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and in - u, n + u), 0 < < u < <n which only have small prime factors. These
lists can be uniformly used for the factorization of all numbers in In - u, nt +
u]. Given these lists, factorization takes O(expI2(lnn)I/3(lnlnn)2/31) steps. We
slightly improve Dixon's rigorous analysis of his Monte Carlo factoring algorithm.
We prove that this algorithi. with probability 1/2 detects a proper factor of every
composite n within O(exp N/6 Inn In In n) steps.
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1. Introduction and Summary.

Recently theiinterest in factoring integers dramatically increased since the
security of the RSA public key cryptosystem mainly relies on the difficulty of

factoring large integers, see Rivest et al. (1978). The problem of factoring integers

is one of the classical computational problems in mathematics. Gauss quoted it as

one of the most important and most useful problems of arithmetics. Only modest
progress has been made from the factoring methods known to Gauss and Legendre
to the most efficient algorithms known today. In fact almost no new ideas came

up, the progress mainly relies on more efficient programming and the use of faster
computing machinery. Landmarks of this progress have been the factoring of the
Fermat numbers F7 = 22' + 1 by Morrison and Brillhart (1975) and recently the
factoring of F8 - 22* + 1 by Brent. The theoretical progress mainly concerns a

better understanding and a more detailed analysis of the known methods. Also,
with the evolution of the theory of computational complexity there evolved an

increasing interest in asymptotical runtimes of algorithms. We will continue in
this direction, too.

In order to factor n, or equivalently to solve z 2 = -a mod n, Gauss (Artikel
327) makes extensive use of the theory of quadratic forms. The usefulness of
quadratic residues mod n which are small or only have small prime factors has

been known long ago. Gauss (Artikel 328) gives a method to construct such

residues w with w -- Ov,/) by means of quadratic forms. Legendre already used
the continuous fraction expansion of v'n. The more recent factoring algorithms
of Morrison, Brillhart (1975), Shanks (1971, 1974), J. P. C. Miller (1975) are

all refinements and variations of these old ideas. This will become clear by
a comparative study of these algorithms, including proper modifications and

improvements.

From the theoretical point of view Dixon (1978) achieved a major step. He
proposed a probabilistic factoring algorithm and gave a rigorous proof that this

algorithm for every composite number n with probability 1/2 detects a proper
factor of n within O(exp(4v/i nlnlnn)) steps. Section 2 contains an outline

of Dixon's analysis together with some improvements. In fact we decrease the
constant 4 to vF. If in addition quadratic residues mod n are constructed

via Legendre's continuous fraction method then, under reasonable assumptions,
we obtain the time bound O(expN/31nnlnlnn) for a tuned up version of the
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Morrison-Brilihart algorithm.

In Section 3 we analyze J. P. C. Miller's method of using the solutions of
index equations. We point out that this is not an independent method but rather

a modification of solving z 2 = y2 mod n by combining congruences modn. Under
reasonable assumptions we obtain a time bound O(exp 1/4.5 In n In In ,). However

this algorithm might be the most efficient one, if one likes to factor many numbers

in a small region. The reason is that this algorithm uses lists of those numbers in

[-u, u] and [n - u, n + u] which only have small prime factors. These lists can
be uniformly used for the factorization of all numbers in fn - u, n + u].

In Section 4 we modify Shanks (1971) method of factoring n via the con-
struction of ambiguous quadratic form, with determinant -n. Our modification

relates this algorithm to the previous ones and in particular to the Morrison-
Brillhart algorithm. Under reasonable assumptiors we obtain the time bound

O(exp v'3 In n in In n).
This latter algorithm, the Morrison-Brillhart algorithm and the Schrocppel

algorithm (see Monier (1980)) are the asymptotically fastest known factoring
algorithms. A rough analysis slightly favors Schroeppel's algorithm since under

reasonable assumptions we obtain a time bound O(exp(l.5vIn n In}n n)). There

is however an additional speed up for the other two algorithms, due to the fact
that about half of the primes cannot occur as factors of the residues occuring in
the algorithm. This effect is difficult to analyze but might well dominate for all

reasonably sized n over the small difference V3- 1.5 in the exponent.
We should at least mention the important algorithms of Pollard (1975) and of

Schroeppel (see Monier, 1980) which are not included in this comparative study.

For more complete surveys on factoring algorithms we recommend Guy (1975),
The Art of Computer Programming, Vol. 2 by D. Knuth (in particular the 1980
edition), and the thesis of L. Monier (1980).
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2. A Refined Analysis of Dixon's Probabilistic Factoring Algorithm.
So far the asymptotically fastest run time of a factoring algorithm has been

proved by Dixon (1978). Given a composite number n, this algorithm finds a

proper factor of n with probability 1/2 within O(exp(4vlnnlnInn)) steps. In
denotes the "logarithmus naturalis" with the Eulerian number e as base and exp
is the inverse function to In. Dixon mainly applies the method of "combining

congruences" to generate solutions of z 2 = y2 mod n. In Sections 3 and 4 we will

see that this technique can well be combined with factoring algorithms proposed
by J. P. C. Miller (1975) and D. Shanks (1971). We give an outline of Dixon's
algorithm with an improved analysis. We decrease the constant 4 in Dixon's bound

to V6-. The improved theoretical time bound results from a tighter lower bound
on the number of quadratic residues mod n which can be completely factored over

small p.-imes (Lemma 1) and a specific method for detecting small prime factors.

Here we do not focus on designing the most practical algorithm but we like to

prove a rigorous asymptotical time bound as small as possible.

Dixon's Algorithm.
begin input n

stage 1 v = [n 1 2 'j
comment the optimal choice of r E X will be made below.

Form the list P of all primes < v. P = ... pf(9)).

if 3p. E P "p, n then print pi stop

B:=0

stage 2 Choose z E [1, n] at random and independently from previous choices of

Z.
w :=z 2 modn with 0 < w < n

stage 3 Compute a = (ai E /J 11 < i < r(v)) and w" with w = w* <,(,)p '
and Vp E P: p does not divide W'.

test 1 if [w* 1 or g = 0mod2] then goto stage 2

B := B U {a), z:= z
Try to find a nontrivial solution of

/fa =0mod2 faE {0,1}. ()
&EB
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test 2 if there is no nontrivial solution then goto stage 2

H : --Hl Z!d, Y :-- Ml<W(V)Pj

comment [The construction implies z 2 = y2 modn; in case z -±y
mod n, gcd(z ± y, n) are proper factors of n.]

test 3 if z ±y mod n then print gcd(z ± y, n) stop
Choose the first q E B such that 4=1.

B := B - {}, goto stage 2

end

Obviously a proper factor of n has been found as soon as test 3 succeeds. In

the following analysis of the algorithm we suppose that n is an odd number with

prime factor decomposition.

d

n- = -qf' l4>t1 and d>2.

Clearly the cases that n is even or a pure prime power can easily be handled

in advance. The following facts are due to Dixon.

Fact 1. prob(z = ±y mod n within test 3) = 21-d and the corresponding events

for distinct passes of test 3 are mutually independent.

Proof. Consider the last chosen z and w - z2 mod n. We prove that there
are exactly 21 distinct z1 , i = 1, ., 2d, such that .2 - wmodn. Clearly Z ,
the multiplicative group mod n, is a direct sum

d

For each i there are exactly two distinct solutions tj = u,, vi of t; = w ood qf'.
Then by the Chinese remainder theorem the zi correspond in one-one manner to

the 2d elements in {u,,v) X ... X {ud,vd). Now each of z 1 ,.. .,Z 2 , is equally
likely to be chosen for z. The values of f, and y do not depend on the choice
of z E {z,... ,z 2i), only z =I zg depends on this choice. Observe that
the value f corresponding to z - z. must be 1, otherwise the algorithm would



pass test 3 without choosing this final z. Therefore the 2d choices for z yield

2 " distinct values for z and exactly two of them imply z = ±ymod n. This

evaluates the probability that "z = ±ymodn during test 3* to 2 1-d. Since

our analysis is completely based on the last chosen z, it is clear that the distinct

events of "test 3 succeeding" are mutually independent. a

Let T(n) be the total time of the algorithm and let T3 (n) be the time till

the first pass of test 3. We count arithmetical steps mod n as single steps. T(n),

T3 (n) are random values depending on the random variables z of stage 2. Fact 1
immediately implies:

Fact 2. E[T(n)] = (1 - 21-d)-lE[T3 (n)] <_ 2E[T3 (n)J.

Here E[X] denotes the expectation of the random value X. Let T1(n) (T2 (n),

resp.) be the time spent from any entering of stage 2 till the first pass of test 1

(test 2, resp.) without counting the steps used to solve the various inear systems

of equations (1). Since a linear dependence of the a with a E B must exist as

soon as #B > 7r(v) + 1 = O(v/ In v) it follows that there are almost r(v) + 1

passes of test 2 between two consecutive passes of test 3. Hence

Fact 3. E[T3 (n)] <_ (r(v) + 1)E[T2 (n)] + O(r(v)s).

Here O(,r(V)3 ) bounds the steps to solve all the linear systems (1) occuring

in the various passes of stage 3. Indeed this task amounts to solve one system of

linear equations with ir(v) + 1 unknowns. In order to analyze E(T2 (n)] we define

Q := {set of quadratic residues mod n) nf Z*

T(n, v) := {r E [1, n]: all prime factors of r are < v)

M(n, v) := {z E [1,n]: z2 modn E Q nT(n,v)).

Fact 4. E[T2 (n)] <<_ O(E[T(n)]n/#M(n,v)).

Proof. We clearly have prob(w' = 1) ! #M(n,v)/n and it can easily be

seen that prob(a = 0 mod 2) is negligibly small. Hence test 1 will almost be passed

about n/(#M(n, v)) times between two passes of test 2.
T1 (n) depends on how the factorization of w over the prime base P is done.

A crude way is as follows:
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for all p E P do
[while p I w* do w" W/p]

This yields

FactS. E[Ti(n)I : r(v)+logn.

Here log n bounds the number of multiple prime factors of n according to
their multiplicity.

So far Facts 1-5 yield under the assumption log n < 7r(v):

E[T(n)] < O(r(v)2 n + ()]) (2)

and it remains to prove a sharp lower bound on #M(n,v). This will be our

main improvement over Dixon's analysis. Let x: Z* -+ {±l)d E4 IZ 2 be
the quadratic character, defined as follows. For (al,...,ad) E G=Z' , let

x(a 1,... ,ad) = (eh,... ,ed) with e,-- (A - ). By definition the Jacobi symbol ( )

is 1, (-1, resp.) if b is a quadratic residue (non-residue) mod q. It is well known

that x : Z - . 1 ? Z2 is a group homomorphism and a E Q iff x(a) is the group

unit (1,1,...,1) e {-l1d.

Lemma 1. #M(n,v) > 2r(v) 2 /(2r)! for all natural numbers r with v 2 , < n
provided all prime factors of n are > v.

Proof. Let T,(m,v) := {w E [1,m) I w = p ' A Eia r}. Since

all prime factors of n are > v we have T,(vi, v) C Z . We partition T,(-'n-, v)

into classes T,, i - 1,..., 2d according to the 2 d possible values of X. Then

d
U TjTj C T2,(n,v)n Q.

i=1

Therefore

#M(n, v) > 2d# (T2r(n, v) n Q)
2'

- ( r !
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Here (#T)2 counts the number of ordered pairs (wI, W2) E T7 X T" and (2r)! /(r!) 2

bounds for each w E Q the number of distinct pairs (w1 , w2 ) E Uj T X T that

yield the product wIw 2 = w. The Cauchy Schwarz inequality implies

2d 2

E (#T) 2 > 2d(:Z#Ti) =]2d#T( /nv)2

(use ( uv) 2 with uj = #Tj, vi = 1).

Obviously we have #Tr(Vn , V) (v+') _ r(u)'/r!, since (ff(v)+?) is the
number of possibilities of choosing with repetitions r elements out of ;r(v). Finally

we obtain from (3), (4):

#M(n, v) >! #Tr(V-, V)2 > ( 2 r! 7() 2

(2 r)! - r!2 (2r)! (2r)!

Putting (2) and Lemma 1 together we obtain

E[T(n) = Or(vy) - )))( 2r

provided log n < 7r(v) and v2" < n. Using , - n1/2' the prime number theorem
in the form v/In v < r(v) < 2v/In v and Stirling's formula

(2r)! = o(\v/-r)2r e - -2)

we obtain

E4T(n) = 0 I )2 /r - 2Cln n) 2 r +4n

We choose r E R as to minimize nl/r(ln n)2" . This implies

1 I1lnnr = - I+ 1/2

and

n I/r(ln) 2 ,= O(ln nexp v/8 Innln In n).
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This finally yields

E(T(n)] = 0 (j e xp v/8 In n In n)
InInn

= O(exp -8ln n In In n). (5)

The asymptotic behavior of this bound is quite attractive for excessively large
n: n can be factored within nE(f) steps with c(n) -- 0 for n -+ oo. However,
for reasonably sized values the exponent c(n) is not much smaller than 0.5 and
the algorithm therefore hardly beats straightforward factoring algorithms. For
instance in the range n - e2°° we choose r = 4 and (5) yields E[T(n)) <_ e" -
n 0

. 4 2 .

Can the above analysis of Dixon's algorithm still be refined leading to a
constant in the exponent which is smaller than V8? We discuss two main points,
(a) the tightness of our lower bound on #M(n,v) in Lemma 1, (b) the use

of more sophisticated factoring algorithms for factoring w over the prime base P
in stage 2.

We clearly have #M(n, v) _ (n, v):= # {w E [I, nj: all prime factors of w
are < v}. The asymptotic behavior of 0(n, v) has been analyzed for a long time.
De Bruijn (1966) proved

lnz lny y lny]

[1 + O(In Y)I + O(ln z) + 0(1 + u)11

with u = In z/In y. If this upper bound on 0(n, v) is used instead of the lower
bound 7r(v)2 "/(2r)! with v2r < n, it leads to the same constant v8 in our time
bound. This shows that asymptotically we do not lose too much by the slackness
of Lemma 1. However for reasonably sized n the algorithm will perform somewhat
better than our rigorous time bound indicates.

Instead of using within stage 2 the straightforward factoring algorithm that
leads to Fact 5 we could use one of Pollard's algorithms that finds factors < v
of n in about O(Vi) steps. By computational experience, Pollard's p-method
(1975) detects factors < u of n in 0(v/vlnv) arithmetical steps mod n, see Guy
(1975) and Knuth (198C). This method is highly practical although no rigorous
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theoretical time bound is known so far. Recently Brent succeeded in factoring

Fs = 22s + 1 by a variant of this method. Pollard (1974) also proposed a second
method with a rigorous time bound. He computes for sufficiently many small

a E Z,,, gcdl (avrv -a ), n) for . .. For fixed a these

gcd-values can be computed by the fast Fourier transform within O(v'i(In V)2)
steps. In total, Pollard obtains a worst case time bound O(v0.s+c) for arbitrarily
small c > 0, but the constant factor, expressed by 0, increases in an unknown
way as I decreases. We give a similar but slightly stronger result.

Lemma 2. For any fixed v the smallest factor < v of n can be found in
O(V/V(In V)2 ) arithmetical steps mod n.

Proof. Without loss of generality we assume that vrif is an integer. Evaluate

f (x) = l (x - i) mod n at z t/v- for t = 1,2,...,v'. Using the fast
Fourier-transforrm this can be done within 0(vV-(ln V)2) arithmetical steps mod
n, see e.g. Borodin, Munro (1974), Cor. 4.5.4. Then compute

t :--"rin{" < Vv: gcd(f'(t'v/'v), n) > 1)

a max{i < ,fv: (tvv - i) n}

Then tVv- - i is the smallest factor < v of n. The correctness of this procedure
is obvious. I

Using the above procedure in searching for a prime factor < v of w in stage
2, we improve Fact 5 to

Fact G. TI(n)= o(V/(lnv) 2).

Now from Facts 1-4, 5, Lemma 1, v/nv < 7r(o) < 2v/lnv and Stirling's
formula, we obtain for v - n1/2:

E[T(n) = 0(7r(v) (I n V)2 n(2r)! + 7r(v))

= o n V + (6)

We choose r E ii as to minimize n 3 /', (Inn)2 and obtain:

3 Inn2r - 'n+ C with 111 1
2In In n
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n3/"'(ln n)2' < In n exp v6 In n In In n

n (in( ) = O(exp V61n lnlnn).
\Inn /

This finally yields

E[T(n)] = 0 ___ exp-/-1 n-I I n

= O(exp V6 In n In In n). (7)

Thus we succeeded in decreasing the constant in the exponential term at the
expense of increasing the low order factor. In the range n -., e200 we have r = 6
and (7) yields E[T(n)] =:, e80/15 ; n1' 4/15 which is only marginally better than
the conclusion from (5).

Theorem 1. For each composite n let EjT(n)] be the expected time that the
above algorithm finds a proper factor of n. Then for all n
(1) E[T(n)] = O(expV'61nnlnlnn).
(2) The event that the algorithm does not find a proper factor of n within

kE[T(n)] steps has probability < 2- .

Statement (2) is an immediate consequence of the fact that the distinct events
of "test 3" (test 1, resp.) failing" are mutually independent.

A more practical factoring algorithm is obtained if the quadratic residues w
in stage 2 are produced via the continuous fraction method (see Morrison and

Brillhart, 1975) which implies w = Q0(v/) and if Pollard's p-method is used for

detecting small prime factors of w.
Under the assumption

(AO) the continuous fraction of \/ generates quadratic residues mod n which
are uniformly distributed in [1, O(\/n)]

the time bound (6) transforms into a time bound

( 3 2r
E[T(n)] = 0nl/4 Inn e-'(ln n) + n In_ ))(8)

11
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with r even, for the Morrison-Brillhart method. By choosing

we obtain

ne o inn r(n n) = O((ln n)2 exp V3 In n In In n)

n3/ 2 r = O(exp V31n n In in n).

By (8) this implies

Corollary I. (Assume (AO).] The Morrison-Brillhart method runs in average time
O(exp /3 In n n In n).

In particular (8) with r = 6 implies E[T(n)] , e56  n° ' 28 for n z e200 .

However, by experience a well tuned version of the Morrison-Brillhart method
behaves somewhat better for reasonably sized n. Wunderlich (1979) obtained
average run times 322. n° ' 15 2 - n ° '21 for n - 1040. In fact there are several
points where our worst case analysis is too pessimistic. The lower bound on

#M(n, v) in Lemma 1 is somewhat too small. Moreover, it is known that the
quadratic residues generated by the continuous fraction method can only have
prime factors p with (n) = 1. Since only about half of the primes appear as
factors of the w's, this has the effect of doubling the size r(v) of the prime base.
We estimate that this increases the r.tio of w's which are completely factorizable
over the prime base by 22' and therefore causes a speed up factor of about 212
nO. ° 41 for n e200.

Assuming (AO) is only a first imperfect step towards an analysis of the
Morrison-Brillhart method. Indeed the continuous fraction of V/i behaves too
uncivilized. It should be important for a more rigorous analysis to have a lower
bound #{p ! v: p prime, (a) = 1) _ with c > 0 fixed. This would
ensure a sufficiently large base of small primes for this method. It is also unclear
whether this method finds each factor of n equally likely or whether some factors
are harder to find than others. A similar situation will occur in the discussion of
an analogous algorithm in Chapter 4.
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3. An Analysis and Revision of J. P. C. Miller's Factoring Method.

J. C. P. Miller (1975) proposed a factoring method based on the computation
of indices. We shall develop a slightly improved version of Miller's method which
turns out to be quite similar to the previously analyzed Dixon algorithm. Under
reasonable heuristic assumptions the runtime of our version of Miller's algorithm
will be O(exp, 4.51nnlnlnn). In particular Miller's method does not yield
an independent factoring algorithm but merely a specific modification of the
method of "combining congruences mod n". However, as we shall point out, this
modification has some decisive advantages in the case that one likes to factor
many numbers in the same range. So far all known factoring algorithms collect
data which are only useful for factoring one specific number. For instance the
congruences collected in Dixon's algorithm cannot be used for different n's. This
observation also applies to the factoring algorithms of Morrison-Brillhart (1975),
Schroeppel (unpublished, see Monier 1980), Shanks (1971, 1974), and Pollard
(1974, 1975). In our version of Miller's method we will collect products of small
prime numbers which are near to the number n to be factored. These products
of small primes can be uniformly used for factcring all numbers near to n.

For a E Z*, ord(a,n) := min{v I a" - I modn) is the order of amodn.
X(n) := max{ord(a,n) I a E Z } is the order of Z . Let hlh 2 ,... ,h, be
a system of independent generators of Z*, then for every a E Zn there ;s a
representation

L

a= Hlh 'modn

where m, mod ord(hi, n) is uniquely determined. Then ind(a) : (in,..., mt) is

called a (multi-) a of a.
Miller first tries to determine ord(a, n) for some small primes a as follows.

Every solution z of

z ind(a) = O(modX(n)) (1)

is a multiple of ord(a, n). Linear index equations mod X(n) are obtained from
representations of n as a sum or a difference of products of small primes. These
equations are solved by Gaussian elimination in order to obtain a solution z of
(1). We have to factor z in order to determine ord(a, n). Let ord(a, n) = f. a

13
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with aj prime, then eventually gcd(aOrd( 4 n')/ di -1 , n) will be a proper factor
of n.

As an exampie, let n = 1037.
stage 1: Search for many distinct representations of n or multiples of n as a sum

or difference of two products of small primes. For instance we have

* 1037= 295 - 35 i.e. 285- 35 mod n

= 24 .5.13-3 24 .5.13= 3modn

* =2.3.52.7-13 2.3.52.7= 13modn

= 21 + 13 210= -13modn
* =2235 +5.13 2 2 3=-5.13mod n

* = 3.73 +21 3.73= -2 3 modn

It follows that there exist multi-indices z, a, b, c, d, e for -1, 2, 3, 5,

7, 13 such that A

8a + c = 5b mod X(n)

4a+c+e = b mod X(n)

a + b + 2c + d = emodX(n)

lOa = z + e mod X(n)

2a + 5b = z +- c + emodX(n)

b + 3d = z + 3a raod X(n)

stage 2: Gaussian elimination yields

120a = Omod X(n).

Hence
2120 = mod n,

which means ord(2, n) 120.

The prime factors of 120 are 2, 3, 5 and since 260,240, 224 1 mod n
we know ord(2, n) = 120.

stage 3: proper factors of n are found as

gcd(260 - 1,n) = 61

14



gcd(2' 0 - 1, n) = 61

gcd(224- 1, n) = 17.

The main critical points of this algorithm are the following:

stage 1 How can we generate sufficiently many congruences such that elimination
works in stage 2?

stage 2 Suppose a multiple z of ord(a, n) has been found, what is the chance to

find sufficiently many prime factors of z?
stage 3 will fail to find a proper factor of n = rj d 1 p ' if ord(a, pt i =

all coincide.

The following modification circumvents the traps of stages 2 and 3.
In our example for n = 1037 we obtain by multiplying the marked con-

gruences:

21137 5374 = 2335 132 modn.

Since no prime of our base divides n, this yields

28325274 = IZ 2 mod n.

From 24 . 3 5 .72 = 353 mod n we obtain

3532 = 132 mod n

which gives us the proper factors

gcd(353- 13,n) = 17

gcd(353 + 13, n) = 61.

A formal description of our method is as follows.

begin input n

v := 1u/2 r u := n d/2r

comment the optimal choice of r and d will be made below

Form the list P = {Pop ,... p,(,)} of all primes < v, including Po -

-11
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if 3Pi E P, i > 1: Pi In then print pi stop

stage 1 Compute the lists

L := (w, ) = (ai 10 < i < r(v)j
IWI <_.U, W = HiO

L:={(n+w,) S }S=(bi 1o < i < r(V))I

B:={(~ ) I ) Omod2
B:= I) 3w:(w,_)ELA(n+w,h)EL}

stage 2 Find a nontrivial solution ( ia,b) E B) of

Z f(ik)(a , ) = Omod2, f(A.k) E {0, 1}. (2)
E B

test 2 if no solution exists then increase u goto stage 1

: JJ ( (._b, 'tVG))/2Z :'- [Pi -
i< 7(u)

y:= ~~ II ~k(L)e f(ajL)btI)/2

comment the construction implies z2 = Y2 nod n.

test 3 if z 6 ±y mod n then print gcd(z ± y, n) stop
Choose the first (a, k) E B such that ) 1
B B - {(_1, goto stage 2.

end

This algorithm is virtually very similar to the one of Dixon, and on the other

hand it is an improved version of Miller's method. Clearly the linear system (2)
has a nontrivial solution as soon as #B > 2(r(v)+ 1). Compare this with the use
of the congruences in Miller's method: if the vectors in B are linearly independent,
then Gaussian elimination in Miller's method works as soon as #B > x(v) + 1.

16

S.



However, linearly dependent vectors in B are useless in Miller's method and must
be discarded. It is not easy to analyze the ratio of linear dependencies occuring in

B. These linear dependencies will speed up our algorithm while they slow down
Miller's method.

Even if Gaussian elimination succeeds in Miller's method there are still further

traps in stages 2 and 3 of this method, in particular the required factorization of z
and ord(a, n) is a serious obstacle. On the other hand the only remaining trap in
our algorithm after solving the linear system is the test "z 4 ±y mod n?* Here
the argument of Fact 1, Section 2 indicates that this test fails at a frequency 2 1-d
when n has d distinct prime factors. However we are no more able to provide a

rigorous proof.

The time analysis of our algorithm will be based on the following assumptions.

(Al) The ratio of the number of times of "test 3 failing" to "test 3 succeeding"
is bounded.

(A2) The numbers which are completely factorizable over P are independently
distributed in [-u, u] and [n - u, n + u]. These numbers have about the
same frequency in in - u, n + u] and 0, n] for 0 < < u < < n.

In particular (A2) implies

#B > tp(n ,/2r n 1/2r). -(n, n 1lar)/n >_ n dl2r(In n) - 2 r - d .

Observe that

0(n, n/') :--#w E [1, n]: all prime factors of w < v}

_ (:r(nl/)+ r) > n(ln n)-' + 2.

Let T(n) be the time of our algorithm. Then (Al), (A2) imply

Fact 7. T(n) = O(nld/2 " In n + n3 / 2") provided nd/ 2r(In n)- 2 '-  > 2nl / 2 , .

Proof. According to (Al) and (A2), the relation nd/2 r(In n)- 2 - d > 2n' 12 "

implies #B > 2(r(v)+ 1) and therefore implies the solvability of the linear system
(2).

O(nd/2? In n) bounds the steps to generate L, L, and B, if we compute L
(and similarly L) as follows. The prime factors < n1 /2 of wo are collected in Lw.
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for all w with In - wl n11/2 ' do L. 0
for all p E P and all Y with Jyj < nd/2']p do

[insert p into Ln+vp-nmodp]

for every wo and every Pi E L, do
[a(w):= max{v: p I w}]

L := {(w, (ai(w): i < r(v)) I w = P-i_<,€ ))

o(n s/2 , ) bounds the number of steps to solve the linear system (2). 5

In order to minimize our time bound we choose d, r such that n 1d/2

2(ln n)2"+dn 1/2r. This yields
Inn

:nln provided d << r.

This yields for d - 3:

T(n) = O(exp 4.5 Innlnln n).

This means that our algorithm is asymptotically superior to Dixon's algorithm,
but inferior to the Brillhart-Morrison method. So far we have proved:

Theorem 2. [Assume (AI), (A2).] The above algorithm has time bound

O(exp V/4.5 in r.ln In n).

One interesting feature of the above algorithm is that the main work in stage
1, namely the construction of the lists L, L is almost independent from n. These
lists can be used uniformly for the factorization of all numbers in In - u, n + u],

= -"d/2, In particular, if someone has factored n he already has collected
the data to easily factor each number near to n. Considering the problem of
factorizing many numbers in [n - u, n + u) we will assume that the lists L, L are
built up once for ever and that they are sorted with respect to the first component
of the elements (w, a_) and (n + w, ). Under this assumption we will now bound
the remaining number of steps.

18
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Given L and L we can form a sufficiently large subset D of B as follows:

R := 0
while #D < 2(7r(v) + 1) do
begin choose (n + w, 0 E L at random

eliminate (n + w, b) from L
if (w, a) E L for some a then
[insert (_,) into D]

end

It follows from (A2) that this will take

oO(r(v)(lnn)d) = o(nh/2 ' (Inn)d)

steps. This yields a total time bound as

T(n) = O(n'/2F(In n)' + n3 / 2, )

for all r, d with nd/2(lnn) - 2 - t > 2n 1/2 . We choose r, d such that

n/2r(ln n)-2v-, zd 2n l 2 r

which yields

-. ,f n-1 Inn provided d < r.

Then minimizing thc time bound with respect to d yields

d=22 3  Inn )1/3

and the corresponding time bound is

T(n) = O(exp(2(ln n)1/ 3(ln In n)2/3).

Thus we have proved:

Theorem 3. [Assume (A), (A2).] Given L, L, the time bound of the algorithm
is

T(n) = O(exp(2(In n)'/ 3 (ln In n)2/3 )).

ig



This theorem can be interpreted as follows. Suppose we like to factor all

numbers in [n- u, n + u], u = n4/2 ' and let the cost to preprocess the lists L, L

be unformly distributed to the numbers in In - u, n + u]. Then the factorization

of every specific number in In-u, n+u] accounts for O(exp(2(ln n)1/3 (ln in n) 2/1])

steps.
We observe that the improvement by preprocessing the lists L and L can

even be strengthened, if we also preprocess for various k's the lists of all numbers

in [kn - u, kn + u) which are completely factorizable over P.
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4. Improvements on a Method of Shanks.

Shanks (1971) proposed a factoring method which starts by computing the

group of equivalence classes of primitive quadratic forms with discriminant -n

and in particular he computes the order h(-n) of this group. Then he factors n

by constructing a non-trivial ambiguous class. Under the implicit assumption that

the entire group of classes is generated by small "prime" forms, and by neglecting

log n factors, Shanks proves a time bound of about O(nl/4). Monier (1980) claims

that this time bound can be improved to 0(nl/5) under the assumption of the

generalized Riemann hypothesis. He claims that under this hypothesis the well

known convergence

has an error term O(n1/ 2 m -1/ 2) which would speed up the evaluation of h(-n).

We propose a way to construct ambiguous classes without evaluating h(-n)

at all. We exploit the fact that ambiguous forms can be constructed mainly

in the same way as we generate solutions of z 2 = Y2 mod n, by the method of

combining congruences. Under reasonable assumptions this yields an asymptotical

time bound O(exp/3Innlnlnn).

We summarize some basic facts on binary quadratic forms. We find it most

convenient to follow the original presentation of Gauss (1801, 1889) which slightly

differs from that of Shanks (1971). The form az 2 +2bzy+ cy 2 with a, b, c E Z will

be described by the triple (a, b, c). Two forms (a, b, c) and (a, 5, Z) are equivalent

if there exist linear transformations with integer coefficients and determinant

1 transforming the one form into the other; i.e., T-(a b)T ( )for
some integer matrices T, T- I with det T = 1. Equivalent forms have the same

determinant D := b2 - , . A form (a, b, c) is (properly) primitive if gcd(a, 2b, c) =

1. According to Gauss, the non-primitive forms can all be derived from primitive

ones. Therefore it is most important to understand the structure of the primitive

forms.

Henceforth we will restrict all considerations to forms with negative deter-

minants D = b2 - ac < 0. In this case the equivalence classes can be charac-

terized by reduced forms. A form (a,b,c) is reduced if 21bl _< lal _< Icl. There

is a gcd-like algorithm which, given (a, b, c) computes an equivalent reduced form
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within O(lnlabcl) arithmetical steps:

while (a, b, c) is not reduced do
begin :- -b modc with Ibi - c/2

(a, b, c) :(C I, (j2 - D)/c)

end

Theorem 4. [Gauss, Artikel 172.] In every equivalence class H with D < 0 there
is either exactly one reduced form (a, 6, c) or exactly two reduced forms (a, ±b, c).

In the latter case, H is called ambiguous.

A form with D < 0 either satisfies a, c > 0 or a, c < 0. It is called positive in

the first and negative in the second case. Positive (negative, resp.) forms az 2 +
2bzy + cy2 only take positive (negative, resp.) values for real z, y (which follows

from ac > b2 ). Since this property is preserved under the equivalence relation, a

class must be either positive, containing only positive forms, or it must be negative

and contains only negative forms. Moreover there is a one-one correspondence
between the positive and the negative forms as (a, b, c) - (-a, b, -c). Therefore
we can w.l.o.g. restrict our considerations to positive forms and these generate

exactly half of the equivalence classes. The number of equivalence classes with

determinant D is finite since a reduced, positive form (a, b, c) always satisfies

21bI < a < V/4-jDh73.
Gauss (1801) introduced the composition of (binary) quadratic forms and

proved that the equivalence classes with fixed determinant D form an abelian
group, say QF(D), under composition. Given two classes H1, H2 represented

by their reduced forms, the reduced form of H, • H2 can be computed within

O(InIDI) arithmetical steps over numbers < IDI. The forms which are primitive

and positive generate a subgroup of QF(D) which w'e call QFP(D). The unit

element I of the group is represented by (1, 0,-D).

The following assertions are equivalent: (1) H is ambiguous, (2) H.H = I,

(3) every form (a, b, c) in H is equivalent to (a, -b, c), (4) T(a )T-1-

(a b for some integer matrices T, T-1 with detT= -1.

The reduced form of an ambiguous class is of either of the following three
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types:
b = 0 or a = 2b or a c.

We call these forms ambiguous, they always represent ambiguous classes. These

three types of ambiguous forms yield the folowing factorizations of the deter-

minant:

-D=ac , -D=b(2c-b) , -D=(a-b)(a+b).

In this way the problem of factoring n reduces to the construction of am-

biguous forms with determinant -n. It is important that Gauss has established a

strong correspondence between the factorizations of n and the ambiguous classes

in QFP(-n).
We only report the case n odd, since we like to factor only odd nubers.
A pair (n,, n2) E M,2 is an admissible factor pair for n if n = nj .n 2 , nj <

n 2 and gcd(ni, n2 ) - 1. Suppose n has (exactly) I distinct prime factors, then

there are (exactly) 21-1 admissible factor pairs for n.

Theorem 5. [Gauss, Artikel 257, 258.] Suppose n E MI is odd and has t > 1

distinct prime factors. Then there are 2 1- 1 or 2 1 ambiguous classes in QFP(-n)

according to whether n = 3 mod 4 or n = 1 mod 4. Each of the 2' 1 admissible

factor pairs of n is obtained by the reduced form of exactly one in case n -

3 mod 4 (two in case n = 1 mod 4) of these ambiguous classes.

Example. We list n: all ambiguous forms with determinant -n and b > 0 that

are primitive, reduced, and positive; the corresponding list of admissible factor

pairs.

n = 3: (1,0,3); (1,3)

n = 5: (1,0,5), (2,1,3); (1,5), (1,5)
n = 15: (1,0,15), (3,0,5); (1,15), (3,5)

n - 21: (1,0,21), (3,0,7), (2,1,11), (5,2,5); (1,21), (3,7), (1,21), (3,7)

n = 105: (1,0, 105), (3,0,35), (5,0,21), (7,0, 15), (2,1,53), (6,3,19), (10, 5, 13),

(11,4,11); (1,105), (3,35), (5,21), (7,15), (1,105), (3,35), (5,21),
(7,15).

The distinction between the cases n = I mod 4 and n = 3 mod 4 is explained

as follows. The ambiguous and reduced form (2, 1, (n + 1)/2) is primitive in case

23
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n I rnod4 whereas it is imprimitive in case n 3mod4, since in the latter

case gcd(2, 2, (n + 1)/2) = 2. Since the product of two ambiguous classes is again

ambiguous, there must be twice as many ambiguous classes in case n = 1 mod 4

as there are in case n = 3 mod 4.

The remaining point to be discussed for the factorization of n is how to

generate ambiguous classes in QFP(-n). This will be done by exploiting the

group structure of QFP(-n). Let H, F1 E QFP(-n) be represented by (a, b, c)

and ( i.e., H = [(a, b, c)], F = [(a, 6, Z)]. Then by definition a repre-

sentative (A, B, C) for H -fcan be found as follows:

z :-- gcd(a, a, b + )

Compute a, /, y E Z such that
aa + Pa+,( + L)=p.

A :- ad/ 2

B :[aa + b + (bL-n)]/pmodA
C (n + B2)/A

In the special case that gcd(a, a) = 1 one obtains in this way (observe that

we can choose -t = 0 and a, P3 such that aa + Pd = 1):

A:= ad
Choose B such that

B bmoda and B=bmodd

C (n + B2)/ A.

(A, B, C) will be primitive but not necessarily reduced. [(A, B, C)] does not

depend on the distinct possible choices for a, P, y, B, and C. Since a, ft, -y

can be computed via Euclid's gcd-algorithm, it is clear that this multiplication

scheme requires only O(In n) arithmetical steps over numbers < O(n) provided

(a, b, c) and (a, a, ) are reduced. It can easily be seen that

(a, b, c)][(a, -b, c)] I.

In this case j- a, A 1 and the choice a = 1, y 0 yields B ab and

therefore A I B. Then A = 1 implies [(A, B, C)) = I.

The special case gcd(a, a) = 1 of this multiplication scheme immediately

implies the following.
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Fact 8. Let [(a, b, c)] E QFP(-n) and let a -- l P1? be the prime factorization
of a, then [(a, b, c)] = Hjj(p?',bi,,c)] with b:= b modp?" and ei:- (b+n)/p?'.

The possibly occuring factors [(p?', b., c .)] in Fact 8 can be characterized as
follows.

Lemma 3. Let p be prime, p $ 2, gcd(p,n) = 1 and a > 1. There exists

[(pab,c)] E QFP(-n) with integers b, c iff (=a) = 1. If (-_.n) = 1 there

are exactly two of these classes, namely [(p, ±b, (n + b2)/pa)] for b with b2 -

-n modpa.

Proof. Suppose (p*, b,c) is a positive form with determinant -n. Then
-n -= -pc which means that -n is a quadratic residue mod p*. Hence
(-P.)-- (P) = 1. There are exactly two square roots ±b of -nmodp*. The

classes [(p', ±b, (n + b2)/p*)] are distinct and primitive. In fact these classes are
inverse and non-ambiguous, since gcd(p, n) = 1, p 3 2. g

We denote one of the classes [(p', ±b, (n + b2)/pa)] occuring in Lemma 3 as

r,n. Then the other class must be (Ip,,)- 1 . It is clear from the multiplication
scheme that

{(Ip,,,)*, CIp,,,)-C'} = pn(I-n'}

This implies that Fact 8 can be rewritten as follows.

Lemma 4. Let [(a, b, a)] E QFP(-n), a odd and let a = i p " be the prime
factorization of a. Then

[(a, b, c)] = "-(,,) ,,.,, with C = +1.

In particular, factoring [(a, b, c)] E QFP(-n) as in Lemma 4 can be done
roughly in the time which is necessary to factor a. Since we know

V)" = 1P$b'0

with bi = bmodp?', ci = (b; + n)/p?', we can easily check whether c, = 1 or
S=-- -1. Also, in the case that a is even, c must be odd provided (a, b, c) is
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A

primitive. Hence, if a is even we can apply Lemma 4 to the form (c, -b, a) which
is equivalent to (a, b, c).

By means of Lemma 4 we can generate ambiguous forms with determinant
Dn mainly in the same way as congruences z2 o i2hmodn are produced by
Dixon's factoring algorithm.

Construction of ambiguous classes in QFP(-n).

stage I Construct a factor base

P := (p 12 < p _< v, p prime, (:;) = i}

if 3p E P: p I n then print p stop

for all p E P compute IP :' (p, b, (b2 + n)/p)

comment [We discuss the optimal choice of v below. Compute Ip by solving
b2 - nmodp using the probabilistic algorithm of Berlekamp,
Rabin, see Rabin (1979).]

stage 2 Choose a random H E QFP(-n) which is generated by the 4, with
p E P [i.e., compute H = l-1PEP Ii with a random (ai Pi E P) E

#P such that 'i In ai _ (In n) 2]

Compute the reduced form (a, b, c) of I. H.

Try to factor a over P and [(a, b, c)] over {p I p E P).

if H 2 - i with ai E Z then

[store p = (ai I Pi E P) and set H. := H)

while < #P vectors a have been found goto stage 2

Solve 0f = Omod2 with fp E {0, 1}

Then J11$= I Ho lIpEP IN -- is an ambiguous class.

comment Observe that the construction implies r1 . 1 HI = 1 p,,Ep I' '

Even if n I mod 4 we do not include p = 2 into the factor base P, since
the ambiguous class 12 = [(2, 1, (n + 1)'2)] corresponds to the trivial factor pair
(1,n).
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Example. n = 1037
We choose the factor base P - {3, 13), we have (ja) = (fl) (L)

-1. The corresponding classes are

13 = [(3,1,346)] , 113 = [(13,4, 81)].

One obtains

J4 = J-1
31~3

Hence 1 13 1-- is ambiguous. The reduced form in this class is (34,17,39) which

yields the factorization

1037 = 17(78- 17) = 17.61.

Observe that the factor base in this example is smaller than in the application of

Miller's method in Section 3. Dixon's algorithm would require a larger factor base

too. Indeed the factor base is so small since the primes p = 5,7, 11 are excluded

because = -1.
In our analysis of the algorithm we will use the following heuristic assump-

tions.

(A3) #{p < u: p prime, (,)= 1} _- with c > 0 fixed.

(A4) every admissible factor pair of n corresponds to some ambiguous class

which is generated by the I , p < v.

Assumption (A3) certainly fails for a few n but it must hold for most n since

we have:

1 #{p 2vpmv
P EZ;

This follows from :r(v) % v/Inv and from the fact that (I) = 1 for exactly half

of the a E Z;. We argue that this supports (A3) since we can as well apply our

algorithm to factor any number n .k, k odd, k < < n. Then factors of n will be

found with the same probability as those of k.

The assumption (A4) is still somewhat weaker than the assumption used by

Shanks (1971) that the whole group GFP(-n) is generated by the classes I, with

small p.
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Under the assumptions (A3), (A4) the analysis of the algorithm becomes
virtually very similar to the analysis of Dixon's algorithm. The main advantage
over Dixon's algorithm is that we have to factor numbers a = O(VGii), instead
of numbers w = O(n), over the base of small primes. Therefore we can argue as
in the case, that quadratic residues mod n, w = 0(\/n-) are constructed by the
continuous fraction method, see the send of Section 2. We choose

v n12rr 2 3lnIn 1

and obtain n as a final result.

Theorem 4. [Assume (AM), (A4).] Suppose we factor a composite n via the
construction of ambiguous forms with determiin ant -n as above, then for each n a
proper factor of n will be found with probability 1/2 within O(exp /3 In n In In n)
steps.

The above factoring method can be interpreted as the continuous fraction
method in case of negative determinants. Conversely, in case of positive deter-
minants D = P2 - ac > 0, there is a different concept of reduced forms and there
are many equivalent reduced forms. According to Gauss, Artikel 183-187, the
equivalent reduced forms can be developed into an even and symmetric period.
The recursion for developing this period is the samc as that for evaluating the
period of the continuous fraction of -v'7D. Shanks exploited this coincidence and
proposed an algorithm to factor n by constructing an ambiguous form with posi-
tive determinant n. Shanks has a way to make giant steps within the period of

equivalent reduced forms (this is used in order to decide whether two forms are
equivalent). This second algorithm of Shanks runs in about O(n 1/4) steps, see
Monier (1980) for a more detailed exposition of this method.
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