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ABSTRACT

The utility of radar images with respect to trained image inter-

preter ability to identify, classify and detect specific terrain features

(linear, natural area, complex area features, and individual man-made

features) was qualitatively determined. Further, radar images were

evaluated with respect to their utility for determining vehicle movement

potential and the level of activity within the test areas. Because there

are no physical laws governing the relationship between image quality and

measurable image characteristics, signal-to-noise ratio, dynamic range,

image bandwidth, geometric fidelity and root-mean-square error, a second

order linear statistical model was assumed. An experiment was designed

and conducted to estimate the coefficients of the model given each

image application. The result of this analysis was that statistically

significant models were obtained to relate the measured image properties

to the interpreters' ability to analyze linear features and to evaluate

the utility of radar images for vehicle movement potential and activity

level. Further, it was found that the relative importance of the measured

image properties with respect to image utility changed with image applica-

tion. This study has provided useful information as to how certain image

characteristics relate to radar image utility as a function of several

image applications.
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1.0 INTRODUCTION

The human thought processes involved in the interpretation of an

image field I(x,y), which may have been generated by any one of several

types of imaging devices (for example, an aerial photography camera, an

imaging radar, an infrared scanner), are infinite in variety. The inter-

pretation rules which each of us have stored mentally differ according

to our past experiences and to our own distinct methods of dissecting

and analyzing visual material. There is some consistency, however,

among human judgments of image quality and interpretability (especially

for photographs).

The goal of a quality measure is the evaluation of the behavior

of an imaging system in as concise terms and in as few parameters as is

possible. Quality metrics may be used by system designers or by the

image user; the former is knowledge,.'i about the individual components

of the sensor but may not think of the system output in terms of its

images while the latter knows his application's needs, so he knows in

image terms what he wants to get out of the system. The need for quality

metrics which one can quickly reference increases greatly with increased

complexity of the system (e.g., more lenses, mirrors, signal processing

filters, and so forth).

The notion of an image quality measure is especially appealing for

radar system designers because one finds that the thought processes in-

volved in designing an imaging radar (real or synthetic aperture) can

tend to exclude in-depth image application considerations. Worries about

power consumption, source stability, antenna cross-polarization levels,

etc., can rapidly overwhelm the design engineer leaving the "goodness"

or utility of the ultimate product, the images to chance. Thus the



primarily mathematical nature of his task and the size of his task may

preclude learning very much about radar imagery interpretation.

Radar image quality metrics which relate to his choice of design para-

meters may help fill a gap in the range of experience. Quality measures

also can help image users who should be instrumental in mission planning.

Though there is a substantial amount of literature concerning photo-

graphic image quality measures (e.g., Pratt, 1978; Linfoot, 1960), only

a few are applicable to the radar situation. Quite different kinds of

information are conveyed by the photographs and the radar images as

they employ disparate spectral bands. We specifically consider active

microwave sensor images in this paper, for they are so distinct by nature

of the process by which they are formed that quality measures derived

for incoherent optical systems do not suffice. The basic discrepancies

between the two image types arise from the varying degrees of illumina-

tion coherence and from geometrical and other spectral considerations.

As an example of the causes of geometrical differences, the radar may

consist of a monostatic arrangement while the illumination source and the

sensor for the photograph are usually spatially separated. Additionally,

the coherent imaging systems are often modeled as multiplicative noise

processes, while incoherent image systems are often modeled with the

noise being additive in effect. The speckle common to both coherent

optical and radar systems dictates that the nature of quality measures

and for example, image processing algorithms, should be different for

radar images and ordinary incoherent optics photographs.

The development of relationships between the radar image metrics

(e.g., dynamic range, signal-to-noise ratio, mean square bandwidth, etc.)

and the image utility for several applications is a monumental task.
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The experimental design which was adopted by the authors called for a

number of trained radar/photo interpreters, numerous image metrics and

image applications to achieve statistically significant results. In order

to handle the volume of data collected and yet to maintain visibility of

any group of variables of interest, response surface procedures were

applied to the data analysis (Myers, 1971). This methodology allows one,

for instance, to arrange in order of importance the image metrics given

an application (assuming that the necessary supporting data were collected).

Prior to presentation of these results we will discuss first the general

principles of radar image formation and second, we will give a review of

previous radar image quality studies.

It is hoped that the new results documented here will be not only

interesting but also useful for those scientists and engineers whose tasks

relate to imaging radar. The images of such devices are truly fascinating

as they present a different way of "looking" at terrain, whether it is a

portion of the surface of the Earth or of the surface of Venus. Under-

standing the information in the radar image and knowing how to design the

active microwave system to gather relevant information are significant

achievements; these were our goals at the onset of this study.

1.1 Background

The organization of the following sections is intended to stress

image evaluation in the SAR context. Previous quality-interpretability

work for SAR is discussed, along with the coherent speckle literature,

and then work in the processing of images, containing signal dependent

noise is covered. Analogous quality/interpretability work in the optical

systems literature is reviewed. Test target considerations for image
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evaluation are briefly described. But first it is worthwhile to talk

about the concepts of image interpretability and quality for radar

imagery.

1.1.1 The Notions of Quality and Interpretability for SAR

When one speaks of quality and interpretability investigations,

it is obvious that even the definitions of these two terms are uncer-

tain. Here several thoughts on the distinctions between the two, and

also on their relations to one other, perhaps measurable, physical

features or quantities are discussed. Pratt (1978) and Haralick

(1978) have also considered the terminology difficulties implied

here, in the context of digital image processing.

Foremost, we equate SAR Image quality and interpretability to image

fidelity and intelligibility, respectively, following Pratt's (1978)

notation. The thoughts expressed below represent our opinions on the

term quality (fidelity):

(1) Image quality cannot be consistently, directly, equated

to interpretability (intelligibility).

(2) A high quality SAR system produces an output (an image)

which selectively mimics the input (just prior to the

antenna) in its spatial or spatial frequency structure;

processing such as azimuth correlation, range compression,

and speckle reduction are necessary in the production of an

intelligible (to a human) scene.

(3) Geometric fidelity is important for a quality image or imaging

sensor (e.g., since processing of a slant range radar image

is based partly upon the assumption of range perspective, then

it is important for the image to conform to these expectations).
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(4) Quality measures do not rely on the previous existence of

mental matched filter for objects in the scene (Barnard, 1972).

(5) Quality does not particularly relate to size, shape, or

orientation of features in the target scene.

(6) Question - Is the quality relatable (analytically or empirically

to the complexity of the restoration filter which takes the

scene back to the "ideal image"?

(7) Question - How is quality (fidelity) related to the information

content?

(8) A fidelity measure can be applications independent, as

opposed to an interpretability measure.

(9) Existing quality measures can generally be broken into the

univariate and bivariate types; the former consists of

measurements made on a single image field while the latter

involves numerical comparison between a pair of images

(e.q., between the test and the "ideal" image).

Image interpretability or intelligibility can be understood to be

distinct from quality (fidelity) in lignt of the following facts (and

opinions):

(1) Interpretability is related to the human observer's previous

experience (with SAR imagery); the existence of a mental

matched-filter is important (Barnard, 1972).

(2) Geometric fidelity is less critical in general for intelli-

gibility as opposed to fidelity measures (for modest

geometric warpings).

(3) Interpretability can be aided in some instances by stereo-

scopic or other special viewing capabilities.
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(4) Interpretability can be improved by appropriately designed

enhancement or restoration filters.

(5) Intelligibility can be improved by scale changes and scene

rotations (Barnard, 1972).

(6) Object recognition, related to interpretability, involves a

time element (unlike quality).

(7) Interpretability is related to the image coding scheme; for

instance, negating the gray scale coding can impede recogni-

tion, compressing the dynamic range in the image can lead to

poorer interpretability, etc.

(8) Question - How is the level of interpretability related to the

the complexity of a restoration filter?

(9) Question - How are information content and image interpret-

ability linked? A low information content scene can be

highly interpretable and yet a great deal of information

content does not guarantee a large "interpretability" factor.

(10) Definitely, interpretability is applications-dependent.

These remarks have been introduced to preface the following review

of literature on radar and optical quality and interpretability re-

search. One notices that the interchanging use of these terms is wide-

spread and little care is generally taken to define the concepts

before pursuit of the various measures.

1.1.2 Previous Quality and/or Interpretability Work for
Radar Imagery

The unclassified literature has been reviewed and a number of publi-

cations regarded to be significant will be discussed. In all cases but

two, radar imagery examples did not accompany the published versions of
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the quality and/or interpretability studies. Moore (1979) presented

various examples of radar imagery, and R.L. Mitchell (1974) employed

radar speckle simulations for his experiments.

W.A. Penn (1962) authored one of the earliest unclassified papers

on signal fidelity for radar imagery. His discussions center upon

"background" interference between output signal cells, multiplicative

(fading) noise, and processing and display nonlinearities. Incoherent

(post-detection) integration is introduced to lessen the fading variations.

Through a heuristic argument, Penn suggests a measure of the radar map

"quality" to be the product of P.Q where P is the number of samples

averaged and Q is the average "signal-to-correlation noise." In Penn's

notation, the correlation noise is larger than the amplitude of the noise

by a factor of the time bandwidth product. Simulations employing aerial

photographs were used for demonstration and for empirical derivation of

the P.Q conclusion.

D.G. Corbett et al. (1964) developed a recognition metric for radar

imagery target features. It was assumed that the inverse of the time

taken (by equally trained observers) to reach a correct decision could

be functionally related to size of the target and a number of trans-

missivity measures of the target and its background. A disappointingly

low correlation coefficient was observed between the developed prediction

equation and the target-recognition times when applied to new radar imagery

(similar to that employed in the study).

R.O. Harger (1973) performed a theoretical study of SAR imagery that,

although different from all the other interpretability studies mentioned

herein, is included for completeness. While most SAR systems are designed

around impulse response criteria, Harger suggests a design to minimize

the probability of classification error (it is assumed that the field



to be classified is a known region whose boundaries are predetermined).

Given the SAR system, noise and reflectivity density spectral density

models assumed, the decision problem set up by Harger is relevant for a

"Gaussian signal in Gaussian noise." The solution for the optimum clas-

sification role involves a nonlinear filter which includes a matched

filter (i.e., the solution for impulse response design criteria).

R.L. Mitchell (1974) presents an interesting simulation experiment

in which he begins with a cross on a dark background to study sensi-

tivity of the SAR image with respect to resolution and averaging. The cross

consists of many pixels whose individual grey shades are taken from sample

functions of random distributions, e.g., Rayleigh, and log-normal for

several different variances. Mitchell then varies the incoherent averaging,

background noise, and film response. His conclusion is that image "quality"

(which he is equating with the recognition of the cross shape) varies

most directly with the image resolution. His results, though interesting

and useful, would have been more realistic if the backgrounds had also

been radar speckle patterns (from similar distributions, different means,

etc.) rather than constant tone.

R.H. Mitchel (1974) developed a SAR image quality analysis model

in his Ph.D. dissertation (University of Michigan.) His thinking is

strongly influenced by the thorough review he presents on optical image

quality measures. The "Radar Threshold Quality Factor" developed by

Mitchel incorporates measures of the impulse response main lobe width,

the signal-to-noise ratio, noncoherent integration, and human visual

system factors. The RTQF is assumed to have a Gaussian shaped impulse

response (effects of impulse response sidelobes are not included). Addi-

tionally, the clutter model employed is additive rather than multiplica-

tive for the sake of mathematical tractability. Validation of the trends
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predicted by the RTQF was accomplished by experimentation with a radar

holographic viewer built by the author.

G.R. DiCaprio and J. Wasielewski (1976) performed an interpreter

study using conventionally processed and incoherently degraded SAR

imagery. Of interest was the target detection accuracy for the test scenes

and the times required to perform the identifications. The conclusions

of the authors were that the incoherent degradation allowed the radar

interpreters to detect targets significantly faster and, secondly, that

if more supporting ground truth data had been available the noncoherent

degradation would have improved detection accuracy also.

D.W. Craig and M.L. Hershberger (1977) also reported results of

an interpreter study. Employing trained observers, they investigated

the effects of radar sensor, display, and mission variables on tactical

target acquisition performance. Serious criticism of their results arises

because target types, area coverage and display quality were dissimilar

for the high/low resolution imagery cases. However, simply restating

their conclusions, for their tasks and experimental set-up, higher resol-

ution imagery performed superiorly to lower resolution imagery in all tests.

R.K. Moore (1979) performed a sensitivity study to determine the effects

on radar image interpretation of spatial resolution, using non-square

pixels, and noncoherent averaging. This research will be discussed later

in this document.

1.1.3 Radar Speckle and Multiplicative Noise Literature

In attempts to analytically or empiically deal with SAR image

quality, interpretability, classification, edge detection, and so on,

many investigators have performed research on the effects of the coherent

nature of SAR imagery. The importance of speckle modeling has become

apparent as techniques of wide band nntical imace r,--ssing (which do

Qi



not have to deal with small signal-to-noise ratios) have failed to be

applicable to SAR imagery (e.g., especially edge detection algorithms).

It seems particularly relevant to review the literature in this field

in light of the fact that SAR impulse response quality criteria are

deterministic in nature and yet random SAR speckle is recognized as a

primary degradation factor in many interpretability studies.

J.W. Goodman (1976) presents scrne of the funda!-ental cha- acter-

istics of speckle and derives the exponential probability density function

for certain speckle situations. He also demonstrates the important fact

that addition of M uncorrelated speckle patterns on an intensity basis

improves viewing and reduces the image contrast (a/p) by /AT4. Time, space,

frequency, or polarization diversity is utilized to obtain the independent

speckle patterns, as is well known in SAR theory and operation. A good

bibliography of historically interesting and contemporary articles con-

cludes this paper.

A. Kozma and C.R. Christensen (1976) illustrate an experiment in

which both a grating and a continuous tone image were illuminated

coherently and incoherently. Subjective analyses showed that the speckle

masks spatial information present in the image and has the effect of

increasing the minimum resolution patch that can be obtained with a given

aperture area. For imaging the grating (bar targets) it was determined

subjectively - that the _aperture of the coherent system needed to be

about twice as large as that for an equivalent incoherent illumination

system to obtain equal resolution. For the continuous tone target employed,

the aperture ratios increased to approximately five. This difference

between the two target types wis hypothesized to be related to differences

in complexity of the decision process. Noncoherent addition of independent

speckle patterns to achieve a signal-to-noise ratio of about ten allowed
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the coherent and incoherent system performances to be approximately equal

as concerned apparent resolution capability. A similar result was found

for the continuous tone target (S/N 1 10). This agrees well with the

findings of Moore (1979).

J.S. Zelenka (1976) discusses the mathematics supporting a discrete

and a scanning system for SAR speckle reduction. As in many other dis-

cussions, the averaging is accomplished by processing subapertures

coherently and then adding the resulting images on an intensity basis.

The two methods described differ in that the discrete method forms non-

overlapping independent apertures while the samples are not in this sense

independent for the scanning case, though effectively there are more

samples. The conclusion of Zelenka is that the scanning processor is

more effective for speckle reduction in terms of signal-to-noise improve-

ment vs. loss in resolution given a certain resolution of the final,

output image.

Porcello et al. (1976) also treat the topic of image speckle reduc-

tion for SAR. Frequency and angular diversity are suggested in the mixed

integration processor context. A series of noncoherently averaged radar

images is presented to demonstrate improved viewing capabilities. The

same basic information presented by Zelenka (1976) is given in this

paper.

In addition to the studies of the statistical nature of coherent

speckle, several articles have been published on image processing in the

context of multiplicative noise. This research is reviewed because

speckle is a form of multiplicative noise. Whereas the authors refer-

enced thus far in this section have attempted speckle reduction at the

point in radar image formation when amplitude and phase are both control-
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lable, the next few authors' (Frost et al., 1981) works examine the case

of speckle reduction when only magnitude (no phase) data is available to

the investiqator; that is, image data (not signal film or radar holograms)

was experimented upon.

Walkup and Choens (1974) and Kondo et al. (1977) discuss image

processing and restoration by the use of a Wiener filter when the noise

process is modeled as signal-dependent (rather than being treated as

additive). The signal and noise are both considered to be wide sense

stationary random processes, with the noise spectral density assumed

known. The Wiener filter derived is non-adaptive (because of the sta-

tionarity assumptions). Experimental results indicate that after Wiener

filtering is done to estimate the signal, edge detection algorithms

applied on the output have a greater probability of representing true

boundaries, rather than false boundaries characteristically produced on

speckled, non-smoothed radar or photographic imagery. The above work

was done for restoration of images corrupted by film grain noise.

Naderi and Sawchuk (1978) report the results of running adaptive

Wiener filters on images degraded by film grain noise. The adaptive

nature of the filter is necessitated because of the nonstationarity of

the image first order statistics. The results presented demonstrate

the improvements brought about by making the Wiener filters adaptive.

Oppenheim et al. (1968) discuss nonlinear filtering of multiplied

and convolved signals to develop the "homomorphic" filter, not con-

strained by linearity assumptions, to produce an estimate of the desired

signal. The homomorphic, Wiener, inverse, and constrained least squares

estimation filters are discussed in a tutorial digital image processing

article by B.R. Hunt (1975). The interesting result of his restoration
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techniques shows the constrained least squares (CLS) filter to produce

the most visually pleasing image from a degraded version of the same

scene. Though theoretically the Wiener filter is the optimal linear

filter, Hunt hypothesizes that the human visual system transfer function

"matches" better with the output of the CLS and, thus, gives the human

observer the impression of a superiorly reconstructed scene.

Sunnarizing this section, one finds that even for the basically

"error-free" SAR system, in which fading noise is the dominant degradation

factor, extracting information from or digitally restoring the imagery can

be greatly aided by a priori knowledge of the fading statistics. Forma-

tion of noise models is an obviously important step in the design of the

restoration (signal estimation) filter. Not only should the knowledge of

speckle characteristics be applied when one develops SAR interpretability

measures, but also, techniques for speckle noise removal will have appli-

cation to correction of other types of SAR "errors". The formulation of

an image restoration technique must also enter into the quantification of

interpretability/quality measures of a SAR system degraded intentionally

in the proposed study.

1.1.4 Interpretability/Quality Literature in the Optics Field

The understanding of imaging optical and radar systems is greatly

enhanced by formation of a linear systems model (to a lesser extent

by a nonlinear mathematical model). Both types of systems (radar and

optical) have been characterized by a two-dimensional point spread

function (psf); attempts at quantifying system quality by singling out

measures of the psf have been less than successful (Brock, 1967).

The difficulties in using impulse response criteria or modulation

transfer function criteria have been discussed in the optical systems
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context by Brock (1967) and Noffsinger (1970,1971). Boiling down their

discussions to the essence, one finds that quality/interpretability

measures that do not factor in the application or the observation cir-

cumstances fail to adequately represent the system in question. Granger

and Cupery (1972) attempt to incorporate the human factor in their

article "An Optical Merit Function (SQF), Which Correlates with Sub-

jective Image Judgments." A visual system model is used to develop the

SQF. Similir visual system models are applied by Stockham (1972) in

an excellent article and in Hunt (1975). Many other references, too

numerous to mention, relevant to image quality/interpretability exist;

a good bibliography is presented in Brock (1967). Mitchel (1974)

selected several of these articles and others that he felt were pertinent

to SAR quality.

1.1.5 Data Base (Test Target) Design for Interpretability/Quality
Studies

Just as one would not test a recipe using poor quality ingredients,

one must also carefully choose test targets for system analysis. A common

mistake to be avoided in SAR image quality work is use of a test scene which

is unsuitable because of its spectral composition. For example, many

workers in the optical field have employed a tri-bar, or multiple bar

target mistakenly believing that this target models a sine wave transmit-

tance in the space domain and, thus, believing that its spectrum can be

modeled as a delta function in the spatial frequency domain (Brock, 1967).

Thus, for either simple or complex scenes the power spectra should be

known, and should be suitable for the experiment at hand. For example,

sufficient bandwidth, or "whiteness" of the spectrum of a target scenario

might be important. If the spectrum does not satisfy one's criteria, it
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can be augmented and the new scene defined by the inverse transform of the

augmented spectral version.

T.W. Barnard (1972) discusses another aspect of target selection

in his article "Image Evaluation by Means of Target Recognition." The

emphasis is not on spectral content in this case, but rather he is concerned

with providing targets to the human observers for which they already

possess mentally stored visual "matched filters." Barnard gives the

examples of the "Landolt-C," numerals, and "Sookes" targets. Similar in

nature are the vision-testing charts containing letters of our alphabet,

and those having the "E's" opening up, down, right, left. Barnard would

e.g., define as unacceptable a chart of Cyrillic alphabet characters for

the English speaking observers. This would seem to be an important con-

sideration for SAR system interpretability if only humans not familiar

with radar interpretation are available to rank or describe simulated

scenes. Pratt (1978) also discusses target scene selection.
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2.0 EXPERIMENTAL DESIGN

An experimental design in general consists of selecting the different

conditions under which observations will be obtained. Proper selection

of these conditions, i.e., fully exploring the likely range of opera-

tional conditions, is essential for efficient estimation of a relation-

ship between the experimental variables and the response. In this case

the exoerimental conditions refer to a specific level of image "quality".

Therefore, to obtain radar images with controlled levels of utility a

radar image was processed (degraded) using digital techniques. The

response in this case is the judgment of human interpreters of the

utility of the degraded radar images.

An experiment was designed to investigate the relationship between

measured image quality parameters (IQP) and image utility for several

applications. Because of the large number of data points (degraded

images) required to totally explore desired relationships it was decided

to assume that all third and higher order interactions between the IQP's

could be deleted. That is, a second order model was assumed. This

assumption has been successful in the past (Soliday, 1974; Williges,

1971; Craig and Hershberger, 1977).

Techniques outlined in Myers (1971) were used to efficiently specify

the number and level (of degradation) of the required images. A central

composite design (CCD) with uniform precision was selected. For example,

with five image metrics, 32 different experimental conditions are required.

The advantage of this approach was that the minimum number of observations

were used and that each degradation was selected so that all the data

points had uniform importance. Eight extra degraded images were added

to comprise the data set.
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Optically processed synthetic aperture radar imagery of the Roanoke,

Virginia area was obtained in the form of film positive transparencies.

The radar system was the Goodyear XA2 which has a resolution (6 dB width

of the image impulse response) of approximately 15 ft. The transmitted

carrier frequency was approximately 10 GHz and the system transmitted and

received horizontal polarizations. The parameters of the flight which

collected this imagery include a 20,000 foot altitude with a near range

distance (ground track to near range) of 8 miles and a far range distance

of 10 miles. The flight date was June 20, 1968. The scale of the re-

ceived imagery was 1:100,000. The selected imagery was digitized using

a sampling rate of 1000 pt/in.; this yields one pixel every 8.3 ft.

which is close to the required Nyquist spacing of 7.5 feet. Any aliasing

effects were thus ignored as were the effects of the sampling aperture.

Four subareas of this imagery were selected for analysis because of the

variety of targets contained therein. These scenes are shown in Figures 1-4;

Figures 1 and 2 are aerial photographs and Figures 3 and 4 are the original

radar images. The 40 test images were generated from these images. That is,

a complete data set consisted of 10 degradations of scene A, 8 degradations

of scene B, 10 degradations of scene C, and 12 degradations of scene D as

prescribed by the CCD.

Each of eight trained Army photo-interpreters (PI) was given a complete

set of 40 degraded images, a brief introduction to the experiment explaining

its goals and the interpreter's role. Also included were instructions,

questions, and interpretation guidelines. An answer sheet was provided

for each image. The answer sheet allowed each PI to rank each image

according to his ability to identify, classify, and detect specific

terrain features. For analysis the PI's responses were averaged to form

four basic response categories: (1) linear features, (2) natural area-
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extensive features, (3) complex area features, and (4) individual man-

made targets. Further each PI was asked to rank order each of the de-

graded images of each scene from best to worst, using both vehicle

movement and activity level as criteria thereby providing a fifth re-

sponse category. However, in all cases the ranking was identical for

both applications. In addition, auxiliary data concerning the target

area (e.g., maps, aerial photographs and large area coverage SAR imagery

were also provided. (See Appendix A for an interpreter package.)

In contrast to most image quality experiments, both absolute and

relative (rankings) responses for the degraded imaqes were obtained.

This permitted the investigation of the correlation between the responses

to various questions.

/
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3.0 DEGRADATION PROCEDURES

The purpose of this section is to explain the processing steps

that were performed on the digitized radar imagery to produce the

desired set of experimental conditions. That is, the digitized radar

images were processed to exhibit controlled levels of image quality.

Thus for one digitized radar image several degraded images were gener-

ated and then evaluated by human interpreters. In this section the

five processing algorithms, spatial frequency filtering, geometric

distortion, noise addition, quantizing, and spatial domain averaging,

which were used to degrade the radar images are presented.

A. Spatial Frequency Filtering

In the first processing step the digitized radar images were

ideal low pass filtered in the spatial frequency domain. The purpose

of this step was to limit the frequency content of the observed

images.

B. Geometrical Distortion

Most image quality experiments do not consider geometric fidelity.

A circularly symmetric geometric distortion was applied to the radar

images. The distortion is defined by a simple sinusoidal compression,

i.e.,

AD = sine Al (3.1)

where: Al = a change in distance in the ideal (undistorted) image

AD = a change in distance in the distorted 
image,

and
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tane = tane I + x cose Cosa2  (3.2)cose 1 cose 2

The two angles e1 and e2 are constants and vary the degree of geometric

distortion. The distance to the center of the image from the edge is

w and the distance from the center of the image to the center of Al is

x. This type of distortion is similar to both the pin-cushion distortion

and in radar, near range compression. By controlling the geometric

fidelity of the degraded images it was hoped that a relationship between

this image characteristic and image utility could be defined.

C. Additive Noise

Most image quality studies include the effect of additive white

Gaussian noise. The third degradation applied to the original scenes

was the addition of such noise. It is well known that for radar,

fading noise is more significant than receiver noise. Receiver noise

is usually modeled as being white additive while fading noise is

neither white nor additive.

D. Number of Quantized Levels

An important parameter in system design, especially when digital

processing is used or when the image data are transmitted over a communica-

tion channel, (as was the case with satellite data) is the number of

quantized levels. This should be minimized while still maintaining a

specified level of system performance. Therefore the number of quantized

levels was varied to establish a relationship between radar imaqe utility

and the number of signal levels.
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E. Spatial Domain Filtering

The final algorithm applied to the radar images was a simple

uniform weighted square spatial domain filter. The purpose of this

algorithm was to simulate various levels of system resolution.
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4.0 RADAR IMAGE QUALITY METRICS

A set of five metrics was selected. Multiple metrics were used

because it was hypothesized that no one metric could adequately characterize

the utility of radar images. These metrics were intended to be independent

measures of basic properties of radar imagery. There was one exception

to this guideline, a root mean square error criterion was applied only

because of its extensive use in other image analysis research.

Most of the quality metrics proposed in previous work can be re-

lated to one of these four metrics. For example, many researchers have

proposed some measure of sharpness, resolution, edge quality, busyness,

etc. All of these are directly related to the bandwidth of the image.

Therefore, the first of our metrics was a root mean square bandwidth.

Image quality has also been related to the dynamic range and signal-

to-noise ratios; these image characteristics were also measured in this

experiment. The last metric was specifically designed to estimate geo-

metric fidelity. As mentioned previously geometric fidelity is an un-

common parameter to be treated in image quality studies, and as such a

new metric had to be developed; this will be presented later. Each of

the metrics was adapted for use on a digital computer.

In the following paragraphs the implementaticn of each of the metrics

will be discussed.

A. Mean Square Bandwidth (MSB)

The definition of the MSB for a continuous one-dimensional signal,

f(t), is
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J 2 1F(w)j 2 dw
< 2> = - (4.1)

J F(w) 2 dw

where:

F (w) <= If(t)]

The fast Fourier transform (FFT) is required to obtain F(w) for discrete

signals. Defining F(iAw) as the FFT of f(t) then the MSB can be measured

by evaluating

N/2

Z (i-i) 2 F(iAw) 1
2

2 2 i=l
<w > : (Aw) N/2 (4.2)

~IF(iAw)12

where:

NAt

At = sample spacing

N = number of sample points

The actual metric used was v<7> , the root mean square bandwidth (R.S3).

To use the RMSB as a valid indication of changes in image bandwidth for

SAR imagery it must be assumed that the original imagery was fully fo-

cused. The RMSB is either directly or indirectly relatable to many pre-

viously proposed image quality metrics, e.g., sharpness. The above

definition is only valid for one-dimensional signals. To extend its

use to two-dimensions a further assumption was made, i.e., the MSB of a
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two-dimensional image can be approximated by the product of the RMSB in

orthogonal directions, e.g., along columns and rows of a digital image.

This is a common assumption which is particularly valid for imaging

radars (Harger, 1970).

B. Root Mean Square Error (RMSE)

The RMSE is commonly used as a quality criterion in image analysis

research, especially in the bandwidth compression area. To allow for the

comparison of the work with previous research the MSE as defined below

was measured on each degraded image.

N N

2= 1 E (I(i,j) - D(ij))2  (4.3)
N i~l j~l

where:
2
C : Mean Square Error

NxN : dimension of the image

1(i,j) : pixel value at location ij in the original SAR image

D(ij) : pixel value at location ij in the degraded SAR image.

C. Image Dynamic Range

Dynamic range is a measure of the relationships between the "minimum"

and "maximum" shades of grey (grey levels) in an images. There are dif-

ferent ways of defining both dynamic range and the minimum and maximum

grey levels. Since we are working with digital imagery it is almost a

certainty that at least one picture element (i.e., an outlying data point)

will have the absolute minimum and another will have the absolute maximum

of the allowable grey levels. A relative frequency approach is more suitable

for our problem. That is, the minimum and maximum values would be deter-
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mined a priori by establishing a fixed probability, for eAample, 5 , and

measuring the highest and lowest grey levels which enclose 90' of the

grey values. These grey levels would then becc,e effective nilimun an6

maximum values for the image.

Next we need to define how the effective values described above can

be used to measure dynamic range or the contrast of the image. Five pos-

sible contrast measures are (Pratt, 1978)

Contrast Ratio = gmax (4.4)gmin

gmx- (4i)
Contrast Modulation = (4.5)gmax + g min

Differential Contrast = gmax gmin (4.6)
gmin

Root Contrast Modulation : max ml (4.7)
Vg- _+ ,rg,
max min

and

Relative Contrast : T (4.8)

where:

gmax = effective maximum grey shade

gmin = effective minimum grey shade

gT = total possible range

Note that each of these contrast measures are dependent upon the same

image characteristics, i.e., gmin and gmax ;thus, these are two measure-

ments which are required. In our study we attempted to correlate relative
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contrast with image utility.

D. Signal-to-Noise Ratio

Signal-to-noise ratio is an extremely important image character-

istic, though its definition is entirely subject to the stochastic

nature of the particular image formation process. We have already

briefly discussed some aspects of photographic and radar image noise.

Biberman (1974) analyzed the signal-to noise ratio for electro-opti-

cal imaging systems including the display. Any solely deterministic

image quality analysis (i.e., not including random phenomena) can not

provide an adequate assessment of the image because the probability of

correctly identifying a target is strongly dependent upon the signal-

to-noise ratio. Signal-to-noise ratios can be determined either by a

rigorous theoretical analysis or by measurement; depending upon the

intended application of the imagery either technique could suffice.

For this study the signal-to-noise ratio is defined as

S/N = x 2/$2 (4.9)

where S/N is the signal-to-noise ratio and x2 /$2 is the ratio of the

square of the mean to the variance in "homoqeneous" areas. A homogeneous

area is a region in an image with stationary statistics, e.g., a wheat

field.

E. A Geometric Fidelity Measure

The geometric fidelity of the degraded radar images was disturbed

in this experiment as described previously. It was therefore necessary

to develop an algorithm which would measure the geometric distortion

introduced in these images. A heuristic approach was followed. This
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approach was based on the realization that a geometric distortion is most

visible on field boundaries and edges. Therefore, the RMS error between

an edge image generated from the original data and an edge image derived

from the degraded scene was used as a measure of geometric fidelity. The

edge images were generated in both cases by a Robert's gradient. The

Robert's gradient is defined as

Gr(Jk) = [F(j,k) - F(j+l,k+l)] 2  + [F(j,k+l) - F(j+l,k)] 2

(4.10)

The edge images generated by a Robert's gradient are multi-level images

and approximate a two-dimensional differentiation. If an edge in the

degraded image is offset (distorted) with respect to the original scene,

the RMS error will increase as the offset increases. The magnitude

of the increase is dependent upon the edge contrast. This is the

principle property any geometric fidelity measure must exhibit.
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5.0 CORRELATION ANALYSIS

An important initial question that should be addressed before any

models are estimated to predict image quality from interpreter responses

is how much variation or how consistent were the interpreters in judging

the degraded images. As a corollary to this initial question we are also

interested in identifying individual interpreters whose responses vary

significantly with respect to the other interpreters. Also as prepara-

tory to estimating the regression models an analysis to assess how strong-

ly the interpreter's responses are related to the image quality metrics

is necessary. This information was obtained through a correlation analysis

of the responses and measured data.

Define a matrix with 40 rows, one row corresponding to each degraded

image, and M columns as y. A column in y will represent the interpreter

responses, average interpreter response, degradation parameters, and

quality metrics for each of the 40 degraded images. For example, if

column i represented the fifth interpreter's responses and column j

contains the average interpreter's responses then the correlation

between the average interpreter and interpreter five, is defined as

L nki nkj
k=l

rlj (5.1)r ij (N-1) S. S.

where:

N N
Si2 1 N- 2 and Sj2 I  nk  (5.2)

k=l k=l
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where:

N
- 1 (5.3)

i =1

The above simple correlation was used to analyze the relationships between

the important elements of this study.

A. Analysis of Group and Individual Interpreters' Responses

An analysis was undertaken to determine the variation among the

interpreter responses individually and in pairs. This was possible only

because each interpreter provided five responses for each degraded image.

Four of these responses related to the interpreter's judgment of his

ability to identify, classify or detect targets in four target categories,

(1) linear, (2) natural area features, (3) complex area features, and

(4) individual man-made targets. These judgments are referred to as

absolute responses. A fifth response category was obtained by having

each interpreter rank the images from best to worst; these form a set

of relative responses.

The variation among the interpreters' responses could thus be obtained

by calculating rij between the responses of one interpreter for one cate-

gory and another interpreter for the same category. Or the internal con-

sistency of each interpreter could be evaluated by examining the rij for

an individual interpreter across two categories. In this case if rij

is near unity (e.g., greater than .8) then the interpreter's responses

for the i th and j th categories were highly correlated and thus the

interpreter was consistent in evaluating these categories. Note that

low internal consistency indicates either that the interpreter did

not judge the degraded images uniformly or that the criteria (i.e.,
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the image information used) for judging one category is unrelated to

the criteria used for judging the other category.

Table 1 contains the results of the internal consistency analysis.

Obviously from this data the internal consistency of all eight inter-

preters and the average interpreter was very low. Thus either the

interpreter did not judge the degraded images uniformly or the image

information required for each category is different.

In Table 2 the correlation between each interpreter and the "average

interpreter" is presented. If yij is the response for the jth interpreter

to the ith image then the average interpreter response is defined as

M

yj L Yij (5.4)
j=l

where:

M = number of interpreters.

Consider the correlations for categories 1 and 5. The interpreters as

a group were fairly consistent in responding to these categories as is

evident by the magnitude of the correlation coefficient. Also, these

correlation coefficients indicate that for category 1 interpreters 1,

4 and 6 were the most consistent, i.e., they were highly correlated with

the average. The same interpreters are also strongly interrelated while

the other five interpreters' responses were relatively uncorrelated.

This is found by examining the correlation coefficient between indivi-

dual interpreters. Similarly, interpreters 1, 2, 3, 7 and 8 are highly

correlated for category 5. Table 2 also indicates that the interpreters

as a group were very inconsistent in responding to categories 2, 3, and

4. This conclusion is also reached by examining the correlation between
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TABLE 1

Correlation Coefficient for Each Interpreter

Interpreter #
Category 1 2 3 4 5 6 7 7 8 Ave.

1-2 .23 .44 .40 .23 .22 .2 .32 .16 .01

1-3 .34 .25 .50 .06 .18 .12 .15 .23 .11

1-4 .75 .42 .45 .38 .11 .08 .44 .32 .39

l-R .18 .25 .19 .14 .03 .14 .47 .29 .26

2-3 .61 .09 .56 .03 .70 .31 .29 .52 .65

2-4 .40 .31 .11 .03 .54 .33 .06 .19 .30

2-R .09 .45 .02 .00 .15 .22 .18 .22 .25

3-4 .38 .45 .05 .41 .61 .07 .51 .39 .49

3-R .01 .07 .08 .40 .01 .45 .59 .39 .53

4-R .01 .10 .24 .32 .04 .55 .68 .56 .61

Ave. .30 .28 .26 .20 .26 .25 .37 .33 .36

Sd .25 .16 .20 .17 .26 .16 .20 .14 .21
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TABLE 2

Correlation of Each Interpreter With the
"Average Interpreter"

_____ _____ PI _ _ __ __

Category 1 2 3 4 5 6 7 8

1 .95 .82 .83 .93 .76 .95 .84 .80

2 .67 .69 .50 .40 .47 .52 .52 .82

3 .29 .50 .18 .79 .61 .86 .72 .51

4 .50 .64 .51 .46 .02 .69 .70 .71

5 .94 .94 .82 .44 .78 .73 .81 .88
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interpreters, i.e., for these categories the correlation coefficient

between all pairs of interpreters was low.

From this correlation analysis we expect the regressions for cate-

gories 1 (linear features) and 5 (the relative ranking) to be superior to

the estimated models for the other categories. Further, this analysis

indicates that either the interpreters did not judge the degraded images

uniformly or that the criteria for judging each category were unrelated.

B. Analysis of Interpreter Responses and Degradation Parameters and

Image Quality Metrics

To support the regression analysis the correlation between each of

the degradation parameters and image quality metrics and the interpreter

responses was examined. This analysis provided an initial indication of

the dependence of the image utility as a function of both the degradation

parameters and quality metrics.

Table 3 contains the correlation coefficient between the average

interpreter's responses and the parameters and metrics. Overall this

correlation was low which indicates that the metrics and parameters alone

do not provide in a linear sense a good indication of how the inter-

preters judged the degraded images. This reinforces our belief that a

combination of image characteristics is required to predict the utility

of radar images.

It is evident from the data that the parameters and metrics assume

different levels of importance as the response category was changed. Con-

sider the degradation parameters. All the parameters assumed approxi-

mately equal importance (as measured by the magnitude of the correlation

coefficient) for categories 5 and 4, while only quantization showed any

dependence for category 3. Similarly for the quality metrics, the S/N
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TABLE 3

Correlation Between the Average Interpreter and

the Degradation Parameters and Quality Metrics

Category

1 2 3 4 5

Degradation

Parameters:

Quantization .01 .07 .40 .38 .63

Warp .08 .13 .07 .41 .56

Bandwidth .11 .34 .08 .46 .65

Spatial Filtering .06 .27 .00 .42 .65

Noise .15 .17 .16 .38 .57

Image Quality

Metrics:

RMSE .21 .43 .17 .26 .46

RMSB .30 .45 .17 .16 .27

Geometric Fidelity .31 .40 .12 .24 .39

S/N .74 .36 .23 .25 .09

Dynamic Range .21 .22 .37 .40 .52
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appears to be dominant for category 1 while it is completely uncorrelated

for category 5. This is a significant observation in that it shows that

image characteristics do not relate to image utility independent of the

application of the data.
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6.0 REGRESSION ANALYSIS

The culmination of our research is the prediction of radar image

usefulness from measured image characteristics. In previous sections we

have discussed the design of the experiment, the measured image character-

istics and the correlation between these metrics and interpreter responses.

The purpose of this section is to present a regression analysis which was

performed to estimate the desired prediction equations. Several different

approaches were pursued to establish adequate prediction equations. Ob-

viously the first approach was to estimate a second order linear model

from the observed data. A mixed model was used, i.e., a linear combination

of image metrics, cross product terms (continuous variables) and blocking

terms (discrete variables) were combined. The inclusion of blocking vari-

ables attempts to control undesirable fluctuations in responses occurring

from different interpreters and scenes.

Another approach to finding an adequate prediction equation was to

relate the interpreter response to the spatial-grey level volume. This

metric has been proposed and applied to radar imagery in the past

(Moore, 1979). A new measure was developed (based on the SGL volume)

to incorporate the variation in dynamic range into the model. We call

this metric the modified SGL volume. The models based on both the SGL

and modified SGL volume are non-linear as will be explained later.

It is important to identify the criteria which will be applied to

judge the usefulness of the estimated models. For linear models there

are several well known criteria. For example, an F-statistic to test the

significance of the model, the sum of squares for error (SSE), and the

percentage of the total response variation explained by the model (R2.

the coefficient of multiple determination) are all commonly used for

40



linear models; all of these criteria will be reported here for each

estimated model; however, R2 will be used primarily to evaluate the

utility of the prediction equations. Unfortunately, it is difficult

to judge the quality of estimated nonlinear models as will be required

in evaluating the SGL based models. Here SSE (and estimated variance)

will serve as the judging criteria for the nonlinear models.

The analysis of the linear model will be presented next; however,

before the results are shown a short review will be included primarily

to define terms. The SGL volume criteria will then be presented, fol-

lowed by the estimated models.

6.1 The Linear Model and Results

6.1.1 Mathematical Basis

Because there are no specific physical laws governing the relationship

between the utility of a microwave image and the image characteristics, a

probabilistic model will be used to describe this relationship. Specif-

ically, the general linear statistical model will be used. This model is

written as

k

y O + + £ (6.1)
i =1

where the zi's represent in this case known image parameters (or functions

of parameters) and the si's are unknown model parameters which define the

desired relationship. This model is called "linear" because it is linear

in the unknown model parameters. Both the i's and zi's are deterministic

values; the random component, E, characterizes the stochastic nature of the

observation y. The usual assumption for this model is that E[E] = 0 and

41



the Var [ a] : 2 and that c is normally distributed.

To reduce the number of observations required to estimate the i's

we will use the following specific form of the general linear model:

k k k k

Y= YO+ y.X. + YL..4 1 LdyijX Xi (6.2)

i =1 i=l j=l i=l

i j

where:

x = i th image characteristic.

This model assumes that all three way interactions (e.g., xi xj x m terms)

do not significantly contribute to the response y and thus are neglected.

This model can also be viewed as a quadradic fit to the true higher order

surface which defines the relationships between the image parameters and

the response y.

6.1.2 Model Parameter Estimation

The model parameters are found by collecting observations and by

performing a minimum mean square estimation. This procedure is well

known but will be reviewed here.

Consider the following experiment. N observations of the utility

of image data are obtained from M different radar images each processed

to exhibit specific characteristics. Using the model presented in

Section 6.1.1 the experiment can be mathematically written as

7 Ze + E (6.3)

where:
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(Y) I=6

YN \:N

1 ZI1N ZN M

and

z k 2+ k+ 1

for the second order model described by Equation (6.2). Each Li is

assumed to be zero mean Gaussian with identical variance a further

Li is independent of Ej for all i, j, i~j. The matrix z defines the

experimental conditions under which the observations were made and note

that

Si=Ym for i = 0. . .k, m 0 . k

Bi Ym,m for i k + 1. . . 2k + 1, m = 0 . k

i :Ym,n for i = 2k + 2. . .k
2 + k + 1, m = 1.. k,

n=1 . . . k, m n (6.4)

and

Zi = xm for i = 1 . . . k, m = 0 .A

Zi = Xm2  for i = k + 1 ... 2k + 1, m = 0 ... k

Zi = x x for i = 2k + 1 . . . k2 + k + 1, m : 0 . . .k,
1 m n

n = 0 . . . k, m t n (6.5)

43



The minimum mean square estimate for the model parameters, e, is defined

by the vector which minimizes, L defined as

L = -Z )T 7 Z6) (6.6)

Following (Meyers, 1977)

L (Y - ZO)TY -(Y- Z)T Z

= VTy _ (Z 6)Ty -T 7T7  + ZBTZ

= VTy _- TZTY- VTZ B- ZT

= -T- - 2BTZT- TZTZ (6.7)

Setting !L 0 the best fit is found as
36

2Z~. _ (6.8)

solving for

(Z z) z1 2T (6.9)

The expected value of s is simply found by

E[6] = E[ (ZTZ)liz Ty]

= E[(Z TZ)- lZT (Za + 0

= E[ (ZTZ)- (Z TZa + 2T 0)

= E[(Z TZ)- l(Z TZ)a + (ZTZ)lZ T E]

= Is + E[(ZTz)-l zT E]

= B (6.10)
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And the covariance matrix of 6 is found as (Meyers, 1977)

Cov[] = E[(a - )( - B)T]

= Cov[(ZTZ)-Iz Y]

= (ZTZ)-lzTCov(Y)

= [(zTz)-1zT] a2 [I(zTz)-z T)T

= o2(ZTZ)-l (6.11)

The minimum mean square estimate (MMSE) for the model parameters has

been defined by the observation vector Y and the design matrix Z.

Further the MMSE was found to be unbiased and have a covariance

S2(ZTZ)-l The covariance matrix can be used to establish confidence

intervals for each of the model parameters and it allows the establish-

ment of a prediction interval around any observation,

There are many ways in which an experiment can be designed (i.e.,

selection of the design matrix Z) to allow efficient estimation of the

model parameters. Entire textbooks are devoted to presenting these

techniques (Cox, 1958; Myers, 1977) for a wide variety of conditions.

Therefore, a review of experimental design in general is not appro-

priate here.

6.1.3 Analysis of the Prediction Equation

The result of applying the technique described in the previous

sections is a prediction equation which relates the image parameters to

data utility for a specific application.

The data gathered in this experiment would also directly provide

information concerning the magnitude of importance of an individual

45



parameter or groups of image parameters. Analysis of variance tech-

niques are applied to obtain this information. For example, suppose

we wish to test the hypothesis that image parameter xI does not signif-

icantly affect the utility of the sensor data. To investigate this

question one would calculate the sum of squares for error (SSE) for the

original model. The SSE is defined as

N

SSE = (y. - Yi) 2  
(6.12)

i l

where:

Yi = observed response for the experimental conditions defined by

the i th row in the design matrix Z.

= estimated (using eq. (6.9)) response for the experimental

conditions defined by the i row in the design matrix Z.

Note that SSE/ (N - (Z+l)) is an estimate for a2. Next a reduced

model would be defined by deleting all xI terms in the original model.

A SSE would then be calculated using the reduced model, SSE I. The

test statistic for the given hypothesis is given by

SSE1 - SSE

9F-g 
(6.13)

SSE

N-

where:

N = number of observations

,+I = number of parameters (ai) in the original model
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g+l = number of parameters in the reduced model.

This test statistic has a F-distribution (probability density function)

with (z-g), N-(z+l) degrees of freedom. Therefore, if F>F

we reject the hypothesis that the sensor parameter x1 does not signifi-

cantly affect the utility of the sensor data with the probability of a

TYPE I error equal to a. Remember that a TYPE I error consists of

rejecting the hypothesis when it should be accepted. So if we reject,

then the data has provided strong evidence that the image x, is impor-

tant. Similar techniques can be applied to any term or group of terms

in the original model. For example, we might wish to see if all quadra-

tic terms, Xi 2, do not significantly affect the response. The motiva-

tion would be to simplify the model and thus supply more degrees of

freedom for estimating the remaining parameters. If only one parameter,

zi, is tested then the above F value is called a partial F-test value.

An overall F-test for the regression is found by testing the hypothesis

that l = = = 0. If this F-test statistic exceeds some value

specified from a selected risk level a then the regression is said to

be statistically significant. That is, the variation of the data pre-

dicted by the model is greater than would be expected by a random oc-

currence at a probability of l-a. Although a specific estimated regres-

sion equation is statistically significant it does not follow neces-

sarily that this equation is useful for prediction. One rule of thumb

has been developed (Wetz, 1964) which states that if the F-test statistic

is four times greater than Fk.(N_(,+l)),, then the regression equation

in question is satisfactory for prediction.

The coefficient of multiple determination, R, (Draper and Smith.

1966) is defined as
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N N

R2 -2 (6.14)
i=l i=l

where:

N

y 1 i (6.15)
i =l

This quantity represents the percentage of the variation in the response

data explained by the estimated model. Note that if N = 9-1, then R12 =I

because there is a perfect fit to the data; therefore, whei using R2 as

a goodness criterion care must be taken to insure that there are suffi-

cient degrees of freedom.

Sometimes it is convenient to establish a prediction interval

(Mendenhall, 1968) around a specific response. This interval would

define a range in which some future response would lie given this set

of parameters and thus provide an indication of the operational utility

of the images derived from a specific system. To develop the predic-

tion interval we will first define the set of parameters as the vector

0, i.e.,

0T : (1,x0l,...,x 0 ) (6.16)

The expected value of the response given the vector 0 is

E[Y] = oTO (6.17)

and its variance can be shown to be

Var[?] = [OT(ZTz)-lo]a2 (6.18)

The error, E, between a future response, YF' and the estimated response, y,

as defined by the estimated model parameters is
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E :YF "-Y61g

so clearly

E[E] = 0 C6.20)

Var [El = Var [yF] + Var By] - 2 Cov(yF, ) (6.21)

but the future and the estimated response would be uncorrelated yielding

Var[E] = Var[y] + Var[y F] '. "!

The variance of the future utility of the image data, YF' is assumed to be

a 2, thus

Var[E] = a2 l + 0T (ZTZ)'o] (6.23)

A prediction interval, (1 - a)%, can now be defined (remember'y and y. are

both normal so E is also normal) as

y + tN_(I.+l),a/2 S,4l + oT(zTz)-lo (6.24)

where:

S2 = estimate of a2 = SSE/N-(z+l)

tN(k+l)a/2 = the t value for N-(z+l) degrees of freedom at a/2.

The interpretation of this interval is simple; there is a (1 - a)% proba-

bility that a future measurement of the sensor's data utility will lie in-

side this interval.

6.1.4 Blccking

Additional variation in the response could be introduced into this ex-

periment from differences between interpreters and differences between the
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four scenes. A technique to reduce these variations is thus required. A

method known as blocking was employed to accomplish this task. Blocking

will be explained by the following example.

Suppose we conducted this experiment with only three interpreters and

two scenes; further, assume that only one variable (image property) is

used. The following linear statistical model is proposed:

y = a + B + 2x2 + 63x3 + '4x4 + E (6.25)

where:

y = interpreter's response

xI = image variable

x2 = 1, if the response is from interpreter #1

x2 = 0, if the response is not from interpreter #1

x3 = 1, if the response is from interpreter #2

x3 = 0, if the response if not from interpreter #2

x4 = 1, if the response if from scene A

x4 = 0, if the response is not from scene A

c = random error

Note that x2 = x3 = 0 implies that the response is from interpreter #3,

similarly x4 = 0 implies that the response is from scene B. Next con-

sider the interpretation of a2, a3 and B4. Under the assumption that

interpreter #1 and scene B was used, the model takes the form

y = 6O + + 1x + 62x2 + C (6.26)

while the assumption that interpreter #3 and scene B was used yields

y 0 + 1 1 + E . (6.27)
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Clearly the parameter 62 represents the amount that we expect the response

to increase or decrease on the average as we move from interpreter #3 to

interpreter #1. Similarly a3 represents the expected difference between

interpreter #2 and #1, while 04 is the expected difference between scene

A and B.

Next consider three specific observations.

YIB O + lY1x + IB (from interpreter #3, scene B) (6.28)

Y2B = BO + 1XI + a2x2 + e2B (from interpreter #1, scene B) (6.29)

Y3B= O + lxl+ 3 x 3 + E3B (from interpreter #2, scene B) (6.30)

Averaging over the three interpreters we obtain:

32B

+ Y =  +a X +--- +  (6.31)

YB3 £. a 0 11 3 B
i =1

where: 3

B = 'iB .  (6.32)

i=l

Similarly for scene A

YIA = O + OlXl + 04'4 
+ 61A (6.33)

Y2A = ao + six; + 2x2 + 4x4 + c2A 
(6.34)

Y3A = 'O + fiX, + 0 +3' + 3A (6.35)

and

82+83 -

YA = 00 + 61Xl + + 3 + eA (6.36)

To estimate the difference between the responses from scene A and B we

form
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YA YB a 4 +(A - B) (6.37)

where:

LA - LB = error of estimation.

The effects of BO, a and 82+B3/2 cancel out thereby reducing the error
in estimating B4 . Similar observations can be made concerning B2 and

83•

Blocking reduces the error associated with estimating the model

parameters associated the desired experimental variables caused by fluctua-

tions from different interpretations and scenes. It also allows for the

investigation of the magnitude of these fluctuations.

6.1.5 Results of the Linear Regression Analysis

A full model with 21 parameters defined by equation (6.2) and 10

blocking parameters was proposed and the minimum mean square estimation

for parameters found. Of the 10 blocking parameters, 7 account for the

eight interpreters, and 3 account for the four different scenes. A re-

duced model (one in which no blocking variables were incorporated) was

also used. The purpose of this section is to present the results of

the regression analysis and to indicate appropriate conclusions which

may be drawn from it.

Table 4 contains the coefficient of multiple determination, R2

SSE, the F-test value, and the estimated random variance for the full

and reduced models for all five response categories. Also included in

Table 4 are results from reduced models where the cross terms, xixj,
2

i~j, have been deleted and where the square terms xi and cross terms

have been removed.

The first observation to be made from this data is that the preaic-
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Table 4

Evaluation of Predicted Regression Models

Category

1 2 3 4 5

Full Model

R2  76.7 54.0 64.7 52.6 56.0

F 30.9 9.45 17.2 10.7 12.2

# Degrees of Freedom 30, 281 30, 241 30, 281 30, 289 30, 289

k,N-(+I),.05 1.52 1.52 1.52 1.52 1.52

S2  1.0 1.4 .8 1.1 .04

SSE 285.2 346.6 225.0 328.3 11.66

Reduced Model
(no blocking)

R2  58.9 17.0 9.8 15.2 53.8

F 20.9 2.6 1.6 2.7 17.4

# Degrees of Freedom 20, 291 20, 251 20, 291 20, 299 20, 299

FkN-(t+]),a 1.62 1.62 1.62 1.62 1.62

S2  1.7 2.5 2.0 2.0 .04

SEE 503.7 626.2 575.5 586.9 12.23

Reduced Model
(no blocking and no
xix3 terms)

R2  52.0 45.5

F 32.6 25.8

# Degrees of Freedom 10, 301 10, 309

Fk,N.(L+I),a 1.85 1.85

52 1.9 .047

SSE 588.6 14.2

Reduced Model
(no blocking and no

x2 , and xix terms)

R2  40.9 36.5

F 42.4 36.1

0 Degrees of Freedom 5, 306 5, 314

FkN.(t+I 2.23 2.23 I

S2 724. .0531
5E 2416.8
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tion equation is statistically significant for all response categories

when the blocking variables are included in the model. Further review

shows that response category 1 (linear features) provided the best pre-

diction equation in terms of maximum R2

However, when the blocking variables are removed only response cate-

gories 1 and 5 still produce statistically significant regression equa-

tions. Obviously most of the variation in the interpreter responses for

categories 2, 3 and 4 predicted by the full model was accounted for in

the blocking variables and not by the image metrics. This was expected

from the results of the correlation analysis, i.e., the correlation between

interpreters was low for response categories 2, 3, and 4. The interpreters

were not consistent in judging these categories and therefore a reason-

able prediction equation can not be estimated. These results also indi-

cate that reasonable prediction equations can be obtained for response

categories 1 and 5, so the rest of our discussion will only deal with

these categories. Note that this result could also be predicted from the

correlation analysis because the correlation between interpreters was

reasonably high for categories 1 and 5 and, therefore, the interpreters

were consistent in judging the images with respect to these response cate-

gories.

Conducting a hypothesis test to determine if the blocking variables

are needed we find that for category 1

SEEI - SSE 503.7 - 285.2

n-g 10
F- = 21.53 (6.30)

SSE 285.2

N-(t+l) 281
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but F(k-g),(N-(Z+l)),.05 = F10,28 1,.05  1.88. Therefore we can not reject

the hypothesis that the blocking variables are not required. This indi-

cates that there was a statistically significant difference between the

responses for various interpreters and scenes. For response category 5

the F-test value is 1.39 while F10,299 ,.05 - 1.88, therefore we can accept

the hypothesis that the blocking variables are not required for the rela-

tive ranking of the degraded images. Note that this standard hypothesis

test is constructed to provide information when the hypothesis is rejected

as with category 1. However, given the magnitude of the F-test value we

can make some comments as to how strongly we believe that the hypothesis

is truly correct. This is done by computing the probability that f < F

where f has a F-pdf with 10 and 299 degrees of freedom. If this probability

is close to 1-a then we would not feel strongly that the hypothesis is

correct; however, if P[f < F] is far from l-% then it would be reasonable

to accept the hypothesis. For this case p = P[f < F] = .81. We feel that

this is strong enough evidence to indicate that the blocking variables are

not required for category 5. Using the same approach we found that both

the cross terms xix and the squared term xi are required in the model

for both response categories.

Now that we have established the quality of the prediction equation

it is left to present the coefficient estimates and discuss the relative

importance of various model parameters. Four models, i.e., prediction

equations, will be presented for response categories 1 and 5.

Table 5 contains the F-test value for ten reduced models. These

results were generated to establish the relative importance of each of

the five metrics. The first five of the models contained the blocking

variables while the variables (linear, squared, and cross) associated with
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Table 5

Evaluation of the Importance of Image Quality Parameters

Category

1 5

Reduced Model Variable
Terms Removed

RMSE
R2  76.26 53.56
F .99 2.67

RMS B

R2  74.8 52.3
F 3.93 3.92

Geo

R2  76.26 52.4
F .98 3.96

S/N

R 75.2 51.8
F 3.13 2.25

DYN

R2  76.3 38.6
F .92 19.21

Blocking and Variable
Terms Removed

RMSE

R2  47.7 50.3
F 13.5 3.88

RMSB

R2  54.7 50.7
F 5.09 3.63

Geo

R 48.4 49.6
F 12.63 6.83

S/N

R 55.0 48.6
F 4.73 6.17

DYN

R 51.1 33.8
F 9.39 22.17
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each of the metrics was deleted. The second five models deleted both the

blocking variables and the specific metric variables. The higher the

F-test value for a particular model the more significant the deleted

variables are for predicting the response.

As indicated in the correlation analysis the order of importance of

the five metrics is different for different response categories. Consi-

dering the models with the blocking variables included we notice that the

RMSB and S/N have about equal importance, while with the other three we

accept the hypothesis that they are not required taken individually in

the model with a p = .56-for category 1. For category 5 all the metrics

are required in the model but the dynamic range is by far the most sig-

nificant with the other four being about of equal importance. Interest-

ingly, when the blocking variables are removed the order of importance of

the metrics is changed for category 1. Now the RMSB and S/N are the least

important metrics for category 1. However, because the blocking variables

are required for category 1 the initial ordering of the importance of the

metrics will be accepted.

Tables 6-13 contain the estimated regression coefficient estimates

for several different models for category 1 and 5. These tables include

upper and lower confidence limits (a=.l) for each coefficient estimate,

its standard error, adjusted sum of squares and its partial F-test value.

These tables represent image quality predictions based on measured image

properties.

From this regression analysis several conclusions can be stated:

a) Statistically significant regression equations can not be esti-

mated for response categories 2, 3, and 4.

b) Statistically significant regression equations can be estimated
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for response categories 1 and 5 even when the models are re-

duced.

c) The blocking variables are required for response category 1

but not for response category 5.

d) The square and cross product terms are required for both

response category 1 and 5.

e) RMSB and S/N are the most important variables for response

category 1.

f) Dynamic range is the most important variable for response

category 5.

6.2 Non-Linear Models and Results

Recently a study was conducted (Moore, 1979) which related the "inter-

pretability" of radar images to the product of the spatial resolution and

grey-level resolution. The purpose of this section is to determine if

this relationship can be derived from the experimentdl data used here.

The product of the spatial resolution and the grey-level resolution

is defined as the spatial-grey-level (SGL) volume. The nonlinear model

proposed in Moore (1979) to relate interpretability to the SGL was

0 exp V(6.39)

where:

I0 and Vc are the model parameters

0 cr
V r=s rgL

rs = spatial resolution (2-dimensional)

rgL = grey-level resolution
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The grey-level resolution is a measure of the width of the noise proba-

bility density function (pdf) for a specific system, i.e., the noise vari-

ance is dependent upon the amount of averaging performed by the system.

The measure used in Moore (1979) to measure the width of the pdf was the

ratio of 90% to the 10% points. For a Gaussian approximation of the

gamma pdf which describes the radar image noise rgqL becomes

r L + 1.282 (6.40)
rgL= V -1.282

where:

N = number of looks averaged by the radar.

In our experiment we did not measure rg9L as a measure of the width

of the noise pdf, rather we used the S/N ratio. Also, the two-dimensional

spatial resolution was not measured directly rather the RMSB was obtained,

however the spatial resolution can be approximated for a full focused

system by

rs = I/RMSB. (6.41)

Therefore, the SGL volume used in our experiment is defined as

(RS)SN (6.42)

In addition a modified SGL volume was defined as

Vm '_ (RMSB)(S/N)(D) 6.3

where:

D =Dynamic range.
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The modified SGL volume attempts to account for the variation in dynamic

range introduced into the degraded images. The original exponential

model was also slightly modified to allow for a possible bias so the

nonlinear model used here was

I : a + e"YV (6.44)

Because of the results of the correlation and linear regression

analysis only response categories 1 and 5 will be reported. Table 14

contains the parameter estimates for categories 1 and 5 along with the

SSE. From this data and plots of Vm and V versus the interpreter

responses we concluded that this nonlinear model does not provide an

acceptable description of the interpreter responses for this experiment.
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Table 14

Image Quality Based on the Spatial-Grey-Level Volume

Category

1 5

Modified Modified
SGL Volume SGL Volume SGL Volume SGL Volume

.765 2.4 3.17 2.61

3.75 147.0 39.7 4.0

y -.01 -.11 -.18 -.01

SSE 1004.4 1152.0 864.0 740.5

S2  3.25 1 3.69 2.73 2.34
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7.0 CONCLUSIONS

The purpose of this study was to investigate the relationship be-

tween measurable properties of radar images and the utility of those

images for specific information extraction tasks. It was hoped that

such a relationship would be useful for system design and image

simulation. Five measurable image properties were identified, dynamic

range, signal-to-noise ratio, image bandwidth, geometric fidelity,

and root-mean square error. These metrics were determined to be linked

to independent characteristics of the radar image and were either direc-

tly or indirectly related to many image quality parameters proposed in

the past.

Clearly there are no physical laws governing the functional depen-

dence of image utility upon these image metrics, therefore an experiment

was conducted to empirically estimate a functional form for describing

this dependence. This experiment consisted of obtaining SAR imagery

and digitally processing it to create a set of radar images with con-

trolled levels of image "quality". These images were presented to human

interpreters who were asked to evaluate the usefulness of each image for

extracting four classes or categories of terrain features, linear fea-

tures, natural area features, complex area features, and individual

man-made targets. In addition to these absolute responses or rankings

of the images, the interpreters also rank ordered the images from best

to worst relative to his evaluation of the utility of each image for

assessing vehicle movement and activity level. Thus for each radar

image the interpreter provided five responses. Also for each radar

image each of the five image metrics were calculated. A functional

relationship between each response category and the image metrics was
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then estimated.

The first conclusion drawn from this experiment was that statis-

tically significant regression equations could not be obtained to relate

extracting natural area features, and individual man-made targets to

the quality of radar images as judged by the interpreters. A possible

explanation for this is that the interpreters did not use uniform

criteria for these response categories owing to the complexity of these

image features. However, for the simpler categories, i.e., linear

features and relative ranking, statistically significant regression

equations could be estimated. (Only second order interactions were

considered in the regression equation.) Next it was found that for

these categories the full second-order model was required to maintain

the statistical significance of the regression equation. Another con-

clusion reached by this experiment was that different image metrics

assume varying levels of importance as the response category was

changed. For example, bandwidth and the signal-to-noise ratio were the

most important metrics in estimating the ability of an interpreter to

extract linear features from radar images. Dynamic range was predominant

for estimating how an interpreter would relatively rank the radar images.

This observation has important ramifications for the application of image

quality metrics for multi-mission sensor design. That is, the system

designer will have to trade-off system performance as a function of the

application. A further conclusion obtained was that the nonlinear re-

gression equations based upon the SGL volume were not statistically

significant given these experimental data.

Recent advances in SAR systems, specifically the availability of
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digital SAR images obtained from spaceborne platforms and digital image

processing technology signify that more information extraction tasks

will be performed by computer. Thus it is recommended that a study

of this type be conducted to determine the relationship between mea-

surable image properties which are related to system parameters and the

success of automated information extraction algorithms for radar. For
examole, how is the probability of correct classification of targets

related to measurable image properties. Using the computer to measure

the utility of the radar images will remove the major disadvantage of

the current study, i.e., relying on human judgments.
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APPENDIX A

INTERPRETER PACKET



INTRODUCTION

The purpose of this study is to establish quantitative techniques

for predicting interpreter performance when an imaging radar is used as

the reconnaissance sensor. This study consists of several phases. First,

quantitative radar image quality factors were derived, then radar imagery

was processed to exhibit controlled levels of image quality. Next,

empirical data is to be gathered on interpreter performance vs. image

quality. Last, this data will be used to derive the relationship be-

tween quantitatively measured image quality and interpreter performance.

Your contribution to this study is to interpret the given radar

imagery following the instructions and guidelines and thus to provide the

required empirical data. Also as part of the study the questions dealing

with interpretation experience need to be answered.

The original radar imagery was collected by an X-band sensor with

HH polarization and resolution of approximately 15 ft. with the look

direction always left to right. There are four different target areas used

in this study. The numbering scheme assigned 100-199 and 500-599 to

Scene A, 200-299 and 600-699 to Scene B, 300-399 and 700-799 to Scene C,

and 400-499 and 800-899 to Scene D. The target scenes are in the Roanoke,

Virginia area.

Ancillary data are also provided in the form of aerial photographs

(scale 1:16000, taken in March 1968), USGS maps (scale 1:24000, 1968)

and enlargements of the original SAR imagery (scale ! 1:16000, collected

in June 1968). Also provided will be lists of targets of interest contained

within each scene and definition of the ranking criteria for each target.
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You should use the ancillary data provided to locate each indicated target

within each scene, then use the guidelines for ranking the quality of each

target signature. We greatly appreciate your assistance in this study.
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INSTRUCTIONS

A. Interpret the images in the order presented.

B. Use all available standard photo-interpretation equipment.

C. Use the air photos, maps and radar images provided to locate each

target within the processed radar images.

D. For each scene rank only those targets which are indicated as being

in that area.

E. Provide the numerical ranking for each target signature according to

the given definitions and guidelines.

F. Be consistent in judging each image, that is, use the given guidelines

for evaluating each target.

G. Take at least a 10 minute rest after every hour of interpretation.
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QUESTIONS

Please answer the following questions:

1. Number of years radar image interpretation experience?

2. General mission objectives of your image interpretation work?

3. List all photo-interpretation equipment used for the analysis of
these test images.

4. Time used for this study?
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GUIDELINES

These guidelines provide definitions for each target and its inter-

pretation levels. In general the highest interpretation level of the six

available is identification which indicates that the target can be dis-

tinguished from all others similar to it, e.g., an automobile bridge

instead of just a bridge. This ranking is divided into two levels of

certainty--possible and probable. A probable identification is when it

is probable that the target signature can be correctly identified while

a possible identification is when the target signature can possibly be

correctly identified.

The next interpretation level is classification. 'Classification is

being able to group a target return into a category, for example, being

able to classify a signature as a bridge. Again this level is divided into

two levels of certainty. A probable classification is when a signature

can probably be grouped into a category while a possible classification

is when a signature can possibly be correctly grouped into a category.

The lowest level is detection. Detection is when there is enough tar-

get signature to determine that there is something there while not being

able to either identify or classify it. A possible detection is when it is

possible that there is a target signature present while a probable detection

is when it is probable that a target signature is present. No detection

is when no target signature is present.

The procedure for attaching one of these interpretation levels to each

target feature will be as follows:

1. Check to see if the target is present in the scene.

2. If it is present, next find its location in the ancillary photos,

SAR images and maps and in the test image.
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3. Next refer to the definition of the numerical rankings for this

target.

4. Examine this target signature in the test image.

5. Assign a numerical ranking of identifiability based on the

supplied definitions.

For example, consider the airport category. The ancillary data are

used to find the location of its target signature within the degraded

image. If its target signature is not present in the degraded image then

a numerical ranking of 0 is assigned. A ranking of 1 is used if its tar-

get signature is possibly present while a ranking of 2 is assigned if its

target signature is probably present. If the target signature can possibly

be classified as an airport then a ranking of 3 is used, while if the

signature can probably be classified as an airport then a ranking of

4 is assigned. If further information about the target signature can be

obtained then a ranking of 5 or 6 will be used. Specifically, if the appli-

cation of the airport can possibly be identified then a ranking of 5 is

used, while if the application of the airport can probably be identified

then a ranking of 6 is assigned.

A.
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ANSWER SHEET

Numerical Rankings
4-r,' 4-

Interpreter Identification .- .0
I mage I dentif ication # - ...I....U Q :Q

I nterpretation Categories 6 5'DO'C OD*C 1 4 3 2 1 0 A B D

Li nears Mostly Along Track' ............................... . .

Two Lane........
Four Lane 2

Linearswostly Cross T... ..... .
Roads. ..... .....

Four. Lane... .• .

Two ~~ ~ ~ .. Lae...........•

Four Lane .......... 1 2
Linears Mostly Diaona lrack

RoadsPaved 
X

D iv id ed H ig h w a y.. .. . . . .

Deciduous....... . 9

TwoLaed ............. 3

Agriculture ....... 4

Rivers and Streams.- . . . X2

... ii:i iii:: :ii~ i iii::ii i~ i:: : : - :::::::::::: !:iii:iii:! ..... ...... .... ....
P a e ........:!! :!:i: :i ..i i :: i i:i i: ..i i: ii~ i i .::: :: ::: :: : : .............

C wLAret ............ 5.1

Railroad Yards .......
Industrial Areas ......
Commercial Areas .. .. . ..

Residential Areas....... 8

Individual Man-Made Targets iii iii -: : ....
Buildings.......... ...

B ri ges.. ... ... .. ... .. .. ..

Storage Tanks .......
Parked Vehicles ......
Railroad Round House.... 9

•For these ratings indicate in the appropriate square whether the identification
was based upon direct evidence or from the target context.

MAngle of intersection of road and the flight path 1 -15

bAngle of intersection of road and the flighlt path - 75-9O@
RAnge of intersection of road and the flight path 1 25175@

Roads wide enough to carry four lanes of traffic are considered

fnir I~n = 0iJ fn if the= nttid1 tvan lan r ii€' fnt n~rkinn 1.



Interpreter Identification #

Separate the images by scene and rank them from best to worst in terms of the given applications.
For vehicle movement consider the potential for the movement of military vehicles, e.g. heavy

trucks or tanks, through the given terrain. Terrain features which are important for assessing
vehicle movement include bridge capacity, forest density, topographic slopes, water bodies and
their depth, soils, street size, and road types, e.g. paved and unpaved. Evaluate and rank the images
with respect to the quality of each image for specifying vehicle movement potential.

For activity level consider your ability to detect specific levels of activity. That is, order the
degraded images from best to worst based on your assessment of the quality of each image for
detecting levels of activity. For example, the relative quality of each image for detecting a convoy
on the roads, a large increase or decrease in aircraft at the airport, or a large increase or decrease
of rail cars at the railyard.

Vehicle Activity Vehicle Activity
Scene A Movement Level Scene B Movement Level

Best - 1 Best - 1

Worst - 8

Worst - 10 Vehicle Activity
Scene D Movement Level

Vehicle Activity Best - 1
Scene C Movement Level

Best - 1

Worst - 10 Worst - 12

A-10
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APPENDIX B
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PERSONNEL
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PUBLISHED PAPERS

"Simulation of Imaging Radar Systems," (J. Holtzman, V. Kaupp, V. Frost,
J. Abbott, and R. Martin), Eighth Annual Pittsburgh Conference on
Modeling and Simulation, The University of Pittsburgh, Pittsburgh,
Pennsylvania, April 21-22, 1977.

"Image Synthesis for SAR Systems, Calibration, and Processor Design,"
(J.C. Holtzman, V.S. Frost, J.L. Abbott, and V. Kaupp), Proceedings
of the Synthetic Aperture Radar Technology Convention, March 8-10,
1978, Las Cruces, New Mexico.

"An Image Simulation Model for Radar Guidance," (J.C. Holtzman, V. Kaupp,
V.S. Frost, J. Abbott), Ninth Annual Pittsburgh Conference on

Modeling and Simulation, The University of Pittsburgh, Pittsburgh,
Pennsylvania, April, 1978.

"Radar Image Simulation," (J.C. Holtzman, V.S. Frost, J. Abbott,
V. Kaupp), IEEE Transactiops on Geoscience Electronics, Vol. GE-16,
No. 5, October, 1978.

"Development of Statistical Models for Radar Image Analysis and
Simulation," (V.S. Frost), Master's Thesis, University of Kansas,
1978.

"Computer Generated Radar Images for Navigation," (J.C. Holtzman,
V.S. Frost, J.A. Stiles, and V. Kaupp), Proceedings of the Military
Electronics Expo '78, Anaheim, California, November 14-16, 1978.

"Seasonal Effects on Radar Imagery as Predicted by the PSM Simulation
Techniques," (J.C. Holtzman, V.S. Frost, J.A. Stiles, E.E. Komp,
E.S. Bergan, and V.H. Kaupp), Tenth Annual Pittsburgh Conference
on Modeling and Simulation, The University of Pittsburgh, Pittsburgh,
Pennsylvania, April, 1979.

"Radar Image Simulation: A Project to Develop a Model, Define its
Operational Constraints, Validate its Accuracy and to Produce
Sample Results," (V.H. Kaupp), Doctor of Engineering Thesis,
University of Kansas, May, 1979.

"A Digital Computation Technique for Radar Scene Simulation: New SLAR,"
(J.C. Holtzman, V.S. Frost, J.L. Abbott, E.E. Komp, V.H. Kaupp),
Simulation, June, 1979.

"Radar Image Preprocessing," (J.C. Holtzman, V.S. Frost, J.A. Stiles,
D.N. Held), Sixth Purdue Symposium on Machine Processing of Remote
Sensing Data, Purdue University, West Lafayette, Indiana, June 2-6,
1980.

"Digital Preprocessing of SEASAT Imagery," (J.C. Holtzman, J.A. Stiles,
V.S. Frost, D.N. Held), International Conference on Communications,
Seattle, Washington, June 8-11, 1980.
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"Radar Image Enhancement and Simulation as an Aid to Interpretation and
Training," (J.C. Holtzman, J.A. Stiles, V.S. Frost, L.F. Dellwig
and D.N. Held), International Symposium on Remote Sensing of
Environment, San Jose, Costa Rica, April 23-30, 1980.
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Scientific Personnel Title Degree Earned

J.C. Holtzman Principle
Investigato-

V.H. Kaupp Senior Project Doctor of
Engineer Engineering

(Spring 1979)

V.S. Frost Research Master of
Engineer Science

(Fall 1978)

J.A. Stiles Research
Engineer

S.A. Smith Research
Scientist

C.J. Hahn Research
Technician

D. Manweiler Research
Technician
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