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Preface

This report describes efforts completed in the Language Stud-

ies project at Syracuse University under RADC contract F30602-77-

C-0235. The work covers the period October 1, 1977 through Sep-

tember 30, 1980.

The report is produced in five volumes to facilitate single

volume distribution.

Volume 1. Report from the Very High Level Programming Systems

task. Report title is "Logic Programming in Lisp".

Volume 2. Report from the Systems Studies task. Report title

is "Multiple Finite Queueing Model with Fixed Prior-

ity Scheduling".

Volume 3. Report from the Systems Studies task. Report title

is "An Algorithmic Solution for a Queueing Model of

a Computer System with Interactive and Batch Jobs.

Volume 4. Report from the Grammars of Programming task. Re-

port title is "Programming Control Structures in a

High Level Language.

Volume 5. Report from the Proving Program Correctness task.

Report title is "Realignment".
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This effort, being responsive to RADC TPO-R5A, Software Cost Reduction, was

undertaken to perform research in specific areas of computing technology for

affecting more reliable software, improved user communication with computer

systems, and improved techniques for system performance evaluations. The

applicable techno-logy areas included: very high level programming system,

grammar of programming, proving program correctness, and system performance

evaluation techniques. Concepts have been advanced in these areas by this

effort. Research in the very high level programming system area produced an

experimental system combining logic programming with LISP for implementing
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enhancements to be made to the system to provide a more powerful, user-
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powerful formalism than is currently available.
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CHAPTER 0

INTRODUCTION

Since Kowalski's 1974 paper "Predicate Logic as Programming
Language" [Kowalski 1974] there has been a growing interest in
the use of what he calls "logic programming" as a technique for
specifying computations.

This technique consists of formulating computational
specifications as a set of declarative sentences, each of which
is a simple assertion of some truth - conditional or
unconditional, general or particular - which one wishes to record
in a "knowledge base".

A conditional assertion has the form

B if A

in which B is the conclusion and A is the hypothesis. The
hypothesis is a list

( Al ... An )

of conditions Ai all of which (the assertion is saying) must be
true in order that the conclusion be true. As a special case,
the list A may be empty. Such a hypothesis is always true, and
so the assertion in this case is said to be unconditional.

Kowalski writes the conditional assertion

B if ( Al ... An)

as

B <- Al ... An

and the unconditional assertion

B if ()



t~

as

B <-

Each of the A's and the B is a sentence in subject-predicate
form, or "predication"

(P Si ... Sk)

in which some predicate P is ascribed to a subject (Si ... Sk)
which in general is a tuple of descriptive expressions each of
which is either a proper name, or a variable, or an applicative
construction

(F Si ... Sn)

in which some operator F is applied to some operand (Si ... Sn).
The operand of a construction is in general a tuple of
descriptive expressions of just the same kind as the subject of a
predication.

An assertion containing one or more variables is general. It is
also often called a rule.

An assertion containing no variable is particular. It is also
often called a datum.

The variables in a general assertion are treated as if they were
governed by universal quantifiers preceding the assertion. Thus,
the assertion

41

(Odd (Product x y)) <- (Odd x) (Even (Sum x y))

should be understood as being preceded by "for all x and y".
Once a knowledge base has been built the logic programmer can
request answers to queries. It is these requests which invoke
the "logic computations" or deductions which reveal the implicit
content of the knowledge base.

A query is essentially a description

all (xl ... xk) such that (Al and ... and An)

of a set of tuples which satisfy a given conjunction (the
constraint of the query).

The constraint of a query may contain variables in addition to
those occurring in the answer template (x1 ... xk) of the query.

-2-
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These are to be understood as being governed by existential
quantifiers preceding the constraint.

The answer to such a query is then the set of all tuples whose
satisfaction of the given constraint follows logically from the
knowledge base.

Thus the answer may be the empty set, or a set containing just
one tuple, or a set containing many - even infinitely many -
tuples. If the answer set is infinite, then in practice some
finite subset of it will be supplied, or some other description
of the set will be given.

A logic computation, then, consists of the sequence of events
necessary to construct the answer to some query from the
information embodied in some knowledge base.

1.0 PROLOG

These ideas were incorporated into a programming language called
PROLOG, designed and first implemented by a group at the
University of Marseille. PROLOG has since been implemented at
the Universities of Edinburgh, Leuven, London, Waterloo and
Budapest.

PROLOG implementations of logic programming go beyond the "pure"
version of it described by Kowalski. They provide certain
"imperative" features by which the programmer can affect the
deductive computation of the answer to a query, and indeed by
which he can affect the meaning of the query and of the
assertions in the knowledge base.

These "control constructs" of PROLOG have been found most useful
in practical applications of logic programming and we are in no
sense critical of them. However, we believe that it is one of
the essential ideas of logic programming to make a clean
distinction between the "logic" of one's program and its
"control".

2.0 LOGIC

Accordingly we have implemented a programming language called
LOGIC, which embodies our idea of the "pure" version of logic
programming featured in Kowalski's writings. Those who are
interested to experiment with "pure" logic programming can do so
by working with LOGIC.

For those who may wish to avail themselves - while still in some

- 3-



sense working within a logic programming framework - of a greater
degree of algorithmic control over events, we have embedded LOGIC
within a system called LOGLISP.

3.0 LOGLISP = LOGIC + LISP

LOGLISP is a marriage of LOGIC with LISP.

A LOGLISP workspace contains everything one expects to find in a
LISP workspace, and can be used purely as such by those who wish
to ignore the presence of LOGIC in that workspace.

The same LOGLISP workspace can also be used as a "pure" LOGIC
workspace, that is, as nothing but a basic logic programming
environment, in which the assertion/query style of computing can
be conducted in just the Kowalski manner. The logic programming
facilities are invoked by making suitably-formed LISP calls on
such LISP functions as !- ("assert") and the query functions ALL,
ANY, THE, and SETOF. These LISP functions, together with further
auxiliary and supplementary LISP functions, comprise the LOGIC
system.

A major advantage of embodying logic programming within LISP in
this way is that the LISP environment is available to the logic
programmer as a convenient host facility in which LISP functions
for editing, displaying, monitoring, debugging, inputting and
outputting one's assertions, queries and deductions can be
invoked interactively or under program control.

Since the putting of a query is just the submission of an
appropriate LISP function call, this can be done either (as in
the PROLOG systems) interactively from the terminal or internally
from within an applications program.

Since the answer to a query is a LISP data object it can either
(as in PROLOG) be displayed on the terminal as a stream or
returned to an internal call as its result and subjected, if
desired, to analysis and manipulation.

Both predicates and operators in logic expressions can be given aLISP meaning by suitable programmer-supplied definitions of them

as LISP function names. Some proper names indeed have a LISP
meaning which is present in every workspace as part of LISP
itself.

By a benign extension of the "pure" logic programming paradigm,
LOGLISP is capable of recognizing such predicates and operators
during the deduction cycle of LOGIC. The predications and
constructions in whose heads they occur are thereby treated as

-- 4 -



LISP-meaningful function calls, and are replaced in situ by
appropriate simplifications.

The effect of this LISP-simplification step, performed once in
every iteration of LOGIC's deduction cycle, is to give the LOGIC
programmer the means to invoke very nearly the full power of LISP
from within logic expressions.

This fact, together with the previously mentioned fact that LOGIC
calls are simply certain LISP calls, means that it is very easy
to initiate subordinate deductions during a deduction, by making
recursive calls on LOGIC from within LOGIC.

Thus LISP is not only a rich and convenient host environment for
LOGIC programming, but also an intimately involved partner in the
novel hybrid style of "LOGLISP" programming in which LISP and
LOGIC call eph other, and themselves '--:jrsively.

The following chapters describe LOGLISP in full. The background
ideas are explained in detail, and the design and implementation
are presented both "top-down" and "bottom-up" . Examples of
applications of LOGLISP are given which illustrate its novel
capabilities.

LOGLISP runs on the DEC-10 under the TOPS-10 operating system
using UCI LISP.

__-5-



CHAPTER 1

EXPRESSIONS. NOTIONS AND NOTATIONS.

In this manual we are concerned with computations whose data are
expressions. It will be useful to have the basic ideas and
notational conventions available from the outset, and in this
chapter we discuss the most important of these. The general
framework is that of LISP , augmented in certain ways to
accommodate the needs of LOGIC.

1.1 EXPRESSIONS.

LISP has two kinds of expression: atoms and dotted pairs. We
further divide the atoms into two kinds: variables and proper
names. Therefore we have three kinds of expression:

variables
proper names
dotted pairs

A variable is an atom which begins with a lower case letter. A
proper name is any atom which is not a variable (in particular a
numeral is a proper name). A dotted pair is a composite
expression with two immediate constituents, called its head and
its tail, both of which are expressions. We have three formal
predicates, for use in writing algorithms, which correspond to
the three kinds of expression.

(VAR A) = TRUE if A is a variable, = FALSE otherwise
(NAME A) TRUE if A is a proper name, = FALSE otherwise
(CONSP A) TRUE is A is a dotted pair, = FALSE otherwise

1.2 NOTATION FOR DOTTED PAIRS AND LISTS.

When A is a dotted pair whose head is B and whose tail is C, we
write

B = hA
C = tA

using the decomposition functions h and t. To indicate the
composition of A from B and C we write:

-1-I -



A (B.C)

using the composition function . ("dot") written between its
two arguments. In writing nested compositions with the infixed
dot we may omit pairs of parentheses with the understanding that
association is to the right. Thus

A.B.C.D.E.F.G

is short for

(A.(B.(C.(D.(E.(F.G))))))

A further notational economy is achieved by identifying certain
expressions as lists and writing them without dots. All lists
are dotted pairs except for one, which is the proper name: NIL
NIL is known as the empty list, and may also be written: ()
Lists other than ) are said to be nonempty . A nonempty list is
any dotted pair whose tail is a list. A nonempty list may be
written by writing its one or more components in order, with a
left parenthesis before the first component and a right
parenthesis after the last. The head of a list is its first
component, and in general the (i + 1)st component of a list is
the ith component of its tail . Thus the list

(O.(2.(4.(6.(8.(BINGO.NIL))))))

has six components and would be written

(0 2 4 6'8 BINGO)

Note that the tail of a nonempty list is just the list of its
remaining components after the head has been removed. Certain
formal notions are used for computing with lists. The result of
concatenating two lists L and M is written L*M and is defined
by

L*M = if L is () then M else (hL).((tL)*M)

Thus

(1 2 3)*(4 5 6) : (1 2 3 4 5 6)

The length of a list is the number of components it has:

(LENGTH L) = if L is () then 0 else 1 + (LENGTH tL)

-1-2-
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1.3 PATHS. STRUCTURES. PRINTABLE EXPRESSIONS

The decomposition functions h and t are the two paths of length 1
The functions hh, ht, th, tt are the four paths of length 2.

in general the 2"*(n+l) paths of length n+l are all the functions
hp, tp where p is a path of length n. The identity function is
the (only) path of length 0. An expression is said to admit a
path p if the result of applying p to it is defined. Thus, every
expression admits I, and every dotted pair also admits h and t.
Variables and proper names admit only I, and this fact is their
characteristic structural property. In general the set of all
paths admitted by an expression A is called the structure of A,
and gives a rather direct portrayal of A's "shape". The
printable expressions are those whose structure is finite. Not
all expressions are printable. For example, the dotted pair
whose head is 0 and whose tail is itself is not printable. Its
structure is the infinite set of paths

{ I, t, tt, ttt, ..., ht, htt, httt, . .

It may be described as the expression which solves the equation

x = 0.x

and we may reason about it from this description. However, to
attempt to print it would result in a nonterminating process.

1.4 ENVIRONMENTS

A dotted pair whose head is a variable is called a binding. A
list whose components are bindings with distinct heads is called
an environment. Intuitively an environment is a collection of
replacement instructions coded as dotted pairs, each one saying
that a certain variable (its head) is to be replaced by a certain
expression (its tail). An environment which contains all the
bindings of the environent E (and perhaps other bindings) is
called an extension of E.

1.5 THE NOTION DEF

If E is an environment and A is an expression we say that A is
defined in E if, and only if, there is a binding in E whose head
is A. Accordingly we introduce the function DEF by the scheme

(DEF A E) if E is () then FALSE
else if hhE is A then TRUE
else (DEF A tE)

-1-3-
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which computes the truth value that A is defined in E. Note that

if A is defined in E then A is a variable.

1.6 THE NOTIONS IMM AND ULT.

If A is defined in E we say that the immediate associate of A in
E is the tail of the binding in E whose head is A, and we define
the corresponding function IMM by

(IMM A E) = if hhE is A then thE else (1MM A tE)

with the understanding that IMM will never be invoked for an A
and E such that A is not defined in E. The immediate associate
in E of a variable A may itself be a variable defined in E. In
such a case we may wish to track down the ultimate associate of A
in E - namely the first expression in the series

A , (IMM A E), (IMM (IMM A E) E) ...,

which is not defined in E. Accordingly we define the function
ULT by

(ULT A E) = if (DEF A E) then (ULT(IMM A E)E) else A

which computes, for any expression A and environment E, the
ultimate associate of A in E. For example, if E is the
environment

( x.y y.z z.(F A (B r s)) r.(G s) s.5 )

then the immediate associate of x in E is y, but the ultimate
associate of x in E is (F A (B r s))

1.7 REALIZING EXPRESSIONS IN ENVIRONMENTS.

Given an expression A and an environment E, we consider the
result of replacing each variable in A by its immediate associate
in E. This expression is called the realization of A in E. To
compute the realisation of A in E we use the function REAL,
defined by:

(REAL A E) = if (CONSP A) then (REAL hA E).(REAL tA EA)
else if (DEF A E) then (IMM A E)
else A

We note that, for example, the realization of (PLUS x y) in the
environment

- 1-~4 -
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( x.y y.z z.(F A (B r s)) r.(G s) s.5

is (PLUS y z) We are also interested in recursive
realizations. For example, if we start with (PLUS x y) we obtain
each of the following expressions by repeatedly realizing the
previous one in E:

(PLUS y z)
(PLUS z (F A (B r s)))
(PLUS (F A (B r s)) (F A (B (G s) 5)))
(PLUS (F A (B (G s) 5)) (F A (B (G 5) 5)))
(PLUS (F A (B (G 5) 5)) (F A (B (G 5) 5)))

Realizing the final expression in E merely reproduces it. This
final expression is therefore by definition the recursive
realization of (PLUS x y) in E. In general the recursive
realization of an expression A in an environment E is defined by:

(RECREAL A E) = if (CONSP A) then (RECREAL hA E).(RECREAL tA E)
else if (DEF A E) then (RECREAL (ULT A E) E)
else A

UNPRINTABLE RECURSIVE REALIZATIONS OF PRINTABLE EXPRESSIONS.

It can happen that a printable expression may have an unprintable
recursive realization in a printable environment. For example,
in the environment

( x.(O.x) )

the expression x has the recursive realization

(o.(o.(o. ...

which is the "infinite expression" whose head is 0 and whose tail
is itself.

1.9 UNIFICATION

A fundamental notion in logic programming is the operation of
unifying two expressions A and B relative to a given environment
E. This operation yields a result, denoted by (UNIFY A B E)
which is either the message "IMPOSSIBLE" , indicating that A and
B cannot be unified with respect to E, or else is an extension of
E in which the recursive realizations of A and B are identical.
In the latter case we say that the environment (UNIFY A B E) is
the most general unifier ("mgu") of A and B with respect to E.
By definition, we then have that

- 1-5 -



(RECREAL A (UNIFY A B E)) : (RECREAL B (UNIFY A B E))

The computation of (UNIFY A B E) is defined by

(UNIFY A B E) =

if E is "IMPOSSIBLE" then "IMPOSSIBLE"
else (EQUATE (ULT A E) (ULT B E) E)

where

(EQUATE A B E) =

if A is B then E
else if (VAR A) then (A.B).E
else if (VAR B) then (B.A).E
else if not (CONSP A) then "IMPOSSIBLE"
else if not (CONSP B) then "IMPOSSIBLE"
else (UNIFY tA tB (UNIFY hA hB E))

The mgu of (P (G x y) x y) and (P a (H b) c) with respect to the

empty environment () is

y.c x.(H b) a.(G x y) )

and in this environment both expressions are recursively realized
as

(P (G (H b) c) (H b) c)

The mgu of A and B with respect to E is intuitively the most
general way that E can be extended to an environment in which A
and B can be recursively realized as identical expressions. It
is possible that unifying A and B will make them unprintable.
For example, the most general unifier of the expressions x and
(0.x) with respect to the empty environment () is the environment
(x.(O.x) ) in which x is bound to (O.x) . This shows that in
general it is possible for (UNIFY A B E) to be an environment in
which the recursive realizations of A and B are identical but
unprintable.

1.10 SUBSTITUTIONS

Some readers may be more familiar with the usual treatment of
unification, which is developed in terms of the idea of
substitutions. A sub titution is a mapping from expressions to
expressions which preserves proper names and the dotted pair
structure. More precisely, a mapping S from expressions to
expressions is a substitution if, and only if, it satisfies the

-- 6-
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two conditions:

XS = X for all proper names X
(X.Y)S = (XS).(YS) for all expressions X and Y

We denote the result of applying a substitution S to an
expression X by the postfix notation: XS , as illustrated above.
An important property of a substitution is that its effect upon
any expression is completely determined by its effect on the
variables (if any) which it actually changes. By listing those
variables, each equated to its image under the substitution, we
therefore give a complete description of the substitution. But
the information in such a list of equations is just what is
provided by an environment. The list of equations

V I Al, ... , Vn = An

corresponds to the environment

( Vl.Al ... Vn.An )

and conversely. Indeed if S corresponds in this way to the
environment E, then the image XS of any expression X under S is
just the expression (REAL X E). We write [E] for 1-he
substitution corresponding in this way to the environment E.
Thus we have

X[E] = (REAL X E)

for all expressions X and environments E. In this correspondence
between environments and substitutions, the empty environment
corresponds to the identity substitution (which transforms every
expression into itself). Composition of two substitutions S and
T yields the substitution ST, which sends each expression X into
the expression X(ST) = (XS)T obtained by first applying S to X
and then T to the rzsult. If S is [E] and T is [F] , ST is [L],
where L is the list of all distinct bindings

V.(V[EE[F])

where V is defined in E or in F (or both).

An environment E may be taken as a description not only of [E]
but also of the iterate of [E] . The iterate S- of a
substitution S is the "limit" of the series

S, SS, SSS, ....

- 1-7 -
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To find the image X(S ~) of an expression X under the iterate of
S, we repeatedly apply S to X until no further changes occur.
That is, X(S ~) is the first expression in the series

X, XS, XSS, XSSS,

which is the same as its predecessor. It turns out that if S is
E then X(S ~) is (RECREAL X E). If S is CE) then S- is denoted by
{E1. So we have

X[E] = (REAL X E)
X{E} = (RECREAL X E)

Now in terms of substitution mappings, a unifier of two
expressions A and B is a substitution S which maps A and B onto
the same expression:

AS = BS

and a most general unifier of A and B is a unifier U of A and B
with the property that

S = US

for all unifiers S of A and B.

Thus if U is an mgu of A and B and S is any unifier of A and B we
have

AS = AUS BUS = BS and AU = BU

so that the common expression onto which S maps A and B is
obtainable by applying S to the common expression onto which U
maps A and B. The substitution {(UNIFY A B E)) is the mgu of the
two expressions A{E} and B{E} Thus UNIFY is given the two
expressions to be unified in an indirect way.

1.11 IMPLICIT EXPRESSIONS

The way that the two expressions A{E} and B{E} are given to the
UNIFY algorithm is indirect, in "unassembled" form. This idea of
working with expressions not yet (or possibly never) fully
assembled is used extensively in our system. It makes for
computational economy and also for increased intelligibility. We
think of the list (A E) as an "implicit" way of giving the
expression A{E}. We say that A is the skeleton part, and E the
environment part, of the implicit expression (A E). For many
purposes it is more convenient, as well as more economical, to
deal with such "implicit expressions" than with the actual
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expressions themselves. This is particularly the case when (A E)
describes an unprintable expression even though both A and E are
printable - as in the example previously mentioned when A is x
and E is ( x.(O.x) ).

1.12 INSTANCES. VARIANTS. GROUND EXPRESSIONS. PATTERNS.

We often wish to consider, for some expression A, the various
expressions AS, where S is a substitution. These are known as
the instances of A. For example, the expressions

(Divides 17 85)
(Divides (Plus a b) (Times 3 c))

are both instances of the expression (Divides p q) . The first
of them is in fact a ground instance, since it contains no
variables. In general we say that expressions which contain no
variables are ground expressions: so a ground instance of A is
an instance of A which happens to be a ground expression.
Expressions which contain one or more variables are known as
patterns. We often think of a pattern as a way of representing
all of its instances.

VARIANTS

In the role of a representative of all its instances a pattern is
not unique. Other patterns - known as its variants - have
exactly the same instances. For example, the expressions

(Divides p q) (Divides x y)

have exactly the same instances. Each is a variant of the other.
In general a variant of an expression A is an instance AS of A
under a substitution which maps variables onto variables in
one-to-one fashion. Such a substitution is called a variation,
and is the only kind of substitution which has an inverse. If
[E] is a variation then its inverse is [E'], where E' is obtained
from E by interchanging the head and tail of each of its
bindings. The compositions [E][E'] and [E'][E] are then both the
identity substitution.

In view of the identity of the set of instances of an expression
with that of any variant of the expression, we often treat mutual
variants as merely different ways of writing the same thing.
However, in some of the computations involving patterns (such as
the unification computation) it is sometimes necessary to take
suitable variants of one's data beforehand.

-1-9-
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To see why this is so, consider the problem of finding a pattern
whose instances are exactly those which are instances of two
given expressions, A and B.

For example, if A and B are the expressions

(Divides (Plus x y) z) (Divides x (Times x y))

then among their common instances are the expressions

(Divides (Plus 3 4) (Times (Plus 3 4) 6))
(Divides (Plus 0 0) (Times (Plus 0 0)(Exp x y)))

and so on. We can get the first instance from A by the
substitution

x = 3, y = 4, z = (Times (Plus 3 4) 6)

We can get it from B by the substitution

x = (Plus 3 4), y 6 .

However, there is no single substitution S such that
AS = BS =this common instance. The difficulty is the occurrence
of the same variables in both A and B. If we take a variant of B
which has no variables in common with those of A - say, the
expression

(Divides p (Times p q))

which we shall call C - then we can in fact find a pattern whose
instances are exactly those common to A and B. To do this we
need only compute the expression

(REALREC A (UNIFY A C (M)

or (which is the same)

(REALREC C (UNIFY A C ))

which is the "most general common instance" of A and C - and
therefore also of A and B.

Now the environment (UNIFY A C M) is

( p.(Plus x y) z.(Times p q) )
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and so the required expression is

(Divides (Plus x y) (Times (Plus x y) q) )

Every expression which is an instance both of A and of B is an
instance of this expression - and conversely. This example
illustrates the way in which the unification computation solves
the general problem of constructing a pattern whose instances are
precisely those which two given patterns have in common. Of
course, when the two given patterns have no common instances, no
such pattern exists. The UNIFY function detects all such cases
by returning "IMPOSSIBLE" instead of an environment.
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CHAPTER 2

LOGIC PROGRAMMING IN GENERAL

Logic programming is a technique for specifying computations by
making assertions. No imperative constructs are used. The
course of events during a logic computation is determined not by
the programmer's control instructions (for there are none) but by
the machine's pursuit of certain of the deductive consequences of
the programmer's assertions. For example, the programmer might
make the following assertions:

1 Drobny is a champion
2 Drobny is older than Rosewall
3 Rosewall is older than Goolagong
4 If x is older than y and y is older than z

then x is older than z
5 If x was born before y then x is older than y
6 Kelly is a child of Goolagong

If x is a child of y then y was born before x
8 Goolagong is female
9 Drobny is male

10 Rosewall is male
11 Rosewall is a champion
12 Goolagong is a champion
13 Connors is a champion
14 Borg is a champion
15 Connors is male
16 Borg is male
17 Borg was born before Connors
18 Connors was born before Kelly
19 Kelly is female
20 Evert is a champion
21 Evert is female
22 Evert was born before Connors

FIGURE 1

Some of these assertions are of particular facts; others are
generalities involving the use of logical variables x, y, z.
LOGIC is now capable of responding to queries about the "world"
described by these assertions. In supplying answers to such
queries it must in general deduce them from what it has been told
(rather than merely look the answers up) For example, the
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query:

Which male champions are older
than Kelly ?

would elicit the answer

(Connors Borg Rosewall Drobny)

That these persons are male and champions is explicitly given
among the assertions, but that each of them is older than Kelly
must be deduced. The deductions involved can, if desired, be
examined by the user. For example, one could request:

* Explain the fourth answer

and LOGIC would respond with the following rationale:
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To show: Drobny is a male
Drobny is a champion
Drobny is older than Kelly

* it is enough, by assertion 9,

to show: Drobny is a champion

Drobny is older than Kelly

* But then it is enough, by assertion 1,

* to show: Drobny is older than Kelly.

* But then it is enough, by assertion 4,

* to show: (there is a y:1 such that)
Drobny is older than y:1
y:1 is older than Kelly

* But then it is enough, by assertion 2,

* to show: Rosewall is older than Kelly.

* But then it is enough, by assertion 4,

* to show: (there is a y:2 such that)
Rosewall is older than y:2
y:2 is older than Kelly.

* But then it is e-nough, by assertion 3,

* to show: Goolagong is older than Kelly.

* But then it is enough, by assertion 5,

* to show: Goolagong was born before Kelly.

* But then it is enough, by assertion 7,

* to show: Kelly is a child of Goolagong.

* But then it is enough, by assertion 6
to show: nothing.

End of explanation.

FIGURE 2
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In the LOGIC system implemented within LOGLISP, the language of
the queries, assertions and explanations is formalized and
artificial. We shall shortly discuss the details of its design.
Meanwhile, note that an explanation is essentially a proof, which
proceeds in steps all of the same kind. At each step there is a
"constraint list" of simple propositions, all to be shown true.
Any variables in these propositions are considered to be
existentially quantified by quantifiers placed at the beginning
of the constraint list, and the constraint list itself is
considered to be the conjunction of its members. The empty
constraint list (i.e. the empty conjunction) is by convention
true, so that if at some step the list has become empty, the
proof is complete - there is nothing left to show. In general,
each inference step consists of three stages:

(1) The selection of a constraint A from the constraint list
and of an assertion from the knowledge base whose
conclusion B will unify with A.

(2) The replacement of A in the
constraint list by the constraints comprising the
hypothesis (if any) of the selected assertion.

(3) The application to the new constraint list
of the most general unifier of A and B.

The notion of unification has been defined only for formal
expressions, however, and so to make this account precise we must
now recast it in terms of the formal language of LOGIC.

Let us now survey this formal language.

2. 1 PREDICATIONS

The basic unit of the formal language is the predication.
Predications are simple sentences of the subject-predicate form
in which the predicate is written first and the subject second.
The predicate may be any proper name P which is not a numeral.
The subject is a list of expressions called terms. Ground terms
are essentially noun-phrases which denote things . A list A =
(Al ... An) of n ground terms denotes the n-tuple of things
denoted respectively by the component terms Al, ... , An .
Predicates denote properties of tuples. (Properties of tuples
are often also called relations). The intuitive meaning of a
ground predication with predicate P and subject A is the
proposition that the tuple denoted by A has the property denoted
by P. We write this formally as the list whose head is P and
whose tail is A
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Thus we might formally write:

Drobny is a champion as (Champion Drobny)
Drobny is male as (Male Drobny)
Drobny is older than Kelly as (Older Drobny Kelly)
Evert is female as (Female Evert)
Evert was born before Kelly as (Before Evert Kelly)
Kelly is a child of Goolagong as (Child Kelly Goolagong)

2.2 TERMS

A term may be either a variable, or a proper name, or a
construction. Constructions have an operator-operand form. The
operator (which may be any proper name which is not a numeral)
denotes an operation, and the operand may be any list of terms
When the construction is a ground expression, its operand denotes
a tuple of things, in just the same way as does the subject of a.
ground predication. Constructions are indeed syntactically
indistinguishable from predications. Their common syntactic form
reflects an underlying unity in their semantics as applicative
expressions. Each ground construction or ground predication can
be understood as representing the result of applying some
function to some argument. In the case of a predication this
means construing a property or relation as a truth function,
namely a function which yields as its result one or other of the
two truth values, TRUE, FALSE. We write the construction with
operator F and operand A = (Al ... An) as the list

(F Al ... An)

whose head is F and whose tail is A.

Ground predications , then, express facts and denote truth
values. Ground terms express applicative descriptions and denote
things. Both ground terms and ground predications have the same
simple, systematic denotational semantics based on the
applicative principle.

2.3 WORLDS

A world is a collection of facts - "everything that is the case"
in that world. In logic programming a world is represented by a
collection of ground predications. Given a collection W of
ground predications as such a world, we can ask for what
substitutions, any, a given predication Q (whether ground or not)
is "true in W" . If Q is a ground predication, this is simply
the question whether Q is a member of W. If Q is in W, the
answer is then: the identity substitution. If Q is a
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predication pattern, however, this is not quite so simple a
question, and we construe it to mean: for which substitution
operations E is the the instance of Q under E in W? For example,
the world specified by the assertions in our earlier example is
the set

(Male Drobny) (Female Goolagong) (Champion Drobny)
(Male Rosewall) (Female Evert) (Champion Rosewall)
(Male Borg) (Female Kelly) (Champion Borg)
(Male Connors) (Champion Connors)

(Champion Goolagong)
(Champion Evert)

(Older Drobny Rosewall)
(Older Drobny Goolagong) (Before Borg Connors)
(Older Drobny Kelly) (Before Connors Kelly)
(Older Rosewall Goolagong) (Before Evert Connors)
(Older Rosewall Kelly) (Before Goolagong Kelly)
(Older Goolagong Kelly)
(Older Borg Connors)
(Older Borg Kelly)
(Older Evert Connors) (Child Kelly Goolagong)
(Older Evert Kelly)
(Older Connors Kelly)

FIGURE 3

With this world as W, if we ask what are the substitutions for
which the predication

(Male x)

is true in W, we get four "solutions", namely:

x = Drobny
x = Rosewall
x = Borg
x = Connors

there being four ground instances of "(Male x)" in W , namely
those corresponding to these four substitutions. More generally
we can ask a question involving a conjunction of predications.
If QI, ... , Qn are predications, we can ask of a world W

for what substitutions
is (Qi & ... & Qn) true in W ?

or more briefly:
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what substitutions satisfy (QI & ... &Qn) in W?

For example in the W of our example the question

what substitutions satisfy
( (Male x) & (Champion x) & (Older x Rosewall) )

in W?

has the answer

x = Drobny

since under this (but no other) substitution the conjunction
becomes true in W.

2.4 QUERIES

It is useful to introduce the formal notion of a query, based on
the preceding discussion. A query is an expression of the form

(ALL X QI ... Qn)

in which QI ... Qn are predications and X is an expression
called the answer template of the query. The answer template may
be any variable, any proper name, or any list of terms . The
list Q = (QI ... Qn) is the constraint list of the query. For
any world W, such a query has an answer, which is a list of
expressions. Each expression in this answer list is the instance
of the answer template under a substitution which satisfies the
constraint list Q, that is, which transforms the conjunction
(QI & ... & Qn) into one which is true in W. Thus the query

(ALL x (Male x)
(Champion x)
(Older x Rosewall) )

has the answer (in the world of our example)

(Drobny)

since the substitution x = Drobny is the only one which satisfies
the given constraint, while the query

(ALL z (Female z)(Older z Drobny))

has the empty list

()
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as its answer since there are no substitutions which satisfy the
constraint

( (Female z) (Older z Drobny) )

2.5 SPECIFYING A WORLD BY ASSERTIONS

It is not expected that one should have to specify a world by
explicitly listing, as in FIGURE 3, all of its predications
(although this would in principle be possible for a finite
world). A world is specified indirectly, by giving a collection
of assertions. An assertion has two parts: a conclusion, which
is a predication, and a hypothesis, which is a list of
predications. The hypothesis of an assertion can be the empty
list, in which case the assertion is said to be an unconditional
assertion, whereas an assertion whose hypothesis is nonempty is
said to be a conditional assertion. An unconditional assertion
whose conclusion is B is written

B <-

while a conditional assertion with conclusion B and hypothesis
(Al ... An) is written

B <- Al ... An

A collection of assertions is called a knowledge base . Any such
collection determines a world.

An unconditional ground assertion B <- intuitively says that B
is one of the facts in the world being described - "B is true" .
A conditional ground assertion B <- Al ... An says that B is one
of the facts in the world being described provided that Al, ..
An all are - "if Al and ... and An are true then B is true"
An assertion pattern - an assertion containing one or more
variables - has the same descriptive effect as would the set of
all its ground instances. In general this means that an
assertion pattern is in effect a universally quantified
statement. If its variables are xl, ... , xk (say) then the
assertion B <- Al ... An can be read

"for all xl, ... , xk: if Al and ... and An then B"

Indeed, if some of the variables among the xi (say, z1, ... , zp)
do not occur in the conclusion A while the rest (say, yl, ... ,

yt) do, the assertion B <- Al ... An may be more intuitively
(but equivalently) read
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"for all yl, ... , yt:
if there exist z1, ..., zp such that Al and ... and An
then B"

In the example of FIGURE 1 there are three such assertion
patterns. All the other assertions in FIGURE 1 are unconditional
ground assertions. FIGURE 4 shows the knowledge base of FIGURE 1
written in the formal notation.

1 (Champion Drobny) <-
2 (Older Drobny Rosewall) <-
3 (Older Rosewall Goolagong) <-
4 (Older x z) <- (Older x y)(Older y z)
5 (Older x y) <- (Before x y)
6 (Child Kelly Goolagong) <-

(Before y x) <- (Child x y)
8 (Female Goolagong) <-
9 (Male Drobny) <-
10 (Male Rosewall) <-
11 (Champion Rosewall) <-
12 (Champion Goolagong) <-
13 (Champion Connors) <-
14 (Champion Borg) <-
15 (Male Connors) <-
16 (Male Borg) <-
17 (Before Borg Connors) <-
18 (Before Connors Kelly) <-
19 (Female Kelly) <-
20 (Champion Evert) <-
21 (Female Evert) <-
22 (Before Evert Connors) <-

FIGURE 4

The knowledge base of FIGURE 4 completely determines the world of
FIGURE 3, according to the following general definition.
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DEFINITION

The world determined by a knowledge base D is
the smallest set W of ground predications which
satisfies the two conditions:

(1) if D contains the unconditional ground
assertion G <- , then G is in W

(2) if G is a ground instance of an assertion
in D and the predications in the
hypothesis of G are all in W, then
the conclusion of G is in W.

END OF DEFINITION

In effect, this definition describes a process which infers W
from D by a series of wholesale inference steps. First, by (1),
the process constructs outright the set WO, which contains just
those ground predications which are conclusions of unconditional
assertions in D. Then by (2), in general, having constructed the
set Wn, this process constructs Wn+1 by adding to Wn the
co,?lusion of every ground instance G of every conditional
assertion in D, provided that every predic.ation in the hypothesis
of G i3 in Wn. Thus the process constructs a series of bigger
and bigger worlds

WO, WI, ... , Wn,

which either ends (with a world that is the same as its
predecessor) or else continues indefinitely. The world W is then
the "limit" of this series, i.e., the union of all of the sets in
it i.e. the smallest set which includes them all. Thus the
world W is determined by a knowledge base D through a "bottom up"
process of reasoning.

Given such a D, we wish to be able to answer queries about its
world W. In doing so we wish to avoid the brute force method of
generating W bottom up and searching it. It is much better,
given a query about W, to reason "top down" about W's contents
without a'ctually constructing W. This turns out to be possible
through the use of unification, built into a special inference
principle called LUSH resolution. This inference principle can
5e applied very efficiently through the use of implicit
expressions, as we shii now see.
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2.6 IMPLICIT CONSTRAINTS AND THEIR SOLUTIONS

By an implicit constraint we mean a pair (Q E) in which E is an
environment and Q is a list of predications. The expression Q{E}
is the corresponding explicit constraint . Now let D be a
knowledge base and let W be the world described by D. We denote
by (SOL Q E D) the set of extensions A of E for which the
predications in Q{A} are all true in W . We wish to calculate
(SOL Q E D) from (Q E) and D . There are two cases to consider.
The first case is when Q is empty. Then (SOL Q E D) is simply
the set whose only member is E . Such a (Q E) is said to be
solved.

The second case is when (Q E) is unsolved, i.e., when Q is
nonempty. For this case we use LUSH resolution to represent the
desired set as the union of one or more simpler sets.

2.7 LUSH RESOLUTION

For any unsolved constraint (Q E), any knowledge base D, and any
positive integer K not greater than the length of Q, the set

(RES Q E D K)

is a set (possibly empty) of implicit constraints called the
(D K)-resolvents of (Q E). The interest of this set lies in the
fact that we have:

(SOL Q E D) = (SOL Qi El D) U ... U (SOL Qn En D)

where (QI El), ... , (Qn En) are the (D K)-resolvents (if any) of
(Q E). This equation holds for all the admissible values of K
(however, the (D K)-resolvents will in general be different, for
each value). In particular for some choices of K it may be that
there are no (D K)-resolvents of (Q E). This then means that
(SOL Q E D) is the empty set, although other choices of K may
delay the discovery of this by providing one or more
(D K)-resolvents of (Q E).

2.8 THE CHOICE OF K.

The computation of the set (RES Q E D K) involves a choice of the
number K. Accordingly we introduce a choice function SEL. For
each unsolved implicit query (Q E) and knowledge base D the
number (SEL Q E D) is a positive integer no larger than the
length of Q. (In the LOGIC system as currently implemented in
LOGLISP, we take (SEL Q E D) 1 1 throughout).

In general SEL might be expected to take into account the
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evidence available in Q, E and D so as to make an informed choice
with desirable pragmatic effects on the overall computation.

2.9 SPLITTING NONEMPTY LISTS

The purpose of the number K is to determine a decomposition of
the list Q of the form: Q = L*(A)*P where A is the Kth
component of Q.

In general we say that, for any list X and any positive integer K
no larger than (LENGTH X), the K-decomposition of X is the triple
(L A R) such that A is the Kth component of X and X* :L*(A)*R.

Thus when K = 1 we have L = 0, A = hX, R = tX.

2.10 SEPARATION OF VARIABLES.

The computation of (RES Q E D K) involves a further choice,
namely of a variant D' of the knowledge base D. D' must have the
property that none of its assertions contains a variable which
occurs in (Q E) . This "standardizing apart" of the variables in
the constraint from those in the assertions is necessary for the
theoretical completeness of the resolution transformation. In
the current implementation D' is selected automatically and
represented implicitly and economically by techniques explained
in Chapter 13.

2.11 DEFINITION OF (RES Q E D K).

The set (RES Q E D K) is the set of all

implicit constraints of the form

( L*B*R (UNIFY A H E) )

for which H <- B is an assertion in D' whose
conclusion H unifies with A in E, and where
(L A R) is the K-decomposition of Q.

2.12 THE DEDUCTION CYCLE

The heart of the LOGIC system is the basic deduction cycle, which
computes the set (SOL Q E D) for a given implicit constraint
(Q E) and a given knowledge base D.
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The computation of (SOL Q E D) consists of the development of two
sets of implicit constraints, SOLVED and WAITING. Initially,
SOLVED is empty and WAITING contains the single constraint (Q E).
These two sets are then subjected to an iterative transformation
which corresponds intuitively to the construction of a "deduction
tree" whose nodes are implicit constraints. The root of this
tree is the implicit constraint (Q E). The successors (if any)
of an unsolved node (X Y) are the (D K)-resolvents of (X Y), for
some admissible value of K which is selected by the function SEL.
The tips of the deduction tree are the solved nodes (if any) and
the unsolved nodes (if any) which have no (D K)-resolvents for
the particular value of K assigned to them by the function SEL.
The output of the deduction cycle is the set of environment parts
of the solved nodes of the tree.

As the tree develops, the solved nodes are collected into the set
SOLVED, and the nodes which have not yet been processed are kept
in the set WAITING. Thus the tree construction is finished when
WAITING finally becomes empty.

The deduction cycle is the following three-step algorithm:

IN: let SOLVED be the empty set and

let WAITING be the set containing only (Q E)

RUN: while WAITING is nonempty

do 1 remove some constraint C from WAITING
and let (X Y) be C

2 if (X Y) is solved
then add (X Y) to SOLVED
else add the (D K)-resolvents of (X Y) to WAITING

where K = (SEL X Y D)

OUT: return the set of environment parts of SOLVED

In general (SOL Q E D) is computed by executing the deduction
cycle and taking its output as the required set.

Several points are worth noting about the deduction cycle.
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2.12.1 Failure Nodes: Immediate And Ultimate.

An unsolved node of the deduction tree which has no solved nodes
as descendants is known as a "failure". There are two kinds of
failure. An immediate failure has no descendants at all -
because it has no (D K)-resolvents for the particular value of K
selected for it by SEL. An ultimate failure has one or more
successors, but they too are failures - the entire subtree rooted
in an ultimate failure consists of nothing but failures, and its
tips are all immediate failures. It is an interesting problem to
design implementations of the deduction cycle in which the
subtrees rooted in ultimate failures are kept as small as
possible without undue extra computation. Ideally, all failures
would be immediate and would be recognised as such in constant
(and short) time.

2. 12.2 Nondeterminacy Of Deduction Cycle.

There are several sources of nondeterminacy in the RUN step of
the deduction cycle.

The most obvious of these are the explicit choices called for in
steps 1 and 2. In both cases, the choice can be made uniformly
and cheaply according to default criteria which are built into
the system design. For example, in our own system the default
criterion for the choice of K is to choose always the value
K = 1. In the PROLOG systems, the selection in step 1 is in
effect ruled by a similar criterion - the first constraint (X Y)
is selected from a WAITING which is represented in effect as a
list. (We have to say "in effect" because in fact the PROLOG
systems handle WAITING dynamically in a backtrack mode of working
which neve-r explicitly realises the whole list at once.]

The selection of the node C in step 1 can (as in the PROLOG
systems) be made according to the "depth first" criterion in
whicih the younger members of WAITING are chosen before the older
members. This may sometimes lead to the "depth first runaway"
situation in which one or more nodes in WAITING are never
selected because they are never the youngest. In practice other
considerations (see the discussion below of the Deduction Window)
preclude an infinite depth first runaway, but even the finite
versions of it which are allowed by the Deduction Window may be
thought undesirable. Avoidance of depth first runaway can be
economically achieved by letting the selection in step 1 depend
upon a quantity which can be computed once for all for each node
when it is first generated. This quantity is the "solution cost"
of the node.
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2.12.3 Definition Of Solution Cost

The solution cost of a node (X Y) is simply a heuristic estimate
of the "cost" (in arbitrary units) of obtaining a solved
descendent of (X Y). Ordinarily we estimate this cost as the sum
of (LENGTH X) and the depth of (X Y), which is number of nodes
preceding (X Y) on its branch of the deduction tree. The user
may select any linear combination of these two quantities as the
cost estimate (see chapter 8). The selected node C in step 1 is
then always one whose solution cost is least. This method
coincides with a breadth first development of the tree in the
case when the solution cost of a node is taken to be its depth in
the deduction tree.

We have also provided a "PROLOG" mode of operation in which the
search is strictly depth first. (This mode does not incorporate
any other special features of PROLOG.) Details concerning mode
selection are also given in chapter 8.

2.12.4 Which Predication To Resolve Away? The Function SEL.

The selection of the value of K in step 2 may well affect the
total cost of computing the set of solved descendents of the
selected node (X Y) - including the particular case when this set
is empty and (X Y) is therefore a failure. However, the
potential benefit of lowering this cost is offset by the expense
of making the choice. The least costly selection criterion is
that used by the PROLOG systems (and by our own system as its
default criterion), namely, K = 1. We have not provided the
normal user with any means of overriding the default value for K.
The present discussion is intended to highlight an opportunity
for the system designer to add a further layer of sophistication
to the deduction cycle by making the choice of "which predication
to resolve away" depend upon particular features of (X Y), rather
than making it independent of all such features.

2.13 THE DEDUCTION WINDOW.

Since in general the deduction tree can be infinite, it is
necessary in some cases to truncate the deduction cycle and
accept the resulting (perhaps incomplete) set of solutions as an
approximation to the full set (which may be infinite).

It is desirable to manage this truncation gracefully and to
provide the LOGIC user with some control over its details. This
is the reason for the deduction window.

The Deduction Window is a collection of parameters which can be
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set in various ways by the user and which have default values
which are used in the absence of user-provided alternatives.

Each parameter in the Deduction Window is used as an upper bound
on an associated quantity measuring some feature of the deduction
cycle. These quantities are TREESIZE, NODESIZE, ASSERTIONS,
RULES and DATA.

At a given moment in the execution of the deduction cycle
TREESIZE is the total number of nodes which have so far been
generated. The RUN loop is terminated as soon as TREESIZE
exceeds the bound set for it in the deduction window.

The implicit constraint (X Y) selected in step 1 of the body of
the RUN loop is treated as an immediate failure (hence dropped
from WAITING without progeny) if NODESIZE(X Y), ASSERTIONS(X Y),
RULES(X Y) and DATA(X Y) are not all within the bounds specified
for them in the deduction window.

NODESIZE(X Y) is (LENGTH X), the number of predications in the
constraint list X of (X Y).

ASSERTIONS(X Y) is the number of nodes which precede (X Y) on the
branch of the deduction tree of which it is the current tip.
This number is the same as the number of assertions invoked in
its deduction. It is 0 for the initial node, and is 1 greater
than that of its predecessor for each derived node.

RULES(X Y) is a quantity similar to ASS:RTIONS(X Y), hut reflects
the classification of assertions into rules and data.

An assertion which contains no variables is a datum - it records
a single fact. An assertion containing one or more variables is
a rule.

RULES(X Y) is then the number of times a rule was invoked in its
deduction, and

DATA(X Y) is the number of times a datum was invoked in its
deduction. We obviously have, for each (X Y) in WAITING, that:

DATA(X Y) + RULES(X Y) : ASSERTIONS(X Y)

Thus the Deduction"'Window serves as a truncation device which
ensures that each particular execution of the deduction cycle
will terminate. It pro.v ides the user with both a global
(TREESIZE) and a local '(NODESIZE, ASSERTIONS, RULES and DATA)
cutoff control. All the bounds in the deduction window are set
to system-defined default values in the absence of user-defined
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alternatives.

2.14 RECORDING DEDUCTIVE HISTORIES FOR LATER EXPLANATIONS.

The system can be asked to explain the logical genesis of some or
all of the members of SOLVED. The deduction cycle so far
described does not preserve the information which is needed to
provide such explanations. At the option of the user, the
deduction cycle can be modified to include provision for keeping
a record of the "history" of each solved node. Such a history is
essentially the branch of the deduction tree whose tip is that
solved node. However, each node in the branch (after the first)
must be labelled with the assertion which was invoked in deducingit from its predecessor node. A request to explain a given

solved node can then easily be met by constructing from its
history a text of the sort illustrated earlier in FIGURE 2.

The extra time and space needed to operate the deduction cycle in
the historical mode are not so small as to be negligible. The
user therefore will probably decide to switch the deduction cycle
into this mode only when the availability of explanations is
worth the cost.

tA
2 1
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CHAPTER 3

LOGIC PROGRAMMING IN LISP

LOGIC is related to LISP in two different ways.

First, it is implemented in LISP - that is, the LOGIC system
consists of a collection of LISP functions which live in a LISP
workspace and provide all the logic programming facilities
described in this manual.

Second, LOGIC in a certain sense contains LISP. This means that
the LOGIC. programmer can invoke LISP from within LOGIC calls, by
incorporating in assertions and queries pieces of text which can
be handed over to LISP for processing. To understand how this
works we need to discuss the notion of LISP-simplification.

3.1 LISP-SIMPLIFICATION OF LOGIC EXPRESSIONS.

The expressions encountered by the LOGIC processor during the
deduction cycle are terms and predications arising ultimately
from the input constraint list and from the assertions used in
constructing resolvents. However, some of these LOGIC
expressions may also admit an interpretation as LISP programming
constructs. In that case they may have a LISP value, or if not
they may be capable of some simplification.

For example, the expression

(+ 3 (* 5 4))

is both a LOGIC term and a LISP construct. (We allow short names
+, -, * and % for the LISP functions PLUS , DIFFERENCE, TIMES and
QUOTIENT.) In the latter role, it is equivalent to, and can be
replaced by, its "value", namely the numeral

23

within any normal expression A to produce an expression which has
the same meaning as A. Such replacements of expressions by
others which are their values are basic equivalence-preserving
transformations of ordinary computation as normally conceived.
The presence of free variables does not invalidate this idea.
Thus even though "a" has no LISP value the LISP construct
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(+ a (0 5 4))

can be simplified; it is LISP-equivalent to and can be replaced
by the simpler expression

(+ a 20)

even though the latter is not its "value" as in the first case.
In general, an expression may well "reduce" to another expression
even when it will not, in the usual sense, "evaluate" to a
"value".

We refer to this process of replacing a LOGIC expression by one
which is LISP-equivalent to it as "LISP-simplification" It can
be done to any expression at any time and is always defined (but
may be merely the identity transformation).

3.2 LISP DEFINITIONS.

Certain reduction rules are built into LISP itself and come with
the system whenever one sets up a LISP workspace. That is,
certain identifiers are defined as denoting built-in LISP
functions (CAR, CDR, PLUS, etc.) or as the keywords of built-in
special forms (COND, SETQ, PROGN, etc.).

In addition to these built-in LISP definitions, a LISP workspace
may contain further definitions made by the user. A collection
of such user-coined LISP definitions indeed constitutes a LISP
program.

3.3 REDUCTIONS, VALUES AND SIMPLIFICATIONS.

The joint effect of the system- and user-imposed definitions in a
LISP workspace is to determine a notion of "reduction".

Each LISP construct is either reducible or irreducible. If A is
reducible, then there is another LISP construct called the
reduction of A, to which A is LISP-equivalent and by which it may
be replaced.

Accordingly we say that the simplification of an irreducible LISP
construct A is A itself, while the simplification of a reducible
construct A is the reduction of A. Thus simplification is always
defined. It often coincides with evaluation - that is, the value
of A and the simplification of A are often identical. But this
is not always the case and the matter requires some care.

For example, the expression
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(QUOTE (This is an S-expression))

is evaluable and has as its value the expression

(This is an S-expression)

but it is irreducible and hence is its own simplification.

The expression

(* (+ 3 4) (3 5 x))

has no value (since its second argument expression contains an
occurrence of a variable) but simplifies to the expression

(* 7 (3 5 x))

In general if a LISP construct A has an atomic value V which is a
numeral or a truth value or a constant identifier, its
simplification is also V. However, if V is not atomic, or is a
variable, the simplification of A is the expression (QUOTE V),
rather than the expression V. This is at first a somewhat
surprising feature of the simplification notion. A little
reflection soon shows its naturalness.

The intuitive notion of simplification is that it always yields
an expression which cannot be further simplified - which is
irreducible. Moreover, an expression A must be LISP-equivalent
to the simplification of A - and this means that if A has the
value V so must the simplification of A. These two
considerations together require that the simplification of A be
(QUOTE V) - the value of which is V - whenever the expression V
might itself be evaluable and have a value W distinct from V.
Only when V is a constant is W necessarily identical with V.

3.4 REDUCTION AND EVALUATION

Generally speaking, we consider that the "applicative" expression
e = (f el ... eN) is evaluable if f is the name of a function
(defined in LISP) and el, ..., en are themselves evaluable. In
this case we also say that e is redi.cible and that the reduction
of e is the value of e, quoted when iiecessary as explained above.
The latter is obtained by applying f to the values of the
argument expressions.

The reduction of an arbitrary applicative expression, in general,
is obtained by replacing occurrences of its outermost reducible
subexpressions by occurrences of their reductions.
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We proceed now to precise definitions of the notions of
evaluability, reducibility, and reduction. We shall speak of the
expressions in question as though they were explicitly
represented. In fact, in the LOGLISP system we compute the
reduction of an expression directly from its implicit
representation, as economically as we can. The resulting
reduction is also represented implicitly, with the same
environment component.

3.4.1 Evaluable Expressions.

Excepting certain special forms which are discussed below, we say
that the expression e z (f el ... eN) is evaluable if

(1) f is an identifier with property EXPR, SUBR, LSUBR or
MACRO and el, ... , eN are evaluable, in which case the
value of e is obtained by applying f to the values of
el, ... , eN.

(2) f is an identifier with property FEXPR or FSUBR, in which
case the value of e is the result of applying f to the
expression list (el ... eN). (This is just the standard
notion of "application" for FEXPR's and FSUBR's.)

An atom which is not a variable is evaluable and its value is
itself. Variables are not evaluable.

3.4.2 Reducible Expressions

Again excepting certain special forms, an applicative expression
e = (f el ... eN) is reducible if

(a) e is evaluable as above, in which case the reduction of e
is the value of e, v, if v is an atom which is not a
(logic) variable, otherwise (QUOTE v)

or e is not evaluable, but

(b) f is a proper name and one or more of the expressions
el, ... , eN is reducible, in which case the reduction of e
is (f el' ... eN'), where ei' denotes the simplification
of ei.

Note that atoms, whether variables or not, are irreducible. Note
further that expressions (f el ... eN) in which f is a variable,
a number, or, indeed, anything except a proper name, are neither
evaluable nor reducible. This convention may be justified
intuitively on the ground that one doesn't know what to do in

t
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such a case. We could, in fact, extend the definitions to allow
f to be a lambda expression, say, but have chosen not to do so
for the present. Such an extension would complicate matters
significantly with no great advantage in flexibility.

3.5 SPECIAL FORMS.

In addition to the expressions just considered there are a number
of special forms which are evaluable or reducible or both. Most
of these are special forms of LISP.

Since the syntax of special forms is the same as that of
applicative forms whose function designator is atomic, LISP users
often slur over the distinction. It is, however, most important
to remember that the LISP value of a special form is NOT obtained
by "applying the function denoted by its head to the object
denoted by its tail" - that being how the LISP value of an
APPLICATIVE form is obtained.

There is a special process set up for obtaining the LISP value of
each special form, to which a LISP interpreter switches on
recognizing the keyword (COND, SETQ, PROGN, QUOTE, etc.) of that
special form.

This little homily would not be necessary if the syntax of
applicative forms were designed in the same way, and applicative
forms were tagged as such by a keyword, say, APP. The high
frequency of applicative forms in programs would make such a
convention burdensome. No one wants to have to write

(APP + (APP * 3 4)(APP SIN 30))

instead of

(+ (* 3 4)(SIN 30))

3.5.1 Quotations.

(QUOTE v) or (FUNCTION v)

These forms are always evaluable and never reducible. The value
of either form is v.
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3.5.2 Listings.

(LIST el ... eN)

LIST is treated as though it were an ordinary function (an LSUBR,
say) despite the fact that UCI LISP implements LIST by means of
an FSUBR. This is just what one would naively expect.

3.5.3 Conjunctions.

(AND el ... eN)

(AND) is evaluable and reducible with value (and reduction) T.
(AND e) is reducible and its value and reduction are the value
and reduction, respectively, of e. If el is evaluable and its
value is NIL then (AND el ... eN) is evaluable and reducible and
its value and reduction are NIL. If el is evaluable with a
non-NIL value .then the evaluability, reducibility, value, and
reduction of (AND el ... eN) are those of (AND e2 ... eN). If el

is not evaluable then (AND el ... eN) is reducible just in case
el is reducible, and the reduction of it is (AND el' e2 ... en),
el' being the reduction of el. All of this corresponds to LISP
usage, the conjuncts being evaluated in order and only as far as
necessary to determine the result.

3.5.4 Disjunctions.

4, (OR el ... eN)

(OR) is evaluable and reducible with value (and reduction) NIL.
(OR e) is reducible and its value and reduction are the value and
reduction, respectively, of e. If el is evaluable and its value
is non-NIL then (OR el ... eN) is evaluable and reducible and its
value and reduction are the atom T. If el is evaluable with

value NIL then the evaluability, reducibility, value, and
reduction of (OR el ... eN) are those of (OR e2 ... eN). If el

is not evaluable then (OR el ... eN) is reducible just in case el
is reducible, and the reduction of it is (OR el' e2 ... en), el'
being the reduction of el. All of this corresponds to LISP

usage, the disjuncts being evaluated in order and only as far as
necessary to determine the result.
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3.5.5 Conditionals.

(COND ql ... qN)

(COND) is evaluable and reducible and its value and reduction are
NIL. If ql is (eO ... eM) then (COND ql ... qN) is reducible
(and possibly evaluable) just in case eO is reducible or
evaluable. If eO is reducible but not evaluable then (COND
ql ... qN) is reducible with reduction (COND (ceO' ... eM) ... qN)
and is not evaluable. If eO is evaluable with non-NIL value v,
then (COND ql ... qN) is reducible and its evaluability,
reduction and value are those of (PROGN (QUOTE v) el ... eM). If
eO is evaluable with value NIL then the evaluability, reduction,
and value of (COND ql ... qN) are those of (COND q2... qN). All
of this conforms to customary LISP practice, since PROGN mimics
the sequential evaluation of the expressions in a conditional
'farm".

3.5.6 Sequential Compositions.

(PROGN el ... eN)

(PPOGN) is evaluable and reducible with value and reduction T.
(PROGN e) is reducible and its evaluability, reduction, and value
are those of e. If el is reducible but not evaluable then
(PROGN el ... eN) is reducible with reduction
(PROGN el' e2 ... eN), el' being the reduction of el. If el is
evaluable then (PROGN el ... eN) is reducible and its
evaluability, reduction, and value are those of
(PROGN e2 ... eN).

(PROGI el .... eN)

(PROGI) is evaluable and reducible with value and reduction T.
(PROGI e) is reducible and its evaluability, reduction, and value
are those of e. If el is reducible but not evaluable then
(PROGI el ... eN) is reducible with reduction
(PROGI el' e2 ... eN), el' being the reduction of el. If el is
evaluable with value v then (PROGI el ... eN) is reducible and
its evaluability, reduction, and value are those of
(PROGN e2 ... eN (QUOTE v)).

(PROG loc sl ... sN)

PROGs are neither evaluable nor reducible. There is no
reasonable way to carry out a reduction of a PROG analogous to
the reduction of PROGi or PROGN expressions, and the necessity of
assignment to the local identifiers of the PROG would lead to
limited utility of such a construct, even if we were to define
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some notion of reducibility for PROGs. PROG may, of course, be
used freely in the definitions of functions invoked from LOGIC.

3.5.7 Assignments.

(SETQ ident e)

If e is evaluable with value v and ident is a constant identifier
then (SETQ ident e) is evaluable with value v, and assigns v to
ident. Otherwise (SETQ ident e) is reducible just in case e is
reducible and its reduction is (SETQ ident e'), where e' is the
reduction of e.

Note that assignment should be used with extreme caution in
LOGIC, since the order in which assignments are performed is
determined in part by the heuristic search methods, and thus is
not readily predictable. Observe too that in order to obtain the
LISP value of an identifier I one must write (EVAL I), not just
I.

3.5.8 Selections.

(SELECTQ e (ql ell ... elkl) ... (qN eNl ... eNkN) u)

The evaluation and reduction of the SELECTQ are basically the
same as the evaluation and reduction of

(COND ((EQ e ql) ell ... elkl)

((EQ e qN) eN1 ... eNkN)
(T u))

except that reductions are expressed with SELECTQ and e is
evaluated just once at the beginning. If one of the selection
keys qi is a list (ii ... im) then the corresponding COND
predicate is

(MEMQ e (LIST ii ... im))
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3.6 LOGLISP SPECIAL FORMS.

The remaining special forms do not correspond to anything in
conventinnal LISP. They provide means by which the LOGIC
programmer may control the interaction between LOGIC and LISP in
order to deal with various unusual circumstances.

(LOGIC e)

Intuitively, the LOGIC form specifies that the result of
evaluation is to be regarded as a logic expression rather than as
an object, the effect most often being to suppress the normal
quoting of non-atomic values.

More precisely, if e is evaluable with value v then (LOGIC e) is
reducible, (LOGIC e) is evaluable according as v is evaluable,
and the reduction and value of (LOGIC e) are the reduction and
value of v. If e is not evaluable, (LOGIC e) is reducible
according as e is reducible and the reduction of (LOGIC e) is
(LOGIC e'), where e' is the reduction of e. Put differently,
when e is evaluable, we reduce or evaluate (LOGIC e) by treating
the value of e, v, as a logic expression and reducing or
evaluating v. In practice it usually happens that v is neither
evaluable nor reducible, in which case (LOGIC e) reduces to v.

(LISP e)

The form (LISP e) indicates that e is itself to be treated as the
value of (LISP e). More precisely, (LISP e) is never reducible;
it is always evaluable and its value is e.

(GROUND e)

The form (GROUND e) is similar to (LISP e), but is evaluable only
if no variables occur in e. More precisely, (GROUND e) is never
reducible; it is evaluable if no variable occurs in e, in which
case its value is e.

(LOGIC-GR e)

(LOGIC-GR e) is precisely equivalent to (LOGIC (GROUND e)). It
follows that if any variable occurs in e then (LOGIC-GR e) is
neither evaluable not reducible. If no variable occurs in e then
(LOGIC-GR e) is reducible and its evaluability, reduction, and
value are those of e. We shall illustrate a few applications for
these forms. First, consider

(LOGIC (SUBST (GROUND x) (GROUND y) (GROUND z)))
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which, as it stands, is neither evaluable nor reducible. Suppose
now we instantiate to obtain

(LOGIC (SUBST (GROUND (+ (VAR A) 3))
(GROUND (VAR Q))
(GROUND (<= (VAR Q) 10))))

where VAR is not the name of a LISP function. Since no variables
occur in the inner expressions these are evaluable, the
expression (SUBST ... ) is evaluable, hence the whole reduces to

(<= (+ (VAR A) 3) 10)

The abbreviation LOGIC-GR is sometimes useful in connection with
FEXPR's. If f is the name of a FEXPR or FSUBR then
(LOGIC-GR (f el ... en)) is evaluable and reducible just in case
no variable occurs in any of the e's, in which case the value and
reduction of (LOGIC-GR (f el ... eN)) are the value and reduction
of (f el ... eN). This treatment of FEXPR's is sometimes a
useful alternative to the customary procedure described earlier.

3.7 SIMPLIFYING IMPLICIT CONSTRAINTS. THE FUNCTION SIMPLER.

If C = (Q E) is an implicit constraint and D is a knowledge base,
then (SIMPLER C D) is the implicit constraint which results from
simplifying one or more of the predications in C and dropping
them if they simplify to "true". Specifically, (SIMPLER C D) is
the result of the following three-step algorithm:

1 let (Q E) = C

2 while Q is nonempty

and the simplification of A{E}
is evaluable and not NIL

where (L A R) is the (SEL Q E D)-decomposition of Q

do replace Q by L*R

3 return (Q E)
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3.8 THE EXTENDED DEDUCTION CYCLE.

In the actual LOGIC cycle of our LOGLISP system we include a step
of LISP-simplification in step 1 of the RUN loop. The full
description of the loop is then:

RUN: while WAITING is nonempty

do 1 remove some C from WAITING
and let (X Y) be (SIMPLER C D)

2 if (X Y) is solved
then add (X Y) to SOLVED
else add the (D K)-resolvents of (X Y) to WAITING
where K = (SEL X Y D)

Note that the K selected in step 2 will be the same as that
selected in the final iteration of SIMPLER. (Indeed, in LOGLISP
this is obviously so since K 1 1 uniformly; but it is true for
every SEL function).

This means that the predication resolved away is the one which
was just processed by SIMPLER and that it is therefore a
LISP-irreducible expression. In particular it may be the
expression NIL (i.e. the LISP representation of FALSE). In this
case, there will be no resolvents forthcoming and (X Y) will
therefore be a failure.

3.9 UNIFICATION IN LOGLISP

There are a few points worth noting about the LOGLISP
implementation of unification.

First of all, there is no check performed to see if a unification
has created any cycles. Such a check would, if routinely made,
be time-consuming. It appears that in normal LOGIC programming
the check is unnecessary. Since unification is confined to the
cases where the input expressions do not have variables in
common, cycles can arise only if assertions or queries are
formulated in certain abnormal ways.

The use of implicit representations throughout in any case makes
it possible to work with infinite (cyclic) expressions as though
they were finite (which in a suitable sense they are). It is
only when a sophisticated user wishes to exclude such expressions
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from the domain of discourse that their detection becomes
necessary.

Of course, any process (such as a naive recursive realization)
which seeks to traverse every path in such an expression will run
on indefinitely, and the user will want to avoid this situation.
In designing LOGLISP we have assumed that any user deliberately
creating such expressions will be sophisticated enough to use
LISP to protect himself without being lectured at by us. We have
further assumed that any user inadvertently creating such
expressions will prefer to take the error messages or other
indications of his mistake which LISP will provide - in place of
the expensive LOGLISP overhead which would be needed to protect
him from them.

3.9.1 Atoms

Two atoms, say al and a2, neither of them variables, are
considered to be unifiable iff (EQUAL al a2) or both are strings
and have the same characters. Thus the condition for
unifiability can be expressed as

(OR (EQUAL al a2)
(AND (STRINGP al) (STRINGP a2)

(EQUAL (EXPLODE al) (EXPLODE a2))))

This produces just the effect one wants, but note that distinct
identifiers with the same PNAME are not unifiable (it cannot be
the case that both are INTERNed). The integer 1 unifies with the
floating-point number 1.0, on the other hand, and distinct
occurrences of the same floating-point value are unifiable.

3.9.2 Special Forms

Expressions in QUOTE and FUNCTION are treated specially.
(QUOTE el) unifies with (QUOTE e2) iff
(EQUAL (QUOTE el) (QUOTE e2)), and similarly for (FUNCTION fl)
with (FUNCTION f2). In addition, expressions of the form
(CONS el e2) may unify with expressions (QUOTE (a . d)). In
attempting to unify two such expressions any logic variables
appearing in (a . d) will be treated as constants. Let us denote
by q[e] the expression e if e is an atomic constant, and
(QUOTE e) otherwise. The unifier proceeds by attempting to unify
el with q[a], then, if successful, unifying e2 with q[d].
Variables in el and e2 will be bound to subexpressions of a and
d, QUOTEd when appropriate. Some examples will make things
clear. The expression
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(CONS x y)

unifies with

(QUOTE (A B C))

with mgu x = A, y (QUOTE (B C)). To take a more complicated
case,

(CONS (CONS F x) (CONS u v))

unifies with

(QUOTE ((F (A B)) C D))
with mgu

x = (QUOTE ((A B))), u = C, v = (QUOTE (D))

Expressions in QUOTE and FUNCTION are not otherwise unifiable.
It should be remarked that an expression like (F A QUOTE (B))
does not contain an expression in QUOTE, merely an occurrence of
the constant QUOTE.

3.9.3 Variables As Tails

Ordinarily, an expression is either an atom or a list, but one
may, in fact, introduce expressions which are composite but not
lists. The only useful expressions of this class are those for
which repeated CDR's eventually yield a variable, an example
being (P (F x) . y). We remark that the definitions of
unification and resolution given in chapters 1 and 2 do not
actually require that non-atomic expressions be lists. In a
sense, there is really nothing special about a composite
expression which is nOt a list, but such expressions are
sufficiently unusual that a bit more discussion may be in order.
Expressions of this sort are particularly useful in dealing with
operators which take a variable number of arguments. To
illustrate, the expression

(+ x . y)

unifies with

(+ u 7)

with mgu

x : u, y (7)
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and also unifies with

(+ (F u 3) 7 (G A B))

with mgu

x : (F u 3), y =(7 (G A B))

Thus a simple, but still rather flexible, rule for solving
equations involving sums may be asserted by

(I- (= (+ x y) z) <- (= x (- z (+ y))))

3.10 REDUCTION OF EXPRESSIONS ENDING IN VARIABLES.

The reduction of an expression (f el ... eN . v) will now be
explained. Such an expression is evaluable if and only if f is
the name of a FEXPR or FSUBR, in which case the value is the
result of applying f to (el ... en . v), an argument "list" with
which few FEXPRs are prepared to cope. If f is a proper name,
ut not the name of a FEXPR or FSUBR, then the expression is not

evaluable, but is reducible if any of el, ... , eN are reducible,
in which case the reduction is (f el' ... eN' . v).

The sequentially evaluated LISP forms, those formed with AND, OR,
COND, PROGN, PROGI and SELECTQ, may also involve variable tails.
Reduction proceeds as described before, stopping when a variable
tail is encountered. Such expressions may be evaluable if the
"evaluation path" avoids variable tails entirely.

3. 11 SPECIAL RULES FOR RESOLUTION.

The system "automatically" incorporates a number of special rules
applicable to certain predicate symbols. In most cases these
rules are just economical implementations of computations that
could be achieved with ordinary assertions, but the rule for
CONDitional expressions constitutes a fundamental extension of
the system, as it introduces a form of "negation as failure".
Application of any of the rules can be enabled or disabled at
will by the user.

3.11.1 The Rules.

Each of the rules is introduced by an informal, assertion-like
description, followed by discussion and, in some instances, a
nearly equivalent formulation with actual assertions.
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3. 11. 1. 1 Equations -

(= el e2) <- "el and e2 are unified"

The rule is just the reflexive law of equality, and amounts to

(I- (= x x))

This rule is not applicable to expressions of the form
(EQUAL el e2), even though = and EQUAL denote the same function
for purposes of simplification.

3.11.1.2 Conjunctions -

(AND pl ... pN) <- pl & ... & pN

Bearing in mind that (AND) simplifies to T, the rule for AND
amounts to

(I- (AND x . y) <- x & (AND . y))

3.11.1.3 Disjunctions -

(OR pl ... pN) <- pi, for i = 1 ... N

Again, bear in mind that (OR) simplifies to NIL. The rule for OR
is practically equivalent to

(:- (OR x . y) <- x)
( - (OR x . y) <- (OR . y))

except that resolvents for all of the disjuncts are obtained in
one step.

3.11.1.4 Conditionals -

(COND (pl q1) ... (pN qN)) <- pk & qk, for the first k such that
pk is provable

Let us refer to the constraint from which (COND ... ) was selected
for resolution as the "original constraint". The control
mechanism, in fact, begins by attempting to prove pl. If it
succeeds in doing so, it introduces a new resolvent consisting of
qk and the other predications of the original constraint in the
environment which proved pl. (Such a resolvent will eventually
be produced for each proof of pl, if the search continues so
long.) If all attempts to prove pl terminate in failure then
then control mechanism attempts to prove p2, and so on. All of
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these searches are carried out within the heuristic limitations
imposed on the problem at the beginning. These searches are,
moreover, carried out "in parallel" with searches for other
solutions to the initial problem, in accordance with the standard
heuristics, so that depth-first runaway will be avoided to the
extent possible.

The "arms" of the CONDitional expression need not have exactly
two expressions. An arm of the form (pk) is, for purposes of
resolution, equivalent to (pk T), while an arm of the form
(pk qkl ... qkm) is equivalent to (pk (PROGN qkl ... qkm)).

This treatment of conditionals depends on a feature of the system
not hitherto mentioned, namely the ability to associate a
"continuation" with a node. The continuation is itself just a
node of a somewhat special nature which is not itself available
for computing resolvents. We write a node C with continuation K
as "C Continuation: K". The resolvents of C Continuation: K are
exactly the nodes R Continuation: K such that R is a resolvent of
C.

Let (X Y) be a node whose resolvents are desired, let the
selected component of X be P, and suppose that P{Y} has the form
(COND (pl q1) ... (pN qN)). We obtain a "resolvent" which is

((pl)) Y) Continuation: ((#COND (ql) (p2 q2) ... ))*X' Y)

where X' consists of the unselected predications of X. Each
proof of pl generates a resolvent (NIL Z) with the same
continuation, from which we "pop up" the continuation to obtain a
resolvent ((ql)*X' Z). If and when all attempts to prove pl
fail, we pop up the continuation to obtain

((COND (p2 q2) ... (pN qN))*X' Y)

which is added to WAITING.

Continuations are not usually printed when explaining answers or
monitoring deductions, rather the fact that a node has a
continuation is indicated by printing "[CONTINUED]". Users can
instruct the system to print continuations in full by invoking
the command (CONTINUATIONS ON). (CONTINUATIONS OFF) returns the
system to the normal mode.
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3.11.2 Controlling The Special Resolution Rules.

All of the rules may be enabled or disabled by invoking functions
of the form (AUTOx "flag") where flag may be either ON or OFF.
The complete set of control functions for the resolutions is

(AUTO= "flag")
(AUTOAND "flag")
(AUTO-OR "flag")
(AUTOCOND "flag)

Each function returns its argument. T or NIL may be used instead
of ON or OFF. While these function behave like FEXPRs for atomic
arguments, they evaluate non-atomic arguments, so one could, for
example, type

*(AUTOAND (AUTO-OR OFF))

to disable both the AND rule and the OR rule. All of the rules
are enabled by system initialization, hence by RESTORE (see the
chapter on filing knowledge bases).

3.12 RESOLUTION WITH DATA PROCEDURES.

A procedure is said to be a data procedure if (and only if) the
heads of its assertions are all ground predications (predications
containing no variables). In practice such assertions are
invariably unconditional, hence data, in the sense in which we
earlier used the term. Data procedures often contain a great
many assertions, so that a straightforward approach to computing
resolvents from them would usually result in numerous futile
attempts at unification.

To avoid this source of inefficiency LOGLISP automatically
performs secondary indexing of data procedures. This indexing
deper.1s on the fact that if the predication P unifies with the
head H of a datum, and if the proper name C occurs in P, then C
must also occur in H. The secondary indexing enables the system
to retrieve promptly just those assertions in which C occurs, and
thus obtain all possible resolvents without an exhaustive
examination of the entire procedure.

Since the secondary indexing applies only to data procedures,
users concerned with efficiency will want to avoid mixing rules
with data in the same procedure, at least when the amount of data
is significant. This seems, however, to be a natural and
convenient way to organize knowledge bases.
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CHAPTER 4

CREATING KNOWLEDGE BASES

To create a knowledge base one begins with the empty knowledge
base and adds assertions to it one at a time as explained below.
Or one can extend an already existing knowledge base by
installing it in a LOGLISP workspace and adding more assertions
to it. The empty knowledge base is created by executing the
command

(START)

which discards any assertions already present and initializes the
LOGIC part of the workspace (without affecting the LISP
definitions, if any, which the user may have set.up).

4.1 ADDING AN ASSERTION TO THE KNOWLEDGE BASE.

The assertion command

([- B <- Al ... An)

causes the assertion

B <- Al ... An

to be added to the current knowledge base. The symbol !- is the
assertion symbol. (It is pronounced "assert").

The arrow may be omitted. We shall often omit it in the examples
in this manual.

4.1.1 Naming An Assertion.

An assertion may be given a user-coined name. This is most
conveniently done at the tire the assertion is added to the
knowledge base, using an extended assertion command. Execution
of the extended assertion command

U(- N B Al ... An)

adds the assertion B <- Al ... An to the current knowledge
base, as before, but also ascribes to it the name N. The
user-coined name N may be any identifier beginning with an
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upper-case letter. For example, the following four transactions:

*(!-(Born Herbrand 12 February 1908))

ASSERTED
*(!-(Died Herbrand 27 July 1931))

ASSERTED
*(!- TURINGI (Born Turing 23 June 1912))

ASSERTED
*(:- TURING2 (Died Turing 7 June 1954))

ASSERTED
*

add four assertions to the knowledge base, the first two of which
are anonymous, and the second two of which have been named
respectively TURINGI and TURING2. Note that each assertion
transaction is terminated by the message ASSERTED. If the
assertion is ill-formed the message returned will be
ERROR-Ignored, in which case the knowledge base is not altered by
the transaction.

The assertions making up a knowledge base are organized into
groups called procedures. All assertions in the knowledge base
whose conclusions have the same predicate P are grouped together
into a procedure which is called "the procedure P". It is
thought of, intuitively, as the portion of the knowledge base
which is relevant to establishing those facts in the world whose
predicate is P.

Assuming that the knowledge base was empty before the above four
assertions were added, the contents of the knowledge base now
consists of two procedures, each containing two assertions.

By invoking the PRINTFACTS command [see the following Chapter on
Displaying Knowledge Bases] the contents of the knowledge base
can be displayed, its clauses organised into procedures. Thus:
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*(PRINTFACTS)

FACTS-ASSERTED

(PROCEDURE Born)

(I- (Born Herbrand 12 February 1908))

(I- TURING1 (Born Turing 23 June 1912))

(PROCEDURE Died)

(I- (Died Herbrand 27 July 1931))

(:- TURING2 (Died Turing 7 June 1954))

END

4.2 THE FACTS MODE

A somewhat more convenient way of adding a succession of
assertions is provided by the FACTS mode. By executing the
command (FACTS) the user puts the system into the FACTS mode.
This is simply a wait-read-assert cycle which expects successive
assertions to be typed in. The prompt-message ASSERT: is
printed by the system to signify its readiness to receive the
next assertion. Thus the four assertions of our example could
have been added by means of the following excursion through the
FACTS mode:

& -4-3-L
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'(FACTS)

ASSERT: ((Born Herbrand 12 February 1908))

ASSERT: ((Died Herbrand 27 July 1931)

ASSERT: (TURINGI (Born Turing 23 June 1912))

ASSERT: (TURING2 (Died Turing 7 June 1954))

ASSERT:

DONE

Such a FACTS session is terminated by typing a semicolon in
response to the ASSERT: prompt. It should be noted that the
format in which an assertion B <- Al ... An is typed for input
to the FACTS mode is the list (B Al ... An) . The first item on
this list may be the optio-nal user-coined name, as illustrated
above. The list format enables the system to accept inputs which
are too large to fit all on one line. As in the standard LISP
convention, the system reads line after line of typed input until
a syntactically complete object has been formed. Thus in the
following FACTS transaction the three-component assertion
AGE-FORMULA is asserted on several lines, each of which after the
first is prompted by a colon:

*(FACTS)

ASSERT: (AGE-FORMULA
(Age person given-year a)
(Born person day month birth-year)
(= a (- given-year birth-year)))

ASSERT:;

DONE

The assertion AGE-FORMULA is now installed as the sole component
of a procedure Age which computes a person's age in a given
year by looking up the year in which that person was born and
subtracting it from the given year. The contents of the
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knowledge base may again be viewed by executing (PRINTFACTS)

*(PRINTFACTS)

FACTS-ASSERTED

(PROCEDURE Born)

- (Born Herbrand 12 February 1908))

(- TURINGI (Born Turing 23 June 1912))

(PROCEDURE Died)

(I- (Died Herbrand 27 July 1931))

(I- TURING2 (Died Turing 7 June 1954))

(PROCEDURE Age)

(- AGE-FORMULA (Age person given-year a)
<- (Born person day month birth-year)
& (= a (- given-year birth-year)))

END

The "<-" and "&" appearing in AGE-FORMULA are simply "syntactic
sugar" intended to assist the reader in perusing complex
assertions. These may also be typed in assertions given to 1- or
FACTS, but we usually don't bother to do so.

*An ill-formed assertion typed to FACTS will be ignored, and a

message will be typed to inform the user.

4.3 ADDING ASSERTIONS FROM LISP FUNCTIONS.

The assertion function I- is just a LISP FEXPR, and as such may
be invoked by any LISP function. LISP programmers will usually
find it more convenient, however, to use the SUBR-type function
ASSERTCLS of one argument, whose value should be a list as might

be typed to FACTS (or appear as the tail of an invocation of 1-).
If the assertion is well-formed it will be added to the knowledge
base and ASSERTCLS will return NIL. If the assertion is

ill-formed it is ignored and ASSERTCLS returns ERROR.
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CHAPTER 5

DISPLAYING KNOWLEDGE BASES

Various commands are provided for viewing the contents of a

knowledge base.

5.1 DISPLAYING THE ENTIRE CONTENTS OF A KNOWLEDGE BASE.

The command (PRINTFACTS) causes the system to print out a display
of the entire current knowledge base. The display is organised
into groups of assertions preceded by the message FACTS-ASSERTED.
Each group of assertions constitutes a (logical) procedure. That
is to say, the header of every assertion in the group has the
same predicate symbol (say, P) . The predicate symbol P is used
as the name of the procedure, and the group of assertions is
accordingly preceded by the line: (PROCEDURE P) . The
constituent assertions of the procedure P are then displayed in
the form of assertion commands. The order in which the
assertions appear in the display is the chronological order in
which they were originally asserted. The display is terminated
by the message END.

5.2 DISPLAYING A PROCEDURE.

The command (PRINTFACTSOF P) displays the procedure P in the same
style as that of the (PRINTFACTS) display. If one wishes to
print several procedures one types (PRINTFACTSOF P1 ... PN).
Further, "the.standard function GRINDEF has been altered to print
logic procedures in addition to the properties which it
ordinarily prints. These too are in PRINTFACTS format.

The command (PRLENGTH P) returns the number of assertions in the
procedure P:

*(PRLENGTH Born)

2.
0
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5.3 DISPLAYING THE SET OF DEFINED PREDICATES.

The command (PREDICATES) returns a list of the predicates for
which logic procedures are defined in the current knowledge base.
With the example of the preceding chapter we have:

* (PREDICATES)

(Born Died Age)

5.4 DISPLAYING DATA ASSERTIONS IN WHICH A GIVEN PROPER NAME OCCURS.

It is often convenient to be able to retrieve and display the set
of data assertions in a given knowledge base in which a given
notion occurs explicitly. Such a set in some sense corresponds
to what the knowledge base says about that notion in a direct
way. The command (PRINTCREFSOF C) displays all assertions
belonging to data procedures (in the sense of chapter 3) in whose
header the constant C appears somewhere. These assertions are
organised into groups by their procedure name, but the entire
procedure is not necessarily shown (only those of its assertions
whose headers actually contain C).

5.5 RETRIEVING A PROCEDURE AS A LIST

The procedure P may be obtained as a LISP data object, namely, as
the list of its constituent assertions. This list is returned as
the value of the command

(ASSERTIONSOF P)

Each assertion B <- Al ... An in the procedure is represented
as the list (B Al ... An) . If the assertion has the user-coined
name N then it is represented as the list (N B Al ... An) . For
example, (ASSERTIONSOF Born) returns the list

(((Born Herbrand 12. February 1908.))
(TURINGI (Born Turing 23. June 1912.)))

The result of ASSERTIONSOF shares no list structure with the
internal representation of the knowledge base, thus list-altering
operations such as RPLACA and RPLACD performed on this list will
have no effect on the knowledge base.
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CHAPTER 6

EDITING KNOWLEDGE BASES

The resident editor of the LISP system has been extended so as to
allow the editing of knowledge bases in essentially the same
style as is used to edit LISP functions and data objects. The
edit command EDITA is used to enter the editor when LOGIC editing
is to be done. The following editing session will illustrate the
way this works. We will use the editor to attach names to the
(at present) anonymous assertions in the current knowledge base,
and to change the name AGE-FORMULA to AGE-RULE.

*(EDITA Born)

EDIT
#P

((& ) (TURINGI & ))
#PP

(((Born Herbrand 12 February 1908))
(TURINGI (Born Turing 23 June 1912)))

#1 PP
((Born Herbrand 12 February 1908))
#(-1 HERBRAND1) PP
(HERBRANDI (BORN Herbrand 12 February 1908))
#OK

Born
*(EDITA Died 1 (-1 HERBRAND2) PP)

(HERBRAND2 (Died 27 July 1931))

Died
*(EDITA Age 1 (1 AGE-RULE) PP)

(AGE-RULE (Age person given-year a)
(Born person day month birth-year)
(= a (- given-year birth-year)))

Age
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This editing has produced the desired changes, as may be seen if
we display the resulting knowledge base:

*(PRINTFACTS)

FACTS-ASSERTED

(PROCEDURE Born)

(:- HERBRAND1 (Born Herbrand 12 February 1908))

(I- TURINGI (Born Turing 23 June 1912))

(PROCEDURE Died)

(I- HERBRAND2 (Died Herbrand 27 July 1931))

(!- TURING2 (Died Turing 7 June 1951))

(PROCEDURE Age)

(AGE-RULE (Age person given-year a)
<- (Born person day month birth-year)
& (= a C- given-year birth-year)))

END

which is what we wanted. If one wishes to edit several
procedures simultaneously one types (EDITA (P1 ... PN)). In this
case one edits the assertions for all of the procedures as a
single list. For example:

*(EDITA (Born Died))

EDIT
#P

((HERBRAND1 &) (TURINGI &) (HERBRAND2 &) (TURING2 &))
#OK

(Born Died)
*
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As with the LISP edit functions EDITF and EDITV, one may also
specify one or more editor commands after the predicate (or list
of predicates) to be edited. In such cases the commands are
performed and the editor returns without further interaction with
the user. For this reason it is very important that one remember
the parentheses when specifying several procedures. Performing
(EDITA P1 ... PN) will usually result in an editor error, in
which case P1 will be erased from the knowledge base.

6.1 REMOVING PROCEDURES FROM THE KNOWLEDGE BASE.

If one wishes to remove one or more procedures P1, ..., PN from
the current knowledge base one invokes the command
(ERASEP P1 ... PN).
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CHAPTER 7

FILING KNOWLEDGE BASES

The current knowledge base may be preserved in a file by the
LOGIC primitive SAVE. The command (SAVE N ) creates on the disk
a file named N [ N is a user-coined name of no more than six
characters of which the first is an upper-case letter. ] When
this work is completed the message DONE is printed.

The file created by SAVE is written on the user's file structure
DSK: as conventional text, though not so prettily formatted as
with PRINTFACTS. An extension may be specified with the file
name, in which case the form is (SAVE (NAME . EXT)), following
the usual LISP convention. An extension is supplied only when
explicitly specified.

7.1 RESTORE AND LOADLOGIC

A file which has been created by a command (SAVE N ) may be later
read into primary storage by means of a (RESTORE N ) or a
(LOADLOGIC N ) command. The command (RESTORE N ) restores the
knowledge base to its contents as of the time the (SAVE N )
command which created the file was executed. The command
(LOADLOGIC N ) adds the procedure clauses in the saved knowledge
base N to the procedure clauses in the current knowledge base.
RESTORE first clears out the current knowledge base whereas
LOADLOGIC does not.

File names with extensions are specified just as for SAVE. The
file in question must be found on file structure DSK:, but the
project-prog-ammer number of the area from which the file is to
be read may be specified separately. The most convenient form is
(RESTORE (proj,prog] file). Note that LOGLISP normally expects
numeric input in decimal, while ppn's are usually written in
octal. One way around this small difficulty is to use a sequence
such as:
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*(SETQ IBASE 8.) (RESTORE [733,213 PLACES) (SETQ IBASE 10.)

8.

DONE

10.

7.2 ADDTO, BUILD AND DSKIN

The existing primitives of LISP's filing system have been adapted
appropriately for use in LOGLISP. In LISP the command
(ADDTO N P1 ... Pk) adds the LISP objects named P1, ... , Pk to
the file named N (and opens a new file named N if one does
not already exist). In LOGLISP the effect of ADDTO is extended
so that the objects Pi can also be LOGIC objects, namely logical
procedures. Thus the command

(ADDTO BIOG Born Died)

creates (assuming it does not already exist) a file named BIOG
and records that its members are the logical procedures Born and
Died. The command

(ADDTO BIOG Age)

then extends the description of the file BIOG by recording that
the logical procedure Age is also a member. Once a file has been
opened and described by one or more ADDTO commands, it may be
constructed and written on the disk by means of the BUILD
command. The command (BUILD N ) writes out onto disk storage
the current members of the file N in their current condition.

7.3 DSKIN

Files created and stored using the ADDTO and BUILD primitives may
be read into primary storage from the disk by means of the DSKIN
primitive. Thus if the file BIOG had been previously written
on the disk by execution of the command (BUILD BIOG) , it would
be read into primary storage by execution of the command
(DSKIN BIOG) . DSKIN is analogous to LOADLOGIC in that no prior
clearing of the knowledge base currently in primary storage takes
place before the asserting of the procedure clauses in the file.
Thus by "disking in" several files of logical procedures one may
build up a knowledge base containing them all. The format of
files created by BUILD is a series of executable commands. Thus
under the current assumptions as to the description of BIOG and
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the contents of its members, the command (BUILD BIOG) would

create the file:

(SETQ IBASE 10.)

(SETQ DSKINATOM (QUOTE BIOG))

(DEFPROP BIOG (BIOG . LSP) FILENAME)

(DEFPROP BIOG (Born Died Age) MEMBERS)

(PROCEDURE Born)

(I- HERBRAND1 (Born Herbrand 12. February 1908.))

(I- TURINGI (Born Turing 23. June 1912.))

(PROCEDURE Died)

(:- HERBRAND2 (Died Herbrand 27. July 1931.))

(:- TURING2 (Died Turing 7. June 1954.))

(PROCEDURE Age)

(:- AGE-RULE (Age person given-year a)
<- (Born person day month birth-year)
& (= a (- given-year birth-year)))

The command (PROCEDURE P ) declares P to be a logical procedure
and may be used to record further pragmatic information about P
as explained in the Chapter on Interacting with LOGLISP . The
DEFPROP commands are LISP acts of definition, recording on the
property list of "BIOG" the information describing BIOG's
properties as a filename. The two SETQ commands create the
appropriate LISP environment for the execution of the rest of the
commands in the file.

- 7-3 -

.,



CHAPTER 8

DEDUCING ANSWERS TO QUERIES

The deduction machinery of LOGIC is invoked by the deduction
commands: ALL, ANY, THE, and SETOF . The first three are LISP
FSUBR's which may conveniently be invoked from the terminal or
within assertions. SETOF is a SUBR intended for use by LISP
programs.

8.1 ALL

The command (ALL X C1 ... Cn) returns a list of simplifications
of the instances of the answer template X with respect to all
of the environments within which the query clause (Cl ... Cn)
is true with respect to the current knowledge base. [These
environments are called the answer environments for the
query-clause (Cl ... Cn) .J

The answer template X may be a variable, an atom not a variable,
or a list of expressions. We emphasize that the answers returned
are the expressions (or lists of expressions) obtained by
simplifying the instances of the answer template in the solution
environments, not the values of those expressions, which need
not, after all, be evaluable.

8.2 ANY

The command (ANY K X C1 ... Cn) behaves in a similar manner,
except that no more than K instances of X are returned from
among those which the corresponding ALL command would return. K
is expected to be a nonnegative integer.

8.3 THE

The command (THE X C1 ... Cn) returns the sole member of the
list (ANY 1 X C1 ... Cn) , if there is one, and is intended for
use only in contexts where it is known that exactly one answer
environment exists. If no answer environment exists for the
stated query THE returns the identifier No-solutions-found.
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8.4 SPECIFYING THE SEARCH WINDOW.

The constraints appearing in invocations of ALL, ANY and THE need
not all be predications. They may include limit specifications
which determine the search window to be used. The form of a
limit specification is

Limit: Value

where "Limit:" is one of TREESIZE:, NODESIZE:, ASSERTIONS:,
RULES:, DATA:, and "Value" is a number, the identifier INF
(denoting infinity) or a non-atomic expression whose LISP value
is a number or INF. These values determine bounds for the
corresponding parameters of the search window. Thus one might,
in the context of the "tennis" example of chapter 2, ask for

(ALL x (Champion x) (Male x) (Older x Pete) RULES: 5)

to obtain the set of all those who can be deduced to be male
champions older than Pete with no more than five applications of
rules.

In the absence of any specification the limits are all taken to
be INF, except for RULES, which is never allowed to exceed a
limit determined by the implementation, normally 500. See the
discussion of initialization in the chapter on interacting with
LOGLISP for further details on this point.

8.5 SETOF

The preceding commands are special adaptations of the basic
general deduction primitive, SETOF. SETOF takes three arguments.
In the command (SETOF S X C) the arguments S, X and C are
(LISP) evaluated before the SETOF procedure is entered (SETOF is
an EXPR). The first argument S (the "scope indicator") is an
expression which evaluates either to a nonnegative integer or
else to the identifier ALL . The second argument X is an
expression which evaluates to an answer template. The third
argument C is an expression which evaluates to a query clause.
The command (SETOF S X C) returns a list of the instances of
the answer template (which is the value of] X corresponding to
the answer environments in which the query clause [which is the
value of] C is true with respect to the current knowledge base.
If the value of S is ALL , then all such instances are in the
list returned. If the value of S is the integer K , then no
more than K such instances are returned. Thus the command
(ALL (x y) (Age x 1928 y)) is equivalent to the command
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(SETOF (QUOTE ALL) (QUOTE (x y)) (QUOTE (Age x 1928 y)))

and both return the list

((Turing 16) (Herbrand 20))

as their result, if the current knowledge base contains only the
procedure clauses HERBRANDI, HERBRAND2, TURINGI, TURING2 and
AGE-RULE. The command (The logician (Born logician something
February 1908)) returns the result: Herbrand

8.6 NONDETERMINACY OF DEDUCTIVE PROCESSES

The order of the items in the lists returned by ALL, ANY and
SETOF is not defined, nor is there defined any rule for selecting
a subset of all instances when less than all are requested.

This non-determinacy is accompanied by a measure of
"concurrency", in that the order in which LISP evaluations will
be performed in the course of various simplifications is also not
specified. The evaluation of a single evaluable expression is,
however, carried out "indivisibly". It is for this reason that
assignment and other effect-producing operations must be used
with caution in logic.

8.7 CONTROLLING THE DEDUCTION PROCESSS.

Having emphasized the non-determinacy of the deduction process,
we should now point out that the user can, in fact, exercise a
considerable degree of control over the deduction, even to the
point of making it fully determined.

8.7.1 The Heuristic Solution Cost.

Recall from chapter 2 that the node selected for further progress
is always one whose heuristically estimated solution cost is
least. This cost is computed as

*DEPTHCxASSERTIONS(X Y) + *LENGTHCxNODESIZE(X Y)

where *DEPTHC and *LENGTHC are (global) LISP identifiers, both
set initially to 1. These coefficients may, however, be set to
any integer values one likes, so long as the magnitudes of the
resulting costs are not so large as 2**18.

The standard settings give a reasonable heuristic search sheme,
but other setiings may prove useful. If one puts *DEPTHC = 1,
*LENGTHC = 0, for example, the resulting search is breadth first,
while setting *DEPTHC -1, *LENGTHC 0 gives depth-first
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search. In neither of the latter cases is the order in which the

deduction tree is explored specified.

8.7.2 The PROLOG Mode.

As mentioned earlier, the user can obtain a strictly determined
depth first search by placing the system in the "PROLOG" mode.
This is accomplished by the command (PROLOG ON). In this mode
the search is, first of all, depth first. The resolvents of a
particular node will, moreover, be explored in the order in which
the corresponding assertions appear in the knowledge base (this
is the order in which the assertions are printed by PRINTFACTS).
It is this ordering of the search that distinguishes the PROLOG
mode from the depth first search produced by adjusting the
solution cost coefficients. If a special rule is in effect for a
predicate which also has assertions, the special rule is
considered to come before any assertion.

The heuristic search mode is selected by (PROLOG OFF). One is
not allowed to change modes while a search is in progress. Any
attempt to do so will be met by the response
"(Not while searching)". To inquire about the current search
mode use the command (SEARCHMODE). In heuristic mode this
returns [the value of] (LIST 'HEURISTIC *DEPTHC *LENGTHC), while
in PROLOG mode the response is DEPTH-FIRST.

8.8 "ONE RESOLVENT" PROCEDURES.

It sometimes happens that the programmer can determine that on
every call of a particular procedure at most one resolvent can
lead to success. Such a determination usually depends both on
the nature of the queries that can be expected and on the nature
of the assertions which constitute the procedure. If it can
further be arranged that this resolvent always results from the
first assertion which yields a resolvent, then one may inform the
system of these facts by specifying the predicate in question to
be a "ONERES" procedure. This is done with the command
(PROCEDURE Pred ONERES), "Pred" being the predicate of the
procedure. If a special rule is in effect for "Pred", the
special rule is considered to precede any assertion.

The conditions under which one may appropriately specify a
procedure to be "ONERES" may seem rather restrictive, but they
are not unusual in practice. An inappropriate ONERES attribution
will, of course, have a drastic effect on the meaning of a
procedure, since the system will in any case compute only the one
resolvent for each call.
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CHAPTER 9

MONITORING DEDUCTIONS

Provision has been made for the optional "viewing" of a deduction
process as it is happening. Ideally such a facility would show
the tree of constraints growing during the execution of the
deduction cycle. This is however somewhat extravagant of display
space, and LOGIC has a more modest version of this idea.

9.1 THE MONITOR FACILITY

Execution of the command (MONITOR ON) enables the system to
display, during the deduction process, the query component of
each successive selected constraint. In order to give the user
time to reflect, the system pauses onceleach cycle, and resumes
on receiving a suitable input (normally, a semicolon). The
predications comprising the query component of (say) the selected
constraint (Q E D) are displayed as they, appear with the
environment E, before any simplificat -in is performed. -I-shouTa
be noted thai when viewing a developing deduction process in this
way one may observe some discontinuity in the display. This is
because the selection mechanism may not always choose a successor
of the previous selected constraint, but rather "resume" some
older constraint whose turn has arrived for some more "progress".
Even though the genetic thread remains unbroken, there may be
rather drastic changes in the state owing to the
LISP-simplification step of the cycle. The user will soon become
accustomed to the realities of the MONITOR display , however
and will find it an enlightening tool when sparingly used to slow
down and observe the deductive action. The command (MONITOR OFF)
disables the MONITOR facility.

One need not simply continue from the MONITOR pause. The
commands one can give are as follows (the prompt is ",?",,):

?'E expr - Evaluate expr and print the result
?EXPLAIN - Explain the current state
?*QUIT - Abandon the search
?HELP - Print brief instructions

Any other input is taken as a command to proceed. E, EXPLAIN and
HELP leave the system in the MONITOR pause. EXPLAIN may be
followed by qualifiers to specify the mode of explanation (see
the next chapter).
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9.2 THE PURR FACILITY

It is often desirable to be able to see in some direct way that
the deduction process is taking place, without necessarily
slowing it down to the extent that the MONITOR facility entails.
The command (PURR ON) enables just such a facility, the PURR
facility. The PURR facility consists of a running display
accompanying the deduction process. It involves the printing of
a few single characters per cycle. No line feed is given after
printing (except at the physical end of a line) so that the
characters form a continuous string. The meaning of each
character is as follows:

Character Meaning

- (hyphen) Start of a new cycle
P Selected constraint a success
U Selected predication is NIL (false)
R Resolvents of selected predication obtained
X Selected predication failed for lack of

resolvents
C A continuation popped up
L Selected predication failed due to window

limit

The PURR facility is disabled by the command (PURR OFF). Thus
with the PURR facility on the following transaction would occur:

*(ALL (x y) (Age x 1920 y))
-R-R-R-P-R-P
((Turing 8.) (Herbrand 12.))
*

The "PURR string" shows that the deduction took six cycles,
invoked four procedures and found two answer environments.
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CHAPTER 10

EXPLAINING DEDUCTIONS

Once a deduction has been completed and its answer list obtained,
one may call for an explanation of the reasoning by which some or
all of the answers were deduced. For instance, the following
transaction consists of first constructing the answer list for
the query (ALL (x y) (Age x 1920 y)) and then requesting an
explanation for the second item.

*(ALL (x y) (Age x 1920 y))

((Turing 8.) (Herbrand 12.))
*(EXPLAIN 2)

To show:
((Age x 1920. y))

it is enough, by
(I- AGE-RULE (Age x 1920. y)

<- (Born x day:1 month:1 birth-year:1)
& (= y (- 1920. birth-year:1)))

to show:
((Born x day:1 month:l)(= y (- 1920. birth-year:1)))

then it is enough, by
(!- HERBRAND1 (Born Herbrand 12. February 1908.))

to show:
((: y 12.))

then it is enough, by
(- REFLEXIVE-LAW (= Reflexive Law))

to show:
NIL

(End of explanation)

The (EXPLAIN 2) command causes an explanation of the answer
(Herbrand 12.) to be printed. The successive appearances of the
query component of the active proof states leading to the answer
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are exhibited, and the procedure clause activated to cause the
transition is shown. The query component of each state is shown
with respect to the environment component of that state. The
activated procedure clause is shown with respect to the
environment of the resulting state (i.e. after the activation
has extended the environment). Various further inflections are
provided with the EXPLAIN command. (EXPLAIN ALL) provides
explanations of all answers. (EXPLAIN NI ... Nk) provides
explanations of the N1st, ... , Nk'th answers. (EXPLAIN) is the
same as (EXPLAIN 1).

Explanations can be produced only when the history facility is
enabled, which normally it is not. The history facility is
enabled by (HISTORIES ON), disabled by (HISTORIES OFF). Enabling
the history facility can impose significant overhead on the
system, particularly when the deduction tree must be searched to
great depth.

The answers which one can have explained are those produced by
the most recently completed invocation of ALL, ANY, THE or SETOF.
If there are no such answers EXPLAIN will simply respond
"(Nothing to explain)". An attempt to select a non-existent
answer will be ignored, except that a note to that effect is
typed.

10.1 ALTERNATIVE EXPLANATION MODES.

The EXPLAIN facility is considerably more flexible than indicated
by the example just discussed, which only illustrates the normal
mode of explanation. One can obtain explanations in a variety of
styles. The variations are specified by typing qualifiers in thecommand following the selection of the answers to be explained.
To illustrate, the command (EXPLAIN 2 NAMES FINAL) would print a
similar sort of explanation, except that only the names of the
assertions would be printed, and the constraints would all be
shown in the solution environment.

10.1.1 Specifying Items To Be Included.

Besides constraints and assertions, one may also instruct the
system to print answer templates at each stage of the
explanation, instantiated and simplified. One may also print
names of assertions rather than printing assertions in full.

When names of assertions are to be printed the system will
construct names for assertions for which the user has not
specified names. These "manufactured" names have the form
(Pred k), where "Pred" is the principal predicate symbol of the
assertion and the integer k gives the sequence number of the
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assertion in the list produced by PRINTFACTS. User-supplied
names are usually taken just as specified, but one can request
"long" names, in which case the name given by the user is
combined with the principal predicate symbol to form a list
"(Pred Name)". Manufactured names are always in the long format.

The qualifiers which control all this are the following:

ASSERTIONS Print assertions in full [Default]
NAMES Print names of assertions
UNNAMED Print assertions which lack user-supplied

names, print names where available

LONG Print all names in long format
SHORT Print user-supplied names in [Default]

short format

CONSTRAINTS Print constraints [Default]
NOCONSTRAINTS Omit constraints

ANSWERS Print answer templates
NOANSWERS Omit answer templates [Default]

CONTINUATIONS Print continuations with constraints
NOCONTINUATIONS Omit continuations [Default]

If NOASSERTIONS is specified the format of the explanation is
adjusted accordingly. If NOASSERTIONS, NOANSWERS and NAMES are
all specified the explanation is simply a list of the names of
the assertions used, with no ornamentation. The default
selection between CONTINUATIONS and NOCONTINUATIONS can be
changed by (CONTINUATIONS ON) or (CONTINUATIONS OFF).

10.1.2 Specifying Environments To Be Used.

We remarked earlier that the normal explanation shows each step
of the derivation in the environment current at that step. One
can, however, specify other choices as follows:

INITIAL Use initial (empty) environment
CURRENT Use current environment [Default]
FINAL Use final (solution) environment

When the INITIAL environment is specified constraints are shown
in the current environment, as nothing earlier makes any sense,
while assertions are shown in the form in which they appear in
the knowledge base. Note that the ANSWERS option is useful only
in conjunction with CURRENT, though other combinations are
allowed.
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Anything other than a qualifier appearing in the command will be
ignored, with a warning message to that effect typed to the user.

10.2 OBTAINING EXPLANATIONS IN LISP.

The system contains a number of SUBR-type functions which allow
the LISP programmer to get at the basic material of the
explanations. The programmer can then format explanatory
material in whatever way he finds convenient. The first argument
to each of these functions is an "answer number", which is the
number of the answer to be explained, just as might be typed to
EXPLAIN.

(EXPLNAMES ANSNMB)

returns a list of the names, in long format, of the assertions
used to derive the answer, in the order used.

(EXPLASSERTIONS ANSNMB ENV)

returns a list of the assertions used to derive the answer, in
the order used. Here ENV should be one of the atoms INITIAL,
CURRENT, FINAL, to specify the environment in which the
assertions will be shown. Each assertions is represented by a
list

(Pred Name/Number Head TI ... Tl)

Ai where "Pred" is the principal predicate symbol, "Name/Number" is
the user-supplied name or system-manufactured number, and the
remaining entries are the predications of the assertion.

(EXPLCONSTRAINTS ANSNMB ENV CONTNS)

returns a list of the constraints arising in the derivation,
beginning with the original query and ending with NIL. Here ENV
specifies the environment as before, except that INITIAL is
treated the same as CURRENT. CONTNS should be T if continuations
are desired, NIL otherwise. The entries of the list returned by
EXPLCONSTRAINTS are themselves lists of some complexity. If the
constraint in question has no continuation, the corresponding
entry has the form:

((ql ... qN))

where qi is a predication. If the constraint has a continuation,

101
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but CONTN is NIL, the entry will have the form

((ql ... qN) CONTINUED)

while if the constraint has a continuation and CONTN is T, the
entry has the form

((ql ... qN) (pl ... pM) ...)

where pi is a predication of the continuation, which may itself
be followed by another continuation, and so on.

(EXPLTEMPLATES ANSNMB)

returns a list of answer templates shown in the successive
CURRENT environments, beginning with the original template and
ending with the actual answer.

All of these functions follow a common convention regarding
exceptions. If the answer number specified does not correspond
to an existing derivation the result is the atom NO-EXPLANATION.
If the most recent search was performed with the history facility
disabled the result is NIL.
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CHAPTER 11

INTERACTING WITH LOGLISP

In the present chapter we discuss the mechanics of running
LOGLISP, obtaining information, controlling the operating modes
and default settings, and some points dealing with errors.
Before doing so we emphasize one convention:

RESERVED IDENTIFIERS

Identifiers beginning with the
character "#" are reserved for use
by the system. Users should
generally avoid such identifiers.
Under no circumstances should a
user assign a value to such an
identifier.

11.1 RUNNING LOGLISP.

We suppose that the user has logged in and obtained access to the
disk area containing the LOGLISP system. The precise method for
doing so will vary from one installation to another, but should
be explained in a note accompanying this guide.

To run the LOGLISP system simply type the monitor "command"

./LOGLSP core

where "core" is an optional core argument in the form one would
give for the RUN command. If the core argument is omitted the
system will have a rather small working area. A good medium
allocation is 60K. For large programs one may wish to specify
the LISP storage allocations. To do so, use a command like

./LOGLSP 140,10000 1000 1000 1000

in which the core argument is followed by a comma and the LISP
allocations, separated by spaces. The order of these is FULL
WORD SPACE, BINARY PROGRAM SPACE, REGULAR PDL, SPECIAL PDL, with
the allocations being interpreted in octal, just as in LISP.
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LOGLISP will prompt with "*" when ready, being at the top level
of LISP. At this point one may enter assertions, queries, and
the like as described in the earlier chapters. The system
includes the optional numeric functions (SQRT, SIN, SIND, etc.)
loaded in expanded core.

11.1.1 An Alternate Method.

The method of running LOGLISP to be described now is useful only
for those who desire non-standard initialization or wish to
minimize the core requirements of the system. One may also run
the system using the monitor command

.RUN LOGLSP core

in which case LISP will ask for allocations. The system will be
run uninitialized and without tne extra numeric functions.
Before assertons can be entered or queries processed the system
must be initialized using START or SYSINIT (see below).

11.2 INITIALIZATION.

When run in the ususal way the system starts out properly
initialized with an empty knowledge base. One may re-initialize
the LOCIC part of the system at any time by invoking the function
START.

(START)

leaves an empty knowledge base and resets the operating mode
controls and system defaults to their standard values. LISP
function definitions, file descriptions, and identifier values
are not changed, except for those values which are used in system
control.

An alternate initialization function is available for those with
special requirements.

(SYSINIT ENVL HEAPL)

initializes with the specified limits. ENVL is the maximum
number of rules allowed in any one deduction. HEAPL is the
maximum number of nodes which can be WAITING at any instant in a
heuristically guided search. On re-initialization SYSINIT will
retain a previous limit which is larger than the one specified,
since there is nothing to be gained by reducing one of the
limits. START simply performs (SYSINIT 500 300).
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The limit values determine the sizes of certain arrays allocated
in binary program space. The storage consumed by these is
approximately

(1/2)ENVL + HEAPL

words. If the system is re-initialized with increased limits the
storage occupied by the old arrays is lost, as binary program
space is not garbage-collected.

11.3 INFORMATION.

When prompted for input at any of the main interaction points the
user can obtain brief instructions by simply typing HELP.
Assistance is thus available at.the top level of LISP, in the
montior pause, and in FACTS, as well as when the deduction
machinery asks for instructions (see below). HELP is not
available while editing, but the editor is just the standard LISP
editor, so no special difficulties should be encountered.

Abbreviated instructions for using any of the LOGIC interface
functions (,-, THE, ALL, ANY, etc.) can be obtained by invoking
the command (DOC fn), where "fn" is the name of the function in
question. These instructions were developed using the on-line
documentation package described in [???]. The documentation
package itself is included in LOGLISP for the convenience of
users.

11.4 CONTROL.

The earlier chapters of this report mention a number of functions
, used to control various operating modes, as well as several

defaults used by the system. In this section we shall summarize
the control functions and explain the treatment of defaults in
somewhat greater detail.

11.4.1 Control Functions.

All of the control functions take one argument, which should be
ON or OFF (T or NIL may be used as well), and return the argument
after altering the system state appropriately. These functions
will, however, evaluate a non-atomic argument expression, so that
calls of the functions may be nested. To illustrate, the command
(PURR (MONITOR ON)) enable both the PURR facility and the MONITOR
facility.

Several of these functions operate simply by setting the value of
a LISP identifier, in which case NIL represents OFF, while
anything else represents ON. The identifiers so used may changed
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directly by LISP programs, or accessed by them as may seem
useful. The table which follows lists the names of the control
functions, the initial settings, and, where applicable, the
identifier set by the function.

Function Initial Setting Identifier

PURR OFF *PURR
MONITOR OFF *MONITOR
CONTINUATIONS OFF *CONTINUATIONS
HISTORIES OFF *HISTORIES
ASK ON *ASK
AUTO= ON [None]
AUTOAND ON [None]
AUTO-OR ON [None]
AUTOCOND ON [None]
PROLOG OFF .[None]

The facility controlled by ASK is described below in the
discussion of errors.

11.4.2 Defaults.

Both in specifying search windows and in requesting explanations
the user normally relies on a good many defaults. These are not,
in fact, determined rigidly by the sytem, but may be adjusted by
the user. The standard default settings are, however, restored
by (START).

11.4.2.1 Search Window Defaults - The defaults for search window
are the .values of the LISP identifiers listed below, along with
their initial values.

Identifier Initial Value

*TREESIZE INF
*NODESIZE INF
*ASSERTIONS INF
*RULES 500
*DATA INF

Each of these gives the default value for the corresponding
window limit. Though 500 is the normal value for *PULES, a
different initial value will be used if the system has been
specially initialized using SYSINIT. The implementation
constraint on the number of rules in a single deduction will be
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rigorously enforced, even if *RULES is made larger than this
limit.

The values which one may assign to these identifiers are the atom
INF or any non-negative integer.

11.4.2.2 EXPLAIN Defaults - The default qualifiers for EXPLAIN
are similarly controlled by a collection of LISP identifiers.
The table below shows the identifiers, the set of values each is
allowed to take, and the initial value.

Identifier Value Set Initial Value

*ASSERTIONS [ALL, SOME, NIL.) ALL
*CONSTRAINTS IT, NIL} T
*LONGNAMES IT, NIL} NIL
*ANSWERS IT, NIL} NIL
*CONTINUATIONS IT, NIL} NIL
*ENVIRONMENT [FINAL, CURRENT, INITIAL} CURRENT

Note that *CONTINUATIONS is controlled by the function
CONTINUATIONS, and affects the monitoring facility as well as
EXPLAIN.

11.5 ERRORS.

Errors can arise either in LOGIC or in LISP, though aside from
minor syntax errors LOGIC is more likely to fail than to detect
an error.

11.5.1 LISP Errors.

Errors detected by LISP will result in entry to the LISP break
package in the usual way. If the error arose during
simplification a backtrace will show none of the workings of the
reduction machinery, which is probably the best course the system
could take. All of the LISP facilities for recovery and analysis
are available.

Note that misspelled function names in LOGIC terms will not lead
to undefined function errors, simply to expressions which are not
evaluable.
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11.5.2 LOGIC Errors.

Earlier chapters explained how syntax errors are handled by
and FACTS. There is one other type of error which can be
detected by LOGIC -- the undefined predicate error.

A predicate is considered to be undefined if it has neither a
LISP definition (as a function) nor a LOGIC definition (as a
procedure of one or more assertions). If such a predicate is
encountered during a search, and if the ASK facility is enabled
(as it is initially), the system will ask the user for
instructions, after first printing a message specifying the
undefined predicate.

The prompt for instructions is "ASK*". Responses are as follows:

ASK*; Continue search
ASK*F Execute FACTS
ASK*S Correct spelling automatically, if possible
ASK*S pred Correct spelling to pred
ASK*E expr Evaluate expr and print the result
ASK*P Print the current constraints (as when monitoring)
ASK*HELP Print instructions

Anything other than ";" causes the system to remain in the ASK
state. If the user does anything which might conceivably alter
matters, the system will try again to aimplify and obtain
resolvents.

The automatic spelling correction attempts to find a predicate
(defined by LOGIC) which closely matches the undefined predicate.
If successful it informs the user of the chosen predicate, if not
successful it informs the user of that fact. Spelling
corrections are accomplished with RPLACA, so the effect may reach
beyond the immediate situation. When the undefined predicate
occurs as an instance of some variable, spelling corrections are
probably unwise, and the user is warned of such circumstances.

11.5.3 WAITING Heap Overflow.

If the heap used to store WAITING nodes is full and a new node
needs to be entered, the system will discard the new node and
print a message to that effect. No provision is made for user
intervention upon such an occurrence. The only recourse is to
re-initialize with a larger allocation (see SYSINIT).
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11.5.4 Exhaustion Of Free Storage.

If free storage is exhausted during a search there may be a great
many nodes WAITING to be processed, and there may not be enough
storage to start another search until these nodes are erased. To
do so, one may give the command (#INITHEAP 1). This invokes an
internal function which accomplishes the desired result, setting
the search mode to (HEURISTIC 1 1) as it does so. Afterwards it
may help to run with (HISTORIES OFF).

11.6 ADDITIONAL LISP FUNCTIONS.

LOGLISP includes a number of functions not provided by standard
LISP. Some of these have been mentioned earlier.

11.6.1 Short Names For Arithmetic.

The short arithmetic operators are as follows:

(+ el ... eN) [MACRO]

C- el ... eN) [MACRO)

(' el ... eN) [MACRO]

(3 el ... eN) [MACRO]

These are the same as PLUS, DIFFERENCE, TIMES, QUOTIENT, except
for being more defined. (+) = (-) = 0, while (') (%) 1.

11.6.2 Arithmetic Relations.

The following arithmetic relations are provided, in addition to
those included in LISP:

(< el.e2) [SUBR] ,

(< el e2) [SUBRI

(>= el e2) [SUBR]

(> el e2) [SUBR]

Of course " is defined on numbers as well as other objects.
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11.6.3 Miscellaneous Arithmetic.

Two other special arithmetic functions are provided:

(* X N) [SUBR]

returns X**N for integer N.

(ODD N) [SUBR] i

returns T if the integer N is odd, NIL otherwise.

11.6.4 LOGLISP Utilities.

Some of the LOGLISP system utility functions may be of use to
programmers. The names of these functions are not reserved.

(VARIABLE e) [SUBR]

returns T if e is a LOGIC variable, NIL otherwise. In an

assertion one might write (VARIABLE (LISP x)) to determine
whether the instantiation of x is or is not a variable.

(CONSM el ... eN-1 eN) (MACRO]

returns the object (v1 ... vN-1 . vN), where vi denotes the

value of ei.

(XFERPROP "DST" "SRC" "KEY") [FSUBR]

makes property KEY of SRC also be property KEY of DST. The

property value is not copied.

11-8
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CHAPTER 12

EXAMPLES OF APPLICATIONS OF LOGLISP

Applications of logic programming are described by
[Kowalski 19793, [Clark 1979], [van Emden 19773,
[Colmerauer 1973], and [Warren 1977], to name only the principal
references.

In this chapter we describe two non-trivial examples of logic

programming in which the special features of LOGLISP are
exploited.

12.1 PLACES - AN ,"INTELLIGENT" DATABASE.

PLACES is a knowledge base containing several thousand assertions

most of which are data, i.e., unconditional ground assertions.

Some representative data of PLACES are shown in Figure 1.

(POPULATION BURMA 32200000) <-
(LATITUDE WARSAW 52.25) <-
(LONGITUDE PYONG-YANG -125.8) <-
(ADJOINS LAOS VIETNAM) <-
(COUNTRY VIENNA AUSTRIA) <-
(PRODUCES USSR OIL 491.0 1975) <-
(BELONGS IRAN OPEC) <-
(REGION ISRAEL MIDDLE-EAST) <-
(AREA ETHIOPIA 471778) <-
(GNP-PER-CAPITA NEW-ZEALAND 4250) <-
(OPEN-WATER BALTIC-SEA) <-
(NARROW DARDANELLES) <-

Figure 1.

For each predicate appearing in Figure 1, PLACES has a collection
of such unconditional ground assertions - a data procedure . All

these data procedures are comprehensive (they average several

hundred assertions each) and some are in a sense complete.

The procedures POPULATION, AREA, REGION, GNP-PER-CAPITA are

complete in the sense that every country in the world is covered.
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The GNP-PER-CAPITA procedure gives (in US dollars) the
gnp-per-capita for each country in the world for a particular
year (1976).

The procedure ADJOINS provides data for a procedure BORDERS,
which is a pair of rules:

(BORDERS x y) <- (ADJOINS x y)
(BORDERS x y) <- (ADJOINS y x)

which give PLACES the ability to determine which countries (or
bodies of open water) border upon which others. Since ADJOINS is
a symmetric relation we need not assert it in both directions,
and BORDERS uses ADJOINS accordingly.

The procedure PRODUCES gives (in millions of metric tons) the
quantities of various basic commodities (oil, steel, wheat, rice)
produced by most of the world's countries in two particular years
(1970 and 1975). This procedure could well have covered more
years and more commodities, but for the purposes of an example a
few hundred assertions seemed enough to illustrate the
possibilities.

While the countries of the world form (at any given time) a
rather definite set, it is less clear what are the bodies of
water which should be named and treated as entities in a database
such as PLACES. We took the arbitrary course of naming those
bodies of water found on the maps of various parts of the world
in the Rand McNally Cosmopolitan World Atlas. We ignored those
bodies of water which seemed too small to be of much significance
but we strove for some sort of comprehensive description of the
boundary of each country. For example, the query

(ALL "x (BORDERS x IRAN))

gets the answer

(STRAITS-OF-HORMUZ GULF-OF-OMAN TURKEY USSR PAKISTAN IRAQ
CASPIAN-SEA AFGHANISTAN PERSIAN-GULF)

in which each of the bodies of water STRAITS-OF-HORMUZ,
GULF-OF-OMAN, CASPIAN-SEA and PERSIAN-GULF is listed as having a
portion of its boundary in common with that of the country IRAN.

- 12-2 -IL



12.1.1 RULES.

PLACES contains, in addition to these large "data procedures"; a
number of rules defining predicates useful in formulating
queries.

For example there is a procedure DISTANCE, which consists of the

following four rules:

(DISTANCE (POSITION lal lol) (POSITION la2 lo2) d)

<- (- d (SPHDST lal lol la2 lo2))

(DISTANCE (POSITION lal lol) (PLACE q) d)

<- (LATITUDE q la2)
& (LONGITUDE q lo2)
& (= d (SPHDST lal lol la2 lo2))

(DISTANCE (PLACE p) (POSITION la2 lo2) d)

<- (LATITUDE p lal)
& (LONGITUDE p lol)
& (= d (SPHDST lal lol la2 lo2))

(DISTANCE (PLACE p) (PLACE q) d)

<- (LATITUDE p lal)
& (LATITUDE q la2)
& (LONGITUDE p lol)
& (LONGITUDE q lo2)
& (= d (SPHDST lal lol la2 lo2))

This procedure can be used to obtain the great-circle distance
between any two cities whose latitudes and longitudes are in the
data tables, or between one such city and an arbitrary position
on the earth's surface (given by its latitude and longitude) or
between two such arbitrary positions.

The procedure DISTANCE illustrates the ability to call
user-defined LISP functions by forming constructions using their
names as operators. The LISP function SPHDST returns the great
circle distance (in nautical miles) between any two points on the
earth's surface (given by their respective latitudes and
longitudes).
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Thus the query:

(THE d (DISTANCE (PLACE SAN-FRANCISCO)(PLACE OSLO) d))

gets the answer:

5197.5394

There is a rule which serves to define the predicate LANDLOCKED.
Intuitively, a country or body of water is landlocked if it
borders upon only land. The PLACES rule which formalizes this
meaning is

(LANDLOCKED x)
<- (IS-COUNTRY x)
& (NULL (ANY 1 T (BORDERS x z)(OPEN-WATER z)))

This rule contzins two features worthy of comment.

The predicate IS-COUNTRY, defined by the rule

(IS-COUNTRY x)
<- (COND ((VARIABLE (LISP x))(COUNTRY y x))

((ANY 1 T (COUNTRY z W))

shows how one can use to advantage the LISP conditional form
within a LOGIC predication. The effect of the conditional is to
avoid redundancy in proving that a given country is a country -
by finding all the various cities in it - via a check to see if
the argument x is a variable or not. If it is not, then we need

find only one datum from the COUNTRY data procedure which has the
given country as its second argument.

The second thing worth noting about the rule for LANDLOCKED is
the embedded deduction. The list returned by the call

(ANY 1 T (BORDERS x z)(OPEN-WATER z))

will be empty if and only if x is landlocked.

A similarly structured rule defines the predicate DOMINATES. We
wish to say that a country x dominates a "narrow" waterway y if x
borders y but no other country does. Thus:
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(DOMINATES x y)
<- (NARROW y)
& (IS-COUNTRY x)
& (BORDERS x y)
& (NULL (ANY 1 T (BORDERS y w)

(NOT (OPEN-WATER w))
(NOT (= x w))))

12.1.2 NEGATION AS FAILURE.

The use of the predicate NOT in the precedure DOMINATES raises an
interesting general point.

NOT is of course a LISP-defined notion and will therefore receive
appropriate treatment during the deduction cycle in the manner
explained in Chapter 3.

However, it is possible to include in one's knowledge base the
rule

(NOT p) <- (NULL (ANY 1 T p))

which is known as the "negation as failure" rule. PLACES has the
negation as failure rule as one of its assertions. The effect of
its presence in a knowledge base is to declare that the knowledge
base is complete - that inability to deduce p is to be treated as
tantamount to the ability to deac-the negation of p.

The version of the negation as failure rule shown above is
undiscriminating as between the various predications - it is in
effect the declaration that all of the data procedures are
complete and that all of the gieral procedures are "definitions"
of their predicates. It would be possible to assert more
specialised negation as failure rules, which declare that the
knowledge base is complete with respect to a particular
predication-pattern. For example, we might assert

(NOT (BELONGS x y)) <- (NULL (ANY 1 T (BELONGS x y)))

in order to declare that BELONGS is complete, even though we are
not willing to assert the negation as failure rule for all
predications p. In general, one would expect that users of
LOGLISP would wish to be selective in their appeal to negation as
failure, in just this fashion. These data and rules are invoked
by the following queries, which illustrate some of the
possibilities.
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12. 1.3 Some Sample Queries For PLACES.

The following examples consist of some specimen queries which one
can make of PLACES, together with the answers that they get. In
each case we first state the query in ordinary Englisn, and then
restate it in formal LOCLISP.

We are not claiming that there is a uniform procedure, known to
us, by which one may translate queries from English to LOGLISP in
this manner. At present, in order to express queries (and
indeed, assertions) in LOGLISP, one must know the language and be
able to express one's intentions in it. In this respect LOGLISP
is like any other programming language. It is in fact quite easy
to learn enough LOGLISP to construct and operate one's own
"intelligent database" in the style of PLACES.

Query 1.

What are the oil production figures for the
non-Arab OPEC countries in the year 1975?

(ALL (x y)
(BELONGS x OPEC)
(NOT (BELONGS x ARAB-LEAGUE))
(PRODUCES x OIL y 1975.))

Answer 1.

((IRAN 267.59999) (NIGERIA 88.399991)
(VENEZUELA 122. 19999)
(INDONESIA 64. 100000)
(ECUADOR 8.2000000))

This answer is shown just as the LISP "prettyprint" command
SPRTNT types it out. It is of course possible to dress up one's
output in any way one pleases. Note that ALL returns a list of
(in this case) tuples.

Query 2.

Of all the countries which are poorer than Turkey,
which two produced tne most steel in the year 1975?
How much steel was that? What are the populations
of those countries'?
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(FIRST 2.
(QUICKSORT
(ALL (x y w)

(GNP-PER-CAPITA TURKEY v)
(GNP-PER-CAPITA x u)
(LESSP u v)
(PRODUCES x STEEL y 1975.)
(POPULATION x w))

(DECREASING)
2.))

Answer 2.

((CHINA 29.0 880000000.) (INDIA 7.8999999 643000000.))

This example illustrates the fact that ALL (like ANY, THE, and
SETOF) returns a LISP data-object which can be handed as an
argument to a LISP function. In this case QUICKSORT and FIRST
are user-defined LISP functions which were created in order to
serve as useful tools in posing inquiries to PLACES.

(QUICKSORT list relation k) returns the given list of tuples
ordered on-- kth compoient with respect to the -iven relation.
(FIRST n list) returns the (list of the) first n components of
the giVen_ ist. (DECREASING) returns the LISP Felation GREATERP
(and we also--ve (INCREASING), which returns the relation LESSP,
and (ALPHABETICALLY), which returns the relation LEXORDER).

Query 3.

Which of France's neighbors produced most wheat (in
metric tons) per capita in the year 1975? How much
wheat per capita was that?

(EARLIEST
(ALL (x y)

(BORDERS x FRANCE)
(PRODUCES x WHEAT z 1975.)
(POPULATION x u)
(= y (QUOTIENT (TIMES z 1000000.) u)))

(DECREASING)
2.)
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Answer 3.

(ITALY 0.16956329)

(EARLIEST list relation k) returns the first tuple in list after
it has been re-ordered oni the kth component of each of-TE- tuples
with respect to the given relafion. Note that arithmetical terms
formed with LISP's arithmetic operations are evaluated by the
simplification step of the deduction cycle, as explained in
Chapter 3.

Query 4.

Which of the NATO countries is landlocked?

(ALL x (BELONGS x NATO) (LANDLOCKED x))

Answer 4.

(LUXEMBOURG)

Query 5.

Which waterway is dominated by Panama?

(THE x (DOMINATES PANAMA x))

Answer 5.

PANAMA-CANAL

Note that THE returns PANAMA-CANAL and not (PANAMA-CANAL).

Query 6.

Describe the boundary of the USSR by giving

-12-8-

. . .... ....



all its neighbors in alphabetical order.

(ORDER (ALL x (BORDERS x USSR)) (ALPHABETICALLY))

Answer 6.

(AFGHANISTAN ARCTIC-OCEAN BALTIC-SEA BERING-SEA BLACK-SEA
BULGARIA CHINA FINLAND HUNGARY IRAN MONGOLIA NORWAY
POLAND ROMANIA TURKEY)

(ORDER list relation) returns the given list after ordering it
with respect to the given relation.

Query 7.

Are there any landlocked countries in the Far
East? If so, give an example.

(ANY 1. x (REGION x FAR-EAST) (LANDLOCKED x))

Answer 7.
(MONGOLIA)

Query 8.

Is there an African country which dominates an
international waterway? Which country?
Which waterway?

(ANY 1. (x y) (REGION x AFRICA) (DOMINATES x y))

Answer 8.

((EGYPT SUEZ-CANAL))
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Query 9.

What is the average distance from London
of cities in countries which have a
Mediterranean coastline and which are no more
densely populated than Ireland? List those
countries, together with their population
densities, from least crowded to most crowded.

(PROGN (SETQ COUNTRIES-AND-DENSITIES
(QUICKSORT
(ALL (x x-density)

(POPULATION IRELAND irish-population)
(AREA IRELAND irish-area)
(: irish-density

(% irish-population irish-area))
(BORDERS x MEDITERRANEAN-SEA)
(NOT (OPEN-WATER x))
(POPULATION x x-population)
(AREA x x-area)
(= x-density (% x-population x-area))
(NOT > x-density irish-density)))

(INCREASING)
2.))

(SETQ AVERAGE-DISTANCE
(AVERAGE
(ALL distance

(MEMBER pair
(EVAL COUNTRIES-AND-DENSITIES))

(= country (CAR pair))
(COUNTRY city country)
(DISTANCE (PLACE city)

(PLACE LONDON)
distance))))

(GIVE AVERAGE-DISTANCE)
(GIVE COUNTRIES-AND-DENSITIES)
(QUOTE *))

Answer 9.

AVERAGE-DISTANCE is

1491.1892

COUNTRIES-AND-DENSITIES is
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((LIBYA 3.)
(ALGERIA 20.)
(ALBANIA 24.)
(TUNISIA 101.)
(EGYPT 102.)
(MOROCCO 108.))

This example shows at somewhat more length what a LISP programmer
might make of an inquiry which calls for a more involved
investigation. Assignment to the LISP variable
COUNTRIES-AND-DENSITIES of the answer to one LOGIC call for later
use within another (as well as for output) illustrates one more
way in which the LOGLISP programmer can fruitfully exploit the
interface between LOGIC and LISP. GIVE is just a dressed-up
PRINT command which not only prints the value of its argument
expression but also prints the expression.

12.2 A COMPILER.

We shall now present a compiler for a subset of PASCAL. The
compiler parses the "source" program, checks types, and generates
"object" code which can be executed by LISP (with a few
"run-time" utility functions). In order to keep the example
small we have confined ourselves to a few statement forms,
provided only the types INTEGER and BOOLEAN, with no data
structures, and made no provision for declarations, simply
incorporating a handful of variable identifiers directly into the
language. There are no procedures, no functions, no labels, no
jumps. Expressions are treated rather fully, however, given the
other limitations.

Even though the language is quite limited, we feel that the
example is sufficient to show that we can easily write compilers
which, though slow, are entirely adequate for experiments in
language design. We point out that the compiler is readily
modified to produce an abstract representation of the program,
rather than an executable form, as could be used for program
analysis or verification.

12.2.1 Organization Of The Compiler.

The "source" program will be represented as a list of tokens,
which are simply LISP atoms denoting reserved words, identifiers,
constants, operator symbols, and the like. An example is

(BEGIN K := K - 1 ; Y := Y * Z END)

which will be QUOTEd when it appears as an expression in LOGIC.
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Such lists read nicely enough, and the lexical analyzer required
to produce such a list from a character string or text file is
easily written.

Corresponding to each syntactic category (nonterminal) of the
language we introduce a relation which "compiles" phrases of that
category. For example, the relation for the category <statement>
has the form (STATEMENT tokens rep rest), where 'tokens' is a
list of tokens, as above, 'rep' is the object representation of
the statement which begins 'tokens', if there is one, and 'rest'
is the token list obtained by removing the initial statement from
'tokens'. We do recursive descent parsing, working from left to
right without backtracking.

In some cases we wish to "parametrize" categories. The relation
for <expression>, for example, has the form
(EXPRESSION type tokens rep rest), 'type' being the result type
of the expression. On some calls the procedure will be used to
discover the type of the expression which begins 'tokens', while
on others it will check that the expression in question has the
proper type.

To see how this works, consider the assertion for the WHILE
statement, which is

(I- (STATEMENT (CONS WHILE t1)
(PROG NIL LOOP: (COND (1 s (GO LOOP:))))
c)

<- (PARSE tl ((EXPRESSION BOOLEAN 1) DO (STATEMENT s)) c))

The rule applies only to non-empty lists which begin with WHILE.
Using CONS expressions to unify with lists in this fashion we
avoid explicit tests for empty lists, but there is no possibility
that we will attempt to take the CAR or CDR of an atom. The
"object" representation is a PROG construct incorporating the
components of the WHILE in an obvious way.

Recall that the syntax for the WHILE statment is

WHILE <Boolean expression> DO <statement>

Although we could express this directly in terms of EXPRESSION
and STATEMENT, it is more convenient to use the auxiliary
relation PARSE. PARSE has the form (PARSE tokens items rest).
The arguments 'tokens' and 'rest' are used as before, but 'items'
is a list of expressions (itself an expression) which defines a
sequence of items to be parsed. Each item has one of the forms:
token, (syncat var), (syncat parm var). An item of the form
'token' simply specifies that the indicated token should be
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found. The form (syncat var) specifies that a phrase of the
category 'syncat' should be found, its representation to be
denoted by 'var'. The form (syncat parm var) is similar, except
that 'syncat' is to be parameterized with 'parm'.

The assertions defining PARSE are

(U- (PARSE x NIL x))

(- (PARSE x (hd . t1) c)*
<- (COND ((ATOM (LISP hd)) (: x (CONS hd tx)))

((= hd (syncat var)) (syncat x var tx))
((= hd (syncat parm var)) (syncat parm x var tx)))

& (PARSE tx tl c))

Observe the use of the variable "tll to deal with the
unpredictable expression 'entries'. The expression
(ATOM (LISP hd)) is always evaluable, having the value T just
when 'hd' is a token.

12.2.2 The Compiler.

At this point we shall list the compiler, including the
interactive documentation which has been provided for the logic
procedures. Following the listing we remark further upon the
techniques used. The variables "built in" to the compiler
correspond to the declarations

var I, J,K,X,Y,Z:INTEGER;
B,P,Q, R:BOOLEAN;

(DEFPROP STATEMENT
((STATEMENT tokens rep rest))

DOC)

(PROCEDURE STATEMENT ONERES)

(I- (STATEMENT (CONS IF tl) (COND (1 sl) . s) c)
<- (PARSE tl ((EXPRESSION BOOLEAN 1) THEN (STATEMENT s1)) tx)
& (COND ((= tx (CONS ELSE txx))

(AND (STATEMENT txx s2 c) (= s ((s2)))))
((: s NIL) (: c tx))))

(U- (STATEMENT (CONS WHILE tl)
(PROG NIL LOOP: (COND (l s (GO LOOP:))))
c)

<- (PARSE tl ((EXPRESSION BOOLEAN 1) DO (STATEMENT s)) c))
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(-(STATEMENT (CONS BEGIN ti) (PROGN ss) c)
<- (PARSE ti ((REPEATO (STATEMENT ;)ss) END) c)

:-(STATEMENT (CONS v tx) (:= v e) c)
<- (VAR-IDENT ty v)
& (PARSE tx (:= (EXPRESSION ty e)) c))

(DEFPROP EXPRESSION
((EXPRESSION type tokens rep rest))

DOC)

(PROCEDURE EXPRESSION)

(-(EXPRESSION ty x r c)
<- (SIMPLE-EXPR tyl x se cc)
& (COND ((REL-OPR tyl cc rel ccc)

(AND (SIMPLE-EXPR tyl ccc se2 c)
(ty BOOLEAN)
r (rel se se2)

(T (AND (= ty tyl) (= r se) (= c c!))

(DEFPROP REL-OPH
((REL-OPR arg-type tokens rep rest))

DOC)

(PROCEDURE REL-OPR ONERES)

(-(REL-OPR INTEGER (CONS r c) r c)
<- (MEMQ r (QUOTE (< <= >= > 0)

(-(REL-QPR BOOLEAN (CONS r c) fr c)N K- (=fr
(SELECTQ r

(< B0)

(=B>=)
(> B>)
((0 0)
NIL))

& (NEQ fr NIL))

(DEFPROP SIMPLE-EXPR
((SIMPLE-EXPR type tokens rep rest))

DOC)4

12-14



(PROCEDURE SIMPLE-EXPR ONERES)

(U- (SIMPLE-EXPR INTEGER (CONS + tl) r c)
<- (TERM INTEGER tl trm cc)
& (SIMPLE-TAIL (INTEGER trm) cc r ))

(- (SIMPLE-EXPR INTEGER (CONS -tl) r c)
<- (TERM INTEGER tl trm cc)
& (SIMPLE-TAIL (INTEGER (MINUS trm)) cc r c))

(U- (SIMPLE-EXPR ty x r c)
<- (TERM ty x trm cc)
& (SIMPLE-TAIL (ty trm) cc r c))

(DEFPROP SIMPLE-TAIL
((SIMPLE-TAIL (type prey) tokens rep rest))

DOC)

(PROCEDURE SIMPLE-TAIL)

(U- (SIMPLE-TAIL (ty u) x r c)
<- (COND ((ADD-OPR ty x opr cc)

(AND (TERM ty cc trm ccc)
(SIMPLE-TAIL (ty (opr u trm)) ccc r c))

r u) (= c W))

(DEFPROP ADD-OPR
((ADD-OPR type tokens rep rest))

DOC)

(PROCEDURE ADD-OPR ONERES)

(- (ADD-OPR INTEGER (CONS + c) + c))

(- (ADD-OPR INTEGER (CONS - c) - c))

(U- (ADD-OPR BOOLEAN (CONS OR c) OR c))

(DEFPROP TERM
((TERM type tokens rep rest))

DOC)

(PROCEDURE TERM)

(U- (TERM ty x r c) <- (FACTOR ty x f cc)
& (TERM-TAIL (ty f) cc r e))
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(DEFPROP TERM-TAIL
((TERM-TAIL (type prey) tokens rep rest))

DOC)

(PROCEDURE TERM-TAIL)

(I- (TERM-TAIL (ty u) x r c)
<- (COND ((MUL-OPR ty x opr cc)

(AND (FACTOR ty cc trm ccc)
(TERM-TAIL (ty (opr u trm)) ccc r c)))

((: r u) (= c x))))

(DEFPROP MUL-OPR
((MUL-OPR type tokens rep rest))

DOC)

(PROCEDURE MUL-OPR ONERES)

(I- (MUL-OPR INTEGER (CONS * c) * c))

(I- (MUL-OPR INTEGER (CONS DIV c) % c))

(I- (MUL-OPR INTEGER (CONS MOD c) REMAINDER c))

(I- (MUL-OPR BOOLEAN (CONS AND c) AND c))

(DEFPROP FACTOR
((FACTOR type tokens rep rest))

DOC)

(PROCEDURE FACTOR ONERES)

(- (FACTOR BOOLEAN (CONS TRUE c) T c))

(:- (FACTOR BOOLEAN (CONS FALSE c) NIL c))

(i- (FACTOR BOOLEAN (CONS ODD tx) (ODD e) c)
<- (PARSE tx (/( (EXPRESSION INTEGER e) M)) ))

( - (FACTOR BOOLEAN (CONS NOT tx) (NOT f) c)
<- (FACTOR BOOLEAN tx f c))

(I- (FACTOR ty (CONS /( tx) e c)
<- (PARSE tx ((EXPRESSION ty e) 1)) c))
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(-(FACTOR ty (CONS u c) r c)
<- (COND ((NUMBERP u) (AND (=ty INTEGER) (= r u)))

((VAR-IDENT ty u) (~r (VAR u)))))

(DEFPROP VAR-IDENT
((VAR-IDENT ty var))

DOC)

(PROCEDURE VAR-IDENT)

(-(VAR-IDENT ty v) <- (COND ((MEMQ v (QUOTE (I J K X Y Z))
(= ty INTEGER))

((MEMQ v (QUOTE (B P Q R))
(~ty BOOLEAN)

(DEFPROP PARSE
((PARSE tokens items rest)
(An item may be a token or (syncat var) or (syncat parm var)))

DOC)

(PROCEDURE PARSE ONERES)

(-(PARSE x NIL x) )

(-(PARSE x (hd .ti) c)
<- (COND ((ATOM (LISP hd)) (= x (CONS hd tx)))

( hd (syncat var)) (syncat x var tx))
(=hd (syncat parm var)) (syncat parm x var tx)))

& (PARSE tx ti c)

(DEFPROP REPEATO
((REPEATO cntrl tokens rep rest)
(ontri is (syncat sep) or (syncat parm sep))
(Yields f<syncat>(sep>1*{<syncat>j M)

DOC)

(PROCEDURE REPEATO OWERES)

(-(REPEATO (syncat sep) x r a)
<- (COND ((syncat x ri tx)

(COND ((= tx (CONS sep txx))
(AND (REPEATO (syncat sep) txx rr c)

(= r (rl rr))))
( r (ri)) (= c tx))))

(=r NIL) (= c x))))
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(,- (REPEATO (syncat parm sep) x r c)
<- (COND ((syncat parm x rl tx)

(COND ((= tx (CONS sep txx))
(AND (REPEATO (syncat parm sep) txx rr c)

(= r (rl . rr))))
r (rl)) (= c tx))))

(C= r NIL) (= c x))))

Note that procedures with more than one assertion are specified
to be ONERES. That this is appropriate depends upon two
circumstances. First, the grammar is unambiguous (we made it
that way). Second, we expect that 'tokens' really will be a list
of atoms. For the auxiliary procedures PARSE and REPEATO the
appropriateness of ONERES follows from the fact that the argument
expressions in calls of these procedures are always specified in
sufficient detail that only one assertion will apply.

REPEATO, which has the appearance of a parameterized category,
handles constructs of the form "zero or more occurrences of
'syncat' (possibly with parameter) separated by 'sep'". The
"representation" it produces is an expression having the form of
a list of representations, and is used as the tail of some larger
expression. The assertion dealing with compound statements
illustrates the use of REPEATO.

The treatment of simple expressions (relation SIMPLE-EXPR) is
complicated by the necessity of associating unparenthesized
expressions to the left. "X + Y - Z", for example, means
"(X + Y) - Z". To accomplish this we introduce the auxiliary
relation SIMPLE-TAIL, whose parameter includes the representation
of the previous portion of the expression being compiled. The
object representation of "X + Y - Z" is

(- (+ (VAR X) (VAR Y)) (VAR Z))

VAR being the run-time function which evaluates variables. TERM
is handled similarly.

We have implemented AND and OR using the corresponding LISP
functions, which is not entirely proper, as LISP uses "short-cut"
evaluation, unlike PASCAL. No real harm results, though, since
our restricted language admits no expressions with side effects.

12.2.3 Using The Compiler.

One can use the compiler by simply invoking a query, as

*(THE (r c) (STATEMENT '(X :=Y * Z + I ;) r c))
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((:: X (+ (I (VAR Y) (VAR Z)) (VAR I)) (QUOTE (;)))
*

Note that we can compile a single expression as easily as an
entire program -- a useful feature for the language experimenter.

To make matters a little easier we have written some simple LISP
programs to manage administrativc chores, these being included
with the run-time support programs. For our purposes a program
is just a statement, followed perhaps by a terminating character
such as ".". What follows is an example involving a less trivial
program, the fast exponentiation algorithm.

*(QPRINTC FASTEXP)

(BEGIN
Y 1.
Z X
K :: I
WHILE K > 0. DO

IF ODD ( K ) THEN
BEGIN Y :Y * Z ; K :=K - 1. END

ELSE
BEGIN Z ::Z * Z ; K ::K DIV 2. END

END .)
NIL
*(COMPILE FASTEXP)

COMPILED
*(SPRINT OBJECT 1)

(PROGN (:= Y 1.)
(:: Z (VAR X))
(:: K (VAR I))
(PROG NIL
LOOP: (COND

((> (VAR K) 0.)
(COND ((ODD (VAR K))

(PROGN (:= Y (* (VAR Y) (VAR Z)))
(: K (- (VAR K) 1.))))

((PROGN (:= Z ( (VAR Z) (VAR Z)))
(:: K (% (VAR K) 2.)))))

(GO LOOP:)))))
NIL
*(DEP X 2 1 13)

Deposited
*(RUN OBJECT)
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NIL
*(EXM X I Y Z K)

X 2.
I 13.
Y 8192.
Z 256.
K 0.

The object program which results is left as the value of the
identifier OBJECT, which we find to be a LISP version of the
algorithm. The function DEP (for DEPosit) is used to preset the
necessary variables, RUN executes the object program, and EXM is
used afterwards to EXaMine the outcome. Values of program
variables are actually stored as PVAL properties of the variable
identifiers, thus avoiding any possibility of collision with LISP
identifier values, which are VALUE properties.

The techniques used in the run-time system are too primitive to
serve for the implementation of more sophisticated languages,
particularly those including procedures, but the compiler itself
suffers no such defect. One point regarding the compiler bears
further discussion. We have chosen, at the expense of some
complication in the logic, to write the compiler so as to avoid
backtracking. That this is the case is apparent from the use of
ONERES. The result is a faster compiler than would be obtained
with backtracking, but beyond this, when enlarging the language
to encompass declarations we have the option of using imperative
techniques for symbol table management. With backtracking, hence
"concurrent" exploration of the deduction tree, this option would
be lost.
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CHAPTER 13

IMPLEMENTATION OF LOGIC IN LISP

13.1 GENERAL CONSIDERATIONS.

The present implementation is written entirely in UCI Lisp as run
at Syracuse. It should be possible to transport this
implementation to other LISP systems based on LISP 1.6 with only
trivial modifications, if any. Our goal throughout has been to
devise an implementation which could be extended and adapted as
we gained experience with the system, without making fundamental
sacrifices in efficiency.

Certain choices regarding the behavior of the overall system have
had a major impact on the implementation. One of these choices
is the decision that the user should be able to add to or modify
his logic procedures at will, much as he adds or modifies LISP
function definitions. This decision leads us to adopt a syntax
in which variables are always recognizable as such. In
particular, no action of the user can cause an expression to be
regarded as a variable. The user is not, in fact, given direct
access to the internal representations of procedures, states, and
the like, but the interfaces provided come pretty close to
achieving our goal. Internal representations are not completely
hidden, of course, but the "#" convention for system identifiers
makes it easy enough for any but the malicious user to avoid
entanglement with the system.

A second fundamental choice is that inference-making should not
be confined to depth-first search. We are thus able to obtain
answers to some queries even in the presence of "depth-ferst
runaway" and also to use heuristic techniques to obtain a few
answers more rapidly than might otherwise have been the case.
This choice precludes, however, the very economical
stack-oriented techniques pioneered by Warren in Edinburgh Prolog
[Warren 1977]. We have instead used structure sharing techniques
of the sort described by Boyer and Moore (Boyer-Moore 1972],
specialized for Horn-clause resolution. The result is not
greatly slower than Warren's method, the time needed to access a
variable binding being, for practical purposes, bounded by a
constant.
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At present the search is guided by a very simple heuristic
function which is a linear combination of the depth of the state
and the number of predications it contains. This function could
easily be made more sophisticated. States awaiting selection are
kept in a priority queue represented by a heap (in the sense of
Floyd) which allows for rapid storage and retrieval.

In order to avoid numerous futile attempts at resolution we have
incorporated a secondary indexing scheme in the representation of
the procedure base, and we expect to do more such indexing in the
future. As now implemented, the secondary indexing applies only
to procedures whose clauses all have heads which are ground
predications, but it works very well for those procedures. The
present indexing is entirely automatic, but future extensions may
be able to take into account advice supplied by the user.

The implementation of reduction uses a sort of "conditional
evaluation" technique which works directly with implicit
representations and is able, generally, to preserve the structure
sharing inherent in the Boyer-Moore method, thus avoiding the
exponential growth which results from explicit representation of
instantiations. Any evaluations which are performed during
reduction are carried out by the underlying LISP system.

13.2 THE SYSTEM CODE.

We shall now discuss the code for the system, with particular
attention to data representation. The functions which make up
the system have been informally organized into "modules", and
this presentation follows that organization. The modules are
discussed in "bottom-up" order, more or less, although the
organization of each module is generally "top-down", except that
MACROs appear first, for technical reasons. Initialization
functions which are naturally associated with a particular module
are placed in such modules. There is also a "system
initialization" module for initialization functions of broader
scope.

The functions which constitute the system are accompanied by
on-line documentation which is managed with the aid of the
documentation package described in appendix A. (The
documentation package is included in LOGLISP.) The system
ordinarily includes documentation for those functions considered
to be user interface functions, chiefly those whose names do not
begin with "I#)". On-line documentation for the other functions is
provided in auxiliary files, however. Details concerning these
matters will be found in the section on system building placed at
the end of this chapter.
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The file LOGFNX.PRG, distributed with the system, contains a full
listing of the system code, including interactive documentation
as well as function definitions, and is organized by modules,
paralleling the following discussion. A few functions with
special requirements are found in files other than LOGFNX.PRG,
but these are explained when they arise.

13.2.1 Utilities.

These are a number of small utility functions used at various
points in the system. The on-line documentation together with
the function definitions should be adequate explanation. The
reader should also refer to the file CMPUTL.LSP which contains
routines which aid in MACRO definition.

13.2.2 Environments.

The environment in use at a given moment (called the "current
environment") is stored in the array #ENV and several global
variables. Other environments are stored as list structures.
The system keeps a record of which list-environment (if any) is
the current environment so as to avoid needless effort converting
between the two representations. The representation of the
current environment is as follows:

#ENVK - Largest index (subscript) appearing
#ENVS - List environment (if any) from which obtained
#ENV - Array of association lists; indexed 0 :: #ENVLIMIT
#ENVDIFF - T if #ENVS differs from current environment,

NIL otherwise

For 0 < i < #ENVK, (#ENV i) is an association list giving
bindings for variables with index i. Each entry of such a list
has the form (variable index . expr), indicating' that the
variable is bound to the specified expression viewed at the
specified index.

The list representation of the current environment is

(#ENVK (#ENV #ENVK) ... (#ENV 0)) .

Conversion between list representation and array representation
requires time proportional to #ENVK when actually performed, but
because of the optimization this is not very significant. On
account of the way environments are used, the number of entries
in one association list can never exceed the number of distinct
variables appearing in the tail of a single assertion. In
practice this number hardly ever exceeds six, and the average is
usually less.
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We emphasize that variables are uniquely stored. Besides the
atomic variables, which begin with lower-case letters, the system
sometimes constructs explicitly subscripted variables having the
form

(#VAR# atomic-variable . subscript).

Both kinds are detected by the function VARIABLE, which is
available for public use.

13.2.3 Unification.

An expression to be unified is, in fact, presented as an
expression to be viewed with a given index in the current
environment, the index being, in effect, the subscript to be
applied to each variable occurring in the expression. In the
language introduced earlier, we are dealing with the recursive
realization of the expression. Ordinarily the index specified is
to be used throughout the expression, but the reduction machinery
(discussed below) may sometimes construct explicitly indexed
expressions of the form

(#INDEX# k . e)

which represents the expression e viewed with index k.

The unification algorithm is essentially that described in
chapter 1, adapted to take indexing into account and to deal
properly with the various kinds of atoms as well as CONS, QUOTE
and FUNCTION (as described in chapter 3). The function ULT is
implemented by #ULTX which is available in two compatible
versions: a MACRO used in compiled code and a FEXPR used when
interpreting. The MACRO is rather fast when compiled, but
abysmally slow when interpreted. The two versions are recorded
in the files ULTMAC.LSP (the MACRO) and ULTFXP.LSP (the FEXPR).

13.2.4 Subscripts.

When expressions are explicitly represented it is necessary to
construct explicitly subscripted variables, which are represented
internally as list structures of the form

(#VAR# atomic-variable . subscript)

as mentioned before. The subscript is represented either by an

integer or a structure of the form

(subscript . integer).
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In he latter case the subscript should be read from left to
right, ignoring parentheses and dots, to obtain the sequence of
subscripts applied to the original variable. The implementation
requires that the integers appearing in subscripts have the INUM
representation.

In order to assure unique representations we maintain a record of
all explicitly subscripted variables constructed since
initialization as the value of the global variable *SUBVAR. The
data structure used for this purpose is arranged to allow quick
access and compact storage. We are able to accomplish this in
part because an explicitly subscripted variable can be
constructed only by "subscripting" a previously defined variable,
either atomic or explicitly subscripted. Variables which share
subscripts, or initial portions thereof, share the corresponding
list structures.

*SUBVAR is a list of the form

(NIL (ixl boxi) ... (ixN . boxN))

which is an association list with a header. The "keys" of the
a-list are integers (subscripts in fact) arranged in increasing
order, but not necessarily consecutive. Each "box" is a pair of
the form

(var-list . next-list)

where var-list is a list of explicitly subscripted variables with
subscript ixj (for boxj) and next-list is an association list
with header of the sort just described, containing entries for
variables with subscripts (ixj . ixk), which in turn contain
lists for variables with subscripts ((ixj . ixk) . ixl), and so
on, as far as necessary.

13.2.5 Showing.

The functions in this module form explicit representations (or,
in some cases, more explicit representations) of implicitly
represented expressions. Variables with implicit subscripts are
given the explicit form described above, except that an atomic
variable with implicit subscript 0 is represented by itself. A
moment's reflection shows that implicitly distinct variables will
still yield distinct explicit representations.

To "show" (i.e. to realize recursively) arbitrary expressions (or
lists of suEh) we use the function #/SHOW and its subsidiaries.
In some instances we wish to show an implicit expression on the
condition that the result should contain no variables. This is
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accomplished by #SHOWABLE and associated functions.

For convenience in resolution and reduction we sometimes wish to
make sure that the top level of a list is explicitly represented.
It is rare in practice that any other kind is encountered, but to
deal with the possibility we provide the functions #TSHOW and
#TSHOWX.

13.2.6 Reduction.

Evaluation and reduction are accomplished by interpretive
routines which perform a sort of "conditional evaluation",
conditioned on evaluability of the expressions in question, that
is. In this way the evaluability, reducibility, value and
reduction (if defined) of some expression can all be determined
with one "pass" over the expression. Note that the reduction of
a reducible, evaluable expression is always expressed in terms of
the value, so there is no need to compute the reduction
separately when a value cpn be obtained.

The reduction of a reducible expression is always represented as
an expression to be viewed in the same environment with the same
index as the original expression, using an explicitly subscripted
expression when necessary.

The special treatment of LOGIC is built in to the reduction and
evaluation routines. The other special forms are treated by
functions whose names are recorded as #VALOGIC properties of the
keywords for the forms. LISP is an exception, being simply the
identity FSUBR.

13.2.7 Knowledge Pase.

The assertions for a predicate p are stored as the property
#ASSERTIONS of p, whose value has the form

((length . flags) . (first . last))

Here 'length' is the number of assertions for p, 'flags' is the
bit-wise "and" of the flag bits of the individual assertions, and
'first' and 'last' are the first and last links in the list of
internal representations of the assertions. TCONC is used to
attach new assertions to this list.

The internal representation of an assertion has the form:
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flags I
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II II

I I {

\I/ \h/ M/ \I/
n/n hd ti ti

Here 'n/n' denotes the user name or system-supplied sequence
number of the assertion, 'hd' is the head of the assertion, and
'tl' is a predication. The pointer marked "H" shows the part of
the representation recoreded in histories. The item 'flags' is
an integer which is interpreted bit-by-bit as follows:

2**0: This is a ground assertion
2"'I: The head is a ground predication

The bit is 'I' to indicate that the assertion has the indicated
attribute. Other bits are not used at present.

Secondary indices are generated for each data procedure and each
constant identifier appearing in a head of the procedure. If id
is such an identifier then (GET id '#ASSERTCREF) is an
association list whose entries have the form

(pred count . (first . last))

Here 'pred' is the predicate of a data procedure, 'count' is the
number of assertions of this procedure in whose head id occurs,
and (first . last) is the TCONC representation of the list of
those predications, in the same order that they occur in the
procedure. If p is the predicate of a data procedure then
(GET p '#CONSTANTS) is a list of the identifiers occurring in
heads of assertions of p. This allows the system to erase the
secondary index structure when necessary.

13.2.8 Representing Nodes.

This section of the discussion does not correspond to a system
module, but presents material on representation needed for
forthcoming modules. Nodes of the deduction tree are represented
by states, sometimes referred to as clauses. (The nomenclature
in these programs has evolved over a period of at least three
years.) Besides the full state, various partial states are used
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in parts of the system. A state has the form:

DLCLS LCLS DERIVI I I

------------ >* ----- ->* -..... >* ---- >* ------ >* - ->env

depth length contn segl mi
\i/

*--- >deriv

assertion

Here 'depth' is the depth of the node in the deduction tree,
'length' is the number of predications in the node, including the
continuation, if any, 'contn' is the continuation (possibly NIL),
'segl' is a segment list giving the predications in the node,
'mi' is the maximum index used in the node, and 'env' is the
environment of the node. If histories are being recorded 'deriv'
is the node (DERIV pointer) from which this was obtained, using
'assertion'. The segment list is a list of segments, each of
which has the form

(index pred ... pred)

where the predications 'pred' are to be viewed with the specified
index.

If the continuation is not NIL it will have the form

((sibling-count . success) . dlcls)

where 'sibling-count' is the number of waiting nodes sharing this
continuation, 'success' is T if any siblings have been proved,
NIL otherwise, and 'dlcls' is the continuation node.

13.2.9 Printing States.

The functions in this module are used to print states, both when
monitoring and explaining. The caller is expected to control
printing of continuations and the environment to be used.
Variables are given in the form v:i (more subscripts if needed).
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13.2.10 Resolution.

The special resolution rules are implemented by so-called
#RESLOGIC functions which refer directly to the locals of the
principal resolution function, #RESOLVENTS. The special rules
are used before assertions in the knowledge base (if any). When
the procedure involved is a data procedure the secondary index
structure is used to obtain the shortest list of assertions
possible, which may be empty.

13.2.11 Simplification.

Simplification of states is performed by #SIMPLIFY. Note that it
is not assumed that the length given is actually the number of
predications represented in the segment list.

13.2. 12 Heap Management.

Waiting states are recorded in a priority queue represented as a
heap. This is stored in two arrays #HPWT and #HPCLS, each
indexed 1 to #HPLIMIT. (#HPWT i) is the weight of the state
which is (#HPCLS i). The highest position in use is entry number
#HPN, the root being empty when #HPROOTEMPTY. The technique of
leaving the root position open for insertion of a new node is due
to McCormack [Ph.D. dissertation, Syracuse University, 19781.

When operating in PROLOG mode the waiting states are kept in the

global list #STACK.

13.2.13 Undefined Predicates.

The function #ASK conducts the dialogue which ensues when an
undefined predicate is encountered. Automatic spelling
corrections are based on a very simple measure of the "distance"
between words, being essentially Hamming distance.

13.2. 14 Continuations.

The routines which manage proved and failed states with
continuations are intimately linked to #SETOF. In their present
form they are intended only for continuations arising from
CONDitionals, with no particular attempt at generality.

13.2.15 Sear-hing.

The function which implements the search for solutions is #SETOF,
some of whose parameters are packaged in a list in order to stay
under the limit of six arguments for SUBRs imposed by the
compiler.
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13.2.16 Search-interface.

The functions in this module implement the user's interface to
#SETOF. The function FIND which is included here is available
for users, but not considered to be part of the "official"
interface.

13.2.17 Printing.

The functions in this module print assertions in various forms.
Some of these provide for a "quick" mode of printing which may be
implemented in future versions of the system. The "public form"
of an assertion (clause) is a list

( {name} hd tll ... tlN)

A special version of GRINDEF is provided. This always prints
logic procedures in addition to the properties specified in
GRINPROPS. The function which accomplishes this is ##GRINDEF,
and is found in the file GRINFN.LSP.

13.2.18 Explaining.

These functions implement the explanation facility. Recall that
the derivations of the most recent results are recorded by #SETOF
in #DERIVATIONS, the template used in *TEMPLATE.

13.2.19 Editing.

The technique used to edit the knowledge base is very simple.
Having gathered up the assertions to be edited, the procedures
involved are erased from the knowledge base. When editing is
finished the remaining assertions are re-inserted into the
knowledge base. While this is inefficient in many respects, it
seems to work well enough for the present.

13.2.20 Saving & Restoring.

The files written by SAVE and read by RESTORE (or LOADLOGIC) have
the form

FACTS-ASSERTED assertions END-OF-FILE

where 'assertions' consists of assertions and declarations in the
form typed to FACTS, without sugar. These programs include some
provision for a "quick" mode and for the inclusion of denials --
facilities which have not thus far been implemented.

- 13-10 -



13.2.21 Control.

Those control functions which simply toggle the value of a global
identifier are implemented using #FLAGONOFF. Those which control
the special #RESLOGIC functions use #FUNONOFF.

13.2.22 System Initialization.

This module contains those initialization functions which were
not included in earlier modules. Note that the character tables
are adjusted so that "1" is treated as a letter, rather than
escape.

13.2.23 Miscellaneous.

The remaining functions implement some further means for access
to the knowledge base together with a few arithmetic operations.
Note that the top-level HELP message is just the value of the
identifier HELP, and can thus be erased by negligert users.

13.3 SYSTEM BUILDING.

In this section we shall explain the way in which LOGLISP is
represented as a collection of files and discuss the broader
issues of system building. Details may be obtained by reading
the MIC (Macro Interpreted Command) files which are used to
compile, build, and run the system.

13.3.1 Files.

The files which constitute the "sources" for LOGLISP are

LOGFNX.LSP The bulk of the system functions
LOGFNX.DOC On-line documentation for these
LOGFNX.PRG Combined listing of functions and documentation
LOGFNX.LAP Compiled version of LOGFNX.LSP
IFCFNX.DOC On-line documentation for interface functions
ULTMAC.LSP MACRO version of #ULTX
ULTFXP.LSP FEXPR version of #ULTX
GRINFN.LSP Special version of GRINDEF (##GRINDEF)
LOGMAC.LSP MACROs from LOGFNX which are included at run time

The user interface functions are documented in LOGFNX.DOC as well
as IFCFNX.DOC. Besides these there are some utility files and
the documentation package.

DOC.LSP Documentation package (with documentation)
DOC.LAP Compiled form
INIT.LSP Initialization file for LISP
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CMPUTL.LSP MACRO definition utilities
DEVFNX.LSP System development aids

The documentation package and CMPUTL.LSP are included in the
run-time system, which is

LOGLSPSHR Sharable high-segment (includes LISP)
LOGLSP.LOW Low segment

A number of MIC procedures are provided with the system. These
are

LOGLSP.MIC Runs system
LOGLSI.MIC Runs interpreted form of system
LOGLSC.MIC Runs compiled form from LAP file
LOGBLD.MIC Builds image files
LOGLST.MIC Prints source listing of LOGLISP
LSPCMP.MIC Compiles LISP programs

LOGLSP.MIC is installation dependent, in that it contains the
full file specification for the image files LOGLSP.SHR,
LOGLSP.LOW. The others expect all relevant files to be on DSK:,
except the LISP system is presumed to reside on SYS:. We should
emphasize that these procedures are intended for use by system
developers, except, of course, LOGLSP.MIC.

13.3.2 The Manual.

This manual is provided in the files

FRONT.MEM Title page - contents
LOG1.MEM Chapter 1

LOG13.MEM Chapter 13
LOGA.MEM Appendix A

A complete copy of the manual can be printed with LOGMAN.MIC,
also included.
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APPENDIX A

AN INTERACTIVE DOCUMENTATION FACILITY

The file DSKC:DOC.LSP[2461,21] (compiled version DOC.LAP)
contains a collection of LISP programs which define a simple
facility for documenting LISP systems on-line. The method used
is to associate "documentation" with identifiers under the
property DOC. This documentation may be any list structure
whatever, although the package supports certain elementary
conventions regarding function documentation. There are, in
addition, a few functions which assist in the preparation of
nicely formatted files with function definitions and
documentation.

A.1 FUNCTIONS FOR DEFINING DOCUMENTATION.

The package contains functions for defining documentation
properties in general, as well as special functions for function
documentation.

(DD "I" "DOC") [FEXPR]

Inserts documentation (DOC) on the property list of the
identifier I. DOC may consist of several items, as in
(DD FOO (This is a) (silly example)), which results in
((This is a) (silly example)) as the documentation of FOO.

(DFD "F" "DOC") [FEXPR]

Inserts documentation for a previously defined function F. DFD
automatically inserts the argument list and function type (EXPR,
FEXPR or MACRO) at the front of the documentation so as to
produce standard function documentation. As with DD, DOC may
consist of several items. DFD returns the function name F. If F
is not, in fact, a function, DFD acts like DD, but returns the
list (DD F) to inform the user of its action.

The style of documentation produced by DFD is considered standard
in the system, and three functions are provided for defining
functions and documentation simultaneously.
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(DDE "FN" "ARGS" ("DOC") "BODY") [FEXPRI

Defines an EXPR named FN with argument list ARGS, documentation
DOC and body BODY, which is typed just as for DE. The
documentation must be a single item (usually a list) as signified
by the parentheses above, to which the argument list and type
(EXPR) will be added automatically. DDE actually uses DE to
insert the definition, so newly defined functions are added to
the file SAVE. DDE returns FN, or (FN REDEFINED), if FN was
previously defined to be a function.

(DDF "FN" "ARGS" ("DOC") "BODY") [FEXPRI

Is like DDE, except that the function thus defined is of type
FEXPR.

(DDM "FN" "ARGS" ("DOC") "BODY") [FEXPR]

Is like DDE, except that the functions thus defined is of type
MACRO.

A.2 FUNCTIONS FOR PRINTING DOCUMENTATION.

(DOC "I") [FEXPR]

Prints the documentation for I (if any) in DEFPROP format, using
SPRINT to obtain nice layout and indentation. DOC returns NIL.

(GRINDOC X) [EXPR]

Controls the printing of documentation by GRINDEF. (GRINDOC T)
enables printing of documentation, while (GRINDOC NIL) disables
printing of documentation. GRINDOC returns the new value of
GRINPROPS, which is the list of properties printed by GRINDEF.

A.3 FUNCTIONS FOR EDITING DOCUMENTATION.

The editing functions are akin to EDITF in that editing commands
may be included in the function call or typed outside the call on
the same line, if one wishes.

(EDITD "I" "COMS") [FEXPR]

Edits the documentation of I. COMS is an optional sequence of
editing commands. EDITD returns I.

- A-2 -



(EDITFD "FN" "COMS") [FEXPRj

Edits the documentation and definition of the function FN
simultaneously as a list having the form

(DOC documentation type definition)

which looks like a segment of the property list of FN. Although
this list can be edited any way one likes, the type of the
function (as specified in its property list) can not actually be
changed, nor can the documentation property be removed. Upon
exit from the editor the function definition and documentation
are checked to insure that arguments and type agree and, if not,
a message to that effect is printed and one is returned to the
editor. If FN is not documented EDITFD prints =EDITF and runs
EDITF. If FN is documented but not a function, it prints =EDITD
and runs that function. EDITFD returns FN.

A.4 FUNCTIONS FOR GENERATING FILES.

The functions described below provide means for writing files
with linelengths specified at the terminal. This is particularly
useful when generating files of LISP function definitions which
are to be incorporated in papers typed on pages of normal size.
These functions follow certain common conventions. In each case,
the file generated by the function is written on device DSK:, and
the name of the file is the first argument. The name should be
either an atom or a dotted pair. The linelength with which the
file is written is the second argument and should be an integer,
usually in the range 60 to 124.

(WRITEPROGS "FILE" "LENGTH" "FLNM") [FEXPR]

GRINDEFs the identifiers which are MEMBERS of FLNM on FILE with
linelength LENGTH. MEMBERS of FLNM which are not identifiers are
simply PRINTed. FLNM should be a file name defined for BUILD, as
might be constructed with ADDTO. The properties recorded in the
file are determined by the current value of GRINPROPS, as always.
The resulting file can be read with DSKIN, but does not include
the sort of file definition information written by BUILD.
WRITEPROGS returns FILE.

(WRITEDOC "FILE" "LENGTH" "FLNM") [FEXPR]

Generates a file much like WRITEPROGS, except that only DOC
properties are recorded in the file.
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(WRITEANY "FILE" "LENGTH" "OPERATION") [FEXPR]

Generates FILE with linelength LEN TH, the contents of the file
being written by the evaluation of OPERATION. OPERATION may be
any expression whatever whose evaluation results in printing.
The local variables of WRITEANY all have the form #...#, so these
are unlikely to interfere with global variables appearing in
OPERATION. WRITEANY returns the value of OPERATION.

A.5 HINTS ON USING THE PACKAGE.

Since SPRINT does not work particularly well on long lists of
atoms, it is usually wise to divide narrative sections of the
documentation into lists of manageable length. The next section
gives a number of examples.

When developing a collection of LISP programs it seems most
convenient to perform (GRINDOC T), so that BUILD will write
documentation in the files it creates, which documentation will
then be retrieved when the resulting files are read with DSKIN.

One may not wish to include all the documentation in a
"production" system, since this could require a good deal of
storage. In such circumstances one should BUILD after (GRINDOC
NIL) and write a separate documentation file using WRITEDOC.
Large linelengths are suggested for files not intended for
publication. One can imagine other ways of using the package as
wel 1.

Files containing documentation may be compiled ir the usual way,
4i in which case the documentation will appear in the LAP file,

where it can be read by DSKIN. Files written by WRITEPROGS or
WRITEDOC are likely to be incorporated in RUNOFF source files.
RUNOFF will produce the expected result if the text from the
program file is preceeded by the command

.nf.ts 8,16,24,32,40,48,56

One will usually need to insert skip commands in place of the
blank lines appearing in files written by these programs. Beware
too of characters such as '#' which are of special significance
to RUNOFF, and also the ^Y which PRINT generates when atoms cross
the end of a line.
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A.6 THE PACKAGE.

We give now a listing of the functions in the file DOC.LSP, along
with the documentation which is associated with those functions
(and included in DOC.LSP). This listing was generated by
performing

*(GRINDOC T)

(DOC EXPR FEXPR MACRO VALUE SPECIAL)
*(WRITEPROGS (DOC.TXT) 60 DOC)

(DOC . TXT)
*

(FSUBR (DD DFD DDE DDF DDM DOC EDITD EDITFD WRITEPROGS WRITE^Y
DOC WRITEANY))

(DEFPROP DD
(LAMBDA CL)
FEXPR
(DD "I" "DOC")
(Define documentation for I))

DOC)

(DEFPROP DD
(LAMBDA (L) (PUTPROP (CAR L) (CDR L) (QUOTE DOC)) (CAR L))

FEXPR)

(DEFPROP DFD
(LAMBDA(L)
FEXPR
(DFD "F" "Documentation")
(Attaches documentation to function F under property DOC)
(Args and type (EXPR FEXPR MACRO) included automatically)
(Same as DD if F not a function))

DOC)

(DEFPROP DFD
(LAMBDA(L)
(PROG (FD FT)

(SETQ FD (GETL (CAR L) (QUOTE (EXPR FEXPR MACRO))))
(COND

((NULL FD)
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(RETURN
(LIST (QUOTE DD) (APPLY# (FUNCTION DD) L)))))

(SETQ FT (CAR FD))
(SETQ FD (CADR FD))
(PUTPROP
(CAR L)
(CONS (QUOTE LAMBDA)

(CONS (CADR FD) (CONS FT (CDR L))))
(QUOTE DOC))
(RETURN (CAR L))))

FEXPR)

(DEFPROP DDE
(LAMBDA(L)
FEXPR
(DDE "FN" "ARGS" ("DOC") "BODY")
(Define EXPR FN with documentation DOC)
(DOC is one list; args and type are automatic)
(BODY as for DE))

DOC)

(DEFPROP DDE
(LAMBDA(L)
(PROG (FN ARGS DOC BODY R)

(SETQ FN (CAR L))
(SETQ ARGS (CADR L))
(SETQ DOC (CADDR L))
(SETQ BODY (CDDDR L))
(SETQ R

(APPLY# (FUNCTION DE)
(CONS FN (CONS ARGS BODY))))

(PUTPROP
FN
(CONS (QUOTE LAMBDA)

(CONS ARGS (CONS (QUOTE EXPR) DOC)))
(QUOTE DOC))

(RETURN R)))
FEXPR)

(DEFPROP DDF
(LAMBDA(L)
FEXPR
(DDF "FN" "ARGS" ("DOC") "BODY")
(Define FEXPR FN with documentation DOC)
(DOC is one list; args and type are automatic)
(BODY as for DF))

DOC)
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(DEFPROP DDF
(LAMBDA(L)
(PROG (FN ARGS DOC BODY R)

(SETQ FN (CAR L))
(SETQ ARGS (CADR L))
(SETQ DOC (CADDR L))
(SETQ BODY (CDDDR L))
(SETQ R

(APPLY# (FUNCTION DF)
(CONS FN (CONS ARGS BODY))))

(PUTPROP
FN
(CONS (QUOTE LAMBDA)

(CONS ARGS (CONS (QUOTE FEXPR) DOC)))
(QUOTE DOC))

(RETURN R)))
FEXPR)

(DEFPROP DDM
(LAMBDA(L)
FEXPR
(DDM "FN" "ARGS" ("DOC") "BODY")
(Define MACRO FN with documentation DOC)
(DOC is one list; args and type are automatic)
(BODY as for DM))

DOC)

(DEFPROP DDM
(LAMBDA(L)
(PROG (FN ARGS DOC BODY R)

(SETQ FN (CAR L))
(SETQ ARGS (CADR L))
(SETQ DOC (CADDR L))
(SETQ BODY (CDDDR L))(SETQ R
E (APPLY# (FUNCTION DM)

(CONS FN (CONS ARGS BODY))))
(PUTPROP
FN
(CONS (QUOTE LAMBDA)

(CONS ARGS (CONS (QUOTE MACRO) DOC)))
(QUOTE DOC))

(RETURN R)))
FEXPR)
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(DEFPROP DOG
(LAMBDA(L)
FEXPR
(DOG "I")
(Prints documentation of I in DEFPROP format if defined))

DOG)

(DEFPROP DOG
(LAMBDA(L)
(GOND
((GET (CAR L) (QUOTE DOG))
(PRINC (TERPRI (QUOTE /()))
(PRINi (QUOTE DEFPROP))
(PRING (QUOTE I ))
(PRIN1 (CAR L))
(SPRINT (GET (CAR L) (QUOTE DOG)) 2.)
(PRINi (TERPRI (QUOTE DOG)))
(TERPRI (PRING (QUOTEI)))

NIL)
FEXPR)

(DEFPROP GRINDOC
(LAMBDA(X
EXPR
(X :Add DOG to GRINPROPS)
((NOT X) :Delete DOG from GRINPROPS)
(Returns new value of GRINPROPS))

DOG)

(DEFPROP GRINDOG
(LAMBDA(X)
(COND (X (GOND

((NOT CMEMQ (QUOTE DOG) GRINPROPS))
(SETQ GRINPROPS (CONS (QUOTE DOC) GRINPROPS))))

GRINPROPS)
(CSETQ GRINPROPS (REMOVE (QUOTE DOG) GRINPROPS)))))

EXPR)

(DEFPROP EDITD
(LAMB DA(L)
FEXPR
(EDITD "I,, "COMS"1)
(Edits documentation of I)
(No constraints))

DOC)
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(DEFPROP EDITD
(LAMBDA(L)
(EDITE (GET (CAR L) (QUOTE DOC)) (CDR L) (CAR L))
(CAR L))

FEXPR)

(DEFPROP EDITFD
(LAMBDA(L)
FEXPR
(EDITFD "FN" "COMS")
(Edits combination of function and documentation as)
(DOC documentation type body)
(Insists that documentation agree with function))

DOC)

(DEFPROP EDITFD
(LAMBDA(L)
(PROG (FN DOC DEFN LST)

(SETQ FN (CAR L))
GO (SETQ DOC (GET FN (QUOTE DOC)))

(COND
((NULL DOC) (PRINT (QUOTE =EDITF))

(RETURN (APPLY# (FUNCTION EDITF) L))))
(SETQ DEFN (GETL FN (QUOTE (EXPR FEXPR MACRO))))
(COND
((NULL DEFN) (PRINT (QUOTE =EDITD))

(RETURN (APPLY# (FUNCTION EDITD) L))))
(SETQ LST

(LIST (QUOTE DOC) DOC (CAR DEFN) (CADR DEFN)))
(EDITE LST (CDR L) FN)
(COND
((NOT

(AND (EQUAL (CADR DOC) (CADR (CADR DEFN)))
(EQ (CADDR DOC) (CAR DEFN))))

(PRING
(TERPRI
(QUOTE
"Documentation and function do not agree")))

(GO GO)))
(RETURN FN)))

FEXPR)

(DEFPROP WRITEPROGS
(LAMBDA (F).
FEXPR
(WRITEPROGS "FILE" "LENGTH" "FLNM")
(GRINDEFs all atoms which are MEMBERS of FLNM on DSK:FILE)
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(PRINTs non-atomic MEMBERS of FLNM)
(Linelength given by LENGTH)
(FLNM should be a filename defined for BUILD))

DOC)

(DEFPROP WRITEPROGS
(LAMBDA(F)

(PROG (OLDC LWB L)
(EVAL

(LIST (FUNCTION OUTPUT)
(QUOTE WRITEPROG)
(QUOTE DSK:)
(CAR F)))

(SETQ OLDC (OUTC (QUOTE WRITEPROG) NIL))
(SETQ LWB (LINELENGTH NIL))
(LINELENGTH (CADR F))
(SETQ L (GET (CADDR F) (QUOTE MEMBERS)))

LOOP (COND
(L (COND ((ATOM (CAR L))

(EVAL (LIST (QUOTE GRINDEF) (CAR L))))
((TERPRI (PRINT (TERPRI (CAR L))))))

(SETQ L (CDR L))
(GO LOOP)))

(LINELENGTH LWB)
(OUTC OLDC T)
(RETURN (CAR F))))

FEXPR)

(DEFPROP WRITEDOC
(LAMBDA(L)
FEXPR
(WRITEDOC "FILE" "LENGTH" "FLNM")
(Prints documentation for all atoms which are MEMBERS)
(of FLNM on DSK:FILE with linelength LENGTH)
(FLNM should be a filename defined for BUILD))

DOC)

(DEFPROP WRITEDOC
(LAMBDA(L)
(PROG (OLDG)

(SETQ OLDG GRINPROPS)
(SETQ GRINPROPS (QUOTE (DOC)))
(APPLY# (FUNCTION WRITEPROGS) L)
(SETQ GRINPROPS OLDG)
(RETURN (CAR L))))

FEXPR)
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(DEFPROP WRTTEANY
(iAMBDA (#F#)
FEXPR
'WRITEANY "PfILE" 11 LENGfH1" ,OPERATION")
(Performs OPERATION with output directed to DSK:FILE)
(Linc:legti LENGTH during operation)
(Returns result of operation))

DOC)

(L)EFPRC6P WRIrEANY
(LAMBDA ( hF ;)
,FROG (#nfLDC# #LWP.# #LWBl #L# #FILE# #PF#)

(SETQ #FILE# (CAR #F#))
(SETQ #LW!B# (CADR #F#))
(SETQ #PF# (CADDR #F#))
(EVAL
(LIST (FUNCTION OUTPUT)

(QUOTE WRITEPROG)
(QUOTE DSK:)
#FILEW)

(SETQ #OLDC# (OUTC (QUOTE WRITEPROG) NIL))
(SETQ #LWA# (LINELENGTH NIL))
(LINELENGTH #LWB#)
(SETQ #L#t (EVAL #PF#))
(LINETENGTH #LWA#)
(OUTC 1OOLDC# T)
(RETURN #L#)))

FEXPR)
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