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ABSTRACT

ZMOB is a multi-microprocessor system consisting of
256 Z80A microprocessors that communicate via a fast
cyclic shift-register bus. This paper discusses the
efficient use of ZMOB for various types of image processing
operations, including point and local operations, discrete
transforms, geometric operations, and computation of image
statistics.
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1. Introduction

1.1 ZMOB

ZMOB [1] is a multi-microprocessor system with a j
ring-like inter-processor communication system called the

"conveyor belt". The current configuration has 256 proces-

sors and is capable of executing a total of about 100 mil-

lion instructions per second. This section explains features |

SV IR PN

of the conveyor belt architecture exploited in processor

communication.

The conveyor belt allows any processor to communicate

with any other, at a speed so great that it is unnoticeable ‘

to the processor. Asynchronously, processors may compute

LV PR

data and pass intermediate results among each other. The '
conveyor belt also supports tightly-synchronized ("lock-step") !

parallel image processing algorithms by allowing processors

to all communicate data in an organized way {(e.g., a "pass-

right" sequence) or rapidly pass blocks of data among one

another (termed "burst mode").

However, in instruction-level lock-step mode (where
absolute synchronous timing is crucial), not all patterns
of data exchange can occur during an infinitesimal communi- ﬂf
cation step. For example, no processor can receive data
from more than one processor or send data to more than one

specific processor at the same Lime.




Communication wilh the host VAX can ococudr simul-

tancously between all the processors (.o, the VAX can sond

data tc or reccive data from all 256 processors at once),
and all processors' computations may be synchronized by

a command from the VAX. Thus, heavy simultaneous convey-
or belt traffic must be organized and orchestrated care-

fully, and the VAX can provide the means to put the

processors in synch to begin that activity properly.
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1.2 1Image Processing on 7ZMOB

This paper deals with thc efficient use of ZMOB for

|

performing various types of image processing operations, D1
including point and local operations, discrete transforms, ;
|

geometric operations, and computation of image statistics.

B .ot

The aim is to make the fullest possible use of ZMOB's
parallelism, so as to achieve a speedup by a factor pro- f4
portional to 256, the number of processors. To this end, !
we consider how the image data should be partitioned

among the processors, and how the operations should be

segqmented into computation and communications steps. We R

also compare ZMOB processing with performing operations

on the host VAX itself.




2. Point and Local Operations

A point operation on an image computes a new value
for each pixel as a function of the old value, independent
of the values of other pixels. To perform such an opera-
tion on ZMOB, the image is divided into 256 parts in any
convenient way; each ZMOB processor receives one part . i
from the host VAX and operates on its pixels; and the |

results are returned to the host VAX.

Y

Let CZ and CV be  he times for a ZMOB processor and
for the VAX, respectively, to perform the given operation
on one pixel. Let N2 be the number of pixels in the :

image, and let r be the time required to Pass one pixel

from the VAX to ZMOB or vice versa via the UNIDUS. i

Then the time required to perform the operation on the

entire image in the VAX is CVNZ, while the time required to
: S, 2 2

perform it on ZMOB is 2rN” + S /256, Lvidently, if

512r + (,‘2 ~ 256(,‘\/, using ZMOB i1s advantagoeous.

The situation is more complicated when we deal with

local operations, in which the result for a given pixel

depends on the values of the pixel and a sct of its

neighbors. Here, if we partition the image into disjoint ,
parts, exchange of information between ZMOB processors is |
necessary, and the amount of cxchangedepends on the shapes

of the parts. Alternatively, we can divide the image into

overlapping parts, such that for every pixel there cexists

a processor that contains the pixel and its neighbors. This




makes data exchange unnecessary when the local operation
is performed only once; but if the operation must be
iterated, as is often the case, the amount of overlap
needed may become excessive.

Section 2.1 discusses the optimal choice for the
shapes of the parts, and concludes that square blocks are
best, at least for all the standard types of neighborhoods
used in local operations. Section 2.2 discusses the amount
of overlap and shows that the least possible overlap is
always optimal. Section 2.3 discusses the relative merits

of performing an (iterated) operation on ZMOB or on the host

VAX itself.
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2.1 Optimal Region Shape

Iterated local operations performed on ZMOB involve

cycling between two states: computation, where each

PRI v

processor performs calculations on data in its local

memory, and communication, where some or all processors

pass information between themselves in synchrony. With
iterated local operations, this information will lie at

the border of the image subregion contained in each

processor. In the following sections, we discuss the
following question: given that at each iteration processors
must pass appropriate border information, what is the optimal
image subregion shape?

2.1.1 Optimal Rectangle: Strips vs. Squares P

The first question is whether squares are the best
rectangles; intuitively, this is so, because (in thc 8-
neighbor case) a one-thick border around the region must
be passed at each iteration, and a square has the smallest
perimeter of any rectangle having the same area (Fig. 1).
More rigorously, let A be the subregion area and ¢ be the
rectangle length, so that A/% is the rectangle height.

Then C, the cost of passing the region perimeter, is pro-

—~

portional to
C(9) = 2A/9 + 20 + 4

To optimize for 4, we differentiate and sct to O:

Q_C(Q) = =27 4+ 2
as 2 s
9’ ' V
2n = 2

2

9




Since 22 = A describes a square, it is the optimal rectangle.

2.1.2 The 8-Neighbor Case: Comparison of Square, Diamond,
Triangular, and Circular Shaped Regions

Now that squares have been shown to be the best rec-
tangles for local operations, diamonds, triangles, and
circular regions will be compared for efficiency too (without
regard for the potential difficulty of performing the
subdivision). The statistics compared will be the perimeter-
to-area ratio, the fraction of overhead spent passing data
instead of the real work, computing. Figure 2 graphically
illustrates the border size calculation, and Table 1 contains
the perimeter/area ratios.

As presented, the data shows squares better than
triangles better than diamonds. Circles, in the limit,
are as good as squares, but for realistic values come out
worse (in Fig. 2, the circle has area 49, perimeter 40,
with the equivalent square's perimeter 32), not to mention
the image subdivision problem.  Again, squares are best.

2.1.3 Other Neighborhoods

1. The 4:E9}qhborwpase

Figure 3 illustrates the algebraic relationship between
verimeter size and area for square, diamond and triangular
regions in the 4-neighbor case. Since the neighborhood 1is
symmetrical, the triangle produces the same result in any

orientation. Table 2 shows that a square is superior to

either a trianqular or diamond region.




b. The 2 x 2 Neighborhood

This neighborhood shape is used in the Roberts
gradient and in shrinking and shifting operations. Figure
3 and Table 2 again show that a square region subdivision ;

|

is best for these operations. .

c. Other Asymmetric Neighborhoods

The two types of neighborhoods used in the standard
connected component labeling operation, for 8- and 4-connocted- |

ness, are shown in Figure 3. Once more, Table 2 shows that ?

a square is best.




2.2 Optimal Region Overlap

Once the region shape has been decided, the next
question is how to best coordinate the cycling between
computation and communication in the course of iterated
local operations. In particular, additional border informa-
tion is required for each iteration of a local operation.

t Is it best to pass several layers of border information at
once and then compute on them, or just one layer at a time?

The answer 1s: just one layer at a time. Intuitively,

the more layers we pass at each stage, the larger each
successive layer gets (Fig. 4). Likewise, the amount of
computation grows for each successive layer of border

points added to the region (Fig. 5). Thus, we cannot

aqain by passing more than one layer at a time between
computations, and the pass one layer - compute one iteration

strateqy 1s optimal.

Morce formally, Jet i the total numboer ot 1toevations
to be performed, j = the number of iterations to be per-
formed at each step (the variable to be optimized), p =
the time to pass one point, t = the time to perform one
local operation, and n = the side length of the sauare we
are dealing with. The communication time for one round

is

4(ni+i®)p




The computation time for one round is

-1 5
Lo (n+2k) ", or (as a polynomial in
k=0

2
t(%j‘+(2n—2)j2+(n2“2n+§)j)
Adding these together, and multiplying by i/j, which
the total number of rounds to complete 1 iterations,

us a total time of

£15%421 (£ (n-1)42p) 5 + (ti(n’-2n+%)

4
3 3

is

gives

+41inp)

Differentiating, setting to zero, and solving for j gives

. 3 3 p
j = —(Z(n-l)+§ E)

A negative optinal value of j implies that we should use

the minimum legal value, and j should be 1.




2.3 Timing: VAX vs. ZMOB Computation Tradeoff

When is it better to use ZMOB rather than simply using
the host VAX? 1In other words, when does the overhead of
using ZMOB (loading and unlcading an image to/from the

processors via the conveyor belt) offset the time saved in

performing the (iterated) operation? To answer this,
we must first obtain formulas for computation times on

VAX and ZMOB. The variables will be:

length of image side (area =N2)

number of processors in ZMOB (256)

time to pass one pixel between ZMOB processors
time to compute one local operation on ZMCB
time to compute one local opexation on VAX
ZMOB square region side (n2=N2/P)

number of iterations of local operation

‘time to pass one pixel over the UNIBUS

<

HRE3DOoQU Y2

2.3.1 vVvax and ZMOB Computation Times

On the VAX, the time to compute m iterations of

a local operation which takes Cy time per pixel is

2

T = mCVN

VAX
On ZMOB, the computation must be split into three
stages: loading (LZ), processing (Pz), and unloading (Uz)'

a. Loading and Unloading

Each processor in ZMOB may be loaded simultaneously
from the VAX over the conveyor belt; each processor's
subregion of N2/256 proints is loaded at the transfer rate
of the conveyor belt, p. However, the loading time is limited
by the time it takes to pass the entire N2 image points between

the VAX and ZMOB over the UNIBUS; this occurs at the UNIBUS trans-

fer rate(r). Loading and unloading times are the same:

¥
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b. g;ocessinq

There are two stages for cach iteration of ZMOB processinag:

communication and computation. Pass time is (4n+4)p per
. . . 2 . .
iteration, and compute time 0 C, per iteration; thus

~ 2
Pz = (4n+4)mp + n mCZ
In summary, the total time for ZMOB processinyg 1s

T = LZ+UZ+PZ, or

ZMOB
_ 2 2
TZMOB = 2rN + (4n+4)mp + n mCz

2.3.2 VAX vs. ZMOB Tradeoff

Given that the VAX takes some fraction ¢« of the time
that ZMOB does for the given local operation (. will vary),
how time-consuming must that local operation be (on ZMOB,
say) before it is worth moving the image to 4MOB for

. . 2 2
processing? Let Cv:uCz, and solve (letting no = N /P):

Tvax = Tumon
2 2 2
umCZN = 2rN“+{(4n+4)mp+n mCz

2rN?  +4 (NANP+1)mp
mn? (a-1/P)

C =

Tables 3 and 4 show typical results for the realistic values

H

512

256
p = 10~ °sec. (l0usec/byte ZMOB transfer

2
]

rate; a conservative estimate)

4 « 10_7sec (400 nscc/byte UNIBUS
transfer rate)

=
i

Table 3 «gives minimum ZMOB computation times for Tyax = TZMUH'

and Table 4 gives minimum times for qVAX = lOPZMOB.

PP,

g




We can see {rom these tables that, since the smallest
value for Cz is the time reguired for one Z80 instruction or
about one microsecond (10—6 sec.), ZMOB will almost always !
be advantageous and will often be more than ten times fastor }
than the VAX. We can also see this in the following list of !
fractional overhead values (the ratio of ZMOB loading and ;

unloading time to the total processing time) for a (one-

iteration) local operation: 98.9% when C_ eguals 10—6 SQC.

Ul N

(around one instruction), 94.8% at Cz=10 sec., 66.97 at

-4 - -
CZ=lO sec., 17.0% at szlO 3 sec., and 2.0% at CZ=lO sec. ;
the ratio drops well below 1% for more than one iteration or

larger C7 values. Thus, even for once-performed local opera-

abic

tions, ZMOB loading and unloading overhead is relatively .

small, and since CZ/256\<Cv (usually), the use of ZMOB will

ordinarily be advantageous.




3. Twotgimensiqngl_gi§g£gto Transforms

The method described betow caleultates the two-dimen-
sional Fourier transform (or other similar discrete
transforms) of an N by N image in O(N log N) time. FEach
processor is assigned a subregion of consecutive rows of
the image. The process is composed of threce steps: a
row-wise fast Fourier transform (FFT) by ecach processor;
transposition of the image (matrix) between processors;
and a (now) column-wise FFT. Executing the FFT on each
row held by the processor is straightfoward and performed
in O(N log N) time. Transposition of the image to perform
the column-wisc transform is accomplished as follows:
cach processor is destined to reccive a portion of cach
row during the course of the transposition, with onc portion
remaining in the processor. Processor i passes the portion
to go to processor i+l, which can be determined by computa-
tion, during the first communication round; this quantity
may be several elements (and several bytes per element).
During the second round, processor i+2 receives its
portion from processor i, and so on, until 255 rounds have
been completed. [ach processor now contains on¢ or more
columns. The process is illustrated in Fiqure 6. Each
row and column takes O(N log N) time to be transformed;:

each processor contains N/256 rows or columns, but since

!
!
)
|
{




N is bounded by the image size that ZMOB can realistically

hold, this can be regarded as a constant. The (ransposi-

tion process takes O(N) time to transfer the elements of
one or more rows to other processors. Thus the entire

algorithm takes time proportional to 2N 'og N + N time,

or O(N log N).

AT i




4. Geometric Correction

The problem of performing qeometric correction of an
image in parallel using ZMOB involves cach processor
receiving information about the input image from othcr
processors for each point in the output subreqgion assigned
to that processor. The value of each output point is
computed by interpolation from the values of a set of input
points surrounding an ideal input point, usually having
non-integer coordinates, whosc position 1s defined by the
inverse of the given coordinate transformation. For
example, for bilinear interpolation we use a 2 by 2 neigh-

borhood of the ideal input point, while for cubic spline

interpolation we use a 4 by 4 neighborhood.

One desirable condition for efficient qgeometric
correction on ZMOB is to have cach interpolation neighbor-
hood reside entirely within one processor, so that no xcre
than one need be consulted to obtain an output image value.
This may be insured by providing suitable overlaps botween
the subregions handled by the processors (¢.qg., a One-row
border for a 2 by 2 neighborhood). However, there is no
way of guarantceing, in general, that we can compute thw
output values in such a way that, at each step, cach
processor nceds information from a ditferent procesasor,

As a result, the communication between processors will not

be evenly distributed, and it becomes impossible to give an




exact cstimate of the time required. Only in the special
case where the pixel displaccement is bounded by some
distance d, 1t becomes possible to provide an overlap
between processors proportional to d, thus allowing each
processor to compute its portion of the output image

without consulting other processors.

Y




5. Computation of Tmage Statistics
holo tmage fdistogram Algorithm

We first consider the problem of creating the grey-
level histogram of an image in ZMOB (either freshly
loaded from the VAX or alrecady prescnt after a series of
previous image operations). In the algorithm to be
described below, the goal 1s tor cach of the 256 processors
to contain the frequency of occurrence of one of the values
of the (cight-bit) grey level, for an image cof arbitrary
size (though with an upper bound, within the constraints
of local memory).

The method is divided into two steps:  local histogram
creation and histoqram merging.  buring histogram creation,
cach processor creates a 256~bucket histogram for its
sub~-portion of the total image, the image arca being
divided into 256 cqual parts (the strategy for partitioning
is 1rrclevant and no overlapping is necessary) . Lach bucket
may bc of some appropriate size, say 16 or 24 bits, which
will accommodate the largest possible value, or perhaps the
highest bit may be rescrved as a bucket overflow indicator.
Ilach processor also has a different (and larger) bucket,
corresponding to its processor 1.D. and to the grey level
that 1t will be counting, that it is responsible for

totalling during the next stoep.

ey




During the histogram merqging phase, cach processor
will pass the contents of cach histogram bucket (other
than its own) to the appropriate processor for totalling
during 255 communications rounds.  Fach processor already
has the initial count for its own bucket. During the
first round, processor 1 passes the contents of bucket
i+1 (module 256) to processor i+l for totalling. On the
second round, bucket 1+2 1s passed to processor i+2, and
so on. After all 255 bucket values belongina to other
processors are passed, they are disrcgarded and the

processor's own final value is returncd to the VAX.




5.2 Co-occurrence Matrix Computation

The problem of computing co-occurrence matrices is
very similar to that of histogramming. Each co-occurrence
matrix element is a frequency of a pair of grey levels

occurring at a particular distance and orientation from

one another, just as each element of the histogram (vector)

is the frequency of a single grey level occuring at any

pixel. The one difference is that a co-occurrence matrix f
is potentially much larger (the square of the total number

of grey levels). Usually, the range of grey levels used

is more restricted than in the histogram case -- e.g., we

use only the upper five or six bits of the grey value.

Another difference is that the geometry of the pixel pair
calls for the use of appropriate overlap when storing the
image subregions in the processors (see Figure 7). 1In
particular, if each pixel is compared with one m units
horizontally and n units vertically displaced, we can

use square subregions with m columns and n rows of over-
lapping. This obviates the need to request information
from other processors during the course of the computa-
Lion, at a great savings of time with a small cost of
extra memory used. The process then prcocceeds similarly

to the histogramming algorithm: each processor comnutes

a co-occurrence matrix for its subregion; each processor

is assigned 1/256th of the matrix elements (arbitrarily)




to total; and through 25% rounds of communication, cach

processor sends cach other processor its portion of the

matrix Lo total, and receives the other 295 values ton

its own matrix portion.
consist of several matrix elements, cach potentially

several bytes long. After the totalling is completed,

cach processor communicates its portion to the VAX whore

the final matrix is asscmbled.

Each matrix portion will probably

e -




6. Concluding Recmarks

We have seen that ZMOB should have substantial

speed advantages in many image processing situations.

In particular, we have outlined efficient ZMOB communica-

tion/computation schemes for point and local operations

(with particular reference to how the data should be

partitioned among the processors), discrete transforms,

geometric operations (in some cases), and computation of
statistics. These schemes demonstrate that efficient
use of ZMOB's parallelism is possible for essentially

all basic image processing and analysis tasks.
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