~ DB FiLE copy

K.'-'ECURIT‘Y CLASSIFICATION OF THIS PAGE (When Date Entered)

- Y D
REPORT DOCUMENTATION PAGE UCTIONS

BE OMBLETING FORM
|.nzponrnuuaea Dz oovracc:snoﬁg 1 ooI:;oza Y
HPP80-26 AD-Aoq 5 - o
| 4. TITLE (and Subtitle) . oFRe OD COVERED
fﬁz — (k
< The Nature of Heutisticsl:D 9? Technical'v*Pl;)

S—RERFORMINGORG-REPONT NUMBER

7. AUTHOR(#) 8. CONTRACY OR GRANT NUMBER(S)
Ay 7
Douglas B. /[Lenat <

9. AME AND ADDRESS S

Computer Science Department
Stanford University
Stanford, California 94305

. CONTROLLING OFFICE NAME AND ADDARESS 12, REPORT DATE

Mathematical & Informations Sciences Div.| December 29, 1980
Office of Naval Research, 800 No. Quincy | """""""“@ 31

222117 30
MONITORING AGENCY N2 Wﬁnﬂl trom Controlling Oflice) 15. SECURITY CLASS. (of thie report)
-~

g\ H PP 43 ‘o‘}-{w“
k_,/\ -

ADAO9651 1

15a, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thls Report)

Acce;srl;n Fox-
NTIS CRA%L
DISTRIBUTION STATEMENT A DITC TAH x
Approved for public release; Usinnonnced '
Distribution Unlimited Junte _L«L. tieih— ..

——- e l e H< an me

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If ditferent {from Report)
L.

| ¥
VI
)
)

18. SUPPLEMENTARY NOTES H | A

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

Discovery, Learning, Inductidn, Meta-rules, Heuristics,

Knowledge, Expert Systems, Representation.
ELECTE
MAR 18 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Date lnm§ "

noglso 81 2 18 004

20. ABSTRACT (Continue on reverse side If necessary and identity by block number)

DD ,55%'5, 1473 zoiTion oF 1oV 6813 oBsOLETE
/N 0102-LF-014.8601

&)

>
3.9

DISTRIBUTION STATEMENT A : ‘ Tl C
Approved for public release] D

Distribution Unlimited ELECTE 3
MAR 18 1981 %

-

The Nature of Heuristics

Douglas B. Lenat!
Mecember 29, 1980

éﬂrc bottleneck of building expert systems is knowledge acquisition, and one long-range solution is
for the program to learn via discovery. New domains of knowledge can be developed by using
heuristics, yet as they emerge new heuristics are nceded. ‘I'hey in turn can be discovered by using a
body of heuristics for guidance. How exactly does this process work? Must there be a separate
body of "meta-heuristics™? How int>riwined are heuristics with Representation of knowledge? In
trying to find new heuristics, is it cost-ctfective to try to improve the cxisting representation of
knowledge. and if so how can this be automated? What is the nature of heuristics, their “first-order
theory™? What arc the implications of such a theory upon the design of a program which discovers
new heuristics? These questions are among those that our research -- and this paper -- address,

1. MOTIVATION

Scveral recent programs in Artificial Intelligence (AI) perform complex tasks demanding a large
corpus of cxpert knowledge [Feigenbaum 77). Consider, for example. the PRUSFECTOR program for
cvaluating the mineral potential of a site. the MYCIN pregram for medical diagnosis, and the
MOI.GEN program for planning experiments in molecular genetics. To construct such a system, a
knowledge engineer talks to a human expert, extracts domain-specitic knowledge, and adds it to a
growing knowledge: basc usable by a computer program (sce Fig. 1). The critical stage of this
process, the limiting step, is the transfer of expertise. From the program’s point of view, the
limitation is the slow rate at which it acquires knowledge. This is the central problem facing
knowledge engineering today, the bottleneck of knowledge acquisition.

\
HUMAN KNOWLEDGE / KNOWLEDGE-BASED
EXPERT // ENGINEER \ PROGRAM

Figure 1: ‘The hottleneck of knowledge acquisition is transfer of expertise. This compriscs () the
expert’s difliculty in articulating what he knows, and (i) the impedance mismatch between the
concepts and vocabulary of the cxpert and the knowledge cngincer.

‘Two possible solutions to this problem sugzest themselves (though they are not mutually exclusive.)
IYiest, one might try sonmichow to widen the channel jeining expert to program, for cxample by
building a scphisticated natural Janguage interfice.

The difficulty with this is that the expert must communicate not mercly the "facts” of his field, but
also the henristios: the informal judgmental rules which guide him, These are rarcly thought about
concretely, aml almost never appear in journal articles, texthooks, or university courses. Thus, even
with a wider channel, the espert would have ditficulty in verbalizing his heuristics,

!
Fihe amber B anoasst, prostiessor of computer scienee at Stantord University, Stanford, Ca, 94405,

I'he second possible solution is to sever the umbilicus entirely: climinate the knowledge engincer
and‘ the human expert, expose the program (o the cnvironment, and let it discover new knowlcdge
on its own, Can this be donc? Since knowledge compriscs bath facts and heuristics, the question
divides into two parts: can new domain concepts and relationships be discovered, and can new
domain heuristics be discovered? ‘This paper is addressed to these questions, and it presents
evidence that the answers arc affirmative.

Along the way, an clementary “theory of heuristics” accrues. Our initial definition of a heuristic is:
a picce of knowledge capable of suggesting plausible actions to follow or implausible ones to avoid.
In Scction 3, it becomes apparent that this is insufficient; for a body of heuristics to be cffective
(uscful for guiding rather than merely for rationalizing in hindsight) each heuristic must specify a
situation or context in which its actions are cspecially appropriate or inappropriate. The theory
developed in Section 5 is based on this definition.

2. OVERVicW

2.1, The Central Line of the Argument

1. New domains of knowledge § can be developed by using heuristics. Radically new concepts and
relations connecting them can be discovered by cmploying a large corpus of heuristics both to
suggest plausible actions and to prune implausible ones. To accomplish this requires heuristics of
varying levels of gencrality and power, an adequate representation for knowledge, some initial
hypotheses about the nature of domain §, and the ability to gather data and test conjectures about
that domain.

2. As new domains of knowledge emerge and evolve, new heuristics are needed. A ficld may change
by the introduction of some new device, theory, technique, paradigm, or obscrvable phenomenon;
cach timc it docs so, the corpus of heuristics usctul for dcaling with that ficld may also change.
Consider the body of heuristics useful in planning a trip from San Francisco to Bern. Over the last
century, many new ones have been added, and many old ones have undergone revision.

3. New heuristics can he developed by using heuristics. The first tvo points imply that new
heuristics must be discovered. How is this done? Since "Heuristics” is a domain of knowledge, like
Electronics, or Mathematics, or ‘I'ravel planning. perhaps all that is nccessary is to set 8 =1euristics
in (1) "U'hat is, let the ficld of heuristics itself grow via heuristic guidance, "To do this would require
many types of heuristics (some quite gencral, somc specific to dealing with other heuristics, cte.), an
adequate representation for heuristics, and some hypotheses about the nature of heuristics.

4, As new domains of knowledge emerge and evolve, new representations are needed. Just as the
potency of a fixed body of heuristics decreases as we move into new ficlds, so too does the potency
of whatever scheme is being used to represent knowledge. Representations must evolve as domain
knowledge accretcs.

5. New representations can be developed by using heuristics. Points (1) and (4) imply that new
representations for knowledge must be devised from time to Gime, and that existing scliemes must
change. How can this happen? Since "Representation of knowledge” is o ficld, just as is
Matheniics, or Plectronics, or Heuristics, or ‘Fravel planning, perhaps we: can somchow sct
S=Representation in (1) “that is, allow heuristics to manage the devclopment of new
representations,

The linal point is that there is no sixth point to make. The preceding five statements comprise a
rescitrch programme o follow, one plan of attack upon the centrad problem, the bottleneck of

automatic knowledge acquisition,

Other dircctions of attack are promising, and are being pursued vigorously by several Al
rescarchers. For most ficlds, some necessary component required by (1) above is missing (c.g., the
automatic acquisition of data is awkward or impossiblc). In such cases, the human expert must be
preserved “in the loop” of Figure 1. Any aids for interviewing the expert are then quite important,
tools which faucilitate the manual knowledge acquisition process depicted in Figure 1. Indeed,
much recent Al activity focuses on developing such tools: AGE, EMYCIN, EXPERT, HEARSAYIIL, RLL,
ROGET, RosiE, and the various knowledge representation languages.

This paper presents work to date, by the author, along the research programme outlined in Figu.e
2. Although the development parallels the ordering given therein, the amount of space devoted to
cach point is not uniform. Much of the paper is concerned with recounting the experience of
building AM, a computer program which scarches for intcresting new concepts and conjectures in
clementary mathematics (point (1); see Figure 2 below). The analysis of AM's eventual demise
provides an illustration of (2). Much of the remainder is used to develop the rudiments of a theory
of heuristics, which theory is required for (3). The paper closes with a detailed example illustrating
(3), (4), and (5).

(1) New domains of knowledge 6 can be developed by using heuristics.

(2) As new domains of knowledge emerge and evolve, new heuristics are needed.
(3). New heuristics can be developed by using heuristics.

(4) As new domains of knoviledge emerge and evoive, new representations are needed.
(5) New representations can be developed by using heuristics.

Figure 2: Automatic knowledge acquisition via discovery

2.2. Controlling the Use of Heuristic Knowledge

There is an implied “control structure” for the processes of using and acquiring knowledge (solving
and proposing problems, using and discovering heuristics, choosing and changing representations,
etc.) In fact, it's a nontrivial assumption that a single control loop is powerful enough to manage
both types of processes. Our cxpericnces with expert systems in the past [Feigenbaum 77] have
taught us that the power lies in the knowledge, not in the inference engine.

What is that topmost control loop? It assumes that there is a large corpus of heuristics for choosing
(and shifting between) representations, From time to time, some of these heuristics evaluate how
well the current representations are performing (c.g.. is there now some operation which is
performed very frequently, but which is notoriously slow in the current representation?) At any
moment, if the representations used seem to be performing sub-optimally, some attention will be
focused on the problem of shifting to other ones, maintaining the same knowledge simultancously
in multiple representations, devising whole new systems of representation, ctc. Similarly, we assume
there arc scveral heuristics which monitor the adequacy of the existing stock of heuristics, and as
nced arises formulate (and eventually work on and solve) tasks of the furm "Diagonalization is used
heavily, but has no heuristics associated with it; try to find some new specific heuristics for dealing
with Diagonalization”. A typical rule for working on such a task might say “To find heuristics
specific to C, try to analogize heuristics specific to concepts which were discovered the same way
that C was discovered”,

It is assumed that these representation heuristics and heuristic heuristics have run for a while, and
the system is in a kind of cquilibrium. ‘Ihe representations employed are well suited to the tasks
being performed, and the heuristics being followed serve as quite cffective guides for "plausible

move generation” and "implausible move climination.” ‘The'system now proceeds for a while
aiong its object-fevel pursuits . whatever they may be (proving theorems in plane geometry,
discovering new concepts in programming, ctc.) Gradually, the object level may cvolve: new
concepts will be uncovered and focused upon, new laboratory techniques will be discovered, long-
standing open questions will be answered, etc. As this occurs, the old representations for
knowledge, and the old set of guiding heuristics, may become less ideal, less effective. This in turn
would be detected by some of the "meta”-heuristics discussed in the last paragraph, and they would
causc the system (o recover its cquilibrium. to scarch for new representations and new heuristics to
deal cffectively once again with the objects and operations at the object level.

In other words, new concepts, conjectures, theorems, etc. cmerge all the time; as they are
investigated, some turn out to be useful and some turn out to be dead-ends; using a fixed set of
guiding heuristics, the ratec at which useful new discoverics arc made will decline gradually over
time; cventually it's worth pausing in the scarch for domain-specific knowledge, and turning
instcad to the problem of finding new heuristics (perhaps by articulating experiences to date in the
task domain), The discoverer later returns to his original task, armed with new and hopcfully
morc powerful heuristics. ‘T'his cycle of looking for domain concepts, occasionally punctuated by an
cffort to find new heuristics, continues until, gradually, it becomes harder and harder to find new
heuristics. At that point it becomes worthwhile to look for new and different representations for

knowledge.

The top-level control structure is thus homeostatic: detecting and correcting for any
inappropriateness of representations empleyed or heuristics ecmployed. For these purposcs, we
believe it suffices to have (and use) a corpus of heuristics for guidance. Of course that ten level
loop could itself be implicitly defined by a set of heuristic rules, and we would expect such 1ules to
change from time to time, albeit very slowly. If, for exampic, no new concepts or opcraticns were
defined at the object level for a long period of time, then the nced for close monitoring of the
adequacy of the representations being employed would evaporate. One important point is that it is
not nccessary to distinguish meta-heuristics from object-fevel heuristics: they can be represented the
same way, they can be managed by the same interpreter, ctc. For example, the very general
recursive rule "To specialize a complex construct, find the component using the most resources, and
replace it by scveral alternate specializations” applies to specializing laboratory procedures,
mathematical functions, heuristics (including itscifl), and representational schemes.

3. Heuristics used to develop new knowledge

"How was X discovered?” When confronted with such a question, the philosopher or scientist will
often retreat behind the mystique of the all-secing ['s: Hlumination, Intuiton, and Incubation. A
difterent approach would be to provide a rationalization, a scenario in which a researcher proceeds
reasonitbly from one step to the next, and ultimately synthesizes the discovery X, In order for the
scenario to be convineing, cach step the researcher takes must be justified as a plausible one. Such
justifications are provided by citing heuristics, more or less general rules of thumb, judgmental
guides to what is and is not an appropriate uction in some situation,

for example, consider the heuristic in figure 3. It says that i a function F takes a pair of A's as
arguments, then it's often worth the time and cnergy to define g(x)=x.x). that is, to se¢ what
happens when s arguments coincide. £ is multiplication, this new function turns out to be
squaring; if' £ is addition, g is doubling, If £ is union or intersection, g is the identity function; if F
is subraction or exclusive-or, g is identicully zero, ‘Thus we sce how two usclul concepts (squaring,
doubling) and four important conjectures might be discovered by a rescarcher employing this simple
heuristic,

IF f:AxA-> B, ,
THEN define g:A-> B as g(x)=f(x,x)

Figure 3. A hcuristic which leads to useful concepts and conjcctu’rcs

Elsewhere [Lenat 79], we describe the uses for a heuristic which says “If f:4---28B, and there is some
extremal subset b of B, Then define and study [Ib). If £ is Intersection. this heuristic says it’s
worth considering pairs of sets which map into extremal kinds of sets. Well, what’s an extremal
kind of set? Perhaps we already know about extremely small scts, such as the empty set. Then the
heuristic would causc us to define the relationship of two sets having empty intersection -- i.e,,
disjointness. It f is Employed-as, then the above heuristic says it's worth defining, naming, and
studying the group of pcople with no jobs (zero is an extremely small number of jobs to hold), the
group of people who hold down more than one job (two is an cxtremely large number of jobs to
hold). If f is Divisors-of, then the heuristic would suggest defining the set of numbers with no
. divisors. the sct of numbers with onc divisor, with two divisors, and with three divisors. The third
of these four sets is the concept of prime numbers. Other heuristics cause us to gather data, to do
that by dumping cach number from 1 to 1000 into the appropriate sct(s), to reject the first two sets
as too small. to notice that every number in the fourti set is a perfect square, to take their square
roots, and finally to notice that they then coincide precisely with the third set of numbers. Now
that.we have the definition of primes, and we have found a surprising conjeciure involving them, we
shall say that we have discovered them (note that we arc nowhere near a proof of that conjecture).

Of course the above instances of discoveries arc really just reductions. We can be said to have
reduced the problem “How might Squaring be discovered?” to the somewhat simpier problem
"How might Multiplication be discovered?” by citing the heuristic in Figure 3. Similarly, we
reduced the problem of discovering Primes to the nroblem of discovering Divisors-of. Such
reductions could be continued, reducing the discovery of Divisors-of to that of Multiplication,
thence to Addition or Cartesian-product, and so forth. Eventual!,, we would go down all the way
“to our conceptual primitives, to concepts so basic that we feel it makes no sense to speak of
discovering them. Sec figure 4.

PRIMES

l
Vv

DIVISCl)RS-OF
l

\'%
TIMES
A
/ N\
/ N\
/ \
P}‘US CA RI'I'ESMN PRODUCT
Y v

Fizure 4. Reducing cach concept’s discovery to that of a simpler one. Note that multiplication can
he discovered if the rescarcher krnows cither addition of numbers or Cartesian products of scts.

Why, then, is the act of creation so cherished? If some significant discoveries are merely onc or two
"heuristic applications” away from known concepts, why are even one-sicp discoveries worth
communicating and getting excited about? ‘I'he answer is that the discoverer is moving upwards in
the tree, not downwards, He is not rationalizing, in hindsight, how a given discovery might have
been madc; rather, he is groping outward into the unknown for some new concept which scems to
be useful or interesting. ‘The downward, analytic scarch is much more constrained than the upward,
synthetic one. Discoverers move upwards; axiomatizers, colonizers, and pedagogues move
downwards. Secc Figure 5. Fven in this limited situation, the rescarcher might apply the "Repeat”
heuristic to multiplication, and go off along thc vector containing cxponentiation, hyper-
exponentiation, etc. Or hc might apply "look at inversc of extrema” to Divisors-of in several ways,
for cxample looking at numbers with very. many divisors.

Once a discovery has been made, it is much casicr to rationalize it in hindsight, to find some path
downward from it to known concents, than it was to make that discovery initially. That is the
cxplanation of the phenomenon we've all experienced after working for a long time on a problem,
the fecling " Why didn't I solve thar sooner!” When the reporter is other than oursclves, the feeling
is more like "/ could have done that. that wasn't so difficult!” 1t is the phenomenon of wondering
how a magic trick ever fooled us, once we've scen the method. [t enables us to follow mathematical
proofs with a false sense of confidence, being quite unable to prove similar theorems. It is the
rcason why we can use Polya’s heuristics [Polya 45] to parsc a discovery, to explain a plausible route
10 it, yet feel very tittle guidance from them when faced with a problem and a blank piece of paper.

There still is that profusion of upward arrows to contend with. One of the triumphs of Al has been
finding the means to muffle a combinatorial explosion of arrows: onc must add some heuristic
guidance criteria. That is, add some additional knowledge to indicate which directions are expected
to be the most promising ones to follow, in any situation. So by a heuristic, from now on, we shall
mean a contingent picce of knowledge, such as the top entry in Figure 6, rather than an
unconstrained Polya-esque maxim (6b). The former is a heuristic, the latter is an cxplosive.

ot/ \ Ot/

\ / \]/

\ / \ |/

PRIMES NUMBERS-WITH-MANY-DIVISORS
\ ot/

\ / N7

|
\ / \ |
DIVIS-OF EXPONENTIATION
\ t / /7
\ //
\ / 7/
PARTITION TIMES /
1 / * /
N / | 7
A \ |/
PL.US CAR'TESIAN PRODUCT

Figure 5. ‘I'he more cxplosive upward scarch for new concepts

(a) [F the range of one operation has a large intersection with the domain of a second,
and they both have high worth,
and either there is a conjecture connecting them or
the range of the second operation has a large
intersection with the domain of the first,

THEN compose them and study the resuit.

(b) Compose two operations and study the result.

Figure 6. A contingent heuristic rule and an cxplosive one.

There is a partial theory of intelligence here, which claims that discovery can be adequatcly guided
by a large collection of such heuristic rules. [n particular, mathematical discovery may be so
guided. To test this hypothesis, we designed and constructed AM, a LISP program whose task was
to explore clementary finite set theory: gathering empirical data, noticing regularities in them, and
defining new concepts. AM is well described elsewhere [Lenat 79, and a very brief recapitulation
here should suffice.

AM began with one hundred sct theory concepts. This included static structures (scts, bags, lists)
and many active operations (union, composition, canonize). For each concept, we supplied very little
information besides its definition. In addition, AM contained 243 hcuristic rules for proposing
plausible new concepts, for filling in data about concepts, and for evaluating concepts for
"interestingness”. Among them are the two heuristics we saw earlicr, for looking at the inverse of
extrema and for looking at the new function g(x) =4 fx,x).

During the course of its longest run (a couple hours), AM defined scveral hundred concepts, about
half of which were reasonable, and noticed hundreds of simple relationships involving them, most
of which were trivial. AM found scveral sct-theorctic concepts (disjointness, de Morgan’s laws),
defined natural numbers, found arithmetic and clementary divisibility thecory, and began to bog
down in advanced number thcory (after finding the fundamental theorem of arithmetic and
Goldbach’s conjecture). Each "discovery” involved relying on over 30 hceuristics, and almost all
heuristics participated in dozens of different discoveries; thus the sct of heuristics is not merely
"unwound” to producc the discoverics. Since the heuristics did lcad to the discoveries, they must in
some sense be an encoding for them, but they arc not a conscious or (cven in hindsight) obvious
cncuding.

AM’s basic control structure was simple: select some slot of some concept, and work to fill in
cntries for it. Since AM began with over 100 concepts, and cach had about 20 slots to fill in
(Examples, Generalizations, Conjectures, Analogics, ctc.), there were 2000 small tasks for AM to
perforn, initially. This number grew with time, because new concepts would usually be defined
long belore 20 slots were filled in on old ones. Each task was placed on an agenda, with symbolic
reasons justifying why it should be attended to. Thosc tasks having several good reasons would
eventually percolate to the top of the agenda.and be worked on. To accomplish the sclected task,
AM located relevant heuristics and obeyed them, ‘They in twrn caused entries to be filled in on
hitherto blank slots, defined entircly new concepts, and proposed new tasks to be added to the
agenda.

T'here is one more issuc about AM that should be discussed in this paper: how it was able to
cfficiently restrict its attention to a small set of potenti: My relevant heuristics at all times. Consider
for a moment the AM heuristic lh.ll says “11° a composition fog preserves most of the pmpcmcs that
£ had, TITEN it's more interesting.” “That's usclul when cvaluating the worth of a contposition, but
of conrse is of no help when trying to lind examples ol Sets. We associated that heuristic with the

Composition concept, the most general concept for which it was relevant. Another heuristic AM has
says "lF the domain and range of an operation coincide. THEN it's more interesting.” ‘T'hat one
was tacked onto the Operation concept. But note that since Compositions are special kinds of
‘Operations, the heuristic should apply to them as well. The general principle at work here is the
following: If a heuristic is relevant 1o C, then it's also relevant to all specializations of C. If we
look at the AM representation for Composition, we would see a frame-like data structure (schema,
property list) onc of whose slots is Generalizations, and one of the entries thercin is Operation. ‘This
is AM’s way of recording the fact that Composition is a specialization of Operation. ‘The obvious
algorithm, then, when dealing with some specific concept C, is to follow Generalization links
upward, gathering heuristics tacked onto any concept encountered along the way. See Figure 7. In
general, this means that AM’s attention is restricted to log(n) hcuristics, rather than n. AM can
completely ignore all the rest, and nced only evaluate the IF parts of these log(n) potentially
rclevant oncs. In other words, the Generalization/Specialization hicrarchy of concepts has induced a
similar powerful structuring upon the set of heuristics. The power of this technique is dimmed
somcwhat by the uncqual distribution of heuristics in the Generalization/Specialization tree: a large
number of heuristics clustered near the few topmost (very general) concepts.

As AM forayed into number theory, it had only heuristics from sct theory to guide it. For instance,
when dealing with prime pairs (twin primes), there were no specific heuristics relevant to them; they
were defined in terms of primes, which were defined in terms of divisors-of, which was defined in
terms of multiplication, which was defined in terms of addition, which was defined in terms of set-
union, which (finally!) had a few attached heuristics. Because it lacked number-theory heuristics,
embodying what we would call common-sense about arithmetic, AM's fraction of uscless definitions
went way up (Numbers which are both odd and even: Prime (riples; The conjecture taat there is
only one prime triple (3.5.7) but without understanding why: ctc.) It was unexpected and gratifying
that AM should discover numbers and arithmetic at all, but it was disappointing to sce the program
begin to thrash. When a few dozen concepts from planc gecometry were added to AM. the same
type of thrashing soon occurred; only the addition of specific geometry heuristics would prevent this
collapse.

Anything
INT. IF RELATED TO SOMETHING VERY INT.

Any-Action
INT. IF REVERSIBLE

Any-Math-Opecration
‘ /\ INT. Il DOMAIN = RANGE"
/ N\ INT.IF DOMAIN=AxA (for some A)

/ \
/ \
Any-Composition Any-Op-With-Domain = Range
INT.IF fog HAS PROPERTIES OFF f \ / INT.'TO FIND THE SET OF FIXED-POINTS
\ /
\ /

Complement o Complement

Figure 7. One briinch of the Generalization bicrarchy of coneepts, with a few of the attached heuristics

There are two relevant conclusions from the AM rescarch: (i) It is possible for a body of heuristics

- to cffectively guide a program in scarching for new concepts and conjecturcs involving them. (i) As

new domains of knowledge emerge, the old corpus of heuristics may not be adequate to serve as 2
guide in thosc new domains; rather, new specific heuristics are necessary. Notice that these are also
the first two points in the argument of this paper (sce Figure 2).

Before embarking on point (3) of the central argument of Figure 2, it is nccessary to have a "theory
of heuristics”. Toward that end, we can begin collecting elements of that theory based on our
cxpericnices with AM. Sce Figure 8. Onc remark, besides the two mentioned in the last paragraph,
is that hcuristics can be usced both to gencrate promising actions and to prune away poor oncs.
Thus, AM'’s scarch space is never cxplicitly described; there is no clear notion of a sct of legal
operators which dcfincs some immense space of syntactic mathematical concepts and conjecturcs,

etc. Any such attempt would probably produce a search space of such size as to be us:less (1002
in AM's domain of clementary finite set theory). Rather, AM's sct of heuristics implicitly lefines its
scarch space. If you remove a heuristic from AM, it has less to do; this is exactly the opposite of
the casc with most heuristic search prograins, where heuristics arc used exclusively to prune away
implausible paths.

The final remark noted in figurc 8 is that the heuristics fall into a nice hicrarchy, induced by the
one between domain concepts. The key point here is that each heuristic has a domain of relevance:
the most general concept to which it's relevant and all the specializations of that concept. This
organization cnables the interpreter, through simple inheritance, to focus on the log of the number
of all hcuristics in the system, rather than that cntire set, at ecach moment

() A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY

(i) A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW
HEURISTICS FOR IT ARE CONCOMITTANTLY DEVELOPED

(i) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS
OR AS IMPLAUSIBLE MOVE ELIMINATORS

(iv) THE GENERALIZATION/SPECIALIZATION HIERARCHY OF CONCEPTS
INDUCES A SIMILAR STRUCTURE UPON THE SET OF HEURISTICS

Figurc 8. Elements of a thecory of heuristics, lcarned from work on AM

4. Heuristics change as task domains do

Let's continue to cxplore the notion of a heuristic having a domain of relevance, Consider the
following very special situation: you are asked to guess whether a conjecture is true or false. What
heuristics are useful in guiding you to a decision rapidly? If the conjecture is in the ficld of plane
geometry, one very powerful technique is to draw a diagram and sec whether it holds in that
analogic model. But il the conjecture is in the ficld of point-set topology, or real analysis, this is a
terrible heuristic which will often fead you into crvor, For instance, il the conjecture mentions a

function, then any diagram you draw will probably p|cturc a function which is cverywhere infinitely
differentiable, cven if such is never stated in the conjectures's prcmtscs As a rcsult. many
propcrucs will hold in your diagram that can never be proven from the conjecture’s premises. The
appropriate technique in topology or analysis is to pull out your book of 101 favorite
counterexamples, and see whether any of them violate the conjecture. If it passes all of them, then
you may gucss it's probably true,

This cxample dramatizes the idea that the power or utility of a heuristic changes from domain to
domain. Thus, as we move from one domain to another, the set of heuristics which we should use
for guidance changes. Many of them have higher or lower utility, some entirely new heuristics may
exist, and somc of the old ones may be actually detrimental if followed in the new domain. For
instance, the "IF falling object THEN catch it” rule is uscful for most situations, but pcople are
burned when they try to catch falling clothes irons and soldering irons.

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only we'd had them sooner,
would have led us to our present state much faster. Even the synthesis of a new discovery via
analogy, acsthetic criteria such as symmetry, or random combination, can be considered to be the
result of employing guidance heuristics (e.g.. "Analogies are useful in formulating biological and
sociological theorics”, "Symmetry is uscful in postulating the existence of fundamental particles in
physics”, "Randomly looking for regularities in elementary number theory and plane geometry may
be profitable™.) Those guidance heuristics were in turn based on several past episodcs, hence are
themsclves compiled hindsight. Nilsson and others have argued for the primacy of search; we are
simply stating the corollory for the very special case where one must let time flow event nodes past
us for our observation and recording: the primacy of compiled cxperiential knowledge.

As new empirical evidence accumulates, it may be useful to recompile the heuristics. Certainly by
the time you've opened up a whole new field, you must recompile them. Working in point-set
topology with geometry heuristics is not very cfficient, nor was AM’s working in number theory
using only hcuristics from sct thcory. The set of heuristics must evolve as well: some old ones are
no longer uscful, some must be refined to suit the new domain, and some entirely new heuristics
may be useful. As the task varies, or as time varies and one gains new expericnces, one’s set of
guiding heuristics is no longer optimal. The utility of a hecuristic will vary, then, both across tasks
and across time, and this variance is not nccessarily continuous.

Exactly what kinds of changes can occur in a demain of knowledge that might require you to alter
your set of heuristics? In other words, what are the sources of granularity in the space of "ficlds of
knowledge"?

First, there might be the invention of a new picce of apparatus. This could be theoretical (such as
Godcl's theorem) or technological (such as the computer). Heuristics spring into being: rules which
tell you how to use such a thing, when it's relevant, how to fix onc, what kind to buy, ctc. In
addition, many of the old heuristics may be less or (rarcly) more uscful than they used to be.

Second, there might be a new technique devised, one which doesn’t actually depend upon any new
apparatus. Again, this can be theoretical (such as Bentley's widespread application of divide and
conquer in complexity) or practical (such as Maxam and Gilbert's clever method for sequencing
DNA). New heuristics about refiability, applicability, ctc. are created, and old ones fade away.

Third, a new phenomenon may be obscrved. Whencever a new invention occurs, there arc often two
immediate new phenomena: the sociological one of how the mvcnuon is used, and the "real” one
now obscrvable using the invention.

FFourth, and most unusually, there may be a ncw]y-cxplicntcd or newly-isolated concept or fickl, one
which was always around but never spoken about explicitly. The notion of paradigms is such a
concept, and the whole ficld of heuristics itself is such a ficld. For example, there cxist heuristics
for when to apply heuristics, for whom to invite 1o talk about heuristics, for how o cvaluate a
heuristic’s worth, etc. :

In other words, “Heurlstics” itself is a field of study. As an analogy. consider the field of

"Grammars”. [t may be discussed thcoretically, independent of any particular language, yet to
develup that theory the rescarcher no doubt was always grounded in a context of some language or
other. Similarly, to develop a gencral theory of heuristics one must constantly deal with heuristics
for some specific ficld or task. Eventually the theory of Grammars advanced to the stage of
formalization where it no longer nceded such grounding, but Heuristics is far from there yet.

In bricf, the sources of granularity in the space of “domains of knowledge™ are preciscly those
components which, if varied, lead to a new domain of knowledge. In other words, they define what
we mcan by a domain of knowledge: a set of phenomena to study, a body of specific problems
about those phenomena which arc consideted worth working on, and a set of mcthods (both
theoretical and cxperimental, mental and material) for attacking such questions. The definition
corresponds closely to what Thomas Kuhn has called "paradigms”. .

This section has now contributed three new elements to our growing thcory of heuristics:

(v) HEURISTICS ARE COMPILED HINDSIGHT
(v THE SPACE OF "DOMAINS OF KNOWLEDGE" IS GRANULAR
(vi) "HEURISTICS" IS ITSELF A SEPARATE FIELD

Figurc 9. Three additional elements of a theory of hcuristics

5. A Theory of Heuristics

5.1 Why Heuristics Work

The scven items mentioned in Figures 8 and 9 as "eclements of a theory of heuristics” actually
sound more like 2"%-order correction terms to some as-yet unstated more fundamental theory.
What is that basic 0%-order theory? What is the central assumption underlying heuristics? It

appears to be the following: "Appropriateness(action,situation) is cts.” That is, Appropriatencss,
viewed as a function of actions and of situations, is a comsinuous function of both variables.

Corollary 1. For a given action, its appropriateness is a continuous function of situation,
Heuristics specify which actions are appropriate (or inappropriate) in a given situation. One
corollary of the central assumiption is that if the situation changes only slightly, then the judgment
of which actions arc appropriat¢c also changes only slightly. "Thus compiled hindsight is uscfut,
because even though the world changes, what was useful in situation X will be useful again
sometime in situations similar to X, There are two special cases of the Corollary 1 worth
mentioning: sce ligure 10,

11

Ou Appropriateness(action,situation) is a continuous function.

COR. 1: If action A is appropriate in situation S,
Then A is appropriate in most situations which are very similar to S.

COR. la: Fecatures of the task environment (task) is continuous.
COR. 1b: World (time) is continuous.

COR 2: If action A is appropriate in situation S,
Then so are most actions which are very similar to A.

Figure 10. The central assumption underlying heuristics, and two special cases

The first of these, Cor. 1la, says that if the task appears to be similar to one you've seen clsewhere,
then many of the features of the task environment will probably be very similar as well: i.c., the
kinds of conjecturcs which might be found. the solvability and difficulty anticipated with a task, the
kinds of blind ailleys which one might be trapped in, etc. may all be the same as they were in that
earlier case. For instance, suppose that a certain theorem, UFT, was useful in proving a result in
number theory. Now another task appears, again proving some number theory result. Because the
tasks are similar, Cor. la suggests that UFT be used to try to prove this new result. This is the
basic justification for using analogy as a reasoning mechanism. A sentiment similar to this was
voiced by Poincarc’ during the last century: The whole idea of analogy is that 'Cffects’, viewed as a
Sfunction of situation, is a continuous function.

The second special case, Cor. 1b, says that the world doesn’t change much over time, and is the
roundation for the utility of memory. In a world changing radically enough, rapidly cnougt:,
memory would be a useless frill, consider the plight of an individual atom in a gas.

Corollary 2: For a given situation, appropriateness is a continuous function of ariions.

. This mcans that if a particular action was very useful (or harmful) in some situation, it', likely that
any very similar action would have had similar consequences. Cor. 2 justifies the use of inexact
rcasoning, of allocating resources toward finding an approximate answer, of satisficing. It is the
basis for cmploying "gencralization” as a mechanism for coping with the world: if the
appropriatencss function were not (usually) continuous as a function of actions, then most
generalizations would be false. One may restate this corollary as "World (siruation) is continuous.”

If the. central assumption holds, then the ideal interpreter for heuristics is the one shown in figure
11. Note that this is very similar to a pure production system interpriter. In any given situation,
somc rules will be expected to be relevant (because they were truly relevant in situations very
similar to the present onc). One or more of them arc chosen sad applied (obeyed, cvaluated,
exccuted, fired, ctc.) This action will change the situation, and e cycle begins ancw, Of course
one can replace the “locate relevant heuristics” subtask by a copy of this whole diagram: that is, it
can be performed under the guidance of a body of heuristics specially suited to the task of finding
heuristics. Similarly, the task of sclecting which rule(s) to tire, and in what order, and with how
much of each resource available, can also be implemented as an entire heuristic 1ule system
procedure.

)

Situation

/o 0\
/ \
_ / \
Changes to the situation \
(hopefully for the better) ¢ Locate relevant heuristics
(hopefully quickly) /
\ /
\ /
\ « /

Apply chosen heuristic(s)

Figure 11. The 0%-order interpreter for a body -of heuristic rules

By examining the loop in Figure 11, we can quickly "rcad off” the possible bugs in heuristics, the
list of ways in which a heuristic can be "bad”:

It might not be interpretable at all.

It might be interpretable but it might never even be potentially relevant.

It might be potentially relevant but its IF part might ncver be satisfied.

It might trigger, but never be the rule actually selected for execution (firing).

It might fire, but its THEN part might not produce any ecffect on the situation.
- It might produce a bad ecffect on the situation.

It might produce a good effect, but take so long that it's not cost-effective.

This is reminiscent of John Scely Brown’s work on a generative theory of bugs [Brown & VanlLchn
$0], and is mcant to be. Perhaps by viewing hcuristics as performers, this approach can lead to an
cffective method for diagnosing buggy hcuristics, hence improving or climinating them.

There are scveral things wrong with the Oth order theory: it presumes that knowledge is complete
and unchanging; that is, it ignores the "potato in the tailpipe” problem and the frame problem.
The rcader may have noticed that the first of the two corollaries in Figure 10 is almost preciscly the
ncgation of the empirically-derived statement (vi) in Figure 9. ‘The latter claims that the space of
task domains is inherently and profoundly quantized; the corollary claims it's continuous. As we

said carlier, the items in Figurcs 8 and 9 arc 2™-order correction terms to a theory of heuristics,
and Figure 10 is a very simplificd 0!-order theory. Intermediate between them lies a theory which
interfaces to cach,

That 15--order theory says that the Oth-order theory is often a very uscful fiction. It is cost-cffective
to behave as if it were true, if vou are in a situation where your state of knowledge is very
incomplete, where there is nevertheless a great quantity of knowledge already known, where the
sk is very complex. ctc. At an carlier stage, there may have been too little known to express very
many hcuristics; much later, the environment may be well enough understood to be algorithmized;
i between, heuristic scarch is a useful paradigm. Predicting cclipses has passed into this tinal stage
of algorithmization; medical diagnosis is in the middle stage where heuristics arc uscful; building
programs to scarch for new representations of knowledge is still pre-heuristic,

sty oqp you arc In a complex, knowledge-rich, Incompletely-understood world,
THEN it is frequently useful to behave as though It were true that
appropriateness(action,situation) is continuous in both variables.

Figure 12. The first-order theory of heuristics: the 0M-order theory is a uscful fiction

Notice that the 1%-order theory is itsclf a heuristic! This is not too disturbing, since it is dubious
that we will ever know cnough about thinking to supplant it. Until your model of me is absolutely
perfect, your predictions of my bechavior will diverge more and more as time proceeds, and after a
relatively short interval you will have to rely upon heuristics again to understand and predict my
thoughts and actions. And there is probably something akin to Heiscnberg’s uncertainty principle to
guarantee that your model of me can never be perfectly complete.

The sccond-order corrections in Figures 8 and 9 now apply to the first-order theory, and in addition
some new sccond-order ones arc apparent. For instance, the adjective "frequently”, used in Figure
12, can be replaced by a body of rules which govern when it is and is not uscful to behave so.

5.2. The Power of Each Individual Heuristic

We have discussed the nature of using a corpus of heuristics. but what is the nature of a single one?
We've already said that it has some domain of relevance. What docs that mean? If we graph the
utility or power of the heuristic, as function of task domain, we would cxpect a curve resembling
that of Figurc 13. Namely, therc is some range of tasks for which the heuristic has positive value.
Outside of this, it is often counterproductive to use the heuristic (although the utility may drop to
zero rather than falling below zero as pictured). For tasks sufficiently far away, the utility
approaches zero, because the heuristic is never even considered potentially relevant, hence never
fires. As one cxample, consider the heuristic that says "If you want to test a conjecture, Then draw
a diagram”. As we've seen, this has high utility within Euclidean plane geometry, but as the axioms
of the theory are changed, its worth declines. By the time you reach point-set topology or real
analysis, its valuc is ncgative. Eventually, domains like philosophy arc reached, where drawing
diagrams can rarcly be done meaningfully. (As Figs. 13-15 indicate, we hope that "draw a diagram”
is a good heuristic for the domain of Heuristics.) As another example, consider the heuristic "If a
predicate rarcly returns True, Then define new gencralizations of it”. This is useful in set theory,
worse than useless in number theory, and uscless in domains where "predicate” is undefined.

LI
p
(o) »
w . .
E ' . .
R . L
. .
TASK . .
..
L] * . []
L] * [] L J
L] . L] .
] [] * L]
L] . »

FFigure 13. "The graph of a heuristic's power, as a function of the task it is applicd to.

L
P +
o)
EV + +
R + +
[] + g
[] [
L] + + L
TASK 9 . . _
e¥eeee 4 * + + ¢ +*
» +] [] + L]
® + . + + L J 4 ®
L] . L
L + L] + + L] + L]
. * []
o+ + + +
+ +

Figure 14. The change in power when a heuristic () has its THEN- part specialized (+)

If we specialize the THEN-part of a heuristic, it will typically have higher utility but only be
relevant over a narrower domain, Sec Figure 14. Notice the arca under the curve appcars to be
remain roughly constant; this is a geometric intcrpretation of the tradcoff between generality and
power of heuristic rules. It is also worth noticing that the new specialized heuristic may have
negative utility in regions where the old general one was still positive, and it will be mcaningless
over a larger region as well. Consider for example the case where "Generalize a predicate” is
specialized into “Generalize a predicate by climinating one conjunct from its definition”. The latter
is morc powerful, but only applies to predicates defined conjunctively.

By examining Figure 14, it is possible to gencrate a list of possiblec bugs that may occur when the
actions (THEN-part) of a heuristic arc specialized. First, the domain of the new one may be so
narrow that it is merely a spike, a delta function. This is what happens when a general heuristic is
replaced by a table of specific values. Another bug is if the domain is not narrowed at all; in such
a case, onc of the heuristics is probably completely dominated by the other. A third type of bug
appears when the new heuristic has no greater power than the old one did. For example, "Smack a
vu-graph projector if it makes noise” has much narrower domain, but no higher utility, than the
more general heuristic “Smack a device if it's acting up”. ‘Thus, the areca under the curve is greatly
diminished.

While the last paragraph warned of some extreme bad cascs of specializing the THEN- part of a
heuristic, there arc some extreme good cases which frequently occur. The utility (power) axis may
have somc absolute dcsirable point along it (c.g., some guarantec of corrcctness, or optimal
clticicney), and by specializing the heuristic it may exceed that threshhold (albeit over a narrow
range of tasks). In such a case, the way we gualitatively value that heuristic may alter, and indeed
we may term it a method, or an algorithm. One way to rephrase this is to say that algorithms are
merely heuristics which are so powerful that guarantees can be made about their use. Conversely,
one ¢+ try to apply an algorithm outside its region of applicability, in which case the result may be
usefu! .nd that algorithm is then being used as a heuristic. ‘The lauer is frequently done in
mathematics (c.g.. pretending one can differentiate power scrics cxpansions to guess at the valuc of
the series). Finally, note that the specialization of .the heuristic to one which applies only on a sct
of mecasure zero is not nccessarily a bad thing: tables of values o have their uses.

Specializing the [17-part of a heuristic rule results in its having a smaller region of ‘non-zero utility.
‘That is, it triggers less frequently, As figure 15 shows, this is like placing a filter or window along
the x-axis, outside of which the power curve will be absolutely zero. In the best of cascs, this

15

remioves the negative-utility” regions of the curve, and lcaves the positive regions untouched. For
example, we might preface the “Draw a diagram” heuristic with a new premise clause, "If you are
asked to test a geometry conjecture”. “This will cause us to usc the rule in Geometry situations,
where it has been found to have a high utility.

-

AMELO™
L 2
t]

TASK 2> . .

Figure 15. The graph of a heuristic’s power, after its [F- part has been optimally specialized.

By cxamining Figure 15, we can generate a list of possible bugs arising from specializing the
conditions (IF-part) of a heuristic rule. The new window may be narrowed to a spike, thus
preventing the rule from almost cver firing. There may be no narrowing whatsocver: in that case,
it typically would add a little to the time required to test the [F-part of the rule, while not raising
the power at all. Of course the most scrious error is if it clips away some -- or all! -- of the positive
region. Thus, we would not want to replace a general diagram-drawing recommendation with one
which advised us to do so only for rcal analysis conjectures.

The space of domains is granular, quantized, hence these power curves are step-functions (or
histograms) rather than smooth curves as we've drawn them. One implication of this is that there is
a very precise point along the task axis where the utility drops from positive to negative (or zero).
Often, this is a very large, very sudden drop across a single discontinuity in the axis (¢.g., when a
product cmerges, an cxpert dics, a theorem is proved.)

What are implications of this simple "theory of hcuristics”"? One effect is to determine in what
order heuristics should be chosen for exccution: this is discussed in the next paragraph. A sccond
ctfect is to indicate some very useful slots that each heuristic can and should have, attributes of a
heuristic that can be of crucial importance: the peak power of the rule, its average power, the sizes
of the positive and negative regions (both projections along the task axis (x-axis) and the arcas
under the curves), the steepness with which the power curve approaches the x-axis, ctc. Lt us
take the last attribute to illustrate. Why is it useful to know how steeply the power curve
approaches Utility =0 (the x-axis)? If this is very steep, then it is worth investing a great amount of
resources determining whether the rule is truly relevant in any situation (for if it is slightly
irrclevant, then it may have a huge negative cffect if used). Conversely, if the slope is very gentle,
then very little harin will result Irom slightly-inappropriate applications of the rule, hence not much
time need ever be spent worrying about whether or not it's truly relevant to the situation at hand,

The whole process of drawing the power curves for heuristics is still conjectural, While a few such
graphs have heen sketched, there is no algorithm for plotting them, no- fibrary of thousands of
cutatorued and plotted heuristics, not even any agreement on what the various power and task axes
should be. Nevertheless, it has alrcady proven o be a uscful metaphor, and has suggested seme
important properties of heuristics which should be cstimated (such as the just-mentioned downside
risk of applying a heuristic in a slightly inappropriate sitvation), It is a gualitative, empirical -theory
[Newelt & Simon 76 and predicts the form that a quantitative theory might assume,

How should heuristics be chosen for exccution? In any given situation, we will be at a point along
the x-axis, and can draw a vertical line (in case of multi-dimensional task axes, we can imagine a
hyperplanc). Any heuristics which have positive power (utility) along that line are then useful ones
to apply (according to our theory of heuristics), and the ones with high power should be applicd
before the ones with low power. Of course, it is unlikely we would know the power of a heuristic
precisely, in cach possible situation; while diagrams such as Figs. 13-15 may be suggestive, the data
almost never is available to draw them quantitatively for a given heuristic. It is more likely that we
would have some mceasure of the average power of each heuristic, and would use that as a guess of
how aseful cach one would be in the current situation. Since there is a tradcoff between gencrality
and power, a gross simplification of the preceding strategy is simply to apply the most specific
heuristic first, and so on. This is the schcme AM used, with very few serious problems. If all
heuristics had precisely the same multiple integral of their power curves, this would coincide with
the previous scheme. Of course, there are always some heuristics which, while being very general,
really are the most important ones to listen to if they ever trigger ("If a coanflagration breaks out,
Then cscape it").

Notice that the "generality vs. power” tradcoff has turned into a statement about the conservation
of volumes in nxm-dimensional space, when one takes the multiple integral of all the power curves
of a heuristic. In particular, there are tradcoffs among all the dimensions: a gain along some utility
dimension (say Convincingness) can be paid for by a decreasc along another (say Efficiency) or by a
decrease along a task dimension (a reduction of breadth of applicability of the heuristic). One
historically common bug has been over-reliance upon (and glorification of) heuristics which are
pathologically extreme along some dimension: tables, algorithms, weak methods, etc.

Heuristics are often spoken of as if they were incomplete, uncertain knowledge, much like
mathcmatical conjectures or scientific hypotheses. This is not necessarily so. ‘The epistemological
status of a heuristic, its justification, can be arbitrarily sound. For example, by analyzing the
optimal play of Blackjack, a rather complex table of appropriate actions (as a function of situation)
is built up. Onc can simplify this into a "Basic Stratcgy” of just a few rules, and know quite
preciscly just how well thosc rules should perform. ‘T'hat is, heuristics may be built up from
systematic, cxhaustive scarch, from “complctc” hindsight. Another example of the formal, complete
analysis of heuristic methods is well known from physics, where Newtonian mechanics is known to
be only an approximation to the world we inhabit. Relativistic theories quantify that deviation
precisely. But rather than supplanting Newtonian physics, they bolster its usc in cveryday situations,
where its inadequacics can be quantitatively shown to be too small to make worthwhile the
additional computation required to do relativistic calculations.

Many, nay most, heuristics are mecrely conjectural, empirical, aesthetic, or in other ways
epistemnologically less sccure than the Basic Strategy in Blackjack and Newtonian physics. ‘The
canonical use of heuristics is to pretend they are truc: the canonical use of a conjecture is to guide a
scarch for a proof of it. If a conjecture turns out to be false, it may yet stand as a uscful heuristic.

5.3 The Space of Hecuristics

The utility of an entire set of heuristics can be graphed as a function of the tasks it's being applied
to. and, not surprisingly, produccs a curve similar to the one in Figure 13. Hopetully, the sct of
heuristics is more useful than any member, thus it'is probably much broader and taller (or less
negative) than any single heuristic inside it. One cannot simply "add” the curves of its members;
the interactions among heuristics arc often quite strong, and independence is the exception rather
than the rule. Often, two heuristics will be different methods for getting to the same place, or one
will be a gencralization or isomorph of the other, cte., and as a result the set will really not benefit
very much from having both of them present. On the other hand, sometimes heuristics interact
synergistically, and the cffects can be much greater than simple superposition would have predicted.
‘I'he opposite of this simetimes happens: two experts have given yon heuristics which separately
work, vet which contradict cach other, Using cither halt=corpus would solve yom problem, but
mixing them causes chaos (e, one mathenatician gives you heuristies for finding cmpivice!

17

c‘xamplcs and g,cncralizing: while a sccond gives you heuristics for formally axiomatizing the
situation: cither may suffice, the unstructured mixing of the two sets can be catastrophic).

No trecatment of heuristics can be complete without some consideration of the space of all the
world’s heuristics. Consider arranging them in 2 generalization/specialization hicrarchy, with the
most general ones at the top. At that top level lic the so-called weak methods (generate & test, hill-
climbing, matching, mecans-cnds analysis, ctc.) At the bottom arc millions of very specific heuristics,
involving domain-specific terms like "King-side” and "DIT™. In between arc heuristics such as
those illustrated in Figure 16. A purcly “legal-move” estimate of the size of this tree gives a huge
final number: Based on the lengths and vocabularies of heuristic rules in AM, one may suppose
that there are about 20 blanks to be filled in in a typical heuristic, and about 100 possible entrics

for cach blank (predicate, argument, action, ctc.) related to AM’s math world. So there are 1040
syntactically well-formed heuristics just in the clementary mathematics corner of the tree. Of
course, most of these are never (thankfully!) going to fire, and almost all the rest will perform
irrelevant actions when they do fire. From now on, let’s restrict our attention to the tree of only
thosc heuristics which have positive utility at least in some domains.

What docs that tree actually look like? One can take a specific heuristic and generalize it gradually,
in all posible ways. until all the gencralizations collapse into weak mcthods. Such a preliminary
analysis led us to cxpect the tree to be of depth about 50, and in the case of an cxpert system with
a corpus of a thousand rules, we might expect a picture of them urranged so to form an cquilateral
triangle. But if onc draws the power curves for the heuristics, it quickly. becomes apparent that
most generalizations are no less powerful than the rule(s) beneath them! Thus the specitic rule can
be climinated from the tree. ‘The resulting tree has depth of roughly 3 or 4, and is thus incredibly
shaltow and bushy. Professors Herbert Simon, Woody Bledsoe, and the author analyzed the 243
heuristics from AM. and were able to transform their decp (depth 12) tree into an cquivalent one
containing less than fifty rules and having depth of only four. [ooking at a few heuristics arranged
in a tiny tree (Fig. 16). we can sce that all but the top and bottom levels can be eliminated. A
similar phenomenon was secn carlicr, in the case of a heuristic which said to smack a vu-graph
projector in case it acted up; it and several levels of its gencralizations can be eliminated, since they
arc no morc powerful than the general "Smack a malfunctioning device” heuristic. Some very
specific rule, such as "Smack a Chinook 807 vu-graph projector on its right side if it hums”, might
embody some new, powerful, specific knowledge (such as the location of the motor mount and this
brand’s tendency to misalign), and thus nced to stay around.

This "shallow-trce” result should make advocates of weak methods happy, because it means that
there really is something special about that top level of the hierarchy. Going cven one level down
means paying attention not to an additional ten or twenty heuristics, but to hundreds. 1t should
also please the knowledge engincering advocates, since most of the very specific domain-dependent
rules also had to remain, It appears. however, to he a severe blow to those of us who wish to
automatically synthesize new heuristics via specialization, since the result says that that process is
usually going to produce something no more uscful than the rule you start with. Henceforth, we
shall term this the shallow-tree problem.

There are two ways out of this dilemma, however. Notice that "utility of a heuristic” really has
several distinet dimensions: cfficiency, Hexibility, power for pedagogical purposes, usefulness in
future specializations and generafizations, etc. Also, "task features” has several dimensions: subject
matter, resources allotted (user's time, cpu time, space, ctc.), degree of complexity (¢.g., consider
Knuth's numeric rating of his problems’ difficulty), time (i.c., date in history), paradigm, ctc. If
there are n utility dimensions and m task dimensions, then there are actually nxm different power
curves to be drawn for cach heuristic. Each -of them may resemble the canonical one pictured in
Figurc 13, If by specializing a heuristic we create onc which has the appearance of Figure 14 in
any one of these nem graphs, then it is a useful specialization, So, while a specialization is unlikely
to be uscful in any particular utility/task graph, it is quite likely o be useful according to some one
of the num such graphs,

\ ‘I'oward weak methods + /
\

/
IFf isasubsctof A% xBx..., and R:A-->B, and AcB,
IHE-N dcﬁnc {(crsityn R(Q),..) e f}

\
/A =B \ R « Equality
/ . \
/ \
IF f is asubsct of ...Ax..xA..., and R:A--DA, IFf ¢..Ax..xBx...,and AcB,
THEN define {(....a....,R(a),...{ e f} THEN define{(....a,....a,...) ¢ f}.
) /
\ R + ECquality /A =B
\ /

\ /
IF f ts asubsct of ..Ax..xAX...
THEN define {(....a,....a,...) ¢ f}

/ \

/..Ax..XAX... #+ AxCxAxB \ Ax.xAx... * AXCxA
/ \
/ \
IF f:AxCxA-->B / [F f:AsC-->A
THEN define g(x,y)= f{x,y.x) THEIZN define {(a,c) | fla,c)=a}
|
IC is singleton |C is singleton
| |
IF f:AxA-->B IF f:A--DA
THEN definz g(x)=f{x,x) THEN define {a | fa)=a}
/ N\ / A\
/ \ Toward domain-specific heuristics / \
|
v

Figure 16. A tiny fragment of the graph of all heuristics, related by Generalization/Specialization.
Note the similar derivation of Coalescing and Fixed-Points heuristics.

Consider the Focus of Attention heuristic, that is, one which recommends pursuing a course of
action simply because it's beer worked on recently. Using this as one reason to support tasks on its
agenda made AM appear more intelligent to human observers, yct actually take fonger to make any
given discovery, Thus, it is useful in the "Convincingness” dimension of utility, but may be
harmful vis a vis "Efficiency”.

As another example, consider the heuristics "Smack a vu-graph projector if it's acting up”, "Smack
a child if it's acting up”, and “Smack a vu-graph projector or child if it's acting up”. There may be
some utility dimensions in which the third of those is best (¢.g.. scope. humor). However the
rationale or justification for the first two heuristics is quite different (random perturbation toward
stable state versus reinforcement learning). ‘Theretore the third heuristic is probably going to be
deficient along other utility dimensions (clarity, uscfulncss for analogizing).

But there is an ¢ven more basic way in which the "shallow trcc" problem gocs away. ‘There are
rcally a hundred different uscful relationships that two heuristics can have conncecting them
(Possibly-triggers, More-restrictive-1F-part, Faster, My-average-power-higher-than-your-peak-power,
Asks-fewer-questions-of-the-user, ctc.) For cach such relation, an entire graph (note that even the
Genl/Spee relation generated a graph, not a tree == see Fig. 16) can be drawn of all the world's
heuristics (or all those in some pwcn program), In some of these trees or graphs, we will find the
broad, shallow grouping that was found Jor the AM heuristics nnder Genl/Spee, For others, such
as Possibly="Triggers, we may find cach rule pointing to a small collection of other rules, aud hence

19

the depth would be quite large. ‘There are still many difficult questions to stucly, even with the
theory in this primitive state:-c.g.. How does the shape of the tree (the graph of heuristics related by
some attribute R) relate to the the ways in which R ultimately proves itself to be uscful or not
uscful? Already, onc powerful correlation scems to be recognized: In cases where the tree depth is
great, that relation is a good one to generalize and specialize along: in cases where the resulting tree

is very broad and shallow, other methods (notably analogy) may be more productive ways of getting

new heuristics. -

8. Heuristics used to develop new heuristics

6.1 Meta-Heuristics are Just Heuristics

Assuming that "Heuristics” is another ficld of knowledge. just like Electronics or Mathematics, it
should he possible to discover new oncs and o modify cxisting oncs by employing a large corpus of
heuristics. s there something special about the heuristics which inspect, gather data about, modify,
and synthesize other heuristics? That is, should we distinguish "meta-heuristics” from "domain
heuristics”? According to our gencral theory, as presented in the last section, domains of knowledge
are granular but ncarly continuous along every significant axis (complexity of task, amount of
quantification in the task, degree ¢f formalization, ctc.) Thus, our first hypothesis should be that it
is not nccessary to differentiate meta-level heuristics from object-level heuristics -- nay, that it may
be artificial and counterproductive to do so.

Figurc 17 illustrates two heuristics which can deal with both hcuristics and mathematical functions.
The first one says that if some concept f has always led to bad results, then f should be marked as
less valuable. If a mathematical operation, like Compose, has never led to any good new math
concepts, then this heuristic would lower the number stored on the Worth siot of the Compose
concept. Similarly, if a heuristic, like the one for drawing diagrams, has ncver paid off, then its
Worth slot would be decremented.

The sccond hcuristic says that if some concept has been occasionally uscful and frequently
worthless. then it's cost-effective to seck new, specialized versions of that concept, because some of
them might be much more frequently utile-(albeit in narrower domains of relevance). Composition
of functions is such a math concept -- it has lcd AM to some of its biggest successes and failures;
this heuristic would add a task to AM’s agenda, which said "Find new spcecializations of Compose™.
When it was cventually worked on, it could result in the crecation of new functions, such as
“Composition of a function with itsclf’, "Composition resulting in a function whose domain and
range arc cqual”, “"Composition of two functions which were derived in the same way”, etc. This
sccond heuristic also applics to heuristics, in fact it applics to itself. It itself is sometimes uscful and
sometimes not, and so frequently it truly docs pay to scck new, specialized variations of that
heuristic. Four possible specializations are, for examnple, heuristics which demand that £ has proven
itself usclul at least 3 times, that f be specialized in an extreme way, that [have proven itsclf
extraordinarily uscful at Ieast once, and that the specializations still be capable of producing any of
the successful past creations of f

IF the results of performing £ have always been numerous and worthless,
THEN lower the expected worth of f

IF the results of performing f are only occasionally uscful,
THEN consider creating new specializations of f

Figure 17, ‘I'wo heuristics capable of working on heuristics as well as math concepts

6.2 Auributes of a Heuristic

In AM, heuristics examine cxisting frame-like concepts, and lead to new and different concepts. To
have heuristics operate on and produce heuristics. it suffices to represent cach heuristic as a full-
fledged frame-like concept. Thus, the first heuristic listed in Figure 17 nceds to resct the value of
the Worth slot of the concept f it operates on, and even if ' is a heuristic it must have a Worth slot.
Similarly, a heuristic that referred to such slots as Average-running-time, Date-created, [s-a-kind-of,
Number-of-instances, etc. couvld only operate upon units (be they mathematical functions or
heuristics) kaving such slots. Figure 18 illustrates (some of the slots from) a heuristic represented in
that way. Notice its similarity to the representation of a mathematical operation (Figure 19). The
heuristic rescmbles the function (compare Figs 18-19) much more than the math function resembles
the swatic math concept (compare Figs 19-20).

Earlicr, we defined a heuristic to be a contingent picce of guidance knowledge: In some situation,
here are some actions that may be especially fruitful, and here are some that may be extremely
inappropriate. While some heuristics have pathological formats (e.g., algorithms which lack
contingency: delta function spikes which can be succintly represented as tables). most heuristics
scem to be naturally stated as rules having the format "IF conditions, THEN actions.” As the body
of heuristics grows, the conditions fall into a few common categories {testing whether the rule is
potentially relevant, testing whether there arc enough available resources to expect the rule to work
successfully to completion, ctc.) and so do the actions (add new tasks to the agenda, print
cxplanatory messages, define new concepts, etc.) Each of these categorivs is worth making into a
separatc named attributc which heuristic rules can posscss: Sections 6.3 and 7 will show the power
which can arisc from drawing such distinctions. So instead of a heuristic having an 1F slot and a
THEN slot, it will have a bundle of slots which together comprise the conditions of applicability of
the heuristic, and another bundle of slots which comprise the actions. Sec Figure 18. It is also
worth defining compound slots in terms of these: a composite IF part, a .:mposite THEN part, a
combined IF/THEN lump of LISP code, a compiled version of the same, etc.

All the previous attributes have been effective, cxccutable conditions and actions. These are
paramount, since they serve to define the heuristic -- they are the criterial slots. Many non-cffective
non-criterial slots are important as well, for describing the heuristic. Some of these relate the
heuristic to other heuristics (Generalizations, Specializations, classes of heuristics (Isa), and non-
heuristic concepts (View.) Several slots record its origins (Defined-using, Creation-datc) and the
case studies of its uses so far (Examples).

Once a rich stock of slots (types of attributes) is present for heuristics, scveral new oncs can be
derived from them in two ways. First, onc can take a slot and ask some qucstions about it: how
doces it evolve over time in lengt”, what rclationships exist among cntries that fill it, how uscful are
those values, cte. Fach such qu.stion spawns a new kind of slot (AvgNumberOflixtremeExampies,
RelnsAmongMykxtremeExamples, AvgWorthOfixtremeExamples). Second, one can take a pair of
slots (say ThenConjecture and 1fTruly-Relevant) and a relation (such as Implies) and define a new
unary function on heuristics -- a new kind of slot that any heuristic can have -- where i1 would list
H2 as an entry on that slot only if (in the present case) the ThenConjecture slot of HU Implies the
IfTrulyRelevant slot of H2. A good name for this new slot might be "Can'l'rigger”, because it lists

some heuristics which inight trigger when HU is fired. Of course not all of the n? "cross-term” type
slots are going to be uscful, but this provides a generator for a large space of potentially worthwhile
new slots. Some heuristics can guide the system in selecting plausible ones to define, monitoring
the utility of cach sclection, and obliterating any which appear empirically rarcly to lead to any
significant future solutions or discoverics. An cxample of such a process is given in Scction 7.

21

22

NAME: Generalize-rare-predicate

ABBREVIATION: GRP

STATEMENT
English: [f a predicate . is rarely true, Then create generalizations of it
[F-just-finished-a-task-dealing-with: a predicate P \ THESE 3 ATTRIBUTES COMPRISE
[F-about-to-work-on-task-dealing-with: an agenda A |--= IF-POTENTIALLY-RELEVANT
IF-in-the-middle-of-a-task-dealing-with: *never* / :

[F-truly-relevant: P returns True less than 5% of Average Predicate
IF-resources-available: at least 10 cpu seconds, at least 300 cells -
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P
THEN-conjecture: P is less interesting than expected
Generalizations of P may be better than P
Specializations of P may be very bad
THEN-modify-slots: Reduce Worth of P by 10%
Reduce Worth of Specializations(P) by 50%
Increase Worth of Generalizations(P) by 20%
THEN-print-to-user: English(GRP) with "a predicate” replaced by P
THEN-dcfine-new-concepts:
CODED-IF-PART: }\(P) «es CLISP function decfinition omitted hered
CODED-THEN-PART: A(P) .. <LISP function definition omitted here>
CODED-IF-THEN-PARTS: A(P) .. CLISP fuaction definition omitted here>
COMPILED-CODED-IF-THEN-PARTS: #30875
SPECIALIZATIONS: Generalize-rare-set-predicate
Boundary-Specializations: Enlarge-domain-of-predicate
GENERALIZATIONS: Modify-predicate, Gencralize-concept
Immediate-Generalizations: Generalize-rare-contingent-piece-of-knowledge
Siblings: Generalize-rare-heuristic
IS-A: Heuiistic
EXAMPLES:
Good-Examples: Generalize Set-Equality into Same-Length
‘Bad-Examples: Generalize Set-Equality into Same-First-Element
CONIJECTURES: Special cases of this are more powerful than Generalizations
Good-Conjec-Units: Specialize, Generalize
ANALOGIES: Weaken-overconstrained-problem
WORTH: 600
VIEW: Enlarge-structure
ORIGIN: Specialization of Modify-predicate via empirical induction
Defined-using: Spectalize
Creation-date: 6/1/78 11:30

HISTORY:
NGoodExamples: 1 NBadExamples: 1
NGoodConjectures: 3 NBadConjectures: 1
NGoodTasks-added: 2 NBad l'asksAdded: 0
AvgCpuTime: 9.4 scconds AvgListCells: 200

Figurc 18. Frame-like representation for a heuristic rule from AM. ‘Ihe rule is composed of
nothing but attribute:value pairs. After cach attribute or slot (often heavily hyphenated) is a colon,
and then a list of the entries or values for that attribute of the GRP heuristic. .

23

"NAME: - Compose
ABBREVIATION: - o -

STATEMENT
English: Compose two functions F and G into a new one FoG
DOMAIN: F, G are functions [*== W-POTENTIALLY-RELEVANT

IF-truly-relevant: Domain of F and Range of G have some intersection
IF-resources-available: at least 2 cpu seconds, at least 200 cells
THEN-add-task-to-agenda: Fill in entries for some slots of FoG
THEN-conjecture: Properties of F hold for FoG
. Properties of G hold for FoG
THEN-modify-slots: Record FoG as an example of Compose
THEN-print-to-user: English(Compose)
THEN-define-new-concepts: Name FoG;
ORIGIN Compose F,G;
WORTH: Average(Worth(F),Worth(G))
DEFN: Append(Defn(G),Defn(F))
Avg-cpu-time: Plus(Avg-cpu(F),Avg-cpu(G))
IF-Potentially-Rele: If-Potentially-Rele(G)
IF-Truly-Rele: If-Truly-Rele(G)
CODED-IF-PART: M\F.G) ..
CODED-THEN-PART: A\(F.G) ..
CODED-IF-THEN-PARTS: A(F.G) ..
COMPILED-CODED-IF-THEN-PARTS: # 30876
SPECIALIZATIONS: Composition-of-bijections
GENERALIZATIONS: Combine-concepts \
Immediate-Generalizations: Combine-functions
[S-A: Function
EXAMPLES:
~ Good-Examples: Compose Count and Divisors
Bad-Examples: Compose Count and Count
CONJECTURES: Composing F and F is sometimes very good and usually bad
ANALOGIES: Sequence
WORTH: 700
VIEW: Append
ORIGIN: Spccialization of Append-concepts with slot=Defn
Defined-Using: Specialize
Creation-date: 11/4/75 03:18

HISTORY:
NGoodExamples: 14 NBadExamples: 19
NGoodConjecturcs: 2 NBadConjectures: 1
NGoodTasks-added: 57 NBadTasksAddcd: 34
AvgCpuTime:; 1.4 seconds AvgListCells: 160

I“igure 19. Frame-like representation for a mathematical function from AM.

NAME: Primes
STATEMENT -

English: Numbers with two divisors
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes
GENERALIZATIONS: Positive numbers
IS-A: Class of numbers
EXAMPLES:

Extreme-exs: 2,3

Extreme-non-exs: 0,1

Typical-exs: 5,7,11,13,17,19

Typical-non-exs: 34, 100
CONIJECTURES:

Good-conjecs: Unique-factorization, Formula-for-d(n)

Good-conjec-units: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring
ANALOGIES: Simple Groups
WORTH: 800
ORIGIN: Divisors-of! (Doubletons)

- Defined-using: Diviso:s-of

Creation-date: 3/19/76 18:45
HISTORY:

NGoodExamples: 840

NBadExamples: 5000

NGoodConjectures: 3

NBadConjectures: 7

Figure 20. Frame-like representation for a static mathematical concept from AM.

6.3 Discovering a New Heuristic

The AM heuristics creatc new concepts via specializing existing ones, generalizing (either from

existing ones or fiom newly-gathered data), and analogizing. These are the three "directions” new
heuristics will come from. We have cxemplified specialization alrcady. Once point about
gencralization is worth making: Heuristics which serve as plausible move gencrators originate by
generalizing from past successes: heuristics which prune away implausible moves originate by
generalizing from past failures. Since successes are much less common than failures, it is not
surprising that most heuristics in most heuristic scarch programs arc of the pruning varicty. In fact,

amany authors define heuristic to mean nothing more than a pruning aid.

Onc of the typical “coinmon sense number theory” heuristics which AM lacked was the one which
decides that the unique factorization thecorem is probably more significant than Goldbach’s
conjecture, because the first has to do with multiplication and division, while the latter deals with
addition und subtraction, and Primes is. inherently ticd up with the tormer operations. How could
such a heuristic be discovered automatically? This is the starting point for the example we now
begin, an example which concludes in the -following section, "Heuristics to develop new
representations”. Why should this be s0? That is, what in the world does discovering heuristics
have to do with representation of knowledge?

‘The connection between heuaristics and representation is profound. . Consider ¢ven the special case
where we restrict our representations o frame-like ones. “The larger the number of difterent Kinds

of slots that are known about, the fewer keystrokes are rcquircd to type a given frame (concept,
unit) in to the system. Thus, if NGoodConjecs weren't known, it might take 40 keystrokes rather
than 1 to assert that there were 3 good conjectures known involving prime numbers. Morcover, no
special-purpose machinery to process such an assertion would be known to the system.

This is akin to the power Interlisp derives from the thickness of its manual, from the huge number
of uscful predefined functions. A broad vocabulary streamlines communication. Not only docs a
profusion of slot types facilitate entering a concept, it makes it casicr to modify it once it's cntered.
Finally, it makes it casier to discover it in the first place; think of it as combining terms in a more
powerful, higher level' language.

So we sce that the task of discovering heuristics should be profoundly accelerated -- or retarded --
by the choice of slots we make for our representation. In the case of an excellent choice of slots, a
new heuristic would frequently be simply a new entry on one slot of some concept. Let’s scc how
that can be.

Recall that primes were originally discovered by the system as extrema of the function "Divisors-
of'. This was recorded by placing the entry "Divisors-of” in the slot called " Defined-using” on the
concept called "Primes” (sce Figure 20). [.ater, conjectures involving Primes were found,
cmpiricially-observed patterns conncecting Primes with scveral other concepts, such as Times,
Divisors-of, Exponentiation, and Numbers-with-3-divisors. This is recorded on the
GoodConjecUnits slot of the Primes concept. Notice that all the cntries on Primes’ DefinedUsing
slot are also entrics on its GoodConjecUnits slot. This recurred scveral times, that is for several
concepts besides Primes, and ultimately ine heuristic H9 (below) became relevant (its IF-part
became satisficd):

H9: IF (for many units «) most of the entrics on wr arc also entries on u.s,
THEN-ASSERT that r is a subslot of s (with justification H9)

This heuristic said that it would probably be productive to pretend that DefinedUsing was always a
subslot of GoodConjecUnits. Thus, as soon as you define a new concept X in terns of Y, you
should expect there to be some interesting conjectures between X and Y. This new expectation is a
new heuristic; in our old, cumbersome IF/THEN language we might express it by two rulcs saying:

(A) "IF a concept is created with a value in its DefinedUsing slot,
THEN place that value in its GoodConjecUnits slot, with justification H9."

(B) "IF Y is an cntry on the GoodConjecUnits slot of X, but no good conjecture between X and
Y is yet known, THEN propose a task for the agenda, to look for conjectures between X and Y."

The second of these, (B), has nothing to do with DefinedUsing slots. In fact, it is rcally no more
powerful than a combination of (i) a very general rule that says to verify suspected members of any
given slot, and (i) cnough facts about GoedConjecUnits and Conjectures to know how to apply (i)
to them. The first one, (A), is the "new heuristic” synthesized ky HY. It ncedn’t be represented as
shown above: rather, we can simply go to the concept called DelincdUsing (the data structure
which holds all the information the program knows about that kind of slot in general), and record
that onc of its Superslots is GoodConjecUnits. We should also give this an cxplicit justification,
namely 9, since it is a heuristic, not a fact. Figure 21 shows what this record looks like in our
current program, ‘I'he new heuristic is simiply the line or two emboldened below: all the non-bold
text was present in the program afrcady (though most of it was writtcn by the program itsclf at
carlier timas, not filled in by human hands). .

It is important to make clear that the semantics o a value v appearing as an entry on slot s of
concept ¢ does nof necessarily mean that it Is tormally proven that v merits a position there: rather,
it is merely plausible. Any entry v can have an explicit justification, but in licu of any information
to the contrary, the default justification is merely empirical. Thus, when an entry, say Palindromes,
is on the GoodConjecUnits slot of Primes, it may mean that some interesting conjectures have been
found between Primes and Palindromes, or just that it is suspeeted == amd cxpeeted = that such
conjectures can be found il one spends’ the trouble fonking for them,

25

Thanks to the large numbcr of uscful specialized slots, large [F- THEN- rules can be compactly,
conveniently, cfficiently represented as simple links, Some of these useful slots are very general,
but many arc domain dependent. ‘Thus, as new domains of knowledge emerge and cvolve, new
kinds of slots must be devised if this powcerful property is to be preserved. ‘The nexi natural
question is, therefore, "How can useful new slots be found?” The last two sentences are the final
two points of our original five-point programme (Figure 2), and the next section answers them by
way of continuing the cxample we've begun in this scction.

NAME: Archetypical-"Defined-Using"-slot
SPECIALIZATIONS:
SubSlots: Really-Defined-Using, Could-Have-Defined-Using
GENERALIZATIONS:
SuperSlots: Origin, GoodConjecUnits
Justification: H9
[S-A: Kind of slot
WORTH: 300
ORIGIN: ' Specialization of Origin
Defined-using: Specialize
Creation-date: 9/18/79 15:43
AVERAGE-SIZE: 1
FORMAT: Set
FILLED-WITH: Concepts
CACHE? Always-Cache
MAKES-SENSE-FOR: Concepts

Figure 21. Part of the concept containing centralizing knowledge about all DefinedUsing slots.

7. Heuristics used to develop new representations

The example here shows how new kinds of slots can be discovered and used to advantagc This is
just an extension of a given representation, rather than true exploration in "the space of all
representations of knowledge”. [believe the latter will someday be possible, using nothing more
than a body of heuristics for guidance, but we do not yet have cnough experience to formulate the

necessary rules.

Fach kind of representation makes some sct of operations cfficient, often at the cxpense of other
operations. “Thus, an exploded-view diagram of a bicycle makes it casy to sce which parts touch
cach other, sequential, verbal instructions make it casy to assecmble the bicycle, an axiomatic
formulatiofi makes it casy to prove propertics about it, ctc.

As a ficld maturcs, its goals vary, its paradipm shifts. the questions to investigate change, the
heuristics and ah,omhma to bring to bear on those questions evolve. Therefore, the utility of a
given representation is bound to vary both from domain to domain and within a domain from time
to mm. much as did that of a given corpns of heuristics. "I'he representation of today must adapt
or give way lo a new one -- or the field itsell is likely to stagnate and be supplanted.

Where do these new rcprcscnt‘ntmn'; come from? “The most painless route is to mcrcly sclect a new
one from the stock of existing representational schemes. Choosing an_appropriate representation
means picking one which lets you guickly carry out the operations you're now going w carry out

20

most frequently.

In case there is no adequate existing representation, you may try to extend one, or devise a whole

~new one (good fuck!), or (most frequently) simply employ a ser of known ones. whose union makes
all the common operations fast. “Thus, when | buy a bicycle, | expect both diagrams and printed
instructions to be provided. The carrying along of multiple representations simultancously, and the
concommitant need to shift from one to another, has not been much studied - or attempted -- in
Al o date, except in very tiny worlds (c.g., the Missionarics & Cannibals puzzic).

There are several levels at which “new representations” can be found. At the lowest level, one may
say that AM changed its representation cvery time it defined a new domain concept or predicate,
thereby changing its vocabulary out of which new ones could be built.

Much more significant would be the definition of new kinds of slots, typically ones specific to --
and very uscful for -- some newly-discovered field of knowledge. For instance, when AM found
the unique factorization conjecture, it would have been good if it had defined a new kind of slot,
Prime-Factors, that cvery number could have had. A rule capable of this second-level
representation augmentation is the following one:

IF the avcrage size of s slots is large,
THEN propose a new task: replace s by new specializations of s

The vague terms in the rule would have specific computational interpretations, of course; for
instance, "large” might mean ">10”, or "> 3 times the average size of all slots”, or "larger than any
other slot”, or (most useful from a computational efficiency viewpoint) "larger than the average
number of slots a unit has”, It might cause the Examples slot to be broken into several subslots,
such as ExtremcExamples, TypicalExamples, BoundaryExamples, ctc. It might cause Factors to be
split up into PrimecFuctors, LargeFactors, etc. Note that the subslots will not in general be disjoint.

The third and final level at which "new representations” can be interpreted is to actually shift from
one entire scheme to another -- perhaps novel -- one. The following two rules indicate when a
certain type of shift is appropriate:

[F the problem is a geometric one,
THEN draw a dingram.

[F most units have most of their possible slots filled in,
"THEN shift from property lists to record structures.

All the heuristics of this type are specializations of the gencral one which says IF some operation is
-performed frequently, THEN shift to a representation in which it is very inexpensive to perform.

Let us continue our example. Here is a heuristic which is capable of reacting to a situation by
defining an cntirely ncw slot, built up from old oncs, a new slot which it expeets will be useful:

F10: IF a slot s is very important, and all its values are u'nits.
THEN-CREATE-NEW-KIND-OF-SILOT which contains "all the relations
among the values of my s slot”

When the number stored in the Worth slot of the GoodConjecUnits concept is large cnough, the
systemn attends to the task of explicitly studying GoodConjecUnits, Several heuristics are relevant
and firc: among them is HI10, the rule shown above, It then synthesizes a whole new unit, calling it
Relations\imongEntriesOnMy” GoodConjecUnits"Slot. Every known way in which ontries on the
GoodConjecUnits slot of a concept C relate to cach other will be recorded on this new slot of C.

For instance, take a look at the Primes concept (Figure 20). Tts GoodConjecUnits slot contains the
following entrics: “Times, Divisors-of, Exponentiation, Squaring, and Numbersswith-three-divisors.

The st two of these entrics are inverses ol cach others: that is, if you look over the Times unit, -

27

you will sce a slot called [nverse which is filled with names of concepts. including ‘Times. Similarly,
still looking over the “I'lmes unit. one can sce a slot called Repeat which is filled with the entry
Exponentiation, and one can sce a slot called Compose filled with Squaring. So Inverse and Repeat
“and Composc are some of the relations connecting entries on the GoodConjecUnits slot of Primes,
hence the program will record Inverse and Repeat and Compose as three cntries on the
RelationsAmongEntriecsOnMy " GoodConjecUnits”Slot slot of the Primes concept.

Now it so happens that scveral concepts wind up with “Compose” and "Inverse™ as entrics on their
RelationsAmongEntricsOnMy " GoodConjecUnits*Slot slot. ‘The alert rcader-may suspect that this is
no accident, and an alert program should suspect that, too. I[ndced, the following heuristic says that
it might be uscful to behave as if "Compose” and "Inverse” were always going to eventually appear

there:

H11: IF (for many units u) the s slot of u contains the same values v,
THEN-ADD-VALUE v, to the ExpectedEntries slot of the Typical-s-slot unit.

This causes the program to add Compose and Inverse to the slot called ExpectedEntries of the
concept called RaiationsAmongEntriesOnMy“GoodConjecUnits"Slot. This one small act, the
crcation of a pair of links, is in effect creating a new heuristic which says:

[F a concept gets entries X and Y on its GoodConjecUnits slot,
THEN predict that it will get Inverse(X), Inverse(Y), and Compose(X,Y) there as well.

How is this actually used? Consider what occurs when the program dcfines a new concept, C,
which is DefinedUsing Divisors-of. As soon as that concept is formed, the heuristic link from
DefinedUsing to GoodConjecUnits automatically fills in Divisors-of as an entry on the
GoodConjecUnits slot of C. Next, the links just illustrated above come into action, and place
Inverse and Compose on the RelationsAmongEntriesOnMy“GoodConjecUniws"Slot slot of C. That
in turn causes the inverse of Divisors-of. namely Times, to be placed on the GoodConjecUnits slot
as well as the already-present entry, Divisors-of. Finally, that causes the program to go off looking
for conjectures between C and cither multiplication or division. When a conjecturc comes in
connecting C to onc of them, it will get a higher a priori estimated worth than one which doesn’t
connect to them.

If only we'd had the new heuristics back when Primes was first defined, they would have therefore
embodied cnough “"common scnse” to prefer the Unique Factorization Theorem to Goldbach’s
“conjecture. If we'd had them carlier, these hcuristics would have led us to our present state much
sooner. Because of our assumptions about the continuity of the world, such heuristics should
nevertheless be uscful from time to time in the future.

Notice that there's nothing special about mathematics -- the newly synthesized heuristics have to do
with very general slots, like 1etinedUsing and GoodConjecUnits. FFor instance, as soon as a new
concept (say Middle-Class) is DefinedUsing Income, the program immediately fills in the following
underlined intormation:

NAME: Middle-Class

Defined-using: Income
RelationsAmonglintricsOnMy " GoodConjecUnits"Slot: __Inverse, Compose
Goud-Conjec-Units: Income, Spending, Earnedinterest

Thus, it goes ofl looking for (and will expect more from) conjectures between Middle-Class and any
of Income, Spending, and Eurnedinterest, ‘Thus the new slot is useful, though it has a terrible
name, and the new little heuristics (which looked like little links or Tacts but were actually
permission {o make daring guesses) were powerful alter all,

We have relied heavily on our representation being very structured; in a very uniform one (say -a
calculus of lincar propositions, with the only operations being Assert and Match) it would be

28

difficult to obtain enough cmpirical data o casily modify that representation. ‘This is akin to the
nature of discovering domain facts and heuristics: if the domain is o simple, it's furder to find
new knowledge and - in particular -- new heuristics. Heuristics for propositional calculus are much
fewer and weaker than those available for guiding work in predicate calculus; they in turn pale

- befure the rich variety available for guiding theorem proving “"the way mathematicians really do it”.

This is an argument for attacking scemingly-difficult problems which turn out to be lush with
structure, rather than working in worlds so constrained that their simplicity has sterilized them of
heuristic structure, '

8. Conclusions

We began by noting that the limiting step in the construction of expert systemns was building the
knowledge base, and that onc solution would be for the program itscif to automatically acquirc new
knowlcdge: to lcarn via discovery.

The heuristic scarch paradigm scems adequate to guide a program in formulating uscful new
concepts, gathering data about them, and noticing relationships conncecting them. However, as the
body of domain-specific facts grows, the old set of heuristics becomes less and less relevant, less and
less capable of guiding the discovery process cffectively. New heuristics must also be discovered.

Since heuristics is a domain of knowledge, much like any other, onc can imagine an expert system
that works in that field. That is, a corpus of heuristics can grow and improve and gather data about
itsclf. This process is very slow and explosive, yet it can be greatly facilitated by having "the right
representation”. In the case ¢f a schematized representation, this means having the right set of slots
or attributes, the right set of attached procedures, ctc. We saw how heuristics can lead to the

- development of uscful new kinds of slots, to improved representations of knowledge. It was

hypothesized that the same representation we usc for attributes and valucs of object-level concepts
could also be used to represent heuristics and cven to represent representation. To draw some
examples from the RLL system [lenat & Greiner 80): Primes (a set of numbers),
GeneralizeRarePredicate (a heuristic), GeneralizeRarcHeuristic (a meta-hcuristic), and Isa (a
representation concept) are all represented adequately as units with slots having valucs. A single
interpreter runs both meta-heuristics and heuristics, and is itsclf represented as a collection of units.
While meta-heuristics could be tagged to distinguish them from heuristics. the wutility of doing so

. rests on the existence of rules which genuinely treat them differently somehow -- and such rules

have not to date been encountercd.

Onc of the necessary steps in this rescarch was the explication of at least a rudimentary theory of
heuristics, an analysis of their innate source of power, their nature. This turned out to rest.upon the
continuity of our world: if the situation is very similar, so is the sct of (in)appropriate actions to
take. Corollaries of this provide the justification for the use of analogy and cven for the utility of
mecmory. The central assumption was scen to be just that -- an assumption which is often false in
small ways, but which is nevertheless a useful fiction to be guided by.

By graphing the power curves of a heuristic (the utility of that heuristic as a function of task being
worked on), we were able to see the gains -- and dangers -- of specializing and generalizing them to
get new ones. Such curves determine a preferred order for obeying relevant heuristics, and suggest
several specific new attributes worth measuring and recording for cach heuristic (e.g.. the sharpness
with which it flips from uscful to harmful, as onc leaves its domain of relevance).

By arranging all the world’s heuristics (well, at least all of AM’s, and several more randomly-chosen
ones from chess, biology, and oil spills) into a hicrarchy using the relation "More-General-Than”,
we were surprised to find that hierarchy very shallow, thereby implying that analogy would be more
usclui o method of generating new hicuristics than weuld specialization or generalization. By noting
that both Utility and “l'ask have several dimensions, most ol this problem went away, By noting
that two heuristics can have many important relations connecting them, of which More-General-

29

'I'h.un is just onc example, the shallowness problem turns into a powerful heuristic: if a new heuristic
/i is to differ from an old one along some dimension (relation) r, then use analogy to get It if r's
graph is shallow, and usc gencralization/specialization if r's graph is decp. We also discussed some
uscful slots which heuristics can have, and a mcthod for generating new _kinds of slots.

Before the rescarch programme outlined in figure 2 can be completed, much more must be known
about analogy, and morc complete theories of heuristics and of representation must cxist. ‘Toward
that goal we must obtain more cmpirical results from programs trying to find useful new domain-
specific heuristics and represcntations. .

References

Brown, John Scely, and Kurt VanLehn, "Repair Theory: A Generative Theory of Bugs in
Procedural Skills,” to appear in J. Cog Sci, 1V, 4, 1980.

Clancey, William J., "Dialogue Management for Rule-Based Tutorials,” Proc. Sixth International
Joint Conference on Artificial [ntelligence, Tokyo, 1979.

Feigenbaum, Edward A., "The Art of Artificial Intelligence,” Proc. Fifth International Joint
Conference on Artificial Intelligence, MIT, Boston, 1977.

Gaschnig, John, "Exactly How Good Are Heuristics?: Toward a Realistic Predictive Theory of Best-
First Scarch”, Proc. Fifth International Joint Conference on Artificial Intelligence, Cambridge, 1977.

Lenat, Douglas B., "On Automated Scientific Theory Formation: A Casc Study Using the AM
Program.” in (Jean Hayes, Donald Michie, and L. L. Mikulich, eds.) Machine Intelligence 9, New
York: Malstecad Press, a division of John Wiley & Sons, 1979, pp. 251-283.

Lenat, Douglas B., and Russel D. Greiner, "RLL: A Representation Language Language,” Proc. of
the First Annual Meeting of the American Association for Artificial Intelligence (AAAI), Stanford,
August, 1980.

Minsky, Marvin, "Steps Toward Artificial Intelligence”, in (Feigenbaum and Feldman, eds.)
Computers and Thought, McGraw-Hill, 1963.

Newell, Allen, and Herbert Simon, "Computer Science as Empirical Inquiry: Symbols and Search”,
cACM, 19, 3, March, 1976.

Poincare’, H., The Foundations of Science, The Science Press, New York, reprinted in 1929,

Polya. G.. [Ilow to Solve Ii, Princeton University Press, 1945,

Acknowledgements

Productive discussions with John Seely Brown, Bruce Buchanan, Bill Clancey, Johan deKleer, John
Doyle, Russ Greiner, Mark Stefik, and Mike Williams have heavily influenced this work, Sections
3 and 4 arc sumimarics of the lessons Iearncd from AM, for- which 1 thank Bruce Buchanan, Ed
Feigenbaum, Cordell Green, Don Knuth, and Allen Newell, ‘I'he data for Section $'s "shallowness”
conclusion about the tree of heuristics was gathered while I was at CMU, with the aid of Herb
Simon and Woody Bledsoe. Much of Sections 6 and 7 rely upon RIL, a sclf-describing and self-
moditying representation language constructed by Russ Greiner and the author, Finally, T wish to
thank XEROX PARC and Stanford’s HPP for providing superb environments (intellectual, physical,
and computational) in which to work, Financial support was provided by ONR (NOO0I-80-C-
0609), NSI (MCS 79-01954), and XEROX. .

