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Summnary

A recent result of Stephenson-I1 shows that, when finite deformations

are taken into account, a crack under Mode II loading conditions in plane

strain will opsn, at least near the crack-tip and at least for certain elas-

tic materials. In this note, the matter is investigated further, and it is

shown that, in general, nonlinear effects - even at small loads - lead either

to crack-opening or apparent interpenetration of the crack-faces when the

loading is of Mode Il-type.

Introduction

When treated on the basis of the linearized theory of elasticity, the

plane strain equilibrium problem of an infinite - homogeneous and isotropic-

solid containing a crack of finite length and subject to Mode II shear load-

ing at infinity leads to a solution in which the component of displacement

normal to the crack vanishes at all points of each crack-face. Particles

on opposing faces of the crack therefore undergo oppositely directed sliding

displacements parallel to the crack itself. Thus, according to this de-

scription, the crack remains straight after deformation, and its faces -

IThe results reported in this paper were obtained in the course of an in-
vestigation supported in part by Contract N00014-75-C-0196 with the Office
of Naval Research.
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although traction free - remain contiguous.

Stephenson [1] has recently studied the local structure near a crack-

tip of solutions of plane strain problems in finite elastostatics in enough

generality to encompass both Mode I and Mode II loadings at infinity. He

treats a rather broad class of homogeneous, isotropic, incompressible ma-

terials. For some of the materials considered, he finds that, under Mode II

conditions, the nonlinear theory predicts that the crack will open, at least

near the tips. For the remaining materials in his class, Stephenson's anal-

ysis - which is essentially local - leaves undecided the question of whether

the crack opens in the Mode II case.

Stephenson's result suggests that, in the finite elasticity problem,

there may be a nonvanishing normal component of displacement along the crack-

faces which is of second - or higher - order in the loading parameter and

therefore undectectable by linearized theory. Should such a displacement

occur in the solution of the nonlinear Mode II problem, then interpenetration

of the crack-faces - as an alternative to crack-opening - might be predicted.

If this is the case, the Mode II problem has no physically acceptable solu-

tion as posed.

In the present note, we consider the Mode II "small-scale nonlinear

crack problem" for a fully general homogeneous, isotropic compressible elas-

tic material within the framework of finite elastostatics in order to study

further the question of crack-opening at small loads. In this small-scale

problem, one replaces the finite crack by a semi-infinite one, and one seeks

a solution of the field equations of finite elasticity which - far from the

crack-tip - coincides asymptotically with the field predicted by linearized

theory near the crack-tip in the original Mode II problem.

We find that, for certain materials, the crack will indeed open at points
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'moderately near" the crack-tip, but for other materials, the small-scale

problem results in an apparent interpenetration of the crack-faces, in vio-

lation of the required one-to-one character of the deformation. We give a

restriction on the second-order elastic constants which delineates these two

classes of materials. Special choices of the strain energy density charac-

teristic of the material supply examples illustrating the various possibi-

lities.

1. The Mode 11 crack problem

The cross-section of the undeformed solid containing a crack of length

2b, as well as the cartesian material coordinates, are shown in Fig.l. The

Mode II problem which underlies our considerations consists in finding dis-

placements ua and nominal - or Piola - stresses1  (forces per unit

undeformed area) which satisfy the field equations of finite elastostatic

plane strain away from the crack-tips, leave the deformed faces of the crack

free of traction, and satisfy the conditions

ul -kx2, u2 - 0 as x 2+ , (1.1)

corresponding to shear of the Mode II type at infinity. Here k>O is the

given amount of shear. A particle at the point (x1 ,x2) in the undeformed

state is carried by the deformation to the point (yl,y 2), where

ya= x +u(xlx2) . (1.2)

It is required that the displacements furnish a one-to-one mapping

1All components of vectors and tensors are taken with respect to the x11x2-
frame. Greek subscripts have the range 1,2; repeated subscripts are sumed,
and a subscript preceded by a coom indicates partial differentiation with
respect to the corresponding x-coordinate.

~ ~1 _________--"Wan_
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(xlx 2 ) 4-+ (yly 2 ) between the exteriors of the undeformed and deformed

cracks. Finally, the displacements must be bounded near the crack-tips.

The differential equations of equilibrium in terms of nominal stresses

are

B,- O (1.3)

The constitutive law which relates a 8  to u is given by

cs. (2WI+W ) +2WIu aB+W e e8fu . , (1.4)

corresponding to a homogeneous, Isotropic, compressible material with plane

strain elastic potential W(I,J) (strain energy per unit undeformed volum).

In (1.4), a is the Kronecker delta, i a s the two-dimensional alter-

nator (e1 1 '¢2 2  0, c12 ' 
= '

2 1 l 
= ), and the two deformation invariants I

and J are given by

I= 2 +2 u ,a+ua Bu a c , (1.5)

J I + u +1COA BYuQ ,u ,Y (1.6)

in particular, J is the Jacobian determinant of the deformation and must

be positive. WI and Wi are the derivatives of W.

The condition of. vanishing true traction on the deformed faces of the

crack can be shown to be equivalent to the vanishing of the nominal traction

on the undeformed crack-faces.1 The latter condition in turn is

o1 2 -o22 -0 at x2 O±, -b<x,<b . (1.7)

1For a fuller discussion of this point, as well as of the field equations of
plane finite elastostatics, see (2].
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Once u and co have been found, the true (or Cauchy) stresses T

are determined from the relation

-+ ) . (1.8)

From (1.4), (1.8), it follows that

Too U (1Wj +W +)6c +WI (UBa+ uUB + uy.,u 8 Y) . (1.9)

To obtain the formulation of the Mode II problem according to linear

theory,1 one need only linearize (1.4)-(1.6) with respect to u a, ; the

remaining equations - (1.1), (1.3), (1.7) - are retained without change.

The relation (1.8) between true and nominal stresses reduces to . -am

upon linearization. In carrying out the linearization process, one must make

use of the fact that, in the undeformed state, one has, by (1.5), (1.6),

Ix2, J-1; moreover,

2W1(2,1) +Wj(2,1)- 0 (.10)

if the undeformed state is to be unstressed. One further needs the relations

which determine the shear modulus Pz and Poisson's ratio v of the linear-

ized theory in terms of W:

P2WI(2.1). TY = (4Wll+4Wxj+WjJ) (1.11)v1-2, J-1

The global solution of the linearized version of the Mode II problem

can be found exactly by making use of the work of Inglis [31. From the solu-

tion one can show (see [41) that the displacements u furnished by the

linear theory are given asymptotically near the right crack-tip by

We do not spell out this formulation here.

h
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a 1-r (e) as r-'O , (1.12)

where

, (1.14)11

and (r,e) are polar coordinates at the crack-tip (Fig.l). According to the

second of (1.13), U2 (±w)=O, reflecting the fact that u2 -O on the crack-

faces in linear theory. We note that U2  is an even function of e.

2. The small-scale nonlinear crack problem

If the amount of shear k prescribed at infinity is small, one would

expect that the field near a crack-tip - say the right one - could be deter-

mined on the basis of an asymptotic scheme in which the crack of finite length

is replaced by a semi-infinite one, and the far field is required to match the

elastostatic field near the crack-tip as predicted by the solution of the ori-

ginal problem according to linearized theory. One thus takes the view that,

for small loads, there is an inner region in the immtediate vicinity of each

crack-tip in which nonlinear effects are dominant; surrounding this, there

is an intermediate region in which the field is described by the near-tip ap-

proximation supplied by linearized theory. At points which lie exterior to

the Intermediate region (points in the outer region), the full solution of

the linearized problem is required to describe the field.

In this small-scale nonlinear crack problem, we thus seek displacements

1In linear theory, the given shear strain k is related to the applied
shear stress o by anjk; in addition, c= (2vv/n')1 KiI, where KII is
the Mode 11 stress intensity factor.
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and nominal stresses a which satisfy the field equations (1.3)-(I.0

away from the crack-tip, the free surface conditions

'712 ' 22 '0, x2=O0±, -OD<XI< 0 (2.1) I1

and the matching conditions (see (1.12))

u-r/2U (e) as r-oo , (2.2)

where the U 's are given by (1.13). Again, the displacements are to be

bounded near the crack-tip, and the mapping (x1 ,x2) - (YlY 2 ) is to be

one-to-one between the exteriors of the crack before and after deformation.

In order to study the issue of crack-opening, it is fortunately not

necessary to solve the small-scale problem globally. It turns out that

determining the second terms in the large r expansions of the displacements

u - the first terms are prescribed in (2.2) - furnishes useful information.

By investigating the solution of the small-scale problem for large r, we

are in effect studying the behavior of the solution of the original Mode II

problem in the transition zone between the inner and intermediate regions.

We shall speak of points which lie in this transition zone as moderately

near the crack.

We write

~r UCu (e) +V a(0), r- O (2.3)2

and we seek functions V such that (2.3) is asymptotically consistent as

r-co with the field equations (1.3)-(1.6) and the boundary conditions

1The origin has been moved to the right crack-tip.

2If, instead of (2.3), one sets u.-r 1 cU+ rmV. (no sum), where nothing
Is assumed about the exponents % except that m 1d/2, then one can show
that m1 m2*O, as is assumed in (2.3).

. .... 3.



(8)

(2.1). By setting e=w in (2.3) and making use of the fact that U

(see (.13)), one finds that the curve representing the deformation image of

the upper crack-face is asymptotically tangent as r-*o to the horizontal

line Y2 =V2 (r). Moreover, it is easy to show that particles which, in the un-

deformed state, lie immediately above the upper crack-face are carried to points

above this curve. Similarly, the undeformed lower crack-face is deformed to a

curve which is asymptotically tangent to the line Y2
= V2(-ir), and the adja-

cent particles lie below this curvein the deformed state. If follows that,

according to the small-scale problem, the deformed crack is open as r- oD

if V2 (r)- V2(-w) >0, while interpenetration of the crack-faces is predicted

if V2()-V 2 (-w)<O. In the latter case, the one-to-one requirement imposed

on the deformation is violated, and the problem as posed has no solution.

Our interest thus centers on the difference V2(w)- V2(-7).
The calculation which determines V is routine in principle but lengthy

and elaborate in detail ; we omit it here. One substitutes (2.3) into (1.5), (1.6)

to obtain the expansions as r-o of I and J. These expansions, which

show that I is near 2 and J near 1, must be inserted into (1.4) to pro-

duce the corresponding expansions for the nominal stresses ca,. In order to

carry out this step, it is first necessary to expand WI(I,J) and W(IJ)

in powers of 1-2 and J-1 up to and including quadratic terms. Once the

expansions for oB have been found, they are substituted into the equilib-

rium equations (1.3) and the boundary conditions (2.1). To leading order in

r, the amB's are of course precisely the near-tip stresses of linear theory,

so that, to leading order, (1.3) and (2.1) are satisfied automatically. When

(1.3) and (2.1) are enforced to second order, they result in differential

equations and boundary conditions for the determination of the V. s. After

much algebra, one then finds in particular that
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a C' r(2 -3.) - 11 3v-42V2(e) - 22-7 TTV "

4+ + 0 + l2v -4v2]sin e

'(LmI s-! vsi26+I 1 16)s 36 (2.4)

Here a2  is an arbitrary constant associated with a rigid body translation

which is left undetermined by the small-scale problem, c is given in term

of crack half-length b and loading parameter k by (1.14), v is Poisson's

ratio, and a and a are second-order elastic constants given by

- 2( - 2v) (2WI I Wj) , (2.5)1 1 I-2,J l

( +6WI+ 3W +1 (2.6)
III Ili Iii W1JJ+WJJJ) s2,Jzl

It may be noted that V2(e) does not have the same parity in e as

does U2(e); except for the additive constant, V2 (e) is odd in e, while

U2 (e) is even. This reflects the fact that, in contrast to the Mode I case,

the solution of the nonlinear Mode II problem does not have the same parity

in x2  as that of its counterpart in linearized theory.1

From (2.4), we may define the crack-face separation at laroe r - call

it 6 - as

6S -( v~t 1 13 +42] (.
6 2(1) - V2(-ff "Tw_ r Tv v 27

6 need not be positive.

]For an extensive discussion of this point, see (1).
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3. Discussion

The small-scale problem predicts crack-opening or interpenetration ac-

cording as 6 is positive or negative. The sign of 6, in turn, depends only

on the material, being determined by Poisson's ratio v and the second-order

elastic constants a and a.

When 6>0, the amount of crack-opening is of second-order in the loading

parameter k, as is clear from (2.7), (1.14).

In the degenerate case for which s = 0, the issue of crack-opening versus

interpenetration cannot be decided without consideration of terms beyond the

second in the large-r expansions (2.3) for the displacements.

In order to study further the question of the sign of 6, it is conven-

ient to recall first some properties of two special homogeneous plane finite

deformations: simple shear and uniaxial stress. In simple shear with amount

of shear k, the displacements are given by

u1= kx2, u2 = 0 . (3.1)

From (1.5), (1.6), it follows that I=2+k 2 , J=1; the true stresses can then

be computed from (1.9) as

"12 '2W1(2
+ k ,l)k , (3.2)

2 2 2 2 21II1' 2WI(2+k2'l )(l+k2)+Wj (2+k2 ' 1 )  T T22 = 2WI (2+k2 ' 1)+Wj (2+k2 '1) . (3.3)

If k is small, then (3.2), (3.3) reduce approximately to (see (1.11), (2.5))

T t12 ~.jPk, Tll + Ilk 2, T•I(at )Ik 2 (3.4)

The presence of the normal stresses r11, T22  in simple shear, sometimes

called a Poynting effect, arises from the nonlinear character of the theory.



I

(11)

Since such normal stresses must be present at infinity in the finite elasto-

static version of the Mode II problem, one might conjecture that crack-open-

ing or interpenetration is associated with the sign of the normal stress T22

at infinity. According to (3.4), this sign is determined by the sign of a

when k is small. We explore this conjecture further below.

In a plane deformation which corresponds to uniaxial stress in the x1 -

direction, one has

u I( -l)xl, u2 ( -l)x2  , (3.5)

where the constants A and - are the direct and transverse stretch ratios,

respectively. The invariants I and J are aiven by InA2+--2. j.A-

and the requirement that T22=0 leads through (1.9) and (3.5) to

2 7W + ) 2-2 (3.6)
7 1 )I = L2-x, J -X

Assuming that (3.6) determines . as a function of X, the stress-stretch

relation then follows from (1.9) with a-B-1 as

When A is near unity,

T(X) -T' (1)(A -1) +. r (1)(X_ - (3.8)

a direct calculation based on (3.7), (3.6) shows that

T,'(1)- 2T 0r"(1)2u+ 3[+a -v(lv)] • (3.9)
01-20 T

The sign of the second derivative T"(1) may be positive for some materials,
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negative for others. We shall say that a material is hardening (at the un-

undeformed state) in unlaxial stress if T"(1)>0, softening if T"(l)<O.

With the help of these results pertaining to simple shear and uniaxial

stress in plane strain, we now consider the crack separation 6 of (2.7)

for some special choices of the strain energy density W. First, we take

W(I.J)u- (-.4+2J-4) (3.10)

corresponding to the elastic potential proposed by Blatz and Ko [5] in con-

nection with experiments on foam rubber.' From (3.10), (1.11), one finds

that v= 1/4 for this material, while (3.10), (2.5), (2.6) give

o--1, B-3/8 . (3.11)

The crack-face separation 6 is then found from (2.7), (3.11) to be

6=3c 2 >0 , (3.12)

so the crack-opening is predicted for the Blatz-Ko material. To test the con-

jecture that crack-opening is associated with a tensile normal stress T22

at infinity, we specialize the Poynting effect formula in (3.4), obtaining

T22 < . (3.13)

The normal stress T22 at infinity is thus compressive, upsetting the con-

Jecture. (The normal stress T11 in simple shear vanishes identically for

the Blatz-Ko material, ds may be verified from (3.10) and the first of (3.3).)

Finally we note that, in plane strain uniaxial stress, (3.9), (3.11) give

T0)- -88,/9<0, so that the Blatz-Ko material softens at the undeformed

1The theoretical properties of a material characterized by the Blatz-Ko strain
energy density have been analyzed in detail in [6].

%-t- L



(13)

state.

Next we consider the case of the harmonic materials introduced by John

[7]. For these,

W(I,J)-2u[H(R)-J] , R-/+2J , (3.14)

where H is a given function characteristic of the particular harmonic ma-

terial under consideration. In order to assure appropriate behavior at in-

finitesimal deformations, it is required that H satisfy the conditions

H(2)-l, H'(2)-l, H"(2)- , (3.15)

where v is Poisson's ratio.1  For these materials, (3.14), (3.15), (2.5),

(2.6) furnish the second order elastic constants as

1'/2, 0 -(0'- 20 3 [H "(2) - 1 T 2

so that, from (2.7)

8 a WC-(I - 20)3 H" ' (2) + 01 -V) 2] (3.17)

In plane strain uniaxial stress, the general formula in (3.9) for r"(1)

presently specializes to

T"(1)- 2) [(1-2v)3H"'(2)+2v(1-)] . (3.18)

Eliminating H.'(2) between (3.17) and (3.18) yields

.1 2 [•1 ((,.,.3

1For a fuller discussion of the characteristics of harmonic materials in
plane strain, see (7] and (8].
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It follows that the small-scale nonlinear crack problem predicts interpenetra-

tion of the crack-faces if

"(<- 1-3v (3.20)

Thus, for all harmonic materials with conmon, fixed values of U, v, (3.20)

will hold for those which soften rapidly enough (or, if v>1/3, for those

which do not harden too rapidly) in uniaxial stress at the undeformed state.

For those materials which harden rapidly enough, the crack will open.

From (3.4), (3.16), one finds that both normal stresses T1 , T22 are

tensile in simple shear for any harmonic material.

These examples serve to show that crack-opening may occur despite the

presence of a compressive normal stress T22 at infinity, and that inter-

penetration of the crack-faces can be predicted even though the normal stress

is tensile.

In general, for given values of v and a, the crack-face separation 6

of (2.7) will be negative - corresponding to interpenetration - if B is suf-

ficiently negative. In view of (3.9), this means that for given v and m,

interpenetration will be predicted for materials which soften rapidly enough.

Since only first- and second-order elastic constants are involved in

(2.7), it is not necessary to know the full strain energy density W to deter-

mine the sign of the crack-face separation 8. Hughes and Kelly [9] have ex-

perimentally determined the elastic constants up through second-order for poly-

styrene, Armco iron and pyrex glass. When their results are used to determine

P, v, a and 0 for these materials, it is found that crack-opening occurs

for polystyrene and iron, but interpenetration is predicted for glass.

It must be emphasized that the present analysis pertains only to the

& ___ _____ ___.... _____
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behavior of the crack-faces at points moderately near the crack-tips. Whether

crack-opening or interpenetration is predicted at other points cannot be in-

ferred from the results given here. To deal with this question, one would need

an analysis of the original nonlinear Mode II problem accurate to second-order

in the loading parameter and uniformly valid with respect to position along the

crack. Nevertheless, to the extent that the small-scale problem faithfully

describes the small-load behavior of the solution of the original Mode I1 prob-

lem, the present results furnish a condition (6<0) on the material which is

sufficient to assure the violation - through apparent crack-face interpenetra-

tion - of the one-to-one requirement imposed on the deformation.
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