

the cell should stop counting 1-messages in that direction.

If it were to continue, the cell would run the risk of

counting 1-messages from another object in the scene.

This technique is not error-free. One problem with it

is that in some cases a cell could receive two 1-messages at

the same time from the same direction but from cells which

are part of separate objects. This could happen if (for

instance) both objects had elongated sections which were

close together (but not touching). Then a cell in one of the

objects in the direction of the elongation -would see no break

in the 1-messages. One way to avoid this problem is to

propagate messages only through areas which are similar to

their originating cells.

In the case of concave objects, the problem is more

difficult because some cells in the object will not be in the

"line of sight" of other cells in the object. These cells

might therefore experience breaks in the 1-messages from one

or more directions causing them to discontinue counting in

that direction even though subsequent 1-messages may

originate from the same object. Even in this case, there is

a possibility that the area can still be determined. That

is, if there is a cell (call it "C") in the object fromwhich

all other cells in the object can be "seen". C then will

determine the correct number for the area of the object. Of

course, the number it determines will be larger or equal to
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the numbers obtained by any of the other cells in the object.

This suggests a second layer to be applied in which the

numbers in each cell representing the (possibly incorrect)

area of the object are propagated as messages. If a message

passes through a cell containing an area greater than the one

in the cell, the new area is substituted. In this way all

cells in the object will eventually contain the correct area

because the messages originating in C which does have the

correct area eventually reach all the cells in the object

(for the same reason that the messages from all cells in the

object eventually reached C).

in the case of' the class of non-convex objects without a

cell C as described above, different techniques -must be

applied to determine the area. It may be though that in many

applications, one is guaranteed that the objects of interest

do not fall into such a class.

* 5.4 Texture

There are many ways to represent textural information.

See, for example [Ahuja, 1979], [Rosenfeld, 1976], and

[Haralick, 1978]. The technique described here assumes a

model of texture which is characterized by the distribution

of gradient directions and magnitudes.

My first attempt at texture identification and

discrimination employed a histogram technique. Each cell

contains its own twelve-element histogram which is stored in
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the cell's state. Each message in this technique carries the

local gradient direction and magnitude present in its

originating cell. As a message passes through a cell, the

histogram entry corresponding to the gradient direction

carried by the message is incremented. (Of course,

thresholding techniques would be useful here, too, to

sensitize the cells to a particular magnitude.) The hope was

that, given similar enough propagation time, similar textures

would have similar histograms. As a test of this techniq~ue,

I filled the cells in the array with random gradient

*1directions. These were formed into messages and propagated

in the usual way as the cells built up histograms. The
messages were allowed to propagate for six time units which
means that ninety-nine messages passed through each cell

(except the cells close to the edge, of course). Figure 25

shows several examples from the set of histograms generated.

These are typical of the histograms generated by this

technique. The features which one might expect to be similar

in such histograms are the number, location, and values of

maxima and minima, total number of messages which contribute

(although in this case, all cells generated messages),

average (again, in this case the same) and standard deviation

of the histogram entries, and so on . I is difficult to find

any features of the group in the figure which are similar.

If the messages were allowed to propagate for a longer time,

the histograms would give a more representative view of the

texture, but then there are the problems of losing resolution j



3. XXXXXX 1. XXXXXXXXX

5.XXXXXX 3. XXXXXXX
6. XXXXXXXXXXXX 4. XXXXXXXX

7. XXXXXXXXXX 7. XXXXXXXXXXX
9. XXXXXXXXXXX S. xxxxxxxxxxxxxxxxxx
9. xxxxxxxxxx 9. XXXXXXXX

10. Ix 10. xxxxxxxx
11. xxxxx 11. XXX
1 2. XXXXXXXX~XXX 12. XXXXXXXXXX

1. xxuxxxxxxx 1. xxxxxxx
2. XXXX 2. XXXXXXXXXXXX
3. XXXXXXX 3. XXXXXX
4. MXXXXX 4. XXXXXXXXXXX
5 . EXXXXXXXX 5. XXMxxxxx
6. XXXXXXXXXX 6. IXX
7. XXXXXX 7. XXXXXXX
9. U'XXXXXXXXXXXXX 9. xxxxxxxxxx
9. xxxxxxx 9. XXXXXXX

10. Ucxxxxxx 10. X-XXXXXX
11. XXXXXXXX 11. XXXXXXXXX
12. XXXXXXXXX 12. XXXXXXXXX

1. XXXXXXXX 1. XXXXXXXXX
2. XXXXXXXXX 2. XXXXXX
3. XXXXX 3. XXXXXXXX
4. XXXI 4. -XXXXXXX
5. XXXXXXXXX 5. XXXXXXXXXX
6. XXXXX 6. XXXXXXXXXXX

7. XXXXXXXXXXXX 7. XXXXXXXX
S . XXXXXXXXXXXXX 8. XXXXXXX
9. xxxxxxx 9. x

10. MX 10. XXXXXXXXXXXXXX
ll. XXXXX 11. IXIXIXIX
12. XXXXX 12. XXXXXXX

Figure 25 Histograms of~ Local Gradient Directions
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and errors at texture boundaries. As in the case of area, it

again might be possible to constrain the input so that some

feature does predominate.

There is another inherent limit to this technique,

however -- at least as compared to human ability. That is,

it can only discriminate textures that differ in Their

first-order statistics (of local gradient direction, in this

case). Julesz [1965] has pointed out that humans can

differentiate textures which have the same first-order

statistics but differ in their second-order statistics (i.e.,

how groups of texture elements occur as opposed to how they

occur singly).

A promising alternative to the previous method of

texture analysis is to use generalized cooccurrence matrices

([Dyer, 1979], [Davis, 1979]). The use of this tool

presupposes a different model of texture than assumed in the

former technique. In this case a textured area is considered

an arrangement of primitive texture elements. This model is

not always accurate, for example a rippled surface on a lake

is not easily describable in terms of primitive texture

elements. In this case generalized cooccurrence matrices may

not be as useful a tool. A generalized cooccurrence matrix

(GCM) describes the texture of scene in terms of how often a -.

feature is in the neighborhood of another feature.

"Neighborhood" is a term whose definition can vary. As an

example, consider the feature, gradient direction, quantized

I
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to (say) twelve levels (as in HEIXVIS). Let the neighborhood

be defined as the cells at a distance d. Then the GCM 3

consists of a twelve by twelve matrix in which an entry gij

is the iumber of times edge direction i occurs exactly d

cells from edge direction j. Notice that whhen d is

approximately equal to the size of the texture element,

information about the texture elements can be inferred from

the GCM. Other features which have been considered in

addition to edge direction are grey level and local edge

maxima.

The implementation of GCM' s in HEXVIS is

straightforward. Information on the feature of interest is

propagated in such a way that the cells are able to receive

the information from each cell in the neighborhood. If for

instance the cell's neighborhood consists of the cells a

distance d away (as above), the cells ignore the messages

passing through them until time unit d, when the messages

from all the cells in the neighborhood of each cell C are

resident in C. At this point, C is in a position to make a

contribution to row i of the GCM, where i is the gradient

direction contained in C originally. A second layer is now

applied in which this contribution to GCM is propagated.

There are two choices for the second layer process depending

on what is desired. If our goal is segmentation based on

local texture, the cells propagate the messages for d time

units. Then each cell can build its own GCM, which

characterizes the texture in its immediate neighborhood (of

..........
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radius 2d.). On the other hand, the goal -may be to generate a

*1 GCM for the entire scene, in which case, the messages are

propagated as far as possible, so that every cell has access

to the information in every other cell. Then all the cells

can construct a GOM.. This is of course somewhat wasteful,j

since each cell computes the same output. An alternative is

to not apply the second layer, but let a global processorj

examine the cells' contents.

5.5 Septrees

Septrees were discussed in CThapter 3 [Burt., 1979]. To] implement them in iHXVIS this assumption must be made: The

hexagonal array can be reformatted so that there are a

smaller number of cells, but the important information can be

retained. The goal is that one out of every seven cells will

become the site for a new cell containing information from

itself and its six neighbors. The new cells' sites are

arranged as shown in figure 26. In the figure the first

layer cells are all the numbered sites; the second layer

cells are all the sites with numbers 2 or greater; the third

layer cells are all the sites with number 3 or greater, and

so on. In the figure, all of the cells in each fourth layer

site are outlined. One of these is further subdivided to

show how the third layer and second layer is arranged. The

cells which are circled are the ones which form the sites for

the new (larger) cells. 'Notice how every other layer is

rotated slightly to the right.
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There are two ways this cell rearrangement :ou2l be

performed. The first way is simple in a software simulation

but not in a hardware realization. This method shifts the

desired information to one part of the array and only uses

the cells in that part. In this arrangement, each of the

cells used corresponds to a larger area than it did before.

A better way is to use higher level rules to influence

the behavior of message passing. I will first describe how

this can be done in general. Then I show that the full Dower

is not needed for this particular application. However,

applications in which the array shrinks at each layer can be

imagined.

A sort of virtual message passing scheme can be overlaid

on the cells in the array. In this scheme XMVIS would

essentially be simulating itself. Consider first the cells

numbered 2 or more in figure 26. To make these cells appear

to be neighbors, we add to the messages a pseudo-heading.

After three time units, the messages are in the proper cells

as well as several other cells. All the cells which are not

participating in the layer (all the cells numbered 1 in the

figure) destroy their resident messages. The other cells

determine which direction their resident messages are headed

by looking at the messages' pseudo-headings. These cells

then change the real heading of each of their messages to

propagate them in the proper direction to meet the correct

virtual neighbor. After three more time units, this process I

low l
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repeats itself. in this way HEXVS behaves as if it has

fewer cells, but can retain as much information as necessary

from lower layers. For convenience, I will refer to this

process as "compression". Of course, the disadvantage to

this scheme is that more time is required (a factor of at

least three) to propagate the messages.

I In the case of generating septrees, as I mentioned, we

do not need the full power of this propagation scheme, since

the messages are only required to propagate to the immediate

neighbors of th r originating cells. 7he septree is

generated by first causing a message to be generated with th e

information "black" or "white" depending on whether the cell

is part of an object or not. These messages are propagated

for one time unit. Then compression occurs. The cells which

are part of the second layer (they know who they are) form

new messages. These messages can be one of three types: 1)

black, if the cell and all six of its neighbors are black, 2)

white, if the cell and all six of its neighbors are white, or

3) grey, if neither of these cases obtains. In the grey

1 case, the cell forms an ordered tree with seven branches (a

septree) describing its own label and the labels of each of

its neighbors. This septree is included in the message which

it forms. There is one cell in the scene which has a number

higher than any other (5 in figure 26). As this process is

applied recursively, all the information converges there, and

this cell forms a message which is the 3eptree fr tne

I scene.
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CHAPTER 6

A PARALLEL SHRINKING ALGORITHM FOR

HEXAGONALLY TESSELLATED BINARY ARRAYS

Many parallel binary shrinking algorithms have been

described in the literature (LGolay, 1969], FLevialdi, 1972],

[Rao, 1976], [Rosenfeld, 1970]). The purpose of such

algorithms is to map a binary scene (that is, a scene whose

points are either ones or zeros, ones belonging to the

objects and zeros to the background) into a set of points

such that each connected part of the scene corresponds to one

and only one point. No unconnected parts of the scene are

allowed to merge and no connected parts of the scene are

allowed to become disconnected. The main use of these

algorithms (aside from their purely mathematical interest) is

to count objects in a scene, often in a biological setting

(e.g., chromosomes, blood cells, etc.).
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Rosenfeld proves several results about shrinking

algorithms in general -- both sequential and parallel.

However, in his discussion of parallel shrinking, he assumes

the objects are simply connected, i.e., they have no holes.

He also assumes that no zero-points can change to ones.

Levialdi presents a parallel shrinking algorithm which

uses a two by two neighborhood and compresses objects toward

the upper-right corner. All objects are compressed to a

point which is counted before it disappears. Since the point

does disappear, objects with other disconnected objects

wii thin them may also be shrunk to points. Levialli proves

Sthat his algorithm satisfies three criteria: 1) connected

objects will not split, 2) disconnected objects will not

merge, and 3) all objects will shrink to isolated points.

Rao, Prasada, and Sarma developed a parallel shrinking

algorithm which uses a three by three neighborhood. One

feature of this algorithm is its symmetry. Barring

interference from nearby objects, each object shrinks to a

point at its center. Although a proof is not presented, the

authors claim their algorithm satisfies the three criteria

mentioned for Levialdi's algorithm for any scene. In fact,

it does not. Their algorithm will not shrink objects which

contain other disconnected objects. The only ways this can

be done is to break the connectivity of the enclosing object,

let the single point disappear (as Levialdi does), or let the

enclosing object somehow shrink over the enclosed object.

740

• . f t *
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Breaking the connectivity of an object requires a global

'knowledge of the object's structure. This information is not

available locally, so this choice is out. Letting an object

shrink over another one can be done by moving the inside

object to a parallel array when it becomes a point. This is

essentially the same thing as removing it altogether except

that positional information is retained.

Golay presents (again without proof) an operator for

shrinking patterns on a hexagonal grid• However, the

operator will not shrink objects with holes, instead

transforming them to a set of connected loops one cell thick,

each loop corresponding to a hole in the original object.

The operator, like Rao, et. al's, shrinks objects in a

symmetrical manner. 3olay has an interesting way of assuring

that the rules do not interact in strange -ways. He

partitions the hexagonal array into three sets such that no

two points in any set are adjacent, then applies the operator

to the points in each set in turn. This technique also

allows him to perform parallel operations without using two
arrays. Figure 27 shows the subfields which are labeled "A",

"B", and "C". (This figure repeats figure 15 in Chapter 3.)

ABC ABC ABC ABC
C ABC ABC ABC AB
ABCABC ABC A3C
C ABC ABC ABC AB
ABC ABC ABC A3C
C A B C A B C A B C A B

Figure 27 Golay's Three Subfields I

rgiV
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All of the algorithms described above with the exception

of Golay's operate on binary scenes which are embedded in a

rectangular grid. The algorithm I describe 'like 3olay's)

operates on scenes in a hexagonal grid. As in Rao, Prasada,

and Sarma's algorithm, tine shrinks objects symmetrically,

collapsing them to a point in the center. The algorithm

works on any scene except those in which an object is

enclosed by another, although it would be trivially easy to

add another parallel array (as described above) and a

transition rule to move isolated points to this array.

One aspect of my shrinking algorithm which sets it apart

from most of the techniques developed for the =X7113 paradigm

is that this algorithm most closely resembles the classical

finite state cellular automata model. Of course it can be

',and is) imolemented as a program in HEXViS, but the

shrinking algorithm does not require MXVIS's full message

passing power. On the other hand, the algorithm as expressed

is not quite a true cellular automata system either. The

transition rules cycle through a set of three sets rather

than remaining constant from cycle to cycle. This last is a

minor point, though, since we can expand the neighborhood,

and collapse three cycles into one to produce a finite state

cellular automata, albeit with astronomical sets of states

and transitions rules. In any case, my description of the

process will be in the terms of cellular automata. The

reader should keep in mind the fact that this description can

easily be embedded in the HEXVIS paradigm.
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6.1 The Algorithm

Parallel shrinking is accomplished by applying a set of

transition rules to each point in the scene in parallel. If

the pattern of the point and its neighborhood matches one of

the rules, the point is complemented.

Figure 28 shows some typical rules. The significance of

the figure is that if a cell and its neighborhood matches the

arrangement of ones and zeros shown, the cell changes state.

0 0 10 11
01 1 101 101
0 1 1 1 1 1

Figure 28 Some Typical Transition Rules

Notice that zeros can be changed to ones as well as vice

versa. This feature is included so that holes in objects can

be filled allowing multiply connected objects to be shrunk.

Note that the only other way to delete holes in multiply

connected objects is to break the connectivity at some point.

This act, as I mentioned above, requires a global knowledge

of the object's topological structure before it can be

performed.

Each cycle of rule application is divided into three

subcycles. During each subcycle, a different subset of the

rules is applied. Why not apply all the rules at once?

Consider the two-cell object in figure 29. Each point in the

object has the point of view (judging by its neighborhood)

that it is on the end of a line segment. Since a line II
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segment end is a highly convex part of a figure, there exist

rules to change such points to zeros in order to contribute

to the shrinking of the object. Of course, if both points

change to zeros, the object would disappear instead of

shrinking to a point. To prevent this situation from

occurring there must be more than one subcycle so that the

two rules responsible for this shrinking are applied at

separate times. The reason I chose three subcycles rather

than two is due to a combination of a peculiarity of the

hexagonal grid and symmetry considerations (both to be

described later).

000
0110
000

Figure 29 Two-Cell Object

6.1.1 Centers of Gravity, Convexity, and Concavity

A concept which I have found quite useful when

discussing the shrinking algorithm is "center of gravity".

- When we change a one to a zero or a zero to a one, the center

of gravity of the ones in the cell and its neighborhood

shifts in some direction. If we consider only the

configurations whose connectivity is preserved by the change,

-- then the shift is restricted to the twelve clock directions

(or to no shift at all).

!
I
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1 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 C 1 O C 1 0 1 1 C 100 O0 00 01 1 1 1 1

Figure 30 Cases In Which Connectivity of the Cell's Neigh-
borhood Does Not Depend on the Cell's State

Figure 30 shows the six cases in which the connectivity

of the neighborhood of the cell C is not affected by the

cell's state. (Rotations of these cases are not shown but

the application of this discussion to them should be

obvious.) If we consider changing C from a zero to a one

"'the change from one to zero shifts the center of gravity in

the opposite direction), the center of gravity shifts in the

five o'clock, six o'clock, seven o'clock, eight o'clock, and

nine o'clock directions for the first five configurations

respectively. In the last configuration, the center of

gravity does not shift when the state of C changes.

With this discussion in mind, the rules can be

classified by the direction in which they cause the center of

gravity to shift. If a rule causes the center of gravity to

move in the four o'clock direction (for instance), it is also

said to cause the object to shrink from the ten o'clock

direction.

Two other concepts which will be important in later

arguments are those of "convex" and "concave" points. Again

referring to figure 30, if C is in the "one" state, then the

first, second, and third neighborhoods are said to be 7

M8
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"convex" and C is said to be a "convex point" and "on a

convexity". If C is in the "zero" state, then the third,

fourth, fifth, and sixth neighborhoods are "concave", and C

is said to be a "concave point" and "in a concavity". These

definitions apply in the obvious way to the rotations of the

neighborhoods.

6.1.2 A Problem

One problem I discovered while writing the program to

implement the shrinking algorithm is inherent to the

hexagonal grid. As in Rao, Prasada, and Sarma's algorithm, I

originally had two subcycles, each of which shrunk from

opposite sets of directions. I chose -the rules by

considering every possible pattern on the six cell

neighborhood (except for all zeros) for which the central

-ell's state did not affect the connectivity. I picked the

rules from these patterns such that when applied, they would

change a zero in a concavity to a one and a one in a

convexity to a zero. In running several test cases,

p I everything went well until I tried a large hollow hexagon.

To my chagrin the points just inside the six corners of the

1 hexagon oscillated between zero and one instead of continuing

inward and causing the hexagon to shrink.

The reason for this effect is subtle, and I will explain

this effect by comparing it to the corresponding situation in

I the (eight-neighbor) rectangular grid.

I.
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01 000 0001 0
01000 001 00
01 000 001 00
01111 001 00
00000 0001 0

Figure 31 Corners in Square and Hexagonal Arrays

Figure 31 shows a corner in both a square grid and in a

hexagonal grid. Applying the rules as described above to

figure 31 yields figure 32.

01 000 0001 0
01 000 001 00
01 1 0 0 00 1 1 0
001 1 1 00100
00000 0001 0

Figure 32 Corners After One Shrinking Step

In both cases, the change has apparently produced the

desired effect: the figures appear to be on their way to

becoming points. However consider what the change has

produced in the hexagonal case. The concave inside corner

has become convex. In contrast, in the rectangular case, the

convex corner has become a straight diagonal line which is

neither convex nor concave. Since the rules as originally

implemented for the hexagonal array filled all concavities

while eroding all convexities, on the next cycle, a rule was

applied -which changed the hexagonal scene back to what it was

originally.

B.
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At first, I thought I would have to be content with a

Scheme like Levialdi' s which compressed the objects

asymmetrically. However, I discovered an algorithm which was

made symmetric by leaving out certain rules and breaking the

cycle into three rather than two subcycles. The transition

rules which caused the problem come in six pairs. Figure 33

shows one of them.. The other five are obtained by rotation.

1 0 1 0
100 110
10 10

(a) (%b)

Figure 33 A Pair of Problem Rules

The symmetric solution comes from using only one of each

pair of rules. This is done by choosing only the rules from

the problem set which move the center of gravity in the three

o'clock, seven o'clock, and eleven o'clock iirections. So,

from the above pair, (a) would be chosen and (b) iiscarded.

These rules shrink the object toward its center and do not

interfere with each other in the manner described above. The

complete set of transition rules is shown in figure 34. Each

subcycle contains only rules which move the center of gravity

in one of four directions (if they move it at all). Subcycle

one moves the center of gravity in the two, three, four, and

five o'clock directions, subcycle two in the six, seven,

eight, and nine o'clock directions, and subcycle three in the

ten, eleven, twelve, and one o'clock directions. The rule
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O0 0 O00 0 1 0O0 0 1
01 1 001 0 001 1 001 1 001 1

00 01 00 01 01

10 11 10 11 100 1 1
1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1

1 1 1 0 1 1 1 0 1 0 1 1

subcycle 1

0 0 010 00 1010 1100
010 0 10 10 11
1 0 11 10 11

1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1
0 1 1 1 0 0 01 00 11

subcycle 2

1 0 0 1 1 0 1 1 1

0100 0010 110 010 110
00 00 O0 O O

01 1 0 01 00 00 1 1
1 0 1 1 0 1 00 1 1 0 1 00 1 1 0 1
11 11 11 11 11 11

subcycle 3

Figure 34 The Transition Rules

0 0 10 1 1

01 0 1 1 10 01 1
1 1 10 0 0

11 01 00
1 00 001 1 00
00 01 11

Figure 35 Rules Which Were Left Out

II
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representations are arranged within each subcycle so that the

eroding rules (the ones which change ones to zeros) are on

top and the hole-filling rules (the ones which change zeros

to ones) are on the bottom. Complementary rules are grouped

vertically. One of the rules (shown last in the figure)

appears in each subcycle. Notice that it has no dual

represented, for its dual would eliminate single points.

This rule is the only one which does not alter the center of

gravity. Figure 35 shows the rules which were left out.

These rules are grouped in a manner siailar to figure 34.

There are two imnortant features to notice about these

rules. ?irst, in any one subcycle, no two rules can move the

center ofgravity in opposite directions. Second, none of

the rules applied singly alters the connectivity of the

scene. These features will be important in the proof of the

algorithm.

b.2 Proof of the Algorithm

In this section I prove that when the rules shown in

figure 34 are applied in a cyclic manner (i.e., subcycle one,

followed by subcycle two, followed by subcycle three,

followed by subcycle one, etc.) and in parallel to a scene,

each object in the scene, with the exception of those objects

which completely surround other objects, shrinks to a point.
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First, I will show that repeated application of the

rules in cyclic order will not destroy the scene' s

connectivity. I consider the case of two disconnected

objects merging, then the case of one object splitting into

two disconnected objects.

Theorem 1: two disconnected objects can never merge by

application of the rules shown in figure 34 in the cyclic

manner described above.

Proof: Notice first that no single rule can disconnect

a connected object or merge two disconnected objects.

iowever, since the rules are applied in a parallel manner, it

might be possible that two adjacent cells could change

simultaneously in such a way that their connectivity

properties are altered.

I consider first the case of two disconnected objects

merging. We need not consider combinations of more than two

rules. Why is this? Suppose that the merging of any two

objects (X and Y, say) requires at least three cells (called

"A", "B", and "C") to change from zeros to ones to effect the

merging. Then one of these three cells (C, say) must be at

least two cells away from both X and Y, since if it -were

adjacent to one of them and also adjacent to either A or B,

then A or B would not be required, giving a contradiction.

Informally, we imagine a line of cells, (A, C, and 3, in that

order), running from object X to object Y, all of which must

change from zeros to one to connect X and Y. In order for C

ga. m[1
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to change from a zero to a one, it must have had cells in its

neighborhood which were ones, since no rule allows for

spontaneous generation of ones from all zero neighborhoods.

If this is the case, C is adjacent to yet another object Z

(not equal to I or Y since neither X nor Y have any cells in

C's neighborhood) which will merge with both X and Y but is

only two cells away from each of them. Therefore objects X

and Z (also Y and Z) merge by cells A and C (B and C)

changing to ones. This contradicts our original assumption

that the merging of two objects requires at least three cells

to change from zeros to ones. This argument holds for any

number of rules greater than two. Therefore, if the

application of two rules in parallel can not merge objects,

neither can the application of three or more.

For the parallel application of two rules to merge two

objects, the two cells which change to ones must connect one

cell on one object to one cell on the other object. The two

possibilities are shown in figure 36. These and their

reflections and rotations represent all the ways two objects

can be separated by two zero cells.

001
100 10 1

Figure 36 The Two Ways Objects Can Be Two cells Apart
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For the first case, refer to figure 37. There are three

ways for two rules to connect these objects: if y and z

* change to ones, if w and x change to ones, or if x ani y

change to ones. Notice that changing w and x to ones is the

same as changing y and z to ones modulo a one hundred eighty

degree rotation, so we need only consider one of these two

cases (w and x) giving a total of two subcases.

a b c w = x = y = z = 0, initially

7 z e

f gh

Figure 37 Case One

First, notice that all rules which change zeros to ones

fill concavities. Therefore, if w is to change from a zero

to a one, it must be the case that a and d are ones as well

(recall that y is assumed to be a zero) in order for there to

be a concavity which w could fill. For x to change from a

zero to a one, c must be a one, and either b or z must be a

one. But z is assumed to be a zero, and if b is a one, we

have a contradiction, since the objects would then be

*1 initially connected.

a b c x= y= 0, initially
1 xy I
d e f

Figure 38 Case Two

L i
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Figure 38 shows the second subcase. Here, x and y

(initially zero) must both change to ones to connect the

objects. For x to change to a one, there must be a concavity

for it to fill, so one of these must be true: 1) a and b are

ones, 2) a and d are ones, or 3) d and e are ones.

Case 1): If both a and b are ones, then since c must be

a zero (if c is a one, the objects are already connected),

y's change alone would cause the objects to become connected.

This can not happen because no one rule can alter

connectivity.

Case 2): If a and d are ones, then for y to change

state, it too must be in a concavity. The only way this can

happen without the two objects being connected beforehand is

for c and f to be ones and b and e zeros. But then, the

centers of gravity must move in opposite directions, which is

impossible in any one subcycle.

Case 3): The argument parallels case i) above.

Therefore, two disconnected objects can not merge.

Notice that the arguments made here apply also to my original

set of rules, i.e., the union of those in figure 34 and those

in figure 35 -- even if only two subcycles are used (as long

as no two rules in one subcycle move the center of gravity in

opposite directions). That is, even though objects may not

always shrink with the rules in that set, no two objects will

ever merge and (as is shown in the next theorem) no connected



object will ever disconnect.

Theorem 2: one object can never be split into two

disconnected objects by application of the rules shown in

figure 34 in the cyclic manner described above.

Proof: This result is in a fundamental way identical to

the previous one, since splitting an object into two by

applying rules which change ones to zeros is the exact dual

of merging two objects into one by applying rules which

change zeros to ones. The duality depends on the fact that

the rules, with one exception, form pairs with these

properties: I ) one of the pair can be changed to the other

by replacing all occurrences of ones with zeros and all

occurrences of zeros with ones, 2) one of the pair changes

zeros to ones while the other changes ones to zeros, and 3)

both rules in the pair shift the center of gravity in the

same direction. The exception mentioned above is the one °

rule which is applied during all the subcycles. This rule

changes zeros which are completely surrounded by ones to

ones. Notice that the dual of this rule if included would

cause isolated one-points to disappear (a change that would

not alter the the connectivity properties of the scene).

One might ask why, if the two sets of rules and the two

states (zero and one) are duals, any shrinking occurs at all

-- why don't the areas of zero state cells shrink? In fact

this does occur and is the reason holes in objects get

filled. However the symmetry is broken at the edge of the
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scene, i e. the neighborhood o f a Cell1 on an edge

effectively contains zeros in the positions where there are

no cells. If the situation were such that these cells were

assumed to be ones, and if the rule whic2h fills isolated

zero-points were replaced by its dual, the behavior of the

system would be reversed -- all disconnected zero areas would

shrink to isolated zeros with a "background" of cells in the

one state. In other words, objects in the scene would be

represented by zeros rather than ones.

Therefore, any result which depends on these rules is

simultaneously established for its dual if the proof of the

theorem does not take into account the fact that the "virtual

edges" are zeros or the rule which fills isolated zeros. In

particular the argument that an object will not be split into

two does not depend on these asymmetric aspects so the dual

result holds that two objects will not merge to fortn a single

object.

I will now show that simply connected ojects shrink to

points by defining "frontier lines" which always enclose the

(shrinking) object and which themselves move toward the

center of the object.

Definition: For any object A in the scene, the lines

oriented vertically, at sixty degrees to the left o f

vertical, and at sixty degrees to the right of vertical -and
positioned such that they pass through at least one border

point of A and through no interior points and such that they
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are to the left, to the upper right, and to the lower right,

respectively are called first, second, and third frontier

lines (respectively) of A. Collectively, these lines are

called the frontier of A. Figure 39 shows an example of a

frontier.

first frontier line

0 0 0 0 60 0 0o 0 0 0 0 0 0

0 0 Oil1 1 .0 0 0 0 0 " third frontier line

0 0 0 1 1 1 1 1 _1 0 0 0 0

0 0 Oil 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 l""0"0 0
0 0 010 1 1 I 00 0 0 0 0 second frontier line

0 0 0..0 0' 0 0 0 0 0 0 0 "

Figure 39 Frontier Lines

In many of the following lemmas I will consider the

first frontier line only. It should be understood that this

is done without loss of generality and applies equally well

to the second and third frontier lines.

Lemma 1: Frontier lines do not move away from the

object.

01 01 0 0 0 0 0 0 01 0 0 01
001 001 001 000 001 000 00 0 000
01 00 01 01 00 00 00 01

Figure 40 Possible Neighborhoods of a Zero-Point Next to
the First Frontier Line of an Object

II,
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Proof: Without loss of generality we consider the first

frontier line only. Figure 40 shows the possible

neighborhoods of a zero-oint which is next to the first

frontier line of an object. Since there are no rules to

change any of these zeros to ones, they will remain zeros.

Notice that this is one case where the removal of the rules

in figure 35 has an effect. In particular, the first

neighborhood shown above was a rule in the previous version

(the version which did not work).

Corollary: There are no "gliders" as in Conway's game

of life [Conway, 19701. That is, objects in the scene do not

undergo any translation but remain always within definite

predefined boundaries. I would conjecture that this

corollary implies the cellular space in which the shrinking

algorithm is embedded is not computationally complete, i.e.,

a computer (or a Turing Machine) can not be embedded in it.

Definition: One-points with neighborhoods shown in

figure 41 when they appear respectively on first, second, and

third frontier lines are called 1-, 2-, and 3-stragglers.

01 0 0 00 01 00 01
010 010 110 010 110 110

0 0 01 0 0 01 01 0 0

Figure 41 N-Stragglers Figure 42 N-Connectors

Definition: One-points with neighborhoods shown in

figure 42 when they appear respectively on first, second, and

3 third frontier lines are called 1-, 2-, and 3-connectors.
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Any one-point whose deletion would cause an object to split

in two is called simply a connector.

4

Lemma 2: With the exception of N-stragglers and

N-connectors, all points on frontier line N change to zeros

during subcycle N.

01 01 00 00 00 01 01
0 11 0 11 0 11 0 1 0 0 11 0 1 0 0 1 0
01 00 01 01 00 00 01

Figure 43 Possible Neighborhoods of a One-?oint on
the First Frontier Line of an Object

Proof: Figure 43 shows the possible neighborhoods for

one-points on frontier line 1. In all but the last two cases

(a 1-straggler and a 1-connector), a rule which is applied

during subcyCle 1 changes ones to zeros (see figure 34).

Therefore, we are left with one of two situations: 1 ) if the

frontier line N has no N-stragglers or N-connectors, it moves

inward when the rules in suboycle N are applied or 2) if the

frontier line N has one or more N-stragglers or N-connectors,

then after subcycle N the only one-points on frontier line N

are N-stragglers or N-connectors.

Lemma 3: After subcycle N, if the only one-points

frontier line N contains are N-stragglers, these one-points

will change to zeros during the next three subcycles, and the

Nth frontier line will move in.

L.
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I -straggler

0 ? ?-?Frontier
00?? line 1

01 O~l? ?001 010?
O1 010 ?
01~ 00 ? ?

I

Figure 44 The Only Convex Figure 45 A 1-Straggler
Point Allowed on
Frontier Line 1

Proof: First notice that since frontier lines do not

move outward, no zero-point on frontier line I can be in a

convexity except as shown in figure 44. There is no rule,

however, which will change this to a one-point. Therefore,

no new one-poin's can appear on a frontier line.

At subcycle two if the zero-point to the right of the

1-straggler (shown in figure 45) does not change to a one,

then the 1-straggler will change to a zero at subcycle three.

So suppose that zero-point does change to a one. In this '
case, the zero-point to the 1-straggler's lower right can not

change to a one because it would have had to do so during

subcycle two. So we enter subcycle one again with the

situation shown in figure 46, and the ex-l-straggler changes

to a zero.

01
0 1 1
0 0

Figure 46 An Ex-1-Straggler
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Theorem 3: All simply connected objects eventually

shrink to points.

Proof: Combining the above results, we see that for

objects without connectors, the frontier must move inward,

taking the object with it. However, for objects with

connectors or objects which develop connectors, we consider

the two parts of the object (which the connector connects)

separately. We may have to divide the object in this way

several times (e.g., in the case of spirals), but eventually

'e will arrive at a part of the object which is connected to

the resu by a connector but has no connectors itself. Since

this sub-object is connected to the rest of the object by

only one point, there must be ,on the "other side" of the

sub-object) at least one line analogous to the frontier lines

which serves the same purpose on a local level for this

sub-object. That is, this pseudo-frontier line will always

move toward the inside of the sub-object. At each cycle,

there is the possibility that the active pseudo-frontier line

may change, but eventually the sub-object will shrink toward

the connector. If the object (the whole object) has more

than one connector or the sub-object develops another

connector, the process is repeated.

Theorem 4: All holes (i.e., simply connected areas of

zero-points) in an object shrink to isolated zero-points and

disappear.
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:roof: Appealing as before to the duality of the rules

and of ones and zeros, we can see that all holes shrink to

isolated zero-points just as all simply connected objects

shrink to isolated one-points. The additional rule ,see

figure 47) wfh4ch is applied during all subcycles changes

these isolated zero-points to ones.

1 1
101
I1

Figure 47 Transition Rule Which Changes
Isolated Zero-Points to Ones

Theorem 5: All objects (except those which completely

surround other disconnected objects) shrink to single

isolated points.

Proof: Since no two disconnected objects can be merged

nor can any connected object be split in two by any number of

applications of the rules, the connectivity of the scene is

preserved. Since, for each object, any holes in it are

filled and its frontier lines move inward, the object must

shrink to a point. These facts imply that every object in a

scene will shrink to a point.

6.3 Examples

On the following pages are shown examples of the

operation of the shrinking algorithm. Figure 18 shows a

solid hexagon shrinking. Figure 49 shows the shrinking of a

In

..... d im Nil l 
I

. .. . .i-l . ..
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hollow version of the same hexagon. Notice that the hollow

hexagon takes only one cycle longer to shrink. It is my

conjecture that this is always the case, that is, that the

hollow version of an object will take at most one cycle

longer to shrink than its solid counterpart. Figure 50 shows

a spiral which is the same shape and size as the previous two

hexagons. The shrinking of this object takes one and

one-third cycles longer than the hollow hexagon.

Unfortunately, I do not have any general results to report on

a non-trivial upper bound for the number of cycles required

to shrink objects. My guess would be that a tightly coiled

spiral (as figure 50 represents' would be among the set of

objects with the longest shrinking times. This is an

interesting area for further study.

The final example in this section is shown in figure 51.

The objects represented are two interlocking spirals. Note

that they shrink to two separate points.

Mm° 6i
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,TNITIAL OBJECT) (CYCLE 1. SUBCYCLE 1.)

# # # #, # # # .# #
##q##1i i 71r## .#

# ## ###y#### # # # #####
# # # # y#y######## # # ## ## #

# # # # # ,# # #, # #

(CYCLE 1. SUBCYCLE 2.) (CYCLE 1. SUBCYCLE 3.)

#, # # # # # # # # # # # # ###
############ # # #,#,# # # # # # # # # #

,## # # #, # # # # # # # #
# # # # # # # # # #, #

if if if ,f ff if if if if if

CYCLE 2. SUBCYCLE 1.) 'CYCLE 2. SUBCYCLE 2.)

# # # # # ## # # #,# # # # #

- I'iffiffiffi #ififif##i

# #f # # # # # # # # # # # #

(CYCLE 2. SUBCYCLE 3.) (CYCLE 3. SUBCYCLE 2.)
iffiiffi #if# ,

iffii##if ifiiffiff
#####iif if#ffi##if
ii#####f if##ifi##if

########## # # # # # # # # # # #

#ifif ##if##$ffiff

~#i##if#

Figure 48 Shrinking of a Solid Hex cn

####L!LW
ififfiff~i# # #LAMfi
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(CYCLE 3S CYCLE 2.) (CYCLE 3. SUBCYCLE 3.)

# # #

# #, # # # # # # # #/

(0±CLE 4. SUBOYCLE 1.) (CYCLE 4. SUBCYC LE 2.)

# # ## ###

# # # # #

# ##

iI

(CYCLE 4. SUBCYCLE 3.) (CYCLE 5. SUBCYCLE 1.)

# # # # # # # # #/ ##'. ### ##, # # # # #
###### # # # ## # # # # # # # I
# # #/### i

#

(CYCLE 5. SUBCYCLE 2.) (CYCLE 5. SUBCYCLE 3.)

i## ##
#### # #
### # # ## # # ##

#

Figure 48 (continued) Shrinking o a Solid Hexagon

ilI
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(CYCLE 6. SUBCYCLE 1.) (CYCLE 6. StYBCYCLE 2.)

(CYCLE 6. SUBCYCLE 3)(CYCLE 7. SUBCYCLE 1.)

## #
# # ##

# # ### #(CYCLE 8. SU'BCYCLE 1.) (CYCLE 8. SUJBOYCLE 2.)

- #

&* #

Figure 48 (continued) Shrinking of a Solid Hexagon
Al

1 k__ ___ ___ __
w#



(CYCLE 8. SIBCYCLE 3)(CYCLE 9. SUBCYOLE 1.

(CYCLE 9. SIBCYbLE 2.) (CYCLE 9. STBOYCLE 3.)

#I
Figure 48 (continued) Shrinking of a Solid 'Hexagon
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(IN'ITIAL OBJECT) (CYCLE 1. SUBCYCLE 1.)

# ##f# ######

# iii # # if #

(CYCLE -1. SUBCYCLE 2.) (CYCLE 1. SUBCYCLE 3.)

# ## #fi

#fi# # #f
#f #f #f # ###

(CYCLE 2. SUBCYCLE 1. (CYCLE 2. StBCYCLE 2.)

# # ## #if#

igue4 Sif kn of a olw eao



(CYCLE 3. SUBOYCLE 2.) (CYCLE 3. SUBOYC LE 3.)

i# # #fi #if##

# i # i #f # #

# # # # ##

#fi# # #

#f ## # # 

(CYCLE 4. SUBCYCLE 1.) (CYCLE 4. SUBCYCLE 2.)

# #f~i # if#i
#f # i #f ## #if###
#if##i ## # # #

#f # # ## # #if##

(CYCLE 4. SUBCYCLE 3.) (CYCLE 5. SUBOYCLE 3.)

Fiue# (otne) hikn of aHllwHeao



(CYCLE 6. SIBCYCLE 1. (CYCLE 6. StBCYCLE 2.)

# # ## # # ###

(CYCLE 6. SUBCYCLE 3.) (CYCLE 7. SUBCYCLE 1.)

# # # #

# #

(CYCLE S. SiBCYCLE 1) (CYCLE 8. SUBCYCLE 2.)

Figure 49 (continued) Shrinking of a Hollow Hexagon
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(CYCLE S. SUBCYCLE 3)(CYCLE 9. SUBCYCLE 1.)

,##

(CYCLE 9. SUBOYCLE 2.) (CYCLE 9. SUBCYCLE 3.)

(CYCLE 10. SUBCYCLE 1.) (CYCLE 10. SUBOYCLE 2.)

(CYCLE 10. SUBCYCLE 3.)

Figure 49 (continued) Shrinking of a Hollow Hexagon
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(INITIAL OBJECT) (CYCLE 1. SUBCYCLE 1.)

#f##i# # # # # #

(CYCLE 1. SUBCYCLE 2.) (CYCLE 1. SUBCYCLE 3.)

############ ##
# # ## # # # ## #f # # # # #i# #
# ## # # #### #
# #i# # # # # ## #
if i # if # # #

ifi### i####

(CYCLE 2. SUBCYCLE 1.) (CYCLE 2. SUBCYCLE 2.)

if#f if f i

i#i# # #i i# #
if# # # # # # i #
# # # # # # # #

# ##if## # # ## #
#i # ## # # ### #

(CYCLE 2. SUECYCLE 3.) (CYCLE 3. SUBCYCLE 1.)

##

# ## # # ### #
i gr # if Srni if

if # # if#i if# i
if i## if ## if# if
if ## if

Figure 50 Shrinking of a Hexagonal Spiral
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(CYCLE 3. SUBCYCLE 2.) (CYCLE 3. SUBCYCLE 3.)

S # ## #

,# ### #

## #

(CYCLE 4. 3TJBCYCLE (.) (Y C LE 4. SLBCYCLE 2.)

~#

# ## # # # #
# # ## ## #

##### ### ##

(CYCLE 4. SUBCYCLE 3.) (CYCLE 5. SUBCYCLE .)

# ##
#### # # # # #### ###

# ### # # ### #

(CYCLE 5. SUBCYCLE 2.) (CYCLE 5. SUBCYCLE 3.)

### ### # # # # # # # # #

A # # # ,# # #

## ##

Figure 50 (contGinued) Shrinking of a Hexagonal Spiral

--1 m
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(CYCLE 6. SUBCYCLE 1.) (CYCLE 6. SUBCYCLE 2.)

## ## ## # #

(CYCLE 6. SUBOYCLE 3.) (CYCLE 7. StBCYCLE 1.)

## #~# # # # # # # ##

#. ## # # # # #
## # # # # # # # #

## #

(CYCLE 7. SUBCYCLE 2.) (CYCLE 7. SUBCYCLE 3.)

# # # ,
# ,# # # # # # #

### ###

(CYCLE S. SUBCYCLE 1.) (CYCLE S. SUBCYCLE 2.)

# ##

Figure 50 (continued) Shrinking of a Hexagonal Spiral

A "___-__________________________-,
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(CYCLE 8. SUBCYCLE 3.) (CYCLE 9. SUBCYCLE 1.)

## ###
## #

(CYCLE 9. SUBCYCLE 2.) (CYCLE 9. SUBCYCLE 3.)

# # # ##
#

(CYCLE 10. SUBCYCLE 1.) (CYCLE 10. SUBCYCLE 2.)

# ##

(CYCLE 10. SUBCYCLE 3.) (CYCLE 11. SUBCYCLE 1.)

Figure 50 (continued) Shrinking of a Hexagonal Spiral

II
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(CYCLE 11. SUBCYCLE 2.) (CYCLE 11. SUBCYCLE 3.)

4#

(CYCLE 12. SUBCYCLE 1.

Figure 50 (continued) Shrinking of a Hexagonal Spiral
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'INITIAL BJECT) C YCE . S CYcYcLE .)

# # ## # y y 4 #

(CYCLE 1. SUBCYCLE 2.) (CYCLE I SUBCYCLE 3.)

# # # # ### # y # ## # # # # # # 1 # # ## #4

' # ,# # # # # # # # #
' # # # # # # # # # # # # # # # # # # ,

## # ### # # # #
(CYCLE 2. SUBOYCLE 1.) (CYCLE 2. SUBCYCLE 2.)

# ## # ## ##' #'4#4# #

#1 # # # # # # #, # # # # # # # # # #

# ## # #y ## ' #~~ Y >4' ####

(CYCLE 2. SUBCYCLE 3.) (CYCLE 3. SUBC'YCLE 1.)

# # ## # ## # ##4 ' ## # 4 ##
~# # ## # # ## ######## #4''44# #4'# ##
# #### ### # # # # ## # # #
## # # 4' # ## # # # # # # # .

Figure 51 Shrinking of Two Interlocking Spirals
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'CYCLE 3. SUBCYCLE 2.) \,V YCI 3. SU3CYCLE 3.)

## # # # # ## # # #

@ # ## # # # # # # @## #
#### # # #

# ## ## ## # # # ## #

CYCLE 4. $UBCYCLE 1.) (CYCLE 4. SUBCYCLE 2.)

# # # # # # # # a#
4## 4

4YC 44 44UCCL . (4CL 44 4YCE .

# . # # # #
# # # # # # # # # ### #

# #4 # 4# # #4 #

4 # ### # # ## #4#4## #

(CYC LE 4. SUBCYCLE 1.) (CYC LE 4. SUBCYCLE 2.)

# ## # # ## # # # # # # ## # # 4# ## # 4

## # # # # ### ### # # #

(CYCLE 5. SUBCYCLE 2.) (CYCLE 5. SUBCYCLE 3.)

# 4

4 #44444444 4 #4444444

# # # # # # # # ## # # #

# # # # ## ## ## # # 7

Fig.re45 #(o t # 4i n o44 T

.#444444 . #44444.44

#4444 #44

44444 4# 4

4 4 ..... .. .. , . _ i
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,(CYCLE 6. SUBCYCLE 1.) (CYCLE 6. SUBCYCLE 2.)

## ~## #### ## ## ###
## # # # # ##
## # # # # ## # # ## # #

(CYCLE 6. StJBCYCLE 3)(CYCLE 7. SUBCYCLE 1.)

# ## # # # ## #

### ## ### ## #### ###
#### # ###

#### ##

(CYCLE 7. SUBCYCLE 2.) (CYCLE 7. SUBCYCLE 3.)

## # #

# ## # # # # # ###

# # # # 

## #

(CYCLE 8. SUBCYCLE 1.) (CYCLE 8. SUBCYCLE 2.)

## ##

t## ## ## ## ###

# # # ## ### ##
## # # ## # # # ##

#Figu### # ### 

## #
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(CYCLE S. SUBCYCLE 3.) (CYCLE 9. SUBCYCLE 1.)

# # #

# ####
## # ### ## ## # # # ## # # # #

## ## ## ###

# ### # ### ## ## # ## # # # ##

# # # ## #

(CYCLE 9. SUBCYCLE 2.) (CYCLE 9. SUBCYCLE 3.)

## # # # # # #

## ## #

# # # ## # #

### # # # ## #

# #

(CYCLE 10. SUBCYCLE I.i (CYCLE 1. SUBCYCLE 1.)

# ###### # # # #
# # #

Fiur 51# (cntnud Shikn f w nelckn prl

# ### # 1#
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(CYCLE 11. SUBCYCLE 2.) (CYCLE II. SUBCYCLE 3.)

## # #

# # # # # # ## # #

#

(CYCLE 12. SUBCYCLE 1.) (CYCLE 12. SUBCYCLE 2.)

# # # # # ## ~#### ## #

(CYCLE 12. SUBCYCLE 3.) (CYCLE 13. SUBCYCLE 1.)

## # #

(CYCLE 13. SUBCYCLE 2.) (CYCLE 13. SUBCYCLE 3.)

# # #
#

Figure 51 (continued) Shrinking of Two Interlocking Spirals Di
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(CYCLE 14. SUBCYCLE 1.) (CYCLE 14. SUBCYCLE 2.)

(CYCLE 14. SUBCYCLE 3.)

# #

Figure 51 (continued) Shrinking of Two Interlocking Spirals

I
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'CHAPTER 7

SUMMARY AN'D SUG~GESTION'S FOR FUTURE WORK

7.1 Summary

In this dissertation, I have presented a paradigm for

parallel processing of computer generated images. I n

addition, I have presented several examples of algorithms

which could be embedded in the paradigm. The system operates

as follows: A rectangular array of pixels (from a television

camera, say) is embedded in a hexagonal array Of processors

(cells) . Each cell then forms its information into a message

and broadcasts the message outward to the rest of the cells

in the array. The paths taken by the messages are governed

by a set of production rules such that the message's

YwavefrontI expands in the shape of a hexagon centered on the

originating cell. The system is synchronous, so the messages

move in discrete steps and all at the same time. Eventually,

if the messages are allowed to propagate for a long enough

time, each message passes through every cell in the array. A
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further property of the message propagation is that at the

point -when there are twelve copies of each message (i.e.,

after two time units) , each message is said to have one ofII

twelve "clock directions" (since the directions correspond to

those of the numerals on a clock face). These clock

directions are inherited by the messages' offspring so that

when a message enters a cell, the cell can tell from which

direction the message came.

Since the messages carry information from their cells of
origin, the cells they pass through can combine information

from many parts of the scene and make interesting deductions

about the scene. For example, with very simple algorithms in

which the cells examine resident messages in pairs, the

system can find edges, corners, and axes of symmetry. The

cells are not limited to being passive observers of the

message which pass through them. They (the cells) can be

programmed to generate new messages and destroy old messages

if conditions (under program control) warrant it.

With more complicated algorithms, the system can derive

such things as texture information and object areas from the

scene. Various transformations of the scene are also

possible. Some examples of these are fast fourier

transforms, Voronoi tessellations, prairie fire skeletons,

and septrees.

- - C .*
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The system is recursive in the sense that information

derived in the cells can be re-formed into messages and

broadcast in parallel from the cells. This process is called

"layering".

Another important part of this dissertation is the

parallel shrinking algorithm for hexagonal arrays presented

in Chapter 6. The algorithm transforms any binary scene

(with one class of exceptions) into a set of isolated points,

each of which corresponds to a connected object in the

original scene. The class of exceptions referred to above

contains those scenes in which one object completely

surrounds another. This algorithm shrinks objects with any

number of holes and is proven never to merge two unconnected

objects nor disconnect any connected object. A proof is also

presented that all objects (with the exception noted above)

shrink to isolated points. By removing and remembering the

locations of isolated points as they occur, completely

surrounded objects could also be dealt with.

7.2 Suggestions for Future Work

There are several directions in which my work could be

extended.

One problem with 0XVI S is its method of

programmability. At times, the results of directing the

system's behavior are somewhat counter-intuitive. An example

of this is the programming of Voronoi Tessellations by the

Mi ,
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collision method (see Chapter 5). I did not expect the gaps

in the lines of the tessellation. It seems that an

investigation into a special purpose high level language for

HEXVIS could be quite fruitful.

An extension to the HEXVIS paradigm which might greatly

increase its power is to remove the stipulation that the

cells operate synchronously. It is not clear how this change

would be accomplished. Possibly allowing messages to

propagate at different rates would be a part of it. Allowing

cells to in some sense "wake up" when a particular condition

occurs might also be required.

Other propagation schemes are certainly possible (e.g.,

the dodecagonal scheme of Chapter 2). I have mentioned that

a wavefront which is close to a circle is desirable. Another

possibility is to increase the resolution of the system by

increasing the number of directions available. The logical

extreme of this idea is for a cell which receives a message

to be able to pinpoint the message's origin exactly. In many

situations, this is a highly desirable goal. (This can be

accomplished with HEXVIS as it is now implemented. The cell

simply appends its coordinates to the messages it

generates.)

Of course, the development of parallel algorithms to fit

into the message passing paradigm of HEXVIS is quite

important. The question which arises here is: How much of

the work of a computer vision system could EXVIS be
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reasonably expected to assume? It is not obvious how high

level processes (such as knowledge representation *or

recognizing real world objects in a scene) could fit into the

HEXMIS mold. It is conceivable that HEXVIS could be a

vehicle for an ACTOR type system [Hewitt, 1976] which is

designed for high level processes. At the other end of the

spectrum, it seems clear that HEXVIS is quite useful for

lower level processes such as have been illustrated in this

dissertation. In this capacity, HEXVIS could certainly form

a part of a overall computer vision system.

Along a more theoretical vein, the shrinking algorithm

presented in Chapter 6 generates some very exciting

possibilities. First of all, the question of how many cycles

an object requires to shrink to a point is open. An upper

limit can be placed on this time for some objects, i.e.,

those without connectors and which do not develop connectors

during the course of their shrinking. That limit is 2N/3,

where N is the length of one side of the equilateral triangle

forming the object's frontier. However, I would conjecture

that this limit can be lowered to N/3+1. Other questions can

be posed, for instance: What class of objects do develop

connectors? Can the location of the final isolated point be

predicted more precisely than simply inside the object's

frontier? Is the cellular space represented computationally

complete? (Probably not, since no information can leave the

frontier of an object. Perhaps the frontier should have been

called the "event horizon".) For a given frontier, what does

• E/
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the object which takes the most time to shrink look like

(conjecture: a spiral)? In fact, the field of parallel

processing of hexagonal binary arrays in general (of which

shrinking is only one part) is quite fascinating.

Finally, the question of implementation of HEXVIS in

hardware poses some interesting problems, the main one being

how simple a machine is required to perform the functions of

one of the cells in the array. Some issues of global

communication have not been extensively considered here. It

is clear that some tasks are better handled by a system which

has a processor distinguished by being global to the others

(e.g., loading the initial updating function into HEXVIS).

This processor vould not necessarily be governed by the

message passing process in its communications with the other

cells.

__ _ __ -



138

REFERENCES

[Ahuja] Narendra Ahuja, Larry S. Davis, David L. Milgram, and
Azriel Rosenfeld, "Piecewise Approximation of Pictures
Using Maximal Neighborhoods", IEEE Transactions on
Computers, vol. C-27, no. 4, 1978.

[Ahuja] Narendra Ahuja, Mosaic Models for Image Analysis and
Synthesis, University of Maryland-T.D. Thesis, 1979-

[Ahuja] Narendra Ahuja, "Dot Pattern Processing Using Voronoi
Polygons as Neighborhoods", unpublished paper, 1980.

[Bajcsy] Ruzena Bajcsy, "Computer Description of Textured
Surfaces", Proceedings of the Third International
Conference on Artificial Intelligence, 1973.

[Banks] Edwin R. Banks, "Information Processing and
Transmission in Cellular Automata", MIT Project MAC
TR-81, 1971.

[Blum] Harry Blum, "A Transformation for Extracting New
Descriptors of Shape", in Models for the Perception of
Speech and Visual Form, Waithen Dunn, ed., MiM Fress,
1967.

[Blum] Harry Blum and Roger N. Nagel, "Shape Description
Using Weighted Symmetric Axis Features", PatternRecognition, vol. 10, pp. 167-180, 1978.

[Brigham] 3. 0. Brigham and R. E. Morrow, "The Fast Fourier
Transform", IEEE Spectrum, December, 1967.

[Brodatz] Phil Brodatz, Textures, Dover, New York, 1966.

[Burks] Arthur W. Burks, Essays on Cellular Automata,
University of Illinois Press, Urba'na, Illinois, 1970.

[Burt] Peter J. Burt, "Tree and Pyramid Structures for Coding
Hexagonally Sampled Binary Images", University of
Maryland Computer Science Center TR-814, 1979.

[Codd] E. F. Codd, Cellular Automata, Academic Press, New
York, 1968.

[Conway] John Conway, "Mathematical Games", (edited by Martin
Gardner), Scientific American, October, 1970.

[Davis] Larry S. Davis, M. Clearman, and J. K. Aggarwal, "A
Comparative Texture Classification Study Based on
Generalized Cooccurrence Matrices", Proceedings of the



139

Eighteenth IEEE Decision and Control Conference,
December, 1979.

[Davis] Randall Davis and Jonathan King, "An Overview of

Production Systems", Stanford Artificial Intelligence

Laboratory AIM-271, 1975.

[Deutsch] E. S. Deutsch, "On Parallel Operations on Hexagonal
Arrays", IEEE Transactions on Computers, vol. C-19,
pp. 982-983, 1970.

[Deutsch] E. S. Deutsch, "Thinning Algorithms on Rectangular,
Hexagonal, and Triangular Arrays", Communications of the
ACM, vol. 15, no. 9, pp. 827-837.

[Duda and Hart] R. 0. Duda and P. E. Hart, Pattern
Classification and Scene Analysis, Wiley, New York,
1973.

[Dyer] Charles H. Dyer, "Cellular Pyr amiis for Image
Analysis, 2", University of Maryland Computer cience
Center TR-596, 1977.

[Dyer] Charles H. Dyer, "Memory-Augmented Cellular Automata

for Image Analysis", University of Maryland Computer
Science Center TR-710, 1978.

[Dyer] Charles H. Dyer, Tsai-Hong Hong, and Azriel Rosenfeld,
"Texture Classification Using Gray Level Cooccurrence
Based on Edge Maxima", University of Maryland Computer
Science Center TR-738, 1979.

[Farley] Arthur M. Farley and Andrzej Proskurowski,
"Gossiping in Grid Graphs", University of Oregon
Computer Science Department CS-TR-78-12, 1979.

[Gardener] Martin Gardener, "Mathematical Games", Scientific
American, January, 1977, pp. 110-121.

[Golay] Marcell J. E. Golay, "Hexagonal Parallel Pattern
Transformations", IEEE Transactions on Computers,
vol. C-I3, No. 8, pp. 733-740, 1969.

[Gordella] L. Gordella, M. J. B Duff, and S. Levialdi,
"Thresholding: A Challenge for Parallel Processing",
Computer Graphics and Image Processing, vol. 6,f pp. 207-220, 1977.

[Halstead] Robert H. Halstead, Jr., "Multiple-Processor
Implementations of Message-Passing Systems", MIT
Laboratory for Computer Science TR-198, 1978.

[Haralick] Robert M. Haralick, "Statistical and Structural
Approaches to Texture", Proceedings of the Fourth
International Joint Conference on Pattern Recognition,

*



1 40

1 979.

[Hewitt] Carl Hewitt, "Viewing Control Structures as Patterns
of Passing Messages", MIT Artificial Intelligence
Laboratory AI Memo 410, 1976.

[Hewitt] Carl Hewitt and Henry Baker, "Actors and Continuous
Punctionals", MIT Artificial Intelligence Laboratory A!
Memo 436, 1977.

[Horn] Berthold K. P. Horn, "On Lightness", MIT Artificial
Intelligence Laboratory AI Memo 295, 1973.

[Hueckel] Manfred H.. Hueckel, "An Operator Which Locates
Edges in Digitized Pictures", Journal of the ACM,
vol. 18, no. 1, 1971.

[Ingram] Marylou Ingram and Kendall Preston, Jr., "Automatic
Analysis of Blood Cells", Scientific American, November,
1970.

[Julesz] Bela Julesz, "Texture and Visual Perceotion",
Scientific American, February, 1965.

[Klette] Reinhard Klette, "Parallel Operations on Binary
Images", University of Maryland Computer Science Center
TR-822, 1979.

[Kohler] Wolfgang Kohler, Gestalt Psychology, The New
American Library, New YorYF--7)5.

[Levialdi] S. Levialdi, "On Shrinking Binary Picture
Patterns", Communications of the ACM, vol. 15, No. 1,
pp. 7-10.

[Levitt] K. N. Levitt and W. H. Kautz, "Cellular Arrays for
the Solution of Graph Problems", Communications of the
ACM, Vol. 15, no. 9, pp. 789-801, 1972.

[Lindsay and Norman] Peter H. Lindsay and Donald A. Norman,
Human Information Processing, Academic Press, New York,

[LMarr] D. Mart, "Representing Visual Information", in A.

Hanson and E. Riseman (eds.) Computer Vision Systems,
Academic Press, New York, 1978.

P avlidis] Theodosios Pavlidis, "A Review of Algorithms for
Shape Analysis", Computer Graphics and Image Processing,
vol. 7, pp. 243-258, 1978.

[Pratt] William K. Pratt, Digital Image Processing, John
Wiley and Sons, Inc., New Yor, 77-.

[Preston] Kendall Preston, Jr., "Feature Extraction by Golay
Hexagonal Pattern Transforms", IEEE Transactions on

........ .. ... l ]-I .... ... " - = -- u - [1



141

Computers, vol. C-20, no. 9, pp. 1007-1014, 19'71

'Preston] Kendall Preston, Jr ., "nt ract-ive mage Process r
Speeds Pattern Recognition by Computer", Electronics,
October 23, 1972, pp. 89-98.

[Preparata] F. P. Preparata, "An Optimal Real-Time Algorithm
for Planar Convex Hulls", Communications of the ACM,
vol. 22, no. 7, 1979.

[Rao] C. V. Kameswara Rao, B. Prasada, and K. R. Sarma, "A
Parallel Shrinking Algorithm for Binary Patterns",
Computer Graphics and Image Processing, vol. 5,
pp. 265-270, 1976.

[Riseman] 3dward M. Riseman and Michael A. Arbib,
"Computational Techniques in the Visual Segmentation of
Static Scenes", Comnuter .raohDics and Image Processing,
vol. 6, pp. 221-276, 1977.

LRosenfeld] Azriel Rosenfeld, "Connectivity in Digital
Pictures", Journal of the ACM, vol. 17, no. 1,
pp. 146-160, 1970.

[Rosenfeld] Azriel Rosenfeld and Avinash C. Kak, Digital
Picture Processing, Academic Press, New York, 197T.

[Schachter] Bruce Schachter and Narendra Ahuja, "Random
Pattern Generation Processes", Computer Graphics and
Image Processing, vol. 10, pp. 95-114, 1979.

[Singleton] Richard C. Singleton, "On Computing the Fast
Fourier Transform", Communications of the ACM, vol. 10,
no. 10, 1967.

[Siromoney] Gift Siromcney and Rani Siromoney, "Hexagonal
Arrays and Rectangular Blocks", Computer Graphics and
Image Processing, vol. 5, pp. 353-381, 1976.

[Waltz] D. L. Waltz, "A Parallel Model for Low-Level
Vision", in A. Hanson and E. Riseman (eds.) Computer
Vision Systems, Academic Press, New York, 1973.

[Winston] Patrick Henry Winston, Artificial Intelligence,
Addison-Wesley, Reading, Mass.,T177T.

[Yonezawa] Akinori Yonezawa, "Specification and Verification
Techniques for Parallel Programs Based on Message
Passing Semantics", MIT Laboratory for Computer Science
TR-191 , 1977.

[Zucker] Steven W. Zucker, "Toward a Model of Texture",
Computer Graphics and Image Processing, vol. 5,
pp. 190-202, 1976.

I
k.



1 42

APPENDIX

A SHdORT HISTORY OF CELLULAR AUTOMATA

John von Neumann established the study of cellular

au-tomata in the early forties during his investigation into

self- repr oducin-rg machines [Burks, 1970]. I n order t o

i nvest-,iaatea this subject he needed a rigorously defined

description of both the primitive building units and their

environment and how they would interact. Von Neumann's first

idea was to imagine a sea with an infinite number of parts

floating randomly on the surface. The basic parts he had in

mind are the following: "and", "o", and "not" switches, a

one time unit delay element, a manipulating element, a

cutting element, a fusing element, a rigid element, and a

sensing element. An automaton composed of these elements is

called a "kinematic automaton". A kinematic automaton floats

on the surface of the sea, acquiring parts as it needs them

to construct -whatever its program directs it to.

r
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A Turing machine -an be simulated -with a kinematic

automaton using the switches and delays as the logical

elements. For the tape, a chain of rigid elements can be

formed with extra rigid elements at some of the intersection

points (see figure 52).

Figure 52 A Kinematic Chain

An intersection with an extra rigid element represents a "1

while one without an extra rigid element represents a "0".

Thus, the chain in figure 52 represents the binary number

011101011. The kinematic automaton, through use of its

sensing, manipulating, fusing, and cutting elements can read,

alter, and extend the tape taking new rigid rods from the sea

as needed. Since a machine M can be described totally by

lists of its parts and how they are connected, a description

of M, D(M), can be stored in binary form on a tape. Imagine

now a kinematic automaton Ms which will construct a machine

from a taped description, then copy its own tape and attach

it to the new automaton. If Msr is given a tape with its own

description, it will reproduce itself complete with a

self-describing tape.

-l
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The problem with the kinematic model is that it is not

rigorous enough. The bulk of the material which describes

the kinematic automata system (and hence requires

formalization) is concerned with the motion of the automaton

through the sea, the mechanisms of sensor-manipulator

coordination, etc. -- not really the most salient aspects of

self-reproduction.

The idea of cellular automata was suggested to von

Neumann by S. M. Ulam [Burks, 1970]. It lends itself fairly

easily to rigorous formalization while retaining features

important to the logic (although not necessarily the

physiology) of self-reproduction.

In describing a cellular automata system, it is first

necessary to describe the "cellular space". Intuitively, the

cellular space is an array of finite state machines called

"cells" (to be described shortly). Formally, it consists of

*a (usually infinite) set of cells and a neighborhood relation

on that set. The neighborhood relation gives, for each cell

C, a set of cells which are C's neighbors. Notice that this

relation could vary from cell to cell although usually, it is

quite regular.

The cells themselves are described by giving a finite

list of states for each cell, a distinguished state (called

the "quiescent" or "blank" state), and a rule which gives the

state of the cell at time T + I as a function of the states

of its neighbors and itself at time T. The quiescent state
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has the property that if a cell C and its neighbors are all

in the quiescent state at time T, then C will remain in the

quiescent state at time T + 1.

A particular cellular automaton, then, is described by

giving a finite list of cells along with each cell's initial

state. The other cells in the system are assumed to be in

the quiescent state.

In von Neumann's cellular automata system there are

twenty-nine states. He was able to show that a cellular

automaton whizh 2omputationally equivalent to a Turing

machine could be embedded in his system. Thus, the cellular

space is "computation universal". Furthermore, von Neumann

showed that the same automaton could reproduce any automaton

described by a tape, copy its own tape, and attach the tape

to the new automaton. Thus, the cellular space is

"construction universal". In particular, the automaton is

able to reproduce itself.

Im
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