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~ lcbottleneck of building expert systems is knowledge acquisition, and one long-range solution is
for thce program to learn via discovery. New domains of knowledge can be developed by using
heuristics, yet as they emergc new heuristics are needed. 'l'hcy in turn can be discovered by using a
body of heuristics for guidance. How exactly does this process work? Must there be a separate
body of "met.1-heuristics"? How int.-rwined are hieuristics with Representation of knowledge? In
trying to ind new heuristics, is it c.'st-etTective to try to improve the existing representation of
knowledge. and if s0 110w can this be automated? What is the iiature of heuristics, their "first-order
theory"? What arc thc implications of suich a theory upon the design of a program which discovers
newv heuri.stics? 'ihlese questions arc among thosc that our research -- and this paper -- address.

1. MOTIVATION
Several recent programs in Artificial Intelligence (Al) perform complex tasks demanding a large
corpus of cxpert knowledge [Feigenbaum 771. Consider, for example. the I'IwsriroR program for
evaluating the mineral potential of a site, the MYCIN programn for medical diagnosis, and the
MOLGEN program for planning experiments in molecular genetics. To construct such a system, a
knowledge engineer talks to a human cxpcrt. extrac~ts doinain-specific knowledge. and adds it to a
growing knowledge, base usable by a compuiter program (see Fig. 1). Thle critical stage of this
process, the limiting step, is the transfer of expertise. From the program's point of view, the
limitation is the slow rate at which it acquires knowledge. This is the central problem facing
knowledge engineering today, the bottleneck of knowledge acquisition.

HU\4AN \___KNOWLEME~___ KNOWLEDGE-BASED
EXPERT / NGN[UR \ PROGRAM

Figure 1: Thei bottleneck of knowledge acquisition is transfer of exypertise. This comprises (t) thc
expert's difliculty in articlating what he knows, and (it) thle impedance mismatch between the
concepts and vocabulary of the expert and the knowledge engineer.

Tlwo possible solutions to this problem sugg: est the.mselves (though they are not mutually exclusivc.)
First, one mi-ght try somehow to widen ihie channel joiniing expert to program, for example by
buildin a sophisticated natuiral langiiagc iitcr(ice.

Tlhc dirneulty %%ith this is that the expert must comlimunicate not merely thle "facls", or his field, but
;tl!;( the heuriistics: tile inilorial judgmnental ruiks wihich guide him. 'Ihcsc are rarely thought about
concretely. and alnmicst iiever appear in journal articles, tembooks. or tiniv'ci'ity couirses. 'Thus, even
with a wider chamnncl, the expert would have dil'licilty in verhalizing his hecuristics.

The ;111111;1. Ni III t'. om~;;r t cottI. SOCIelev at Sloiflord lS~ivr;ta',Smnord, Ca. 94.105.
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'Ilic second possible solution is to sever the umbilicus entirely: eliminate the knowledge engineer
and the human expert, expose the program to tie environment. and let it discover new knowledge
on its own. Can this be done? Since knowledge comprises both facts and heuristics. the question
divides into two parts: can ncw domain concepts and relationships be discovcred, and can new
domain heuristics be discovered? 'Ihis paper is addressed to these questions, and it presents
evidence that the answers arc affirmative.

Along the way, an elementary "theory of heuristics" accrues. Our inidal definition of a heuristic is:
a piece of knowledge capable of suggesting plausible actions to 'follow or implausible ones to avoid.
In Section 3. it becomes apparent that this is insufficient: for a body of heuristics to be effective
(useful for guiding rather than merely for rationalizing in hindsight) each heuristic must specify a
situation or context in which its actions arc especially appropriate or inappropriate. The theory
developed in Section 5 is based on this definition.

2. OVEVi W

2.1. The Central Line of the Argument

1. New domains of knowledge 8 can he deve!oped by using heuristics. Radically new concepts and
relations connecting them can be discovered by employing a large corpus ot" heuristics both to
suggest plausible actions and to prune implausible ones. To accomplish this requires heuristics of
varying levcls of generality and power, an adequate representation for knowledge, some initial
hypotheses about the nature of domain 8, and the ability to gather data and test conjectures about
that domain.

2. As new domains of knowledge emerge and evolve, new hcuristics are needed. A field may change
by the introduction of some new device, theory, technique. paradigm, or observable phenomenon:
each time it does so, the corpus of heuristics useful for dealing with that field may also change.
Consider the body of heuristics useful in planning a trip from San Francisco to Bcrn. Over the last
century, many new ones have been added, and many old ones have undergone revision.

3. New heuristics can be developed by using heuristics. The first tv o points imply that new
heuristics must be discovered. Flow is this done? Since "Heuristics" is a domain of knowledge, like
Electronics, or Mathematics. or Travel planning, perhaps all that is necessary is to set 8 =I leuristics
in (1) That is, let the field or heuristics itself grow via heuristic guidance. To do this would require
many types or heuristics (some quite general. some specific to dealing with other heuristics, etc.). an
adequate reprcsentation for heuristics, and some hypotheses about the nature of heuristics.

4. As new domains of knotiledge emerge aind evolve, new representiions are needed. Just as te
potency of a fixed body of heuristics decreases as we move into new fields, so too does the potency
of' whatever scheme is being used to represent knowledge. Representations must evolve as domain
knowlcdge ccretes.

5. New representations can be developed hy usini; heuristics. PointLs (1) and (4) imply that new
rcilreentations for knowledge must be devised froii time to (imne, and that existing schemes must
change. Ilow can this happen? Since "Rcprewentation or knowledge" is a lieid, just as is
Mathematics, or Ilcctronics. or Heuristics. or 'l'raucl planning, perhaps we can somehow set

.8=Reprcentation in (1). 'Iliat is, allow heuristics to manage the development or new
reprcsentations.

The Iinal paint is that there is no sixth point to make. The preceding five stltementi comprise a
rcse;trch programme to I' llow. one plan or attack upotn the cenural problem, the bottleneck or
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automatic knowledge acquisition.

Other directions of attack arc promising, and are being pursued vigorously by several Al
researchers. For most fields. some necessary component required by (1) above is missing (e.g., the
automatic acquisition of data is awkward or impossible). In such cases. the human expert must be
preservcd "in the loop" of Figurc 1. Any aids for interviewing the expert are then quite important,
tools which facilitate the manual knowledge acquisition process depicted in Figure 1. Indeed,
much recent Al activity focuscs on developing such tools: AGE, EMYCIN. EXPERT. HEARSAYII[, RLL,
ROGET, ROSE, and the various knowledgc represenuition languages.

This paper presents work to date, by the author, along the research programme outlined in Figu,,
2. Although the development parallels the ordering given therein, the amount of space devoted to
each point is not uniform. Much of the paper is concerned with recounting the experience of
building AM. a computer program which searches for interesting new concepts and conjectures in
elementary mathematics (point (1); see Figure 2 below). The analysis of AM's eventual demise
provides an illustration of (2). Much of the remainder is used to develop the rudiments of a theory
of heuristics, which theory is required for (3). The paper closes with a detailed example illustrating
(3), (4), and (5).

(1) New domains of knowledge 8 can be developed by using heuristics.
(2) As new domains of knowledge emerge and evolve, new heuristics are needed.
(3) New heuristics can be developed by using heuristics.
(4) As new domains of knowledge emerge and evolve, new representations are needed.
(5) New representations can be developed by using heuristics.

Figure 2: Automatic knowledge acquisition via discovery

2.2. Controlling the Use of Heuristic Knowledge

There is an implied "control structure" for the processes of using and acquiring knowledge (solving
and proposing problems, using and discovering heuristics, choosing and changing representations,
etc.) In fact, it's a nontrivial assumption that a single control loop is powerful enough to manage
both types of processes. Our experiences with expcrt systems in the past [Feigenbaum 771 have
taught us that the power lies in the knowledge, not in the inference engine.

What is that topmost control loop? It assumes that there is a large corpus of heuristics for choosing
(and shifting between) representations. From time to time. some of these heuristics evaluate how
well the current representations are perfonning (e.g.. is there now some operation which is
pcrfonncd very friequently, but which is notoriously slow in the current representation?) At any
moment, if the representations used seem to be performing sub-optimally, some attention will be
focused on the problem of shifting to other ones. maintaining the same knowledge sinmltaneously
in multiple reprcscntations. devising whole new systems of representation, etc. Similarly. we assume
there arc several heuristics which monitor the adcquacy of the existing stock of heuristics, and as
need arises fonnulatc (and eventually work on and solve) tasks of the lorm "l)iagonalization is used
heavily, but has no heuristics associated with it: try to find some new specific heuristics for dealing
with l)iagonalization". A typical rule for working on such a task might say "To find heuristics
specific to C, try to analogize heuristics specific to concepts which were discovered the same way
that C was discovered".

It is assumed that these representation heuristics and heuristic heuristics have run for a while, and
the system is in a kind of equilibrium. The representations employed are well stilted to the tasks
beiun, perfrilned. md the heuristics being f1ollowed serve .is quite ellective guides for "plausiblC
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move genera ion" and "implausible move elimination." Thcsystcm now proceeds f or a while
along its ObjCe-ICVCl pLiursuits . whatever they may be (proving theorems in plane geometry.
discovering new concepts in programming. etc.) Gradually, the object level may evolve: new
concepts will be uncovered and fbcused upon, new laboratory techniques will be discovered, long-
standing open questions will be answered, etc. As this occurs. the old representations for
knowledge, and the old set of guiding heuristics. may become less ideal. less effective. This in turn
would be detected by some of the "mcta"-heuristics discussed in the last paragraph, and they would
cause the system to recover its equilibrium, to search for new representations and new heuristics to
deal effectively once again with the objects and operations at the object level.

In other words, new concepts, conjectures, theorems, etc. emerge all the time; as they are
investigated, some turn out to be useful and some turn out to be dead-ends; using a fixed set of
guiding heuristics, the rate at which useful new discoveries are made will decline gradually over
time; eventually it's worth pausing in the search for domain-specific knowledge, and turning
instead to the problem of finding new heuristics (perhaps by articulating experiences to date in the
task domain). The discoverer later returns to his original task, armed with new and hopefully
more powerful heuristics. This cycle of looking for domain concepts, occasionally punctuated by an
effort to find new heuristics, continues until, gradually, it becomes harder and harder to find new
heuristics. At that point it becomes worthwhile to look for new and different representations for
knowledge.

The top-level control structure is thus homeostatic: detecting and correcting for any
inappropriateness of representations employed or heuristics employed. For these purposcs, we
believe it suffices to have (and use) a corpus of heuristics for guidance. Of course that ter) level
loop could itself be implicitly defined by a set of heuristic rules, and we would expect such lules to
change from time to time, albeit very slowly. If, for exampie, no new concepts or operaticris were
defined at the object level for a long period of time. then the need for close monitoring of the
adequacy of the representations being employed would evaporate. One important point is that it is
not necessary to disinguish meta-heuristics from object-level heuristics: they can be represented the
same way. they can be managed by the same interpreter, etc. For example, the very general
recursive rule "To specialize a complex construct, find the component using the most resources, and
rcplace it by several alternate specializations" applies to specializing laboratory procedures,
mathematical functions, heuristics (including itself?), and representational schemes.

3. Heuristics used to develop new knowledge

"Fow was X discovered?" When confronted with such a question, the philosopher or scientist will
often rctreat behind the mystique of the all-seeing l's: Illumination, Intuition. and Incubation. A
diflircnt approach would be to provide a rationalization, a scenario in which a researcher proceeds
reasonably from one step to the next, and ultimately synthesizes the disco cry X. In order for the
scenario to b~e convincing, ea ch step the researcher takes must be justified is a plausible one. Such
justifications are provided by citing heuristics, more or less general rules of thumb, judgmental
guides to what is and is not an appropriate action in some sittlation.

[or example, consider the heuristic in figure 3. It says that if a frunction f takes a pair of A's as
arguments. then it's often worth the time and energy to define g(x)=r x,x). that is, to see what
happens when rs arguments coincide. I' f' is multiplication, this new function turns out to be
squaring: if f is addition. g is doubling. If f i!; union or intersection, g is the identity runction: if f
is ubraction or exclusive-or, g is Identically zero. T'lhus we see how two useful concepts (squaring,
(loubling) and four important Conjectures might be discovered by a researcher employing this simple
hcuiristic.



5

IF f .AxA--> B;
THEN define g:A--> B as g(x)=f(x,x)

Figure 3. A heuristic which leads to useful concepts and conjectures

Elsewhere [Lenat 791, we describe the uses for a heuristic which says "ffA--)B, and there is some
extremal subset b of , Then define atnd study f "1(b)." If f is Intersection. this heuristic says it's
worth considering pairs of sets which map into extremal kinds of sets. Well, what's an extremal
kind of set? Perhaps we already know about extremely small sets, such as the empty set. Then the
heuristic would cause us to define the relationship of two sets having empty intersection -- i.e.,
disjointness. It* f is Employed-as. then the above heuristic says it's worth defining, naming, and
studying the group of people with no jobs (zero is an extremely small number of jobs to hold), the
group of people who hold down more than one job (two is an extremely large number of jobs to
hold). If f is Divisors-of, then the heuristic would suggest defining the set of numbers with no
divisors, the set of numbers with one divisor, with two divisors, and with three divisors. The third
of these four sets is the concept of prime numbers. Other heuristics cause us to gather data, to do
that by dumping each number from 1 to 1000 into tho appropriate set(s), to reject the first two sets
as too small, to notice that every number in the fourth set is a pcrfect square, to take their square
roots, and finally to notice that they then coincide precisely with the third set of numbers. Now
that we have the defihition of primes, and we have found a surprising conjecture involving them, we
shall say that we have discovered them (note that we arc nowhere near a proof of that conjecture).

Of course the above instances of discoveries are really just reductions. We can be said to have
reduced the problem "How might Squaring be discovered?" to the somewhat simpier problem
"How might Multiplication be discovered?" by citing the heuristic in Figure 3. Similarly, we
reduced the problem of discovering Primes to the problem of discovering Divisors-of. Such
reductions could be continued, reducing the discovery of Divisors-of to that of Multiplication,
thence to Addition or Cartesian-product, and so forth. Eventual!,, we would go down all the way
to our conceptual primitives, to concepts so basic that we feel it makes no sense to speak of
discovering diem. See figure 4.

PRIMES

V
DIVISORS-OF

VrTM FS

/ \
/\

PLUS CARTESIAN I1RODUC'"

' V

Figure 4. Reducing each concept's discovery to that of a simpler one. Note that multiplication can
lie discovered if the rc,;carchcr ki,ows either IdditiOl Of :uimbers or Cartesian producLs of set,.
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Why, then, is the act of creation so cherished? If some significant discoveries are merely one or two
"heuristic applications" away from known concepts, why are even one-step discoveries worth
communicating and getting excited about? The answer is that the discoverer is moving upwards In
the tree, 1ot downwards. He is not rationalizing, in hindsight, how a given discovery might have
been made: rather, he is groping outward into the unknown for some new concept which seems to
be usefil or intercsting. The downward, analytic search is much more constrained than the upward,
synthetic one. Discoverers move upwards: axiomatizers, colonizers, and pedagogues move
downwards. See Figure 5. Even in this limited situation, the researcher might apply the "Repeat"
heuristic to multiplication, and go off along the vector containing exponentiation, hypcr-
exponentiation, etc. Or he might apply "look at inverse of extrema" to Divisors-of in several ways,
for example looking at numbers with very inany divisors.

Once a discovery has been made, it is much easier to rationalize it in hindsight, to find some path
downward from it to known concepts, than it was to make that discovery initially. That is the
explanation of the phenomenon we've all experienced after working for a long time on a problem,
the Fecling "Why didn't solve thaf i.-mer!" When the reporter is other than ourselves, the fceling
is more like "/ could have done thal, !hat wasn't so difficult!" It is the phenomenon of wondering
how a magic trick ever fooled us, once we've seen the method. It enables us to follow mathematical
proofs with a false sense of confidence, being quite unable to prove similar theorems. It is the
reason wy we can use Polya's heuristics [Polya 45] to parse a discovery, to explain a plausible route
to it, yet feel very little guidance from them when faced with a problem and a blank piece of paper.

There still is that profusion of upward arrows to contend with. One of the triumphs of Al has been
finding the means to muffle a combinatorial explosion of arrows: one must add some heuristic
guidance criteria. That is, add some additional knowledge to indicate which directions are expected
to we the most promising ones to follow, in any situation. So by a heuristic, from now on, we shall
men a contingent piece of knowledge, such as the top entry in Figure 6, rather than an
unconstrained Polya-esque maxim (6b). The former is a heuristic, the latter is an explosive.

\ .,' / \ 1t /
\ I / \1 /\ I /

PRIMES NUNMBI-IRS-WrTH-MANY-DIVISORS
\ t /

\ I / \I /
\ I /\1

DIVIS-OF IXPONENTIATION\ t / /
\ I / /

S\ If /
PARTIION TIMES /

ft / f /
\ I / I /
\1 / \I /
PLUS CAR'IESIAN PROI)UCI'

Figure 5. 'l'he more explosive upward search for new concepts
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(a) I F the range of one operation has a large intersection with the domain of a second,
and they both have high worth,
and either there is a conjecture connecting them or

the range of the second operation has a large
intersection with the domain of the first,

THEN compose them and study the result.

(b) Compose two operations and study the result.

Figure 6. A contingent heuristc rule and an explosive one.

There is a partial theory of intelligence here, which claims that discovery can be adequately guided
by a large collection of such heuristic rules. In particular, mathematical discovery may be so
guided. To test this hypothesis, we designed and constructed AM, a LISP program whose task was
to explore clementary finite set theory: gathering empirical data, noticing regularities in them, and
defining new concepts. AM is well described elsewhere [Lcnat 791, and a very brief recapitulation
here should suffice.

AM began with one hundred set theory concepts. This included static structures (sets, bags, lists)
and many active operations (union, composition, canonize). For each concept, we supplied very little
information besides its definition. In addition, AM contained 243 heuristic rules for proposing
plausible new concepts, for filling in data about concepts, and for evaluating concepts for
"intercstingness". Among them are the two heuristics we saw earlier, for looking at the inverse of
extrema and for looking at the new function g(x) =dt fx,x).

During the course of its longest run (a couple hours), AM defined several hundred concepts, about
half of which were reasonable, and noticed hundreds of simple relationships involving them, most
of which were trivial. AM found several set-theoretic coniccpts (disjointness, de Morgan's laws),
defined natural numbers, found arithmetic and elementary divisibility theory, and began to bog
down in advanced number theory (after finding the fundamental theorem of arithmetic and
Goldbach's conjecture). Each "discovery" involved relying on over 30 heuristics, and almost all
heuristics participated in dozens of difTerent discoveries: thus the set of heuristics is not merely
"unwoUnd" to produce the discoveries. Since the hcuristics did lead to the discoveries, they must in
some sense be an encoding for them, but they arc not a conscious or (even in hindsight) obvious
encoding.

AM's basic control structure was simple: select some slot of some concept, and work to fill in
entries for it. Since AM began with over 100 concepts, and each had about 20 slots to fill in
(Examples, Generalizations, Conjectures. Analogies, etc.), there were 2000 small tasks for AM to
perform. initially. This number grew with time, because new concepts would usually be defined
long be lbrc 20 slots were filled in on old ones. E-ach task v as placed on an agenda, with symbolic
rva,,,'ns justifying why it should be attended to. Those tasks having several good reasons would
eventually percolate to the top of the agenda.and he worked on. "To accomplish the selected task,
AM located relevant heuristics and obeyed them. They in turn caused entries to be filled in on
hitherto blank slots, defined entirely new concepts, and proposed new tasks to be added to the
agenda.

Thcre is one more issue about AM that should be discussed in this paper: how it was able to
efficiently restrict its attention to a small set or potentially relevant heuristics at all times. Consider
for a rnonitcl the AM heuristic that sayi "IV a compoitiion fog preserves mos-t of the properties that
I' had, 'I I FN it's more interesting." 'I hat's uscllul when evaluating, the worth of 1 coplosition, but
of coulrse is of, no help when trying to Mhid examples of' Sets. We associated that heuristic With the
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Composition concept. the most general concept for which it was relevant. Another heuristic AM has
says "IF the domain and range of an operation coincide. THEN it's more interesting." That one
was tacked onto the Operation concept. But note that since Compositions arc special kinds of
Operations, the heuristic should apply to them as well. The general principle at work here is the
following: If a heuristic is relevant to C, then it's also relevant to all specializations of C. If we
look at the AM representation for Composition. we would see a framc-likc data structure (schema,
property list) one of whose slots is Generalizations. and one of the entries therein is Operation. This
is AM's way of recording the fact that Composition is a specialization of Operation. The obvious
algorithm, then, when dealing with some specific concept C, is to follow Generalization links
upward, gathering heuristics tacked onto any concept encountered along the way. See Figure 7. In
general, this means that AM's attention is restricted to log(n) heuristics. rather than n. AM can
completely ignore all the rest, and need only evaluate the IF parts of these log(n) potentially
relevant ones. In other words, the Generalization/Specialization hierarchy of concepts has induced a
similar powerful structuring upon the set of heuristics. The power of this technique is dimmed
somewhat by the unequal distribution of heuristics in the Generalization/Spcciali7.ation tree: a large
number of heuristics clustered near the few topmost (very general) concepts.

As AM forayed into number theory, it had only heuristics from set theory to guide it. For instance,
when dealing with prime pairs (twin primes), there were no specific heuristics relevant to them; they
w2re defined in terms of primes, which were defined in terms of divisors-of, which was defined in
terms of multiplication, which was defined in terms of addition, which was defined in terms of set-
union, which (finally!) had a few attached heuristics. Because it lacked number-theory heuristics,
embodying what we would call common-sense about arithmetic. AM's fraction of useless definitions
went way up (Numbers which are both odd and even: Prime triples; The conjecture that there is
only one prime triple (3.5.7) but without understanding why, etc.) It was unexpected and gratifying
that AM should discover numbers and arithmetic at all, but it was disappointing to see the program
begin to thrash. When a few dozen concepts from plane geometry were added to AM. the same
type of thrashing soon occurred: only the addition of specific geometry heuristics would prevent this
collapse.

Anything
E N. IF RELATED TO SOMET[ING VERY INT.

Any-Action
I INT. IF RWEVRSIBLE

Any-M ath-Operation
/ \ INT. I1 DOMlAIN= RANGE n

/ \ TNT. IF DOIAIN=AxA (rorsomeA)
/ \
/\

Any-Composition Any-Op-With-Domain = Range
TNT. Ir fog IAS PROPERII.TS O C / 

\ /

Complement o Complement

Iicure 7. One hranch of the Gencralization hierarchy of'concepts, with a rew or the attalched heuristics
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There are two relevant conclusions from the AM research: (i) It is possible for a body of heuristics
to CffcCtivCly guide a program in searching for new concepts and conjectures involving them. (ii) As
new domains of knowledge emerge. the old corpus of heuristics may not be adequate to serve as a
guide in thosc new domains: rather, new specific heuristics arc necessary. Notice that these are also
dic first two points in die argument of this paper (see Figure 2).

Before embarking on point (3) of the central argument of Figure 2, it is necessary to have a "theory
of heuristics". Toward that end, we can begin collecting elements of that theory based on our
experiences with AM. Sec Figure 8. One remark, besides the two mentioned in the last paragraph,
is that heuristics can be used both to generate promising actions and to prune away poor ones.
Thus, AM's search space is never explicitly described; there is no clear notion of a set of legal
operators which defines some immense space of syntactic mathematical concepts and conjectures.
etc. Any such attempt would probably produce a search space of such size as to be usoless (10020
in AM's domain of elementary finite set theory). Rather, AM's set of heuristics implicitly Iefines its
search space. If you remove a heuristic from AM, it has less to do; this is exactly the opposite of
the case with most heuristic search programs, where heuristics are used exclusively to prune away
implausible paths.

The final remark noted in figure 8 is that the heuristics fall into a nice hierarchy, induced by the
one between domain concepts. The key point here is that each heuristic has a domain of relevance:
die most general concept to which it's relevant and all the specializations of that concept. This
organization enables the interpreter, through simple inheritance, to focus on the log of the number
of all heuristics in the system, rather than that entire set, at each moment.

(0 A SET OF HEURISTICS CAN GUIDE CONCEPT DISCOVERY

(ii) A NEW FIELD WILL DEVELOP SLOWLY IF NO SPECIFIC NEW
HEURISTICS FOR IT ARE CONCOMITTANTLY DEVELOPED

(iii) HEURISTICS CAN BE USED AS PLAUSIBLE MOVE GENERATORS
OR AS IMPLAUSIBLE MOVE ELIMINATORS

(iv) THE GENERALIZATION/SPECIALIZATION HIERARCHY OF CONCEPTS
INDUCES A SIMILAR STRUCTURE UPON THE SET OF HEURISTICS

Figure 8. Elements of a theory of heuristics, learned from work on AM

4. Heuristics change as task domains do

Let's continuc to explore the notion of a heuristic having a domain or' relevance. Consider the
following very special situation: you are asked to guess whether a conjecture is true or ralse. What
heuristics are useftil in guiding you to a decision rapidly? If the conjecture is in the field of plane
geometry, one very powerful technique is to draw a diagram and see whether it holds in that
atlogic model. Ihit iF the conjecture is In the field ol' point-set topology, or real analysis, this is a
terrible hcuristic which Will often lead you into error. For instance, il" the conjecture mentions a



function, then any diagrani you draw will probably picture a function which is everywhcre infinitcly
dilfcrcntiablc, even if such is never stated in the conjccturcs's premiscs. As a result. many
propertics will hold in your diagram that can never be proven from the conjecture's prcmiscs. The
appropriate technique in topology or analysis is to pull out your book of 101 favorite
countcrcxamplcs, and see whether any of them violate the conjecture. If it passes all of them, then
you may guess it's probably true.

This example dramatizes the idea that the power or utility of a heuristic changes from domain to
domain. Thus, as we move from one domain to another, the set of heuristics which we should use
for guidance changes. Many of them have higher or lower utility, some entirely new heuristics may
exist, and some of the old ones may be actually detrinmental if followed in the new domain. For
instance, the "IF falling object THEN catch it" rule is useful for most situations, but people are
burned when they try to catch falling clothes irons and soldering irons.

Heuristics are compiled hindsight: they are nuggets of wisdom which, if only we'd had them sooner,
would have led us to our present state much faster. Even the synthesis of a new discovery via
analogy, aesthetic criteria such as symmetry, or random combination, can be considered to be the
result of employing guidance heuristics (e.g., "Analogies are useful in formulating biological and
sociological theories", "Symmetry is useful in postulating the existence of fundamental particles in
physics", "Randomly looking for regularities in elementary number theory and plane geometry may
be profitable". ) Those guidance heuristics were in turn based on several past episodes, hence are
themselves compiled hindsight. Nilsson and others have argued for the primacy of search; we are
simply stating the corollory for the very special case where one must let time flow event nodes past
us for our observation and recording: the primacy of compiled experiential knowledge.

As -new empirical evidence accumulates, it may be useftl to recompile the heuristics. Certainly by
the time you've opened up a whole new field, you must recompile them. Working in point-set
topology with geometry heuristics is not very efficient, nor was AM's working in number theory
using only heuristics from set theo.'y. The set of heuristics must evolve as well: some old ones are
no longer useful, some must be refined to suit the new domain, and some entirely new heuristics
may be useful. As the task varies, or as time varies and one gains new experiences, one's set of
guiding heuristics is no longer optimal. The utility of a heuristic will vary, then, both across tasks
and across time, and this variance is not necessarily continuous.

Exactly what kinds of changes can occur in a domain of knowledge that might require you to alter
your set of heuristics? In other words, what arc the sources of granularity in the space of "fields of
knowledge"?

First, there might be the invention of a new piece of apparatus. This could be theoretical (such as
Godel's theorem) or technological (such as the computer). Heuristics spring into being: rules which
tell you how to use such a thing, when it's relevant, how to fix one, what kind to buy, etc. In
addition, many of the old heuristics may be less or (rarely) more useful than they used to be.

Second. there might be a new technique devised, one which doesn't actually depend upon any new
apparatus. Again, this can be theoretical (such as Bentley's widespread application of divide and
conquer in complexity) or practical (such as Maxam and Gilbert's clever method for sequencing
)NA). New heuristics about reliability, applicability, etc. are created, and old ones rade away.

Third, a new phenomenon may be observed. Whenever a new invention occurs, there are often two
immediate new phenomena: the sociological one of how the invention is used, and the "real" one
now observable using the invention.

Fourth. and most unusually, there may be a newly-explicated or newly-isolated concept or field, one
which was always around but never spoken ahout explicitly. 'The notion of paradigms is such a
concept, and the whole field or heuristics itself is such a field. For example, there exist heuristics
tor when to atpply heuristics, 'or whom to invite to talk about heuristics, lor how to evaluate a
heuristic's worth, etc.

In other words, "Heuristics" itself is a field of study. As an analogy, consider the field of



"Grammars". It may be discussed theoretically. independent of any particular language. yet to
develop that theory the researcher no doubt was always grounded in a context of some language or
other. Similarly, to develop a general theory of heuristics one must constantly deal with heuristics
for some specific field or task. Evcntually the theory of Grammars advanced to the stage of
formalization where it no longer needed such grounding, but Heuristics is far from there yet.

In brief, the sources of granularity in the space of "domains of knowledge" arc precisely those
components which, if varied. lead to a new domain of knowledge. In other words. they define what
we mean by a domain of knowledge: a set of phenomena to study, a body of specific problems
about those phenomena which are considered worth working on, and a set of methods (both
theoretical and experimental, mcntal and material) for attacking such questions. 'The definition
corresponds closely to what Thomas Kuhn has called "paradigms".

This section has now contributed three new elements to our growing theory of heuristics:

(v) HEURISTICS ARE COMPILED HINDSIGHT

(vi) THE SPACE OF "DOMAINS OF KNOWLEDGE" IS GRANULAR

(vii) "HEURISTICS" IS ITSELF A SEPARATE FIELD

Figure 9. Three additional elements of a theory of heuristics

5. A Theory of Heuristics

5.1 Why Heluristics Work

The seven items mentioned in Figures 8 and 9 as "elements of a theory of heuristics" actually
sound more like 2nd-order correction terms to some as-yet unstated more fundamental theory.
What is that basic Oth-order theory? What is the central assumption underlying heuristics? It
appears to be the following: "Appropriatencss(action,situation) is cts." That is, Appropriateness,
viewed as a function of actions and of situations, is a continuous function of both variables.

Corollary 1: For a given action, its appropriateness is a continuous function of situation.
Heuristics specify which actions are appropriate (or inappropriate) in a given situation. One
corollary of the central assumption is that if the situation changes only slightly, then the judgment
of which actions are appropriate also changes only slightly. Thus compiled hindsight is useful,
because even though te world changes. what was useful in situation X will be useful again
sometime in situations similar to X. h'lere are two special cases of tie Corollary I worth
mentioning: see Figure 10.



0th : Appropriateness(action,situation) is a continuous function.

COR. 1: If action A is appropriate in situation S,
Then A is appropriate in most situations which are very similar to S.

COR. la: Features of the task environment (task) is continuous.
COR. ib: World (time) is continuous.

COR 2: If action A is appropriate in situation S,
Then so are most actions which are very similar to A.

Figure 10. The central assumption underlying heuristics, and two special cases

The first of these, Cor. la, says that if the task appears to be similar to one you've seen elsewhere,
then many of the features of the task environment will probably 'be very similar as well: i.e., the
kinds of conjectures which might be found, the solvability and difficulty anticipated with a task, the
kinds of blind alleys which one might be trapped in, etc. may all be the same as they were in that
earlier case. For instance, suppose that a certain theorem, UFT, was useful in proving a result in
number theory. Now another task appears, again proving some number theory result. Because the
tasks are similar. Cor. la suggests that UFT be used to try to prove this new result. This is the
basic justification for using analogy as a reasoning mechanism. A sentiment similar to this was
voiced by Poincare' during the last century: The whole idea of analogy is that 'Effects', viewed as a
function of situation, is a continuous function.

The second special case, Cor. 1b, says that the world doesn't change much over time, and is the
foundation for the utility of memory. In a world changing radically enough, rapidly enot1.!,
memory would be a useless frill; consider the plight of an individual atom in a gas.

Corollary 2: For a given situation, appropriateness is a continuous function of aPrions.
This means that if a particular action was very useful (or harmful) in some situation, it%; likely that
any very similar action would have had similar consequences. Cor. 2 justifies the use of inexact
reasoning. of allocating resources toward finding an approximate answer, of satisFcing. It is the
basis for employing "generalization" as a mechanism for coping with th'c world: if the
appropriateness function were not (usually) continuous as a function of actions, then most
generalizations would be false. One may restate this corollary as "World (sirdation) is continuous."

If the.central assumption holds, then the ideal interpreter for heuristics is the one shown in figure
11. Note that this is very similar to a pure production system intcrpr'ter. In any given situation,
some rules will be expected to he relevant (because they were trtly relevant in situations very
similar to the present one). One or more of them arc chosen nad applied (obeyed, evaluated,
cx.ctitcd, fired, etc.) This action will change the situation, and ie cycle begins anew. Of course
one can replace the "locate relevant heuristics" subtask by a copy of this whole diagram: that is, it
can be perbinrmed under the guidance of a body of heuristic. specially suited to the task of finding
heuristics. Similarly. the task of selecting which rule(s) to lire, and in what order, and with how
much of each resource available, can also be irnplemnoted as an entire heuristic iule system
procedure.



Situation/ .> \
/\

/\
Changes to the situation

(hopefully for the better) t Locate relevant heuristics
(hopefully quickly) /\ /

\ /
\ 4- /

Apply chosen heuristic(s)

Figure 11. The 0'n-order interpreter for a body -of heuristic rules

By examining the loop in Figure 11, we can quickly "read of"' the possible bugs in heuristics, the
list of ways in which a heuristic can be "bad":

It might not be interpretable at all.
It might be interpretable but it might never even be potentially relevant.
It might be potentially relevant but its IF part might never be satisfied.
It might trigger, but never be the rule actually selected for execution (firing).
It might fire, but its THEN part might not produce any effect on the situation.
It might produce a bad effect on the situation.
It might produce a good effect, but take so long that it's not cost-effective.

This is reminiscent of John Seely Brown's work on a generative theory of bugs [Brown & VanLehn
801, and is meant to be. Perhaps by viewing heuristics as performers, this approach can lead to an
effective method for diagnosing buggy heuristics, hence improving or eliminating them.

There are several things wrong with the 0th order theory: it presumes that knowledge is complete
and unchanging; that is. it ignores the "potato in the tailpipc" problem and the frame problem.The reader may have noticed that the first of the two corollaries in Figure 10 is almost precisely the
negation of the cmpirically-derived statement (vi) in Figure 9. The latter claims that the space of
task domains is inhercntly and profoundly quantized; the corollary claims it's continuous. As we
said earlier, the items in Figures 8 and 9 are 2nd-order correction terms to a theory of heuristics,
and Figure 10 is a very simplified 0th-order theory. Intermediate between them lies a theory which
interfaces to each.

That ISt-order theory says that the 0th-order theory is often a very uscful fiction. It is cost-effective
to behave as if it were tre. if you are in a situation where your state of knowledgc is very
incomplete, where there is nevertheless a great quantity or knowledge already known, where the
awsk is very complex. etc. At an earlier stage, there may have been too little known to express very

many heuristics: much later, the environment may be well enough understood to be dlgorithrnized;
ii between, heuristic search is a useful paradigm. Predicting eclipses has passed into this final stage
of algorithmization: medical diagnosis is in the middle stage where heuristics aire useful: building
programs to search for new representations of knowledge is still pre-heuristle.



1,t : IF you are lit a complex, knowledgerlh, Inconliletely-understood world,
THEN it Is frequently useful to behave as though It were true that

appropriateness(action,situation) is continuous in both "ariables.

Figure 12. The first-order theory of heuristics: the 0h-order theory is a useful fiction.

Notice that the 1st-order theory is itself a heuristic! This is not too disturbing, since it is dubious
that we will ever know enough about thinking to supplant it. Until your model or me is absolutely
perfect, your predictions of my behavior will diverge more and more as time proceeds, and after a
relatively short interval you will have to rely upon heuristics again to understand and predict my
thoughts and actions. And there is probably something akin to Heisenberg's uncertainty principle to
guarantee that your model of me can never be perfectly complete.

The sccond-ordcr corrections in Figures 8 and 9 now apply to the first-order theory, and in addition
some new second-order ones are apparent. For instance, the adjective "frequently", used in Figure
12, can be replaced by a body of rules which govern when it is and is not useful to behave so.

5.2. The Power of Each Individual Heuristic

We have discussed the nature of using a corpus of heuristics, but what is the nature of a single one?
We've already said that it has some domain of relevance. What does that mean? If we graph the
utility or power of the heuristic, as function of task domain, we would expect a curve resembling
that of Figure 13. Namely, there is some range of tasks for which the heuristic has positive value.
Outside of this, it is often counterproductive to use the heuristic (although the utility may drop to
zero rather than falling below zero as pictured). For tasks sufficiently far away, the utility
approaches zero, because the heuristic is never even considered potentially relevant, hence never
fires. As one example, consider the heuristic that says "If you want to test a conjecture, Then draw
a diagram". As we've seen, this has high utility within Euclidean plane geometry, but as the axioms
of the theory are changed, its worth declines. By the time you reach point-set topology or real
analysis, its value is negative. Eventually, domains like philosophy are reached, where drawing
diagrams can rarely be done meaningfully. (As Figs. 13-15 indicate, we hope that "draw a diagram"
is a good heuristic for the domain of Heuristics.) As another example, consider the heuristic "If a
predicate rarely returns True, Then define new generalizations of it". This is useful in set theory,
worse than useless in number theory, and useless in domains where "predicate" is undefined.
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Figure 14. The change in power when a heuristic (*) has its THEN- part specialized (+)

If we specialize the THEN-part of a heuristic, it will typically have higher utility but only be
relevant over a narrower domain. See Figure 14. Notice the area under the curve appears to be
remain roughly constant: this is a geometric interpretation of the tradeoff between generality and
power of heuristic rules. It is also worth noticing that the new specialized heuristic may have
negative utility in regions where the old general one was still positive, and it will be meaningless
over a larger region as well. Consider for example the case where "Generalize a predicate" is
specialized into "Generalize a predicate by eliminating one conjunct from its definition". The latter
is more powerful, but only applies to predicates defined conjunctively.

By examining Figure 14. it is possible to generate a list of possible bugs that may occur when the
actions (THEN-part) of a heuristic are specialized. First, the domain of the new one may be so
narrow that it is merely a spike, a delta function. This is what happens when a general heuristic is
replaced by a table of specific values. Another bug is if the domain is not narrowed at all; in such
a case, one of the heuristics is probably completely dominated by the other. A third type of bug
appears when the new heuristic has no greater power than the old one did. For example, "Smack a
vu-graph projector if it makes noise" has much narrower domain, but no higher utility, than the
more general heuristic "Smack a device if it's acting up". Thus, the area under the curve is greatly
diminished.

While the last paragraph warned of some extreme bad cases of specializing the TIEN- part of a
heuristic, there arc some extreme good cases which frequently occur. The utility (power) axis may
have some absolute desirable point along it (e.g., some guarantee of correctness, or optimal
c'liciency), and by specializing the heuristic it may exceed that threshhold (albeit over a narrow
range of tasks). In such a case, the way we qualfiatively value that heuristic may alter, and indeed
we may term it a method, or an algorithm. One way to rephrase this is to say that algorithms are
merely heuristics which are so powerful that guarantees can be made about their use. Conversely,
one c;: try to apply an algorithm outside its region of applicability, in which case the result may be
useful .:nd that algorithm is then being used as a heuristi. The latter is frequently done in
mathematics (e.g.. pretending one can difTerentiate power series expansions to guess at the value of
the series). Finally, note that the specialization of the heuristic to one which applies only on a set
of measure zero is not necrssarily a bad thing: tables of values do have their uses.

Specializing the If-'-part o1r a heuristic rule results in its having a smaller region ofrnon-zero utility.
'[hat is, it triggers less frequently. As figure 15 shows, this is like placing a filter or window along
the x-axis, outsidc of which the power curve will be absolutely zero. I, the best of cases, this
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renoves the negative-utility' regions of" die curve, and leaves the positive regions Untouched. For
example, we might prefhcc the "[)raw a diagram" hcuristic with a new premise clause. "If you arc
asked to test a gcometry conjecture". 'lis will cause us to use the rule in Geometry situations,
where it has been found to have a high utility.
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Figure 15. The graph of a heuristic's power, after its IF- part has been optimally specialized.

By examining Figure 15, we can generate a list of possible bugs arising from specializing the
conditions (IF-part) of a heuristic rule. The new window may be narrowed to a spike, thus
preventing the rule from almost ever firing. There may be no narrowing whatsoever: in that case,
it typically would add a little to the time required to test the IF-part of the rule, while not raising
the power at all. Of course the most serious error is if it clips away some -- or all! -- of the positive
region. Thus, we would not want to replace a general diagram-drawing recommendation with one
which advised us to do so only for real analysis conjectures.

The space of domains is granular, quantized, hence these power curves are stcp-fuanctions (or
histograms) rather than smooth curves as we've drawn them. One implication of this is that there is
a very precise point along the task axis where the utility drops from positive to negative (or zero).
Often, this is a very large, very sudden drop across a single discontinuity in the axis (e.g., when a
product emerges, an expert dies, a theorem is proved.)

What are implications of this simple "theory of heuristics"? One effect is to determine in what
order heuristics should be chosen for execution: this is discussed in the next paragraph. A second
effect is to indicate some very useful slots that each heuristic can and should have, attributes of a
heuristic that can be of crucial importance: the peak power of the rule. its average power, the sizes
of the positive and negative regions (both projections along the task axis (x-axis) and the areas
under the curves), the steepness with which the power curve approaches the x-axis. etc. Let us
take the last attribute to illustrate. Why is it useful to know how steeply the power curve
approaches Utility=0 (the x-axis)? If this is very steep. then it is worth investing a great amount of
resources determining whether the rule is truly relevant in any situation (for if it is slightly
irrelevant, then it may have a huge negative effect if used). Conversely, if the slope is very gentle.
then very little hann will result Ironi slightly-inappropriate applications of the rule, hence not much
time need eyer be spent worrying about whether or not it's truly relevant to the situation at hand.

The whole process or drawing the power curves fir heuristics is still conjectural. While a few such
graphs have been sketched, there is no algorithm Ior plotting them. no library of' thousands of
catalo,,ued and plotted heuristics, not evemi any agreemeit on what tie various power and task axes
should be. Nevertheless. it has already proven 1o be a useful metaphor, and has suggested '-,e

importanlt properties of heuristics which should be estimated (such as the just-nientioned downside
risk or applying a hcurilic ill a slightly iiaplpropriate situation). It is a qualilalive, emcpiricalheory
[Ncwell & Simion 761. and predics the form that a quantilative theory might assume.
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How should heuristics be chosen for execution? In any given situation, we will be at a point along
the x-axis, and can draw a vertical line (in case of multi-dimensional task axes, we can imagine a
hyperplane). Any heuristics which have positive power (utility) along that line are then useful ones
to apply (according to our theory of heuristics), and de ones with high power should be applied
before the ones with low power. Of course, it is unlikely we would know the power or a heuristic
precisely. in each possible situation: while diagrams such as Figs. 13-15 may be suggestive, the data
almost never is available to draw them quantitatively for a given heuristic, It is more likely that we
would have some measure of the average power of each heuristic, and would use that as a guess of
how useful each one would be in the current situation. Since there is a tradeofr between generality
and power, a gross simplification of' the preceding strategy is simply to apply the most specific
heuristic first, and so on. This is the scheme AM used, with very few serious problems. If all
heuristics had precisely the same multiple integral of their power curves, this would coincide with
the previous scheme. Of course, there are always some heuristics which, while being very general,
really arc the most important ones to listen to if they ever trigger ("If a conflagration breaks out,
Then escape it").

Notice that the "generality vs. power" tradeoff has turned into a statement about tie conservation
of volumes in nxm-dimcnsional space, when one takes the multiple integral of all the power curves
of a heuristic. In particular, there are tradcoffs among all the dimensions: a gain along some utility
dimension (say Convincingness) can be paid for by a decrease along another (say Efficiency) or by a
decrease along a task dimension (a reduction of breadth of' applicability of the heuristic). One
historically common bug has been over-reliance upon (and glorification of) heuristics which are
pathologically extreme along some dimension: tables, algorithms, weak methods, etc.

Heuristics are often spoken of as if they were incomplete, uncertain knowledge, much like
mathematical conjectures or scientific hypotheses. This is not necessarily so. The epistemological
status of a heuristic, its justification, can be arbitrarily sound. For example, by analyzing the
optimal play of Blackjack, a rather complex table of appropriate actions (as a function of situation)
is built up. One can simplify this into a "Basic Strategy" of just a few rules, and know quite
precisely just how well those rules should perform. That is, heuristics may be built up from
systematic, exhaustive search, from "complete" hindsight. Another example of the fornal, complete
analysis of heuristic methods is well known from physics, where Newtonian mechanics is known to
be only an approximation to the world we inhabit. Relativistic theories quantify that deviation
precisely. But rather than supplanting Newtonian physics, they bolster its use in everyday situations,
where its inadequacies can be quantitatively shown to be too small to make worthwhile the
additional computation required to do relativistic calculations.

Many, nay nost, heuristics are merely conjectural, empirical, aesthetic, or in other ways
epistemolhgically less secure than the Basic Strategy in Blackjack and Newtonian physics. The
canonical use of heuristics is to pretend they arc true: the canonical use of a conjecture is to guide a
search for a proof of it. If a conjecture turns out to be false, it may yet stand as a useful heuristic.

5.3 The Space of Hcuristics

The utility Of an entire se of heuristics can be graphed as a function of the tasks it's being applied
to, and. not surprisingly, produces a curve similar to the one in Figure 13. I lopefully. the set of
heuristics is more useful than any member, thus it is probably much broader and taller (or less
negative) than any single heuiristic inside it. One cannot simply "add" the curves of its members;
the interactions amoti, heuristics are often quite strong, and independence is the exception rather
than the rule. Ol'ten. two heuristics will be different methods ror getting to the sme place, or one
will be a generalization or isomorph of the other, etc.. and as a result the set will really not benefit
very much from having loth of' them present. On tie other hand. sometimes heuristics interact
synergistically, and the ellects can be much grealer than simple superposition would have prcdicted.
'The opposite of this simetimes happens: two experts have given you heuristies which separately
work, yet which contradict eachi other. Using either li:lfcorptis would solve you problem, hut
i~iixing them causes chaos ('.g.. one mlithenmatichm gives you heuristics fi,r finding empiric,,I



examples and generalizing, while a second gives you hcuristics for formally axiomaitizing tile
situation: either may suffice, the unstructured mixing of the two sets can be catastrophic).

No treatment of heuristics can be complete without some consideration of the space of all the
world's heuristics. Consider arranging them in a gcncraliztion/specialization hierarchy, with the
most general ones at the top. At that top level lic the so-called weak methods (generate & test, hill-
climbing, matching, nicans-ends analysis. etc.) At the bottom arc millions of very specific heuristics,
involving domain-specific terms like "King-sidc" and " I". in between are heuristics such as
those illustrated in Figure 16. A purely "legal-move" estimate of the size of this tree gives a huge
final number: Based on the lengths and vocabularies of heuristic rules in AM, one may suppose
that there arc about 20 blanks to be filled in in a typical heuristic, and about 100 possible entries
for each blank (predicate, argument, action. etc.) related to AM's math world. So there are 1040
syntactically well-formed heuristics just in the elementary mathematics corner of the tree. Of
course, most of these are never (thankfully!) going to fire, and almost all the rest will perform
irrelevant actions when they do fire. From now on, let's restrict our attention to the tree of only
those heuristics which have positive utility at least in some domains.

What does that tree actually look like? One can take a specific heuristic and generalize it gradually,
in all posible ways, until all the generalizations collapse into weak methods. Such a preliminary
analysis led us to expect the tree to be of depth about 50. and in the case of an expert system with
a corpus of a thousand rules, we might expect a picture of them arranged so to form an equilateral
triangle. But if one draws the power curves for the heuristics, it quickly becomes apparent that
most generalizations arc no less powerful than the rule(s) beneath them! 'T7hus the specific rule can
be eliminated from the tree. 'The resulting tree has depth of roughly 3 or 4, and is thus incredibly
shallow and bushy. Professors Herbert Simon. Woody Blcdsoe. and the author analyzed the 243
heuristics from AM. and were able to transtorm their deep (depth 12) tree into an equivalent one
containing less than fifty rules and having depth of only four. Looking at a few heuristics arranged
in a tiny tree (Fig. 16). we can see that all but the top and bottom levels can be eliminated. A
similar phenomenon was seen earlier, in the case of a heuristic which said to smack a vu-graph
projector in case it acted up: it and several levels of its generalizations can be eliminated, since they
are no more powerful than the general "Smack a malfunctioning device" heuristic. Some very
specific rule, such as "Smack a Chinook 807 vu-graph projector on its right side if it hums", might
embody some new, powerful, specific knowledge (such as the locatibn of the motor mount and this
brand's tendency to misalign), and thus need to stay around.

This "shallow-tree" result should make advocates of weak methods happy, because it means that
there really is something special about that top level of the hierarchy. Going even one level down
means paying attention not to an additional ten or twenty heuristics, but to hundreds. It should
also please the knowledge engineering advocates, since most of the very specific domain-dependent
rules also had to remain. It appears. however, to be a severe blow to those of us who wish to
automatically synthesize new heuristics via specialization, since the result says that that process is
usually going to produce something no more uscfil than the rule you start with. Henceforth, we
shall term this the shallow-tree problem.

There are two ways out of this dilemma, however. Notice that "utility of a heuristic" really has
several distinct dimensions: efficiency, flexibility. power for pedagogical purposes, useflulness in
futurc specializations and generalizations. etc. Also. "task features" has several dimensions: subject
matter, resources allotted (user's time. cpu time, space. etc.), degrce of complexity (e.g., consider
Knuth's numeric rating of his problems' difficulty), time (i.e., date in history), paradigm, etc. If
there are n utility dimensions and in task dimensions, then there are actually nxm difl'rent power
curve.; to be drawn lor each heuristic. Uich ol' them may resemble the canonical one pictured in
ligure 13. If by specializing a heuristic we create one which has the appearance or Figure 14 in
(tn1, one Of 1hese nx/n graphs, then it is a useful specialization. So. w bile a specialization is unlikely
to be us.,;eful in any particular utility/task graph, it is quite likely to be useful according to sonme one
of the nxm such graphs.



19

\ Toward weak methods r /
\ /

1Ff isasubsetof ...Ax...xBx.... and R:A-->B. and Ac B,
THEN define ( R(a),...) e f

/\
/A = B \ R 1- Equality

/\
/\

IF f is a subset of ...Ax...xA .... and R:A-->A, IF f c ...Ax...xBx.... and AcB,
THEN dcine {(...,a,...,R(a),...) e f} THEN definc{(...,a,...a,...) e t).

\ /
\R 4- Equality /A = B

\ /
\ /

IF f is a subset of ...Ax...xAx...
THEN define {(...,a....a,...) e 1

/\
/...Ax...xAx... - AxCxAxB \ ...Ax...xAx... *- AxCxA

/\
I\

IF f:AxCxA-->B / IF f:A 4 C-->A
THEN dcfinc g(x,y)= f(x,yx) THEN define (a,c) I f(a,c)= a}I I

IC is singleton IC is singleton

IF f:AxA-->B IF f:A-->A
THEN dcfine g(x)= f(x,x) THEN define {a I Ifa)= a}

/ \ Toward domain-specific heuristics / \I
V

Figure 16. A tiny fragment of the graph of all heuristics, related by Generalization/Specialization.
Note the similar derivation of Coalescing and Fixed-Points heuristics.

Consider the Focus of Attention heuristic, that is, one which recommends pursuing a course of
action simply because it's beer. worked on recently. Using this as one reason to support tasks on its
agenda made AM appear more intelligent to human observers, yet actually take longer to make any
given discovery. TIhus, it is useful in the "Convincingness" dimension of utility, but may be
harmful vis a vis "Efficiency".

As another example, consider the heuristics "Smack a vu-graph projector if it's acting tip". "Smack
a child if it's acting up". and "Smack a vu-graph projector or child if it's acting up". There may be
some utility dimensions in which the third of those is best (e.g., scope. humor). However the
rationale or justitication for the first two heuristics is quite diflcrent (random perturbation toward
stable state vcr.us reint'orcenient learning). Theretlre lhe third heuristic is probably going to be
deficient along other utility dimensions (clarity, usefliess for analogizing).

But there is an even more basic way in which the "shallow tree" problem goes away. There are
really a hundred different useful relationships that two heuristics can have connecting them
(lossibly-triggers, More-restrictive-IF-part. Faster. My-avcragc-power-highcr-than-your-peak-p)ower,
Asks-1cr-qtteslionms-of-thei-tser. etc.) For each such relation, an entire graph (notc that even the
(;cnI/Spcc relation generated a graph, not a tree -- see Fig. 16) can be drawn of all the world's
heuristics (or all those in sonic giveui program). In sonic o1' these trees or graph.s, we will iind the
Ii wad. a;llow groulping that was f'ound for the AM licuri;tic:; inder Genl/Spce. For others, such
;v; flossibly-'l'rig:'crs. we tilay fi ld each rule, .pintilig to a smul I collectini of other rtles, 'lll hence



the depth would be quite large. There are still many difficult questions to study, even with the
theory in this primitive statc:,c.g.. Ilow does the shape of die tree (the graph of heuristics related by
some attribute R) relate to the the ways in which R ultimately proves itself to be usL.d or not
uscful? Already, one powertul correlation seems to be recognized: In cases where the trcc depth is
great, that relation is a good one to generalize and specialize along: in cases where de resulting trcc
,is very broad and shallow, other mcthods (notably analogy) may be more productive ways of getting
new heuristics.

6. Heuristics used to develop new heuristics

6.1 Meta-Heuristics are Just Heuristics

Assuming that "Heuristics" is another field of knowledge. just like Electronics or Mathematics, it
should be possible to discover new ones and to modify existing ones by employing a large corpus of
heuristics. is there something special about the heuristics which inspect, gather data about, modify,
and synthesize other heuristics? That is, should we distinguish "mecta-heuristics" from "domain
heuristics"? According to our general theory, as presented in the last section. domains of knowledge
are granular but nearly continuous along every significant axis (complexity of task, amount of
quantification in the task. degree or formalization, etc.) Thus, our first hypothcsis should be that it
is not necessary to differentiate mecta-level heuristics from object-level heuristics -- nay, that it may
be artificial and countcrproductive to do so.

Figure 17 illustrates two heuristics which can deal with both heuristics and mathematical functions.
The first one says that if some concept f has always led to bad results, then f should be marked as
less valuable. If a mathematical operation, like Compose, has never led to any good new math
concepts, then this heuristic would lower the number stored on the Worth slot of the Compose
concept. Similarly, if a heuristic, like the one for drawing diagrams, has never paid off, then its
Worth slot would be decremented.

The second heuristic says that if some concept has been occasionally usefil and frequently
worthless, then it's cost-effective to seek new, specialized versions of that concept, because some of
thcm might be much more frequently utile (albeit in narrower domains of relevance). Composition
of functions is such a math concept -- it has led AM to some of its biggest successes and failures;
this heuristic would add a task to AM's agenda, which said "Find new specializations of Compose".
When it was eventually' worked on, it could result in the creation of new function-,, such as
"Composition of a function with itself'. "Composition resulting in a function whose domain and
range are equal", "Composition of two functions which were derived in the same way", etc. This
second heuristic also applies to heuristics, in fact it applies to itseljf It itself is sometimes useful and
sometimes not, and so frequently it truly does pay to seek new, specialized variations of that
heuristic. Four possible specializations are, for example, heuristics which demand that f has proven
itself usefll at least 3 times, that f be specialized in an extreme way, that f have proven itself
extraordinarily useful at least once, and that the specializations still be capable of producing any of
the succCssful past creations of f.

IF the restults or perrorming f have always been nuicrots and worthless,
THEN lower the expected worth of f

IF the results of pcrForming f are only occasionally iscrlul,

THEN consider creating new specializations ot' f

Figure 17. Two heuristics capable of' working on heuristics as well as math concepLi
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6.2 Attributes of a Heuristic

In AM, heuristics examine existing framc-like concepts, and lead to new and different concepts. To
have heuristics operate on and produce heuristics. it suffices to represent each heuristic as a full-
fledged frane-like concept. Thus, the first heuristic listed in Figure 17 needs to reset the value of
the Worth slot of the concept f it operates on, and even if f is a heuristic it must have a Worth slot.
Similarly, a heuristic that referred to such slots as Average-running-time, Datc-created, Is-a-kind-of,
Number-of-in-;ances, etc. covld only operate upon units (be they mathematical functions or
heuristics) hiving such slots. Figure 18 illustrates (some of the slots from) a heuristic represented in
that way. Notice its similarity to the representation of a mathematical operation (Figure 19). The
hcurist;,: resembles the function (compare Figs 18-19) much more than the math function resembles
the -tntic math concept (compare Figs 19-20).

Earlier, we defined a heuristic to be a contingent piece of guidance knowledge: In some situation,
here are some actions that may be especially fruitful, and here are some that may be extremely
inappropriate. While some heuristics have pathological formats (e.g., algorithms which lack
contingency: delta function spikes which can be succintly represented as tables), most heuristics
seem to be naturally stated as rules having the format "IF conditions. THEN actions." As the body
of heuristics grows, the conditions fall into a few common categories (testing whether the rule is
potentially relevant, testing whether there are enough available resources to expect the rule to work
successfully to completion, etc.) and so do the actions (add new tasks to the agenda, print
explanatory messages, define new concepts. etc.) Each of these categorivs is worth making into a
separate named attribute which heuristic rules can possess: Sections 6.3 and 7 will show the power
which can arise from drawing such distinctions. So instead of a heuristic having an IF slot and a
THEN slot. it will have a bundle of slots which together comprise the conditions of applicability of
the heuristic, and another bundle of slots which comprise the actions. See Figure 13. It is also
worth defining compound slots in terms of these: a composite IF part, a .::.nposite THEN part, a
combined IF/THEN lump of LISP code, a compiled version of the same, etc.

All the previous attributes have been effective, executable conditions and actions. These are
paramount, since they serve to define the heuristic -- they are the criterial slots. Many non-effective
non-criterial slots are .mportant as well, for describing the heuristic. Some of these relate the
heuristic to other heuristics (Generalizations. Specializations, classes of heuristics (Isa), and non-
heuristic concepts (View.) Several slots record its origins ([)efined-using, Creation-date) and the
case studies of its uses so far (Examples).

Once a rich stock of slots (types of attributes) is present for heuristics, several new ones can be
derived from them in two ways. First, one can take a slot and ask some questions about it: how
does it evolve over time in lengt ' , . what relationships exist among entries that fill it, how useful are
those values, etc. Each such qu, stion spawns a new kind of slot (AvgNuniberOflxtremeExamples,
RelnsAmongMyLxtremeExamples, AvgWorthOfExtrencExanmplcs). Second, one can take a pair of
slots (say ThenConjecture and lf-Truly-Relevant) and a relation (such as Implies) and define a new
unary function on heuristics -- a new kind of slot that any heuristic can have -- where 1-1l would list
H2 as an entry on that slot only if (in the present case) the ThenConjecttire slot of I1-l Implies the
IflrulyRclevan slot of 1-12. A good name for this new slot might be "CanTrigger", because it lists
some lhcuristics which itnight trigger when IlI is fired. Of course not all of the n2 "cross-term" type
slots are going to be useful, but this provides a generator for a large space of potentially worthwhile
ncw slots. Some heuristics can guide the system in selecting plausible ones to define. monitoring
the utility of each selection, and obliterating any which appear empirically rarely to lead to any
significant future solutions or discoveries. An example of such a process is given in Section 7.
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NAMIE: Generalize-rare-predicate
ABBREVIATION: GRP
STAT EM% ENT

English: If a predicate is rarely true, Then create generalizations of it
I F-j List-finishied-a-task-dealing-with: a predicate P \ Ti sli 3 A-1-1RIBLIES COMIPRISE.
IF-abouit-to-wYork-on-task-dealing-with: an agenda A J--- IF7-POTENTIALLY-RELEVANT
IF-in-the-middle-o-a-task-dealing-with: *never*/
IF-truly-relevant: P returns True less than 5% of Average Predicate
IF-resources-available: at least 10 cpui seconds, at least 300 cells
THEN-add-task-to-agenda: Fill in entries for Generalizations slot of P
TH EN-conjectuire: P is less interesting than expected

Generalizations of P may be better than P
Specializations of P may be very bad

THEN-modify-slots: Reduce Worth of P by 10%
Reduce Worth of Special izations(P) by 50%
Increase Worth of Generalizations(P) by 20%

THEN-print-to-user: English(GRP) with "a predicate" replaced by P
TI-IEN-define-new-concepts:

CODED-IF-PART: X(P) ( LISP function definition omitted here>
CODED-THEN-PART: A'(P) .. <LISP function definition omitted here>
CODED-IF-THEN-PARTS: X(P) ... (LISP function definition omitted here>
COMPILED-CODED-IF-THEN-PARTS: #30875
S PEGCIAL IZATIONS: General ize-rare-set-predicate

Bouindary-Specializations: Enlarge-domain-of-predicate
GENERALIZATIONS: Modify-predicate, General ize-concept

Immediate-Generalizations: General ize- rare-contingent-piece-of-know ledge
Siblings: Generalize-rare-heuiristic

IS-A: Heuristic
EXAMPLES:

Good- Examples: Generalize Set-Equality into Same-Length
Bad-Examples: Generalize Set-Equality into Sam e- First- Element

CONJECTURES: Special cases of this are more powerful than Generalizations
Good-Conjec-Units: Specialize, Generalize

AN ALOG IES: Weaken-overconstrained-problem
WORTH: 600
VIEWN: Enlarge-structure
OIIGIN: Special ization of Modify-predicate via empirical induction

Defined-uIsing: Specialize
Creation-date: 6/1/78 11:30

HISTORY:
NGooclExamplcs: I NBadExamples: 1
NGoodConjectures: 3 NBadfcorijecttres: 1
NGooclf'asks-aclded: 2 NBacl lasksAdded: 0
AVgQpUTirne: 9.4 seconds AvgListCclls: 200

Figure 18. [raiiic-likc rcprecrtitioii for a hUistic rule Fromi ANM. 'lic rulc is compiosed or
nothing hot ittribtitc:valuic piirs. Aftecr cach ittribmte or slot (often heavily hyphenaited) is a colon,
and theit list of the cntrics or vaIlIC? f'or that ittrihtute of' the G RP hecuristic.
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NAME: Compose
ABBREVIATION: - o -

STATEM ENT
English: Compose two functions F and G into a new one FoG
DOMAIN: F, G are functions ]--- Ii-PorFNI'IAI.LY-R¢LEVANT

IF-tnily-relevant: Domain of F and Range of G have some intersection
IF-resources-available: at least 2 cpu seconds, at least 200 cells
THEN-add-task-to-agenda: Fill in entries for some slots of FoG
THEN-conjecture: Properties of F hold for FoG

Properties of G hold 1or FoG
THEN-modify-slots: Record FoG as an example of Compose
THEN-print-to-user: English(Com pose)
TH EN-define-new-concepts: Name FoG;

ORIGIN Compose F,G:
WORTH: Average(Worth(F),Worth(G))
DEFN: Append(Defn(G),Defn(F))
Avg-cpu-time: Plus(Avg-cpu(F),A vg-cpu(G))
IF-Potentially-Rele: I f- Potentially-Rele(G)
IF-Truly-Rele: If-Truly-Rele(G)

CODED-IF-PART: X(FG) ...
CODED-THEN-PART: X(F,G) ...
CODED- I F-THEN-PARTS: MF,G) ...
COMPILED-CODED-IF-THEN-PARTS: #30876
SPECIALIZATIONS: Composition-of-bijections
GENERALIZATIONS: Combine-concepts

Immediate-Generalizations: Combine-functions
IS-A: Function
EXAMPLES:

Good-Examples: Compose Count and Divisors
Bad-Examples: Compose Count and Count

CONJECTURES: Composing F and F is sometimes very good and usually bad
ANALOGIES: Sequence
WORTH: 700
VIEW: Append
ORIGIN: Spccialization of Appcnd-concepts with slot= Defn

Defined-Using: Specialize
Creation-date: 11/4/75 03:18

HISTORY:
NGoodExamples: 14 NBadExamples: 19
NGoodConjccturcs: 2 NBadConjectures: 1
NGoodI'asks-addcd: 57 NB adTasksAddcd: 34
AvgCptuTime: 1.4 seconds AvgListCells: 160

l'igurc 19. Frame-like rcpreseuation for a mathematical Function rrom AM.



NAME: Primes
S'1 ATEM ENT

English: Numbers with two divisors
SPECIALIZATIONS: Odd-primes, Small-primes, Pair-primes
GENERALIZATIONS: Positive numbers
IS-A: Class of numbers
EXAMPLES:

Extreme-exs: 2,3
Extreme-non-exs: 0,1
Typical-exs: 5,7,11,13,17,19
Typical-non-exs: 34, 100

CONJECTURES:
Good-conjecs: Unique- factorization, Formula-for-d(n)
Good-conjec-u nits: Times, Divisors-of, Exponentiate, Nos-with-3-divis, Squaring

ANALOGIES: Simple Groups
WORTH: 800
ORIGIN: Divisors-o" 1 (DLoubletons)

Defined-using: Divisors-of
Creation-date: 3/19/76 18:45

HISTORY:
NGoodExamples: 840
NBadExamples: 5000
NGoodConjectures: 3
NBadConjectures: 7

Figure 20. Frame-like representation for a static mathematical concept from AM.

6.3 Discovering a New Heuristic

The AM heuristics create new concepts via specializing existing ones, generalizing (either from
existing ones or f;om ncwly-gathered data), and analogizing. These are the three "directions" new
heuristics will come from. We have exemplified specialization already. One point about
generalization is worth making: Heuristics which serve as plausible move generators originate by
generalizing from past successes: heuristics which prune away implausible moves originate by
generalizing from past failures. Since successes are much less common than failures, it is not
surprising that most heuristics in most heuristic search programs are of the pruning variety. In fact,
many authors define heuristic to mean nothing more than a pruning aid.

One of the typical "coinon sense number theory" heuristics which AM lacked was the one which
decides that the unique factorization theorem is probably more significant than Goldbach's
conjecture. because the first has to do with multiplication and division, while the latter deals with
addition and subtraction, and Primes is. inherently tied up with the lbrmer operations. How could
such a heuristic be di%.overed automatically? This is the starting point for the example we now
begin, an example which concludes in the .Ibllowing section. "Heuristics to develop new
representations". Why should this he so? That is, what in the world does discovering heuristics
have to do with representation of knowledge?

The connection between heuristics and representation is protbund. Consider even the special case
where we restrict our reprcsentations to frame-like ones. The larger the number ol dil(lrent kinds
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of slots that are known about, the fewer keystrokes are required to type a given frame (concept.
unit) in to the system. Thus, if NGoodConjecs weren't known, it might take 40 keystrokes rather
than I to assert that there were 3 good conjectures known involving prime numbcs. Moreover, no
special-purpose machinery to process such an assertion would be known to the -;ystem.

This is akin to the power Interlisp derives from the thickness of its manual, from the huge number
of useful predefined functions. A broad vocabulary streamlines communication. Not only does a
profision of slot types facilitate entering a concept, it makes it easier to modify it once it's entered.
Finally, it makes it easier to discover it in the first place; think of it as combining terms in a more
powerful, higher level' language.

So we see that the task of discovering heuristics should be profoundly accelerated -- or retarded
by the choice of slots we make for our representation. In the case of an excellent choice of slots, a
new heuristic would frequently be simply a new entry on one slot of some concept. Let's see how
that can be.

Recall that primes were originally discovered by the system as extrema of the function "Divisors-
of'. This was recorded by placing the entry "Divisors-of ' in the slot called "Defined-using" on the
concept called "Primes" (see Figure 20). Later, conjectures involving Primes were found.
empiricially-observed patterns conncecting Primes with several other concepts. such as Times,
Divisors-of, Exponentiation. and Numbers-with-3-divisors. "this is recorded on the
GoodConjecUnits slot of the Primes concept. Notice that all the entries on Primes' DefinedUsing
slot are also entries on its GoodConjecUnits slot. This recurred several times, that is for several
concepts besides Primes, and ultimately ale heuristic H9 (below) became relevant (its IF-part
became satisfied):

H9: IF (for many units u) most of the entries on u.r are also entries on u.s,
THEN-ASSERT that r is a subslot of s (with justification H9)

This heuristic said that it would probably be productive to pretend that I)efinedUsing was always a
subslot of GoodConjecUnits. Thus, as soon as you define a new concept X in terms of Y, you
should expect there to be some interesting conjectures between X and Y. This new expectation is a
new heuristic; in our old, cumbersome IF/ITlEN language we might express it by two rules saying:

(A) "IF a concept is created with a value in its DefinedUsing slot,
'HEN place that value in its GoodConjecUnits slot, with justification H9."

(13) "IF Y is an entry on the GoodConjecUnits slot of X, but no good conjecture between X and
Y is yet known, THEN propose a task for the agenda, to look for conjectures between X and Y."

The second of these, (B), has nothing to do with DefinedUsing slots. In fact, it is really no more
powerful than a combination of (i) a very general rule that says to ,erify suspected members of any
given slot, and (ii) enough fact; about GoodConjccUnits and Conjectures to know how to apply (i)
to them. The first one, (A), is the "new heuristic" synthesized by 1-19. It needn't be represented as
shown above: rather, we can simply go to the concept called DefinedUsing (the data structure
which holds all the information the program knows about that kind of slot in general), and record
that one of its Superslots is GoodConjecUnits. We should also give this an explicit justification,
namely 1-19. since it is a heuristic, not a fact. l'igure 21 shows what this record looks like in our
current program. '[he new heuristic is simply the line or two emboldened below: all the non-bold
text was present in the program already (though most of it was written by the program itself at
earlier timzs, not illed ini by human hands).

It is important to make clear that the semantics o!" a value ia ,ppearing as an entry on slot s of
concept c does mil necessarily mean that It is torinally proven that v merits a position there, rather,
it is merely plausible. Any ctry v can have ami explicit justilcation, hut in lieu or any inlbrimation
to the contrary, the defilult justification is merely empirical. Thus, when an entry, say Palindromes,
i, on the GoodConjccUnits slot of Primes, it ma'y mean that som interestinn conjectures have been
1i111d between Primes antd Palindromes, r jtst that it is sim;pected -- and ex~pected" -- that such
c ,~n jctueCs call be foil nd if' one spends, the troible lo(Ol': ig lor them.
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Thanks to the large number of useful specialized slots, large IF- THI..N- rules can be compactly,
conveniently, efficiently represented as simple links. Some of these useful slots are very general,
but many arc domain dependent. Thus. as new domains of knowledge emerge and evolve, new
kinds or slots must be deviscd if this powcrful property is to be preserved. The next natural
question is, thercfore. "Flow can useful new slots be rbund?" The last two sentences are the final
two points or our original ive-point programme (Figure 2), and the next section answers them by
way of continuing the examplc we've begun in this section.

NAME: Archetypical-" Defi ned-Using"-slot
SPECIALIZATIONS:

SubSlots: Really-Defined-Using, Could-Have-Defined-Using
GENERALIZATIONS:

SuperSlots: Origin, GoodConjecUnits
Justification: H9

IS-A: Kind of slot
WORTH: 300
ORIGIN: Specialization of Origin

Defined-using: Specialize
Creation-date: 9/18/79 15:43

AVERAGE-SIZE: 1
FORMAT: Set
FtLLED-WITH: Concepts
CACHE? Always-Cache
MAKES-SENSE-FOR: Concepts

Figure 21. Part of the concept containing centralizing knowledge about all DefinedUsing slots.

7. Heuristics used to develop new representations
'[he example here shows how new kinds of slots can be discovered and used to advantage. This is
just an extension of a given representation, rather than true exploration in "the space of all
representations of knowledge". I believe the latter will someday be possible, using nothing more
than a body of heuristics for guidance, but we do not yet have enough experience to formulate the
necessary rules.

Fach kind of representation makes some set of operations eflicient. often at the expense of other
operations. Thus, an exploded-view diagram of a bicycle makes it easy to see which parts touch
each other, sequential. verbal instructions make it easy to assemble the bicycle, an axiomatic
hormulatioi makes it easy to prove properties about it, etc.

As a field matures, its goals vary, its paradignt shifts. the questions to investigate change, the
heuristics and algorithms to bring to bear on those questions evolve. Thcrelbre. the utility of a
given representation is bound to vary both trom domain to domain and within a domain from time
to time, mtich as did that of'a given corpiis or heuristics. The representation of today must adapt
or give way to a new one -- or the field itself is likely to stagnate and be supplanted.

Where do these new rcpresentations conic from? The most painless route is to merely select a new
,1c from [lie stock of exisiting representational schemes. Choosing an appropriate representation
mecas picking one which lets you quickly carry out the olprations you're now going to vmrry out
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most frequcntly.

In case there is no adequate existing representation, you may try to extend one, or devise a whole
new one (good luck!), or (most frequendy) simply employ a sel of known ones. whose union makes
all the common operations fast. TIhus. when I buy a bicycle, I expect both diagrams and printcd
instructions to be provided. The carrying along of multipic representations simultaneously, and the
concommitant need to shift from oe to another, has not been much studicd -- or attempted -- in
Al to datc, except in vcry tiny worlds (e.g., the Missionaries & Cannibals puzzle).

There are several levels at which "new representations" can be found. At the lowest level, one may
say that AM changed its representation every time it defincd a new domain concept or predicate,
thereby changing its vocabulary out of which new ones could be built.

Much more significant would be the definition of new kinds of slots, typically ones specific to --
and very useful for -- some newly-discovered field of knowledge. For instance, when AM found
the unique factorization conjecture, it would have been good if it had defined a new kind of slot,
Prime-Factors, that every number could have had. A rule capable of this second-level
representation augmentation is the following one:

IF the average size of s slots is large,
THEN propose a new task: replace s by new specializations of s.

The vague terms in the rule would have specific computational interpretations, of course; for
instance, "large" might mean ">10". or "> 3 times the average size of all slots", or "larger than any
other slot", or (most useful from a computational efficiency viewpoint) "larger than the average
number of slots a unit has". It might cause the Examples slot to be broken into several subsiots,
such as ExtremeExamples, TypicalExamples. BoundaryExamples. etc. It might cause Factors to be
split up into PrimeFactors, LargeFactors, etc. Note that the subslots will not in general be disjoint.

The third and final level at which "new representations" can be interpreted is to actually shift from
one entire scheme to another -- perhaps novel -- one. The following two rules indicate when a
certain type of shift is appropriate:

IF the problem is a geometric one,
THEN draw a diagram.

IF most units have most of their possible slots filled in,
THEN shift from property lists to record structures.

All the heuristics of this type are specializations of the general one which says IF some operation is
performed frequently, THEN shift to a representation in which it is very inexpensive to perform.

Let us continue our example. Here is a heuristic which is capable of reacting to a situation by
defining an entirely new slot, built up from old ones, a new slot which it expects will be useful:

-[10: IF a slot s is very important, and all its values are units,
lI-IEN-CREATE-NEW-KIND-OF-SIOT which contains "all the relations

among the values or my S slot"

When the number stored in the Worth slot of the 0oodConjecUnits concept is large enough, the
system attends to the task of explicitly studying GoodConjecLlnits. Several heuristics are relevant
and fire: aniong them is 1-110, the rule shown above. It then synthesizes a Whole new unit, calling it
RclationsA mnong intriesOnh I y"GoodConjcc Units"S lot. E'very known way in Which entries on the
GoodConjecUnits slot of a concept C relate to each other will be recorded on this new slot of" C.

For instance, take a look at the Primes concept (Figure 2()). Its GoodConjecUnits slot contains tihe
following entries: Times, D)ivisors-ol: V{ponentiation. Squaring, and Ntlmler-swiili-hrec-divisors.
The Iir:-t two of these entries are inverses of ech otherN: that is, it' you look over the 'l'imcs unit,
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you will see a slot called Inverse which is filled with names of concepts. including Times. Similarly.
still looking over tie Timcs unit, one can see a slot called Repeat which is filled with Elie entry
Exponentiation. and one can see a slot called Compose filled with Squaring. So Inverse and Repeat
and Compose are some of the relations connecting entries on the GoodConjccUnits slot of Primes.
hence the program will record Inverse and Repeat and Compose as three entries on the
IRclaotions,\m(ong EntriesOn i y "GoodConjecUnits"Slot slot of the Primes concept.

Now it so happens that several concepts wind up with "Compose" and "Inverse" as entries on their
RelationsAmoiigEntriesOnMy"GoodConjccUniLs"SIot slot. The alert rcadcr'may suspect that this is
no accident, and an alert program should suspect that, too. Indeed. the following heuristic says that
it might be useful to behave as if "Compose" and "Inverse" were always going to eventually appear
there:

Hi: IF (for many units u) the s slot of u contains the same values vi,
THEN-ADD-VALUE v, to the ExpectedEntries slot of the Typical-s-slot unit.

This causes the program to add Compose and Inverse to de slot called ExpectedEntries of the
concept called RIationsAmongEntricsOnMy"GoodConjecUnits"Slo. This one small act, the
creation of a pair of links, is in effect creating a new heuristic which says:

IF a concept gets entries X and Y on its GoodConjecUnits slot,
THEN predict that it will get lnverse(X), Inverse(Y), and Compose(X,Y) there as well.

How is this actually used? Consider what occurs when the program defines a new concept, C,
which is DefinedUsing Divisors-of. As soon as that concept is formed, the heuristic link from
DefinedUsing to GoodConjecUnits automatically ills in Divisors-of as an entry on the
GoodConjccUnits slot of C. Next, the links just illustrated above come into action, and place
Inverse and Compose on the RelationsAmongEntriesOnMy"GoodConjecUnits"Slot slot of C. That
in turn causes the inverse of Divisors-of. namely Times, to be placed on the GoodConjccUnits slot
as well as the already-present entry, Divisors-of. Finally, that causes the program to go off looking
for conjectures between C and either multiplication or division. When a conjecture comes in
connecting C to one of them. it will get a higher a priori estimated worth than one which doesn't
connect to them.

If only we'd had die new heuristics back when Primes was first defined, they would have therefore
embodied enough "common sense" to prefer the Unique Factorization Theorem to Goldbach's
conjecture. If we'd had them earlier, these heuristics would have led us to our present state much
sooner. I)ccause of our assumptions about the continuity of the world, such heuristics should
nevertheless be useful from time to time in the future.

Notice that there's nothing special about mathematics -- the newly synthesized heuristics have to do
with very general slots, like )clinedUsing and GoodConjecUnits. For instance, as soon as a new
concept (say Middle-Class) is DefinedUsing Income, the program immediately fills in the following
underlined in lIormation:

NAME: Middle-Class
l)cfined-using: Income
RelationsA mong I 'n triesOn I y "GoodConjec U nits"Slot: Inverse. Compose
G, od-Conjec-Units: Income. Spending. .,arnedInterest

Thus. it goes ofI' looking for (and will expect more from) conjectures between Nliddle-Class and any
of' Income, Spending, and Farnedlntercst. 'l'hus the new slot is useful, though it has a terrible
name, and the new little heuristics (which looked like little links or facts but were actually
pe'riission lI make daring guesses) were powerltl alter all.

We have relied heavily on our repreentation being very structured: in a very uniform one (say a
calculus of linear propositions, with the only operations being Assert and Match) It would be
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difficult to obtain enough empirical data to easily modify that reprcsentation. This is akin to the
nature of discovering domain facts and heuristics: if the domain is too simple. it's harder to find
new knowledge and -- in particular -- new heuristics. Heuristics for propositional calculus arc much
fewer and weaker than those available for guiding work in prcdicate calculus: they in turn pale
befbre the rich variety available for guiding theorem proving "the way matlhematicians really do it".
This is an argument for attacking scerningly-difficult problems which turn out to be lush with
structure, rather than working in worlds so constrained that their simplicity has sterilized them of
heuristic structure.

8. Conclusions

We began by noting that the limiting step in the constrction of expert systems was building the
knowledge base, and that one solution would be for the program itself to automatically acquire new
knowledge: to learn via discovery.

The heuristic search paradigm seems adequate to guide a program in formulating useful new
concepts, gathering data about them, and noticing relationships connecting them. However, as the
body of domain-specific facts grows, the old set of heuristics becomes less and less relevant, less and
less capable of guiding the discovery process effectively. New heuristics must also be discovered.

Since heuristics is a domain of knowledge, much like any other, one can imagine an expert system
that works in that field. That is, a corpus of heuristics can grow and improve and gather data about
itself. This process is very slow and explosive, yet it can be greatly facilitated by having "the right
representation". In the case ef a schematized representation, this means having the right set of slots
or attributes, the right set of attached procedures, etc. We saw how heuristics can lead to the
development of useful new kinds of slots, to improved representations of knowledge. It was
hypothesized that the same representation we use for attributes and values of object-level concepts
could also be used to represent heuristics and even to represent representation. To draw some
examples from the RLL system [Lenat & Greiner 801: Primes (a set of numbers),
GeneralizeRarePredicate (a heuristic), GeneralizeRareHeurisdc (a meta-hcuristic), and Isa (a
representation concept) are all represented adequately af units with slots having values. A single
interpreter runs both meta-heuristics and heuristics, and is itself represented as a collection of units.
While recta-heuristics could be tagged to distinguish them from heuristics, the utility of doing so
rests on the existence of rules which genuinely treat them differendy somehow -- and such niles
have not to date been encountered.

One of the necessary steps in this research was the explication of at least a rudimentary theory of
heuristics, an analysis of their innate source of power, their nature. This turned out to restupon the
continuity of our world: if the situation is very similar, so is the set of (in)appropriate actions to
take. Corollaries of this provide the justification for the use of analogy and even for the utility of
memory. The central assumption was seen to be just that -- an assumption which is often ralse in
small ways, but which is nevertheless a useful iction to be guided by.

1y grapling the power, curves of a heuristic (the utility of that heuristic as a function or task being
worked oi), we were able to see the gains -- and dangers -- of specializing and gencralizing thei to
get new ones. Such curves determine a preferred order for obeying relevant heuristics, and suggest
several specific new attributes worth measuring and recording fbr each heuristic (e.g.. the sharpness
with which it flips from useful to hamfrul, as one leaves its doilain of relevance),

By arranging all the world's heuristics (well, at least all of AM's, and several more randomly-chosen
ones froni chess, biology, and oil spills) into a hierarchy using the relation "More-General-Than",
we were surprised to find that hierarchy very shallow, ihereby implying that analogy would be more
ueul'i a Intlud ur cn.rating flew hu Iristics thanl -.Votild :;pecializhtioI or gencrali/;ation. fly noting
that both Utility afnd Task have several dimensions. IlloSt of this problem went away. fly noting
that twoeu hetristics cal have mat?) inmportant relations connecting thel. of which Nnre-Gencral-



Than is just oneC example. tile shallowness problemt turns into a powerful heuristic: if a ncw hecuristic
i, is to diffcr from an old 'one along somel dimension (rclation) r, then usc analogy to get hi if r's

graph is shallow, and usc gcncralizatio~n/spccializarion if rs graph is dcep. Wc also discussed some
useful slots which heuristics can have, and a method I'or generating ncw .kinds of slots.

Bcrorc dic research programme outlined in figure 2 can be complcted. Much more must be known
about analogy, and more complctc theories of' heuristics and of representation must exist. T[oward
that goal we must obtain more cmpirical rcsults from programs trying to ind useful new domain-
specific heuristics and representations.

References

Brown, John Scely, and Kurt VanLehn, "Repair Trheory: A Generative Theory of Bugs in
Procedural Skills," to appear in .1 Cog. Sci., IV. 4, 1980.

Clancey, William J.. "Dialogue Management for Ruic-Based Tutorials," l'roc. Sixth International
Joint Conference on Artificial Intelligence, Tokyo, 1979.

Feigenbaum, [Edward A.. "The Art of Artificial Intelligence," Proc. Fifth International Joint
Conference on AIrtificial Intelligence, lviIT, Boston. 1977.

Gaschnig, John. "Exactly How Good Arc Heuristics?: Toward a Realistic Predictive Thecory of Best-
First Search", Proc. Fifilh International Joint Conference on Art/icial Intelligence, Cambridge. 1977.

Lenat. Douglas B., "On Automated Scientific Theory Formation: A Case Study Using thle AM
Prograun." in (ican Hayes, Donald M%,ichie, and L. I. tMikulich. eds.) Alachine Intelligence 9, New
York: Hlstead Press, a division of John Wiley & Sons, 1979, pp. 25 1-283.

Lcnat, Douglas B., and Russel D. Greiner, "RLL: A Representation Language Language," Proc. of
the First Ainnual Meeting of tihe Amlierican Association for Artificial Intelligence (AAAI), Stanford,
August. 1980.

MAinsky. Marvin, "Steps Toward Artificial Intelligence", in (eigenbaum and Feldman, eds.)
Computers and Thought, McGraw-Hill, 1963.

Newell, Allen, and Herbert Simon, "Computer Science as Empirical Inquiry: Symbols and Search",
CA CMl, 19. 3, March, 1976.

Poincare, H -., Tile r-oundations of Scicnce. The Science Press, New York, reprinted in 1929.

Polya. G., How to Solve It, Princeton University P'ress, 1945.

Acknowledgements

Productive discussions with John Seely Brown. Bruce Buchanan, Bill Clancey, Johian deKleer, John
D~oyle, Russ Greiner. Mark Stefik, and MN~ike Williams have heavily influe.ncedl this work. Sections
3 and 4 are suimiaries of the Icssons learned fl'or AM. ror'which I thank Bruee BuIChanan, Ed
F~eigenbaium, Cordell Green, lDon Knuth, and Allen Newell. 'The data ror Section 5's "shallowness"
c(,icilisioni about the tree ort heurist~ics was gathered while' I was at CMU. with thc aid (if Herb
Simon and Woody ledsoc. Much of' Sections 6 and 7 rely upon RIAl., a self-describing and self-
mnodifvying representation langaiage constiructed b~y Russ Greiner and dhe anihor. Finally, I wish to
thank Xvpx l'A RC and Stanfojrd's H PP ror p~rovidinlg suiperb, environments (intellectual, physical,
;:nd compu~tational) iii which ito wom k. Fiiiamicial support was providcd lby ON R (iN000141-80-C*
(X(9), NSV .(MCS 79-019541). and XP-R0X.


