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Summary
“ A recent result of Stephenson [1] shows that, when finite deformations

are taken into account, a crack under Mode II loading conditions in plane
strain will open, at least near the crack-tip and at least for certain elas-
tic materials. In this note, the matter is investigated further, and it is
shown that, in general, nonlinear effects — even at small loads — lead either
to crack-opening or apparent interpenetration of the crack-faces when the

loading is of Mode II-type.

Introduction

When treated on the basis of the linearized theory of elasticity, the
" plane strain equilibrium problem of an infinite — homogeneous and isotropic—
solid containing a crack of finite length and subject to Mode II shear load-
ing at infinity leads to a solution in which the component of displacement
normal to the crack vanishes at all points of each crack-face. Particles
on opposing faces of the crack therefore undergo oppositely directed sliding
displacements parallel to the crack itself. Thus, according to this de-

scription, the crack remains straight after deformation, and its faces -

1The results reported in this paper were obtained in the course of an in-
vestigation supported in part by Contract N00014-75-C-0196 with the Office
of Naval Research,
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although traction free — remain contiguous.

Stephenson [1] has recently studied the local structure near a crack-
tip of solutions of plane strain problems in finite elastostatics in enough
generality to encompass both Mode I and Mode II loadings at infinity. He
treats a rather broad class of homogeneous, isotropic, incompressible ma-
terials. For some of the materials considered, he finds that, under Mode II
conditions, the nonlinear theory predicts that the crack will open, at least
near the tips. For the remaining materials in his class, Stephenson's anal-
ysis — which is essentially local — leaves undecided the question of whether
the crack opens in the Mode II case.

Stephenson's result suggests that, in the finite elasticity problem,
there may be a nonvanishing normal component of displacement along the crack-
faces which is of second — or higher — order in the loading parameter and
therefore undectectable by linearized theory. Should such a displacement
occur in the solution of the nonlinear Mode II problem, then interpenetration
of the crack-faces — as an alternative to crack-opening — might be predicted.
If this is the case, the Mode II problem has no physically acceptable solu-

* tion as posed. .

In the present note, we consider the Mode II "small-scale nonlinear
crack problem" for a fully general homogeneous, isotropic compressible elas-
tic material within the framework of finite elastostatics in order to study
further the question of crack-opening at small loads. In this small-scale
problem, one replaces the finite crack by a semi-infinite one, and one seeks
a solution of the field equations of finite elasticity which — far from the
crack-tip — coincides asymptotically with the field predicted by linearized
theory near the crack-tip in the original Mode II problem.

We find that, for certain materials, the crack will indeed open at points
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“moderately near" the crack-tip, but for other materials, the small-scale
problem results in an apparent interpenetration of the crack-faces, in vio-
lation of the required one-to-one character of the deformation. We give a
restriction on the second-order elastic constants which delineates these two
classes of materials. Special choices of the strain energy density charac-
teristic of the material supply examples illustrating the various possibi-
Tities.

1. The Mode II crack problem

The cross-section of the undeformed solid containing a crack of length
2b, as well as the cartesian material coordinates, are shown in Fig.1. The
Mode II problem which underltes our considerations consists in finding dis-

placements u, and nominal — or Piola — stresses]

S48 (forces per unit
undeformed area) which satisfy the field equations of finite elastostatic
plane strain away from the crack-tips, leave the Jeformed faces of the crack

free of traction, and satisfy the conditions

" corresponding to shear of the Mode II type at infinity. Here k>0 is the

given amount of shear. A particle at the point (x1,x2) in the undeformed

state is carried by the deformation to the point (y1,y2). where

ya-xa+ua(x1.x2) . (1.2)

It is required that the displacements furnish a one-to-one mapping

T;il components of vectors and tensors are taken with respect to the x,,x;-

frame. Greek subscripts have the range 1,2; repeated subscripts are summed,
and a subscript preceded by a comma indicates partial differentiation with
respect to the corresponding x-coordinate.
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(x1 .xz) - (y1 .yz) between the exteriors of the undeformed and deformed
cracks. Finally, the displacements must be bounded near the crack-tips.
The differential equations of equilibrium in terms of nominal stresses

are

068’830 . (1.3)

The constitutive law which relates L to u, is given by

8" (2"1+"J)6as*Z"I“u,sw\l‘up‘ey“o.y ’ (1.4)_

corresponding to a homogeneous, isotropic, compressible material with plane
strain elastic potential W(I,J) (strain energy per unit undeformed volume).
In (1.4), S48 is the Kronecker delta, €.8 is the two-dimensional alter-
nator (en 2epp=0, g9 e = 1), and the two deformation invariants !

and J are given by

I=2+?.uOI + (1.5)

u u
50 GsB8 a,8 °

(1.6)

1 .
J ]+ua.a+25akesyua,8ux,y ’

in particular, J is the Jacobian determinant of the deformation and must
be positive. W; and W, are the derivatives of' W.

The condition of vanishing true traction on the deformed faces of the
crack can be shown to be equivalent to the vanishing of the nominal traction

on the undeformed crack-faces.! The latter condition in turn is

012’02230 at xz-Ot, -b<x1<b . (1.7)

1For a fuller discussion of this point, as well as of the field equations of
plane finite elastostatics, see [2].
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Once uy and S, have been found, the true (or Cauchy) stresses

8
are determined from the relation

af

raB'-} Ogy(6g* g ) - (1.8)

From (1.4), (1.8), it follows that

2 2
Tag " (3“1 +HJ)608 +3"I(u8,c+ Us,8 + ua.yus,y) : (1.9)

To obtain the formulation of the Mode II problem according to linear

theory,]

one need only linearize (1.4)-(1.6) with respect to Uy,g b the
remaining equations — (1.1), (1.3), (1.7) — are retained without change.
The relation (1.8) between true and nominal stresses reduces to T8~ a8
upon linearjzation. In carrying out the linearization process, one must make
use of the fact that, in the undeformed state, one has, by (1.5), (1.6),

[=2, J=1; moreover,

ZHI(Z,'I)+NJ(2,1)=0 (1.10)

if the undeformed state is to be unstressed. One further needs the relations

" which determine the shear modulus u and Poisson's ratio v of the linear-

ized theory in terms of W:

we2W(2,1), yho e (4\411+4wl‘,w‘,‘,)h2 o (1.1)

The global solution of the linearized version of the Mode II problem
can be found exactly by making use of the work of Inglis (3]. From the solu-
tion one can show (see [4)) that the displacements %a furnished by the

1inear theory are given asymptotically near the right crack-tip by

Tié do not spell out this formulation here.
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e 1/2 -
u ~r Ua(e) as r-0 , (1.12)
where

Uy(e) = c[(g-- 4v)sing—+%—sin-32°-)] » Uy(e) = c[(-%+4v)cos%-%cos-32°- » (1.13)

b

&

c=2". , (1.14)]

and (r,8) are polar coordinates at the crack-tip (Fig.1). According to the
second of (1.13), Uz(tn) =0, reflecting the fact that upy=0 on the crack-
faces in linear theory. We note that 02 is an even function of .

2. The small-scale nonlinear crack problem

If the amount of shear k prescribed at infinity is small, one would
expect that the field near a crack-tip — say the right one — could be deter-
mined on the basis of an asymptotic scheme in which the crack of finite length
is replaced by a semi-infinite ‘one, and the far field is required to match the
elastostatic field near the crack-tip as predicted by the solution of the ori-

ginal problem according to linearized theory. One thus takes the view that,

~ for small loads, there is an inner region in the immediate vicinity of each

crack-tip in which nonlinear effects are dominant; surrounding this, there
is an intermediate region in which the field is described by the near-tip ap-
proximation supplied by linearized theory. At points which 1ie exterior to
the intermediate region (points in the outer region), the full solution of
the linearized problem is required to describe the field.

In this small-scale nonlinear crack problem, we thus seek displacements

IIn linear theory, the given shear strain k {s related to the applied
shear stress o by o=uk; in addition, c=(2u/2r)"!Ki[, where Kip fis
the Mode 11 stress intensity factor.

e mara &N ot o
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u, and nominal stresses o which satisfy the field equations (1.3)-(1.€)

8
away from the crack-tip, the free surface conditions

012=02230, x2=ot, -m<x1<0 . (2.])1

and the matching conditions (see (1.12))

1/2
u,~r Uq(e) as r—-o00 , _ (2.2)

where the Uc's are given by (1.13). Again, the displacements are to be
bounded near the crack-tip, and the mapping (x],xz) “—r (y1,y2) is to be
one-to-one between the exteriors of the crack before and after deformation.

In order to study the issue of crack-opening, it is fortunately not
necessary to solve the small-scale problem globally. It turns out that
determining the second terms in the large r expansions of the displacements
u — the first terms are prescribed in (2.2) — furnishes useful information.
By investigating the solution of the small-scale problem for large r, we
are in effect studying the behavior of the soiution of the original Mode II
problem in the transition 2one between the inner and iptermediate regions.
We shall speak of points which lie in this transition zone as moderately
near the crack.

He write

uu~rvzua(e)+vu(e), r-m , (2.3)2

and we seek functions \Iul such that (2.3) is asymptotically consistent as

r-om with the field equations (1.3)-(1.6) and the boundary conditions

1The origin has been moved to the right crack-tip.

1/2 Ma

zlf, instead of (2.3), one sets ug~r ' “Ug+r °V, (no sum), where nothing

is assumed about the exponents m, except that m,<1/2, then one can show
that m, =m,=0, as is assumed in (2.3).
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!,
E? (2.1). By setting e=n in (2.3) and making use of the fact that Uz(") =0
s

i (see (1.13)), one finds that the curve representing the deformation image of

the upper crack-face is asymptotically tangent as r-+om to the horizontal

line y2=V2(1r). Moreover, it is easy to show that particles which, in the un-
deformed state, 1ie immediately above the upper crack-face are carried to points
above this curve. Similarly, the undeformed lower crack-face is deformed to a
curve which is asymptotically tangent to the line yzsvz(-w), and the adja-
cent particles lie below this curvein the deformed state. If follows that,

according to the small-scale problem, the deformed crack is open as r-—o

: if vz(w) 'Vz('")>°' while interpenetration of the crack-faces is predicted
if Vy(r)-V,(-n)<0. In the latter case, the one-to-one requirement imposed
‘ on the deformation is violated, and the problem as posed has no solution.
Our interest thus centers on the difference vz(n) - vz(-n).

The calculation which determines va is routine in principie but lengthy
and elaborate in detail; we omit it here. One substitutes (2.3) into (1.5), (1.6)
to obtain the expansions as r—-o of I and J. These expansions, which
show that I is near 2 and J near 1, must be inserted into (1.4) to pro-
duce the corresponding expansions for the nominal stresses LAPS In order to
carry out this step, it is first necessary to expand HI(I.J) and NJ(I,J)
in powers of -2 and J-1 up to and including quadratic terms. Once the

expansfons for % have been found, they are substituted into the equilib-

8
rium equations (1.3) and the boundary conditions (2.1). To leading order in

r, the 9, 's are of course precisely the near-tip stresses of linear theory,

8
so that, to leading order, (1.3) and (2.1) are satisfied automatically. When
(1.3) and (2.1) are enforced to second order, they result in differential

equations and boundary conditions for the determination of the Vu's. After

much algebra, one then finds in particular that
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g
f“q;
Vy(8)=a,- CZ [(2-3\;) -s-”+13 -423
1 2 2 2(1'_\,7 ] FTrov-&
+[(-%+ 4\))0. +28 +=?—§-- 12y - 4vz]sin 0
Y o+lg 9,5 3.0 3 ;
+(2u+28-8+4v)sin26+(80. 16)s1n3e] . (2.4) 3
Here a, is an arbitrary constant associated with a rigid body translation
which is left undetermined by the small-scale problem, c is given in terms
3 of crack half-length b and loading parameter k by (1.14), v 1is Poisson's ’
V} ratio, and a and 8 are second-order elastic constants given by
f L2(1-2v)
a m (ZHII+NIJ)I’2’J=] . (2.5)
3
, - - 2v) 1
Bt (M > My * Myt 2%a0) L, (2.6)
b | ]
It may be noted that vz(e) does not have the same parity in e as
does U,(6); except for the additive constant, V,(e) is odd in e, while
ég © - Uy(e) 1is even. This reflects the fact that, in contrast to the Mode I case,

the solution of the nonlinear Mode II problem does not have the same parity
1

in X, as that of its counterpart in linearized theory.
] From (2.4), we may define the crack-face ;egaration at larae r — call
it 6 —as

2
saV,(r)-V (-w)*“c 8-(2-3v)u+”-]3v*4v2 H (2.7)
2 2 TV T°7T

8 need not be positive.

1!-'or an extensive discussion of this point, see [11.
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3. Discussion

The small-scale problem predicts crack-opening or interpenetration ac-
cording as & 1is positive or negative. The sign of &, in turn, depends only
on the material, being determined by Poisson's ratio v and the second-order
elastic constants a and 8.

When 6>0, the amount of crack-opening is of second-order in the loading
parameter k, as is clear from (2.7), (1.14).

In the degenerate case for which &=0, the issue of crack-opening versus
interpenetration cannot be decided without consideration of terms beyond the
second in the large-r expansions (2.3) for the displacements.

In order to study further the question of the sign of &, it is conven-
ient to recall first some properties of two special homogeneous plane finite
deformations: simple shear and uniaxial stress. In simple shear with amount

of shear k, the displacements are given by
u.,=kx2, u2=0 . (3.1)

From (1.5), (1.6), it follows that I==2-+k2, J=1; the true stresses can then

- be computed from (1.9) as

112=2HI(2+k2,1)k , (3.2)

vy = 2 (24k2,1) (1+k2) i (242,1) , tg0 = 2 (24K, 1)45(2442,1) . (3.3)
If k 1is small, then (3.2), (3.3) reduce approximately to (see (1.11), (2.5))

a 2 a 2
T2 ~uks fn"[‘*m]""- ek o (3

The presence of the normal stresses e T22 in simple shear, sometimes

called a Poynting effect, arises from the nonlinear character of the theory.
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Since such normal stresses must be present at infinity in the finite elasto-
static version of the Mode II problem, one might conjecture that crack-open-
ing or interpenetration is associated with the sign of the normal stress oo
at infinity. According to (3.4), this sign is determined by the sign of a
when k 1is small. We explore this conjecture further below.

In a plane deformation which corresponds to uniaxial stress in the Xy-

direction, one has

u1=(x-l)x1. u2=(7-1)x2 . (3.5)

where the constants A and X are the direct and transverse stretch ratios,

2,32

respectively. The invariants I and J are given by I=)"+ =i,

and the requirement that t,,=0 leads through (1.9) and (3.5) to

N
23w +u) =0 . (3.6)
( DR I]=x2+i2,.)-x’x'

Assuming that (3.6) determines ) as a function of ), the stress-stretch

relation then follows from (1.9) with a=g=1 as

A
t(A)=1 3(2:N +N) _ . (3.7)
M AUTT 91232852, g=ax

When ) 1{s near unity,

W)~ (NA-D 43 MO0-12 5 (3.8)

a direct calculation based on (3.7), (3.6) shows that

JURE- t”(1)'-(-1722|:—)3[8+%a-v(1-\’)] XY

The sign of the second derivative t“ (1) may be positive for some materials,
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negative for others. We shall say that a material is hardening (at the un-

undeformed state) in uniaxial stress if <“(1)>0, softening if “(1)<O.
With the help of these results pertaining to simple shear and uniaxial

stress in plane strain, we now consider the crack separation & of (2.7)

for some special choices of the strain energy density W. First, we take

u(:,a)=5-(;‘2+za-4> , (3.10)

corresponding to the elastic potential proposed by Blatz and Ko [5] in con-
nection with experiments on foam rubber.1 From (3.10), (1.11), one finds
that v=1/4 for this material, while (3.10), (2.5), (2.6) give
a=-1, g=-3/8 . (3.11)
The crack-face separation & is then found from (2.7), (3.11) to be
§=3c?>0 , (3.12)

so the crack-opening is predicted for the Blatz-Ko material. To test the con-

Jecture that crack-opening is associated with a tensile normal stress oo

. at infinity, we specialize the Poynting effect formula in (3.4), obtaining

122~-uk2<0 ) (3.13)

The normal stress Too at infinity is thus compressive, upsetting the con-
Jecture. (The normal stress ™m in simple shear vanishes identically for
the Blatz-Ko material, as may be verified from (3.10) and the first of (3.3).)
Finally we note that, in plane strain uniaxial stress, (3.9), (3.11) give

¥ (1) =-884/9<0, so that the Blatz-Ko material softens at the undeformed

1The theoretical properties of a material characterized by the Blatz-Ko strain
energy density have been analyzed in detail in [6].

itsabia) st A e,
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state.

Next we consider the case of the harmonic materials introduced by John

[7]. For these,
W(I,J)=2u[H(R)-J] , R=/T+2J , (3.14)

where H 1is a given function characteristic of the particular harmonic ma-
terial under consideration. In order to assure appropriate behavior at in-

finitesimal deformations, it is required that H satisfy the conditions
H2)=1, W (2)=1, W'(2)= {3 , (3.15)

where v is Poisson's ratio.1 For these materials, (3.14), (3.15), (2.5),

(2.6) furnish the second order elastic constants as
... 3 1
asisz, 8=(1-29%w @) -3 5] (3.16)
so that, from (2.7)
2
6*%‘31-2\»)%"’(2)%1 -»)2] . (3.17)

In plane strain uniaxial stress, the general formula in (3.9) for <" (1)

presently specializes to

(1) '(—12")1 [('l -Zv)sl'l"'(Z) +2v(1 -v)] . (3.18)
-v
Eliminating H'’/(2) between (3.17) and (3.18) yields
1_212"01) 1-3
§=3nC [‘r " + (1-v\)’2-] . (3.19)

1For a fuller discussion of the characteristics of harmonic materials in
plane strain, see (7] and (8].




s pim -n aillil o Bk Dot ape -

(14)

It follows that the small-scale nonlinear crack problem predicts interpenetra-
tion of the crack-faces if

(1)< - _l‘:é‘)_z_ TR (3.20)

(1-v)

Thus, for all harmonic materials with common, fixed values of wu, v, (3.20)
will hold for those which soften rapidly enough (or, if v>1/3, for those
which do not harden too rapidly) in uniaxial stress at the undeformed stqte.
For those materials which harden rapidly enough, the crack will open.

From (3.4), (3.16), one finds that both normal stresses Ty Ty 2re
tensile in simple shear for any harmonic material.

These examples serve to show that crack-opening may occur despite the
presence of a compressive normal stress 2y at infinity, and that inter-
penetration of the crack-faces can be predicted even though the normal stress
is tensile.

In general, for given values of v and a, the crack-face separation &

of (2.7) will be negative — corresponding to interpenetration — if g 1is suf-

~ ficiently negative. In view of (3.9), this means that for given v and a,

interpenetration will be predicted for materials which seften rapidly enough.
Since only first-and second-order elastic constants are involved in
(2.7), it is not necessary to know the full strain energy density W to deter-
mine the sign of the crack-face separation 5. Hughes and Kelly [9] have ex-
perimentally determined the elastic constants up through second-order for poly-
styrene, Armco iron and pyrex glass. When their results are used to determine
u, v, a and B for these materials, it is found that crack-opening occurs
for polystyrene and iron, but interpenetration is predicted for glass.
It must be emphasized that the present analysis pertains only to the
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behavior of the crack-faces at points moderately near the crack-tips. Whether
crack-opening or interpenetration is predicted at other points cannot be in-
ferred from the results given here. To deal with this question, one would need
an analysis of the original nonlinear Mode II problem accurate to second-order
in the loading parameter and uniformly valid with respect to position along the
crack. Nevertheless, to the extent that the small-scale problem faithfully
describes the small-load behavior of the solution of the original Mode II prob-
lem, the present results furnish a condition (§<0) on the material which is
sufficient to assure the violation — through apparent crack-face interpenetra-

tion — of the one-to-one requirement imposed on the deformation.
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